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Abstract: We investigate the dynamics and stationary states of a semiconductor exciton-polariton1

condensate in a double well potential. We find that upon the population build up of the polaritons2

by above-threshold laser pumping, coherence relaxation due to the phase fluctuations of the po-3

laritons drives the system into a stable fixed point corresponding to a self-organized PT-symmetric4

phase.5
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1. Introduction7

One of the prominent research directions in semiconductor optics is the study of8

exciton-polariton condensation in microcavities. Exciton-polaritons are hybrid quasi-9

particles of strongly coupled quantum well excitons and cavity photons [1,2], retaining10

the properties of both matter and light. The excitonic part mediates effective interactions11

between the polaritons, giving rise to interesting nonlinear properties, whereas the small12

effective mass of the photonic component enables Bose-Einstein condensation even13

at ambient temperatures [3–5], in contrast to their ultracold atomic counterparts [6].14

The short lifetime of the polariton condensate renders it an open system that requires15

continuous replenishing from the excitonic reservoir via external pumping. After their16

experimental realization [7,8], the polariton condensates have been shown to be ideal17

system for studies of many effects at the interface of non-equilibrium physics and18

nonlinear dynamics.19

The intrinsic nonlinear dynamics of polariton systems lead to a variety of effects,20

such as the appearance of a Mach-Cherenkov cone in a supersonic flow [9], the formation21

of quantized vortices [10], and dark solitons [11]. Moreover, the polariton condensates22

can be engineered with high precision by the external laser fields [8,12–14]. Finally,23

such systems are promising candidates for various applications in photonic devices,24

such as switches, gates and transistors [3], as well as for simulations of interacting spin25

models [15].26

The “open” nature of a system featuring gain and loss leads to interesting impli-27

cations when the dissipative dynamics become pseudo-Hermitian. This is the case in28

parity-time (PT) symmetric setups, where dissipation losses are exactly balanced by the29

pumping gain. Systems with PT-symmetry has been a flourishing and broad research30

field, extending from quantum mechanics [16] and field theory [17] to optics [18] and31

acoustics [19].32

The interplay between the inherent losses and the laser pumping adjusted to pre-33

serve the PT symmetry provides an effective framework where a polariton system can34

exhibit coherent, Hermitian-like dynamics for relatively long times. Remarkable recent35

results include permanent Rabi oscillations [20], multistability and condensation below36

threshold [21], exceptional points in polaritonic cavities below lasing threshold [22],37
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Figure 1. Schematic top view (left panel) and side view (right panel) of a polariton system in
a double quantum well. Spatially shaped pumping lasers populate with rates PL and PR the
reservoir excitons nL,R, which decay via recombination with rates Γ and energy-relax and scatter
into the polariton condensate with rate R. The pumping lasers also create the confining potentials
for the polaritons ψL and ψR, which decay with rates κ, are continuously replenished by reservoir
excitons with rates RnL,R, while interacting with each other via the Josephson coupling J.

and coherent oscillations of a two species polariton mixture in a double well [23]. The38

latter has been shown to be able to simulate the dynamics of a pair of spin-1/2 particles39

(qubits) in the presence of exchange interaction. So far, however, polariton structures in40

the framework of PT symmetry have not been extensively studied, and more efforts are41

needed to reveal the rich landscape of phenomena that can emerge from this framework.42

In this work we study the dynamics of an exciton-polariton condensate in a double43

well potential, in the presence of time-varying exciton populations and phase fluctu-44

ations. We consider the coupled-mode Gross-Pitaevskii equations for the polaritons45

supplemented by the rate equations for the laser-pumped exciton reservoirs, and derive46

analytically the steady state solutions for the exciton and polariton populations as well47

as their coherence. We find that, when the total pumping rate is above threshold, the48

system automatically attains the PT symmetric state, independently of the pumping49

rates of the individual sites. Employing numerical simulations for several different50

pumping rates and initial conditions, we verify our analytical findings. We also study51

the stability and robustness of our results in the presence of phase noise caused by the52

