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Abstract: Seafood, especially from the ocean, is now seen as a greener and more sustainable source of protein
causing an increase in its demand. This has also led to people making choices towards seafood as a replacement
of carbon intensive protein sources. As a result, the demand for seafood is growing, and the Aquaculture
industry is required to increase their produce while keeping the produce safe and sustainable. There are many
challenges faced by the aquaculture industry in meeting these increased demands. One such challenge is the
presence of harmful algal blooms (HAB) in the ocean which can have a major impact on aquatic life. In this paper
we look at the impact of this challenge on aquaculture and the mitigating strategies. We will focus on Abagold
Limited, a land-based marine aquaculture business that specializes in large scale production of abalone (Haliotis
midae) based in Hermanus, South Africa. HABs are considered a threat to commercial scale abalone farming
along the South-African coastline and requires continuous monitoring. The most recent HAB was in February-
April 2019, the area experienced a severe red-tide event with blooms of predominantly Lingulodinium polyedrum.
We present some of the mitigation strategies employing digital technologies for future proofing the industry.

Keywords: harmful algal blooms; sensors; aquaculture; South Africa; marine

1. Introduction

Phytoplankton, also known as microalgae, are like terrestrial plants in that they contain
chlorophyll and require sunlight to live and grow. Most phytoplankton are buoyant and float in the
upper part of the ocean, where sunlight penetrates the water. Algal blooms are commonly referred
to as red tides or harmful algal blooms (HABs), but they occur in a variety of colours depending on
the type(s) of algae present. Only a small number of species have the capacity to form harmful
blooms, but when they do, the effects can be severe for coastal resources, local economies, and public
health. Harmful algal blooms (HABs) occur when algae grow out of control and sometimes produce
toxins harmful to aquatic life and in some cases to humans. Hallegraeph [1] categorizes them into
three broad groups. Group one is harmless (i.e. non- toxin producing) colourless algae can also form
abloom and deplete a waterbody of oxygen killing aquatic life, an example is dinoflagellates Akashiwo
sanguinea. The second group include species which produce potent toxins that can affect humans,
causing a variety of gastrointestinal and neurological illnesses, most common example includes
paralytic shellfish poisoning (PSP) caused by dinoflagellates Alexandrium catenella [2]. However, the
focus here is on the third category of HABs which produces toxins harmful to aquatic life. While the
wild aquatic animals have the freedom of moving away when such a bloom occurs, farmed aquatic
life are more vulnerable to such HABs.

These types of algae are complex and their ability to devastate aquaculture farms has posed a
significant challenge to the industry's sustainability. There are several mechanisms by which HABs
threaten the viability of cultured organisms through the dysfunction of the respiratory system by
damaging the gill epithelium or by suffocation due to the depletion of dissolved oxygen in the water.
Toxin produced by certain algal species can accumulate in cultured organisms leading to public
health risks of shellfish poisoning if it exceeds regulatory limits [3]. The frequency and intensity of
these blooms have developed into a global concern over the past few years. The impact of blooms is
not often quantified except in cases where it has resulted in massive mortalities of cultured animals
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and significant economic losses. The more notable globally iconic blooming events and their impact
on the aquaculture industry are summarised in Table 1 above.

Table 1. Harmful Algal Bloom events attributed to known species of harmful algae and their impact

on aquaculture.

HAB Toxin Cultured Locatio Impact Year Reference
Animal n
Chrysochrom Salmon Northe It was estimated to have 2019 Bente
ulina m killed 8 million salmon, a Edvardsen,
leadbeateri Norwa total of 14,000 tonnes with 2022 [4]
y a value of over 80 million

