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Abstract: Combining genomics with digital healthcare information is set to transform personalized medicine.
However, this integration is challenging due to the differing nature of the data modalities. The large size of the
genome makes it impossible to store it as part of the standard electronic health record (EHR) system. Representing
the genome as a condensed representation containing biomarkers and usable features is required to make the
genome interoperable with EHR data. This systematic review examines both conventional and state-of-the-
art methods for genome language modeling (GLM), which involves representing and extracting features from
genomic sequences. Feature extraction is an essential step for applying machine learning (ML) models to large
genomic datasets, especially within integrated workflows. We first provide a step-by-step guide to various
genomic sequence pre-processing and representation techniques. Then we explore feature extraction methods
including tokenization, and transformation of tokens using frequency, embedding, and neural network-based
approaches. In the end, we discuss ML applications in genomics, focusing on classification, prediction, and
language processing algorithms. Additionally, we explore the role of GLM in functional annotation, emphasizing
how advanced ML models, such as Bidirectional encoder representations from transformers (BERT), enhance the
interpretation of genomic data. To the best of our knowledge, we compile the first end-to-end analytic guide to
convert complex genomic data into biologically interpretable information using GLM, thereby facilitating the

development of novel data-driven hypotheses.

Keywords: Natural language processing; genomics; digital health; precision medicine; machine learning; Al

1. Background

Natural Language Processing (NLP) is a sub-field of computer science and artificial intelligence
(AI) focused on the interaction between computers and human languages. It allows computers to
understand, interpret, and generate human language in a way that is meaningful to machines. NLP
applications have evolved significantly over time, starting with foundational tasks and progressing to
advanced technologies. Early applications included text classification, where algorithms categorized
text into predefined labels, and machine translation, which converted text from one language to
another. Sentiment analysis followed, enabling the extraction of emotional tone from text, and speech
recognition, which transformed spoken language into written text. More advanced applications like
named entity recognition (NER) and information retrieval emerged, focusing on extracting relevant
entities and data from large text corpora. Language modeling techniques such as next sentence pre-
diction (NSP), masked language modeling (MLM), and the development of large language models
(LLMs) represent the latest advancements in NLP. These models are proving crucial for understand-
ing, generating, and predicting natural language, and a wider use of such applications is gaining
momentum.

Genomic information consists of DNA sequences encoding the genetic code and translating it
into functional biomolecules such as RNA or protein. This information can be represented using four
nucleotide alphabets (also known as bases) namely, A, T, G, and C as unstructured text. In recent years,
NLP has found several applications in the field of genomics involving analyses using DNA/ RNA, or
protein sequences, all of which can be represented as text. For example, NLP-based algorithms were
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used for protein sequence classification (Asgari and Mofrad 2015), for identifying DNA modification
sites (Wahab et al 2021), functional annotations of co-expressed gene pairs (Du et al 2019), prediction
of gene promoters (Bhandari et al 2021), RNA modifications sites (Zhang et al 2021), enhancers (Mu
et al 2021), DNA replication origins (Wu et al 2021), for generating pseudo nucleotide composition
(Chen et al 2014) or even representation of protein sequences (Yang et al 2018).

The use of NLP techniques for genome language modeling (GLM) is appealing because genomic
sequences can be processed in a manner similar to natural language text sequences. Therefore, GLM
involves using NLP models to interpret and predict genetic sequences, treating them as a "language"
with its own syntax and semantics. This approach enables the development of models that can identify
and predict genetic features, enhancing our understanding of biological grammar. However, the
grammar it follows and the distinctions of genomic “words” are not as apparent. Despite these
challenges, this innovative approach enables the development of models that can identify and predict
genetic features and enhance our understanding of biological grammar by using sequence data alone.

GLM represents a significant advancement in computational biology by applying NLP techniques
to uncover insights from complex biological data. By applying GLM, researchers can develop more
accurate predictive models, improve functional annotations, and gain a deeper understanding of
the underlying mechanisms of gene expression and regulation. In this review, we will present an
overview of the current opportunities and challenges in the field of GLM. Additionally, we will discuss
the methods and demonstrate typical workflows used in GLM. Where possible, we will provide
a comparative analysis of algorithms. While we will use DNA sequences as our example data to
illustrate different methodologies, these same methods can also be applied to other types of biological
sequence data, such as RNA or protein sequences.

