
Article Not peer-reviewed version

Development and Evaluation of Multi-

Robot Motion Planning Graph Algorithm

Fatma A.S. Alwafi , Xu Xu , Reza Saatchi * , Lyuba Alboul

Posted Date: 16 April 2025

doi: 10.20944/preprints202504.1297.v1

Keywords: multi-robot path planning algorithm; robotic graph algorithms; robotic path finding; robotic

collision avoidance; graph theory

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1917433
https://sciprofiles.com/profile/364732
https://sciprofiles.com/profile/326062

Article

Development and Evaluation of Multi-Robot Motion
Planning Graph Algorithm
Fatma A. S. Alwafi 1, Xu Xu 2, Reza Saatchi 1,* and Lyuba Alboul 3

1 School of Engineering and Built Environment, Sheffield Hallam University, Howard Street, Sheffield, S1
1WB

2 School of Computer Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN
3 Dr Lyuba Alboul (she contributed to this work but sadly died prior to the preparation of this article).
* Correspondence: r.saatchi@shu.ac.uk

Abstract: A new multi-robot path planning algorithm (MRPPA) for 2D static environments is
developed and evaluated. It combines a roadmap method, utilising the visibility graph (VG), with
the algebraic connectivity (second smallest eigenvalue (λ2)) of the graph’s Laplacian and Dijkstra's
algorithm. The paths depend on the planning order, i.e., they are in sequence path-by-path, based on
the measured values of algebraic connectivity of the graph’s Laplacian and the determined weights
functions. Algebraic connectivity maintains robust communication between the robots during their
movements while avoiding collision. The algorithm efficiently balanced connectivity maintenance
and path length minimisation thus improving the performance of path finding. It produced solutions
with optimal paths, i.e., the shortest and safest route. The devised MRPPA significantly improved
path length efficiency across different configurations. The results demonstrated a highly efficient and
robust solution for multi-robot systems requiring both optimal path planning and reliable
connectivity, making it well-suited in scenarios where communication between robots is necessary.
Simulation results demonstrated the performance of the proposed algorithm in balancing the path
optimality and network connectivity across multiple static environments with varying complexities.
The algorithm is suitable for identifying optimal and complete collision-free paths. The results
illustrated the algorithm's effectiveness, computational efficiency, and adaptability.

Keywords: multi-robot path planning algorithm; robotic graph algorithms; robotic path finding;
robotic collision avoidance; graph theory

1. Introduction

Motion planning is commonly encountered in environments where several robots operate
simultaneously and with multiple obstacles. Motion planning collision-free paths is an important
field of robotics, enabling coordinated and efficient operations in various real-world applications [1].
It is also widely used in industrial automation and search and rescue operations such as exploration,
object transport, and target tracking [2,3]. A key challenge in motion planning problems is
determining an efficient path from an initial location of each robot to the required destination while
maintaining connectivity by balancing path optimality and computational efficiency [3,4]. Motion
planning is a requirement for ensuring safe and efficient movement of the robots to complete their
allotted tasks [5]. Motion planning considers the obstacles in the operational environment and the
movements of robots in the environment. Several approaches exist for robots’ navigation, however
path planning for multiple robots introduces several challenges, e.g., avoidance of collision and
maintaining communication [6,7]. The existing methods, such as potential fields, cell decomposition,
and roadmap techniques often do not address these challenges simultaneously. The choice of motion
planning depends on the environment and the capabilities of robots. Graph models are more
appropriate for robot path and motion planning problems as they provide an intuitive,

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1297.v1
http://creativecommons.org/licenses/by/4.0/

computationally effective approach to map and navigate the environment. The environment is a
configuration space where robots and obstacles are located [8,9].

Graph models are foundational in multi-robot motion planning where the vertices represent
specific locations or points of interest in the operational environment and the edges represent the
paths or connections between these locations. Thes graph structure allows the planners to use
algorithms to determine the shortest or most efficient route between feasible points for the robots to
travel [8,9]. Different roadmaps were suggested to achieve this operation, e.g., visibility graphs (VGs)
and Voronoi diagrams (VD) [10]. A more popular method used in motion planning problems
diagram comprises of Voronoi cells, each associated with a specific site. The edges are equidistant
from two or more sites, forming cell boundaries. The cells are entirely convex polygons in 2D and
partition space, with no gaps. Voronoi edges are not necessarily straight paths but represent
boundaries of the regions based on proximity. Also, VD paths are as far away as possible from the
obstacles [10–13]. Although VD generates long paths that are far from the obstacles (this makes it
relatively safe, i.e., collision avoidance due to an increased distance between obstacles and robots, the
paths are not optimal [10–12]. VG is also a popular method for robot path planning in environments
with obstacles. It comprises of vertices and edges representing direct lines of sight between the points.
The nodes typically include the obstacles’ vertices, start and end points of the robots’ paths. The edges
are straight lines connecting visible nodes, with associated weights often representing the Euclidean
distances. An advantage of using a VG for motion planning is its well-understood and
straightforward method that produces optimal paths in a two or three-dimensional workspace [9]. It
is also computationally effective and guarantees an optimal path when one exist [10,11]. In contrast
to the Voronoi diagram, VG guarantees an optimal path; therefore, this study focused on the VG in
2D environments [10–12]. This work proposes and evaluates a hybrid approach to solving the multi-
robot motion planning problem. It combines VG for path planning, the Dijkstra’s algorithm for
optimal path finding, and algebraic connectivity to address path optimisation and maintaining robust
communication. The approach is highly suitable for static 2D environments, as the layout is
predefined, and the robots need to coordinate their navigation to avoid collisions and stay connected.
The traditional path-planning methods often focus on optimising path lengths but neglect the
significance of maintaining communication that is critical for cooperative missions.

The Dijkstra’s and A* algorithms were widely used to find the shortest path, but they differ in
how they approach the problem and their efficiency in various scenarios [14,15]. In a weighted graph,
the A* algorithm aims to find the shortest path between a starting node and a target node with
heuristics, especially in environments where a goal is defined. The choice of the heuristic function is
crucial. It must be admissible, meaning it never overestimates the actual cost to reach the goal,
ensuring that A* finds an optimal path. However, its data storage requirement can be high, as it stores
details of all generated nodes, which can be a limitation for large-scale problems. The heuristic
method uses assumptions to minimise the complexity of pathfinding. This is a limitation as it requires
multiple variables and coefficients which the algorithm designer must select. Also, a well-defined
manner for determining these variables has not been previously reported. As a result, the heuristic
methods do not provide general solutions. In other cases, the variables of a heuristic algorithm might
need modification [16]. The A* search algorithm was not considered in this study because when it is
combined with the VG method, the resultant path might not be optimal. It is challenging to compute
the heuristic of A*, where the heuristic value is typically a computation of what the straight-line
distance to the target would be, if there were no obstacles. Therefore, there is not a method to measure
the cost of the straight lines that connects vertices to the goals in an environment where the lines pass
through the obstacles. Also, if the heuristic cost is not acceptable, i.e., higher than the actual cost, the
identified path may not be optimal regarding the path length [10,11,13]. Therefore, the VG and the
Dijkstra’s algorithm are chosen for path planning in this study. Accordingly, a multi-robot motion
planning problem becomes the problem of finding the optimal (i.e., the safest and shortest) paths.
Furthermore, the VG method can help the robots in the system to move to the desired goal (g) location
while avoiding collisions [10]. To integrate algebraic connectivity into this method for multi-robot

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

motion planning, cooperation among robots is optimised by considering the graph’s connectivity that
represents their paths. The algebraic connectivity is the second-smallest eigenvalue (λ2) of the
Laplacian matrix of a graph that reflects the extent of a graph’s connectivity. A large value for λ2
implies a more robust and a well-connected graph that benefits coordination in multi-robot systems
[9].