EURO. Fish death was

sudden with gill damage

frequently observed.
Karenia Mussel St This led to an 18-week 2018 Ross Brown
mikimotoi Austell  harvesting ban, costing et al, 2022
Noctiluca Bay & over 1 million GBP in loss [5]
scintillans Lyme of sales. The okadaic acid
Dinophysis ~ pectenot Bay accumulation in  the
acuminata oxins English shellfish exceeds the
Dinophysis ~ and Chann  regulatory limits.
acuta okadaic el, UK

acid

Heterosigma Salmon Resulted in the deaths of 2018 Robinson
akashiwo Canada more than 250,000 Matt, 2018

salmon. [6]
Gonyaulax Yessotox Abalone South  Severe disruption of the 2017 Pitcheretal.,
spinifera ins Africa  gill epithelium is 2019 [7]
Lingulodiniu characterised by
m polyedrum degeneration and

necrosis. The total loss

was estimated to have

exceeded 250 tonnes.
Pseudochatto Salmon Chile This resulted in the 2016 Diaz et al.,
nella mortality of 39 million 2019 [3]
verruculosa salmon and  US$800

million loss. Examination

showed that gills were the
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most affected organ with

significant tissue damage.

Alexandrium  Saxitoxi ~ Mussel Chile Toxins led to harvesting 2016 Anderson
catenella ns closures of multiple farms Donald and
in the affected areas. Rensel Jack,
2016 [8]
Alexandrium Saxitoxi  Mussel Scotlan These toxins result in a 2005 Martino,
fundyense n d yearly average reduction - Gianella and
Dinophysis ~ Okadaic of mnearly 15% in 2015 Davidson,
sp. acid production.  This  is 2020 [9]
Pseudo- Domoic equivalent to a loss of
nitzschia sp.  acid 1080 tonnes of shellfish
per year and an economic
loss of 1.3 million GBP
Alexandrium Mussel Austral Toxins led to harvesting 2012 Campbell et
tamarense Saxitoxi ia closures of multiple al., 2013[10]
ns fisheries resources in the
affected  areas.  The
marine farming sector
losses based on
reductions in landed
catch equated to an
estimated $6,308,700.
AUD
Scallop, China  Caused significant loss in 2010 Trainer, V.L.
Prorocentru Abalone the mariculture - and
m industries of Zhejiang 2012 Yoshida, T.
donghaiense and Fujian provinces, (Eds.) 2014
Karenia especially in cultivated [11]
mikimotoi abalone. The direct
Cochlodiniu  Ichthyot economic loss was more
m oxins than $US330 million. The
geminatum blooms caused cessation
of feeding and stagnant
growth of scallops.
Noctiluca Mussel China  Although this bloom is 2008 Trainer, V.L.
scintillans non-toxic, it accumulates and
and releases toxic levels Yoshida, T.
of ammonia into the (Eds.) 2014
surrounding waters. It [11]
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caused high mortalities
and led to $US 32.6
thousand in economic
losses.
Karenia Brevoto Mussel Spain  This led to harvesting 2003 Rodriguez,
brevis xins banns  that reduced - Villasante
production. 2008 and Carme
Garcia-
Negro, 2011
(12]
Protoceratiu ~ Yessotox Mussel South This led to a five-month 2005 Pitcher and
m ins Africa closure of mussel Louw, 2021
reticulatum harvesting. [13]
Alexandrium Abalone South The toxin affected the 1999 Pitcher etal.,
catenella Saxitoxi Africa  spawning capability of 2001[14]
ns the abalone and Ilarval
survival. Mortalities were
recorded in the
broodstock.
Chaetocero Salmon Scotlan Gills showed severe 1998 Treasurer,
s wighami d necrosis ~ with  focal Hannah and
hyperplasia and Cox,
oedematous separation of 2003[15]

epithelia. The economic
cost was a loss of 170
tonnes of production
worth £408,000

2. Harmful Algal Bloom Mitigation Technologies

Harmful Algal Blooms have been a major cause of concern in aquaculture and their occurrence
depends on various factors including temperature, precipitation, wind, surface water conditions,
presence of nutrients (eutrophication) etc. Changing climate impacts these parameters, for example,
surface water acidification stemming from increased CO2 emissions which directly alters the surface
water conditions, and perhaps more importantly their extremes [16]. However, there is no evidence
that HAB occurrence will increase with rise in temperature but the composition and spread of HABs
will change making their occurrence even more unpredictable [17]. This unpredictability of HABs
is a cause of concern for the aquaculture business and there an immediate need to develop suitable
digital techniques to that would allow the farms to mitigate their impact.

