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Abstract: With an increasing amount of "omics" data available publicly, there is a need for a guide 
on how to successfully download and use this data. The Ten simple rules for using public data are: 
1) use public data in your research, 2) evaluate data for your use case, 3) check data reuse require-
ments and embargoes, 4) be aware of ethics for data reuse, 5) plan for data storage and compute 
requirements, 6) know what you are downloading, 7) download programmatically and verify in-
tegrity, 8) properly cite data, 9) make data Findable, Accessible, Interoperable, and Reusable (FAIR) 
and share, and 10) make pipelines and code FAIR and share. These rules are intended as a guide for 
researchers wanting to make use of available data and to increase data reuse and reproducibility. 
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1. Introduction 
In recent years, with the advent of high-throughput sequencing technologies, ad-

vances in microscopy, and the growth of single-cell technologies, biology is set to overtake 
other data-heavy disciplines such as astronomy in terms of data storage needs [1]. There 
has been a dramatic increase in the number and size of data sets deposited by individual 
labs on data storage servers like the Gene Expression Omnibus (GEO) and dbGAP [2,3] 
and made available by large consortium efforts such as The Cancer Genome Atlas (TCGA) 
[4], the Genotype-Tissue Expression (GTEx) project [5], Bgee [6], Human Cell Atlas [7], 
ENCODE [8,9]. Additionally, the commitment by funders, publishers, and individual sci-
entists to make data sets (especially those funded by taxpayers and donors) publicly avail-
able has rapidly increased opportunities for data reuse by the broader scientific commu-
nity. From January 2023, NIH will now require researchers to share data generated with 
NIH funds under the new Data Management and Sharing Policy [10] further leading to 
an increase in the availability of public data. With this growing data deluge, it seemed 
timely to provide guidelines on why, when, and how investigators can incorporate these 
valuable resources into their research programs as biological data reuse is good for sci-
ence, cost efficient, and is the right thing to do in order to extract the greatest societal 
impact from the samples and funding that patients, donors, and taxpayers generously 
provide. Here we draw upon our collective experience and expertise as molecular biolo-
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gists, computational biologists, bioinformaticians, data scientists, and software develop-
ers to discuss Ten Simple Rules for using public data with the intention that it will serve 
as a useful guide (Figure 1). While this article focuses on computational biology and bio-
informatics, the principles outlined here generally apply to other domains as well.  

 
 

Figure 1. These ten simple rules for using public data span checklist items for pre, during, and post data download. 

2. Do use available public biological data in your research 
Reasons for reusing public biological research data include cost-effectiveness and ef-

ficiency, access to datasets that would be difficult or impossible to regenerate, an increased 
sense of community, greater transparency and clarity of research, ability to retest and val-
idate a shared dataset, support for recognition of data ownership, and an increase in cita-
tions [11]. Critically, public biological data reuse can also promote workforce diversity 
and research inclusivity worldwide [12–14]. Use of public biological data provides indi-
viduals with a unique opportunity to leverage existing data sets in combination with other 
public data or their own. This allows for additional contexts to be explored within your 
own research. Comparing your research findings with a public data set analyzed in the 
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same way can give nuance or clarity to results, especially in either further confirming what 
was observed (i.e., validation) or producing different results that help you to re-evaluate 
your approach or its applicability across cohorts. For example, you can validate current 
findings in public data, expand the number of samples, age groups, or other parameters 
of your current analysis, or explore molecular changes in a different system. Assessing 
public data can also aid in placing your research into the context of, and in perspective to, 
current research with public data therefore allowing comparisons to other work in the 
field.  

Incorporating public biological data in your research project can also allow you to 
ask novel questions that the data generator may not have originally foreseen, further mov-
ing your own research and the field in new directions. Outside of expanding your research 
through exploration of new contexts, public data sets can also be used to generate hypoth-
eses and/or guide future research by refining hypotheses for preliminary analyses. With 
computational biology becoming ubiquitous in life science research, you can also use pub-
lic data to drive novel method development and build modeling frameworks for systems 
biology. In fact, there have been efforts to standardize data sets for ease of use in such 
analysis [15]. In addition to improving your analysis, using public data also provides an 
opportunity to practice reproducible and interoperable research and further develop pro-
fessional data science skills [11]. However, it is important to avoid the “sins of methodo-
logical research” (i.e., selective reporting, etc.) [16] and therefore we suggest ensuring 
your research team has the proper methodological expertise to properly use and interpret 
public biological data sets.  

