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Abstract: Artificial Intelligence (AI) is set to incorporate expanded decision space that has 

traditionally been the purview of humans. However, AI systems that support decision-making also 

entail human rationalization of AI outputs. Yet, incongruencies between AI and human 

rationalization processes may introduce uncertainties into human decision-making, necessitating 

new conceptualizations to improve the predictability of these interactions. The application of 

quantum probability theory (QPT) to human cognition is on the ascent and warrants potential 

consideration in human-AI decision-making to improve outcomes. This perspective paper explores 

how QPT may be applied to human-AI interactions and contributes by integrating these concepts 

into human-in-the-loop decision-making. To capture this and offer a more comprehensive 

conceptualization, we use human-in-the-loop constructs to explicate how recent applications of QPT 

can ameliorate the models of interaction by providing a novel way to capture emergent behaviors. 

Followed by a summary of the challenges posed by human-in-the-loop systems, we discuss emerging 

theories that advance models of the cognitive system by using quantum probability formalisms. We 

conclude by outlining areas of promising future research in human-AI decision-making in which 

proposed methods may apply.  

Keywords: artificial intelligence; decision-making; quantum decision theory; human-in-the-

loop; generative AI 

 

1. Introduction 

Artificial Intelligence (AI) is introducing expanded capabilities to support decision-making in a 

variety of different contexts. Besides additional capabilities, AI can proactively alter the decision 

space and act on information. However, in the moment AI informational outputs may not be well 

understood [1] and therefore can change the nature of human decision-making. Informational 

outputs from AI are also different than traditional sources of information due to the opaque 

underpinnings of these technologies [2–4]. Additionally, humans anthropomorphizing AI system 

capabilities such as adhering to social norms when interacting with these technologies [5] can 

produce unwarranted interactions with machines. For these reasons, researchers must understand 

how AI technologies can potentially and inadvertently affect decision-making processes.  

Understanding how AI technologies impact human decision-making processes is not without 

warrant. Establishments like the military are undergoing significant transformations in technology 

and organization due to the development of AI [6]. Several well-known accidents involving advanced 

technologies have demonstrated potential harmful side-effects of similar automated systems when 

combined with human response mechanisms. For example, tragic accidents such as the Patriot 

battery fratricide in Iraq [7], the USS Vincennes incident [8–10] the accidental killing of civilians in 

Afghanistan [11], and the downing of two U.S. (United States) Army Blackhawk helicopters [12] 

demonstrate the potential consequences of misconstruing information from complex automated 
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systems. A common thread through these tragic accidents is how automated technology influenced 

human decision-making. In the aforementioned cases, information from automated technology was 

misconstrued or misinterpreted, and thus, over trusted by humans which contributed to incorrect 

decision-making [13]. Moreover, there is increasing concern that humans are being beholden to 

decisions at machine speeds instead of systems in support of human decision-making processes [14]. 

Therefore, understanding how AI impacts human decision-making processes is necessary for 

improving human-machine interaction research.   

The structure of the paper is as follows. First, we begin by defining AI, its limitations, and how 

it is taking over additional decision space. Then, we review human-in-the-loop decision making. 

Next, we introduce quantum probability theory (QPT) for cognition and how it can improve 

outcomes by better modeling uncertainty and order effects within a human-AI decision-making. 

Lastly, we conclude by outlining future research.   

2. What is AI? 

There are numerous definitions of AI throughout the literature. In this plethora of definitions, 

AI and algorithms are used interchangeably throughout the research. In its simplest description, an 

algorithm is a recipe or a set of instructions to accomplish a sequence of tasks or achieve a particular 

result [15]. Algorithms are often subcomponents of any AI system but may not be considered 

intelligent on their own. AI on the other hand is qualitatively different. In his seminal work that first 

coined the phrase in 1955, “artificial intelligence,” John McCarthy [16] defines AI as “the science and 

engineering of making intelligent machines, especially intelligent computer programs” (p. 1). In 

Russell and Norvig’s [17] treatment on the matter, they define AI as “machines that can compute how 

to act effectively and safely in a wide variety of novel situations” (p. 19). [18] state, “AI is defined as 

the ability of a computer system to sense, reason, and respond to the environment” (p. 61). While 

these definitions provide a diverse characterization of AI, contemporary advances have pushed for 

additional divisions. 

