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Abstract: During planetary exploration mission operations, one of the key responsibilities of the
instrument teams to determine data viability for subsequent analysis. During the 2019 CanMoon
Lunar Sample Return Analogue Mission, the Lead Raman Specialist manually examined each spectra
to provide quality assurance/validation. This non-trivial process requires years of experience
to complete accurately. With the proven efficacy of Convolutional Neural Networks (CNNs) in
classification tasks, and the increased use of automation and control loops on planetary space
platforms for navigation and science targeting, there is an opportunity to approach this validation
problem utilising CNNs. We present the Generalised Raman Validation Network (GRaVN), an neural
network focussed specifically on extracting the generalised structure of Raman spectra for quality
assurance/validation. This work demonstrates the viability of utilising a CNN network in validation
activities for Raman spectroscopy. Utilising only two hidden layers, a configuration was developed
that provided good levels of accuracy on a manually curated dataset. This indicates that such a
system could be useful as part of an autonomous control loop during planetary exploration activities.

Keywords: GRaVN; machine learning; convolutional neural networks; CNN; raman spectroscopy;
analogue missions; planetary science; random undersampling; random oversampling; CanMoon

1. Introduction

One of the key tasks for science teams on planetary surface missions is data acquisition
and the activities associated with the processing of that data. In general, the initial focus
is on viability, checking that the data is useful, before examining it for science. Raman
spectroscopy in particular, requires a significant amount of experience and training to
interpret returned data.

The focus of this work is to use machine learning to reliably automate this qualitative step,
so that the remote platform (robotic rover/lander etc) itself can make decisions about data
quality. When the platform takes a reading using it’s on-board Raman instrument, if it can
detect whether it has an over-saturation (fluorescence) spectrum, for example, then it can
immediately retake the reading until it obtains a qualitatively acceptable measurement.
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This simple feedback loop can then be incorporated into existing sequence automation
routines, already tested as a progression from manual sequencing in previous analogue
missions [1–7]. The challenge with Raman spectra is that an (un)usable spectra can have a
very large variety of forms. This is why we have elected to focus on extremely generalised
categorisation, that the trained human conducts, rather than attempting train on individual
effects visible in unusable spectra, such as cosmic rays or fluorescence spectra, or, identify
specific spectra of materials as is done for classification tasks.

1.1. Background: Raman Spectroscopy

Raman spectroscopy is a non-destructive spectra-based sensing technique, with applica-
tions in material and organic science [8,9]. In recent years, instruments specialising in the
technique have seen consistent use in geological analysis terrestrially, as well as, on ground-
based space platforms [10,11]. Increased use in a variety of other areas such as medical
diagnosis and analysis, and, crime scene investigation[12–16], have demonstrated viability
as a reliable sensing paradigm. Most recently, the Raman technique is represented on the
Mars 2020 rover, Perseverence, through the SuperCam SHERLOC instrument [10]. This
instrument utilises 523nm wavelength to take readings and differs from other instruments
by reliably being able to take readings from further away (anything upto 7m).

Raman spectroscopy exploits reactive shifts in the frequency of monochromatic light upon
interaction with [molecular species in] target materials. Inelastic scattering occurs when
monochromatic laser light of wavelength λ0 and energy E0 = hc/λ0 is incident on a surface,
where h is Plancks constant and c is the velocity of light [17]. In this process, the light
that interacts with the matter will either be scattered or absorbed. Of the scattered light,
the majority will scatter elastically, in a process known as Rayleigh Scattering. However,
a proportionally small amount will scatter inelastically, producing an emission “Raman
spectrum" of light, 6 - 8 orders of magnitude weaker than the source [17,18].

