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Abstract: Recently, there has been active research on utilizing GPUs for the efficient processing of
large-scale dynamic graphs. However, challenges arise due to the repeated transmission and
processing of identical data during dynamic graph operations. This paper proposes an efficient
processing scheme for large-scale dynamic graphs in GPU environments with limited memory,
leveraging dynamic scheduling and operation reduction. The proposed scheme partitions the
dynamic graph and schedules each partition based on active and tentative active vertices, optimizing
GPU utilization. Additionally, snapshots are employed to capture graph changes, enabling the
detection of redundant edge and vertex modifications. This reduces unnecessary computations,
thereby minimizing GPU workloads and data transmission costs. The scheme significantly enhances
performance by eliminating redundant operations on the same edges or vertices. Performance
evaluations demonstrate an average improvement of 280% over existing static graph processing
techniques and 108% over existing dynamic graph processing schemes.

Keywords: dynamic graph processing; graph scheduling; GPU; data transfer cost

1. Introduction

In the era of big data, graphs are widely used to represent real-world data, such as social
networks, road networks, and web networks, in an efficient and structured manner. Through vertices
and edges, graphs visually depict complex relationships and structures among entities. These graph
datasets are often vast in scale and intricate in structure. Graphs can be classified as either static or
dynamic: static graphs remain unchanged over time, whereas dynamic graphs continuously evolve
as vertices and edges are added or removed [1-7]. Real-world graph data are typically large-scale
and dynamic. For instance, on Facebook, an average of six new accounts are registered every second;
the World Wide Web sees approximately three new accounts created per second; Twitter users
generate about 10,000 tweets per second; and Alibaba's e-commerce platform processes over 20,000
transactions per second [8].

Dynamic graphs play a crucial role in various real-world applications. For instance, they are
employed in real-time financial fraud detection to identify abnormal transaction patterns in financial
networks, in social network analysis to track changes in user relationships and activities for enhanced
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information diffusion modeling, and in recommendation systems to generate personalized
suggestions by dynamically reflecting user behavior.[9-24]

Despite significant advancements in efficiently processing large-scale graph data, handling
dynamic graphs remains considerably more complex than managing static ones[25-39]. Unlike static
graphs, which represent a single point in time, dynamic graphs require continuous tracking and
management of changes. These graphs often necessitate real-time or near-real-time updates,
demanding high computational efficiency. The real-time tracking and analysis of dynamic graphs
pose substantial challenges in terms of computational resources and processing time. Traditional
approaches based on central processing units (CPUs) were initially developed to handle rapidly
changing dynamic graphs. As general-purpose processors, CPUs are designed for a wide range of
computations. For instance, Tornado [9] introduced mechanisms to reduce unnecessary
computations in dynamic graphs, while GraPU [20] accelerated processing through precomputations
in buffered updates. Graphtinker [21] proposed scalable data structures for dynamic graphs, and
DZiG [22] developed a processing system optimized for sparse graphs. However, the inherent
limitations in CPU parallelism restrict their ability to achieve high performance in large-scale graph
processing.

Recently, research has increasingly focused on leveraging the parallel processing capabilities of
GPUs for graph data processing. With support for thousands of concurrent threads, GPUs excel in
parallel computations, making them highly efficient for handling the complex calculations involved
in large-scale graph data processing. Their computational power enables real-time analysis of
evolving graph structures. Several GPU-based dynamic graph update systems have been developed
to process continuously changing graphs, including cuSTINGER [1], Hornet [2], GPMA [3], LPMA
[4], aimGraph [5], and faimGraph [6]. cuSTINGER and Hornet utilize array-based memory
management systems, while GPMA and LPMA are based on the Compressed Sparse Row (CSR)
format. In contrast, aimGraph and faimGraph employ chain-based memory management systems.
Among these, cuSTINGER and GPMA represent notable adaptations of the CPU-based systems
STINGER [23] and PMA [24] to GPU platforms, optimizing GPU computational performance and
memory access efficiency.