In this study, the operating environment was a 2D space with polygonal obstacles
accommodating multiple robots, each with a start location and a goal position. The aim was to find
collision-free paths for the robots as they moved to their respective goals while maintaining a high
level of connectivity. This goal was achieved by considering the algebraic connectivity of each robot’s
communication graph. The paths in the vector environment model can be represented by the VG [5,8]
which has been effective in many applications because of its simplicity, visualisation, and
completeness [8]. VG used for multi-robot path motion planning is described as an undirected
weighted graph 𝐺ሺ𝑉,𝐸,𝑊ாሻ,where V is the set of vertices representing the robots configurations, the
starting and the endpoints of the robot’s movement, 𝐸 ⊂ 𝑉 × 𝑉, where 𝑉 × 𝑉 = {൫𝑣௜ , 𝑣௝൯,𝑣௜ , 𝑣௝ ∈ 𝑉} is
a set of edges representing the paths between the vertices. In the expression 𝐸 ⊂ 𝑉 × 𝑉, the symbol
× denotes the Cartesian product of the set 𝑉 with itself. The Cartesian product 𝑉×𝑉 is defined as the
set of all ordered pairs (𝑣௜ , 𝑣௝) where both 𝑣௜ and 𝑣௝ are elements of 𝑉. Formally, this is expressed as: 𝑉 × 𝑉 = {൫𝑣௜ , 𝑣௝൯, 𝑣௜ , 𝑣௝ ∈ 𝑉. In graph theory, this indicates that 𝐸, the set of edges, is a subset of all
possible ordered pairs of vertices from V. Each edge (𝑣௜ , 𝑣௝) in E represents a connection from the
vertex 𝑣௜ to vertex 𝑣௝. This framework is fundamental in defining the structure of directed graphs,
where the direction of the edge is significant. 𝑊ா is a function that assigns the weights (i.e., the path
length) to each edge in E. Depending on the context, these weights can represent various attributes,
such as distances. The edges denote the physical distance between two points, essential in
applications like GPS navigation and logistics. The weights may represent the cost or resource
requirements associated with traversing an edge, aiding in optimizing routes to minimize cost.
Capacities indicate the maximum flow between the nodes, which is crucial in network design and
traffic management. This notation is valuable in problems involving weighted graphs, like finding
the shortest path [6,8,17,18]. Edges join all pairs of mutually visible nodes and the edges of the
obstacles [18]. Edges exist between two vertices when there is a direct line of sight between them,
meaning that the line connecting the vertices does not intersect any obstacle. VG provides a
representation of the environment that helps identify robot obstacle-free paths [19]. The weights of
an edge represent the Euclidean distances between vertices [20]. Hence, based on the problem’s
requirements, it is essential that the VG covers connectivity effectively to avoid a collision and
calculates the best path (i.e., the shortest and safest) for the robots [21,22]. Connectivity is critical for
a multi-robot team to coordinate and execute complex missions efficiently [9,23]. Algebraic
connectivity ensures that the multi-robot system remains well-connected during motions, facilitating
communication and coordination. The Dijkstra’s algorithm finds each robot’s shortest path while
respecting the connectivity constraints. This optimisation balances between minimising the path
lengths with maintaining robust communication among robots [9,23].

This study's contributions include a novel integration of the VG and algebraic connectivity, a
communication-path optimisation strategy using Dijkstra’s algorithm, and an evaluation of the
proposed methods in static 2D environments. The contributions also include a new path adjustment
method based on algebraic connectivity for maintaining strong communication while optimising
path lengths (i.e., an optimisation framework that balances path length and network robustness),
which addresses the limitations of previous approaches in connectivity maintenance and path
efficiency. Combining VG with algebraic connectivity enhances multi-robot systems by ensuring
robust communication and an efficient path planning throughout the mission. Our method
simultaneously optimised path length and communication robustness. This made it more promising
where communication between robots is critical, especially in cooperative tasks. Connectivity
indicates a more resilient network capable of withstanding individual robot failures without losing
overall connectivity. Therefore, enhancing algebraic connectivity strengthens the communication

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

network, ensuring the robots remain connected during operations. In the following sections, the
related theory is explained, the study’s methodology is described, and the results are discussed.

2. Related Theory

In this section the theoretical concepts related to the study are explained.

2.1. Overview of Multirobot Path Planning Algorithms

Considering a multi-robot environment which has a limited finite communication range (R) and
is modelled as an undirected weighted graph 𝐺 = ሺ𝑉,𝐸,𝑊ாሻ, the following are defined:

• 𝑉 = {1, . . ,𝑛} is the set of vertices representing the n robots,
• 𝐸 ⊆ {𝑉 × 𝑉 } is the set of edges representing paths between vertices, where 𝑒௜௝ , 𝑖 ≠ 𝑗, exists

between vertices, if robot 𝑛 interacts with robot m; this means two robots can communicate only
if they are within the communication distance of each other, also the presence of the edge 𝑒௜௝ refers to the presence of the edge 𝑒௝௜. Therefore 𝑒௜௝=𝑒௝௜, signifies that the edge is mutual and
directionless. This characteristic is fundamental to undirected graphs, where edges do not have
a specific direction.

• 𝑊ா is function that assigns the weight (length path) to each edge in E. 𝑊ா = {𝑤௜௝ | (𝑖, 𝑗) ∈ 𝑉 × 𝑉} is a set of weights so that 𝑤௜௝ = 0, if (𝑖, 𝑗) ∉ 𝐸 and 𝑤௜௝ > 0 otherwise.

If we consider a team of n robots, the set of neighbors of the ith robot can be defined as 𝑛௜ = { 𝑗 ∈ 𝑉 , 𝑗 ≠ 𝑖 |𝑒௜,௝ ∈ 𝐸}, all robots that can communicate with it. Hence, each robot is assumed to
be able to interchange data with its neighbors [9][23][24]. A method to represent such an undirected
weighted graph is using the Laplacian graph and its algebraic connectivity as an indicator of the
system’s connectivity. The algebraic connectivity is defined as the second smallest eigenvalue (𝜆ଶ(𝐿)) of the graph Laplacian. Let the graph Laplacian 𝐿 ∈ 𝑅௡×௡ be the weighted matrix which
combines the adjacency (A) and the degree matrix (D). Here 𝑤௜௝ ∈ 𝑅௡×௡ is the weight function,
which can be seen as a function of the distance between robots i and j. 𝜆ଶ is called the algebraic
connectivity value of the system. The value of the algebraic connectivity differs from zero (𝜆ଶ= 0) if
the graph has disconnected components, i.e., no paths among vertices or two disconnected
components [25][26]. If 𝜆ଶ is very small, it refers to the graph being nearly disconnected. Non-zero
connectivity refers to a path among every pair of vertices (robots in the system) in the graph. A higher
algebraic connectivity signifies a more robust and well-connected graph with many edges, i.e., the
value of 𝜆ଶ ranges between 0 and the number of vertices (N). In addition, connectivity refers to the
number of vertices in the graph, if the graph is completely connected. Thus the maximum value
of 𝜆ଶ = 𝑁, and it is obtained when the entries (𝑖, 𝑗) of the adjacency matrix are all equal to 1, that
means all possible edges are present in it [9][23][24].

2.2. Algebraic Connectivity for Communication of Multi-Robot Systems

The second smallest eigenvalue (𝜆ଶ) is indicated as a constraint to maintain communication
during the motion. It ensures the robots remain well-connected for communication or coordination
during their tasks. This is critical in scenarios where the robots need to share information or
collaborate to perform tasks. The term 𝜆ଶ is a function of the whole system’s state. It is an important
parameter that affects the performance and robust properties of dynamical systems working over an
information network [24]. Algebraic connectivity maintains connectivity and enables them to execute
tasks while maintaining connectivity within the system. Connectivity is managed by strategically
adding edges that optimise the network's structure to maintain robust communication within the
system. This involves measuring the second smallest eigenvalue of the Laplacian matrix, known as
the algebraic connectivity, and iteratively adjusting path calculations to ensure 𝜆ଶ remains high. A
higher algebraic connectivity signifies a more resilient network capable of withstanding individual
node failures without losing overall connectivity. By focusing on this metric, the system enhances
communication robustness while minimising path lengths [24–26]. Hence, this enables the robots to

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

obtain complete information about the surroundings of the workspace environment to avoid collision
and to find the best safe paths. The weights of the edges control the motion time of robots, where
edges’ weights are functions of the inter-robot distances. Consequently, these weights can directly
influence the time taken for a robot to move along a particular path. In robotics, motion time refers
to the time for a robot to traverse from one location to another within the network. For example, edge
weights are determined by inter-robot distances; a greater distance (and thus a higher edge weight)
would typically correspond to a longer motion time for robots. This relationship is crucial in
optimising robots’ trajectories to ensure efficient movement and coordination within the system, and
it is essential for effective motion planning and coordination in multi-robot systems [9,23].

