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Abstract: Seafood, especially from the ocean, is now seen as a greener and more sustainable source of protein 
causing an increase in its demand. This has also led to people making choices towards seafood as a replacement 
of carbon intensive protein sources. As a result, the demand for seafood is growing, and the Aquaculture 
industry is required to increase their produce while keeping the produce safe and sustainable. There are many 
challenges faced by the aquaculture industry in meeting these increased demands. One such challenge is the 
presence of harmful algal blooms (HAB) in the ocean which can have a major impact on aquatic life. In this paper 
we look at the impact of this challenge on aquaculture and the mitigating strategies. We will focus on Abagold 
Limited, a land-based marine aquaculture business that specializes in large scale production of abalone (Haliotis 
midae) based in Hermanus, South Africa.  HABs are considered a threat to commercial scale abalone farming 
along the South-African coastline and requires continuous monitoring. The most recent HAB was in February-
April 2019, the area experienced a severe red-tide event with blooms of predominantly Lingulodinium polyedrum. 
We present some of the mitigation strategies employing digital technologies for future proofing the industry. 

Keywords: harmful algal blooms; sensors; aquaculture; South Africa; marine 
 

1. Introduction  
Phytoplankton, also known as microalgae, are like terrestrial plants in that they contain 

chlorophyll and require sunlight to live and grow. Most phytoplankton are buoyant and float in the 
upper part of the ocean, where sunlight penetrates the water. Algal blooms are commonly referred 
to as red tides or harmful algal blooms (HABs), but they occur in a variety of colours depending on 
the type(s) of algae present.  Only a small number of species have the capacity to form harmful 
blooms, but when they do, the effects can be severe for coastal resources, local economies, and public 
health.  Harmful algal blooms (HABs) occur when algae grow out of control and sometimes produce 
toxins harmful to aquatic life and in some cases to humans. Hallegraeph [1] categorizes them into 
three broad groups. Group one is harmless (i.e. non- toxin producing) colourless algae can also form 
a bloom and deplete a waterbody of oxygen killing aquatic life, an example is dinoflagellates Akashiwo 
sanguinea. The second group include species which produce potent toxins that can affect humans, 
causing a variety of gastrointestinal and neurological illnesses, most common example includes 
paralytic shellfish poisoning (PSP) caused by dinoflagellates Alexandrium catenella [2]. However, the 
focus here is on the third category of HABs which produces toxins harmful to aquatic life. While the 
wild aquatic animals have the freedom of moving away when such a bloom occurs, farmed aquatic 
life are more vulnerable to such HABs. 

These types of algae are complex and their ability to devastate aquaculture farms has posed a 
significant challenge to the industry's sustainability. There are several mechanisms by which HABs 
threaten the viability of cultured organisms through the dysfunction of the respiratory system by 
damaging the gill epithelium or by suffocation due to the depletion of dissolved oxygen in the water. 
Toxin produced by certain algal species can accumulate in cultured organisms leading to public 
health risks of shellfish poisoning if it exceeds regulatory limits [3]. The frequency and intensity of 
these blooms have developed into a global concern over the past few years. The impact of blooms is 
not often quantified except in cases where it has resulted in massive mortalities of cultured animals 
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and significant economic losses. The more notable globally iconic blooming events and their impact 
on the aquaculture industry are summarised in Table 1 above. 

Table 1. Harmful Algal Bloom events attributed to known species of harmful algae and their impact 
on aquaculture. 

HAB Toxin  Cultured 

Animal  

Locatio

n 

Impact  Year  Reference  

Chrysochrom

ulina 

leadbeateri  

  Salmon Northe

rn 

Norwa

y 

It was estimated to have 

killed 8 million salmon, a 

total of 14,000 tonnes with 

a value of over 80 million 

EURO. Fish death was 

sudden with gill damage 

frequently observed. 

 

2019 Bente 

Edvardsen, 

2022 [4] 

Karenia 

mikimotoi 

  Mussel  St 

Austell 

Bay & 

Lyme 

Bay 

English 

Chann

el, UK 

This led to an 18-week 

harvesting ban, costing 

over 1 million GBP in loss 

of sales. The okadaic acid 

accumulation in the 

shellfish exceeds the 

regulatory limits. 