Figure 1. Raman Spectrographic Artifiacts. Raman spectroscopy is sensitive to a number of factors that can prevent the
acquisition of scientifically viable readings. Two of the conditions that can require retaking of the sample or post-processing
are Fluorescence (A) and Cosmic Ray Spikes (B) [19–21]

1.1.1. Fluorescence Background and other Impacts to Data Quality

One of the major obstacles to obtaining well-defined spectra is a condition known as
fluorescence background [12,18,20–26]. This has the effect of “over-saturating" the spectra,
such that the identifying molecular peaks are no longer visible. Many molecules that
respond to Raman excitation can also exhibit fluorescence behaviour upon excitation,
so this fluorescence state is frequently encountered in complex samples [22], which is
unfortunate, because apparent complexity, particularly in a planetary exploration situation,
is often the reason that a target is selected to start with. Fluorescence can also have
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the knock-on effect of increasing shot noise, a saturation effect associated with Rayleigh
scattering [8,9,27], further adding to the difficulty of validation.

A variety of hardware and software-based methods have been explored for quenching
fluorescence background and enhancing weak Raman signals. These range from modifying
the aperture time of the Raman instrumentation, so that there isn’t enough time for the
fluorescence to develop in the signal [12,18,20–26], to applying baseline detection algorithm
to estimate a clean signal [28]. All these techniques interfere with the data itself by either
modifying conditions for acquisition or altering data directly, which impacts interpretation.

Another artifact that can appear in spectra results are Cosmic Ray spikes. These manifest
as sharp spikes that often extend vertically by a disproportionate amount. These spikes are
representative of low level radiation events and appear randomly across different areas of
the spectrum [9]. Generally the most used technique for removal of these, is to compare
spectra of the same target and remove spikes that are not contained in both. [8,9]

The third major consideration when evaluating Raman return signals is the signal-to-noise
(SNR) ratio present in the reading. In general the lower signal-to-noise, the better quality
the reading. Various mathematical and algorithmic methods have been utilised to improve
SNR including derivative and wavelet methods [20], Fourier filtering and least squares
analysis [21]. In this regard some of the best results came from the use of Prime Component
Analysis, where the authors demonstrate that this technique reduced acquisition times,
allowing for it to be used in real-time applications [21].

1.2. Raman Technique Compatibility with Automation and Machine Learning

For commonly used spectra-based techniques such as Laser Induced Breakdown Spec-
troscopy (LIBS) [29], Alpha Particle X-Ray Spectrometer (APSX) and Mass Spectroscopy for
example, a peak at a specific wavelength will usually indicate a specific material substance
and the result can be reproduced reliably, regardless of mitigating factors [30,31]. For
Raman, that is not necessarily the case. Here, the same species or molecule can have
multiple signatures at different positions. This aspect is what adds an extra challenge to
the automated classification of Raman data.

This, plus the results of various conditions under which that sample has been captured,
lead to an intrinsic multi-variate uncertainty that suggests a complex problem space. The
increasing application of machine learning in planetary science and space exploration for
problems residing in complex problem spaces [4,7,16,28,29,32–41], suggests an opportunity
to further apply these techniques.

1.3. Raman Analysis for Analogue and Live Planetary Rover Missions

Terrestrial analogues are locations on Earth that approximate conditions on other planetary
bodies. These locations allow for comparative planetology studies, technology develop-
ment/demonstration and the training of personnel.

Analogue missions are integrated field campaigns, conducted in terrestrial analogue envi-
ronments. The 2019 CanMoon [1,3,6,42–44] formed part of the Canadian Space Agency’s
Lunar Exploration Analogue Deployment program, with requirements to:

1. Compare the accuracy of selecting lunar samples remotely from mission control
versus a traditional human field party

2. Test the efficiency of remote science operations including the use of pre-planned
strategic traverses

3. Evaluate the utility of real-time automated data analysis approaches for lunar missions
4. Explore the mission control operations structure for 24/7 lunar science operations
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5. Test how Virtual Reality (VR) technology can be used to help with enhancing the
situational awareness in mission control

In order to achieve this, a full complement of instrument types was deployed in the field,
with science and navigation targetting controlled from Mission Control at Western Univer-
sity, over the course of several days [1,6,42]. During the mission, one of the key responsibili-
ties of the Raman specialist was to determine data viability for analysis [7]. The lead Raman
specialist was a geoscience PhD student who had been training to recognise Raman data
from a variety of instruments and conditions.

