
Article Not peer-reviewed version

Mixture Effects of Commonly Applied

Herbicides on County Level Obesity

Rates in the United States: An

Exploratory Ecologic Study (2013-2018)

Sarah Otaru * , Laura Ellen Jones * , David Orlo Carpenter

Posted Date: 18 August 2025

doi: 10.20944/preprints202508.1257.v1

Keywords: mixture models; glyphosate; herbicides; obesity rates; rurality; NCHS urban-rural designation

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4677676
https://sciprofiles.com/profile/4677677
https://sciprofiles.com/profile/63594


 

 

Article 

Mixture Effects of Commonly Applied Herbicides on 
County Level Obesity Rates in the United States:  
An Exploratory Ecologic Study (2013-2018) 
Sarah Otaru MBBS, MPH 1,*, Laura E. Jones PhD, MS, MS 2,* and David O. Carpenter, MD 1 

1 Department of Environmental Health Sciences, University at Albany, State University of New York, 1 
University Place, Rensselaer, NY, USA 

2 Center for Biostatistics, Bassett Research Institute, 1 Atwell Rd., Cooperstown, NY, US 
* Correspondence: sotaru@albany.edu (S.O.); laura.jones@bassett.org (L.E.J.) 

Abstract 

Background: Metabolic disorders such as obesity have increased globally in recent decades and are 
a major public health concern. Previous research suggests that herbicide exposures may contribute 
to metabolic dysfunction, but few studies have examined mixture effects of multiple herbicides on 
obesity at a population level. Methods: Using county-level data from 2013 to 2018, we examined the 
associations between obesity rates and the application of 13 commonly applied herbicides in the U.S. 
We first conducted adjusted single-pollutant mixed effects models and then used quantile-based g-
computation mixture modeling to assess combined herbicide mixture effects on county-level obesity 
rates. Models were adjusted for demographic and socioeconomic covariates and accounted for 
geographic clustering. Results: Significant positive associations were identified between county-level 
obesity rates and applications of glyphosate, 2,4-D, atrazine, acetochlor, metolachlor, and several 
other herbicides in adjusted single-pollutant models. Glyphosate showed one of the strongest 
individual associations (β=0.29 per standard deviation increase, 95% CI: 0.21–0.36). Increases in 
herbicide mixture were significantly associated with higher obesity rates (Psi=0.71 per quantile 
exposure mixture, 95% CI: 0.65–0.76) from mixture modeling. Inclusion of significant interaction 
terms did not appreciably increase the mixture effect. Glyphosate, 2,4-D, metolachlor, dimethenamid-
P, and glufosinate contributed most strongly to the weighted mixture effect. Mixture effects varied 
by rurality, with stronger associations observed in rural counties, particularly in micropolitan 
regions. Conclusions: Our findings highlight the importance of considering cumulative herbicide 
mixture exposures rather than individual chemicals in isolation. The observed rural-urban disparities 
emphasize the need for targeted public health interventions and policy actions in rural communities, 
which may be particularly vulnerable to the adverse metabolic impacts of herbicide mixtures. 

Keywords: mixture models; glyphosate; herbicides; obesity rates; rurality; NCHS urban-rural 
designation  
 

1. Introduction 

Recent decades have seen a substantial increase in human metabolic disorders—including 
obesity, diabetes, and metabolic syndrome—which now represent a major public health challenge in 
the United States and globally [1,2]. Agricultural practices have evolved in tandem with the 
widespread application of pesticides. Of these, herbicides are by far the most heavily applied class of 
pesticides, accounting for ~88% of agricultural herbicide mass during 2013–2017 in the United States, 
whereas insecticides and fungicides each contributed ~6%. Moreover, by 2016 glyphosate alone 
comprised ~44% of all herbicide mass applied to crops [3,4]. Our prior study demonstrated a 
significant association between glyphosate exposure, measured in urine, and metabolic syndrome 
using nationally representative NHANES data, with marked differences observed across racial 
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groups [5]. These findings suggest that herbicide exposure may be an underappreciated 
environmental co-factor of metabolic dysfunction. However, given that agricultural herbicide 
exposures rarely occur in isolation, a comprehensive analysis that includes multiple compounds is 
warranted to elucidate potential joint and interactive effects on metabolic health. 

In the present study, we extend our investigation with an ecologic study of herbicide application 
and its associations with county level obesity rates by incorporating a panel of thirteen herbicides—
glyphosate, herbicide 2,4-D (2,4-D), atrazine, dicamba, trifluralin, acetochlor, dimethenamid-P, 
glufosinate, metolachlor, metolachlor + metolachlor-S,  pendimethalin, paraquat and one fungicide, 
chlorothalonil, —that are most extensively applied in U.S. agriculture. Indeed glyphosate,  2-4D, 
atrazine, and paraquat represent 36%, 7.4%, 4.6% and 1.5% of pesticide use globally [6]. The selection 
of the fourteen compounds studied here was informed by multiple criteria: (1) high prevalence in 
agricultural use in the United States, and documented potential for environmental persistence; (2) 
emerging toxicological evidence implicating them in endocrine disruption, oxidative stress, and 
perturbations in glucose and lipid metabolism [7–9]; and (3) epidemiological observations that link 
these exposures to adverse metabolic outcomes [10,11].  Importantly, many of these herbicides are 
applied together in modern cropping systems, potentially leading to synergistic and mixture effects 
that are not adequately captured by single-pollutant studies. 