 

2018 Ross Brown 

et al., 2022 

[5] Noctiluca 

scintillans 

  

Dinophysis 

acuminata 

pectenot

oxins 

and 

okadaic 

acid 

Dinophysis 

acuta 

Heterosigma 

akashiwo  

  Salmon  

Canada 

Resulted in the deaths of 

more than 250,000 

salmon. 

 

2018 Robinson 

MaĴ, 2018 

[6] 

Gonyaulax 

spinifera 

Yessotox

ins 

Abalone  South 

Africa 

Severe disruption of the 

gill epithelium is 

characterised by 

degeneration and 

necrosis. The total loss 

was estimated to have 

exceeded 250 tonnes. 

 

2017 Pitcher et al., 

2019 [7] 

Lingulodiniu

m polyedrum 

PseudochaĴo

nella 

verruculosa 

  Salmon Chile This resulted in the 

mortality of 39 million 

salmon and US$800 

million loss. Examination 

showed that gills were the 

2016 Díaz et al., 

2019 [3] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1263.v1

https://doi.org/10.20944/preprints202401.1263.v1


 3 

 

most affected organ with 

significant tissue damage. 

 

Alexandrium 

catenella  

Saxitoxi

ns 

 Mussel Chile  Toxins led to harvesting 

closures of multiple farms 

in the affected areas. 

 

2016 Anderson 

Donald and 

Rensel Jack, 

2016 [8] 

Alexandrium 

fundyense 

Saxitoxi

n 

Mussel Scotlan

d 

These toxins result in a 

yearly average reduction 

of nearly 15% in 

production. This is 

equivalent to a loss of 

1080 tonnes of shellfish 

per year and an economic 

loss of 1.3 million GBP 

2005

-

2015 

Martino, 

Gianella and 

Davidson, 

2020 [9] 
Dinophysis 

sp. 

Okadaic 

acid 

Pseudo-

niĵschia sp. 

Domoic 

acid 

Alexandrium 

tamarense 

 

Saxitoxi

ns 

Mussel Austral

ia 

Toxins led to harvesting 

closures of multiple 

fisheries resources in the 

affected areas. The 

marine farming sector 

losses based on 

reductions in landed 

catch equated to an 

estimated $6,308,700. 

AUD 

2012 Campbell et 

al., 2013[10] 

 

Prorocentru

m 

donghaiense  

  Scallop, 

Abalone 

China Caused significant loss in 

the mariculture 

industries of Zhejiang 

and Fujian provinces, 

especially in cultivated 

abalone.  The direct 

economic loss was more 

than $US330 million. The 

blooms caused cessation 

of feeding and stagnant 

growth of scallops. 

2010

-

2012 

Trainer, V.L. 

and 

Yoshida, T. 

(Eds.) 2014 

[11] Karenia 

mikimotoi 

  

Cochlodiniu

m 

geminatum  

Ichthyot

oxins  

Noctiluca 

scintillans 

  Mussel China Although this bloom is 

non-toxic, it accumulates 

and releases toxic levels 

of ammonia into the 

surrounding waters. It 

2008 Trainer, V.L. 

and 

Yoshida, T. 

(Eds.) 2014 

[11] 
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caused high mortalities 

and led to $US 32.6 

thousand in economic 

losses. 

Karenia 

brevis 

 Brevoto

xins 

Mussel Spain This led to harvesting 

banns that reduced 

production. 

2003

-

2008 

Rodríguez, 

Villasante 

and Carme 

García-

Negro, 2011 

[12] 

Protoceratiu

m 

reticulatum 

Yessotox

ins 

Mussel South 

Africa 

This led to a five-month 

closure of mussel 

harvesting. 

2005 Pitcher and 

Louw, 2021 

[13] 

Alexandrium 

catenella  

 

Saxitoxi

ns 

Abalone  South 

Africa 

The toxin affected the 

spawning capability of 

the abalone and larval 

survival. Mortalities were 

recorded in the 

broodstock. 

1999 Pitcher et al., 

2001[14] 

Chaetocero

s wighami  

 Salmon Scotlan

d 

Gills showed severe 

necrosis with focal 

hyperplasia and 

oedematous separation of 

epithelia. The economic 

cost was a loss of 170 

tonnes of production 

worth £408,000 

1998 Treasurer, 

Hannah and 

Cox, 

2003[15] 

2. Harmful Algal Bloom Mitigation Technologies  
Harmful Algal Blooms have been a major cause of concern in aquaculture and their occurrence 

depends on various factors including temperature, precipitation, wind, surface water conditions, 
presence of nutrients (eutrophication) etc. Changing climate impacts these parameters, for example, 
surface water acidification stemming from increased CO2 emissions which directly alters the surface 
water conditions, and perhaps more importantly their extremes [16]. However, there is no evidence 
that HAB occurrence will increase with rise in temperature but the composition and spread of HABs 
will change making their occurrence even more unpredictable [17].  This unpredictability of HABs 
is a cause of concern for the aquaculture business and there an immediate need to develop suitable 
digital techniques to that would allow the farms to mitigate their impact.  