Table 1: Breakdown of samples per category by origin

Source Good Potential Bad

RRUFF 2597 730 198

Lab 42 56 28

Handheld 3 11 5

Other 13 0 8

Every spectra returned from targetting activities
was manually evaluated in order to provide a
“Good", “Bad" or “Potential" categorisation. This
indicated whether the data met the criteria to
attempt a detailed scientific classification. This
task was non-trivial, requiring significant time
on the downlink end of operations to complete.
It could not be completed automatically, or via
a well-defined pre-mission training process i.e.
during operations time because of the complex-
ity of analysis. Amongst the Raman instrument
team, there was often vigorous debate as to whether the data received contained a viable
spectra, indicating the challenge in interpreting results.

Figure 2. The GRaVN Convolutional Network. The network consists of 3 2D Convolutional layers 16, 32, 64 neurons deep
respectively, with ReLU activation, with 2D max pooling. Following are 2 fully connected layers of neurons with Sigmoid
activation, dropout of 0.5 and a final classification layer with Softmax. Sparse Categorical Cross Entropy (SCCE) was used
as the model loss function, with the ADAM algorithm used as the optimiser, initialised with a learning rate of 10e−4.

In the case of Raman data validation, to be competent takes skill, patience and experience.
Also with the requirement of analogue missions to maintain fidelity to real planetary surface
operations, data can only be reviewed intermittently (during communication cycles), and
bandwidth is limited [2,5,42,45]. So, in this case, the “best" option is to send all collected
data back for further processing and have a trained technician perform data validation
before then continuing on to extract science. This is not optimal, and makes it likely that at
least some resources will be wasted during the communication cycle.
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1.4. Algorithmic Processing for Raman Data

Work in this area revolves around using numerical and computational techniques to treat
data, so that all the data returned can be considered viable. Here, a variety of work has
been done in the area of florescence suppression [21,22,25,26], spectra identification using
standard algorithmic processing [15,24,28,46] and more advanced techniques, such as
machine learning and/or CNNs [33,34,46–49], to directly identify the molecular signatures.

However, there are limitations to this. Some spectra cannot be improved by these tech-
niques, and there is the technical point that these techniques alter the original data, and
we believe there is significant merit in preserving the original form of the data, before it is
evaluated by a trained technician.

Taking into account these points, plus the sensitivity of the readings to additional conditions
not related to the physical construction of the instrument, an argument can be made that
the option that is likely to result in the best data analysis, is to start with the best spectra
possible.

Thus, a reliable machine learning model, that can perform initial data validation in the
same way as an experienced technician, could prove invaluable in saving resources. By
providing in-situ analysis of quality as data is acquired, an automated command cycle can
be implemented, with the aim that only valid data is returned for evaluation.

(a) Arsenopyrite (b) Aurorite (c) Coffinite

(d) Ashcroftine (e) Cobaltlotharmeyerite (f) Corundum

(g) Cavansite (h) Cronstedtite (i) Domeykite

(j) Petalite (k) Faujasite (l) Melanophlogite

(m) Phenakite (n) Hollandite (o) Tinzenite
Figure 3. Examples of spectra passed through the GRaVN network. Left: spectra classifed Good; middle: spectra classified
Potential; Right: spectra classified Bad
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1.5. Neural Network Approaches to Raman Analysis

There are many works in the literature focussing on identification of specific spectral
signatures, in a variety of different fields [17,19,27,32,46,49]. The focus of this work is
not to propose another solution to that problem but instead, to focus on initial quality
assurance/validation, based on generalised criterion.

While the criterion is more general, the act of categorisation is still a non-trivial operation,
particularly because the data conditions, such as the wide variance of SNR in samples,
make it difficult to simply cross-check with a database, for example.

As mentioned previously, this can only be done efficiently once the human technician has
gone through the process many times. In order for the technician to become competent, the
process must be completed using multiple different instruments, instrument types (field,
laboratory, handheld, etc), and different conditions under which readings are taken. All
these variables can affect the resulting spectral signature of the data products produced,
even if the target is the same [9].

Recognition of all these elements feeds into the expert technicians’ decision as to whether a
data product can be considered contain data of high quality (Good), unusable data (Bad)
or data that can be further treated to produce usable data (Potential).