In a workspace environment, we have assumed that the obstacles were convex, static and that
the distance between any two obstacles was greater than the size of robots. We considered two types
of collisions: (i) collision between an obstacle and a robot and (ii) inter-robot collisions (i.e., collision
between two robots). Each robot could determine the presence of an obstacle and measure its relative
location and the distance from its boundary within the communication range. Therefore, the aim was
to solve the problem of a team of multi-robots, which began from the first configuration where the
team was connected (𝜆ଶ > 0), maintaining connectivity whilst being controlled to achieve a desirable
objective to avoid collision until reaching the target configuration. A collision avoidance mechanism
was executed that prevented robots from colliding with each other. Their communication was
defined based on the weights of the edges (which determined the quality of the communication links
between the robots), and when 𝜆ଶ was non-zero, whilst every robot tracked its paths to reach its goal
location [9,23,24]. In addition, during the path planning, the weights (𝑤௜) of the vertices changed and
became equal to the moments at which the robot (𝑅) passed through these vertices [8]. Therefore, 𝑤௝ = ቊ𝑤௜ + 𝑤௜௝ , if (𝑤௜ + 𝑤௜௝) < 𝑤௝ 𝑤௝ , if (𝑤௜ + 𝑤௜௝) ≥ 𝑤௝ (1)

where 𝑤௜ is the vertex weight, and 𝑤௜௝ = 𝑒௜௝ is the edge weight (i.e., the distance between the vertex 𝑣௜ and vertex 𝑣௝).
2.3. Collision Avoidance

To provide collision avoidance, the weights of the edges can be modified during path planning,
either by path correction, where a robot is not allowed to move on the edge that is occupied by
another robot, or through controlling the robot’s motion time on some edges by controlling the
distances between the vertices to free up the paths for other robots, the paths of which are planned
earlier [8]. This means the increased time of the robots to traverse the graph edge from vertex 𝑣௝. So,
we have two principal conditions that need consideration for path correction and control robot
motion time to avoid a collision. First, two robots cannot cross paths simultaneously on the same
vertex of a graph. Thus, if this happens, to prevent collisions, let 𝑇ோ೙ be the arrival time (i.e., the time
when robot passes through the vertex 𝑣௜ , and 𝑅௡ be nth robots, (n=1,2,…,p and p represents the
number of robots). 𝑇ோ೙ is expressed as 𝑇ோ೙ = 𝑤௜ + 𝑤௜௝ (2)

In the given context, 𝑇ோ೙ represents the arrival time of robot 𝑅௡ at vertex 𝑣௜ . 𝑤௜ denotes the
time at which robot 𝑅௡ departs from vertex 𝑣௜ 𝑤௜௝ represents the travel time required for robot 𝑅௡ to
move from vertex 𝑣௜ to vertex 𝑣௝ . Therefore, the equation suggests that the arrival time 𝑇ோ೙ at vertex 𝑣௝ is the sum of the departure time from vertex 𝑣௜ and the travel time between vertices 𝑣௜ and 𝑣௝ . This formulation is commonly used in multi-robot path planning and scheduling to ensure
coordinated movements and to avoid collision.

We will assume that 𝜖 > 0 is a minimum value of safe distance to ensure collision-free motions.
Then 𝑤௜௝ = 𝑤௜௝ + 𝜖, must provide a safe passage for the robots when crossing the crossroads through
increased weight edge (distance) on the graph from the vertex (𝑣௜) to vertex (𝑣௝) to increase the
motion time of the robot on a graph edge by 𝜖 time units that correspond to its motion time change.
By other means, ϵ is a small increment; the unit of which is typically meters, or the relevant unit of
distance measurement used within the system. By incorporating 𝜖 into the edge weights of the graph,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

the weights are iteratively adjusted to avoid collision between the robots by incrementing ϵ to obtain
optimal weights that improve its performance on the given task. This adjustment effectively increases
the perceived distance between vertices 𝑣௜ and 𝑣௝, discouraging robots from occupying the same
intersection simultaneously and thereby reducing the risk of collisions. Therefore 𝜖 is a safety value
from which two robots will not collide, the weight ൫𝑤௝൯ of vertex 𝑣௝ is calculated according to
Equation 1. Second, it is not permissible for any two robots to move together on the same edge in
opposite directions. Therefore, if any two robots are moving in opposite directions on the graph edge
(straight paths) at the same time, then (𝑤௜ > 𝑇ோ೙೔) ^ [(𝑤௜ + 𝑤௜௝) > 𝑇ோ೙೔ೕ], then 𝑇ோ೘ > 𝑇ோ೙ (3)

Given mth robot (𝑅௠) and nth robot (𝑅௡), (𝑤௜ > 𝑇ோ೙೔) ^ [(𝑤௜ + 𝑤௜௝) > 𝑇ோ೙೔ೕ] part in Equation
3 implies that two conditions need to be satisfied simultaneously (the symbol ^ denotes the “AND"
operation). These conditions compare weights 𝑤௜ ,𝑤௜௝ , and the arrival times of 𝑇ோ೙೔ and 𝑇ோ೙೔ೕ . The 𝑇ோ೘> 𝑇ோ೙ part in Equation 3 implies that the time for 𝑅௠, i.e., 𝑇ோ೘ must be greater than the time for 𝑅௡, i.e., 𝑇ோ೙, because of the previous conditions. No collision occurs as 𝑅௡ passes through the edge
before 𝑅௠, whose path is being planned and drives onto the edge. Hence, in this case, the edge
weight does not require changing. Then, the vertex weight 𝑤௝ is calculated as Equation 1. 𝑇ோ೙
depends on the distance (𝑑௜௝ = 𝑤௜௝) between the edges of the graph. If 𝑇ோ೘ > 𝑇ோ೙ , this means the
distance travelled by 𝑅௡ is less than the distance travelled by 𝑅௠, hence the arrival time of 𝑅௡is
greater than the arrival time of 𝑅௠ [8]. On the other hand, if 𝑇ோ೘ < 𝑇ோ೙^൤𝑇ோ೘ ≤ ௪೔൫்ೃ೙ି்ೃ೘൯ ି ௪೔்ೃ೘×௪೔ೕ்ೃ೙ି்ೃ೘ି௪೔ೕ ≤ 𝑇ோ೙൨ (4)

then, a collision occurs because 𝑅௡, whose path is being planned follows 𝑅௠ on the edge and collides
with it due to the distance travelled by it being too short. To avoid a collision, it is essential to modify
the edge weight of the current robot (i.e., reduce the movement of the robot, whose path is being
calculated). This means increasing its arrival time by increasing distance in this edge as 𝑤௜௝ = ൫௪೔ି ்ೃ೙ିఢ൯(்ೃ೙ି ்ೃ೘)்ೃ೙ ି ்ೃ೘ ି ఢ (5)

Then, the vertex weight 𝑤௝ is defined as Equation 1. In addition, if (𝑤௜ < 𝑇ோ೙೔) ^ [(𝑤௜ + 𝑤௜௝) < 𝑇ோ೙೔ೕ], then 𝑇ோ೙ > 𝑇ோ೘ (6)
This occurs when two robots move in opposite directions, and 𝑅௠ whose path is being planned

crosses through the edge before 𝑅௡, no collision will occur; thus, the weight of edge does not need
to change. The weight of the next vertex 𝑤௝ is calculated as Equation 1. In contrast, if 𝑇ோ೙ < 𝑇ோ೘ ^ ൤𝑇ோ೙ ≤ ௪೔൫்ೃ೘ି ்ೃ೙൯ ି ்ೃ೙× ௪೔ೕ்ೃ೘ ି ்ೃ೙ ି ௪೔ೕ ≤ 𝑇ோ೘൨ (7)

A collision is possible when the robot 𝑅௡ follows the robot 𝑅௠, which its path is being planned,
and collides with it on the edge [8]. To avoid a collision, it is essential to modify the edge weight of
the current robot (i.e., changing the arrival time through increasing distance) according to Equation
5, and then the vertex weight (𝑤௝) is defined as Equation 1. Also, if (𝑤௜ < 𝑇ோ௡೔) ^ [(𝑤௜ + 𝑤௜௝) > 𝑇ோ௡௜ೕ], (𝑖 = 1, 2, … ,𝑛), then 𝑇ோ೙ < 𝑇ோ೘ (8)

Then the collision is possible when 𝑅௡ follows and collides with 𝑅௠, which its path is being
planned before the crossroads [8]. To avoid a collision, the arrival time of the current robot must be
increased. So, the edge weight must be changed based on Equation 5, and then the vertex weight (𝑤௝)
is calculated as Equation 1.