In short, novel studies do not always require new data, and research including data 
reuse not only offers all of the benefits mentioned here, but can support community build-
ing and greater impact; as shown by Milham et al [17] who found that neuroimaging re-
search making use of public data was cited at the same or higher frequency in higher 
impact journals as compared to research using only self-generated data (this is expanded 
upon more in Rule 8). By using public biological data with care, your research can benefit 
from these benefits. 

3. Evaluate data carefully for your use case 
Before we get down to the business of downloading the data, we need to make sure 

we access appropriate data. As scientists, we are interested in finding signals and/or pat-
terns in our data. However, patterns in a data set can arise from many different variables. 
Therefore, it is essential to carefully evaluate the available data for your particular use 
case, otherwise the results obtained could be wrong and/or misleading. It is critical to ex-
amine the metadata (the data describing the data set) before downloading the actual data. 
Some important metadata variables to consider (but by no means exhaustive) relate to the 
1) nature of the sample (e.g., the specific animal model or cell line(s), genotype, age, sex), 
2) sample collection data (e.g., the type of sample collected, timepoints of collection), 3) 
platforms used (e.g., the sequencing or imaging platform), and 4) data quality metrics (e.g. 
sample size, groups of comparison). Not considering these variables can dramatically in-
fluence downstream analysis and interpretation, and should therefore be considered be-
fore choosing the appropriate data set to use. For more details see Rule 4 and 5 in “Ten 
simple rules for providing effective bioinformatics research support” [18]. 

Once the data set is deemed appropriate for your analytical goals, it is key to check 
for the confounding effects of metadata variables that might impact the statistical model 
and cause you to reach wrong conclusions. This includes review of data distributions and 
sampling as well as performing exploratory analysis and visualizations such as principal 
component analysis (PCA) and correlation analysis. “Ten simple rules for initial data anal-
ysis”[19] provides excellent pointers for performing initial data screening including how 
to craft a reproducible plan and pitfalls to avoid. 

4. Be aware of, and adhere to, data reuse requirements, embargoes, etc. 
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Researchers looking to reuse controlled-access data (elaborated more in Rule 4) as-
sume the responsibility (along with their legal and financial administrative offices) to pro-
tect the rights and welfare of the original participants. As such, data repositories with 
controlled-access data sets develop Data Access Request (DAR) processes to appropriately 
restrict access. DAR processes usually include agreeing to terms of access for the re-
quested data, a Data Use Certification Agreement (DUA) between the requester’s institu-
tion and the repository, a description of the intended use, and an acknowledgment agree-
ment. If a data set is available in a data portal (e.g., GEO [2], SRA [20], etc.) that does not 
require controlled-access, it is considered open-access and can be freely downloaded 
through the portal. Even under these circumstances, the original data generators may still 
request acknowledgment upon use (a practice that should be followed whether or not the 
generators have requested it). A third possibility for acquiring controlled-access data for 
reuse is to contact the corresponding author of the paper directly to request data. How-
ever, this method can prove difficult for many reasons related to the author’s availability 
to fulfill the request (e.g., protected time to fulfill the request, ability to transfer the data, 
willingness to comply, etc.). Therefore,  independent of the method of requesting access 
to restricted data, it is important to be patient, but persistent. Recently, many journals 
have begun implementing data availability manuscript sections that outline the portal 
where the data is stored and can be accessed. 

Regardless of how the data is acquired, it is important to be aware of the legal, regu-
latory, and security obligations associated with its use. For example, data licenses might 
be in place to protect the original data generator’s rights by permitting secondary parties 
to reuse the data according to specific restrictions. Because countries have different regu-
lations for data reuse [21], data licenses may clarify the uncertainty of requirements for 
data reusers. It is important to understand by which license or waiver the data to be reused 
is governed. In an effort to promote open access to data, many journals and data reposi-
tories operate under Creative Commons (CC BY 4.0) licenses that allow the freedom to 
share and adapt data as long as the original data generators are acknowledged for their 
contribution. For example, PLOS ONE stipulates that if the data associated with a pub-
lished article in their journal is deposited in a repository with a licensing agreement, the 
agreement can not be more restrictive than CC BY [22]. Researchers should identify which, 
if any, data license is governing the data they wish to reuse and respect any limitations 
associated with it.  