The biology linking these compounds to metabolic disturbances is supported by several 
mechanistic pathways. For instance, glyphosate has been implicated in disrupted insulin signaling 
and altering the gut microbiome—both of which are critical regulators of energy homeostasis and 
metabolic function [12–15]. Similarly, atrazine and 2,4-D have been associated with endocrine 
disruption, which may interfere with hormonal regulation of adipogenesis and glucose metabolism 
[9,16]. The neurotoxic potential of paraquat [17,18] further raises concerns about systemic oxidative 
stress, a contributor to insulin resistance and beta-cell dysfunction [19,20]. In integrating diverse lines 
of evidence, our study seeks to clarify whether cumulative exposures to herbicides contribute to 
metabolic disorders at a population level. 

After assessing associations between county level obesity rates and single pollutants using 
mixed effects models with a random term for county FIPS, we use a mixture model approach to assess 
mixture effects, using a county-level random effect to account for location. This approach enables us 
to accommodate geographic variations in herbicide usage and to control for spatially specific 
demographic and socioeconomic factors that may modify exposure-outcome associations. Finally, by 
stratifying analyses on National Center for Health Statistics (NCHS) urban-rural designation, we aim 
to reveal potential environmental health disparities that could inform targeted public health 
interventions. 

Mixture effects.  Mixture effects occur when multiple environmental pollutants interact in 
ways that amplify their individual health effects, especially when compounds are in related families 
[21,22].  Pollutant mixtures may have joint effects, and if there are interactions between components 
the total mixture effect can be amplified [23]. Despite some focus on acute herbicide exposure 
(poisoning), effects of chronic ambient environmental exposure herbicide mixtures are little studied 
in view of increasing global application of herbicide  mixtures for everything from weed control in 
cropping to crop desiccation, to aquatic weed control or wildland and urban area management 
[24,25]. 

In summary, our study addresses critical gaps in the current understanding of environmental 
risk factors for metabolic disorders. By examining a spectrum of herbicides with documented 
endocrine and metabolic perturbations, this study provides a nuanced assessment of the complex 
interplay between agricultural chemical exposures and metabolic health outcomes as a function of 
exposure setting and magnitude. Such insights are vital for informing regulatory policies and for 
designing future studies that can elucidate the causal pathways underlying these associations. 
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2. Materials and Methods 

Study Design. Our study uses aggregated county-level exposure and outcome data to explore  
relationships between herbicide exposure and health outcomes. Because both exposure and outcome 
comprise county level measurements, there is an inherent study assumption that agricultural 
herbicide applications are correlated with local population exposure. This is biologically and 
empirically plausible because urinary glyphosate concentrations rise during the agricultural spray 
season among residents living near fields [26,27], indicating that local application intensity tracks 
human exposure. Diet may contribute, but provides a smaller contribution to exposure for subjects 
living in proximity [28]. Moreover, our prior NHANES study demonstrated an association between 
urinary glyphosate measurements and metabolic syndrome score, increasing confidence that 
population-level exposure can serve as a meaningful proxy for human exposure in this context [3]. 
The U.S. Geological Survey (USGS) [29] provides estimates of agricultural pesticide and herbicide 
application in kilograms, aggregated by FIPS code and year, which we employ alongside county-
level obesity rates from the Behavioral Risk Factor Surveillance System (BRFSS) and demographic 
information from the American Community Survey (ACS) for study years 2013 to 2018.  Sources are 
described further below. 

Data Sources, Curation and Integration. We curated a county–year analytic file by integrating 
multiple public, nationally representative sources and joining records by five-digit FIPS and calendar 
year. Agricultural herbicide-use estimates were obtained from the U.S. Geological Survey (USGS) 
Pesticide National Synthesis Project (e-Pest), for which peer-reviewed evaluations of data generation 
and occurrence are available [3,4]. County-level adult obesity prevalence was drawn from CDC 
small-area estimation based on BRFSS (PLACES), which uses multilevel regression and 
post-stratification and has been validated for local health indicators [25,26]. Socio-demographic and 
behavioral covariates (e.g., smoking, uninsured, unemployment, education, age structure, 
race/ethnicity) were curated from the University of Wisconsin’s County Health Rankings, which 
aggregate the American Community Survey and other federal series under a documented framework 
[30,31]. This approach mirrors recent ecologic studies that explicitly curate and integrate PLACES 
and other public datasets for population-level analyses [32–34]. 

Designation of rurality. Rural-urban setting designations are from the 2013 National Center for 
Health Statistics (NCHS) Urban-Rural Classification Scheme for counties and includes six categories: 
“large central metro”, “large fringe metro”, “medium metro”, “small metro”, “micropolis” and “non-
core.”  Details for each category are shown in Box 1.  The 2013 NCHS scheme is based on the 2010 
census and the February 2013 Office of Management and Budget (OMB) delineation of metropolitan 
statistical areas (MSAs) and micropolitan statistical areas, where a micropolitan statistical area is 
defined as 10,000 to 49,999 population. There are 374 metropolitan statistical areas and 581 
micropolitan statistical areas defined as of 2013. These designations were recently updated to a 2023 
standard using 2022 census data, but our data comprise years 2013 to 2018, thus we employ the 2013 
system. Note that there were minimal changes to county assignments between 2013 and 2023. 