There are various tools which have been developed to monitor, quantify, or identify them. This
section focuses on various digital technologies that have been developed in the last few years that
support the monitoring/forecasting HABs.

2.1. Tools and Instruments

The ability to detect HABs without resorting to laboratory-based sample testing is enabled by a
range of sensor technologies detecting increasing turbidity and changes in chlorophyll-related
spectral responses that result from increasing phytoplankton. The implementation of a specific


https://doi.org/10.20944/preprints202401.1263.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1263.v1

5

technology can be dependent on the spatial and temporal requirements for a specific application. For
example, satellite-based remote sensors can provide measurements over large areas of the globe and
show the development and distribution of HABs at regular intervals, typically measured in days.
Commercial aquaculture, by contrast, requires access to real-time data to detect the onset of HAB's
in farming tanks and employ in-situ multiparameter sensors. A brief review of some of the sensor
options available currently is presented below.

Satellite remote sensing of HABs employs spectral measurement technologies such as MODIS
(moderate resolution imaging spectroradiometer) and the Sentinel-2A/B optical multispectral
imaging satellite. Spatial resolution is typically of the order of 10’s of metres. An example of this
approach is presented by Bondur et al, where satellite data is integrated with ocean temperature data
to identify the causes of HABs in the coastal waters east of Kamchatka, influenced by mineral and
biogenic suspensions in river runoff from the Nalycheva River [18]. A further example is provided
by Bu et al. where MODIS data has been integrated with meteorological factors and latitude and
longitude information to create a general regression dataset for harmful algal bloom detection. The
analysis by Bu et al. included data from 192 HAB events from around the world over a 20-year period
[19]. One of the challenges with satellite remote sensing is variability and measurement restrictions
caused by cloud cover and aerosol conditions. A satellite measurement system that aims to address
these issues is the TROPOspheric Monitoring Instrument (TROPOMI) which can observe red solar
induced fluorescence (SIF) resulting from HABs. This instrument is mounted on the Copernicus
Sentinel-5 Precursor satellite and offers 5.5 km spatial resolution and near-daily global coverage [20].
Luis et al. have recently presented a comparison of HAB assessments from the TROPOMI and MODIS
satellites and concluded that: during severe HAB conditions, red SIF was consistent with existing
monitoring tools and has potential to provide nearly double the amount of spatiotemporal
fluorescence HAB information [20]. Even within satellite based remote sensing, for a given
application, there are decisions to make relating to measurement robustness, atmospheric conditions,
spatial resolution, and image update rate.

Jordan et al. present an above-water reflectance system capable of monitoring aquatic
ecosystems with the addition of a hyperspectral direct-diffuse solar radiation pyranometer [21]. The
reported benefit of this integrated approach was an improvement in measurement precision resulting
from an algorithm that included a function to account for the atmospheric optical state and the
variations in spectral response of the incoming radiation. The characterization of atmospheric
properties may also be beneficial in reducing uncertainties associated with atmospheric correction
methods employed in satellite observation.

An alternative approach to satellite-based measurement that overcomes temporal limitations
and atmospheric conditions is the use of unmanned aerial vehicles (UAVs), also known as drones. A
review by Wu et al. outlines the developments and opportunities of UAVs installed with lightweight
high-resolution spectral imaging systems. Whilst data and image analysis is a significant activity and
battery power capacity a consideration, a key benefit of UAV-based systems is that spatial resolution
can be in the scale of centimetres [22]. For an altogether lower-technology approach, the ability to
manually measure water transparency or turbidity can be achieved with a Secchi disk [23] which is a
30 cm white disc that is lowered into water until the disk is no longer visible, this depth is recorded
as the Secchi depth. Variations of the Secchi disk have been developed for ocean and river applications
and the theory and method continues to evolve [24-26]. A significant figure that the use of the Secchi
disk aims to provide is the euphotic-depth, the depth of the uppermost layer of water that receives
sufficient sunlight which allows phytoplankton to perform photosynthesis. The conversion from
Secchi disk depth to euphotic-depth is based on a single scaling parameter in the range of 1.79 to 2
[24,25]. As a result of the relative simplicity of the Secchi disk and method of use it has become a
popular research tool around the world. The availability of Secchi disk depth data enabled Boyce et
al. to present a 100-year global assessment of phytoplankton levels, the Secchi depth data was
referenced against available satellite data [27]. In the analysis by Boyce et al.,, the Secchi depth was
employed to estimate chlorophyll pigment concentration (‘Chl’), measured in mg/m? using the
following equation:

Chl = 457D~%37

where, D is the Secchi depth in metres.
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A recent citizen-science implementation of the Secchi disk [28], that includes water pH and
colour measurements (using a mobile phone camera), has been presented on the MONOCLE Project
- Multiscale Observation Networks for Optical monitoring of Coastal waters, Lakes and Estuaries
(monocle-h2020.eu) [29]. As a result of the legacy of available data, access to citizen science and ease
of use, the Secchi disk is still a useful and popular tool for assessing water conditions for HAB
detection and monitoring, which can also complement the findings from the more technically
sophisticated remote sensing methods [2637].

Focussing on the needs of commercial aquaculture, in-situ sensors are commercially available
such as the FluoroProbe III (https://www.bbe-moldaenke.de/en/ ) and the TriLux sensor from Chelsea
Technology Ltd. (as employed in this case study). These digitally connected multi-parameter sensors
employ spectral fluorometry methods to detect chlorophyll-a and can provide real-time
measurements as well as depth profile responses. Such sensors are suitable for integration with a
wide range of surface marine vehicles, platforms and installations including buoys. However, for
long-term installations, regular sensor cleaning needs to be performed to remove dirt and biofilms.

The global need for field portable instrumentation or on-site monitoring systems is also driving
commercial research and development activities. One example of this type of instrument is the
‘Harmful Algal Bloom Detection Instrument’, from Giner Labs, [42]. This low-cost hand-held
instrument employs rapid electrochemical analysis technology to deliver parts-per-billion
measurements of HAB related toxins. An example of on-site equipment enabling rapid sample
analysis, comes from FlowCam, [43] with a range of products employing flow imaging microscopy
with particle counting and analysis software. This technology can identify taxonomic groups and
estimate concentration of the dominant organisms, providing proactive and rapid HAB monitoring
enabling data-driven water resource management [30]. However, as expected this is a top end
instrument which would imply exorbitant cost. Another option to identify specific HAB species is
possible through a combination of instrumentation and Artificial Intelligence (AI)/Machine Learning
(ML) tools. The next section briefly explores the HAB models to complement the instrumentation.

2.2. HAB AI/ML Models

Tools and instruments explained in the previous section can usually be supplemented with a
machine learning model. As the Harmful Algal Blooms continue to challenge the aquaculture
industry, different models to predict their occurrence are being developed. Researchers have
attempted to develop models based on the functional traits of the HABs or/and using data from either
sensors or satellite. These models [52] are essential to develop early warning system using short-term
forecast of HAB movement and develop actions to mitigate their impact either by neutralizing them
or somehow minimise their impact. David et al [44] have conducted a detailed review of the models
developed in the past decade and classified the HAB models into process based, statistical and hybrid
models. Process based models like [45] are more suited to study long term impact and prediction,
for example the impact of climate change. In comparison, machine learning models based on
statistical methods [46] can be used to deliver short term predictions.

The process-based models [48] are usually developed specific to a species as these are
mechanistic model and consider the environmental conditions that would favour the growth of a
particular species. These models are also much more complex and rely on data collected over few
decades, for example, Gobler et al [49] combines sea surface temperature records from 1982 to 2016
were combined with laboratory-based growth rates for two HAB species A. catenella (fundyense) and
D. acuminata. Such models are essential for aquaculture industry to understand change in their
frequency or impacts which is important for building resilience in the business. Kim et al [53] uses
hydrodynamic model, Environmental Fluid Dynamics Code (EFDC) to understand algal dynamics
which would help develop HAB management strategies. Litchman [45] explains that trait-based
systems would be very useful however there is insufficient data and some gaps in the understanding
to develop such a system. They suggest a hybrid system that is by combining data driven model with
a trait-based system.