This kind of multi-variate problem, where a “correct" answer is not easily defined, is
generally considered a space to which neural networks are well suited. This work will
examine the viability of a simple, deep 2D Convolutional Neural Network in performing
this generalised categorisation on Raman Spectra.

2. Materials and Methods

2.1. Software Pipeline

The GRaVN pipeline reads each comma separated datafile and generates a 300 x 300 pixel
spectra for consumption by the GRaVN network. The larger than usual image size is to
allow enough base resolution to reliably pick up detail at small and large scales. Once
this operation is complete, each spectra is converted to grey scale and matched with the
appropriate label before being preprocessed, read to pass into the CNN. More information
in the preprocess step is given in section 2.4.1 and information on the neural network itself
is given in section 2.2.

2.2. Network Architecture and configuration

The Convolutional network consists of a layer configuration of three 2D Convolutional
layers 16, 32, 64 neurons deep respectively, each with a window size of 3x3 and ReLu
activation. This is then followed by 2D max pooling layer with a pool size of 2x2. The
feature maps are flattened and then passed to two fully connected layers. The first consists
of 1024 neurons and an l2 regulariser. The activation is a sigmoid function and dropout
of 0.5 is applied to the layer. The following layer utilises the same configuration but with
256 neurons. The final layer is a fully connected output layer consisting of a number of
neurons equalling the total number of classes, with a standard softmax activation. Sparse
Categorical Cross Entropy was used as the model loss function, with the ADAM algorithm
used as the optimiser. See Fig. 3

2.3. The Dataset

The dataset is manually curated from multiple sources by a trained PhD-level Raman
specialist. It consists of a total of 3691 spectra, labelled as either Good, Bad, Potential. The
breakdown between the categories is given in Table 1. The dataset consists of approximately
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3500 samples taken from the 532 nm catalog in the RRUFF database, with the remainder
being manually curated from other sources, such as lab-based and handheld spectrometers
such as the DeltaNu RockHound.

2.4. Data Preprocessing

As poor quality readings aren’t generally considered useful, it is far more common to find
examples of good spectra than any other. For the purpose of training a CNN-derived model,
designed to sort the spectra into different classifications, this leads to what is referred to as
an imbalanced dataset. The problem of imbalanced datasets is a common

(a) (b) (c)

(d) (e) (f)
Figure 4. Results of the GRaVN network with a RU strategy. Top left to top right: (a) Accuracy, (b) Loss and (c) train-
ing/validation time to completion for each epoch. Bottom left to bottom right: Confusion Matrices for evaluation cycles 1
(e), 5 (f), 10 (g), respectively.

(a) (b) (c)

(d) (e) (f)
Figure 5. Results of the GraVN network with a RO strategy. Top left to top right: (a) Accuracy, (b) Loss and (c) train-
ing/validation time to completion for each epoch. Bottom left to bottom right: Confusion Matrices for evaluation cycles 1
(d), 5 (e), 10 (f), respectively.
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one in machine learning and there are several strategies to deal with this. Mitigation
techniques are discussed in section 2.4.1.

2.4.1. Sampling Methods

We chose to employ random sampling to smooth network learning between categories.
In this case, we chose two techniques: Random Undersampling (RU) and Random Over-
sampling (RO). These strategies are commonly accepted substitutes for not having a large,
balanced dataset [50–52] but both have trade-offs in implementation: RU limiting variation
in training, the larger the class is, and, RO potentially oversampling from smaller classes.
Results from both are examined to determine which, if any, work better for our case.

2.5. Experiments and Results Validation

We tested the network using a variation on the 10-Fold Cross Validation methodology. In
our case, each “fold" is an experimental run consisting of a training and validation cycle,
followed by a testing (evaluation) cycle on unlabelled data. Because of the limitations
of the size of our dataset, each run uses the entire dataset. The dataset is split 80%/20%
train/test, with the same split on the training set for train/validation.

For each RO run the train test split occurs immediately followed by the sampling operation.
This ensures that the train set contains no spectra that are in the test set.