Some data generators place an embargo on the data they generate in order to ensure 
they have time to publish initial findings. The data set may be submitted to a public re-
pository but unavailable for download or publication for a certain length of time or until 
a specified date. Additionally, with the increased prevalence of pre-printing articles, data 
generators may wish to withhold their data sets until their article is published in a peer-
reviewed journal. Being aware of data access and publication restrictions associated with 
the data set of interest and understanding who sets data restrictions can be complicated 
(e.g., funders, consortia, journals, individual labs, etc.), but convention, or in some cases 
the legal requirement, is to follow the stated restrictions. 

5. Be aware of ethical considerations like confidentiality and protected health infor-
mation 

The privacy and ethics of data sharing are critical and it is the responsibility of re-
searchers to protect and observe [23]. With regards to data reuse, you must verify that the 
data you are planning to reuse was ethically collected or generated, was collected for a 
purpose in alignment with additional applications, and ensure that the study does not use 
the data irresponsibly or immorally. It is our duty as scientists and citizens to move science 
forward while protecting sensitive data and presenting studies fairly. Secondary analysis 
of public data requires an Institutional Review Board (IRB) exemption confirming it does 
not fall within the regulatory definition of human subject research (see federal regulations 
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on human subjects research protections (45 CFR 46.101(2)(b))) and a full review otherwise. 
Special considerations need to be made for data reuse: 

Ethics by data type: The ethics of sharing and using data depend heavily on the data 
type. For example, cell lines, animal models, and microbial data are typically very low risk 
for privacy or ethical issues; that is not to say, however, that they have no risk (e.g., sharing 
pathogenic sequence data) or alluding to locations for endangered species that could in-
crease the risk of poaching [24]. Ethical concerns are most common when working with 
human data. 

HIPAA, PHI, and patient de-identification: The Health Insurance Portability and Ac-
countability Act (HIPAA) of 1996 Privacy Rule is a federal law regarding protected health 
information (PHI) for individuals and their access to their own health information, as well 
as the specific permissible use and disclosure of PHI with other organizations [25]. Any 
purposeful or accidental disclosure of PHI as a HIPAA violation can lead to hefty 
fines. Health data used in research needs to be de-identified in a manner that makes re-
identification highly unlikely unless that is the willful goal of the project. Genomics data 
is particularly susceptible to re-identification due to the uniquely identifying nature of the 
data itself; particularly when coupled with geographic collection metadata such as collec-
tion site. Well constructed data usage agreements and controlled-access repositories can 
mitigate re-identification risks (see Rule 3). 

Consent: Consent is an agreement between healthcare groups and participants that 
adheres to The Privacy Rule and HIPAA authorizations. For example, the GTEx Live Do-
nor Informed Consent Template (BBRB-PM-0018 [26]) asserts exclusion of access to par-
ticipant PHI, that the generated data will be saved for many years, that it will be available 
to scientists around the world, and that data may be used broadly for medical research. It 
is important to ensure that data reuse does not violate any initially obtained consent. 

Ethics specific to how/where data were obtained: Data may be obtained directly from 
an individual lab, or queried from a private or public repository. Publicly-available data 
that can be downloaded by anyone tends to be at lowest risk for violating privacy, and 
are the easiest to access (i.e. TCGA [4] and GTEx [5] gene expression data). However, when 
data is received from another investigator through direct sharing or from a controlled-
access repository, it becomes your obligation to secure that data and not further share with 
unauthorized individuals [24]. 

