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Abstract: We investigate the dynamics and stationary states of a semiconductor exciton-polariton
condensate in a double well potential. We find that upon the population build up of the polaritons
by above-threshold laser pumping, coherence relaxation due to the phase fluctuations of the po-
laritons drives the system into a stable fixed point corresponding to a self-organized PT-symmetric
phase.
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1. Introduction

One of the prominent research directions in semiconductor optics is the study of
exciton-polariton condensation in microcavities. Exciton-polaritons are hybrid quasi-
particles of strongly coupled quantum well excitons and cavity photons [1,2], retaining
the properties of both matter and light. The excitonic part mediates effective interactions
between the polaritons, giving rise to interesting nonlinear properties, whereas the small
effective mass of the photonic component enables Bose-Einstein condensation even
at ambient temperatures [3-5], in contrast to their ultracold atomic counterparts [6].
The short lifetime of the polariton condensate renders it an open system that requires
continuous replenishing from the excitonic reservoir via external pumping. After their
experimental realization [7,8], the polariton condensates have been shown to be ideal
system for studies of many effects at the interface of non-equilibrium physics and
nonlinear dynamics.

The intrinsic nonlinear dynamics of polariton systems lead to a variety of effects,
such as the appearance of a Mach-Cherenkov cone in a supersonic flow [9], the formation
of quantized vortices [10], and dark solitons [11]. Moreover, the polariton condensates
can be engineered with high precision by the external laser fields [8,12-14]. Finally,
such systems are promising candidates for various applications in photonic devices,
such as switches, gates and transistors [3], as well as for simulations of interacting spin
models [15].

The “open” nature of a system featuring gain and loss leads to interesting impli-
cations when the dissipative dynamics become pseudo-Hermitian. This is the case in
parity-time (PT) symmetric setups, where dissipation losses are exactly balanced by the
pumping gain. Systems with PT-symmetry has been a flourishing and broad research
field, extending from quantum mechanics [16] and field theory [17] to optics [18] and
acoustics [19].

The interplay between the inherent losses and the laser pumping adjusted to pre-
serve the PT symmetry provides an effective framework where a polariton system can
exhibit coherent, Hermitian-like dynamics for relatively long times. Remarkable recent
results include permanent Rabi oscillations [20], multistability and condensation below
threshold [21], exceptional points in polaritonic cavities below lasing threshold [22],
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Figure 1. Schematic top view (left panel) and side view (right panel) of a polariton system in
a double quantum well. Spatially shaped pumping lasers populate with rates P; and Py the
reservoir excitons ny, g, which decay via recombination with rates I' and energy-relax and scatter
into the polariton condensate with rate R. The pumping lasers also create the confining potentials
for the polaritons ¢y and ¢r, which decay with rates x, are continuously replenished by reservoir
excitons with rates Rnj, g, while interacting with each other via the Josephson coupling J.

and coherent oscillations of a two species polariton mixture in a double well [23]. The
latter has been shown to be able to simulate the dynamics of a pair of spin-1/2 particles
(qubits) in the presence of exchange interaction. So far, however, polariton structures in
the framework of PT symmetry have not been extensively studied, and more efforts are
needed to reveal the rich landscape of phenomena that can emerge from this framework.

In this work we study the dynamics of an exciton-polariton condensate in a double
well potential, in the presence of time-varying exciton populations and phase fluctu-
ations. We consider the coupled-mode Gross-Pitaevskii equations for the polaritons
supplemented by the rate equations for the laser-pumped exciton reservoirs, and derive
analytically the steady state solutions for the exciton and polariton populations as well
as their coherence. We find that, when the total pumping rate is above threshold, the
system automatically attains the PT symmetric state, independently of the pumping
rates of the individual sites. Employing numerical simulations for several different
pumping rates and initial conditions, we verify our analytical findings. We also study
the stability and robustness of our results in the presence of phase noise caused by the
unavoidable phase fluctuations of the polaritons.

2. The exciton-polariton system

The system under consideration is schematically illustrated in Fig. 1. One or
more layers of semiconductor quantum wells are placed inside the semiconductor
microcavity near the antinode of the resonant cavity field mode. Spatially shaped
pumping lasers replenish continuously the exciton reservoirs and simultaneously create
confining potentials for the polariton condensate. Assuming a tight-binding double-well
potential, the exciton-polariton system can be described by the following coupled non-
linear Schrodinger equations for the polariton condensate wavefunctions ¢} and ¢ in
the left (L) and right (R) wells [24]:

, i

g = [er+nlyel?]go+ 5[Rn — gL — ] ¥, (1a)

, i %

iR = [GR + 77|1/JR|2} YR+ 5 [Rng = KR = J"91, (1b)
where €] r are the single-particle energies, # is the nonlinear interaction strength, « is the

decay rate of the polaritons due to the exciton recombination and cavity photon losses
(assumed the same for both wells), and ] is the Josephson (tunnel) coupling between the
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wells. The polariton equations are supplemented by the equations for the populations
ny r of the reservoir excitons,

ony = PL—l"nL—RnL|1pL|2, (2a)
ong = PR*FnR*RanlpRF, (2b)

which are created by laser pumping with rates Pr g, decay with rate I', and scatter into
the polariton condensate with rate R.