unavoidable phase fluctuations of the polaritons.53

2. The exciton-polariton system54

The system under consideration is schematically illustrated in Fig. 1. One or55

more layers of semiconductor quantum wells are placed inside the semiconductor56

microcavity near the antinode of the resonant cavity field mode. Spatially shaped57

pumping lasers replenish continuously the exciton reservoirs and simultaneously create58

confining potentials for the polariton condensate. Assuming a tight-binding double-well59

potential, the exciton-polariton system can be described by the following coupled non-60

linear Schrödinger equations for the polariton condensate wavefunctions ψL and ψR in61

the left (L) and right (R) wells [24]:62

i∂tψL =
[
εL + η|ψL|2

]
ψL +

i
2
[RnL − κ]ψL − J ψR, (1a)

i∂tψR =
[
εR + η|ψR|2

]
ψR +

i
2
[RnR − κ]ψR − J∗ψL, (1b)

where εL,R are the single-particle energies, η is the nonlinear interaction strength, κ is the63

decay rate of the polaritons due to the exciton recombination and cavity photon losses64

(assumed the same for both wells), and J is the Josephson (tunnel) coupling between the65
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wells. The polariton equations are supplemented by the equations for the populations66

nL,R of the reservoir excitons,67

∂tnL = PL − ΓnL − RnL|ψL|2, (2a)

∂tnR = PR − ΓnR − RnR|ψR|2, (2b)

which are created by laser pumping with rates PL,R, decay with rate Γ, and scatter into68

the polariton condensate with rate R.69

In Appendix A we briefly outline the PT-symmetry conditions for a condensate in a
double well potential. Neglecting for the moment the non-linearity η, the PT-symmetry
condition is satisfied when εL,R = ε (= 0) and the gain in one well exactly compensates
the losses in the other,

γL ≡
1
2
[RnL − κ] = −1

2
[RnR − κ] ≡ −γR, (3)

as per Eqs. (1a) and (1b), which leads to nL + nR = 2κ
R . The threshold pumping at

which the polariton condensate starts to form can be obtained from the condition that
the sum of the gain and loss in both wells is non-negative, γL + γR ≥ 0. With Eq. (3),
this condition is equivalent to

nL + nR ≥
2κ

R
. (4)

Note that, exactly at the threshold, this is the same condition as for the PT-symmetry.
In the stationary regime for the reservoir excitons, ∂tnL,R = 0, we find from Eqs. (2) the
steady-state values

nL,R =
PL,R

Γ + R|ψL,R|2
. (5)

Exactly at the threshold for condensate formation, the values of the polariton
populations in both wells, |ψL,R|2, are marginally equal to zero and we have nL,R '
PL,R/Γ. Substituting these values into Eq. (4), we find the threshold pumping condition

PL + PR ≥
2κΓ
R

, (6)

above which the condensate begins to form, while for PL + PR < 2κΓ/R the condensate70

decays to zero.71

In the upper panels of Fig. 2 we show the polariton populations |ψL,R|2 for dif-72

ferent pumping rates and initial conditions, with and without non-linear interaction,73

as obtained from the numerical solution of Eqs. (1-2). The insets show the evolution74

of the exciton populations nL and nR and their sum nL + nR. For pumping below75

threshold, we observe a decay of the initial (seed) polariton populations with rate76

γL + γR ' R
2Γ (PL + PR)− κ < 0, accompanied by Rabi-like oscillations, while the exci-77

ton populations settle to nL,R = PL,R/Γ. For pumping above threshold, the polariton78

populations grow until reaching certain values |ψL,R|2 at which nL + nR ' 2κ
R , while79

the Rabi-like oscillations persist or are eventually damped, depending on the initial80

conditions or presence of non-linear interaction, as discussed below. Remarkably, the81

polariton and exciton populations increase and decrease, respectively, reaching the82

same stationary values which satisfy the PT-symmetry conditions, independently of the83

pumping rates, as long as pumping is retained above threshold.84
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Figure 2. Dynamics of the polariton populations |ψL,R|2 (upper panels), the reservoir excitons nL,R