There are various tools which have been developed to monitor, quantify, or identify them. This 
section focuses on various digital technologies that have been developed in the last few years that 
support the monitoring/forecasting HABs. 

2.1. Tools and Instruments 
The ability to detect HABs without resorting to laboratory-based sample testing is enabled by a 

range of sensor technologies detecting increasing turbidity and changes in chlorophyll-related 
spectral responses that result from increasing phytoplankton. The implementation of a specific 
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technology can be dependent on the spatial and temporal requirements for a specific application. For 
example, satellite-based remote sensors can provide measurements over large areas of the globe and 
show the development and distribution of HABs at regular intervals, typically measured in days. 
Commercial aquaculture, by contrast, requires access to real-time data to detect the onset of HAB’s 
in farming tanks and employ in-situ multiparameter sensors. A brief review of some of the sensor 
options available currently is presented below. 

Satellite remote sensing of HABs employs spectral measurement technologies such as MODIS 
(moderate resolution imaging spectroradiometer) and the Sentinel-2A/B optical multispectral 
imaging satellite. Spatial resolution is typically of the order of 10’s of metres. An example of this 
approach is presented by Bondur et al, where satellite data is integrated with ocean temperature data 
to identify the causes of HABs in the coastal waters east of Kamchatka, influenced by mineral and 
biogenic suspensions in river runoff from the Nalycheva River [18]. A further example is provided 
by Bu et al. where MODIS data has been integrated with meteorological factors and latitude and 
longitude information to create a general regression dataset for harmful algal bloom detection. The 
analysis by Bu et al. included data from 192 HAB events from around the world over a 20-year period 
[19]. One of the challenges with satellite remote sensing is variability and measurement restrictions 
caused by cloud cover and aerosol conditions. A satellite measurement system that aims to address 
these issues is the TROPOspheric Monitoring Instrument (TROPOMI) which can observe red solar 
induced fluorescence (SIF) resulting from HABs. This instrument is mounted on the Copernicus 
Sentinel-5 Precursor satellite and offers 5.5 km spatial resolution and near-daily global coverage [20]. 
Luis et al. have recently presented a comparison of HAB assessments from the TROPOMI and MODIS 
satellites and concluded that: during severe HAB conditions, red SIF was consistent with existing 
monitoring tools and has potential to provide nearly double the amount of spatiotemporal 
fluorescence HAB information [20]. Even within satellite based remote sensing, for a given 
application, there are decisions to make relating to measurement robustness, atmospheric conditions, 
spatial resolution, and image update rate. 

Jordan et al. present an above-water reflectance system capable of monitoring aquatic 
ecosystems with the addition of a hyperspectral direct-diffuse solar radiation pyranometer [21]. The 
reported benefit of this integrated approach was an improvement in measurement precision resulting 
from an algorithm that included a function to account for the atmospheric optical state and the 
variations in spectral response of the incoming radiation. The characterization of atmospheric 
properties may also be beneficial in reducing uncertainties associated with atmospheric correction 
methods employed in satellite observation. 

