
Article Not peer-reviewed version

The Various Radii Circle Packing

Problem in a Triangle

Ching-Shoei Chiang * and Yi-Ting Chiang

Posted Date: 12 July 2024

doi: 10.20944/preprints202407.0931.v1

Keywords: Malfatti’s problem; Geometric Constraint Solver; Computer Aided Geometric Design; Circle

Packing line

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3661309
https://sciprofiles.com/profile/3681772

Article

The Various Radii Circle Packing Problem
in a Triangle
Ching-Shoei Chiang * and Yi-Ting Chiang

Computer Science and Information Management, Soochow University, Taipei, Taiwan; lhsxb22@gmail.com
* Correspondence: chiang@gm.scu.edu.tw

Abstract: The Malfatti’s Problem solves the problem of fitting 3 circles into a triangle such that these
3 circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides.
Furthermore, the problem has been extended to have Tn=1+2+…+n circles inside the triangle with
special tangency properties among circles and triangle sides; it is called the extended Malfatti’s
problem or Tri(Tn) problem. In the extended malfatti problem, the numbers of circles in the triangle
are triangle numbers, because the tangency properties among the internal circles and 3 sides of the
triangle have special type of structure. That is, the corner circle tangent to two sides of the triangle
and two boundary circles, the boundary circles tangent to one side of the triangle and 4 other circles,
and the inner circles always tangent to 6 other circles. The circles we find in extended general
Malfatti’s problem has the property that the smallest radius and the largest radius for the circle has
big difference. In this paper, we proposed algorithms to solve the problem that the tangency
properties among circles and sides of triangle is not fixed, so that the number of circles in the triangle
is not necessary a triangle numbers. The purpose of this change is try to find the radii of the circles
in the triangle is within a small range.

Keywords: Malfatti’s problem; geometric constraint solver; computer aided geometric design; circle
packing line

1. Introduction

Before we explain the problem, we introduce the related material such as Malfatti’s problem and
extended Malfatti’s problem.

1.1. Malfatti’s Problem and Extended General Malfatti’s Problem

In 1803, Gian Francesco Malfatti [1] proposed the problem: how to find the maximum total
volume of three cylindrical columns out of a triangular prism of marble.

Identically, the problem can be recognized as to find three circles to fit in specific triangle and
make sure the total area is maximum. Malfatti thought the solution is to make three circles tangent
to each other and each circle tangent to two sides of the triangle. A case is shown as Figure 1 [2].

Figure 1. Malfatti’s problem.

In fact, Malfatti’s thought is not correct. In 1930, Lob and Richmond [3] found that a way to get
a larger area of some triangles by using greedy algorithm that inscribes a single circle of maximal

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202407.0931.v1
http://creativecommons.org/licenses/by/4.0/

 2

radius within the triangle, inscribes a second circle within one of the three remaining corners of the
triangle, the one with the smallest angle, and inscribes a third circle within the largest of the five
remaining pieces. The difference in area for an equilateral triangle is just about over 1% (as shown in
Figure 2), [4] but as Howard Eves (1946) mentioned, for an isosceles triangle with a very sharp apex,
the optimal solution has nearly twice the area of the Malfatti circles. (as shown in Figure 3) [5] In
1960s, later proven firmly, Lob-Richmond procedure always gives the largest area and solved the
problem. In the literature, the Malfatti’s thought has become understood as the Malfatti’s problem.

Figure 2. In an equilateral triangle.

Figure 3. Malfatti’s problem and max-area problem.

There are several known solutions to Malfatti's problem. Fukagawa and Pedoe [6] mentioned
that Chokuen Ajima actually formulated and solved the Malfatti's problem. For a detailed history of
the problem and explanations of various solutions and generalizations, interested readers are
referred to [7–9].

The Extended Malfatti problem [10] aims to determine Tn circles that can be inscribed inside a
triangle while maintaining tangency among the circles and the triangle's sides. When considering the
problem with Tn=∑ 𝑖 ௡

ଵ circles, it is referred to as the Tri(Tn) n problem (as shown in Figure 4). Notably,
when n=1, the problem seeks to find the inscribed circle of a triangle, and when n=2, it is precisely the
Malfatti's problem.

Figure 4. The tangency property for Tri(Tn) problem.