(insets), and the coherence Θ (lower panels), as obtained from the numerical solution of Eqs. (1-2)
for the parameters ε = 0, κ = 10J, Γ = 2J, R = 0.02J (time is in units of J−1), corresponding to the
threshold values of pumping PL + PR = 2κΓ/R = 2000J and the steady-state exciton populations
nL + nR = 2κ/R = 1000 (green dashed lines in the insets). The initial exciton populations are
always taken as nL,R = PL,R/Γ, while the initial polariton amplitudes ψL,R are seeded with small
(complex) values. (a) Linear case (η = 0) with the pumping rates PL = 1000J and PR = 990J
slightly below threshold, leading to decay of the initial polariton populations |ψL(t)|2 and |ψR(t)|
and steady-state exciton population nL + nR < 2κ/R. (b) Same as in (a), but for stronger pumping
rates PL = 1080 and PR = 1020 above threshold and initial conditions ReΘ(0) = 0, leading to
the initial build up of the polariton populations and their continuous Rabi-like oscillations, while
ReΘ(t) = 0 ∀ t, and the exciton population nL + nR oscillating slightly above the threshold value
2κ/R = 1000. (c) Same as in (b) but for the initial conditions ReΘ(0) 6= 0, leading to a steady-state
of the system. (d) Same as in (b) with the initial conditions ReΘ(0) = 0 but in the presence of
nonlinearity η = 0.3J that couples ReΘ and ImΘ, leading to a steady-state of the system.

3. Equivalence of the PT-symmetry and steady state conditions85

To understand the dynamics of the system, it is convenient to express Eqs. (1) in86

terms of the polariton populations |ψL,R|2 and coherence Θ ≡ ψLψ∗R as87

∂t|ψL|2 = 2γL|ψL|2 + 2JImΘ, (7a)

∂t|ψR|2 = 2γR|ψR|2 − 2JImΘ, (7b)

∂tΘ = −i
[
εL − εR + η(|ψL|2 − |ψR|2)

]
Θ

+(γL + γR)Θ− i J
(
|ψL|2 − |ψR|2

)
. (7c)

Note that below threshold, (γL + γR) < 0, both the polariton populations and their88

coherence decay to zero, as already mentioned above.89

Let us assume εL,R = 0 and consider first the case of vanishing nonlinearity η = 0.
Equation (7c) indicates that the coherence decays only if its real part is nonzero. In turn,
the solution for the real part of the coherence is

ReΘ(t) = ReΘ(0) e
∫ t

0 (γL+γR)dt′ . (8)

Hence, if initially ReΘ(0) = 0, it will remain so at later times, ReΘ(t) = 0 ∀ t > 0.90

Then the dynamics of the system, if pumped above threshold, will exhibit continuous91

Rabi-like oscillations with frequency J, while no steady state will be attained, as in Fig.92

2(b).93

In practice, however, even if initially we have ReΘ(0) = 0 [e.g., either ψL(0) = 094

or ψR(0) = 0], the unavoidable phase fluctuations of the polaritons will eventually95

lead to the appearance of finite ReΘ(t) 6= 0, which in turn will result in the decay of96
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Figure 3. Dynamics of the polariton populations |ψL,R|2 (upper panels), the coherence Θ (middle
panels), and the left-well polariton field correlation function g(1)(t) (lower panels), for the same
parameters as in Fig. 2 with the addition of phase fluctuations causing decoherence with rate
ξ = 0.05J, as obtained from the the ensemble averaged solution of Eqs. (1-2). (a) Linear case (η = 0)
with the below threshold pumping PL = 1000J and PR = 990J leading to the exponential decay of
the correlation function g(1)(t) ∝ e−(ξ−|γL+γR |/2)t. (b) Same as in (a), but for stronger pumping
above threshold PL = 1080 and PR = 1020. Now, independently of the initial value of ReΘ(0),
the phase fluctuations cause exponential decay of g(1)(t) ∝ e−ξt while the system approaches the
steady state. (c) Same as in (b) but in the presence of nonlinearity η = 0.3J, causing accelerated
decay of g(1)(t) ∝ e−0.057t and faster approach of the system to the steady state. In the lower
panels, we also show the correlation functions g(1)(t) obtained from the long-time average of the
system dynamics (the oscillating tail of g(1) is due to the finite length of the time series).