More recently, some researchers suggest that AI is characterized by the ability to imitate human 

information processing while also alleviating cognitive workloads for humans [19,20]. Moreover, AI 

can also be portrayed as weak AI or strong AI [21]. Weak AI is characterized by programs that mimic 

human intelligence such as classification or that use natural language processing techniques, while 

strong AI is described as having a cognitive system that can reason and have goals similar to a human 

mind [22]. In this paper, we define AI as a computer program that automates one of several aspects 

of human intelligence (e.g., categorization, classification, natural language processing, decision-

making). This definition allows us to consider AI as an augmentation to a human decision-making 

process. We also recognize that such a narrow definition may not capture all aspects of what AI can 

currently be designed to perform, which is beyond the scope of this paper. 

AI systems are created to accomplish a particular task commensurate with its design. However, 

most AI systems today are considered “brittle” [23]. This brittleness stems from the fact that AI 

systems are designed for tasks or are trained on data sets that are limited in some respect. For 

instance, an AI designed for a classification task may not necessarily perform accurately at natural 

language processing. Yet, some AI programs today employ new techniques as seen in Google’s Gato 

program which are starting to break down this narrow barrier [24]. Notwithstanding a few instances 

of more versatile AI, most AI today remains limited. 

2.1. Limitations of AI 

Advanced technologies such as AI can have several limitations and can promote unwarranted 

interactions. For instance, early research has shown that humans often anthropomorphize such 

intelligent agent-based systems by adhering to social norms when interacting with these technologies 

[5]. Automation errors on tasks that appear “easy” to a human operator can also severely degrade 

trust and reliance in automation [25]. Yet, AI has been characterized as ignorant and suffers from 

what some researchers identify as a Dunning–Kruger effect [26]. Similarly, these failures can be 
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summarized in Moravec’s Paradox. Moravec’s Paradox states that high-level intelligence tasks, such 

as chess and theorem proving are easy, but simple tasks such as stacking colored blocks or simple 

context dependent social interactions are extremely difficult for such machines [27]. Other research 

suggests that external AI traits (e.g., human-like appearance, human-like responses) can influence a 

human user’s mental models in unhelpful ways [28]. Advances to make AI decisions explainable 

have had mixed results. For instance, recent research has suggested that explainable AI does not 

necessarily improve user acceptance of AI advice [29]. For these reasons, it has become increasingly 

important for researchers and practitioners to understand how AI technologies are taking over 

additional decision space. 

2.2. AI Aspirations: Taking Over Addition Decision Space 

AI is becoming more integrated into decision-making processes. This places humans in a 

position of responsibility and oversight for such AI advice. However, humans are increasingly 

disconnected spatially and temporally from what goes into algorithmic decision-making [30], which 

makes it difficult to comprehend AI logics. This comprehension is essential in decision-making 

situations which involve rationalization of two more decision-making entities. Despite this, 

algorithms are gradually taking on traditional roles of management such as assigning tasks to 

workers, worker compensation, and evaluation of workers with little to no human oversight due to 

the sheer volume and scale of decisions [31]. While automated decision-making may reduce human 

workload, it may also increase uncertainty and predictability of outcomes. This is because the essence 

of decision-making entails the choice amongst differing options [32]. More specifically, uncertainty 

can be characterized as strategic uncertainty. [33] define strategic uncertainty as “uncertainty about 

the actions of others in interactive situations” (p. 369). Actions of other agents (e.g., AI) may be 

difficult to understand or may unintentionally constrain decision options. For instance, if humans 

sense no degrees of freedom in choosing amongst AI choice alternatives, then choice may be an 

illusion. In such cases, humans may begin to sense a degree of arbitrariness or sense randomness in 

decision-making [34]. To understand these complexities, this next section embarks on explicating 

human-in-the-loop constructs. 

3. Human-in-the-Loop Decision-Making 

AI is already supporting human decision-making in many ways. From Netflix recommendations 

to Uber drivers being managed by sophisticated algorithms, AI is taking over more decision space 

traditionally performed by humans [35]. However, AI advancements are outpacing the conceptual 

coverage of human-computer decision-making [36]. In some instances, AI is required due to the sheer 

scale or immediacy of the service, making human oversight in the decision process impractical [31]. 