2. Main Text

GLM Workflow of Genomic Sequence Analysis

In this section, we provide an overview of a typical workflow of GLM that involves genomic
sequence analysis using ML techniques. The workflow includes steps such as genomics sequence
representation, feature extraction methods, ML applications, and functional annotation. These methods
are crucial for understanding how raw genomic data can be transformed into meaningful insights
through NLP methods.

2.1. Genomic Sequence Representation

Representing genomic sequences is an essential aspect of GLM. This involves converting DNA
sequences, represented by A, C, G, and T characters, (and RNA sequences, in which T is replaced by U
character) into numerical forms. Sequence representation involves two main steps. First, preprocessing
larger sequences into smaller units to work upon. The second step is encoding these sequences where
text sub-units are converted into numerical formats suitable for computational analysis.

2.1.1. Preprocessing

Before numerical encoding, biological sequence data often undergoes preprocessing steps to
enhance quality and usability. Common preprocessing techniques include:

a. Due to the extensive length of DNA sequences, which can range from hundreds to hundreds of
millions of base pairs (bp), preprocessing involves segmenting these sequences into smaller, manage-
able chunks. This step is essential to reduce computational costs and enable downstream algorithms to
efficiently process and analyze relevant sub-sequences [Figure 1].

b. Data cleaning: Filtering out common genomic terms or sequences containing little or unusable
information, such as the character ‘N’ in nucleotide sequence data [Figure 1].

c. Normalization: Standardizing sequences to a uniform format, addressing variations like case
sensitivity or character encoding.
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@ DNA Sequence:
/‘ "ATGCGTACGTAGCTAGGCTA"
| Chunks | | 3-mers | | Data Cleaning |
splitinto ATGCGT o [ATG, TGC, GCG, CGT] SRS [ATG, TGC, GCG]
smaller ACGTAG Tokenization [ACG, CGT, GTA, TAG] removed: [ACG, GTA]
chunks q q
. CTAGGC [CTA, TAG, AGG, GGC] [CTA, AGG, GGC]
Kmerization TAG, CGT
TAGCTA [TAG, AGC, GCT, CTA] [AGC, GCT, CTA]

Final k-mers: 4)

[ATG','TGC','GCG', ;ACG', 'GTA, 'CTA, 'AGG/,'GGC',
'AGC','GCT, 'CTA]

Traditional Sequence encoding methods @ Transformation of Tokens

2-mers (Used for simplicity):

| Frequency-based representation |
[AT, 'TA,'AT', 'TC, 'CG','GC', 'CG/, 'GA]

-

. Count vectorization

: 2. TF-IDF
| Ordinal Encoding | | One-Hot Encoding |
AT 1 AT [1,0,0,0,0,0] | Embedding-based representation |
U 2 TA [0.1,0,0,0,0] E 1. Embedding Layer
AT 1 AT [1,0,0,0,0,0] 0 2. Word2Vec
TC 3 TC 001,000 | i 35%e
CG 4 CG [0,0,0,1,0,0]
GC 5 GC [0,0,0,0,1,0] Neural network-based representation
CG 4 CG [0,0,0,1,0,0]
GA 6 GA [0.0,0,0,0, 1] ; 1. Transformers: BERT and GPT

Figure 1. A GLM Workflow cheat sheet illustrating the following: A) The complete process of
fragmenting long DNA sequences into smaller chunks, tokenizing them as 3-mers, and then performing
stopword removal. B) Traditional methods for encoding or transforming DNA sequences, including
ordinal and one-hot encoding. C) Advanced approaches to token transformation using frequency-based
representation, embedding, and neural network representation.

2.1.2. Sequence Encoding Techniques

Sequence encoding in GLM has evolved significantly, starting with fundamental encoding tech-
niques such as ordinal encoding (Potdar et al 2017), where nucleotides are encoded as integers based
on their alphabetical order (e.g., A=1,C=2,G =3, T = 4) [Figure 1]. This method simplifies the repre-
sentation of sequences into numerical values but may not capture underlying relationships between
nucleotides. Another popular encoding method is one-hot encoding, which maps each nucleotide (A,
C, G, T) to a binary vector representation [Figure 1]. In this scheme, each nucleotide is represented as a
vector of zeros with a single one indicating its presence (e.g., A =[1,0,0, 0], C=[0, 1, 0, 0], etc.). Beyond
these foundational methods, other historical encoding techniques include sum, Helmert, polynomial,
and binary encoding (Potdar et al 2017). These methods aimed to capture more nuanced relationships
between categorical values, providing alternatives to simple one-hot or ordinal representations. For
instance, sum encoding represents each category by its deviation from the grand mean. In contrast,
Helmert’s encoding contrasts each level of a categorical variable with the mean of the subsequent levels.
Even though this article focuses more on nucleotide sequences (DNA/RNA), the same approach can
be applied to protein sequences that are written using 20 alphabets known as amino acid characters.
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2.2. Feature Extraction

Feature extraction is the next vital step in subsequent analysis and modeling that involves the
preprocessing and encoding steps we introduced earlier.