Ethical design for data reuse: When reusing data, ensure fairness and equality with 
your representation of the data, including but not limited to ancestry or sex. For example, 
genetic study participation has been disproportionately overrepresented by European de-
scendents, where one study found that as of 2018, individuals in GWAS catalog consisted 
of 78% European, 10% Asian, 2% African, 1% Hispanic, and <1% for all other races [27]. 
In GTEx as of 2022, 84.6% donors were of White origin, 12.9% African American origin, 
1.3% Asian origin, 1.1% unknown and no statistic for Hispanic/Latino origin [5]. Addi-
tionally, sex differences impact every area of health and have been largely disregarded in 
study design and have also been heavily unbalanced; especially in pharmaceutical trials 
where women were previously excluded entirely due to potential pregnancies during tri-
als [28]. Since then, women are now included in study designs, though sex specificity has 
not been accounted for leading to vastly more adverse drug reactions in women due to 
inappropriate drug and dose recommendations [29]. Careful consideration of these factors 
will lead to more rigorous and accurate results and avoid perpetuating these issues in 
research. 

6. Plan for needed data storage and compute requirements 
 Ask yourself, is my data “genomical“ in size? [30] It is if you're working in genomics, 

but regardless of your data, the amount of data being integrated in research is growing 
dramatically and the cost for storage and computation is at a rate not seen previously. 
Knowledge is power, and in this case it is knowledge of the resources that will be needed 
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before you need it that will benefit your work most. Data storage and computing hardware 
requirements should be determined and documented prior to downloading any data sets. 
This avoids potentially time consuming and expensive surprises by: 1) identifying gaps 
in the current infrastructure, and 2) allowing expert support staff an opportunity to inves-
tigate the viable solutions, where possible, in a timely manner. While needs vary by the 
individual situation and domain, here we discuss various criteria to determine your 
needs. Data size, type, level of access, and security are the major considerations for where 
data needs to be stored. All invested parties who will retrieve, process, and consume the 
data need to be identified and involved in answering the following questions:    

• Data size:  
What is the estimated size of data to be retrieved?  
How many individual files are included? 
How much data are expected to be produced during processing?  
Do you need backups of the original or processed data?  

• Data type:  
Are the data types large or small?  
Are the file types binary or textual?  
Are the files compressed? 

• Access requirements:  
Who needs (or does not need) access to the data?   
What is the level of access required?  
How often will access be needed?  
How often will reanalysis be necessary? 
Do any of the users require (or prefer) a data sharing platform with a graphic inter-

face for ease of access?  
Are there any institutional policies or approvals to be considered prior to granting 

access?  
Do external collaborators need to be provided access to the institutional setup? 

• Data security [31] 
Does the data include PHI?  
Does the access need to be restricted?   
What is the minimum level of data security required?  
How will they be secured?  
Will the data need to be deleted after a certain time period or event? Why, when, and 

how?  
Are there any institutional policies or approvals to be considered?  
Who will supervise data security?  
How often (e.g., half-yearly, annually, etc.) will the adopted policies and implemen-

tations need to be reviewed and verified?  
Answers to the above questions will facilitate discussions regarding optimal data 

storage options(s) and dictate if other institutional entities such as IT or the office of spon-
sored research need to be involved. Further, costs associated with data storage and rea-
nalysis needs should also be considered when selecting storage locations. Commonly 
used data storage locations are personal computer(s), High Performance Computing 
(HPC) environments and commercial cloud storage services (e.g., Dropbox, Box, AWS, 
etc.). Depending on the data, it may need to be split based on type and stored in a data-
type-specific location best suited for its purpose. For example, large data such as FASTQ 
and VCF files may need to be stored at a location where they are accessible from an HPC 
environment for downstream processing, whereas spreadsheets and text documents may 
need to be stored in a cloud storage service (e.g., Box) to facilitate accessibility for non-
computational team members.   

Computing or hardware requirements will depend on the type of data and the pro-
cessing planned [32]. A personal computer might suffice to process small data sets, but 
access to HPC or cloud computing (e.g., AWS, Microsoft Azure, Google Cloud, etc.) is 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 September 2022                   doi:10.20944/preprints202206.0320.v2

https://paperpile.com/c/Tb9h4Q/3WKKF
https://paperpile.com/c/Tb9h4Q/0q9ht
https://doi.org/10.20944/preprints202206.0320.v2


 7 of 15 
 

 

often needed to process large data sets. HPCs and cloud computing offer several ad-
vantages such as fast processors, multicore chips, higher memory resources, and Graphics 
Processing Units (GPU), which enable parallelization and scalability of a large number of 
jobs. 