Yet, many decisions still require human oversight and keeping a human-in-the-loop (HITL) is 

important [37]. For the immediate future, AI and humans will make contributions to automated 

decision-making processes [38]. Still, understanding the distinct roles humans can have within a 

HITL construct can provide additional insights into decision-making with AI. 

Humans can fulfill a variety of distinct roles when it comes to HITL constructs. [23] define a 

HITL as “an individual who is involved in a single, particular decision made in conjunction with an 

algorithm” (p.12). In Table 1, [23] identified nine distinct roles a human may fulfill for a HITL system. 

These roles are not mutually exclusive and offer several improvements for HITL decision-making 

processes. While such roles can provide supervision to algorithmic decision-making, lack of 

comprehensible understanding in the dynamics of AI can affect the overall system and individual 

performance, and inadvertently influence subsequent judgements and decision outcomes. Thus, 

systemic improvement to HITL decision-making processes with predictable methods require the 

adoption of newer approaches to model human decision-making that can capture and model decision 

uncertainty. 
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Table 1. Roles for humans in the loop. 

Human Roles Reason for adding a Human-in-the-Loop 

1. Corrective Roles 
Improve system performance, including error, situational, and bias 

correction 

2. Reliance Roles 
Act as a failure mode or alternatively stop the whole system from 

working under an emergency 

3. Justificatory Roles Increase the system’s legitimacy by providing reasoning for decisions 

4. Dignitary Roles Protect the dignity of the humans affected by the decision 

5. Accountability Roles Allocate liability or censure 

6. Stand-in Roles 
Act as proof that something has been done or stand in for other humans 

and human values 

7. Friction Roles Slow the pace of automated decision-making 

8. Warm Body Roles Preserve human jobs 

9. Interface Roles Link the systems to human users 

Adapted from “Humans in the Loop” by R. Crootof, M.E. Kaminski, and W.N. Price II, 2022, March 25, 

Vanderbilt Law Review 429, p. 473-474. 

4. Quantum Probability Theory for Decision-Making 

The application of the mathematical axioms of quantum mechanics in decision modeling is 

breaking new ground in decision science. Despite the non-intuitive nature of applying the 

mathematical axioms of quantum mechanics to macro-level processes, the application of quantum 

formalisms to model human cognitive behaviors is gaining ascendency and broadening its 

application to new areas outside its original purpose [38–47]. For example, the concept of 

measurement/observation shares similarities to social anthropology by recognizing that observation 

in both fields changes the system [49]. In spite of these reasons, the application of quantum 

formalisms can still require additional explanation to understand its benefits for modeling human 

behaviors. 

Applying quantum mathematical axioms to human decision-making does not assume any 

‘quantumness’ about the system of interest or that the human brain exhibits a quantum process. As 

[50] state, “Quantum probability theory, as employed by behavioral scientists, simply concerns the 

basic probability rules of quantum theory without any of the physics” (p. 3). In terms of uncertainty, 

modeling decision-making with quantum mathematical axioms operationalizes a crucial dynamic, 

that is, judgment creates rather than records what existed right before the judgement [emphasis 

added] [41]. From the uncertainty point of view, one advantage for operationalizing this dynamic 

means that decision models include an ontic type of uncertainty. Ontic uncertainty can emerge when 

humans attempt rationalizing from a state of superposition (e.g., thinking about combinations of all 

potential perspectives) [51]. Put another way, ontic uncertainty describes the cognitive indeterminacy 

represented by a combination of all possible outcomes [41]. The crux of including this type of 

uncertainty in a decision model is that it is internal to the decision maker. Conventional modeling of 

human decision-making under uncertainty has fallen short in capturing the ontic type of uncertainty 

because of the limitation of the classical probability theory (CPT) [52]. Therefore, the adoption of QPT 

principles can ameliorate human-AI decision making for the following CPT related limitations.  