Most traditional systems assume that the input graph can be entirely stored in GPU memory [1-
5]. In other words, these systems are constrained by the requirement that the input graph must fit
within the limited global memory capacity of the GPU. To address this limitation, out-of-memory
graph processing systems have been proposed [7]. For example, EGraph [7] integrates Subway [31],
a GPU-based static graph processing system, with GPMA's dynamic graph update mechanism,
enabling the processing of graphs that exceed GPU memory capacity. Despite the rapid parallel
processing capabilities of GPUs, their memory constraints remain a significant challenge, particularly
for real-time dynamic graph processing.

In this paper, we propose an efficient scheme for processing large-scale dynamic graphs based
on subgraph scheduling and operation reduction. First, the structure and dynamic change patterns
of the graph are analyzed on the host to determine the optimal partition loading order using priority
scores. These scores consider not only active vertices within a partition but also those that may
potentially become active, optimizing data processing on GPUs and maximizing memory utilization.
Additionally, since the structure of dynamic graphs evolves over time, snapshots are generated at
specific intervals to capture the graph’s state and collect relevant information. These snapshots help
identify instances where identical vertices or edges are repeatedly inserted and deleted, enabling an
operation reduction method to minimize unnecessary computations. This approach effectively
reduces resource usage and enhances graph processing speed.

The structure of this paper is as follows. Section 2 analyzes existing research on large-scale graph
processing using GPUs and examines the associated challenges. Section 3 presents the proposed
scheduling and operation reduction methods for efficient dynamic graph processing on GPUs.
Section 4 evaluates the effectiveness of the proposed method through performance assessments using
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various graph algorithms. Finally, Section 5 concludes the paper and outlines potential directions for
future research.

2. Related Works

With the rapid growth of graph sizes, research on graph processing using both CPUs and GPUs
has been actively pursued. CPUs offer abundant memory and computational capabilities, facilitating
the efficient execution of complex graph algorithms. In contrast, GPUs provide massive parallel
processing power, enabling the simultaneous execution of numerous threads to efficiently parallelize
graph algorithms[26-30]. Several GPU-based graph processing methods have been developed to
enhance performance. GTS [25] introduces a fast and scalable approach based on streaming topology,
while CuSha [26] develops a novel graph representation optimized for GPU utilization. Gunrock [27]
employs a frontier-based synchronous execution model specifically designed for GPUs. Additionally,
Totem [28], Garaph [29], and Scaph [30] integrate the strengths of both CPUs and GPUs to accelerate
graph processing in heterogeneous systems. Totem partitions large-scale graphs for concurrent
processing on CPUs and GPUs; Garaph optimizes GPU-accelerated graph processing using a
scheduling algorithm based on the proportion of active vertices, and Scaph enhances scalability
through value-centric differential scheduling. Subway focuses on minimizing data transfer in out-of-
memory scenarios, providing a robust foundation for processing complex static graph datasets. Since
real-world data is inherently dynamic and its structure evolves over time, studying dynamic graph
processing is essential. Numerous CPU-based systems for efficient dynamic graph processing have
been proposed in recent years [17-24]. Unlike static graphs, dynamic graph processing requires
tracking and recording changes in the graph over time, introducing additional computational
challenges.

Figure 1 illustrates snapshots that represent the state of a dynamic graph at specific points in
time. These snapshots capture the current structure of the graph and are used to track changes over
time. Detecting changes in dynamic graphs involves identifying and recording events such as the
addition or deletion of edges and the creation or removal of vertices. STINGER is a data structure
and API suite designed for efficiently handling large-scale dynamic graphs. It supports rapid edge
additions, deletions, and other graph modifications in CPU-based systems. Similarly, PMA is a data
structure optimized for dynamic graph processing, enabling efficient management of graph changes.
However, CPU-based systems face inherent limitations due to the restricted parallelism and memory
bandwidth of CPUs, which hinder their scalability for large-scale dynamic graph processing.
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Figure 1. Snapshots for processing dynamic graphs.

Various studies have explored GPU-based dynamic graph processing [7-16]. EGraph is a
representative system designed to efficiently handle dynamic graphs on GPUs. It partitions graphs
into subgraphs and processes them in parallel to optimize GPU resource utilization. To reduce data
transfer overhead between the CPU and GPU, EGraph employs the Loading-Processing-Switching
(LPS) execution model. However, EGraph has certain limitations. It does not account for preliminary
active vertices during scheduling, which can prevent the graph from achieving an optimal processing
order during repeated executions. Additionally, it does not effectively address the redundant
processing of overlapping snapshot sections, leading to inefficiencies in dynamic graph updates.
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This paper proposes a priority-based scheduling and computation reduction method to
overcome the limitations of existing approaches. By prioritizing both active and preliminary active
vertices, the proposed method enhances GPU resource utilization and minimizes redundant
computations caused by dynamic graph updates, thereby improving processing performance.