There are closed forms for finding inscribed circle and malfatti’s circles. So, when n=1 or n=2, it
is easy to propose a constant time algorithm to solve these problems. Chiang [10] proposed
algorithms to solve the Tri(Tn) problem when n>2.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 3

The main idea of the algorithm [10] is to calculate total surrounding angles for each circle and
change the circle’s size depends on the sum of angles. (shown in Figure 5). There are three kinds of
circles, which is corner circle, edge circle, inner circle. (from left to right in Figure 5). Circles are
surround by other circles and sides of the triangle. Every circle is surround by a series of object (other
circles and sides of the triangle), and correspond angle between center of this circle to two objects,
center of other circle of the nearest points on the sides of the triangle) can computed. If the total
surrounding angles is greater than 2π, the radius of the circle should be enlarged. Otherwise, the
radius of the circle should be redused. There are different ways to compute the surrounding angles
for corner circles, edge circles [10], and inner circles [12]. With these constraints is not enough to find
one solution. Consider Tri(T2) problem, there are only corner circles in this problem (See Figure 5a,
assume these three circles has radii r1, r2, and r3. When we multiply these radii by a constant k, the
angle computation (in Figure 5a) for α1, α2, α3, α4 have the same result. It means that there are infinitely
many solutions in this case. It need one more constraint to find one solution only. The constant k can
be computed by the comparison of the length in one side of the triangle with correspond side of
triangle bounded these three circles, as shown in Figure 6. This constant k is called the change ratio
for the current solution and the real solution.

(a) Corner Circle (b) Edge Circle (c) Inner Circle

Figure 5. Calculating total surrounding angles for 3 kinds of circles.

So, the algorithm Chiang [10] proposed is:
1. Input the coordinate of 3 vertices A, B, C; Calculate the angle A, B, C, and the edge length c.
2. Set a tolerance variable eps = 0.01
3. Initial radius list r= [ri,j |where 1in, 1ji.]
4. Calculate the surrounding angle list for all circles Ci,j (whose associated radius is ri,j), call them i,j.
5. While one of | i,j-2|>eps:

5.1 Modify the radius list, all radii value is computed by current radii, and assign to new radius list in
the meantime.

5.2 Calculate the surrounding angle list for all circles Ci,j(using new radii), call them i,j.
5.3 From the radius list, calculate the change ratio, and modify the radius list from the change ratio.

6. Display the result.

Figure 6. Tri(T2) problem, change ratio = c′/c.

The result for Tri(Tn) problem, n=2,3,4,8,31, using Chiang’s algorithm [10] is shown in Figure 7.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 4

Tri(T2) Tri(T3)

Tri(T4) Tri(T8)

Tri(T31)

Figure 7. Tri(Tn) Problem, where n=2, 3, 4, 8, 31.

1.2. Problem Statement

We would like to modify Chiang’s Algorithm, so that the radii of these circles have small range.
Consider the result in Figure 7, the smallest angle of triangle is corresponding to the biggest circle.
On the other hand, the largest angle is corresponding to the smallest circle, especially for the acute
angle. In the circle packing area, some problem fixed the radius of the circles, or at least similar size
of circles inside the specified region. So, we propose new algorithm to modify Chiang’s algorithm, so
that the circles radii have small range of the radii.

There are four sections in this paper, the first section illustrates the Malfatti’s problem and
extended Malfatti problem. The second section define some terms, derived theories and proposed
algorithms for the new problem. The third section describe the implementing details. The conclusion
is at the final section.

2. Term, Theories and Algorithms

We want to find circles inside a triangle, and there are specified tangency constraints among
these circles and 3 sides of the triangle. We use the tangency graph to show the tangency constraints.
Consider a graph G (V, E), V is the vertices which represents the circles or sides of triangles, and E
represents the edge connecting vertices. When an edge connects two vertices, it means that these two
geometric object tangent to each other. That is, circle externally tangent to circle if these two geometric
objects are circles, or circle tangent to side of triangle. When a circle is tangent to two, one, or zero
sides of a triangle, we call it a corner circles, edge circle or inner circle respectively.

We use Tri(T2) as an example (see Figure 8a), its tangency graph G(V, E) where V={c1, c2, c3, e1,
e2, e3} and E={(c1, c2),(c1, c3),(c2,c3),(c1,e2),(c1,e3),(c2,e1),(c2,e3),(c3,e1),(c3,e2)}, as shown in Figure 8b. To see
more clearly for the edge circle or corner circle tangent to side of triangle, we draw the tangency
graph as in Figure 8c.