 

Box 1. NCHS Urban-Rural Classification Scheme (2013) 
Category Category Description 

Large Central Metro 
NCHS-defined “central” counties, MSAs 1 million+ 

population 

Large Fringe Metro NCHS defined MSA fringe areas, 1 million+ population 

Medium Metro Counties within MSAs of 250,000 to 999,999 

Small Metro Counties within MSAs of 50,000 to 249,999 

“Micropolitan” Counties in NCHS-defined Micropolitan statistical areas 

Non-core Counties not in Micropolitan statistical areas 
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Exposure. Primary exposure variables include the estimated annual agricultural use of atrazine, 
dicamba, trifluralin, acetochlor, chlorothalonil, dimethenamid-P, glufosinate, glyphosate, herbicide 
2,4-D, metolachlor, metolachlor-S, metolachlor + metolachlor-S, pendimethalin, and paraquat.  
Herbicides were selected based on application levels across U.S. counties as follows:  exposure 
estimates were downloaded from the USGS e-pest (Pesticide National Synthesis Project [29]) site for 
years 2013 through 2018. E-pest estimates are reported as “low” and “high” values (in kilograms) for 
448 unique compounds over the time period for most states.  California supplies only one 
comprehensive number per county, taking data directly from its comprehensive Pesticide Use 
Reporting (PUR) database.  For the remaining states, we computed averages of low and high values 
(in kilograms) for each exposure, then omitted exposures with a total mean value of less than 1400 
kg/hectare, irrespective of missing units, resulting in 43 candidate exposures. Columns with more 
than 30% missing units were dropped, resulting in the final 14 exposures listed above. Remaining 
missingness varied from <1% to at most 20%. State and county FIPS numbers were joined to create 
five-digit FIPS values for each county, and exposures merged with county level outcome and 
demographic data based on study year and county FIPS number.  

Outcome. Adult (ages 18 and older) obesity data are compiled by the CDC from the Behavioral 
Risk Factor Surveillance System (BRFSS).  The BRFSS is an annual state level random digit dial 
survey used to assess health and risk-related behaviors. From 2016 onwards the CDC employed a 
multilevel modeling approach to estimate obesity, along with other health conditions, based on 
telephone survey responses and respondent age, sex, and race/ethnicity, combined with county-level 
poverty and other relevant county and state level features [35,36]. For counties where there is 
insufficient data, the approach borrows data from the entire BRFSS sample as well as old census 
estimates, using a parametric bootstrap to produce standard errors. A companion study will examine 
associations between county level obesity, hypertension and hypercholesterolemia rates (%) and 
herbicide exposures within larger Metropolitan Statistical Areas (MSAs), using data from CDC Places 
for 2013 to 2018. The CDC uses a similar multilevel modeling approach to estimate CDC Places health 
outcomes. 

Covariates. Additional demographic and socioeconomic variables—including adult smoking 
prevalence, percent uninsured, percent unemployed, age structure (≥65 and <18 years), educational 
attainment (percent high school graduate; percent with some college), racial/ethnic composition, and 
county rurality (NCHS 2013)—were included a priori to address confounding. Percent uninsured 
comprises age-adjusted prevalence of subjects aged 18 to 64 who lack health insurance; percent 
smoking reflects the percentage of the county population who currently smoke and have smoked 
more than 100 cigarettes in their lifetime. Smoking was treated as a key confounder because rural 
smoking prevalence exceeds urban prevalence, including in New York State and even after 
accounting for poverty, and because smoking is associated with adiposity/metabolic risk behaviors. 
To partially address dietary confounding—for which no county-level intake data were available—
we included food insecurity and educational attainment as proxies for diet quality/access and health 
behaviors; recent national evidence shows poorer diet quality in non-metropolitan/rural areas 
independent of income/education and food-desert status [37]. These county level metrics are 
compiled by study year and made available for download by the University of Wisconsin Population 
Health Institute (https://www.countyhealthrankings.org) and are also available at the Centers for 
Disease Control.  

Statistical Analysis 

Due to the distributed nature of missing units across county level herbicide estimates, 
missingness decreases our sample size from 18,382 samples to 7,811 samples if we take a complete 
case analysis approach.  To preserve sample size, data were thus first multiply imputed using a fully 
conditional chained equations approach implemented in R via the mice package, creating 10 imputed 
datasets, each given 20 iterations to allow convergence, and using a custom prediction matrix. Please 
see Appendix A for details of the imputation process and model.   
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Single pollutant models. After imputation and before multivariable analysis, we assessed 
potential collinearity between herbicide application data by computing and visualizing a Pearson 
correlogram (Appendix, Figure B1), as multicollinearity will inform further modeling. We then 
examined single-pollutant associations using mixed-effects models adjusted for racial percentages, 
percentage age 65 and above and percentage below age 18; county level smoking rates, percentage 
uninsured, unemployed, and food insecure and NCHS rurality designation, with a random effect to 
account for county level variability. Exposures were standardized before analysis and results are 
reported as per standard deviation exposure, and results pooled over 10 imputed datasets using 
Rubin’s Rules [38,39]. P-values were adjusted for multiple comparisons via the False Discovery Rate 
(FDR) method [40]. Results are given in tabular format and visualized as forest plots.   

Mixture Models.  Our data showed correlation between the herbicides, thus a standard 
multivariable model was inappropriate due to potential multicollinearity and associated variance 
inflation, unstable coefficient estimates, and difficulty assessing exposure importance. Correlation 
analysis warns us of potential multicollinearity in our models yet cannot detect which correlated 
exposures are driving the associations, or whether there are significant interactions between the 
pollutants; we rely upon other methods to assess this.  As the size of our dataset makes application 
of flexible nonparametric kernel-based methods such as Bayesian Kernel Machine Regression 
(BKMR)[41,42] computationally impractical, we used quantile-based g-computation models to 
estimate the joint effects of herbicide applications at the county level on county level obesity rates 
[43]. Based on our correlation analysis (see Supplemental Figure 1S) we dropped Metolachlor-S from 
the mixture components. We first ran an unadjusted model to examine crude mixture effects, and 
then a model adjusted for racial percentages, percentage age 65 and above and percentage below age 
18; county level smoking rates, and percentages uninsured, unemployed, and food insecure, using a 
grouping term to account for clustering at the county level and a bootstrap approach to correctly 
estimate variances. Optimal quantile settings were selected by examining Z-scores and were set at 15 
quantiles for both crude and adjusted models. Quantile-based g-computation models were run using 
the gcomp package in the R programming language [43]. 