For RU, the sampling operation occurs first, followed by the train-test split. This, again,
ensures that no evaluation spectra are contained in the training set. Numbers of samples
for each category are contained in Table 1.

Experiments consisted of standard evaluation of accuracy, loss and time to completion
metrics for training/validation, and, accuracy and loss for evaluation. Training cycles were
set for a maximum of 30 epochs, with early stopping activated after no accuracy score
improvement for 5 epochs.

Table 2: Statistical table showing results from Confusion matrices for each class.

Sampling Type Min Max Median Mean σ (std) σ2 (variance)

Undersampling

Good 0.620 0.960 0.830 0.828 0.0991 0.0098

Bad 0.620 0.810 0.730 0.720 0.074 0.006

Potential 0.560 0.850 0.700 0.695 0.098 0.009694

Oversampling

Good 0.920 0.950 0.940 0.938 0.010 0.0001

Bad 0.460 0.710 0.580 0.593 0.080 0.006

Potential 0.500 0.690 0.675 0.646 0.063 0.004

3. Results

For RU, figure 5 shows accuracy at evaluation time consistently remains between 70% and
80% approx. for each run. Loss tends to fluctuate more, between approximately 0.68 and
1.0. Training time varied between approximately 350 and 850 seconds for each run.

Conversely the RO results fluctuate far less. Accuracy remains in a tighter value band
between 80% and 90%, while loss remains between approximately 0.65 and 0.8. Time to
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completion for each run, was much longer, however ranging from well over 9500 to just
over 6500 seconds, which of course makes sense, considering there is a larger overall size
of the training set.

When comparing Confusion Matrices overall (Table 2), RO and RU have almost the exact
same std and variance for Good and Bad classes. Oversampling is better for the Potential
group. The average correct classification score for Good is higher for oversampling while
for Bad and Potential classes undersampling averages better.

Table 3 shows that for accuracy and loss, the RO average score is higher and lower for
accuracy and loss, respectively, suggesting better performance than with a RU treated
dataset. In this case, the lower std and variance for RU confirm the lower rate of variation
for RO shown in Figure 6, as compared to RU in Figure 5.

During evaluation, the GRaVN model classifies with accuracy scores consistently above
70% for both sampling techniques. That is, post training cycle, on unseen data the CNN is
guaranteed to be correct 70% of the time. We contend that this demonstrates the robustness
of the GRaVN model for this task. RO showed the best results for evaluation accuracy,
with scores consistently between 80%-90% as opposed to 70%-80%.

4. Discussion

In the case of RO, the test set is extracted before the sampling operation, then the all
elements of the smaller classes are randomly duplicated until all classes have the same
number as the largest class. What these results indicate is that for RO the network learns
the Good class with a high level of accuracy, but because of the proportional difference
between the class sizes the network, will over train on the smaller classes. This means
that when presented with the test/evaluation set, that the network finds it difficult to
accurately identify the Bad classes in particular, while showing a high level of accuracy
when classifying a Good spectra.

For RU, the result is slightly different. In this case, to preserve the integrity of the test
set, the sampling operation is performed first, then the 80%/20% train/test split is done.
This means that training occurs on even numbers of each class but those numbers are
smaller, resulting in lower accuracy scores overall, but a more even distribution of accuracy
between the classes.

Table 3: Statistical table showing results from Evaluation Accuracy, Loss and time to train the model.

Sampling Type Min Max Median Mean σ (std) σ2 (variance)

Undersampling

Accuracy 0.681 0.799 0.753 0.749 0.043 0.002

Loss 0.671 0.999 0.787 0.802 0.103 0.011

Time (s) 369 847 615 590 159 25332

Oversampling

Accuracy 0.819 0.869 0.857 0.852 0.016 0.000268

Loss 0.649 0.828 0.704 0.718 0.059 0.003459

Time (s) 7018 10131 10025 9711 952 907728

We consider this level of generalisation challenging for a network to learn, especially
with the highly imbalanced nature of the dataset. This assessment also considers the
nature of the data being evaluated. A 2D convolutional network examines images pixel by
pixel. When examining images of spectra like this, the vast majority of the information is
contained in a small area. Within this area is a very large variation because not only can
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the SNR vary, but so can the geometry and amplitude because we are not limiting training
to specific signatures.