4.1. Ordering Effects That Affect Decision-Making 

Daniel Kahneman’s work around cognitive biases is a good example to elucidate the modeling 

differences between CPT and QPT. His experiments and follow-on studies have demonstrated 

repeatedly the phenomenon of ordering effects of information, similarly referred to as an anchoring 

effect [53,54]. However, the developed explanations for order effects either lack a rigorous 

mathematical formulation or rely on set theoretical construct based on CPT (e.g., Markov evidence 

accumulation models). Hence, a Markov model’s lack of generalization limits the use of theories to 
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ad-hoc descriptive explanations. The line of decision modeling research based on QPT has shown 

more tractable explanations for these effects than CPT. For instance, [41] analyzed a Gallup poll from 

1997 that asked 1002 respondents, “Do you generally think Bill Clinton is honest and trustworthy?” 

and then asked the same question about Al Gore. Half of those respondents were instead asked the 

same question in the opposite order. The results demonstrated a 15-point percentage difference 

between the two conditions which is not negligible. More importantly, QPT-based models can 

capture this difference, while CPT-based models fail to capture this difference. Similar effects can 

emerge in AI/ML supported decision-making situations when influenced by the trust in AI as an 

information provider. Therefore, building and engineering decision support  systems can 

significantly benefit from QPT-based models [45,55]. 

Due to the limitation of CPT, thus far determined CPT violations are categorized fallacies, such 

as conjunction and disjunction fallacies [41,53], Allais paradox [56], and Ellsberg paradox [57]. 

Previous studies have also shown the relevance of this concept to HITL-AI systems decision-making 

environment [58,59]. For these reasons, addressing the order effects and the decision fallacies is 

critical for HITL-AI systems for decision-making for several reasons. First, it is argued that taking a 

measurement or interacting with a system “creates rather than records a property of a system” 

(Busemeyer & Bruza, 2014, p. 3). For instance, [60] demonstrated how categorization by a computer 

versus human categorization can give rise to violations of total probability. Other studies have also 

shown how events might become incompatible because of how related information is processed 

sequentially with the first piece of information setting a context for the second event (e.g., 𝐴𝐵 ≠ 𝐵𝐴) 

[47,50,55,61]. Second, the incompatibility of events makes it impossible for a human to form a joint 

probability across decisions, which signals contextuality [38]. The inability to form a joint probability 

across decisions induces an ontic type of uncertainty. For these reasons, order effects of information 

within HITL-AI systems are an important consideration in decision-making.  

4.2. Categorization-Decision  

Another decision dynamic that poses challenges in AI supported decision-making is the 

categorization-decision paradigm. Categorization-Decision lines of research demonstrated that when 

a decision maker is asked to categorize and then decide vs. no explicit categorization and making 

decision directly, participants consistently made violations of total probability. For instance, in a 

study conducted by [50,62] participants who first categorized a face (e.g., labeled them bad or good), 

had a higher probability of commensurate follow-on action (e.g., bad, then attack vs. good, then 

withdraw). However, when the categorization step was removed, participants reversed their 

behaviors, thus, total probability of the two-event outcome was violated [50]. Moreover, [60] 

demonstrated that computer provided categorization-decision vs. direct decision results in total 

probability violation as it has been observed in various categorization research.  This total 

probability violation alludes to the interference effects when there is no categorization. In an online 

experiment conducted by [47], similar violations in total probability were observed in a 

categorization-decision task for an imagery analysis task supported by an AI assistant. For these 

reasons, AI supported decision-making highlights the need for more comprehensive modeling 

techniques to account for these human behaviors. 

4.3. Interference Effects  

Quantum models of cognition assume that evidence for decision-making results from a 

cumulative process over time and can result in interference effects when multiple system 

measurements are taken [63]. For instance, [44] demonstrated interference effects when human choice 

behavior early in the process strongly affected outcomes exhibited in the mean preference ratings 

later in time over a no-choice condition. The critical finding of this line of research is that when a 

participant is given the categorization (e.g., given by a computer), the total probability difference 

between the given categorization and direct decision conditions is still observed; interference effects, 

negative or positive, are captured via the total probability difference [59,60]. The examples cited 
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challenge much of the conventional cognitive psychological research on human behavior that still 

capitalizes on the axioms on CPT to model human-AI decision-making without a truly satisfying 

answer that accounts for empirical violations of rational behavior.  

Developing and designing tomorrow’s decision support systems (DSS) augmented with AI 

must, however, account for quirks of the human mind that give rise to dynamics and subsequent 

interference effects in human decision-making. The application of QPT to AI DSS will benefit from 

having a framework that can account for the cognitive consequences of processing incompatible 

information [55]. The application of QPT to HITL-AI systems can open the door for not only better 

modeling of these systems, but to potentially engineer environments that improve decision-making.  