Interactions. Potential interactions between herbicide exposures were assessed for inclusion in 
g-computation models by running interaction forests, a variant of the Random Forest (RF) method 
that explicitly captures interaction effects in the bivariable splits performed by the decision trees in 
RF, using the diversity Forest package in R [44]. 

Stratified mixture models/subgroups analysis.  Since application of herbicides in farming is 
associated with rurality, we perform mixture modeling stratified on NCHS Urban-Rural designation. 

3. Results 

Study Population.  The study population resides in 3,066 counties spread across the United 
States (Table 1).  Only 13.5% of the counties are in large metropolitan or large fringe metropolitan 
areas.  Fully 63% of counties are in either micropolitan or non-core areas.  Our study population is 
largely (median 86.3) non-hispanic White and has graduated high school (86%).  Over half have 
attended college (56%).  County level smoking rates are about 19%, most people are employed, and 
only 16% were without health insurance, with only 14% food insecurity. County level obesity rates 
across the study period have mean and median values of 31% and rates are normally distributed. 

Table 1. Population/demographic variables (N=18,382), Years 2013-2018. Summarized from imputed data. 

Covariate (%) Mean Median IQR 
Outcome Obese 30.9 31.0 [29.0, 34.0] 

Risk factors 

Smoking  19.4 19.0 [16.0, 22.0] 
Uninsured 17.0 16.9 [12.0, 21.0] 
Unemployed 6.7 6.3 [4.7, 8.1] 
Rurality 60.3 60.7 [35.2, 88.9] 
Food Insecure 13.6 14.0 [11.0, 16.0] 
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education 
High School 
Graduate 

84.1 86.0 [79.0, 91.0] 
Some College 55.8 55.8 [47.6, 64.3] 

Age Population < 18 years 22.7 22.6 [20.7, 24.4] 
Population > 64 years 17.4 17.1 [11.5, 13.8] 

Race 
(percent) 

Non-Hispanic White 77.9 86.3 [68.2, 93.9] 
Black/African 
American 

8.8 2.0 [0.6, 9.3] 
Asian 1.3 0.6 [0.4, 1.1] 
Hispanic 8.9 3.5 [1.9, 8.0] 
Native American 1.9 0.6 [0.3, 1.1] 
Pacific Islander 0.08 0.0 [0.0, 0.10] 

 Level  Number 
counties (Percent) 

1NCHS  
Urban-Rural 
Designation 
 

Large Central Metro   351  (1.9%) 
Large Fringe Metro  2130  (11.6) 
Medium 
Metropolitan 

 2190  (11.9) 
Small Metro  2094  (11.4) 
Micropolitan  3803  (20.7) 
Noncore  7814  (42.5) 

1 https://www.cdc.gov/nchs/data-analysis-tools/urban-rural.html. 

Herbicide Exposure and Health Outcomes by Rurality.  Herbicides of interest in this study 
had median annual application levels ranging from 128 kg per hectare (chlorothanonil) to 15,360 kg 
per hectare (glyphosate).  Maximum annual applications ranged from 70,608 kg (metolachlor) to 
594,336 (glyphosate) kg per hectare (supplemental Table S1). Annual applications at the county level 
generally increased with increasing rurality, flattening out as rurality increased above 45%.  
Counties within micropolitan urban-rural designations (52.3% median rurality) had the highest 
median annual applications of metolachlor species, herbicide 2-4D, atrazine, acetochlor, 
dimenthenamid-P and glufosinate, and the second highest applications of glyphosate (supplemental 
Table S2). Large metropolitan areas and metropolitan fringe areas had the lowers application levels. 
Mean/median obesity rates also increase with rurality, again flattening out at about 31% at rurality 
45% and above (NCHS small metro, micropolitan and noncore regions). 

Single Pollutant Models.  Across all counties, the adjusted analysis revealed positive single-
pollutant associations between glyphosate, metolachlor and metolachlor-S, acetochlor, atrazine, 
pendimethalin, herbicide 2-4D, Glufosinate, and Dimenthenamid-P applications (in decreasing 
magnitude) respectively, and county level obesity rates (Figure 1, Table 2).  Associations for 
glyphosate were strongest (+0.30 per SD exposure, 95% CI: 0.2, 0.4), followed by Metolachlor + 
Metolachlor-S (+0.24, 95%CI: 0.2, 0.3) and eight other compounds. Fully 10 of 14 county level 
herbicide applications showed positive and significant associations with obesity rates, though those 
for Dimenthenamid-P were marginal after correction for multiple comparisons. Trifluralin, paraquat, 
dicamba and chlorothanonil applications show no significant adjusted linear associations with 
county level obesity rates. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2025 doi:10.20944/preprints202508.1257.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1257.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 21 

 

 

Figure 1. Forest plot of single-pollutant results for associations between county level obesity rates and herbicide 
applications from adjusted mixed effects models, years 2013 to 2018.  Results pooled over 10 imputed datasets. 

Mixture Models. In unadjusted models, a one quantile increase in herbicide application mixture 
was associated with a significant increase in obesity rates (𝜓 = 1.02, 95%CI: 0.94, 1.1; p < 0.0001, Table 
3).  Adjusted models showed slightly reduced but still significant mixture effects with one quantile 
increase on obesity rates (𝜓 = 0.71, 95%CI: 0.65, 0.76, p < 0.0001).  Model weightings for the mixture 
effects showed large positive contributions from herbicide 2-4D, metolachlor, glyphosate, 
dimenthenamid-P, and glufosinate, and large negative contributions by paraquat, trifluralin, and 
pendimethalin (Figure 2). Here positive weights indicate positive additive effects on obesity rate 
whereas negative weights are negative contributions for a given component in the per-quantile 
mixture effect. For a forest plot of coefficients (beta values) from the underlying fitted mixture model, 
please see Appendix Figure B2.  Surprisingly, interactions assessed via interaction forests are few. 
The largest, a quantitative interaction between dicamba and glyphosate, had an Effect Importance 
Measure (EIM) strength of 0.05 (Appendix Figure B3).  Adjusted mixture models incorporating these 
interactions, however, do not produce significantly different total mixture effects (Table 3). 