These factors create a broad problem space on which to attempt to apply solutions. There-
fore, we consider this result positive and good platform to build upon. We intend to
continue modifying our neural network layer depth and width, to further to improve our
accuracy and loss scores. Although, because of the nature of the problem, we would not
necessarily predict that a simple increase in network depth and/or width (and therefore
increase in the number of trainable parameters), would guarantee an improvement in
network output statistics.

He et al. first recorded that simply stacking increasing numbers of convolutional blocks in
network architectures limits optimisation, and leads to diminishing returns in accuracy
through overfitting and other artifacts such as the degradation problem [53]. Skip con-
nections, which allow network information to skip layers, rather than passing directly
between them, were devised as a method of maintaining the trainability of models, while
increasing their depth. This would be an interesting avenue to pursue in increasing network
complexity, while continuing to improve accuracy.

Further, in the area of mineral classification, certain network architectures [32] have demon-
strated promising results by passing different parts of the input data through the network
separately, and concatenating these in into a single dense layer for classification later in
the process. A network developed utilising these tools, along with a larger dataset, with
higher proportion of Bad spectra, could learn to differentiate far more of the characteristics
of a Raman spectra, and thus be more accurate.

Lastly, it would be interesting to compare our network to some well-known convolutional
frameworks. The closest problem to our work would be handwriting recognition. Although
at the pixel scale, there is more variation in this problem because of the broad range of SNR,
a factor that rarely plays a role in handwriting or letter/digit recognition. A comparison
between well-known networks like VGG or ResNet and our method, could be informative
in a variety of different areas.

Table 4: Statistical table showing computational process time per sample at evaluation stage.

Sampling type Num Samples Mean Eval Time (s) Time/Sample (s)

RU 144 1.97 0.01368

RO 737 9.71 0.01318

5. Conclusion and Future Work

We have presented a convolutional neural network solution for Raman spectrum processing,
focusing on qualitative validation rather than specific classification. The network was able
to accurately sort untreated spectra into categories as specified by a trained technical expert
in the field.

The results indicate that networks developed to perform the more qualitative evaluative
tasks are a viable option and, that further development to improve output scores is a
legitimate direction to pursue.

We suggest that an algorithm such as this could be the basis of a sequence control loop. Au-
tomated space platforms could use to validate and pre-select data in-situ during planetary
missions, or other autonomous robotic activities, where Raman is utilised.

Regarding the sampling techniques for training, if mission parameters would specify a
two class spectra evaluation, then the RO technique would be a better choice. In this case,
mission operators would only be interested in returning spectra classed as Good. If mission
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parameters dictated that a more granular validation be preferable, then and RU training
scheme could be implemented. Table 4 shows that network process time per sample on
the order of tens of milliseconds, regardless of sampling type and indicates the time scale
required for a platform to obtain a reading.

Continuing work in this area would focus on addressing the dataset imbalance issue by
acquiring more examples of poorer quality spectral reading, increasing the overall size of
the dataset and, perhaps even expanding the classification to different Raman sources.

We would welcome input from the Raman community in providing us with [labelled]
examples of Bad or Potentially Bad/Good spectra readings, regardless of instrument
or conditions. As stated above, it is easy to find examples of good readings, but this
algorithm’s success depends on knowing what a bad reading looks like. So please, don’t
discard poor data, send it to us. It would allow us to further increase robustness by
including data classified from multiple experts.

Unlike with other techniques, internal instrument components, wavelengths used and
sample interval can all vary between different instruments. An interesting study would
be to build a network capable of equalising all these factors and provide a tool that could
accurately validate regardless of any mitigating construction or environmental factors.

Table 5: Computer Specifications

Hardware

CPU AMD Ryzen 7 3750H w/ Radeon Vega Mobile Gfx

RAM 32GB

GPU Nvidia GeForce GTX 1660 Ti

Software

Lang. Python 3.7+

NN Arch. Tensorflow 2.0
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