5. How Quantum Cognition Can Improve Human-in-the-AI-Loop Decision-

Making 

QPT can help improve HITL-AI decision-making models by introducing the incompatibility 

condition that gives rise to interference effects. Interference effects can result in volatility in the 

outcome probabilities; hence, interference effects can give rise to erroneous understanding or 

oversight of the emergent behaviors in complex situation [64]. Therefore, conditions that can give rise 

to incompatibility of different states must be accounted for in the models [65].  

Improving the design of the HITL-AI systems with QPT-based models provides at least two 

additional benefits over a CPT-based approaches: (1) a more comprehensive modeling of uncertainty, 

and (2) facility to investigate and determine the conditions that can give rise to incompatibility 

between decision variables. First, QPT can capture uncertainty more comprehensively (e.g., over 

evidence accumulation models) because it assumes that the cognitive system is not in an indefinite 

state [47]. In QPT, one’s cognitive state can be characterized as oscillating between possible states also 

known as a superposition of states. However, once an interaction takes place, such as answering a 

question, the system, transiently, is put into a definite state. Using CPT-based models assumes that a 

cognitive system is at a definite state at any given time. Therefore, according to such classical models, 

a measurement records what existed before it takes place. As a result, CPT based models fail to 

capture the cognitive vacillation that occurs in the mind of a subject [41] which is the internal 

uncertainty of the decision maker. Therefore, uncertainty cannot be accounted for in the decision 

model using CPT based models. For example, uncertainty is synonymous with experiencing 

ambiguity (an indefinite state), which is self-evidently true; otherwise, if one knew what state they 

were in, they could easily inform themselves of this state [66]. In this case, existence of the second 

perspective sets an implicit context that may give rise to interference effects. Modeling decision 

making with QPT allows modelers to investigate and determine compatibility relation among 

perspectives and associated pairs of variables. Second, QPT can model both epistemic and ontic types 

of uncertainty. Epistemic uncertainty is characterized by an observer’s lack of knowledge about the 

state of a system at a particular time, which can be resolved through acquiring additional knowledge 

[42,52]. Ontic uncertainty describes a person’s internal uncertainty regarding a specific response, such 

as a decision amongst different options [41,44,52]. The distinction between epistemic and ontic 

uncertainty is not recognized in cognitive models that use CPT-based models but should be 

considered in the design process of next the generation HITL-AI systems for improved decisions.  

HITL-AI Example 

Today’s search engines are powered by AI to leverage pattern detection and optimization to 

boost particular content [67]. AI technologies such as large language models (i.e., ChatGPT, Google 

Search Labs) are now embedded in search engines as well [68]. In the case of search, a human directs 

a search engine to explore specific terms of interest and receives a ranked the output. To illustrate the 

possible contributions of QPT based models, a general search engine story from The Cyber Effect [69] 

is discussed with a QPT-based model perspective.  
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Lisa went hiking with her friend during tick season; while hiking, she and her friend talked on 

assorted topics including ticks and Lyme disease. Upon returning home, she became worried about 

ticks. After examining her body, she finds a tick and removes it with the help of the information she 

obtained via online search. After removing the tick, she began searching about Lyme disease and its 

symptoms. She clicked from one search result to another, and after visiting various web pages, her 

anxiety increased. She continued reading more about Lyme disease. Click after click she tumbled into 

medical webpages, only increasing her anxiety. Lisa lost track of time, often missing relevant 

information during her searches that might have been calming. Based on her frenetic searches, Lisa 

started to think that she had Lyme disease and ended up visiting an urgent care in the morning. The 

doctor confirmed Lisa did not have Lyme disease but incurred costs for the unnecessary visit and 

contracted a virus from another patient who was visiting the same doctor’s office. [69] 

The similarity between categorization and decision for Lisa’s example is as follows. To decide 

Lyme positive, there are symptoms (e.g., having red eyes) that need to be categorized (explicitly). 

While searching online medical information about Lyme disease, Lisa could not make any 

categorization for the symptoms; for example, during her internet searches, Lisa observed her eyes 

had become red, the red eyes could be due to extended screen time she had while searching in the 

dark. Despite this context, red eyes were instead interpreted as a symptom of Lyme disease. 

Moreover, every new piece of AI-provided information introduces a new perspective for each 

introduced category and possibility. If perspectives are not categorized, consequently, they can 

continue to influence subsequent decision-making.  