Table 2. Estimates (per standard deviation exposure) from adjusted single-pollutant mixed effects models for 
associations between herbicide application rates per hectare and county level obesity rates. Results are shown 
as forest plot visualizations in Figure 1. 

Herbicide Estimate 
95% 

Confidence 
Interval 

p-value FDR 
adjusted 

acetochlor 0.23 0.17, 0.30 <0.0001 <0.0001 
atrazine 0.16 0.095, 0.23 <0.0001 <0.0001 

glufosinate 0.08 0.038, 0.12 <0.0001 <0.0001 
glyphosate 0.29 0.21, 0.36 <0.0001 <0.0001 
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metolachlor 0.12 0.08, 0.16 <0.0001 <0.0001 
metolachlor + metolachlor-

S 0.24 0.18, 0.29 <0.0001 <0.0001 
metolachlor-S 0.18 0.13, 0.23 <0.0001 <0.0001 
pendimethalin 0.11 0.046, 0.16 <0.0001 <0.0001 
herbicide 2-4D 0.09 0.036, 0.135 0.001 0.002 

dimenthenamid-P 0.05 0.01, 0.097 0.02 0.04 
dicamba -0.013 -0.05, 0.024 0.49 0.62 

chlorothanonil -0.02 -0.078, 0.049 0.66 0.72 
paraquat -0.01 -0.0, 0.038 0.67 0.72 
trifluralin -0.008 -0.077, 0.06 0.81 0.81 

 

Figure 2. Mixture weightings from the final adjusted (unreduced) quantile g-computation mixture models for 
county level obesity rates.  Negative weights are shown in pale blue and positive weights in dark blue. Results 
are pooled over 10 imputed datasets. Metolachlor-S is omitted from the mixture models due to very high 
correlation with other Metolachlor species (See Figure S1). For a coefficient (Beta estimate) forest plot from the 
final fitted mixture model, please see supplemental Figure S2. 
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Table 3. Mixture effects of county level herbicide applications on Obesity rates from crude and adjusted quantile 
g-computation mixture models (Keil et al. 2020). Results for crude (mixture and FIPS code only) and adjusted 
models, including interactants with nonzero EIM identified via interaction forest runs, i.e., glyphosate x 
dicamba, metolachlor x paraquat, and metolachlor x acetochlor,  are shown below the solid line. Estimated Psi 
(𝜓) values represent increase in county level obesity rates per quantile increase in county level exposure mixture. 

Model Coefficient Estimate 
95% Confidence 

Interval 
p-value 

Crude 
intercept 29.5 29.4, 29.6 <0.0001 
Psi (𝜓) 1.0 0.94, 1.1 <0.0001 

Adjusted 
intercept 28.0 27.6, 28.4 <0.0001 
Psi (𝜓) 0.71 0.65, 0.76 <0.0001 

Crude  
+ 

interactants 

intercept 29.4 29.3, 29.6 <0.0001 

Psi (𝜓) 1.4 1.2, 1.6 <0.0001 

Adjusted 
+ 

interactants 

intercept 28.1 27.7, 28.5 <0.0001 

Psi (𝜓) 0.68 0.50, 0.86 <0.0001 

Mixture analysis stratified by rurality.  As in unstratified models, mixture-only models 
(estimates and confidence intervals are shown in pale blue in Figure 3) generally had higher mixture 
effects per quantile exposure mixture than adjusted models.  Large Central Metros are an exception, 
but the sample size is also much smaller (fewer counties comprised) than other levels. Mixture effects 
from adjusted models rise with increasing rurality from Large Fringe Metropolitan (Psi (𝜓) = 0.6, 
95%CI: 0.4, 0.8) to Micropolitan areas (Psi (𝜓 ) = 0.9, 95%CI: 0.7, 1.0, see Appendix Table B3). 
Surprisingly, Noncore regions have among the lowest mixture effects, though the intercepts for this 
area show the highest rates of baseline obesity (Table 4). Note however that median exposures for 
most herbicides peak in small Metropolitan and Micropolitan districts during the period of interest 
(see Figure 4 and Appendix Table B4). 
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Figure 3. Forest plot of mixture effects (Psi) from subgroups analysis via mixture models stratified on NCHS 
urban-rural designation, presented with confidence intervals.  Adjusted models are shown in dark rose, and 
mixture only (crude) models are shown in pale blue. 

4. Discussion 

Our analysis confirms and extends previous findings [5] by demonstrating that increased 
agricultural use of herbicides is associated with adverse metabolic outcomes at the county level. 
Beyond the robust associations with obesity observed for glyphosate, atrazine, and 2,4-D, our results 
reveal novel dimensions: specific herbicides such as paraquat and dicamba are more strongly linked 
to hypercholesterolemia and hypertension in rural settings. This distinct association patterns 
observed for paraquat and dicamba point toward additional pathways. For example, paraquat’s well-
documented capacity to induce oxidative stress (Baldi et al., 2011) may lead to vascular inflammation, 
thereby elevating the risk for hypertension and high cholesterol. Meanwhile, dicamba’s volatility and 
propensity for off-target exposure could exacerbate endocrine dysregulation in nearby populations. 
These insights suggest that the health impacts of pesticide exposure are not monolithic but instead 
involve multiple, possibly synergistic, biological processes that vary by compound. 