3. Materials and Methods

In this section the procedures followed to obtain the results are described.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

3.1. Operation of Mult-Robot Path Planning Algorithm (MRPPA)

To address the motion planning problem for a multi-robot system and to find a collision-free
optimal path, the algorithm based on the VG method is proposed. The algorithm consists of the main
tasks (i)-(vi):

i. Establish a free workspace map.
ii. The algorithm defines each robot’s starting position (𝑠௜) and goal positions (𝑔௜) and the number

and locations of obstacles.
iii. All obstacles in the map are modelled as polygons to facilitate efficient and accurate pathfinding.

A polygon also allows creation of visibility graphs where the vertices represent the obstacle
corners, and the edges denote direct lines of sight between them. This framework is essential for
determining the shortest collision-free paths. Polygonal obstacle modelling aids in expanding
the obstacles appropriately to account for the robot's size. This process ensures that path
planning algorithms consider the robot's physical footprint, preventing collisions. Also, robotic
systems can effectively navigate complex environments, ensuring accurate and efficient
movement, while avoiding collisions. The algorithm analyses the position of each obstacle’s
vertices. The robots’ starts and goals positions are known relative to the obstacles in the
surrounding environment. Each robot is considered a dynamic obstacle.

iv. Using the constructed free space and VG algorithm, the robots can navigate without colliding
with the obstacles.

v. The workspace environment is divided into two disconnected components of undirected
weighted graphs. Then, the best edges are chosen to add between these two graph components
to find the paths for each robot, based on the measured values of algebraic connectivity of graph
Laplacian, which controls the inter-robot connectivity when it is unequal to zero.

vi. When planning a path for a robot, its vertex weight is changed just as in the single-robot path
planning algorithm. The weights of the vertices of the graph are initialised with the maximum
possible value, i.e., infinity (∞), whilst the start time value initialises the start vertex (𝑠௜ = 𝑤଴= 𝑡଴).
According to the known edge weights, the Dijkstra’s algorithm is applied to find the shortest
path based on the cost corresponding to each edge (distance between vertices), where the
shortest path is the path with the minimum length. Therefore, it is required to find a vertex
sequence (series waypoints), which denotes the shortest path from the starting point to the goal
point. If the Dijkstra’s algorithm finds the shortest paths, the robot’s path can be changed based
on the distance, corresponding to the environment model correction. The MRPPA algorithm is
described as:

Inputs: Start positions (𝑆௜), goal positions (𝑔௜), polygonal obstacles (𝑂௜).
Outputs: Visibility graph (VG), Optimal paths from start (𝑆௜) to goal (𝑔௜).

i. Establish a free workspace map.
ii. Determine each robot’s start 𝑠௜ and goal 𝑔௜ positions and obstacles’ vertices numbers and

locations.
iii. Divide the workspace environment into two disconnected components of undirected weighted

graphs {𝐺ଵ,𝐺ଶ}.
iv. Select the best edges (𝑤௜௝, where i and j represents the edge between two vertices) to add between

these two components of the graph {𝐺ଵ,𝐺ଶ} based on the measured value of algebraic
connectivity of graph Laplacian (𝜆ଶ).

v. Create the visibility graph (VG).
vi. Find a vertex sequence (series waypoints) from the start (𝑠௜) to goal (𝑔௜) by using Dijkstra’s

algorithm, which denotes the shortest paths.
vii. End: paths is calculated 𝑊෢ = {𝑤௜ = 𝑤଴, ,𝑤௡, 𝑖 = 1, … . . ,𝑛}, where 𝑤଴ start point and 𝑤௡ =

goal point.

The operations of MPRR algorithm are also illustrated in Figure 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 1. The operation of the MRPP algorithm.

The key objective of the MRPP algorithm is to find optimal paths for all robots by minimising
the path length. It maintains λ2 of the communication graph at a high level to ensure the multi-robot
system remains connected during the motion and provides collision avoidance.

3.2. Procedure to Implement MRPPA

The MRPPA was implemented by following the steps:

i. Create VG for the environment, including all the start and goal positions of the robots. Each
robot can be represented as a vertex, and edges existing between the robots. The edges
(connections) between these vertices refer to the corresponding robots, are within a certain
communication range and can directly exchange information.

ii. Evaluate connectivity by calculating 𝜆ଶ and define the communication or interaction graph
between the robots. The Laplacian matrix L of this graph is constructed, and its eigenvalues are
determined (𝜆ଶ). Higher algebraic connectivity implies that the robots are well-connected,
meaning the communication graph is robust to disconnection for coordinated motion.

iii. Carry out an initial path planning by using the Dijkstra’s algorithm to find each robot’s shortest
path from start to finish.

3.3. Description of the Optimisation Process

During a motion planning process, the algorithm selects paths for the robots that minimise their
travel distance and ensures that each robot network’s algebraic connectivity is improved and
maintained [25]. The optimisation process involves calculating the paths and connectivity at each
step as outlined by the steps below.

i. If 𝜆ଶ is the small, indicating weaker network connectivity, the paths can be adjusted to improve
connectivity. Robots’ paths can be altered to keep them within the communication range of
others. This may involve adding edges to maximise or maintain a high level of algebraic
connectivity, thereby strengthening the network's resilience to disconnections. The objective of
adding edges is to increase robot proximity, increase 𝜆ଶ, improve connectivity and to ensure the
communication graph remains connected.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

ii. Run the Dijkstra’s algorithm on the visibility graph for each robot to find the shortest initial
paths.

iii. Repeat the above operations until optimal path lengths are obtained for all robots to reach their
targets while maintaining communication.

4. Results

The key aim of the optimisation is minimising the path length (the total distance travelled by the
robots) while maintaining a minimum level of connectivity in the communication graph. To illustrate
how the algorithm operated, a scenario comprising six obstacles was considered as shown in Figure
2. The robots are R1-R3 and associated goals are g1-g3.

Figure 2. Scenario of workspace, R1, R2 and R3 are robots, g1, g2 and g3 are corresponding goals and the polygons
are the obstacles.

The workspace scenario depicted in Figure 2 is represented as an undirected weighted graph in
Figure 3. In this figure, the vertices correspond to specific locations or points within the workspace,
and the edges represent the possible paths connecting these points. The weights assigned to each
edge indicate the cost or distance associated with traversing that path, facilitating the analysis and
optimization of movements within the workspace.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 3. Workspace represented as a graph. The weights assigned to each edge indicate the cost or distance
associated with traversing that path.

In this scenario, there are three robots and three goals. The workspace is divided into two
disconnected components of an undirected weighted graph using VG, such as in Figure 4.

Figure 4. Example of two disconnected components undirected weighted graph.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