(a) Tri(T2) problem (b) Tangency graph (c) our tangency graph

Figure 8. Tangency graph.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 5

The main idea of the new proposed algorithm is to generate the tangency graph, find solution
radii for all circles satisfied the constraints specify by the tangency graph, and then display. The
purpose of this algorithm is to find circles with small range of radii. In the very beginning, we need
to set a value r, so that all circle we generate to pack inside the triangle has radius near r.
 So, the main idea of the proposed algorithm is:

1. Input the coordinate of 3 vertices A, B, C; Calculate the angle A, B, C, and the edge length c.

2. Set a tolerance variable eps = 0.0001, epsr=0.3. Set a value r. set i=1.

3. Generate the r-offset of the triangle. Call it Ti.

3.1 Generate the vertices on Ti.

3.2 Generate the edges for vertices on Ti, including the edges connecting 2 neighbors of vertices A, B,
C. (See Figure 13a).

3.3 Generate edges for vertices on Ti to the side of the triangle 𝐴𝐵തതതത, 𝐵𝐶തതതത, 𝐶𝐴തതതത. (See Figure 13a).

4. While Ti did not satisfy some conditions:

4.1 Generate the √3r-offset of the triangle Ti, call it Ti+1.

4.2 Generate the vertices and edges on Ti+1, as we do on step 3.1 and 3.2.

4.3 Generate the edge connect vertices on Ti to vertices on Ti+1. (See Figure 13b–f)

4.4 i=i+1

5. Decide whether the last triangle contains only one vertex(circle) or 3 vertices(circles) (See Figure
13e,f. Call the last triangle Tlast.

6. Establish the edge of graph to connect Ti-1 and Tlast. (See Figure 13e,f)

7. Using Chiang’s algorithm with tolerance eps to find the solution.

8. Display the result.
We will describe the above algorithm more detail, including the answer of the following 4

questions:
1. How to find the r-offset of a triangle in step 3
2. How to construct the tangency graph (vertices and edges) for the same layer?
3. How to construct the tangency (vertices and edges) for two consecutive layers?
4. How the while loop stops in step 4.

The above 4 questions will be described in section 2.1 to section 2.4.

2.1. Offset a Triangle

Consider three different terms, line, ray and line segment. There is no end point for line, and one
end points for ray, and two end points for line segment. Consider the parametric form for a line, ray,
and line segment passing through two points P1 and P2, they have the same parametric form (1-
t)P1+tP2 with different range of the parameter. It is a line, ray, line segment when tR, t0 , 0t1
respectively. Notice that the ray has P1 as its end point, denote Ray(P1, P2) and with the orientation of
Ray(P1, P2), we may define the left side and right side of Ray(P1, P2). Let L= Ray (P1, P2), we denotes
the point P1′ is the point moving P1 to the left side of Ray(P1, P2) r distance, denotes P1′ =Move(P1, L,
r). The Ray(P1′, P2′), also denote Rayr(P1, P2), is called the r-offset of Ray(P1,P2).

Before the more detail description for proposed algorithm, we have the following theorem:

Theorem 1. r-offset of a ray. Given Ray(P1, P2), where P1 = (x1, y1), P2=(x2, y2), the parametric form for Rayr(P1,
P2) is (1-t)P1+tP2+rnL, 0 ≤ 𝑡, where nL= ଵ

ඥ(௫మି௫భ)మା(௬మି௬భ)మ
(𝑦ଵ − 𝑦ଶ, 𝑥ଶ − 𝑥ଵ). The implicit form for the line

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 6

cover Rayr(P1, P2) is a′x+b′y+c′=0 where a′ = (y2-y1), b′ = (x1-x2), and c′= − ቚ
𝑥ଵ 𝑦ଵ

𝑥ଶ 𝑦ଶ
ቚ − ൫𝑟 ×

−ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ൯

Proof of Theorem 1. The direction of the ray is P2-P1= (𝑥ଶ − 𝑥ଵ, 𝑦ଶ − 𝑦ଵ) . The two vectors nL
= ଵ

ඥ(௫మି௫భ)మା(௬మି௬భ)మ
(𝑦ଵ − 𝑦ଶ, 𝑥ଶ − 𝑥ଵ) and nR = ଵ

ඥ(௫మି௫భ)మା(௬మି௬భ)మ
(𝑦ଶ − 𝑦ଵ, 𝑥ଵ − 𝑥ଶ) are perpendicular to

P2-P1. This two vectors points to its left (nL) and its right(nR). We can move points on Ray(P1, P2)
along nL direction r distance, so the parametric form for Rayr (P1, P2) is (1-t)P1+tP2+rnL. Consider two
points P1′, P2′, which is the points P1, P2, move to its left. That is Pi′=(xi′,yi′)=Pi+rnL, i=1,2. The implicit
form for Ray(P1, P2) is: ax + by + c = 0, where a = y2 - y1, b = x1 – x2, c = − ቚ