Contextualizing Rural–Urban Disparities. A notable finding from our study is the heightened 
impact of herbicide exposure in more rural areas. herbicide usage tends to be highest in counties of 
intermediate-to-high rurality (e.g. small metropolitan and micropolitan areas) and lowest in major 
urban centers (Figure 4). Consistently, we observed that the overall herbicide mixture effect on 
obesity was more pronounced in more rural counties: the estimated obesity increase per mixture 
quartile was smallest in large metropolitan areas and grew larger moving toward small metro and 
micropolitan counties. Interestingly, the most remote rural counties (“non-core” areas) did not follow 
a strictly linear trend – they showed the highest baseline obesity rates but a somewhat lower mixture 
effect estimate – suggesting that beyond a certain point, additional exposures may yield diminishing 
returns, or that these communities may face saturated obesity risk from many non-measured 
contributors. Overall, however, the pattern indicates that communities with intensive agriculture 
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(often rural) may experience a double burden: greater chemical exposure alongside underlying 
vulnerabilities such as higher poverty, limited health care access, and other lifestyle risk factors [45]. 
These contextual factors can amplify the health impact of environmental exposures. Indeed, rural 
populations often have fewer resources to mitigate or treat chronic conditions, which could 
exacerbate the observed associations. Our findings therefore support calls for region-specific public 
health interventions and regulatory approaches. In practice, this could mean prioritizing cumulative 
risk assessments for heavily agricultural rural regions and tailoring obesity prevention programs to 
address both lifestyle and environmental factors in these communities. By recognizing that rurality 
can be a proxy for both elevated exposure and increased susceptibility, public health officials can 
better target efforts to reduce herbicide exposure and bolster healthcare support in high-risk counties. 
Recent work has underscored how socioeconomic and infrastructural disparities can modify the 
health impacts of environmental exposures [45].  

Confounding by Smoking and Diet 

We adjusted for county-level adult smoking prevalence because rural smoking remains higher 
than urban smoking in the U.S. after adjustment for socio-demographics, and New York State 
specifically shows substantially higher smoking in rural/upstate counties even where poverty is high 
[46–48].  We also adjusted for proxies of diet (food insecurity; educational attainment), because diet 
quality is systematically poorer in non-metropolitan/rural areas [37]—including lower fiber and 
higher added sugar intakes and higher odds of poor overall diet quality independent of 
income/education and food-desert residence—which could confound herbicide–obesity associations. 
While these steps reduce confounding, residual confounding by diet, physical activity, and other 
behavioral factors is still possible given the absence of direct county-level diet/physical activity data. 

New Dimensions in Exposure Assessment 

Our study also contributes methodologically by leveraging publicly available county-level 
herbicide application data to approximate population exposures. This ecological approach enabled 
us to probe potential exposure–response relationships on a broad scale. We observed, for example, 
that counties with the highest herbicide application levels tended to have some of the highest obesity 
prevalence, with obesity rates plateauing around ~31% in the most agriculturally intensive areas. 
Although based on observational correlations, this pattern raises the hypothesis of threshold effects 
whereby metabolic health risks may accelerate once herbicide use (and by inference, community 
exposure) exceeds a certain level. If confirmed, such a threshold would carry important regulatory 
implications – suggesting that setting upper limits or cautionary benchmarks for regional herbicide 
burden could be warranted to protect public health. Our analysis capturing wide geographic 
variability and multiple chemicals simultaneously provides a more comprehensive real-world 
exposure scenario than single-chemical studies. By accounting for dozens of U.S. states and a 
spectrum of herbicide compounds, we mirror the complex environmental conditions under which 
human populations actually live. Furthermore, our ecological approach adds a new dimension to 
exposure science by marrying large-scale data with mixture modeling to yield insights that are not 
apparent when studying one chemical or one location at a time. 
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Figure 4. Median herbicide application by NCHS urban-rural designation (kg/hectare/year). See also Appendix 
Table B4. 

New Dimensions in Exposure Assessment 

One of the novel contributions of our study is the use of county-level herbicide application data. 
This approach allows us to infer potential exposure thresholds. For instance, our data suggest that 
counties with application rates exceeding certain thresholds experience disproportionate increases in 
metabolic disorders—a finding that may have significant regulatory implications. Furthermore, by 
capturing geographic variations and examining multiple pesticides simultaneously, we provide a 
more comprehensive picture of real-world exposure scenarios. This integrated exposure assessment 
is a significant step forward in bridging the gap between epidemiological observations and 
mechanistic toxicology. 