In Appendix A we briefly outline the PT-symmetry conditions for a condensate in a
double well potential. Neglecting for the moment the non-linearity 7, the PT-symmetry
condition is satisfied when e g = € (= 0) and the gain in one well exactly compensates
the losses in the other,

[Rnp — ] = — 2 [Rug — ] = —7r, 3)

YL = 5

NI~

as per Egs. (1a) and (1b), which leads to ny, +ng = %" The threshold pumping at
which the polariton condensate starts to form can be obtained from the condition that
the sum of the gain and loss in both wells is non-negative, v + ygr > 0. With Eq. (3),

this condition is equivalent to
2K
n ng > —. 4
LtnR 2 & 4)
Note that, exactly at the threshold, this is the same condition as for the PT-symmetry.
In the stationary regime for the reservoir excitons, d;ny g = 0, we find from Egs. (2) the

steady-state values

P
nLR MR ®)

T+ Rlyrr
Exactly at the threshold for condensate formation, the values of the polariton

populations in both wells, |¢ r|?, are marginally equal to zero and we have ny g ~

P r/T. Substituting these values into Eq. (4), we find the threshold pumping condition

PPy > 2T ©
R
above which the condensate begins to form, while for P; + Pr < 2xI'/R the condensate
decays to zero.

In the upper panels of Fig. 2 we show the polariton populations |y r|? for dif-
ferent pumping rates and initial conditions, with and without non-linear interaction,
as obtained from the numerical solution of Egs. (1-2). The insets show the evolution
of the exciton populations 7, and ng and their sum ny, + ng. For pumping below
threshold, we observe a decay of the initial (seed) polariton populations with rate
YL+ YR = % (PL + Pr) — k < 0, accompanied by Rabi-like oscillations, while the exci-
ton populations settle to n; g = P; r/I'. For pumping above threshold, the polariton
populations grow until reaching certain values |y g|? at which ny + ng =~ %", while
the Rabi-like oscillations persist or are eventually damped, depending on the initial
conditions or presence of non-linear interaction, as discussed below. Remarkably, the
polariton and exciton populations increase and decrease, respectively, reaching the
same stationary values which satisfy the PT-symmetry conditions, independently of the
pumping rates, as long as pumping is retained above threshold.
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Figure 2. Dynamics of the polariton populations |¢; r|* (upper panels), the reservoir excitons 1, g
(insets), and the coherence ® (lower panels), as obtained from the numerical solution of Egs. (1-2)
for the parameters € = 0, x = 10], I’ = 2], R = 0.02] (time is in units of | -1, corresponding to the
threshold values of pumping P + Pr = 2xI'/R = 2000] and the steady-state exciton populations
np + ng = 2x/R = 1000 (green dashed lines in the insets). The initial exciton populations are
always taken as ny, g = Pr g /T, while the initial polariton amplitudes y; r are seeded with small
(complex) values. (a) Linear case (7 = 0) with the pumping rates P, = 1000] and Pgr = 990]
slightly below threshold, leading to decay of the initial polariton populations |y (t)|?> and | (t)]
and steady-state exciton population nj, +ng < 2x/R. (b) Same as in (a), but for stronger pumping
rates P = 1080 and Pr = 1020 above threshold and initial conditions Re®(0) = 0, leading to
the initial build up of the polariton populations and their continuous Rabi-like oscillations, while
Re®(t) = 0V t, and the exciton population ny + ny oscillating slightly above the threshold value
2k /R = 1000. (c) Same as in (b) but for the initial conditions Re®(0) # 0, leading to a steady-state
of the system. (d) Same as in (b) with the initial conditions Re®(0) = 0 but in the presence of
nonlinearity 7 = 0.3] that couples Re® and Im®, leading to a steady-state of the system.