An alternative approach to satellite-based measurement that overcomes temporal limitations 
and atmospheric conditions is the use of unmanned aerial vehicles (UAVs), also known as drones. A 
review by Wu et al. outlines the developments and opportunities of UAVs installed with lightweight 
high-resolution spectral imaging systems. Whilst data and image analysis is a significant activity and 
baĴery power capacity a consideration, a key benefit of UAV-based systems is that spatial resolution 
can be in the scale of centimetres [22]. For an altogether lower-technology approach, the ability to 
manually measure water transparency or turbidity can be achieved with a Secchi disk [23] which is a 
30 cm white disc that is lowered into water until the disk is no longer visible, this depth is recorded 
as the Secchi depth. Variations of the Secchi disk have been developed for ocean and river applications 
and the theory and method continues to evolve [24–26]. A significant figure that the use of the Secchi 
disk aims to provide is the euphotic-depth, the depth of the uppermost layer of water that receives 
sufficient sunlight which allows phytoplankton to perform photosynthesis.  The conversion from 
Secchi disk depth to euphotic-depth is based on a single scaling parameter in the range of 1.79 to 2 
[24,25].  As a result of the relative simplicity of the Secchi disk and method of use it has become a 
popular research tool around the world. The availability of Secchi disk depth data enabled Boyce et 
al. to present a 100-year global assessment of phytoplankton levels, the Secchi depth data was 
referenced against available satellite data [27]. In the analysis by Boyce et al., the Secchi depth was 
employed to estimate chlorophyll pigment concentration (‘Chl’), measured in mg/m3, using the 
following equation: ܥℎ݈ =  ଶ.ଷ଻ିܦ457
where, D is the Secchi depth in metres. 
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A recent citizen-science implementation of the Secchi disk [28], that includes water pH and 
colour measurements (using a mobile phone camera), has been presented on the MONOCLE Project 
- Multiscale Observation Networks for Optical monitoring of Coastal waters, Lakes and Estuaries 
(monocle-h2020.eu) [29].  As a result of the legacy of available data, access to citizen science and ease 
of use, the Secchi disk is still a useful and popular tool for assessing water conditions for HAB 
detection and monitoring, which can also complement the findings from the more technically 
sophisticated remote sensing methods [2637]. 

Focussing on the needs of commercial aquaculture, in-situ sensors are commercially available 
such as the FluoroProbe III (hĴps://www.bbe-moldaenke.de/en/ ) and the TriLux sensor from Chelsea 
Technology Ltd. (as employed in this case study). These digitally connected multi-parameter sensors 
employ spectral fluorometry methods to detect chlorophyll-a and can provide real-time 
measurements as well as depth profile responses. Such sensors are suitable for integration with a 
wide range of surface marine vehicles, platforms and installations including buoys. However, for 
long-term installations, regular sensor cleaning needs to be performed to remove dirt and biofilms. 

The global need for field portable instrumentation or on-site monitoring systems is also driving 
commercial research and development activities. One example of this type of instrument is the 
‘Harmful Algal Bloom Detection Instrument’, from Giner Labs, [42]. This low-cost hand-held 
instrument employs rapid electrochemical analysis technology to deliver parts-per-billion 
measurements of HAB related toxins. An example of on-site equipment enabling rapid sample 
analysis, comes from FlowCam, [43] with a range of products employing flow imaging microscopy 
with particle counting and analysis software. This technology can identify taxonomic groups and 
estimate concentration of the dominant organisms, providing proactive and rapid HAB monitoring 
enabling data-driven water resource management [30]. However, as expected this is a top end 
instrument which would imply exorbitant cost.  Another option to identify specific HAB species is 
possible through a combination of instrumentation and Artificial Intelligence (AI)/Machine Learning 
(ML) tools. The next section briefly explores the HAB models to complement the instrumentation. 

2.2. HAB AI/ML Models 
Tools and instruments explained in the previous section can usually be supplemented with a 

machine learning model. As the Harmful Algal Blooms continue to challenge the aquaculture 
industry, different models to predict their occurrence are being developed. Researchers have 
aĴempted to develop models based on the functional traits of the HABs or/and using data from either 
sensors or satellite. These models [52] are essential to develop early warning system using short-term 
forecast of HAB movement and develop actions to mitigate their impact either by neutralizing them 
or somehow minimise their impact. David et al [44] have conducted a detailed review of the models 
developed in the past decade and classified the HAB models into process based, statistical and hybrid 
models.  Process based models like [45] are more suited to study long term impact and prediction, 
for example the impact of climate change. In comparison, machine learning models based on 
statistical methods [46] can be used to deliver short term predictions.  

The process-based models [48] are usually developed specific to a species as these are 
mechanistic model and consider the environmental conditions that would favour the growth of a 
particular species. These models are also much more complex and rely on data collected over few 
decades, for example, Gobler et al [49] combines sea surface temperature records from 1982 to 2016 
were combined with laboratory-based growth rates for two HAB species A. catenella (fundyense) and 
D. acuminata. Such models are essential for aquaculture industry to understand change in their 
frequency or impacts which is important for building resilience in the business.  Kim et al [53] uses 
hydrodynamic model, Environmental Fluid Dynamics Code (EFDC) to understand algal dynamics 
which would help develop HAB management strategies. Litchman [45] explains that trait-based 
systems would be very useful however there is insufficient data and some gaps in the understanding 
to develop such a system. They suggest a hybrid system that is by combining data driven model with 
a trait-based system.  