3. Proposed Dynamic Graph Processing Scheme

3.1. Overall Architecture

This paper presents a system architecture that integrates the capabilities of both CPUs and GPUs
to efficiently process large-scale dynamic graphs. By leveraging the parallel processing power of
GPUs alongside the management and scheduling capabilities of CPUs, the proposed system
accelerates dynamic graph processing. The architecture maximizes GPU parallelism to expedite
graph computations while utilizing the CPU for preprocessing, management, and task scheduling.
This integrated approach reduces computational complexity and workload, thereby enhancing
overall processing performance.

Figure 2 illustrates the overall structure of the proposed scheme for dynamic graph processing,
comprising a host and a device. The host consists of the Graph Preprocessor, Scheduling Manager,
Operation Reduction Module, and Partitions Dispatcher, while the device includes the Process
Manager and streaming multiprocessors (SM) Switcher. On the host side, key tasks include
preprocessing the original graph, maintaining snapshots that capture the evolving structure of the
dynamic graph, scheduling graph partitions, and transferring them to the GPU for processing. The
device side is responsible for receiving graph data, executing computations on the GPU, and ensuring
load balancing to optimize performance.

I Dynamic
Graph
Scheduler
Queue Host

(CPU)

Device

—— s (cPu)
SRy Manager @ w = ‘ L—ml
Subgraph ‘ —
Partitions SM SM SM

Figure 2. Overall processing structure of the proposed scheme.

3.2. Graph Preprocessor

For an input graph to be processed by the GPU, it must first undergo preprocessing to fit within
the GPU’s limited memory. Since the size of the input graph often exceeds the capacity of the GPU’s
global memory, the Graph Preprocessor divides the input graph into fine-grained partitions that can
fit within this memory constraint. During partitioning, a vertex-cut method is employed to segment
the graph into sizes optimized for GPU memory usage. This approach ensures that each partition
remains within the available memory capacity while maintaining computational efficiency. Equation
(1) calculates the size of each partition, ensuring that the total size of N partitions, | Partition|x N does
not exceed the size of the global memory capacity, | Globall.

|Partition|
- |Global| (1)
- N

The resulting partitions are assigned to the GPU’s SMs for parallel processing. The vertex-cut
method is designed to preserve the graph’s structural integrity while optimizing memory utilization.
Through this process, the Graph Preprocessor ensures that the input graph is efficiently prepared for
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GPU-based processing. The graph partitioning approach ensures that the input graph is properly
divided to maximize GPU efficiency. In the event of graph updates (e.g., edge or vertex additions
and deletions), only the affected portions of the graph are processed. This selective update
mechanism minimizes CPU-GPU data transfer costs by moving only the necessary data for graph
updates, thereby reducing redundant data transfers and improving overall processing efficiency.

3.3. Scheduling Method

Before transmitting the divided graph partitions to the GPU, it is essential to determine their
loading order, a process referred to as scheduling. The Scheduling Manager efficiently organizes and
coordinates operations for each partition of the subdivided graph. This involves prioritizing
partitions and determining the optimal sequence for loading them onto the GPU. Additionally, the
scheduler considers the dynamic nature of graphs to establish and manage schedules that adapt to
graph changes in real time. Figure 3 illustrates the process of partitioning and scheduling snapshots
of a dynamic graph. Over time intervals t1 to t4, snapshots G1, G2, G3, and Ga are generated. If a
snapshot exceeds the GPU’s global memory capacity, it is further divided into multiple partitions.
These partitions are then enqueued in the Scheduler Queue based on their priority, ensuring efficient
processing on the GPU.