The graph 𝐺 = ൫𝑉௜ ,𝐸௝൯ in Figure 3 consists of vertices 𝑉 = {𝑣ଵ, . . , 𝑣ଷ଴} marked from 𝑆௜=(𝑣ଵ =𝑅ଵ, 𝑣ଶ଼ = 𝑅ଶ , 𝑣ଷ = 𝑅ଷ) to (𝑔ଵ = 𝑣ଷ଴, 𝑔ଶ = 𝑣ଶ, 𝑔ଷ = 𝑣ଶଽ) and E = {𝑒ଵ, … , 𝑒଺ଽ}. There are six polygonal
obstacles (𝑂௜ , 1 ≤ 𝑖 ≤ 6). Each robot has an initial position (𝑠௜) and the goal position (𝑔௜). Here, there
are three goals for the three robots. The second smallest eigenvalue of the graph in Figure 2 has zero
value, i.e., (𝜆 ଶ = 0), which means the graph is disconnected. The robots (𝑅ଵ = 𝑣ଵ, 𝑅ଶ = 𝑣ଶ଼, 𝑅ଷ =𝑣ଷ) exist in the first component that contains vertices: ൛𝑣ଵ, 𝑣ଷ, 𝑣଻, 𝑣ଽ,, 𝑣ଵଵ, 𝑣ଵଷ, 𝑣ଵହ,, 𝑣ଵ଻, 𝑣ଵଽ, 𝑣ଶ଼,𝑣ଶଽൟ,
where vertex (𝑣ଶଽ = 𝑔ଷ,) is a goal for 𝑅ଷ. Subsequently, 𝑅ଷ can find a way to reach its target 𝑅ଷ →𝑣ସ → 𝑉଻ → 𝑣ଶଽ , but 𝑅ଵ and 𝑅ଶ do not have paths to reach their targets. The second component
contains
vertices: ൛𝑣ଶ, 𝑣ସ,𝑣ହ, 𝑣଺,, 𝑣଼, 𝑣ଵ଴, 𝑣ଵଶ,, 𝑣ଵସ, 𝑣ଵ଺,, 𝑣ଵ଼, 𝑣ଶ଴,, 𝑣ଶଵ, 𝑣ଶଶ,, 𝑣ଶଷ, 𝑣ଶସ,,𝑣ଶହ, 𝑣ଶ଺,, 𝑣ଶ଻,𝑣ଷ଴ൟ, vertices (𝑣ଷ଴ = 𝑔ଵ, 𝑣ଶ = 𝑔ଶ) are goals for 𝑅ଵ and 𝑅ଶ respectively. When an edge was added between the
vertices 𝑣଺ and 𝑣ଵସ , 𝜆 ଶ increased to 0.087, and this enabled R1=v1, to find a path to reach its target (𝑔ଵ = 𝑣ଷ଴). Whereas if two edges (𝑣଼,𝑣ଵ଴) were added and (𝑣଼,𝑣ଵ଻), 𝜆 ଶ increased to 0.181 which
allowed 𝑅ଷ (𝑅ଷୀ𝑣ଷ) to find the most suitable path to reach its target (𝑣ଶଽ = 𝑔ଷ). Furthermore, when
the three edges were together {(𝑣ଶ, 𝑣ଵ଴), (𝑣଼, 𝑣ଶ଴), (𝑣ଶ௢ ,𝑣ଶ଼)}, 𝜆 ଶ increased to 0.347, and R2 (𝑅ଶ = 𝑣ଶ଼)
found a path to reach its goal (𝑔ଶ = 𝑣ଶ). When all possible paths were added between the vertices of
the graph, the second smallest eigenvalue increased and a robust connectivity was created in the
graph, where 𝜆 ଶ = 6.380. The safe shortest paths are found using Dijkstra’s algorithm, as shown in
Figure 5. The shortest paths for three robots using Dijkstra’s algorithm is shown in Figure 6.

Figure 5. The shortest paths for three robots using Dijkstra’s algorithm. The numbers next to the links are the
weights. The blue circles are the vertices of the obstacles.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 6. The shortest paths of the three robots shown in Figure 5 determined using the Dijkstra’s algorithm.

The MRPP algorithm planed the path for each robot based on a specific sequence or priority i.e.,
the first path for 𝑅ଵ, the second path for 𝑅ଷ, and the third (last) path for 𝑅ଶ. There is an intersection
(crossroad) between the paths of 𝑅ଵ and 𝑅ଷ, and opposite directions on the graph edges (straight
roads) between the paths of 𝑅ଷ and 𝑅ଶ. However, no collision occurred as the algorithm has planned
a path for each robot sequentially (one by one). Hence, when planning the following path, it considers
all the paths that have already been scheduled to prevent collisions and keep 𝜆ଶ > 0. There is a
crossroad when 𝑅ଵ passes the edge (𝑣଺, 𝑣ଵସ) and 𝑅ଷ passes the edge (𝑣ଵ଴, 𝑣଼), but no collision occurs
as 𝑅ଵ passes before 𝑅ଷ. The arrival time (𝑇ோ೙ = 𝑤௜ + 𝑤௜௝) of 𝑅ଵwhen passed the vertex (𝑣଺) is: 𝑇ோభ =𝑤ଵ + 𝑤(ଵ,଺) = 2, and once passed the vertex (𝑣ଵସ): 𝑇ோభ = 𝑤଺ + 𝑤(଺,ଵସ) = 4. Whereas the arrival time of 𝑅ଷ once passed the vertex (𝑣ଵ଴) 𝑖𝑠: 𝑇ோయ = 𝑤ଷ + 𝑤(ଷ,ଵ଴) = 4, and when passed the vertex (𝑣଼) 𝑇ோయ =𝑤ଵ଴ + 𝑤(ଵ଴,଼) = 7. Consequently, 𝑇ோభ < 𝑇ோయ , which means that the arrival time of 𝑅ଵto the vertex 𝑣ଵସ
is shorter than the arrival time of 𝑅ଷ to the vertex 𝑣଼ , because the distance (edge weight) that 𝑅ଵ has
passed the vertex 𝑣଺ = 2 is less than the distance (edge weight) that 𝑅ଷ has passed the vertex (𝑣ଵ଴ = 4) thus when 𝑅ଵ arrives at the vertex (𝑣ଵସ = 4), 𝑅ଷ arrives at the vertex 𝑣ଵ଴ , for this reason,
no collision occurs, and a change of the edge weight is not necessary. If 𝑇ோభ > 𝑇ோయ, then a collision is
possible (i.e. if the arrival time of 𝑅ଵ on the vertex (𝑣଺ = 4), then the change of the edge weight is
necessary to avoid a collision. Also, there are opposite directions (straight paths) on the edge (𝑣଼, 𝑣ଵ଴)
between 𝑅ଷ and 𝑅ଶ. 𝑅ଷ passes the edge earlier than the 𝑅ଶ, where 𝑇ோయ = ൛൫𝑤ଵ଴ + 𝑤ଵ଴,଼൯ = (4 + 3) =7ൟ, and 𝑇ோమ = {(𝑤଼ + 𝑤଼,ଵ଴) = (9 + 3) = 12} . Thus, the arrival time of 𝑅ଷ once it passes the
edge (𝑣଼,𝑣ଵ଴) is shorter than the arrival time of 𝑅ଶ as the distance that 𝑅ଷ has passed to arrive at the
vertex(𝑣଼ = 7) is less than the distance that 𝑅ଶ has passed the vertex (𝑣଼) = 9. Thus, (𝑤଼ < 𝑇ோమ) ∧൫ 𝑤ଵ଴ + 𝑤(ଵ଴,଼) < 𝑇ோమ൯, then 𝑇ோమ > 𝑇ோయ. In addition, there is a crossroad on the vertex (𝑣଼), where 𝑇ோయ = 𝑤ଵ଴ + 𝑤ଵ଴,଼ = 7, and 𝑇ோమ = 𝑤ଶଵ + 𝑤ଶଵ,଼ = 9, hence 𝑇ோయ < 𝑇ோమ the arrival time of 𝑅ଷ to the vertex
(𝑣଼) before 𝑅ଶ. Accordingly, there is no need to change the edge weight since no collision occurs.
If 𝑇ோయ > 𝑇ோమ, then the collision happens, so the change of the edge weight is necessary to avoid a
collision. These are highlighted in Table 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Table 1. The calculated paths planned (path 1, path 2, path 3) for each robot in Figure 5.

Initial and endpoint Shortest Path Total distance

Robot 1 to goal 1 𝑅ଵ → 𝑉଺ → 𝑉ଵସ → 𝑉ଶହ → 𝑣ଵ଼ → 𝑣ଶସ → 𝑣ଷ଴ Pଵ=2+2+3+2+4+5=18 m

Robot 2 to goal 2 𝑅ଶ → 𝑉ଶଵ → 𝑉 → 𝑉ଵ଴ → 𝑣ଶ Pଶ=3+6+3+8=20 m

Robot 3 to goal 3 𝑅ଷ → 𝑣ଵ଴ → 𝑉 → 𝑉ଵ଻ → 𝑉ଵଷ → 𝑣ଶଽ Pଷ=4+3+5=2+1=15 m

To further illustrate the process, the workspace environment is changed to Figure 7.

Figure 7. A workspace environment containing three robots shown as red circles and three goals shown as green
circles.

To apply the MRPPA, the workspace is represented as an undirected weighted graph, then
divide it into two disconnected components of an undirected weighted graph using a VG such as
Figure 8.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 8. Two disconnected components undirected weighted graphs consisting of three robots marked as red
vertices and three goals marked as green vertices.