Statistical methods are usually more successful for a short-term forecasting especially when used 
with in situ sensors. Yu et al [51] develop a ML model for two locations in China and USA using 
sensor data that demonstrates the versatility of their ML model. They have selected different water 
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quality parameters such as Chlorophyll, Ammonia, Nitrate for each ANN (Artificial Neural Network) 
model. In [37], authors use another ANN model to predict Chlorophyll a in an aquaculture seĴing. 

Most of these HAB models are usually specific to a river or an estuary with the focus on the 
environment (including wild fisheries) and public health. There are however some relatively recent 
initiatives whose focus is on supporting aquaculture, for example Sustainable Aquaculture 
Innovation Centre (SAIC) project [47], which provides a tool for ScoĴish finfish aquaculture (see 
hĴps://www.habreports.org/ accessed 14th January).  Similar initiative in South Africa [50], National 
OCIMS (The National Oceans and Coastal Information Management System)under Council of 
Scientific and Industrial Research (CSIR), South Africa (see hĴps://www.ocims.gov.za/hab/app/ 
accessed 14th January) with the aim to support aquaculture operations in the region in addition to 
marine ecosystems and communities. However, both of these tools, rely on satellite data and the 
results are not available immediately. Especially if there are clouds than the satellites cannot access 
the data.  

3. Aquaculture in South Africa 
Africa, second to Asia, has a major market for fishery products with its current production of 

marine and freshwater aquaculture species exceeding 1.8 million tonnes per annum. However, the 
current African aquaculture industry is still not meeting the requirements of its growing population. 
The South African aquaculture industry specifically, despite a growing trend in moderate quantities 
produced since 2005, had to import on average 70 000 tonnes per annum of fish and aquatic 
invertebrates worth R 1.36 billion to augment the demand during the past decade [31]. This is largely 
due to the African aquaculture industry, in particular South Africa that is still in its infancy and has 
been hindered by various environmental, economic, social, and technological challenges. This article 
presents mitigating solutions to address some of these through employing digital technology. We 
present our results as a case study of Abagold Limited, a land-based marine aquaculture business 
that specializes in large scale production of abalone (Haliotis midae) based in Hermanus, South Africa. 
One of the challenges faced by Abagold is threat of harmful algal blooms (HAB). Most recent HAB 
was in February-April 2019, the area experienced a severe red-tide event with blooms of 
predominantly Lingulodinium polyedrum. In this article we present mechanisms for early prediction of 
HABs. To monitor HABs, currently Abagold uses costly and time-consuming manual water sampling 
and phytoplankton analysis. An early detection of HABs link directly to health and food security in 
more than one way. We build on well-established correlation between parameters like Chlorophyll, 
pH, Turbidity, with HABs to establish a framework for an early warning system. 

4. Abagold Limited—A Case Study 
4.1. Data Site 

Abagold Limited (hĴps://www.abagold.com/) cultivates Abalone in Hermanus. Hermanus is 
nestled in the Walker Bay and the pristine waters of the Atlantic Ocean in the bay provide the 
necessary nutrients and environment to produce the highest quality Abalone. The Abalone species, 
Haliotis midae, is farmed on four aptly named farms in Hermanus: Sea View, Amaza (waves), Bergsig 
(mountain view) and Sulamanzi (clean water).  

 
Figure 1. Primary Sump,  Abagold Seaview Farm. 
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4.2. Water Quality Parameter and Sensor Selection  
Algal biomass dynamics are non-linear and non-stationary due to the complex interaction of 

physical, chemical, and biological parameters affecting the growth and accumulation of biomass and 
this is a universal problem so various models have been developed for its prediction, these are 
discussed in 2.2. Algae have unique pigments that they use for photosynthesis, these could be 
monitored by measuring chlorophyll a, phycocyanin and phycoerythrin. Chlorophyll a has been used 
for many decades to monitor algal biomass [32]. The pigment phycocyanin is a more specific indicator 
of blue-green algae in freshwater systems, and a similar pigment called phycoerythrin is a useful 
indicator of blue-green algae in marine systems [33]. In addition to these parameters, turbidity is also 
linked with the presence of algae in water. As the selected site uses water from sea, Chlorophyll a 
(named as CHL1 (470), for ease here), Phycoerythrin (named as CHL2 (530) for ease here) and 
Turbidity (Tb) were selected to monitor for HABs.  