𝑥ଵ 𝑦ଵ

𝑥ଶ 𝑦ଶ
ቚ. Let the r-offset of

Ray(P1, P2) denote as Rayr = a′x + b′y + c′ = 0, where a'=y2′-y1′=a, b′=x1′–x2′=b, c′=− ฬ
𝑥ଵ′ 𝑦ଵ′

𝑥ଶ′ 𝑦ଶ′
ฬ =c +

൫𝑟 ∗ ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ൯ . So, the implicit form of Rayr is (y2-y1)x + (x1-x2)y - ቚ
𝑥ଵ 𝑦ଵ

𝑥ଶ 𝑦ଶ
ቚ

+ ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ × r = 0.

Example 1. Given two points P1=(1,1), P2=(5,2). Let L= Ray1 (P1, P2), the points P1′= Move(P1, L, 1)
=(0.757,1.970) and P2′= Move(P2, L, 1) =(4.757,2.970). In Figure 9, the L is shown in blue with implicit
form x+4y+3=0. Furthermore, the Ray1(P1,P2) = Ray(P1′,P2′) is shown in orange with implicit form
x+4y+7.123=0.

Figure 9. r-offset of a ray.

We call Ray(P1′,P2′) is the r-offset of Ray(P1,P2).
The following theorem is directly from [11].

Theorem 2: Intersection of two lines from 4 points [11]. Given 4 points P1(x1, y1), P2(x2, y2), P3 (x3, y3), P4(x4,
y4). Two lines L1, L2, where L1 passing through P1, P2 and L2 passing through P3, P4. Then: If

ฬ
(𝑥ଵ − 𝑥ଶ) (𝑦ଵ − 𝑦ଶ)

(𝑥ଷ − 𝑥ସ) (𝑦ଷ − 𝑦ସ)
ฬ = 0, L1, L2 are parallel to each other. Otherwise, these two lines intersect each other at

(x,y) where, 𝑥 =

อ
ቚ
௫భ ௬భ
௫మ ௬మ

ቚ ቚ
௫య ௬య
௫ర ௬ర

ቚ

(௫భି௫మ) (௫యି௫ర)
อ

ฬ
(௫భି௫మ) (௬భି௬మ)

(௫యି௫ర) (௬యି௬ర)
ฬ
, 𝑦 =

อ
ቚ
௫భ ௬భ
௫మ ௬మ

ቚ ቚ
௫య ௬య
௫ర ௬ర

ቚ

(௬భି௬మ) (௬యି௬ర)
อ

ฬ
(௫భି௫మ) (௬భି௬మ)

(௫యି௫ర) (௬యି௬ర)
ฬ

Theorem 3: Intersection of two r-offset rays from 3 points. Given Ray(P1, P2), Ray(P2, P3), where Pi=(xi,yi),
i=1,2,3. The intersection of Rayr(P1, P2), Rayr(P2, P3) is (x, y) = (∆ೣ

∆
,

∆೤

∆
) if ∆0 where

∆ = ฬ
(𝑥ଵ − 𝑥ଶ) (𝑦ଵ − 𝑦ଶ)

(𝑥ଶ − 𝑥ଷ) (𝑦ଶ − 𝑦ଷ)
ฬ (1)

∆௫ = ተ
อ

𝑥ଵ 𝑦ଵ −𝑟
𝑥ଶ 𝑦ଶ −𝑟

 𝑛ଵଶ௫ 𝑛ଵଶ௬ 1
อ อ

𝑥ଶ 𝑦ଶ −𝑟
𝑥ଷ 𝑦ଷ −𝑟

 𝑛ଶଷ௫ 𝑛ଶଷ௬ 1
อ

(𝑥ଵ − 𝑥ଶ) (𝑥ଶ − 𝑥ଷ)

ተ (2)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 7

∆௬ = ተ
อ

𝑥ଵ 𝑦ଵ −𝑟
𝑥ଶ 𝑦ଶ −𝑟

 𝑛ଵଶ௫ 𝑛ଵଶ௬ 1
อ อ

𝑥ଶ 𝑦ଶ −𝑟
𝑥ଷ 𝑦ଷ −𝑟

 𝑛ଶଷ௫ 𝑛ଶଷ௬ 1
อ

(𝑦ଵ − 𝑦ଶ) (𝑦ଶ − 𝑦ଷ)