This paper proposes an optimized method for determining the loading order to enhance the
efficiency of dynamic graph processing on GPUs. Partitions generated through graph partitioning
are assigned priorities to ensure optimal scheduling. Updated partitions are prioritized for processing
first, while partitions that appear in multiple snapshots are also loaded into the GPU’s global memory
earlier to minimize redundant computations. Additionally, this study considers not only active
vertices but also potentially active vertices that may become active in subsequent processing. By
incorporating these factors into priority assignment, the proposed method improves GPU resource
utilization and enhances overall processing efficiency.

Snapshots Partitions

t1 1 P1 Ps P2 Ps P4

t2 P1 Ps P2 Ps

ts P1 Ps| | P2

]l <]l

P1 P3| |P2| |P5| | Pa

Partitioning

P : Non-updated, P : Updated

)

P3| |P2| |P5| | Pa
Processing Order:

Scheduler Queue
(arranging the loading order of the partitions(Pn))

Figure 3. Dynamic graph scheduling.

Equation (2) represents N(Pi), which refers to the number of snapshots required to process Pi
when an update occurs. Active(Pi) denotes the number of active vertices within the partition, and
Potential(P;) refers to the potential active vertices, i.e., the tentative active vertices within the partition.
K varies depending on whether an update has occurred. If an update occurs in the partition, K is set
to1; if noupdate occurs, it is set to 0, and the priority is adjusted accordingly.

a and ( are scaling factors set during preprocessing to emphasize the impact of certain values.
This priority formula ensures that partitions are efficiently loaded into the GPU.
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Figure 4 illustrates an example of active and potentially active vertices during dynamic graph
processing when an edge between two vertices V2 and Vs is deleted. Figure 4a shows a scenario where
the edge between vertices V2 and Vs in partition P3 is deleted. Figure 4b depicts the activation process,
where V2 and V3 become active vertices due to the edge deletion. Additionally, vertices connected to
these active vertices, which are likely to become active in subsequent steps, are marked as potentially
active vertices (highlighted in blue). In this example, V1, V3 and V7 are identified as potentially active
vertices. Figure 4c demonstrates the transition where active vertices are processed, and potentially
active vertices from Figure 4b V1, V3 and V7 transition into active vertices and are subsequently
processed.
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Figure 4. Active vertices and candidate active vertices in dynamic graphs.

3.4. Operation Reduction Method
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The Operation Reduction Module implements techniques to minimize computational overhead
before transmitting graph snapshots to the GPU. These techniques account for the dynamic nature of
graphs by analyzing the characteristics of snapshots that evolve over time. As snapshots are
generated at different time points, the module efficiently preprocesses them to reduce redundant
operations before execution on the GPU. This preprocessing step optimizes GPU resource utilization
and improves overall processing efficiency.

The core of the operation reduction method lies in efficiently tracking changes in the graph at
each time step and eliminating redundant computations on identical edges or vertices. To achieve
this, the Operation Reduction Module stores graph snapshots and compares them with previous
states, identifying unchanged partitions and skipping their processing. This significantly reduces the
overall computational load. This approach is particularly beneficial in scenarios where edges are
frequently added or removed, as it prevents unnecessary operations on unaffected vertices.
Additionally, only the modified portions of the graph are transmitted to the GPU, rather than
reprocessing the entire dataset. By focusing solely on the necessary updates, this method minimizes
memory transfer costs, reducing both computational overhead and resource waste during data
transmission. Therefore, the proposed optimization enhances the overall efficiency and performance
of dynamic graph processing.

Figure 5 illustrates an example of operation reduction for redundant computations on the same
edge. As shown in the figure, dynamic graph snapshots are generated at time points t1, t2 and t3. At
t2, an edge is added between V2 and V3, and at t3, the same edge is removed. Consequently, the
snapshot at t1 becomes identical to the snapshot at t3. In such scenarios, the module avoids
unnecessary update operations, thereby reducing the computational workload on the GPU. This
optimization minimizes redundant operations, conserves resources, and enhances the efficiency of
dynamic graph processing.

3.5. Processing Loaded Partitions

After the preprocessed partitions are prioritized by the Scheduling Manager, the Partitions
Dispatcher transfers them from host memory to GPU memory. Each partition, optimized for parallel
processing, is transferred according to the determined loading order and stored in the GPU’s global
memory. The Process Manager then ensures that these partitions, loaded via the Partitions
Dispatcher, are efficiently processed simultaneously on the SMs. SMs, being the core components of
the GPU, are responsible for executing parallel tasks. The Process Manager coordinates tasks within
the SMs, ensuring that each operates as efficiently as possible to maximize GPU resource utilization.