There are various sensors for these parameters, selection was based on cost, ease of availability 
and delivery to South African site. Following three multi parameter instruments were selected: 

Table 2. List of suitable sensor manufacturers. 

Manufacturer/Instrument Parameters Distribution point Cost (£) 

In-situ AquaTroll Chlorophyll a , 

Phycoerythrin 

South Africa 5109 

Chelsea Technology Limited 

Trilux 

Chlorophyll a ,  

Phycoerythrin 

and Turbidity 

United Kingdom 4070 

Xylem EXO3 Chlorophyll a , 

Phycoerythrin 

South Africa 7500 

The main problem in the project was the long delivery times, this was understood to be due to 
global shortage of some components necessary for these instruments. Trilux was chosen as CTL are 
long-term project partners with University of Bedfordshire, so they agreed to lend an instrument for 
measurements. All the data presented here is collected using Trilux. 

 
Figure 2. Installation of Chelsea Technology Limited TriLux sensor at Abagold. 

The parameters Chlorophyll a (CHL1 (470)), Phycoerythrin (CHL2 (530)) and Turbidity (Tb) 
were measured in the units QSU, ug/L and FNU respectively (definitions for these units?). The 
phytoplankton data were recorded manually at fixed times for the month of January, February, and 
March. The data from Trilux sensor were recorded throughout the months of, January, February, and 
March at 1 second intervals. However, the phytoplankton count was recorded at fixed times – usually 
in the morning at 7.40 am. Thus, to correlate with this data, Trilux data was averaged at a 20 second 
window for the corresponding date and time on which the phytoplankton count was recorded shown 
in Table 3 below. 

Table 3. Phytoplankton count and 20sec averaged TriLux data from the Abagold farm. 
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Sample 
Number Date Time 

CHL1(470) 
(QSU) 

Tb 
(FNU) 

CHL2 
(530) 
(ug/L) 