ተ (3)

n12 =(n12x, n12y) = ଵ

ඥ(௫మି௫భ)మା(௬మି௬భ)మ
(𝑦ଵ − 𝑦ଶ, 𝑥ଶ − 𝑥ଵ) (4)

n23 =(n23x, n23y) = ଵ

ඥ(௫యି௫మ)మା(௬యି௬మ)మ
(𝑦ଶ − 𝑦ଷ, 𝑥ଷ − 𝑥ଶ) (5)

Proof of Theorem 3. Let L1=Ray(P1,P2), L2=Ray(P2, P3), L3=Rayr(P1, P2), L4=Rayr(P2, P3). Let P1′=Move(P1,
L1, r), P2′=Move(P2,L1,r), P3′=Move(P2,L2,r) and P4′=Move(P3,L2,r), then: P1′ = P1 + rn12, P2′ = P2+ rn12, P3′
= P2+ rn23, P4′= P3 + rn23, where n12 = ଵ

ඥ(୶మି୶భ)మା(୷మି୷భ)మ
(yଵ − yଶ, xଶ − xଵ) and n23 =

ଵ

ඥ(୶యି୶మ)మା(୷యି୷మ)మ
(yଶ − yଷ, xଷ − xଶ). The proof can be easily derived by using theorem 2 with these 4

points P1′, P2′ ,P3′, P4′.

Denote ∆ = ቚ
𝑥ଵᇲ − 𝑥ଶᇲ 𝑦ଵᇲ − 𝑦ଶᇲ

𝑥ଷᇲ − 𝑥ସᇲ 𝑦ଷᇲ − 𝑦ସᇲ
ቚ = ฬ

(𝑥ଵ − 𝑥ଶ) (𝑦ଵ − 𝑦ଶ)

(𝑥ଶ − 𝑥ଷ) (𝑦ଶ − 𝑦ଷ)
ฬ (6)

∆௫ = ተ
อ

𝑥ଵ 𝑦ଵ −𝑟
𝑥ଶ 𝑦ଶ −𝑟

 𝑛ଵଶ௫ 𝑛ଵଶ௬ 1
อ อ

𝑥ଶ 𝑦ଶ −𝑟
𝑥ଷ 𝑦ଷ −𝑟

 𝑛ଶଷ௫ 𝑛ଶଷ௬ 1
อ

(𝑥ଵ − 𝑥ଶ) (𝑥ଶ − 𝑥ଷ)

ተ (7)

∆௬ = ተ
อ

𝑥ଵ 𝑦ଵ −𝑟
𝑥ଶ 𝑦ଶ −𝑟

 𝑛ଵଶ௫ 𝑛ଵଶ௬ 1
อ อ

𝑥ଶ 𝑦ଶ −𝑟
𝑥ଷ 𝑦ଷ −𝑟

 𝑛ଶଷ௫ 𝑛ଶଷ௬ 1
อ

(𝑦ଵ − 𝑦ଶ) (𝑦ଶ − 𝑦ଷ)

ተ (8)

The intersection P (x, y) = (∆ೣ

∆
,

∆೤

∆
), when ∆ ≠ 0

Example 2. Given 3 points P1=(1,1), P2=(10,2), P3=(3,5), then P1′=(0.889,1.993), P2′=(9.889, 2.993),
P3′=(9.606, 1.080) and P4′=(2.606,4.080). The intersection points P for Ray1(P1,P2) and Ray1(P2,P3) is at
(6.119, 2.575), As shown in Figure 10.

Figure 10. Intersection of two r-offset rays from 3 points.

We denote P=Ray1(P1,P2)∩Ray1(P2,P3).
From △ABC, we can find 3 points B′=Rayr(A,B) ∩Rayr(B,C), C′=Rayr(B,C)∩Rayr(C,A) and

A′=Rayr(C,A) ∩Rayr(A,B). We call △A′B′C′ is the r-offset triangle for △ABC.
Example 3. Given A=(1,1), B=(10,2), C=(3,5), the 1-offset triangle for △ABC is a triangle with vertices
A′=(2.716, 2.196), B′=(6.119,2.575) and C′=(3.472, 3.709), see Figure 11.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 8

Figure 11. The result of r-offset triangle.