Strengths, Limitations and Future Directions 

Strengths of our study include that we analyzed a large, nationally representative dataset 
covering six years (2013–2018) and over 3,000 counties, which provides ample statistical power and 
broad generalizability. We integrated high-quality data from federal sources – including USGS 
agricultural herbicide use estimates and CDC modeled county obesity prevalence – and adjusted for 
a range of demographic and socioeconomic covariates to reduce confounding. To address missing 
data, we employed multiple imputation methods customized to the dataset, maximizing the use of 
available information and limiting bias from incomplete records. Notably, we applied a rigorous 
mixture modeling approach (quantile g-computation) to estimate the joint effect of 13 herbicides on 
obesity. This method, developed specifically for epidemiologic mixtures, allowed us to calculate an 
overall effect estimate (Psi) for the herbicide blend while yielding weights for each component. The 
quantile-based approach is robust to distributional extremes and multicollinearity, enhancing our 
confidence that the observed mixture effect is not an artifact of one highly prevalent chemical. Taken 
together, the study design and analytical techniques provide a robust triangulation of evidence at the 
population level, complementing prior individual-level study. 
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Our study has several limitations. First, the analysis was performed at county level, thus results 
cannot be interpreted as causal effects at the individual level.  The spatiotemporal aggregation 
inherent in our data could obscure finer-scale relationships. Our study is based on an assumption 
that county level herbicide application is correlated with local human exposure, and results may be 
influenced by unmeasured county-level factors such as diet, physical activity, or other correlated 
exposures. We address this by including county-level random effects, adjusting for rurality, and 
controlling for multiple socio-demographic variables. Our herbicide use metric is a surrogate for 
human exposure and does not account for individual behaviors or chemical drift/dynamics, which 
may lead to non-differential exposure misclassification and bias estimates toward the null.  County 
obesity prevalence was obtained from a modeling method (BRFSS small-area estimates) that has its 
own uncertainty. However, by including year as a fixed effect and county random effects we 
attempted to account for differences associated with time and spatially associated variability. Fourth, 
while quantile g-computation is a powerful tool for mixtures, it computes additive effects of 
increasing all exposures by one quantile and de facto assumes linearity unless nonlinear terms are 
explicitly incorporated into a model. We found minimal evidence of pairwise interactions among 
herbicides in supplementary analyses, suggesting the additivity assumption was reasonable. Still, 
very high correlation between certain herbicides (e.g. metolachlor and metolachlor-S) required us to 
drop one variable to avoid collinearity, highlighting a general challenge in multi-pollutant studies. 
Finally, our focus was on obesity as the outcome; we did not examine other metabolic outcomes (such 
as diabetes, hypercholesterolemia, or hypertension rates) in this analysis. It remains possible that 
herbicide mixtures impact various metabolic health indicators differently, an aspect a future study 
will explore. In view of these limitations, our study should be considered exploratory. 

We recommend several directions for further research. Controlled longitudinal studies – for 
example, following birth cohorts or agricultural communities over time – are needed to test the 
temporality of herbicide exposure and obesity onset, which our ecologic design cannot establish. 
Incorporating individual-level exposure data (e.g. urinary or blood biomarkers of herbicides) would 
greatly strengthen causal inference by reducing exposure misclassification and allowing dose–
response assessment. Indeed, one recent longitudinal study of young adults (the CHAMACOS 
cohort) reported that cumulative glyphosate exposure was associated with elevated metabolic 
syndrome risk, illustrating the value of detailed exposure tracking [49]. Future studies might also 
consider experimental and mechanistic investigations, such as animal or cellular models of herbicide 
mixtures, to unravel how these chemicals might jointly disrupt metabolic regulation. For instance, do 
low-dose combinations of glyphosate, 2,4-D, and atrazine induce greater adipogenesis or insulin 
resistance in vivo than each compound alone? Questions like this remain unanswered, and 
toxicological research could elucidate potential synergistic or antagonistic interactions at the 
molecular level. Additionally, examining spatial patterns using finer geographic resolutions (e.g. 
census tract data, as in recent environmental determinant studies) could help identify localized “hot 
spots” of metabolic disease tied to herbicide use, thereby refining intervention targets. 

Conclusions 

In summary, this ecological analysis adds to our understanding of environmental influences on 
metabolic health. While it cannot prove causation, the alignment of our population-level findings 
with evidence from individual-based studies [5,15,49,50] strengthens the inference that chronic 
herbicide exposures may be contributing to chronic obesity. Our study offers a broad spatiotemporal 
perspective on this issue, suggesting that areas of heavy herbicide application are associated with 
obesity hotspots in the community. This big-picture view complements mechanistic and 
epidemiologic research at the micro level, and underscores the importance of considering real-world 
chemical mixtures in public health analyses. Ultimately, tackling complex problems like obesity 
requires integrating information across scales – from molecules and individuals up to communities 
and ecosystems. By highlighting an environmental dimension to obesity that operates at the county 
scale, our findings aim to stimulate more nuanced investigations and preventive strategies. Caution 
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is warranted in interpretation due to our study design, but the evidence presented here contributes 
to a growing consensus that environmental chemical exposures are an important piece of the 
metabolic health puzzle.  
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The following abbreviations are used in this manuscript: 
ACS  American Community Survey 
BKMR  Bayesian Kernel Machine Regression 
BRFSS  Behavioral Risk Factor Surveillance System 
CDC  Centers for Disease Control 
CHAMACOS a Spanish slang term referring to children or young people   
EIM  Effect Importance Measure 
FIPS  Federal Information Processing Standards 
NCHS  National Center for Health Statistics 
OMB  Office of Management and Budget 
PUR  Pesticide Use Reporting 
USGS  United States Geological Survey 

Appendix A 

Imputing Missing Data 

Most missing units were in the county-level pesticide application data with missingness at most 
20% (Dimenthenamid-P) and at minimum 0.06% (Glyphosate).  For demographic data, smoking 
rates and rate of high school graduation had 7.6% and 12.5% missing units, respectively.  All other 
demographic data, and the outcome variable (county level obesity rate) were complete. 

Before creating our imputation model, the dataset was visualized using heatmaps to check for 
structure or patterns within the missing units. All missing values were multiply imputed using a 
fully conditional chained equations approach implemented in R via the mice package. This method 
imputes each variable with its own imputation model and covariates, which are specified with a 
custom block diagonal prediction matrix.   
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In our imputation model, demographic variables were grouped and imputed together using 
predictive mean matching. Herbicide data were grouped together with the complete urban-rural 
indicator variable since rurality is strongly associated with application levels (Table S2) and imputed 
using a random forest method. We created 10 imputed datasets; each given 20 iterations to converge. 
All analysis was performed on and results pooled over ten imputed datasets using Rubin’s 
Rules[38,39].  