coherence and drive the system to the steady state. Equivalently, if we have initially97

ReΘ(0) 6= 0, the system can still exhibit initially Rabi-like oscillations, but then it will98

eventually attain the steady state, as in Fig. 2(c). Finally, as seen from Eq. (7c) the99

nonlinear interaction couples the real and imaginary parts of the coherence Θ with100

the rate η(|ψL|2 − |ψR|2). Hence, in the presence of nonlinearity η 6= 0, we expect the101

eventual decay of the coherence with the system attaining the steady state, for any initial102

conditions and independent on the phase fluctuations, as in Fig. 2(d).103

Setting the time derivative in the left-hand side of the Eq. (7c) equal to zero, we find
the steady state is reached when

R[nL + nR]− 2κ = 0, and |ψL|2 = |ψR|2. (9)

Remarkably, the first equation corresponds exactly to the PT-symmetry condition nL +104

nR = 2κ
R discussed above. Moreover, this condition is satisfied even in the presence of105

nonlinear interaction η 6= 0, because the equal polariton populations as per the second106

equation lead to exactly the same energy shifts η|ψL,R|2 of the polaritons in both wells.107

In other words, for any initial conditions, and provided the total pumping is above108

threshold as per Eq. (6) but otherwise arbitrary PL and PR, the system attains a stable109

fixed point corresponding to the PT-symmetric state. Even when no steady state exists110

or is yet reached, the PT condition in Eq. (9) is approximately satisfied, as seen in the111

insets of Fig. 2.112

Combining Eqs. (5) and (9), we find that steady state polariton populations are

|ψL|2 = |ψR|2 =
PL + PR

2κ
− Γ

R
, (10)
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while the exciton populations are

nL,R =
2κPL,R

R(PL + PR)
. (11)

Using these stationary values for nL,R and |ψL,R|2 in Eqs. (7a) and (7b) in the steady state
we obtain

Im(Θ) =
κΓ(PL − PR)

2RJ(PL + PR)
− PL − PR

4J
, (12)

and from |ψLψ∗R|2 = [Re(ψLψ∗R)]
2 + [Im(ψLψ∗R)]

2 we obtain

Re(Θ) = D
√

4J2(PL + PR)2 − κ2(PL − PR)2 (13)

where
D =

PL + PR − 2κΓ/R
4Jγ(PL + PR)

.

These results are verified by the numerical simulations illustrated in Fig. 2 and they113

equally hold for any value the nonlinearity strength η.114

4. Phase fluctuations115

As mentioned above, the coherence of the polariton condensate will decay due to116

the phase fluctuations that are always present in realistic quantum systems. We therefore117

incorporate the phase noise in our numerical calculations and investigate how it modifies118

the dynamics of the polaritons and the coherence. We model the phase fluctuations as the119

standard Wiener process for stochastic differential equations. Thus, the single-particle120

energies εL,R in Eqs. (1) become Gaussian stochastic variables with the mean 〈εL,R〉 = 0121

and variance σ2 = 2ξ/δt, where ξ is the decoherence rate and δt is the time step for122

picking a new random energy.123

In Fig. 3 we show the results of our numerical simulations as obtained upon the
ensemble average over N = 1000 independent realizations of the system dynamics. We
compute the first-order correlation functions g(1)(t), which quantify the coherence for
the polaritonic fields, via

g(1)(t) =
〈ψ(t0)ψ(t)〉√
〈|ψ(t0)|2〉〈|ψ(t)|2〉

, (14)

where ψ = ψL or ψR, and 〈. . .〉 denotes the ensemble average.124

Below the pumping threshold, the polariton fields decay with rate γL + γR < 0,125

but the phase fluctuations with rate ξ causes even faster decay of coherence, g(1)(t) ∝126

e−(ξ−|γL+γR |/2)t, as seen in Fig. 3(a). For pumping above threshold, the phase noise127

causes exponential decay of the correlation function g(1)(t) ∝ e−ξt, while the system128

approaches the steady state independently of the initial value of coherence ReΘ(0), as129

seen in Fig. 3(b). Including also the nonlinear interaction η 6= 0 further accelerates the130

decay of the correlation function and the system approaches the steady state even faster.131