3. Equivalence of the PT-symmetry and steady state conditions

To understand the dynamics of the system, it is convenient to express Egs. (1) in
terms of the polariton populations |¢; r|> and coherence ® = P} as

lwLl? = 2q|yL|* +2/ImO, (7a)
dPrl> = 2vr|gr|* —2/Im@, (7b)

%0 = —iler—er+n(yul —lyr?)]©
+(yL +7R)O — i](W’L|2 - |l/’R|2)- (7c)

Note that below threshold, (7. + yr) < 0, both the polariton populations and their
coherence decay to zero, as already mentioned above.

Let us assume €7, g = 0 and consider first the case of vanishing nonlinearity 7 = 0.
Equation (7c) indicates that the coherence decays only if its real part is nonzero. In turn,
the solution for the real part of the coherence is

Re®(t) = Re®(0) eJo(rLHrR)A "

Hence, if initially Re®(0) = 0, it will remain so at later times, Re©(t) = 0 V t > 0.
Then the dynamics of the system, if pumped above threshold, will exhibit continuous
Rabi-like oscillations with frequency J, while no steady state will be attained, as in Fig.
2(b).

In practice, however, even if initially we have Re®(0) = 0 [e.g., either ¢;(0) = 0
or Pr(0) = 0], the unavoidable phase fluctuations of the polaritons will eventually
lead to the appearance of finite Re©(t) # 0, which in turn will result in the decay of
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Figure 3. Dynamics of the polariton populations |1 r|? (upper panels), the coherence © (middle
panels), and the left-well polariton field correlation function g(l) (t) (lower panels), for the same
parameters as in Fig. 2 with the addition of phase fluctuations causing decoherence with rate
¢ = 0.05], as obtained from the the ensemble averaged solution of Egs. (1-2). (a) Linear case ( = 0)
with the below threshold pumping P; = 1000] and Pr = 990] leading to the exponential decay of
the correlation function gV (t) e e~ (€~171+7%1/2) () Same as in (a), but for stronger pumping
above threshold P; = 1080 and Pr = 1020. Now, independently of the initial value of Re®(0),
the phase fluctuations cause exponential decay of g1) (t) & e~%! while the system approaches the
steady state. (c) Same as in (b) but in the presence of nonlinearity # = 0.3], causing accelerated
decay of g1 () o e~0957t and faster approach of the system to the steady state. In the lower
panels, we also show the correlation functions g(l) (t) obtained from the long-time average of the
system dynamics (the oscillating tail of g() is due to the finite length of the time series).

coherence and drive the system to the steady state. Equivalently, if we have initially
Re®(0) # 0, the system can still exhibit initially Rabi-like oscillations, but then it will
eventually attain the steady state, as in Fig. 2(c). Finally, as seen from Eq. (7c) the
nonlinear interaction couples the real and imaginary parts of the coherence ® with
the rate (| |> — |¢r|?). Hence, in the presence of nonlinearity 7 # 0, we expect the
eventual decay of the coherence with the system attaining the steady state, for any initial
conditions and independent on the phase fluctuations, as in Fig. 2(d).

Setting the time derivative in the left-hand side of the Eq. (7c) equal to zero, we find
the steady state is reached when

Rlnp+ng] —2x =0, and |pr]* = [pr|* )

Remarkably, the first equation corresponds exactly to the PT-symmetry condition ny +
ng = 2 discussed above. Moreover, this condition is satisfied even in the presence of
nonlinear interaction 7 # 0, because the equal polariton populations as per the second
equation lead to exactly the same energy shifts 77|y r|? of the polaritons in both wells.
In other words, for any initial conditions, and provided the total pumping is above
threshold as per Eq. (6) but otherwise arbitrary P; and P, the system attains a stable
fixed point corresponding to the PT-symmetric state. Even when no steady state exists
or is yet reached, the PT condition in Eq. (9) is approximately satisfied, as seen in the
insets of Fig. 2.
Combining Egs. (5) and (9), we find that steady state polariton populations are

Pr + P r

2 2 L R

- - = — = l
|¢L| IIPR| 2K R’ ( 0)
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while the exciton populations are

ZKPLR
NLR = ——— . 11
PR R(PL+ PR) ah

Using these stationary values for 17, g and |y r|* in Egs. (7a) and (7b) in the steady state

we obtain F(P—Py) PP
_ k(P —Pg) PL—Pg
m(®) = Ry(B T Pe) A 12)
and from | |2 = [Re(yryk)]? + [Im(yLy})]? we obtain
Re(®) = Dy/42(Py + Pr)? — k(P — Pr)? (13)

where
. P+ Pgr —2xI'/R

D =
4]y(PL + Pg)
These results are verified by the numerical simulations illustrated in Fig. 2 and they
equally hold for any value the nonlinearity strength 7.