Statistical methods are usually more successful for a short-term forecasting especially when used
with in situ sensors. Yu et al [51] develop a ML model for two locations in China and USA using
sensor data that demonstrates the versatility of their ML model. They have selected different water
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quality parameters such as Chlorophyll, Ammonia, Nitrate for each ANN (Artificial Neural Network)
model. In [37], authors use another ANN model to predict Chlorophyll a in an aquaculture setting.

Most of these HAB models are usually specific to a river or an estuary with the focus on the
environment (including wild fisheries) and public health. There are however some relatively recent
initiatives whose focus is on supporting aquaculture, for example Sustainable Aquaculture
Innovation Centre (SAIC) project [47], which provides a tool for Scottish finfish aquaculture (see
https://www habreports.org/ accessed 14" January). Similar initiative in South Africa [50], National
OCIMS (The National Oceans and Coastal Information Management System)under Council of
Scientific and Industrial Research (CSIR), South Africa (see https://www.ocims.gov.za/hab/app/
accessed 14" January) with the aim to support aquaculture operations in the region in addition to
marine ecosystems and communities. However, both of these tools, rely on satellite data and the
results are not available immediately. Especially if there are clouds than the satellites cannot access
the data.

3. Aquaculture in South Africa

Africa, second to Asia, has a major market for fishery products with its current production of
marine and freshwater aquaculture species exceeding 1.8 million tonnes per annum. However, the
current African aquaculture industry is still not meeting the requirements of its growing population.
The South African aquaculture industry specifically, despite a growing trend in moderate quantities
produced since 2005, had to import on average 70 000 tonnes per annum of fish and aquatic
invertebrates worth R 1.36 billion to augment the demand during the past decade [31]. This is largely
due to the African aquaculture industry, in particular South Africa that is still in its infancy and has
been hindered by various environmental, economic, social, and technological challenges. This article
presents mitigating solutions to address some of these through employing digital technology. We
present our results as a case study of Abagold Limited, a land-based marine aquaculture business
that specializes in large scale production of abalone (Haliotis midae) based in Hermanus, South Africa.
One of the challenges faced by Abagold is threat of harmful algal blooms (HAB). Most recent HAB
was in February-April 2019, the area experienced a severe red-tide event with blooms of
predominantly Lingulodinium polyedrum. In this article we present mechanisms for early prediction of
HABs. To monitor HABs, currently Abagold uses costly and time-consuming manual water sampling
and phytoplankton analysis. An early detection of HABs link directly to health and food security in
more than one way. We build on well-established correlation between parameters like Chlorophyll,
pH, Turbidity, with HABs to establish a framework for an early warning system.

4. Abagold Limited — A Case Study
4.1. Data Site

Abagold Limited (https://www.abagold.com/) cultivates Abalone in Hermanus. Hermanus is
nestled in the Walker Bay and the pristine waters of the Atlantic Ocean in the bay provide the
necessary nutrients and environment to produce the highest quality Abalone. The Abalone species,
Haliotis midae, is farmed on four aptly named farms in Hermanus: Sea View, Amaza (waves), Bergsig
(mountain view) and Sulamanzi (clean water).

Figure 1. Primary Sump, Abagold Seaview Farm.
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4.2. Water Quality Parameter and Sensor Selection

Algal biomass dynamics are non-linear and non-stationary due to the complex interaction of
physical, chemical, and biological parameters affecting the growth and accumulation of biomass and
this is a universal problem so various models have been developed for its prediction, these are
discussed in 2.2. Algae have unique pigments that they use for photosynthesis, these could be
monitored by measuring chlorophyll a, phycocyanin and phycoerythrin. Chlorophyll a has been used
for many decades to monitor algal biomass [32]. The pigment phycocyanin is a more specific indicator
of blue-green algae in freshwater systems, and a similar pigment called phycoerythrin is a useful
indicator of blue-green algae in marine systems [33]. In addition to these parameters, turbidity is also
linked with the presence of algae in water. As the selected site uses water from sea, Chlorophyll a
(named as CHL1 (470), for ease here), Phycoerythrin (named as CHL2 (530) for ease here) and
Turbidity (Tb) were selected to monitor for HABs.