We finally note that for an ergodic system the ensemble-averaged and time-averaged
correlation functions are equivalent. To verify whether our polariton system is ergodic,
we also compute the field correlation function

g(1)(t) =

∫ tf
ti

dτψ(τ)ψ∗(τ + t)√∫ tf
ti

dτ|ψ(τ)|2
∫ tf

ti
dτ|ψ(τ + t)|2

(15)

resulting from a single, long-time trajectory with tf− ti = 3000/J. As seen in Fig. 3 (lower132

panels), the computed ensemble-averaged and time-averaged correlation functions133

coincide to a very approximation, attesting to the ergodicity of our system.134
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5. Conclusions135

To summarize, we have studied an exciton-polariton system in a double-well136

potential, taking into account the dynamics of the reservoir excitons and the polaritons.137

We have found that for pumping of the excitons above the total threshold value for the138

formation of the polariton condensate, the exciton populations attain the values that139

satisfy the PT-symmetry condition for the polariton condensate, independent of the140

pumping rates of the individual wells. Employing the population-coherence equations,141

we interpreted the corresponding dynamics and revealed the stable fixed point, or142

the steady state, that the system approaches. To make our analysis experimentally143

relevant, we have taken also into account the phase fluctuations present in any realistic144

system, and computed the first-order correlation functions for the polariton fields, which145

revealed the coherence decay with the corresponding rate.146

We note that our results apply to moderate non-linear interaction strength and147

small differences in pumping rates of the two wells. For large difference in the pumping148

rates, the strong non-linear energy shift of the polariton condensate energy may lead to149

self-trapping and break-up of the PT symmetry [25]150
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Appendix A. Polariton condensate in a PT-symmetric double well157

Consider a polariton condensate in a double well potential described by the coupled-158

mode equations159

i∂tψL = (εL + iγL)ψL + η|ψL|2ψL − J ψR, (A1a)

i∂tψR = (εR + iγR)ψR + η|ψR|2ψR − J∗ψL, (A1b)

where εL,R are the single-particle energies, γL,R are the incoherent loss (γ < 0) or gain160

(γ > 0) rates at each well, η is the nonlinear interaction strength, and J is the Josephson161

coupling between the wells.162

0 0.5 1.5

- 1

0

1

1

Figure A1. Imaginary part of the eigenvalues λ± in Eq. (A3). For γ < J(= 1) we have a PT
symmetric phase with real eigenvalues. Above the bifurcation point at γ = J, the system enters
the PT broken phase with imaginary eigenvalues.

If we set εL,R = 0, assume negligibly weak nonlinearity, η|ψ|2 � J, and set γL =
−γR = γ so that the loss at the right well is exactly compensated by the gain at the left
well, we obtain a PT-symmetric Hamiltonian matrix corresponding to Eqs. (A1) [23]:

H =

(
iγ −J
−J∗ −iγ

)
. (A2)
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Its eigenvalues and the corresponding eigenvectors are given by

λ± = ±
√
|J|2 − γ2 (A3)

and

|±〉 =
[(√

|J|2 − γ2 ± iγ
)
|L〉 ∓ J∗|R〉

]
/N± (A4)

with N± the normalization factors. For γ < |J|, the eigenvalue spectrum is real and the163

dynamics is Hermitian-like. For γ > |J|, the eigenvalues become imaginary and the164

system enters the PT-broken phase. The case |J| = γ corresponds to the exceptional165

point of the system where the eigenvalues become degenerate and the eigenstates166

coalesce. Figure A1 illustrates the dependence of imaginary part of the eigenvalues on167

the loss/gain parameter γ.168
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