Time t1 t ts
Vi Vi \2
Snapshots / \ / \ / \
V2 \A V2 — V3 V2 V3
Update o)) | Insertion) V2->V3 Deletion) V2->V3 |
Reduction

Figure 5. Example of operation reduction for the same edge.

When processing partitions, the computational loads of different tasks may vary, leading to load
imbalance. To address this, an SM Switcher is employed to ensure load balancing by evenly
distributing workloads across the SMs.

The SM Switcher continuously monitors the workload of each SM and redistributes unprocessed
tasks from heavily loaded SMs to idle ones. This process involves temporarily pausing tasks assigned
to overloaded SMs, dividing the unprocessed portions into smaller subsets, and reallocating these
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subsets to idle SMs. By dynamically balancing workloads, the SM Switcher optimizes resource
utilization and enhances the overall efficiency of dynamic graph processing.

4. Performance Evaluation

4.1. Performance Evaluation Environment

A performance evaluation was conducted to demonstrate the effectiveness of the proposed
scheme for dynamic graph processing on GPUs. This evaluation compares the proposed scheme with
existing approaches to highlight its advantages. Table 1 outlines the performance evaluation
environment. For the experiments, an integrated CPU-GPU environment was established. The CPU
environment consisted of an AMD Ryzen Threadripper PRO 5955WX processor with 16 cores
running at 2.7 GHz and 32 GB of memory. The GPU environment utilized an NVIDIA GeForce RTX
4090 with 24 GB of memory. The proposed method was implemented and tested on a Linux (Ubuntu
23.04 LTS) operating system, using GCC 11.4.0 and CUDA 12.2.

Table 2 presents the datasets used for the evaluation. The following datasets consist of directed
graph data provided by the SuiteSparse Matrix Collection [40]. The soc-LiveJournall dataset was
collected from the LiveJournal online social network. The twitter7 dataset represents the Twitter
follower network, while the sk-2005 dataset is based on web crawl data from the .sk domain.

Table 1. Performance evaluation environment.

AMD Ryzen Threadripper PRO 5955WX

CPU
Hardware 16-Cores @ 2.7 GHz
Configurationl Main memory 64 GB

Secondary storage 1TB
Hardware GPU NVIDIA GeForce RTX 4090
Configuration2 Memory 24 GB
0S Linux Ubuntu 23.04
Software GCC 11.4.0
Configuration CUDA 12.2

Table 2. Dataset.
Data |11 |E Description
S(,)C- 4,847,571 68,993,773 LiveJournal online social network
LiveJournall
twitter? 41,652,230 1,468,365, 182 SNAP network: Twitter follower
network

sk-2005 50,636,154 1,949,412,601 2005 web crawl of .sk domain

4.2. Self-Performance Evaluation

This performance evaluation compares graph processing execution times to determine the
optimal partition size for the proposed scheme. The evaluation employed the Single Source Shortest
Path (SSSP) algorithm with the sk-2005, twitter7, and soc-LiveJournall datasets. Figure 6 presents the
execution times for each dataset. The x-axis represents the number of partitions, ranging from 2, 4, 8,
16, to 32. For the sk-2005 dataset, the fastest execution time was achieved with 32 partitions, while
the slowest occurred with only 1 partition. For the twitter7 dataset, the fastest execution time was
recorded with 2 partitions, and the slowest with 8 partitions. Similarly, for the soc-LiveJournall
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dataset, the fastest execution time was also observed with 2 partitions, while the slowest occurred
with 8 partitions. The optimal number of partitions for the proposed scheme depends on both the
dataset size and the capacity of the GPU’s global memory.

18 17.8
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16.5 16.2 16.4 16.2

i 159 1538
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Execution time(s)
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1 2 4 8 16 32

Number of partitions

(¢) soc-LiveJournal

Figure 6. Graph processing execution time according to the number of partitions.