4. Phase fluctuations

As mentioned above, the coherence of the polariton condensate will decay due to
the phase fluctuations that are always present in realistic quantum systems. We therefore
incorporate the phase noise in our numerical calculations and investigate how it modifies
the dynamics of the polaritons and the coherence. We model the phase fluctuations as the
standard Wiener process for stochastic differential equations. Thus, the single-particle
energies €, g in Egs. (1) become Gaussian stochastic variables with the mean (e z) = 0
and variance 02 = 2Z/5t, where ¢ is the decoherence rate and Jt is the time step for
picking a new random energy.

In Fig. 3 we show the results of our numerical simulations as obtained upon the
ensemble average over N = 1000 independent realizations of the system dynamics. We
compute the first-order correlation functions g (t), which quantify the coherence for
the polaritonic fields, via

M (p(to)y(t)) 14
N (TS BNk 9

where i = ¢ or iPg, and (...) denotes the ensemble average.

Below the pumping threshold, the polariton fields decay with rate v + yr < 0,
but the phase fluctuations with rate ¢ causes even faster decay of coherence, gV (t)
e~ (&= +7xI/2)t a5 seen in Fig. 3(a). For pumping above threshold, the phase noise
causes exponential decay of the correlation function g1 (t) o e~¢, while the system
approaches the steady state independently of the initial value of coherence Re®(0), as
seen in Fig. 3(b). Including also the nonlinear interaction  # 0 further accelerates the
decay of the correlation function and the system approaches the steady state even faster.

We finally note that for an ergodic system the ensemble-averaged and time-averaged
correlation functions are equivalent. To verify whether our polariton system is ergodic,
we also compute the field correlation function

Dty = S drp(Dy* (T + 1) 5)

VI g [ drlp(r+ )2

resulting from a single, long-time trajectory with ¢¢ — t; = 3000/ ]. As seenin Fig. 3 (lower
panels), the computed ensemble-averaged and time-averaged correlation functions
coincide to a very approximation, attesting to the ergodicity of our system.

gt
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5. Conclusions

To summarize, we have studied an exciton-polariton system in a double-well
potential, taking into account the dynamics of the reservoir excitons and the polaritons.
We have found that for pumping of the excitons above the total threshold value for the
formation of the polariton condensate, the exciton populations attain the values that
satisfy the PT-symmetry condition for the polariton condensate, independent of the
pumping rates of the individual wells. Employing the population-coherence equations,
we interpreted the corresponding dynamics and revealed the stable fixed point, or
the steady state, that the system approaches. To make our analysis experimentally
relevant, we have taken also into account the phase fluctuations present in any realistic
system, and computed the first-order correlation functions for the polariton fields, which
revealed the coherence decay with the corresponding rate.

We note that our results apply to moderate non-linear interaction strength and
small differences in pumping rates of the two wells. For large difference in the pumping
rates, the strong non-linear energy shift of the polariton condensate energy may lead to
self-trapping and break-up of the PT symmetry [25]
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Appendix A. Polariton condensate in a PT-symmetric double well

Consider a polariton condensate in a double well potential described by the coupled-
mode equations

i = (eL+ivi)gr+nlylPyr —J yr, (Ala)
Opr = (er+ivR)YR + YR *Yr = TP, (Alb)
where €] r are the single-particle energies, 1 r are the incoherent loss (7 < 0) or gain

(v > 0) rates at each well, 7 is the nonlinear interaction strength, and | is the Josephson
coupling between the wells.

1_
Im[Ay] T
0

-1F

0 0.5 1.5
Al

Figure Al. Imaginary part of the eigenvalues A+ in Eq. (A3). For v < J(= 1) we have a PT

—

symmetric phase with real eigenvalues. Above the bifurcation point at v = J, the system enters
the PT broken phase with imaginary eigenvalues.

If we set € g = 0, assume negligibly weak nonlinearity, 7|¢|> < ], and set 7, =
—9R = 7 so that the loss at the right well is exactly compensated by the gain at the left
well, we obtain a PT-symmetric Hamiltonian matrix corresponding to Egs. (A1) [23]:

_(ir —J
H—(_]* —i7>‘ (A2)
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Its eigenvalues and the corresponding eigenvectors are given by

N e
= [ (Vi i) s R /s (A%)

with N4 the normalization factors. For v < |]|, the eigenvalue spectrum is real and the
dynamics is Hermitian-like. For ¢ > |]|, the eigenvalues become imaginary and the
system enters the PT-broken phase. The case |J| = 7 corresponds to the exceptional
point of the system where the eigenvalues become degenerate and the eigenstates
coalesce. Figure Al illustrates the dependence of imaginary part of the eigenvalues on
the loss/gain parameter .

and
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