7. Know what you are downloading 
As outlined in Rule 2, downstream analysis can be affected by how the data was col-

lected and processed. This becomes an even greater problem when trying to integrate 
multiple public data sets, each collected and processed separately. So, be mindful of the 
processing differences between them. In recent years, a number of projects have been es-
tablished that use and  share common data processing pipelines across  data collections, 
allowing researchers to more easily combine data for more complex analysis. For example, 
recount3 [33] is a uniformly processed resource of hundreds of thousands of human and 
mouse RNA-Seq data sets designed to facilitate meta-analysis and cross-study compari-
sons. Another great resource is the Bgee [6] database which contains “normal”, healthy, 
wild-type expression data across 52 different species thereby providing a comparable ref-
erence of gene expression by anatomical entities within and between species. A third ex-
ample is BioDataome [34]. BioDataome has ~5,600 human and mouse expression and 
methylation data sets pre-processed in an analogous manner to allow for direct compari-
sons between data. All of these data repositories provide R packages facilitating program-
matic data download (see Rule 7). Collections of equivalently processed data are becom-
ing more of the norm, but datasets of interest may not be included in them. When this is 
the case, it may be necessary to reprocess the data to minimize the downstream impact of 
differences in upstream processing.  

8. Download data programmatically; verify data integrity 
 Data downloads should be performed in a programmatic manner for consistency, 

scalability, and reliability. Several tools have been developed to provide direct program-
matic access to large public databases (e.g., SRA [20], GEO [2], ENA [35], TCGA [4]) and 
they should be implemented when possible. One example of these tools is the SRA toolkit 
[36] which contains a number of commands linked to data download (e.g., ̀ fasterq-dump` 
may be implemented to download FASTQ files and `vdb-validate` to check the integrity 
of SRA data sets). Additional examples include database specific computational pack-
ages/libraries such as Bioconductor packages `recount3`[33] and `GenomicData-
Commons`[37]. A key step in the data download process is validating the checksum (typ-
ically the MD5 hash) provided in the hosting database to verify data integrity prior to data 
analysis and interpretation. While these checks can be performed manually, some tools 
such as the Genomic Data Commons (GDC) Data Transfer Tool Client [37], will automat-
ically validate MD5 checksums as part of the download process. 

Depending on the number of files and tool functionality and design, customized 
scripts or workflows (e.g., Snakemake [38], NextFlow [39]) may be needed for scalability. 
When possible, publicly available workflows that adopt workflow management systems 
are recommended. One example is `fetchngs` [40] provided by nf-core [41]. This Nextflow 
pipeline [39] uses tools such as SRA-tools [36] to download FASTQ files and metadata 
based on a user-provided accession ID list. At the time of writing, fetchngs [40] supports 
the use of SRA [20], ENA [35], DDBJ [42], GEO [2], and Synapse [43] IDs. When perform-
ing downloads in this way, documenting the sample identifier and database sources be-
comes a critical step for reproducibility. For studies deposited in databases such as GEO 
[2], recording the GEO accession number along with sample identifiers may be sufficient, 
however, other data sources are updated on a continuous basis (e.g., Genotype-Tissue 
Expression (GTEx) Portal [5]). In such cases, the database version (e.g., GTEx Analysis 
Release V8 - dbGaP Accession phs000424.v8.p2) and the date the download is performed 
should be recorded and reported in publications. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 September 2022                   doi:10.20944/preprints202206.0320.v2

https://paperpile.com/c/Tb9h4Q/jvKoQ
https://paperpile.com/c/Tb9h4Q/K117O
https://paperpile.com/c/Tb9h4Q/fyF8J
https://paperpile.com/c/Tb9h4Q/3sWBD
https://paperpile.com/c/Tb9h4Q/LlViW
https://paperpile.com/c/Tb9h4Q/ZlrJg
https://paperpile.com/c/Tb9h4Q/9Ah6c
https://paperpile.com/c/Tb9h4Q/fIYik
https://paperpile.com/c/Tb9h4Q/jvKoQ
https://paperpile.com/c/Tb9h4Q/Pk7Y5
https://paperpile.com/c/Tb9h4Q/Pk7Y5
https://paperpile.com/c/Tb9h4Q/rHKDJ
https://paperpile.com/c/Tb9h4Q/9FKoT
https://paperpile.com/c/Tb9h4Q/TTQIJ
https://paperpile.com/c/Tb9h4Q/lIFsc
https://paperpile.com/c/Tb9h4Q/9FKoT
https://paperpile.com/c/Tb9h4Q/fIYik
https://paperpile.com/c/Tb9h4Q/TTQIJ
https://paperpile.com/c/Tb9h4Q/3sWBD
https://paperpile.com/c/Tb9h4Q/ZlrJg
https://paperpile.com/c/Tb9h4Q/1FDWE
https://paperpile.com/c/Tb9h4Q/LlViW
https://paperpile.com/c/Tb9h4Q/P5XC0
https://paperpile.com/c/Tb9h4Q/LlViW
https://paperpile.com/c/Tb9h4Q/XyNTy
https://doi.org/10.20944/preprints202206.0320.v2