2.2. How to Construct Vertices and Edges on the Same Layer

The main task for the proposed algorithm is to generate the tangency graphic G (V, E) so that
circles in the triangle has small range of radii. So, we need to generate vertices, and edges connect
vertices. We generate vertices layer by layer, and generate edges for the same layer and edges connect
two consecutive layers. Given a triangle △ABC and circles with radius r, where r is much less than
the least length of 3 sides of the triangle. Given △A′B′C′ is the r-offset of △ABC. Then, the circles
centered at the sides of △A′B′C′ with radius r tangent to △ABC. We want to find the vertices on sides
of △A′B′C′ with the following approach (see Figure 12):
1. The vertices of △A′B′C′ belongs to V.

2. For 3 sides of △A′B′C′:

2.1 Find the a value r′ and integer n, so that |r-r′| is minimum, and 2(r+n*r′) is equal to the length of
this side of the △A′B′C′.

2.2 From this r′, find associated vertices, which are center of a series of circles shown in Figure 12, in
this side of triangle.

2.3 Connect two consecutive vertices to establish edge of the graph.

3. Connect two neighbors of the vertices of △A′B′C′.

4. Connect edges from 𝐴ᇱ𝐵ᇱതതതതതത to 𝐴𝐵തതതത , from 𝐵ᇱ𝐶ᇱതതതതതത to 𝐵𝐶തതതത , and from 𝐶ᇱ𝐴′തതതതതത to 𝐶𝐴തതതത (described in the

section 2.3)

Figure 12. vertices setup for one side of triangle.

Using this approach, start from the △ABC, the r-offset of △ABC is T1(△A′B′C′), the vertices and
edges for T1 is shown in Figure 13a. Notice that the 3 vertices of triangle T1 has the properties that a
circle center at these 3 vertices with radius r tangent to △ABC.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 9

Now, consider the triangle T2 which is √3r-offset of T1. The way to generate vertices and edges
for T2 is the same as the way to generate vertices and edges for T1. After we generate edges for vertices
in T1 to vertices in T2(will described in the next section), the tangency graph is shown in Figure 13b.

(a) ΔABC to T1 (b) T1 to T2

(c) T2 to T3 (d) T3 to T4

(e) Tlast contains 1 vertex (f) Tlast contains 3 vertices

Figure 13. Generating the tangency tree for triangle.

2.3. How to Construct Edges on Two Consecutive Layer

Now is the time to generate edges between vertices on T1 and vertices on T2. Before we explain
our strategy to connect vertices on these two triangles, we have the following theorem:

Theorem 4. Find foot point of a point onto a line. Given a point g (x3, y3) and a line L(gL) passing through
two points (x1, y1), (x2, y2). The nearest points, also called the footpoint, of g onto L is at (𝑥, 𝑦) =

(1 − 𝑡)(𝑥ଵ, 𝑦ଵ) + 𝑡(𝑥ଶ, 𝑦ଶ). 𝑤ℎ𝑒𝑟𝑒 𝑡 =
(௫యି௫భ)(௫మି௫భ)ା(௬యି௬భ)(௬మି௬భ)

(௫మି௫భ)మା(௬మି௬భ)మ (Shown as Figure 14)

Figure 14. Find out the foot point f of point g.

Proof of Theorem 4. A point (x,y) on L, we can generate the square of the distance function from (x,y)
to point g: f(t) = (𝑥 − 𝑥ଷ)ଶ + (𝑦 − 𝑦ଷ)ଶ=[(1 − 𝑡)𝑥ଵ + 𝑡𝑥ଶ − 𝑥ଷ]ଶ + [(1 − 𝑡)𝑦ଵ + 𝑡𝑦ଶ − 𝑦ଷ]ଶ. We want to
find the value t, so that f(x) is minimum. That is, ௗ

ௗ௧
𝑓(𝑡) = 0, the parameter value t can be computed

from ௗ

ௗ௧
𝑓(𝑡) = 0.