There are various sensors for these parameters, selection was based on cost, ease of availability
and delivery to South African site. Following three multi parameter instruments were selected:

Table 2. List of suitable sensor manufacturers.

Manufacturer/Instrument Parameters Distribution point Cost (£)
In-situ AquaTroll Chlorophyll a , | South Africa 5109
Phycoerythrin
Chelsea Technology Limited | Chlorophyll a , | United Kingdom 4070
Trilux Phycoerythrin
and Turbidity
Xylem EXO3 Chlorophyll a , | South Africa 7500
Phycoerythrin

The main problem in the project was the long delivery times, this was understood to be due to
global shortage of some components necessary for these instruments. Trilux was chosen as CTL are
long-term project partners with University of Bedfordshire, so they agreed to lend an instrument for
measurements. All the data presented here is collected using Trilux.

Figure 2. Installation of Chelsea Technology Limited TriLux sensor at Abagold.

The parameters Chlorophyll a (CHL1 (470)), Phycoerythrin (CHL2 (530)) and Turbidity (Tb)
were measured in the units QSU, ug/L and FNU respectively (definitions for these units?). The
phytoplankton data were recorded manually at fixed times for the month of January, February, and
March. The data from Trilux sensor were recorded throughout the months of, January, February, and
March at 1 second intervals. However, the phytoplankton count was recorded at fixed times —usually
in the morning at 7.40 am. Thus, to correlate with this data, Trilux data was averaged at a 20 second
window for the corresponding date and time on which the phytoplankton count was recorded shown
in Table 3 below.

Table 3. Phytoplankton count and 20sec averaged TriLux data from the Abagold farm.
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CHL2
Sample CHL1(470) | Tb (530) Phytoplankton
Number | Date Time | (QSU) (FNU) (ug/L) count
2097 | 10/01/2023 | 07:40 587.36 913.18 668.46 2650
2100 | 11/01/2023 | 07:40 574.86 880.35 643.82 36475
2102 | 11/01/2023 | 12:40 547.48 818.78 624.9 2450
2106 | 12/01/2023 | 07:40 564.97 833.26 645.07 40900
2109 | 13/01/2023 | 10:00 519.94 761.65 644.01 7475
2111 | 16/01/2023 | 07:40 291.26 405.28 281.08 2725
2113 | 17/01/2023 | 07:40 204.49 270.24 172.56 225
2115 | 18/01/2023 | 07:40 160.14 210.47 129.87 225
2117 | 19/01/2023 | 07:40 181.34 227.35 125.72 200
2119 | 20/01/2023 | 07:40 133.3 192.19 110.42 125
2122 | 23/01/2023 | 07:58 122.24 244.26 153.84 225
2124 | 24/01/2023 | 07:40 76.94 149.72 107.45 725
2127 | 25/01/2023 | 07:40 111.14 211.9 163.76 425
2129 | 26/01/2023 | 07:40 139.19 278.49 221.26 1700
2131 | 27/01/2023 | 07:40 124.53 250.56 196.03 3150
2133 | 30/01/2023 | 07:40 169.16 289.41 200.6 75
2135 | 31/01/2023 | 07:40 170.37 286.01 204.91 950
2137 | 01/02/2023 | 07:40 181.9 306.23 224.78 150
2139 | 02/02/2023 | 07:40 209.94 353.66 238.66 725
2141 | 03/02/2023 | 07:40 185.23 333.7 243.69 2225
2143 | 06/02/2023 | 07:40 193.37 361.69 295.29 925
2145 | 07/02/2023 | 07:40 249.15 360.36 269.27 925
2147 | 08/02/2023 | 07:40 252.34 406.9 302.79 375
2149 | 09/02/2023 | 07:40 359.09 611.48 468.39 1200
2151 | 10/02/2023 | 07:40 273.59 377.57 281.56 800
2153 | 13/02/2023 | 07:40 408.62 508.17 390.5 675
2160 | 17/02/2023 | 07:40 331.44 627.11 632.65 7475
2162 | 20/02/2023 | 07:40 96.68 174.63 112.45 250
2164 | 21/02/2023 | 07:40 141.96 186.75 99.63 575
2166 | 22/02/2023 | 07:40 168.93 211.61 111.27 475
2168 | 23/02/2023 | 07:40 102.61 149.74 93.1 1650
2170 | 24/02/2023 | 07:40 102.34 155.05 98.27 1200
2172 | 27/02/2023 | 07:40 201.81 241.64 128.54 575
2174 | 28/02/2023 | 07:40 275.05 312.1 155.98 750
2176 | 01/02/2023 | 07:40 333.6 330.24 157.46 750
2178 | 02/02/2023 | 07:40 464.66 429.99 200.13 925
2181 | 06/03/3023 | 07:40 904.28 1000 708.17 300
2183 | 07/03/2023 | 07:40 632.79 799.17 470.68 200