 8 of 15 
 

 

These practices should also be applied to data types beyond sample data including, 
for example, genome references (e.g., genome/transcriptome FASTA files, annotations 
files, etc.) from Ensembl [44], GENCODE [45], UCSC [46], NCBI [47], and others. Check-
sums from genomic reference files should be validated and details linked to the files 
should be recorded, including the FASTA file type (e.g., primary assembly or entire ge-
nomic sequence which includes assembly patches and haplotypes), database name, as-
sembly name, and version or release number. The same principles should be applied to 
other reference files such as GTF/GFF [48]. 

9. Do properly cite data 
 As with any journal article/publication information and resources used, any data 

generated by other researchers should be credited and properly cited. This practice bene-
fits the original data generator by providing a tangible demonstration of value and impact 
beyond the initial data publication. Failing to cite the data source withholds credit from 
researchers in the same way that failing to cite a journal article does. Public data citations 
support better quality and more transparent science, making a compelling argument for 
other researchers to contribute their own data to public data repositories. This process also 
supports improved reproducibility and credibility for your own research.  

When it comes to citing data, the field still lacks a gold standard. However, existing 
best practices include citing the original paper where the data was published or a data 
object identifier (DOI) generated from a persistent database like Zenodo [49] or figshare 
[50]. In addition, consortium projects such as GTEx [5] and TCGA [4] often provide guid-
ance on citation practices for their repositories. In an effort to increase the citability of 
public data and establish the data itself as a scientific output of value separate from the 
associated manuscript, many researchers now publish data sets independently from their 
associated publications. Journals for this purpose, such as Scientific Data, now exist [51]. If 
there is no guideline associated with the data set in general the citation should include the 
generators, where the data was obtained from, accession numbers, the version number for 
the data (if applicable), and the date it was accessed.  

Non-profit organizations such as DataCite and Crossref provide unique persistent 
identifiers (PIDs) to data sets to improve tracking usage and facilitate linking to the pub-
lication of origin [52]. Check and see if the public data you are using in your analysis has 
a PID that can be cited or included in the methods section. In the future, PIDs may perhaps 
be linked to an individual’s ORCID number to provide a standardized data citation ap-
proach. A study looking at the correlation between if data was publicly available and the 
citation rate of the original paper demonstrated that those including publicly available 
data within the paper was associated with a 69% increase in citations [53]. Furthermore, 
investigators who share public data sets well have an increase in the impact of their own 
research. Articles with links to data repositories or that include PIDs are more highly cited 
than those without [24]. In summary, public data use benefits both the creator and the 
user.  

10. Make data FAIR and share 
All of the rules mentioned above are possible to adhere to because researchers made 

their data Findable, Accessible, Interoperable, and Reusable (FAIR) [54]. As a contributing 
member of the research ecosystem, you should pass it on, too! Make sure any additional 
data you generate, as well as reuse (i.e., models), adheres to the FAIR principles. If your 
research is funded through the NIH then you must adhere to a Data Management and 
Sharing Plan as outlined in the NIH policy starting in 2023 [10]. Recent research shows 
that only 6.8% of authors respond to requests for data sharing dramatically reducing the 
impact of most data and the knowledge to be gained from its use [55]. To be FAIR: 

Improve Data Findability: As highlighted in Rule 8, submit your data to stable open-
access public data repositories that provide DOIs such as Zenodo [49] and figshare [50]. 
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Personal, lab, group, or institute sites are not good long-term solutions. Socialize your 
data by sharing on social media platforms such as Twitter. Blogs and news articles on lab 
and/or institute sites, and presenting at conferences where data are clearly identified with 
DOIs helps others to discover useful data. By diversifying where and how you share with 
the community about your data, you cast the widest net in order to catch the attention of 
potential researchers who would also benefit from access to your data.  