One can argue that using more interactive advanced search engines may obviate this problem. 

However, as [70] articulates, language is indeterminate, and every phenomenon comes with 

presuppositions that are contextual and enunciation of those presuppositions cannot guarantee a 

compatible perspective to process information. For instance, Figure 1 shows how a Google Generative 

AI experiment for search, an advanced large language model (LLM) AI, can provide helpful advice, 

but can result in vacillation because users may not be familiar with provided medical information. 

As a result, new perspectives becomes incompatible and begin influencing (forming context for) each 

other(e.g., other enumerated symptoms). Hence, the mental indecisiveness concerning the symptom 

categories can bolster positive Lyme disease belief. Since Lisa did not make any categorization while 

searching online, every new information introduced new states to the cognitive system. If these new 

states do not match with perspectives of the information processing individual, they begin 

influencing each other that results in vacillation.  
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Figure 1. Google Generative AI experimental search engine output for a query on Lyme Disease asked on July 

5, 2024. Screenshot from Google Labs AI Generative AI experiment search result. Results are for informational 

purposes only. 

After visiting a doctor, Lisa would establish the definite category choices for the symptoms from 

a professional with supported test results. Thereafter, Lisa would resolve her indecisiveness 

concerning the symptoms and would have a negative belief about having Lyme disease (because 

symptoms are not related to Lyme disease). Lisa’s negative belief about her condition would therefore 

not be influenced by any mental indecisiveness concerning potential intermediate symptoms. Hence, 

her Lyme disease probabilistic outcomes would not have volatility. To consider potential 

indecisiveness in design of HITL-AI systems through the lens of a similar interaction with an AI 

search engine, an AI can (1) push the human to a specific decision [71]; (2) generate uncertainty 

concerning the decision outcomes and bolster one of them. To demonstrate the second situation 

following the discussion in [72] that is based on quantum decision theory (QDT) and Kullback-Leibler 

relative information gain approach [73,74], a simulation for a two-decision outcome result was run 

with the following scenario. Suppose based on the regional tick bite and Lyme diagnoses data, a 

search engine assumes that 52 percent of the people with tick bites contracted Lyme diseases. Due to 

this data, the search engine optimizes its results in response to Lisa’s search entries in such a way that 

anyone reading the suggested pages would think that probability of having Lyme diseases is 0.52. As 

shown in Figure 2, a probability of positive Lyme disease belief for Lisa can oscillate in the case of 

continuous inquiry from a search engine. The oscillation shown in Figure 2 represents the ontic type 

of uncertainty that can bolster a specific decision outcome. We consider this oscillation as ontic type 

of uncertainty because it is internal to the human; it is not directly accessible to an observer unless 
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the human elicits her/his decision at any given time. This oscillatory behavior may converge later in 

time or diverge depending on Lisa’s  cognitive schema.. Therefore, capturing this type of uncertainty 

is important for properly modeling HITL-AI interactions in the design of decision support systems. 

 

Figure 2. Lyme disease probability in the mind of Lisa over time. Temporal oscillation of probability of Lyme 

positive belief for Lisa; the initial probability of Lisa's Lyme positive belief is 0.69. 

6. Discussion 

Design considerations that capitalize on QPT-based decision models to improve human and 

machine interactions are still in their infancy. Some research has suggested that formalisms of QPT 

may be applied by machines for helping cognitively impaired humans (e.g., dementia or Alzheimer’s) 

achieve specific goals (e.g., washing hands, taking medications) [71]. Yet, the same considerations 

can also apply to HITL-AI systems. Knowing the shortcomings of human reasoning and information 

processing, machines can better model human cognitive processes with QPT to account for how (1) 

humans are influenced by the order of information (e.g., humans should decide before AI reveals its 

own perspective, knowing when and whether to solicit for AI advice would lead to different decision 

outcomes [75]); (2) new pieces of information can result in incompatible perspectives and higher ontic 

uncertainty. Considerations for these design parameters could improve engineering AI systems for 

decision-making through better predictability of human-machine interactions. Consequently, HITL-

AI systems may be engineered to move human decision-making towards a more Bayesian optimal 

choice [71]. With these design aspects in mind, much work still needs to be performed. 