The graph 𝐺 = ൫𝑉௜ ,𝐸௝൯ in Figure 8 consists of vertices 𝑉 = {𝑣ଵ, . . , 𝑣ଷଶ} , where the vertices 𝑣ଵ, 𝑣ଷଵ, and 𝑣ଶସ represent initial robot positions 𝑆௜=(𝑅ଵ = 𝑣ଵ, 𝑅ଶ = 𝑣ଷଵ, 𝑅ଷ = 𝑣ଶସ) that marked with
red, while the vertices 𝑣ଵଽ, 𝑣ଶ଴,𝑎𝑛𝑑 𝑣ଵଵ represent goals positions൫ 𝑔ଵ = 𝑣ଵଽ,𝑔ଶ = 𝑣ଶ଴,𝑔ଷ, = 𝑣ଵଵ൯ that
shown as green, E = {𝑒ଵ, … , 𝑒଻଴}, and there are five polygonal obstacles (𝑂௜ , 1 ≤ 𝑖 ≤ 5). The second
smallest eigenvalue of the graph has zero value (𝜆 ଶ = 0) because the graph has two disconnected
components. 𝑅ଶ has a path to reach its target, whilst 𝑅ଵ and 𝑅ଷ have their targets in the second
components of undirected weighted. If an edge is added between the vertex 𝑣ଵ଴ and vertex 𝑣ଵହ , then 𝑅ଷ can find a path to reach its target 𝑔ଷ, and from this 𝜆 ଶ increases to 0.521. Also, if we add the
edges (𝑣ଵ, 𝑣଼) , (𝑣଼, 𝑣ଵ଻), and(𝑣ଵ଻,𝑣ଵଽ) . This enables 𝑅ଵ to find a path to reach its target 𝑔ଵ, and 𝜆 ଶ
increases to 1.275. Additionally, when adding all possible edges between the vertices of the graph,
we created robust connectivity in the graph, and 𝜆 ଶ increases to 2.855. The shortest paths are found
using the Dijkstra’s algorithm, as shown in Figures 9 and 10.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 9. The shortest paths for robot 1 highlighted in yellow, robot 2 highlighted in green, and robot 3
highlighted in red by using Dijkstra’s algorithm.

Figure 10. The shortest paths for three robots by using Dijkstra’s algorithm.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

The MRPPA planned the first path for R3, the second path for R1, and the third path for R2. No
collision occurred because the algorithm has controlled the arrival time of each robot by holding the
weight of the edge (distance) and keeping 𝜆ଶ>0.

Table 2. The calculated paths planned (path1, path2, path3) for each robot in Figure 5.

Robot and its goal Shortest Path Total distance

Robot 1 to goal 1 𝑅ଵ → 𝑉 → 𝑉ଵ଻ → 𝑉ଵଽ Pଵ=8+7+5=20 m

Robot 2 to goal 2 𝑅ଶ → 𝑉ଵଷ → 𝑉ହ → 𝑣ଶ଴ Pଶ=6+9+3=18 m

Robot 3 to goal 3 𝑅ଷ → 𝑣ଷ଴ → 𝑉ଵ଴ → 𝑉ଵଵ Pଷ=3+6+10=19 m

4.1. Simulation Procedure

This section introduces the simulation setup, parameters, and results of implementing the MRPP
algorithm. This algorithm leverages VG for obstacle avoidance, algebraic connectivity to maintain
communication cohesion, and Dijkstra’s algorithm for optimal pathfinding.

Simulation Environment: The path planning software simulations were conducted in a
MATLAB/Simulink environment version 2024 (The MathWorks, Inc. with the Robotics System
Toolbox) [27], leveraging custom VG generation and pathfinding scripts. All required inputs were
supplied to perform and complete the path planning process and follow a specific logical order. A
2D environment with static polygonal obstacles was devised, representing a workspace of
dimensions (18 × 12) units, where each unit represented one-meter square. The obstacles were defined
as geometric shapes such as triangles, rectangles, squares, zigzag lines, etc, and robots were modelled
as points.

Parameters: Three robots (R1, R2, R3) appearing as three red points were selected. Three goals (g1,
g2, g3) were represented by green points. The six randomly generated polygonal obstacles (𝑂௜ , 1 ≤ 𝑖 ≤6) of varying sizes were highlighted in blue with different labels. Each robot was initialised at random
start points and assigned unique goal positions. The algorithm’s effectiveness was evaluated in
different scenarios with varying obstacles and number of robots. The performance metrics included
path optimality and connectivity maintenance.

Motion Planning Approach: Each robot computed a visibility graph to represent possible paths
around obstacles, connecting vertices (obstacles’ vertices, and start and goal points) with edges
representing collision-free paths. Dijkstra’s algorithm was applied to find the shortest route to the
goal for each robot. Algebraic connectivity was constantly measured, ensuring all robots remained
within the communication range. Adjustments were made to the paths when the connectivity 𝜆ଶ = 0
or very small.

4.2. Results for the Simulation Scenarios

Scenario 1: Six obstacles, three robots marked red, three goals marked green are shown in
Figures 11 and 12.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 11. The workspace, R1, R2 and R3 are robots, g1, g2 and g3 are goals.

Figure 12. Workspace represented as a graph contains three robots represented as red vertices and three goals
as green vertices.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

In the first scenario, three robots were deployed highlighted with six obstacles density marked
as blue. VG was established, and each robot’s path was computed using Dijkstra’s algorithm. The
connectivity was maintained throughout the simulation. All robots successfully reached their goals
as illustrated in Figure 13.

Figure 13. Paths planned by MRPPA (red for robot 1, green for robot 2, and yellow for robot 3). Path for robot 1
= 1, 6, 14, 25, 18, 24,30 (distance = 18 m), Path 2 = 3, 10, 8, 17, 13, 29 (distance = 15 m), Path 3 = 28, 21, 8, 10, 2
(distance = 20 m).

The simulation results using MATLAB show that the robots reached their targets, the path of R1
is highlighted as yellow, the path of R2 is highlighted as green, and the path of R3 is highlighted as
red as shown in Figure 14.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 14. Simulation for scenario 1 illustrating robots reaching the goals points.

Scenario 2: Five obstacles, three robots highlighted as blue and three goals highlighted as green,
see Figures 15 and 16.

Figure 15. Scenario 2 workspace environment consisting of three robots highlighted in blue, and three goals
highlighted as green, which represented as graph in Figure 16.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 16. A workspace represented as a graph consisting of three robots represented as red vertices and three
goals as green vertices.

In scenario 2, three robots highlighted in blue, and three goals highlighted in green navigated
an environment with obstacles. A VG was generated for each robot. Dijkstra’s algorithm was used to
measure the distance for each robot. All robots reached their targets while maintaining connectivity,
as shown in Figure 17.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 17. Senario 2, paths planned by MRPPA highlighted as red, yellow, and green for each robot. Where Path
for robot 1 = 1, 8, 17, 19 highlighted as red (distance = 20 m). Path for robot 2 = 31, 13, 5, 20 highlighted as yellow
(distance = 19 m). Path for robot 3 = 24, 30, 10, 11 highlighted as green (distance = 18 m).

The simulation result (Figure 18) shows that each robot has reached its target without a collision.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Figure 18. Simulation results for scenario 2. The green dots are the goals for robots, and the red crosses are the
waypoints.

5. Discussion

The proposed multi-robot motion planning approach was evaluated through experiments using
different environments with randomly placed obstacles and different robot configurations. Robots
were assigned random start and goal locations, navigating through environments of varying
obstacles. For each configuration, performance metrics included path length and the total distance
that each robot travelled, i.e.,

• Computation of path: Calculating paths while maintain connectivity.
• Algebraic connectivity: A measure of communication robustness among robots.
• Success Rate: The robots reaching their targets without collisions or connectivity loss.

These metrics align with the previous studies such as [28], which emphasised path efficiency,
robustness, and connectivity in multi-robot systems. The proposed paths contained two main
components: a global planner and path optimisation. The global planner gathered information about
the surrounding environment, such as the robot’s positions, targets, and obstacles. Depending on the
path analysis, finding the path with minimum cost is necessary. When the optimal path is found with
prior knowledge of the environment and static obstacles, a collision-free optimal path was created
before the robots moved. One finding is that the proposed algorithm significantly improved the
generation of efficient paths due to connectivity robustness, and robots reached their goals reliably
without collisions.