Improve Data Accessibility: Open access to publications is important to science and 
plays a critical role in reproducing and advancing science. Making your data readily ac-
cessible is equally important. Share your raw as well as processed data so that the analysis 
performed can be reproduced fully and with minimal effort. 

Improve Data Interoperability: Interoperability refers to the ability of data from dif-
ferent sources to be able to integrate with minimal effort [54]. A good example is the Fast 
Health Interoperability Resources (FHIR) standard for health care data exchange [56]. This 
becomes even more critical in studies where data from different sources are being reused, 
so make sure the data you provide is highly interoperable by including relevant metadata 
and adhering to appropriate and reasonable file and data conventions within the field.  

Improve Data Reuse: Make your data reuse, reusable. Providing data in standard and 
popular formats goes a long way in making it reusable. Incomplete metadata and methods 
can severely limit the reuse (and usefulness) of data. Don't skimp by providing the bare 
minimum data and metadata needed to satisfy the requirements of the granting body, 
governing body, journal, etc., that you're looking to communicate your work through. 
Abstaining from providing all necessary assets to reproduce the work does a disservice to 
you, your colleagues, your lab and institute, and the scientific community. It is not just 
about the input and the output: there’s a whole bunch of research, development, refine-
ment, knowledge, and other work done in between data input and output that needs to 
be captured, codified, and shared with the work itself. 

11. Make your processing, pipelines, and code FAIR 
 Tools and methods used for the analysis and interpretation of public data sets should 

also adhere to the FAIR guidelines for coding and software development [57]. Many of 
the FAIR principles for data (outlined in rule 9) are directly applicable to software, but 
others require modification for application to software [58]. For instance, persistent iden-
tifiers should be generated and recorded for novel pipelines, software, and research tools. 
Findability of software should be linked to the traceability of the source code under ver-
sion control (e.g., GitHub [59], GitLab [60], BitBucket [61]), and reporting of appropriate 
metadata such as software versions. Similarly, software and code associated with an anal-
ysis should be accessible through repositories and (when appropriate) software archives 
such as CRAN [62], Bioconductor [63], PyPI [64], and Conda [65]. The same is true for 
software dependencies. Software containers (e.g., Docker [66], Singularity [67]) can also 
be implemented to enable software portability and analysis reproducibility. In the absence 
of containerized software, the necessary information for how to build and install a pub-
lished tool should be provided. 

Because the dynamic nature of software can mean the most up to date version is dif-
ferent from the version that was published, proper documentation and tagging (e.g., 
GitHub tags linked to released versions of software, etc.) allows researchers to find the 
exact package versions used during a study, therefore facilitating reproducible analyses. 
Continuous integration approaches (the software development practice of automating 
builds, static analysis, and tests on code changes that were pushed to a central repository) 
can automate time consuming tasks associated with pipeline and software development. 
Similarly, static code analysis tools in continuous integration pipelines can help automate 
source code quality analysis allowing early identification of potential bugs, security vul-
nerabilities, performance issues, or deviations from the project/organization and coding 
guidelines.  
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Inclusion of continuous integration and static code analysis tools allow for rapid 
feedback loops in code inspection, reducing the time reviewers need to spend reviewing 
and reducing cost of time and funding of development maintenance [68,69]. Journals are 
increasingly requiring that the code used for analysis is made available [70]. In addition 
to ensuring that your processing, pipelines, and code are FAIR, the steps above will help 
to ensure code review is not an onerous task being performed during the submission pro-
cess and your methods are reproducible for other scientists [71–73]. For more detailed 
information about how you can make your research more computationally reproducible 
refer to [74].  

 

12. Conclusion 
 In summary, biological data reuse is not only good for science, it is the right thing to 

do in order to extract the greatest societal impact from the samples and funding that pa-
tients, donors and taxpayers generously provide. Here we covered Ten Simple Rules for 
data reuse spanning the periods before, during, and after data download. This paper 
serves as a guide for both data users and generators in the community.  
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