5. Statistical Analysis
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The data from Trilux sensor were recorded throughout the months of, January, February, and
March. This is presented in Table 3 together with the Phytoplankton count measured each day.
Phytoplankton count is a representative of algal biomass, so although it is not actually measuring
specific HABs, the expectation is that higher phytoplankton count would imply higher probability of
HAB. The TriLux data presented in Table 3 data is already cleaned and pre-processed. Pre-processing
involved interpolating any missing data points, this is done before taking 20sec window average.
Next step is to conduct a statistical analysis of the collected data to establish correlation.

Pearson’s correlation [34] coefficient technique is used to explore the correlation between the
sensor parameters — Chlorophyll, Phycoerythrin, Turbidity- and the Phytoplankton data count. The
Pearson correlation coefficient between two variables X and Y is formally defined as the covariance
of the two variables divided by the product of their standard deviations (which acts as a
normalization factor) and it can be equivalently defined by:

Z(xi_x_) Z(yi_y_) (1)

o \/Z(xi -0 sz -9

where, X = % YN . x; denotes mean of x and y = % >Ny denotes the mean of y. The
coefficient rx ranges from —1 to 1 and it is invariant on linear transformations of either variables.

The table below shows the correlations obtained between the measured Chlorophyll a
(CHL1(470)), Phycoerythrin (CHL2(530)), Turbidity and Phytoplankton data count.

Table 4 shows a strong positive correlation between the sensor parameters and the
Phytoplankton count. Next step is to develop a regression equation using regression analysis. For the
regression analysis, Phytoplankton data is the dependent variable and CHL1(470), CHL2(530) and
Turbidity are chosen as independent variables.

Table 4. Correlation table for TriLux data and Phytoplankton count from Abagold Seaview farm.

CHL1 Turbidity CHL2
(470) (530) Phytoplankton

Chlorophyll 1 0.94888966 0.870610352 0.385831796
(CHL1 (470))

Turbidity 0.948889658 1 0.971641624 0.485418681
Phycoerythrin 0.870610352 0.97164162 1 0.509433326
(CHL2 (530))

Phytoplankton 0.385831796 0.48541868 0.509433326 1

The regression analysis of the data of Table 3 gives the following equation.
Phytoplankton= -3596-30.18 Chl1+35.59 Tb+4.613 ChI2 (7)

This equation forms the foundation to predict the Harmful Algal Blooms, using an artificial
neural network (ANN) forecasting model as described in [37]. The HAB/phytoplankton forecasting
model would be an extension of that developed in [37] as it involves three independent variables to
predict one dependent variable. The hybrid forecasting model method used merges ensemble
empirical mode decomposition (EEMD) method, deep learning long-short term memory (LSTM)
neural network (NN), and multivariate linear regression (MLR) method [38],[39],[40]. The ANN
model that we developed for reliably forecasting algal biomass is described in [41]. The model would
be further strengthened with more data collected over different HAB periods. Final intention is to
give at least half a day warning to the business in addition to their continuous access to chlorophyll
data. This forms an essential part of their sophisticated risk model which also considers
environmental conditions like temperature differential, wind speed and direction, and animal
behaviour to determine the likelihood of HAB.