This performance evaluation also examines graph processing execution times for each algorithm
when applying the operation reduction method. The GPU processing times are compared with and
without operation reduction to assess its impact. Figure 7 presents the processing times, including
the preprocessing time required to apply the operation reduction method and the resulting reduction
in execution times. The evaluation was conducted using the sk-2005 and twitter7 datasets, with the
graph modification rate set to 1%. Both preprocessing time and operation reduction time were
measured. The x-axis of Figure 7 represents the algorithms being compared, listed in the following
order: Single Source Shortest Path (SSSP), Single Source Widest Path (SSWP), Breadth-First Search
(BFS), and CC. The y-axis of Figure 8 represents the net benefit time, calculated as the reduced
execution time achieved through operation reduction minus the preprocessing time. The results
confirm that the time savings from operation reduction significantly outweighed the preprocessing
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time. This performance evaluation demonstrates the superior efficiency of the proposed operation
reduction method.

4.3. Performance Evaluation Results

The performance evaluation compared the proposed scheme with a modified version of
Subway, a static graph processing scheme adapted for dynamic graph processing, and EGraph, a
dynamic graph processing scheme. This comparison assessed the performance differences between
the proposed scheme and existing approaches, demonstrating the efficiency of the proposed scheme
in dynamic graph processing. The experiments were conducted using the sk-2005 and twitter7
datasets, with the data modification rate set to 0.01%. The evaluation employed the Connected
Components (CC), SSSP, and BFS algorithms. The x-axis of Figure 8 represents the algorithms being

compared.
3.5
o 3
< 2.9
£ 2.8
S
S 2.6
S 2.55
ks
. I
2
SSSP SSWP BFS cc
(a) sk — 2005
3.5
w3 2.95
‘g 2.9
p=
15 2.7 2.68
©
>
ks
. I
2
SSSP SSWP BFS cC
(b) twitter7

Figure 7. Time savings through operation reduction methods.

In Figure 8, the x-axis represents the algorithms under comparison, while the y-axis indicates
the performance improvement ratios of EGraph and the proposed scheme relative to Subway
(baseline set at 1). In Figure 8(a), the proposed scheme achieved 348%, 243%, and 303% faster
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processing speeds compared to Subway, and 104%, 109%, and 108% improvements over EGraph. In
Figure 8(b), the proposed scheme demonstrated 229%, 287%, and 271% faster speeds than Subway,
and 100%, 120%, and 108% faster than EGraph.

The performance differences arise from the distinct processing approaches of each scheme.
Subway processes only one snapshot at a time, resulting in relatively slower execution. EGraph
supports dynamic graph processing but does not consider tentative active vertices during scheduling
and lacks an operation reduction method, leading to unnecessary computations and suboptimal
performance. The proposed scheme overcomes these limitations through priority-based scheduling,
which accounts for tentative active vertices to efficiently determine the GPU processing order, and
operation reduction techniques, which eliminate duplicate computations across snapshots. This
enables more efficient partition processing in response to dynamic graph changes. Therefore, the
proposed scheme achieved up to 348% faster speeds than Subway and 120% faster speeds than
EGraph, maximizing resource utilization and computational efficiency in dynamic graph processing.
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Figure 8. Performance comparison with various existing schemes.

5. Conclusions

In this paper, we proposed a novel scheme for efficiently processing dynamic graphs in GPU
environments with limited memory. The proposed scheme integrates dynamic scheduling and
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operation reduction techniques, effectively reducing data transfers between the CPU and GPU while
minimizing the overall computational load. The dynamic scheduling technique considers both active
and tentative active vertices to efficiently determine the GPU load order for each partition. The
operation reduction technique adapts to dynamic graph changes, eliminating unnecessary
computations and proving particularly effective in environments with frequent vertex and edge
insertions or deletions.

Future research will focus on expanding the proposed scheme to distributed platforms to
evaluate performance on larger-scale graph processing tasks. The applicability of the scheme across
various graph algorithms will be explored, and optimized techniques will be developed for real-time
dynamic graph processing environments. Through these advancements, the proposed scheme can
address more complex and large-scale dynamic graph processing challenges.
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BFS Breadth-First Search

CcC Connected Component

CPU Central processing units

CSR Compressed Sparse Row

DOI Digital object identifier

LPS Loading-Processing-

Switching

SM Streaming multiprocessors
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