Phytoplankton 
count 

2097 10/01/2023 07:40 587.36 913.18 668.46 2650 

2100 11/01/2023 07:40 574.86 880.35 643.82 36475 

2102 11/01/2023 12:40 547.48 818.78 624.9 2450 

2106 12/01/2023 07:40 564.97 833.26 645.07 40900 

2109 13/01/2023 10:00 519.94 761.65 644.01 7475 

2111 16/01/2023 07:40 291.26 405.28 281.08 2725 

2113 17/01/2023 07:40 204.49 270.24 172.56 225 

2115 18/01/2023 07:40 160.14 210.47 129.87 225 

2117 19/01/2023 07:40 181.34 227.35 125.72 200 

2119 20/01/2023 07:40 133.3 192.19 110.42 125 

2122 23/01/2023 07:58 122.24 244.26 153.84 225 

2124 24/01/2023 07:40 76.94 149.72 107.45 725 

2127 25/01/2023 07:40 111.14 211.9 163.76 425 

2129 26/01/2023 07:40 139.19 278.49 221.26 1700 

2131 27/01/2023 07:40 124.53 250.56 196.03 3150 

2133 30/01/2023 07:40 169.16 289.41 200.6 75 

2135 31/01/2023 07:40 170.37 286.01 204.91 950 

2137 01/02/2023 07:40 181.9 306.23 224.78 150 

2139 02/02/2023 07:40 209.94 353.66 238.66 725 

2141 03/02/2023 07:40 185.23 333.7 243.69 2225 

2143 06/02/2023 07:40 193.37 361.69 295.29 925 

2145 07/02/2023 07:40 249.15 360.36 269.27 925 

2147 08/02/2023 07:40 252.34 406.9 302.79 375 

2149 09/02/2023 07:40 359.09 611.48 468.39 1200 

2151 10/02/2023 07:40 273.59 377.57 281.56 800 

2153 13/02/2023 07:40 408.62 508.17 390.5 675 

2160 17/02/2023 07:40 331.44 627.11 632.65 7475 

2162 20/02/2023 07:40 96.68 174.63 112.45 250 

2164 21/02/2023 07:40 141.96 186.75 99.63 575 

2166 22/02/2023 07:40 168.93 211.61 111.27 475 

2168 23/02/2023 07:40 102.61 149.74 93.1 1650 

2170 24/02/2023 07:40 102.34 155.05 98.27 1200 

2172 27/02/2023 07:40 201.81 241.64 128.54 575 

2174 28/02/2023 07:40 275.05 312.1 155.98 750 

2176 01/02/2023 07:40 333.6 330.24 157.46 750 

2178 02/02/2023 07:40 464.66 429.99 200.13 925 

2181 06/03/3023 07:40 904.28 1000 708.17 300 

2183 07/03/2023 07:40 632.79 799.17 470.68 200 

5. Statistical Analysis 
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The data from Trilux sensor were recorded throughout the months of, January, February, and 
March. This is presented in Table 3 together with the Phytoplankton count measured each day. 
Phytoplankton count is a representative of algal biomass, so although it is not actually measuring 
specific HABs, the expectation is that higher phytoplankton count would imply higher probability of 
HAB. The TriLux data presented in Table 3 data is already cleaned and pre-processed. Pre-processing 
involved interpolating any missing data points, this is done before taking 20sec window average.  
Next step is to conduct a statistical analysis of the collected data to establish correlation.  

Pearson’s correlation [34] coefficient technique is used to explore the correlation between the 
sensor parameters – Chlorophyll, Phycoerythrin, Turbidity- and the Phytoplankton data count. The 
Pearson correlation coefficient between two variables X and Y is formally defined as the covariance 
of the two variables divided by the product of their standard deviations (which acts as a 
normalization factor) and it can be equivalently defined by: 
 

 rxy =   ∑(௫೔ ି ௫)തതത      ∑(௬೔ ି ௬)തതതට∑(௫೔ ି ௫)തതതమ     ට∑(௬೔ ି ௬)തതതమ (1) 

where, ̅ݔ  = ଵ௡    ∑ ௜ே௜ୀଵݔ   denotes mean of x and ݕത  = ଵ௡    ∑ ௜ே௜ୀଵݕ      denotes the mean of y. The 
coefficient rxy ranges from −1 to 1 and it is invariant on linear transformations of either variables. 

The table below shows the correlations obtained between the measured Chlorophyll a 
(CHL1(470)), Phycoerythrin (CHL2(530)), Turbidity and Phytoplankton data count.  

Table 4 shows a strong positive correlation between the sensor parameters and the 
Phytoplankton count. Next step is to develop a regression equation using regression analysis. For the 
regression analysis, Phytoplankton data is the dependent variable and CHL1(470), CHL2(530) and 
Turbidity are chosen as independent variables.  

Table 4. Correlation table for TriLux data and Phytoplankton count from Abagold Seaview farm. 

             CHL1 

(470) 

   Turbidity           CHL2 

(530) 

      

Phytoplankton 

Chlorophyll 

(CHL1 (470)) 

1 0.94888966 0.870610352 0.385831796 

Turbidity 0.948889658 1 0.971641624 0.485418681 

Phycoerythrin 

(CHL2 (530)) 

0.870610352 0.97164162 1 0.509433326 

Phytoplankton 0.385831796 0.48541868 0.509433326 1 

The regression analysis of the data of Table 3 gives the following equation. 
Phytoplankton= -3596-30.18 Chl1+35.59 Tb+4.613 Chl2              (7) 

This equation forms the foundation to predict the Harmful Algal Blooms, using an artificial 
neural network (ANN) forecasting model as described in [37]. The HAB/phytoplankton forecasting 
model would be an extension of that developed in [37] as it involves three independent variables to 
predict one dependent variable. The hybrid forecasting model method used merges ensemble 
empirical mode decomposition (EEMD) method, deep learning long-short term memory (LSTM) 
neural network (NN), and multivariate linear regression (MLR) method [38],[39],[40]. The ANN 
model that we developed for reliably forecasting algal biomass is described in [41]. The model would 
be further strengthened with more data collected over different HAB periods. Final intention is to 
give at least half a day warning to the business in addition to their continuous access to chlorophyll 
data. This forms an essential part of their sophisticated risk model which also considers 
environmental conditions like temperature differential, wind speed and direction, and animal 
behaviour to determine the likelihood of HAB. 