6. Forecasting Advantages and Challenges
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The mathematical model developed [37] shows that early forecasting of harmful Phytoplankton
(algal blooms) using in-situ measured Chlorophyll-a (470), Turbidity, and Phycoerythrin (530) is
possible, this forecasting will undeniably prove to be a useful tool for the aquaculture industry. The
data in Table 3 shows phytoplankton count at the initial entry point of water into the farm. Other
locations are also monitored but as the intention here was to demonstrate the correlation with
chlorophyll data collected using sensors, those measurements are not reported here.

6.1. Advantages

This early warning system will allow farms like Abagold to mitigate the impact of eventualities
like HAB more effectively and efficiently. Subsequently, this reduces risk, and ensures long-term
sustainability of the company, whilst safeguarding a significant employer in the local community.
This model can complement other existing processes that Abagold already has in place. For example,
Abagold uses a risk model to determine the probability of getting a HAB. If the probability is high
then the farm is on high alert and employs additional mitigation measures, including increased
sampling.

The main advantage of developing a forecasting model would be to give farms like Abagold an
early warning of upcoming blooms, a tool that can assign a risk category with a level of prediction,
will enable action to be taken by the farm to minimize negative impacts of blooms. A system such as
this will safeguard the aquaculture industry in South Africa, particularly in the Walker Bay region,
where Abagold is based. Early warning allows farms to take remedial actions which includes
recirculating its water (i.e. blocking incoming water from ocean), repeated water/abalone sampling
and pre-emptive harvesting. Earlier the warning comes less would be the impact on the business so
a more robust model using data from various seasons will benefit the industry.

Additionally, there are significant benefits to remote monitoring, without the need to be present
on site. It allows for continuous risk management (including on evenings and weekends) and the
development of a historical reference database to better understand changes over time.

6.2. Challenges

One of the main challenges in developing a HAB forecasting model is getting access to reliable
data. Once a model is developed and established with repeated training and testing, it can be
deployed for use with live data. However, during developing the model, we still need to rely on
manual phytoplankton counting which could be prone to errors. The Trilux sensors are florescence
based and the sensors need to be kept clean and it is prone to debris depositing on its surface. Abagold
however has a process of getting the sensors cleaned regularly by a dedicated diver. So, the data
quality is ensured.

Although this is a ‘low’ cost system it still requires a capital investment from the businesses.
Abagold is a prominent member of Abalone Farmers Association of South Africa (AFASA) which
represents the abalone producers in South Africa (of which there are 14), an industry which provides
employment for some 2000 individuals. There is the opportunity to disseminate the work completed
here through this Association to deliver broader impacts across the sector and region. The model
could additionally have further applications in the future, including in the mussel, oyster, and finfish
aquaculture industry in South Africa, as well as applications for recreational coastal users.

This project illustrated a need for training in the sector, this is essential not only for developing
useful skills among the workforce but also in challenging mindsets through as an example digital
and technical literacy campaigns. Reservations regarding digital technologies amongst the general
workforce included replacement of manual jobs. However, appropriately implemented digital
technologies stand to allow for improved effectiveness and efficiency, whilst upskilling critical
workforces.

7. Conclusion and Further work

This article presents the development of a novel hybrid water quality forecasting model based
on monitored TriLux multi-parameter sensor water quality parameters through the application of
specialised EEMD method, and deep learning LSTM NN. The actual experimental real water quality
data from Abagold Limited shows a good correlation as a basis for forecasting model.

doi:10.20944/preprints202401.1263.v1
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The mathematical model developed so far shows that early forecasting of phytoplankton activity
with the aid of the actual sensor-monitored Chlorophyll-a (470), Turbidity, and Phycoerythrin (530)
contents time-series data is possible. This forecasting will undeniably prove to be a useful tool in the
management of HABs in the Aquaculture Industry.

Early prediction of HABs will ensure a reduction in animal health, improving economic turnover
for the aquaculture sector. Further, some HABs associated species are also detrimental to human
health. Early detection allows for improved food safety and export compliance. There is a confirmed
correlation between monitoring parameters like Chlorophyll and Turbidity with phytoplankton
count. In seeking solutions to the aforementioned challenges associated with prevailing water quality
monitoring in the aquaculture industry, more research must be done in areas of effectivity, efficiency,
prediction accuracy, reliability and application of the existing water quality prediction models and
management methodologies in the precision aquaculture ecosystem.
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