7. Future Research 

It is clear humans and AI systems will increasingly engage in shared decision-making. What 

decisions are ceded to AI is still a work in progress. Decision speed will also be an area of great 

concern for some areas of decision-making (e.g., military, stock trading). How work practices are 

managed with the integration of human and machine technologies requires future research [76]. For 

instance, increasing pressure to continually shorten decision cycles is a reality in most militaries 

today, especially at the military tactical level for finding and engaging targets [6]. HITL-AI systems 

may accelerate such decision cycles. Future research will need to address how speed affects HITL-AI 

decision-making in high-tempo and ethically significant operations and what can be done to improve 

outcomes. Order effects have also been seen in human trust towards algorithms. For instance, 
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Fenneman et al. (2021) found the humans exposed to algorithmic managers first exhibited lower 

thresholds for trust and higher thresholds for trust when they were introduced to human fund-

managers first. Therefore, future research should address different interaction dynamics under multi-

agent decision-making (i.e., human and AI) that may improve trust interactions in HITL-AI systems. 

HITL-AI systems are anticipated to have second and third order effects on decision-making 

processes. It is projected that humans will continue to cede decision-making space to AI potentially 

without their awareness [75]. This can lead to several suboptimal outcomes and unanticipated effects. 

First, humans could become de-skilled in their own decision-making abilities. Such warnings of de-

skilling have been raised in areas ranging from neurosurgery [78] and moral reasoning [79] to 

decision-making itself [80], and lowering workers’ collective negotiating powers [81]. This zero-sum 

view is, however, not without warrant as AI systems encompass additional decision space. These 

outcomes may also lead to difficulties in justifying additional human training as a back-up to AI 

systems due to being viewed as duplicative costs. As a result, future research should address these 

HITL-AI shortcomings for it may de-skill workers and what may be done instead to correct such 

outcomes. 

The proliferation of AI systems also complexifies human oversight. For instance, it is anticipated 

that workers, such as radiologists, may become “orchestrators” of a plethora of AI-based systems and 

their concomitant workflows [75]. Research by [82] suggests that algorithmic prescriptions may be 

overly complex, resulting in suboptimal decisions from users’ inhibition to trust such systems. In 

other instances, humans providing oversight to AI systems may become “algorithmic brokers” to 

translate machine outputs to others [1]. Moreover, some scholars warn how “autonomous computer 

leaders” may make significant decisions without sufficient human oversight in the near future [36]. 

Researchers will also have to consider how to align experts and non-experts with AI systems. 

Research suggests that experts and novices can perceive AI outputs differently, which can result in 

different judgments and decision outcomes [75,83,84]. Future research should therefore address both 

levels of expertise and leadership for HITL-AI systems. 

8. Summary 

In one of Simon and Newell’s [85] seminal papers, Heuristic Problem Solving: The Next Advance in 

Operations Research, they stated, “In dealing with the ill-structured problems of management we have 

not had the mathematical tools we have needed—we have not had ‘judgment mechanics’ to match 

quantum mechanics” (p. 6). This, however, is no longer the case. Application of QPT to decision-

making and similar efforts to formulate a concept of quantum models of decision [41] and QDT 

[73,74,86], have provided novel results that can better model uncertainty and human decision-making 

behaviors. Applying QPT to human and machine decision-making is still at a nascent stage of 

development at the human-machine dyad level. Still, researchers must begin coming to grips with 

how AI can subtlety begin taking over this decision space and how researchers may help address this 

new phenomenon. 

Developing or employing AI systems will always involve human decision-making processes. 

Adopting AI in any form will yield some element of human decision-making, but researchers and 

practitioners will need to have a clear-eyed view of which elements are appropriate to delegate to 

machine intelligence [87]. Yet, it is still clear that machines such as AI cannot provide new affordances 

outside what it was trained to perform [88] or anticipate counterfactual outcomes [89]. These 

shortcomings should, however, not necessarily deter practitioners from adopting AI for improving 

decision-making. Rather, such choices will affect how people may conceive HITL-AI as a complex 

sociotechnical system that requires an approach for joint optimization (e.g., structurally rational 

decision-making, joint cognitive systems). Therefore, human response mechanisms to fulfilling roles 

within HITL-AI systems will likely evolve in diverse ways. To address these challenges, conceptual 

coverage must stay apace of AI advancements and should be closely monitored to ensure decision-

making is structurally rational and beneficial for all stakeholders.  
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