In tests with three robots for connectivity maintenance, the MRPP effectively determined paths
by analysing all possible routes and selecting the most suitable one based on the algebraic
connectivity measure and the predefined weight evaluation function, indicating adaptability. The
algorithm planned a sequential path for each robot one by one (i.e., path by path), considering all
already planned paths to avoid collisions. The MRPP algorithm provided each robot's optimal (i.e.,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

short-distance and safe) paths. The lengths, and motion times of the paths were based on the planning
order. The choice of the correct sequence for the path planning of robots has a significant impact on
the performance of the robot team. In the first scenario of workspace, 𝑹𝟑 has a path to reach its target: (𝑹𝟑 → 𝒗𝟒 → 𝒗𝟕 → 𝒗𝟐𝟗), and the total distance is (20 m), see Figure 4. However, this path is not optimal
and (𝝀𝟐 = 0) meaning the graph is disconnected. Thus, for optimisation, the MRPPA re-calculated the
path and examined the two best edges (𝒗𝟖,𝒗𝟏𝟎) and (𝒗𝟖,𝒗𝟏𝟕) to add between the graph components
and measured algebraic connectivity. The algorithm found an optimal path for R3 instead of the first
path while maintaining 𝝀𝟐 of the communication graph at a high level (for R3, 𝑹𝟑 → 𝒗𝟑 → 𝒗𝟏𝟎 →𝒗𝟖 → 𝒗𝟏𝟕 → 𝒗𝟏𝟑 → 𝒗𝟐𝟗) . The total distance is (15 m), and (𝝀𝟐 increases to 0.181), see Figure 5.
Accordingly, the MRPPA chooses a path for each robot respectively to ensure that robots remain
connected while performing their tasks and avoid collision avoidance. Ensuring connectivity among
robots throughout their paths proved effective with algebraic connectivity. The system maintained
an average algebraic connectivity value of 6.380 in Figure 4, indicating robust and consistent
communication links due to recalculations that adaptively modified paths. This result is consistent
with an earlier study [29], who demonstrated that multi-robot systems incorporating recalculation
can effectively respond to real-time changes in their environment. This supports prior work by [30],
highlighting algebraic connectivity’s effectiveness in maintaining communication in multi-robot
networks and where connectivity is essential for coordinated robot actions [31].

The results demonstrated the visibility graph’s ability to avoid obstacles effectively while
ensuring direct paths. This aligns with an earlier finding that reported similar results when
comparing visibility-based methods with grid-based path planning in cluttered environments [32].
The VG method considers obstacles’ vertices in the map to be the vertices through which the robots
can reach their required positions. It links the visible vertices with each other, where the visible
vertices are vertices with the property that a straight line (edge, path) connecting them does not
intersect with any obstacles. Therefore, the calculated paths contain a set of waypoints (𝑾෢), with the
shortest length. These waypoints are determined like a series of consecutive points which begin from
the lowest number of the first point to the goal number; the waypoints are given by 𝑾෢ ={𝒘𝟎, ,𝒘𝒏}, where 𝒘𝟎 is the starting point, and 𝒘𝒏 is the goal point. Hence, waypoints are a set
of vertices of obstacles. For this reason, the paths have the least distances because they contain a set
of waypoints, which are a set of vertices found by using VG with a combination of Dijkstra’s
algorithm. These waypoints do not include the start points and the goal points, so they are always at
specific vertices of obstacles. Thus, they can produce the shortest paths in terms of the Euclidean
distance, the essential condition for a path to have a lower Euclidean distance from the starting point
to the goal point in C-space, where each waypoint is a vertex of an obstacle. In robotics, the
configuration space (often abbreviated as C-space) is a conceptual framework that represents all
possible positions and orientations of a robot within its environment.

The proposed algorithm provided an efficient and robust solution for multi-robot motion
planning. The work showcased notable benefits in path optimality and connectivity, providing
reliable routes. This makes it well-suited for environments where efficient path planning and
dependable connectivity are essential [33]. Consequently, this method is more effective for
applications that require continuous communication, such as collaborative robotics and autonomous
logistics [34]. The simulation results also indicated that the proposed approach is practical for multi-
robot motion planning in different environments. In comparison, the VG method with Dijkstra’s
algorithm generates pathfinding and provides efficient optimal paths in pathfinding applications.
This approach allows for the computation of the shortest paths that navigate around obstacles
effectively [35]. In addition, the connectivity constraints provided by algebraic connectivity enable a
more resilient, robust communication framework, and it serves as an indicator of a network's overall
connectedness, facilitating better synchronization and coordination among robots. This improvement
in connectivity is valuable for applications requiring continuous communication, such as coordinated
robotic systems in automated warehouses [36,37]. Our approach exhibited clear advantages in

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

optimal path efficiency and robust connectivity, potentially enabling faster, safer, and more efficient
operations in real-world applications [38].

6. Conclusions

This article presents a novel path-planning algorithm (MRPP) in a 2D static environment. Our
algorithm successfully balanced path length optimisation with the maintenance of communication
between robots. It provided efficient and coordinated navigation in environments with obstacles
while avoiding collision. Simulation results demonstrated the effectiveness of the proposed
algorithm, which efficiently navigated multiple robots in environments while ensuring robust
communication. Although MRPPA has generated promising results in different scenarios and
experiments, it can be computationally expensive when the environments are rich in obstacles.
Therefore, investigations can be undertaken to improve MRPPA’s performance. Future work could
also involve extending this approach to dynamic environments and a more significant number of
robots as well as enhancing computation speed by optimising the VG construction or implementing
parallel processing.

Author Contributions: Conceptualization, F.A.S.A., X.X., L.A., R.S.; methodology, F.A.S.A., X.X., L.A., R.S.;
software, F.A.S.A., X.X., L.A., RS.; validation, F.A.S.A., X.X., L.A., R.S. and Z.Z.; formal analysis, F.A.S.A., X.X.,
L.A., R.S.; investigation, F.A.S.A., X.X., R.S., L.A.; resources, F.A.S.A., X.X., R.S., L.A.; data curation F.A.S.A.,
X.X., R.S., L.A.; writing—original draft preparation F.A.S.A., X.X., R.S., L.A.; writing—review and editing,
F.A.S.A., X.X., R.S., L.A.; visualization, F.A.S.A., X.X., R.S., L.A. All authors have read and agreed to the
published version of the manuscript (please note the acknowledgement regarding Dr Lyuba Alboul).

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Acknowledgments: This work emerged from a PhD study (undertaken by F.A.S.A) with the main supervisor,
Dr Lyuba Alboul. However sadly Dr Alboul died before this article could be prepared. The authors acknowledge
Dr Alboul’s contribution in this study. F.A.S.A also would like to acknowledge the support provided by Sirt
University, Libya.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ma, H. Graph-Based Multi-Robot Path Finding and Planning. Current Robotic Reports 2022, 3, 77–84.
https://link.springer.com/article/10.1007/s43154-022-00083-8, Last accessed 12 April 2025

2. Chitikena, H.; Sanfilippo, F.; Ma, S. Robotics in Search and Rescue (SAR). Operations: An Ethical and
Design Perspective Framework for Response Phase. Appl. Sci. 2023, 13, 1800. https://doi.org/10.3390/
app13031800

3. Bui HD. A Survey of Multi-Robot Motion Planning. arXiv preprint arXiv:2310.08599. 2023, 1-10
https://arxiv.org/abs/2310.08599, last accessed 12 April 2025

4. Al-Kamil, S.J.; Szabolcsi, R. Optimizing Path Planning in Mobile Robot Systems Using Motion Capture
Technology. Results in Engineering 2024, 22, 1-9.

5. Solis, I.; Motes, J.; Sandström, R.; Amato, N.M. Representation-Optimal Multi-Robot Motion Planning
Using Conflict-Based Search. IEEE Robotics and Automation Letters 2021, 6(3), 4608-4615.

6. LaValle, S.M. Planning Algorithms. Cambridge University Press. 2009 (on-line publication date), On-line-
ISBN 9780511546877, DOI https://doi.org/10.1017/CBO9780511546877

7. Hvězda, B.J. Comparison of Path Planning Methods for a Multi-Robot Team. Czech Technical University
in Prague, 2017, https://dspace.cvut.cz/bitstream/handle/10467/69497/F3-DP-2017-Hvezda-Jakub-
Comparison_of_path_planning_methods_for_a_multi-robot_team.pdf. Last accessed 10 April 2024

8. Kolushev, F.A.; Bogdanov, A.A. Multi-Agent Optimal Path Planning for Mobile Robots in Environment
with Obstacles. In: Bjøner, D.; Broy, M.; Zamulin, A. (Eds.) Perspectives of System Informatics 1999. Lecture

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

Notes in Computer Science 1755. Springer, Berlin, Heidelberg, 2000, 503-510. https://doi.org/10.1007/3-540-
46562-6_45

9. Capelli, B.; Fouad, H.; Beltrame, G.; Sabattini, L. Decentralised Connectivity Maintenance With Time
Delays Using Control Barrier Functions. Proceedings of International Conference on Robotics and Automation
(ICRA) 2021, 1-7, https://arxiv.org/abs/2103.12614, last accessed 10 April 2025.