Consider the correspondence edge 𝐴′𝐵′തതതതതത on T1 and 𝐴"𝐵"തതതതതത on T2. Assume the parameter values
for the vertices on 𝐴′𝐵′ are t0, t1, …, tm and the parameter values for the footpoints of vertices on

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 10

𝐴"𝐵"തതതതതത onto 𝐴′𝐵′തതതതതത are t0′, t1′, …, tn′. We explain the details with m=7 and n=3, as shown in Figure 15. To
simplify our description, we use the parameter values as its vertex name from now on. The vertex t0
and t7 are the vertices on 𝐴′𝐵′തതതതതത, it did not connect any vertices on 𝐴"𝐵"തതതതതത(T2) yet. When we construct
edges for △A′B′C′, we construct one edge from t1 to the last vertex on 𝐶′𝐴′തതതതത., and t6 to the first vertex
on 𝐵′𝐶′തതതതതത . Now, we need to construct the edges for ti, i=1...,6 and tj′, j=0,3. We use the following
approach to connect edges between vertices generate on T1 and T2. Notice that we try to connect
vertices in 𝐴"𝐵"തതതതതത to the vertices near it in 𝐴′𝐵′തതതതതത. We did the same process for vertices in 𝐵"𝐶"തതതതതത to the
vertices near it in 𝐵′𝐶′തതതതതത and for vertices in 𝐶"𝐴"തതതതതത to the vertices near it in 𝐶′𝐴′തതതതത.

Figure 15. relation between vertices.

We define floor and ceiling for the vertices t୧
ᇱ as the following:

⌊t୧
ᇱ⌋ = max ൛t୨ ห t୨ < t୧′ }; ඃt୨

ᇱඇ = min ൛t୨ ห t୨ > t୧′ }, Where ൜
 ⌈t୬

ᇱ ⌉ = t୫ିଵ

 ⌈tିଵ
ᇱ ⌉ = tଵ

 , With the above

definition, we connect vertices t୧
ᇱ to all vertices from ⌈t୧ିଵ

ᇱ ⌉ to ⌈t୧
ᇱ⌉ ∀୧ = 0, .., n. So, in Figure 15, t଴

ᇱ
connect vertices from ⌈tିଵ

ᇱ ⌉=t1 to ⌈t଴
ᇱ ⌉=t2, and tଷ

ᇱ connect vertices from ⌈tଶ
ᇱ ⌉=t4 to ⌈tଷ

ᇱ ⌉=t6. So, vertex
with parameter tଷ

ᇱ 𝑖𝑛 𝐴"𝐵" has 3 edges connect vertices on 𝐴′𝐵′തതതതതത.
After connecting edges between T1 and T2, the result is shown on Figure 13b. Continue to

generate vertices on T3=√3r-offset(T2), T4=√3r-offset(T3), and generate vertices and edges for the
tangency graph G(V,E), increase vertices on V, and edges connecting vertices on the same layer and
previous layer, see Figure 13c,d, it is time to think how to stop the process.

2.4. How to Stop the While Loop

We know any triangles has an inscribed circle and 3 malfatti’s circles. The criterion to stop the
algorithm depends on the radius of the inscribed circle and the minimum radius of the 3 malfatti’s
circles.

This process specified the tangency properties among circles, representing vertices on G(V,E).
Let r1 be the radius of the inscribed circle for Tlast, and r2 be the minimum radius of the 3 malfatti’s
circles for Tlast. One of this two radii is less than (1+epsR)r, eqpR is a small value we set, we stop the
process and go out of the loop. If r1 is close to r, we use one vertex for Tlast(See Figure 13e), otherwise
we use 3 vertices for Tlast(See Figure 13f). The last thing for constructing tangency graph is to connect
edges for vertices of Tlast with the previous layer triangle (See Figure 13e,f).

3. Examples

We use Intel(R) Core(TM) i7-10750H CPU, 16G Ram, and Anaconda 23.5.2 with Python 3.11.3 to
implement the algorithm. We give two examples as the following:
Example 4. Given a triangle with vertices at A=(10,10), B=(100,20) and C=(30,50), and initial r=2. Set
epsR=0.3, eps=0.0001, the tangency graph it generates is shown in Figure 13a–e, and after the angle
computation for every circles, including vertices circle, boundary circles and inner circles, the result
figure is shown in Figure 16. It takes 144.9, 6.140, and 0.288 seconds to construct tangency graph, find
the radii for all circles, and display the result respectively. All the circles generated has the radii range
(0.829, 4.129), which is (0.415r, 2.065r).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 11

In this case, at the last layer, the radius of the inscribed circle is 2.22, which is less than
(1+epsR)r=2.6, and the radii of the malfatti’s circles are 1.432, 1.099, 1.766, the minimum of them is
1.099. The value 2.22 is closed to r=2, compare to the difference of 2 and 1.099. So we generate the last
layer has one vertex only. The output is shown in Figure 16.

Figure 16. Output Display for Example 4.