Appendix B 

Additional Figures and Tables 

 
Figure B1. Pearson correlations of all county level imputed herbicide exposures from NEI data. 
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Figure B2. Coefficient (Beta) estimates extracted from the final unreduced, adjusted, bootstrapped quantile g-
computation mixture models (multi-pollutant) for associations between county level obesity rates and a mixture 
of herbicides from adjusted standardized models.  Models are adjusted for percent smoking, percent uninsured, 
percent unemployed, education level, race, age (percent under 18 or over 64), study year,  and NCHS rurality 
designation. County is included as a grouping ID. . 
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Figure B3. EIM strengths of pairwise quantitative (direct) interactions for mixture components and Obesity rates 
from interaction forests including all environmental exposures and covariates.  There are no qualitive (cross-
over) interactions. 

Table B2. Herbicides applied, kilograms per (hectare)1 by county. 

Herbicide Min Q25 Median Q75 Max 
trifluralin 0 47.5 290.2 1063.1 118984.0 
pendimethalin 0 152.1 705.6 1940.6 127641.6 
paraquat 0 95.7 424.9 1418.0 87700.0 
metolachlor-S 0 264.1 2049.6 11095.6 193956.5 
metolachlor + metolachlor-S 0 365.8 2727.5 13709.0 202600.2 
metolachlor 0 86.4 608.8 2280.8 70608.4 
herbicide 2-4D 0 802.9 2884.3 8000.0 199793.4 
glyphosate 0.1 2015.7 15359.3 65956.5 594336.0 
glufosinate 0 29.8 277.9 1456.4 87516.1 
dimenthenamid-P 0 47.8 429.2 1807.8 49778.35 
dicamba 0 91.4 369.1 1318.4 112221.9 
chlorothanonil 0 21.8 127.5 661.7 176201.4 
atrazine 0 312.4 2300.6 15193.0 743835.8 
acetochlor 0 139.2 1335.5 9354.0 153269.7 

1Exposures by year from Epest county level estimates 2013-2018. Pooled over 10 imputed datasets. 
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Table B3. Mixture effects of spatially distributed herbicides on Obesity rates by county from crude and adjusted 
quantile g-computation mixture models, stratified by NCHS Urban-Rural designation. Crude models are 
mixture and FIPS only (included as fixed effect in crude and adjusted models). Estimated Psi (𝜓) values represent 
increase in obesity per quantile increase in mixture exposure. 

NCHS 
Designation 

Model Coefficient Estimate 95% CI p-value 

Large Central 
Metro 

Crude intercept 25.4 24.4, 26.5 <0.0001 
Psi (𝜓) 0.57 -0.14, 1.3 0.11 

Adjusted intercept 25.8 24.4, 27.3 <0.0001 
Psi (𝜓) 0.77 0.42, 1.12 <0.0001 

Large Fringe 
Metro 

Crude intercept 27.8 27.4, 28.2 <0.0001 
Psi (𝜓) 1.23 0.96, 1.50 <0.0001 

Adjusted intercept 27.8 27.2, 28.4 <0.0001 
Psi (𝜓) 0.59 0.4, 0.77 <0.0001 

Medium 
Metro 

Crude intercept 29.5 29.1, 29.9 <0.0001 
Psi (𝜓) 0.71 0.47, 0.95 <0.0001 

Adjusted intercept 28.8 28.3, 29.4 <0.0001 
Psi (𝜓) 0.73 0.55, 0.9 <0.0001 

Small Metro 
Crude intercept 29.5 29.1, 29.9 <0.0001 

Psi (𝜓) 0.92 0.67, 1.2 <0.0001 
Adjusted intercept 29.5 28.9, 30.1 <0.0001 

Psi (𝜓) 0.70 0.50, 0.90 <0.0001 

Micropolitan 
Crude intercept 29.4 29.1, 29.7 <0.0001 

Psi (𝜓) 1.38 1.2, 1.6 <0.0001 
Adjusted intercept 30.0 29.5, 30.4 <0.0001 

Psi (𝜓) 0.88 0.72, 1.04 <0.0001 

Noncore 
Crude intercept 30.6 30.35, 30.8 <0.0001 

Psi (𝜓) 0.65 0.5,  0.8 <0.0001 
Adjusted intercept 30.4 30.1, 30.7 <0.0001 

Psi (𝜓) 0.47 0.35,  0.59 <0.0001 

Table 4. Rurality, obesity rates and annual herbicide application per hectare for top 14 herbicides by NCHS 
Urban-Rural designation (2013 standard).  Highest applications across rural-urban sectors are shown in 
boldface dark red, and second highest in lighter red. 

Feature 

                                   1NCHS Urban-Rural 
Designation 

Large 
Central 
Metro 

Large 
Fringe 
Metro 

Medium 
Metro 

Small 
Metro Micropolitan Noncore 

Rurality (%) 2.4 40.3 40.5 46.5 52.3 79.1 
Obesity rate (%) 26.2 29.5 30.5 30.8 31.3 31.5 

                           Median Herbicide Application (kg/hectare) 
acetochlor 143 580 440 1290 1374 959 
atrazine 321 1617 1241 2611 2734 1858 
chlorothanonil 170 168 184 172 134 95 
dicamba 53 201 267 411 428 444 
dimenthenamid-P 61 134 113 293 356 309 
glufosinate 36 154 135 286 301 220 
glyphosate 2686 8449 7538 20220 18851 16838 
herbicide 2-4D 656 1858 2338 3073 3404 3316 
metolachlor 73 351 336 552 662 480 
metolachlor+metolachlor-
S 494 1808 1554 2800 3590 2411 
metolachlor-S 421 1352 1139 2251 2581 1769 
paraquat 91 310 376 509 456 412 
pendimethalin 136 441 587 902 856 728 
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trifluralin 53 102 96 221 277 292 
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