10. Omar, R.B. Path Planning For Unmanned Aerial Vehicles Using Visibility Line-Based Methods. Doctoral
Dissertation, University of Leicester, Department of Engineering, United Kingdom. 2012.
https://figshare.le.ac.uk/articles/thesis/Path_Planning_for_Unmanned_Aerial_Vehicles_Using_Visibility_
Line-Based_Methods/10107965, last accessed 10 April 2025.

11. Giesbrecht, J. Global Path Planning For Unmanned Ground Vehicles. Technical Memorandum DRDC Suffield
TM 2004-272 December, Defence R&D Canada – Suffield 2004, 1-59,
https://apps.dtic.mil/sti/tr/pdf/ADA436274.pdf, last accessed 10 April 2025.

12. Elbanhawi, M.; Simic, M.; Jazar, R. Autonomous Robots Path Planning: An Adaptive Roadmap Approach.
Applied Mechanics and Materials 2013, 373-375, 246-254.
https://doi.org/10.4028/www.scientific.net/amm.373-375.246. Last accessed 10 April 2025

13. Omar, N. Path Planning Algorithm For a Car-Like Robot Based on Cell Decomposition Method. Doctoral
Dissertation, Universiti Tun Hussein Onn Malaysia), 2013. https://cendekia.unisza.edu.my/neuaxis-
e/Record/uthm-4346, last accessed 10 April 2025.

14. Banik, S.; Banik, S.C.; Mahmud, S.S. Path Planning Approaches In Multi-Robot System: A Review.
Engineering Reports, 2025, 7:e13035, 1-20., https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.13035, last
accessed 10 April 2025

15. Milos, S. Roadmap Methods vs. Cell Decomposition In Robot Motion Planning. Proceedings of the 6th
WSEAS International Conference on Signal processing, Robotics and Automation. Athens, Greece: World
Scientific and Engineering Academy and Society (WSEAS), 2007.
https://www.researchgate.net/publication/262215647_Roadmap_methods_vs_cell_decomposition_in_rob
ot_motion_planning, last accessed 10 April 2025

16. Moldagalieva, A. ; Ortiz-Haro, J.; Hönig, W. db-CBS: Discontinuity-Bounded Conflict-Based Search For
Multi-Robot Kinodynamic Motion Planning 2024 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2024. https://arxiv.org/abs/2309.16445, last accessed 10 April 2025

17. Wooden, D.T. Graph-Based Path Planning For Mobile Robots, Doctoral Dissertation, School of Electrical
and Computer Engineering Georgia Institute of Technology December 2006,
http://mcs.csueastbay.edu/~grewe/CS3240/Mat/Graph/wooden_david_t_200611_phd.pdf, last accessed 10
April 2025

18. Kavraki, L.E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. Probabilistic Roadmaps For Path Planning in
High-Dimensional Configuration Spaces. IEEE Transactions on Robotics and Automation 1996, 12(4), 566–580.

19. Dijkstra, E.W. A Note On Two Problems In Connection With Graphs. Numerische Mathematik 1959, 1(1),
269–271.

20. Toan, T.Q.; Sorokin, A.A.; Trang, V.T.H. Using Modification Of Visibility-Graph In Solving The Problem
Of Finding Shortest Path For Robot. In 2017 International Siberian Conference on Control and Communications
(SIBCON), Conference Location: Astana, Kazakhstan, 2017, 1-6. DOI: 10.1109/SIBCON.2017.7998564

21. Saad, A.F.A. Social Graphs And Their Applications To Robotics. Doctoral Thesis, Sheffield Hallam
University (United Kingdom), 2022. https://shura.shu.ac.uk/31906/ last accessed 10 April 2025.

22. Elbanhawi, M.; Simic, M.; Jazar, R. Autonomous Robots Path Planning: An Adaptive Roadmap Approach.
Applied Mechanics and Materials 2013, 373-375, 246-254.

23. Capelli, B.; Fouad, H.; Beltrame, G.; Sabattini, L. Decentralized Connectivity Maintenance With Time
Delays Using Control Barrier Functions. Proceedings of International Conference on Robotics and Automation
(ICRA, Cornell University, USA, 2021, https://arxiv.org/abs/2103.12614, Last accessed 10 April 2025

24. Capelli, B.; Sabattini, L. Connectivity Maintenance: Global and Optimised Approach Through Control
Barrier Functions. 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. IEEE.
Conference Location: Paris, France, 5590- 5596.10.1109/ICRA40945.2020.9196543.

25. Fiedler, M. Algebraic Connectivity Of Graphs. Czechoslovak Mathematical Journal 1973, 23(2), 298–305.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

26. Olfati-Saber, R.; Murray, R.M. Consensus Problems In Networks Of Agents With Switching Topology And
Time-Delays. IEEE Transactions on Automatic Control 2004, 49(9), 1520–1533.

27. MathWorks. Mobile Robotics Simulation Toolbox, Version 2024. USA,
https://uk.mathworks.com/matlabcentral/fileexchange/66586-mobile-robotics-simulation-toolbox, Last
accessed 10 April 2025

28. Zhao, D.; Zhang, S.; Shao, F.; Yang, L.; Liu, Q.; Zhang, H.; Zhang, Z. Path Planning for the Rapid
Reconfiguration of a Multi-Robot Formation Using an Integrated Algorithm. Electronics 2023, 12, 3483.
https://doi.org/10.3390/ electronics12163483.

29. Yu, J.; LaValle, S.M. Planning Optimal Paths For Multiple Robots On Graphs. In 2013 IEEE International
Conference on Robotics and Automation 2013 May 6 (pp. 3612-3617). IEEE, 2013
https://doi.org/10.48550/arXiv.1204.3830, last accessed 12 April 2025

30. Griparic, K. Algebraic Connectivity Control in Distributed Networks by Using Multiple Communication
Channels. Sensors 2021, 21, 5014. https://doi.org/ 10.3390/s21155014.

31. Zhao, W.; Deplano, D.; Li, Z.; Giua, A. Franceschelli, M. Algebraic Connectivity Control and Maintenance
in Multi-Agent NetWorks Under Attack. arXiv preprint arXiv:2406.18467. 2024,
https://arxiv.org/abs/2406.18467, Last accessed 12 April 2025

32. Defoort, M.; Veluvolu, K.C. A Motion Planning Framework With Connectivity Management For Multiple
Cooperative Robots. J Intell Robot Syst (Springer) 2013, 75, 343–357,
https://link.springer.com/article/10.1007/s10846-013-9872-0, Last accessed 10 April 2025.

33. Woosley, B.; Dasgupta, P.; Rogers, J.G.; Twigg, J. Multi-Robot Information Driven Path Planning Under
Communication Constraints. Autonomous Robots 2020, 44, 721–737.
ttps://link.springer.com/article/10.1007/s10514-019-09890-z, Last accessed 10 April 2025.

34. Alt, H.; Welzl, E. Visibility Graphs and Obstacle-Avoiding Shortest Paths. Zeitschrift für Operations-
Research 1988, 32, 145–164, https://doi.org/10.1007/BF01928918.

35. Lee, W.; Choi, G.H.; Kim, T.W. Visibility Graph-based Path-Planning Algorithm With Quadtree
Representation. Applied Ocean Research 2021, 117, 1-13.

36. Murayama T. Distributed Control For Bi-Connectivity Of Multi-Robot Network. SICE Journal of Control,
Measurement, and System Integration 2023, 16(1), 1-10.

37. Matos, D.M.; Costa, P.; Sobreira, H.; Valente, A.; Lima, J. Efficient Multi-Robot Path Planning In Real
Environments: A Centralized Coordination Sstem. International Journal of Intelligent Robotics and Applications
2025, 9, 217–244, https://link.springer.com/article/10.1007/s41315-024-00378-3, last accessed 10 April 2025.

38. Zhou, C.; Li, J.; Shi, M., Wu, T. Multi-Robot Path Planning Algorithm For Collaborative Mapping Under
Communication ConStraints. Drones. 2024; 8(9):493. https://doi.org/10.3390/drones8090493

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 doi:10.20944/preprints202504.1297.v1

https://doi.org/10.20944/preprints202504.1297.v1