Notice that there are 4 circles in Figure 16 has larger inner circles. We find that when a circle has
large number of surround circle, it has large chance that its radius is large. So, if we add more circle
near by, is it possible to reduce the range of the radii for the problem? So, after constructing the
tangency graph, we check the degree of each vertex, if the degree is larger than 15 or between 12 and
15, we constructing two vertices/circles or one new vertex/circle with this vertex. With this approach,
we have the following example.

Example 5. Given a triangle with vertices at A=(10,10), B=(100,20) and C=(30,30), and initial r=1.9. Set
epsR=0.3, eps=0.0001. The tangency graph this algorithm construct is shown in Figure 17a, its
associated tangency circles in triangle is shown in Figure 17b. Notice that two vertices have more
than 15 vertices, so we add two more vertices for each of these two vertex, as shown in Figure 17c
and its associated tangency circles in triangle is shown in Figure 17d. Notice that the range of the
radii for Figure 17d is smaller than the range of the radii for Figure 17b.

Figure 17. Add more vertices in Example 5.

Example 6. Given a triangle with vertices at A=(0,0), B=(37.5,64.952) and C=(75,0). Set r=2, epsR=0.4,
eps=0.0001, the tangency graph it generates is similar to the last example, except the final step, shown
in Figure 13f. After the angle computation for every circles, including vertices circle, boundary circles
and inner circles, the result figure is shown in figure 17. It takes 127.106, 1.430, and 0.130 seconds to
construct tangency graph, find the radii for all circles, and display the result respectively. All the
circles generated has the radii range (1.506, 2.194), which is (0.753r, 1.097r).

In this case, at the last layer, the radius of the inscribed circle is 4.330, and the minimum radius
of the malfatti’s circles is 2.745. Because 4.330>2.8 and 2.745<2.8, we generate the last layer has three
vertices, and connect these 3 vertices to the vertices in the previous layer triangle. The output is shown
in Figure 17.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

 12

Figure 18. Output Display for Example 6.

4. Conclusions

We proposed an algorithm to generate the tangency graph to specify the tangency relationship
among all circles and triangle boundary. The purpose of this proposed algorithm is to reduce the
range of the radii among all circles. The process to generate tangency graph, takes more CPU time,
compare to the time spend on construct circle and display circles.

Acknowledgments: This research is support NSTC-112-221-E-031-003. We extend our heartfelt gratitude to
Guan Wen Wang and Hsi Wen Wang for their invaluable contributions to the programming aspect of this
research.

References

1. Malfatti, Gianfrancesco (1803), "Memoria sopra un problema stereotomico", Memorie di Matematica e di
Fisica della Società Italiana delle Scienze, 10: 235–244.

2. Ching-Shoei Chiang, Christoph M. Hoffmann, Paul Rosen, “A gereralized Malfatti’s Problem”,
Computational Geometry, Volume 45, Issue 8, October 2012, pages 425-435.

3. Lob, H. and H. W. Richmond (1930). "On the Solutions of Malfatti's Problem for a Triangle." Proceedings
of the London Mathematical Society s2-30(1): 287-304.

4. Wells, David (1991), "Malfatti's problem", The Penguin Dictionary of Curious and Interesting Geometry,
New York: Penguin Books, pp. 145–146, ISBN 978-0-14-011813-1.

5. Ogilvy, C. Stanley (1990), "Malfatti's problem", Excursions in Geometry, Dover, pp. 145–147, ISBN 978-0-
486-26530-8.

6. Fukagawa, H. and Pedoe, D. "The Malfatti Problem." Japanese Temple Geometry Problems (San
Gaku). Winnipeg: The Charles Babbage Research Centre, pp. 28 and 103-106, 1989.

7. Bottema, “The Malfatti Problem,” Forum Geometricorum 1, 43-50, 2000.
8. M. Stefanović. “Triangle centers associated with the Malfatti circles.” Forum Geometricorum 3,83-93, 2003.
9. Wolfram Math World. “Malfatti Circles,” Available online:

http://mathworld.wolfram.com/MalfattiCircles.html.
10. Ching-Shoei Chiang, Hung Chieh Li, Min-Hsuan Hsiung, and Fan-Ming Chiu, “Extended General

Malfatti’s Problem, The 19th International Conference on Scientific Computing, 2021/7/26-29.
11. Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. Available

online:. https://mathworld.wolfram.com/Line-LineIntersection.html.
12. Collins, C. R., & Stephenson, K. (2003). A circle packing algorithm. Computational Geometry, 25(3), 233-

256.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 doi:10.20944/preprints202407.0931.v1

https://doi.org/10.20944/preprints202407.0931.v1