6. Forecasting Advantages and Challenges 
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The mathematical model developed [37] shows that early forecasting of harmful Phytoplankton 
(algal blooms) using in-situ measured Chlorophyll-a (470), Turbidity, and Phycoerythrin (530) is 
possible, this forecasting will undeniably prove to be a useful tool for the aquaculture industry. The 
data in Table 3 shows phytoplankton count at the initial entry point of water into the farm. Other 
locations are also monitored but as the intention here was to demonstrate the correlation with 
chlorophyll data collected using sensors, those measurements are not reported here.  

6.1. Advantages 
This early warning system will allow farms like Abagold to mitigate the impact of eventualities 

like HAB more effectively and efficiently. Subsequently, this reduces risk, and ensures long-term 
sustainability of the company, whilst safeguarding a significant employer in the local community. 
This model can complement other existing processes that Abagold already has in place. For example, 
Abagold uses a risk model to determine the probability of geĴing a HAB. If the probability is high 
then the farm is on high alert and employs additional mitigation measures, including increased 
sampling. 

The main advantage of developing a forecasting model would be to give farms like Abagold an 
early warning of upcoming blooms, a tool that can assign a risk category with a level of prediction, 
will enable action to be taken by the farm to minimize negative impacts of blooms. A system such as 
this will safeguard the aquaculture industry in South Africa, particularly in the Walker Bay region, 
where Abagold is based. Early warning allows farms to take remedial actions which includes 
recirculating its water (i.e. blocking incoming water from ocean), repeated water/abalone sampling 
and pre-emptive harvesting. Earlier the warning comes less would be the impact on the business so 
a more robust model using data from various seasons will benefit the industry. 

Additionally, there are significant benefits to remote monitoring, without the need to be present 
on site. It allows for continuous risk management (including on evenings and weekends) and the 
development of a historical reference database to beĴer understand changes over time. 

6.2. Challenges 
One of the main challenges in developing a HAB forecasting model is geĴing access to reliable 

data. Once a model is developed and established with repeated training and testing, it can be 
deployed for use with live data. However, during developing the model, we still need to rely on 
manual phytoplankton counting which could be prone to errors. The Trilux sensors are florescence 
based and the sensors need to be kept clean and it is prone to debris depositing on its surface. Abagold 
however has a process of geĴing the sensors cleaned regularly by a dedicated diver. So, the data 
quality is ensured. 

Although this is a ‘low’ cost system it still requires a capital investment from the businesses.  
Abagold is a prominent member of Abalone Farmers Association of South Africa (AFASA) which 
represents the abalone producers in South Africa (of which there are 14), an industry which provides 
employment for some 2000 individuals. There is the opportunity to disseminate the work completed 
here through this Association to deliver broader impacts across the sector and region. The model 
could additionally have further applications in the future, including in the mussel, oyster, and finfish 
aquaculture industry in South Africa, as well as applications for recreational coastal users. 

This project illustrated a need for training in the sector, this is essential not only for developing 
useful skills among the workforce but also in challenging mindsets through as an example digital 
and technical literacy campaigns. Reservations regarding digital technologies amongst the general 
workforce included replacement of manual jobs. However, appropriately implemented digital 
technologies stand to allow for improved effectiveness and efficiency, whilst upskilling critical 
workforces.  

7. Conclusion and Further work  
This article presents the development of a novel hybrid water quality forecasting model based 

on monitored TriLux multi-parameter sensor water quality parameters through the application of 
specialised EEMD method, and deep learning LSTM NN. The actual experimental real water quality 
data from Abagold Limited shows a good correlation as a basis for forecasting model.  
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The mathematical model developed so far shows that early forecasting of phytoplankton activity 
with the aid of the actual sensor-monitored Chlorophyll-a (470), Turbidity, and Phycoerythrin (530) 
contents time-series data is possible. This forecasting will undeniably prove to be a useful tool in the 
management of HABs in the Aquaculture Industry. 

Early prediction of HABs will ensure a reduction in animal health, improving economic turnover 
for the aquaculture sector. Further, some HABs associated species are also detrimental to human 
health. Early detection allows for improved food safety and export compliance. There is a confirmed 
correlation between monitoring parameters like Chlorophyll and Turbidity with phytoplankton 
count. In seeking solutions to the aforementioned challenges associated with prevailing water quality 
monitoring in the aquaculture industry, more research must be done in areas of effectivity, efficiency, 
prediction accuracy, reliability and application of the existing water quality prediction models and 
management methodologies in the precision aquaculture ecosystem. 
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