2.2.1. Tokenization

In the preprocessing step, tokenization involves breaking down long DNA, RNA, or protein
sequences into smaller units called tokens. These tokens serve as the basic building blocks for
subsequent analysis [Figure 2].

1. Word or K-Mer Level:

In the context of biological sequences, k-mer is a sub-sequence of k length (e.g. 3-mers and 4-mers).
K-mers are generated by shifting an overlapping window of size k throughout the sequence. This
is equivalent to ‘words” of human language. Large amounts of data can be easily tokenized by this
method. Since we generate all overlapping k-mers of a given length, the resulting number of tokens is
very high, leading to a high computational cost. The determination of values of "k" is ad-hoc and is
usually based on guesswork [Figure 2]. Another drawback of this type of tokenization method is that
they do not accommodate Out-of-vocabulary (OOV) words. OOV words are words that are absent
from the vocabulary of a language model or tokenizer. These words may include misspellings, rare
words, or domain-specific terms not encountered during model training. Additionally, this approach
fails to capture the semantic relationship between the tokens, limiting its effectiveness in understanding
the context and meaning of sequences.

2. Character Level:

This tokenization method splits the sequences into individual characters, effectively handling
OOV words by breaking them into their component characters. This results in a significantly smaller
vocabulary size, as it includes only the four nucleotide characters (A, T, G, C). However, this approach
loses semantic relationships between tokens, as the context and meaning derived from longer sequences
are not captured. Additionally, while the vocabulary size is reduced compared to the word or K-
mer level tokenization, the overall length of the tokenized sequence increases, making the process
non-reversible and less efficient for capturing higher-level features [Figure 2].

3. Subword Tokenization:

Subword tokenization divides sequences into smaller units or subwords. N-grams, sequences of
n tokens, are commonly used. The most frequent words receive unique IDs, while the less frequent
words are split into subwords. This approach addresses the drawbacks of word and character-level
tokenization, such as large vocabulary sizes, inability to handle OOV tokens, and increased sequence
lengths, by breaking them into known subwords. It also maintains the semantic relationships between
tokens. Typically, subword tokenizers use pre-tokenized input rather than raw data [Figure 2].

3.1 Byte Pair Encoding (BPE)

BPE is a compression algorithm i.e. it encodes or compresses data and is widely used in NLP
pipelines to perform subword tokenization. It addresses the drawbacks of Word and Character
Tokenization as it handles OOV tokens and has a limited vocabulary size. Vocabulary size of BPE can
be a user-defined parameter. Initially, the vocabulary consists of unique characters or subwords of
various lengths from the tokens in the training sample along with their respective frequencies. The
tokens in the training sample are first split into individual characters from the vocabulary. These
characters represent the smallest units of the words. The algorithm then identifies the most frequent
combinations of adjacent characters, sub-words, or multi-character sequences and merges them to form
new subwords. This process is repeated iteratively, with the most frequent sequences being merged
at each step, gradually building up more complex subwords until the entire vocabulary is either
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compressed to the desired size or fully merged[Figure 2]. However, since BPE implements simple
merging rule based on the most frequent tokens, it does not account for semantics of the tokens which
can result in non-meaningful subwords. This leads to sub-optimal tokenization. BPE is employed in
language models like GPT-2, XLM, and FlauBERT.

3.2 Unigram

The unigram model solves the merging problem of BPE by calculating the likelihood of each
subword combination rather than picking the most frequent pattern. Initial vocabulary of unigram
consists of different combinations of tokens created by the frequency or BPE-based approach. Subword
tokens with the highest losses are removed from this vocabulary at each iteration step until the desired
vocabulary size is achieved [Figure 2].This ensures that the model retains subwords that are not only
frequent but also meaningful. Unigram approach is usually used in conjunction with SentencePiece in
popular architectures such as BigBird and XLNet.

3.3 Specialized subword tokenizer

1. SentencePiece: SentencePiece is a modified version of subword units approach. It is an effective
and language-independent sub-word tokenizer, owing to its pre-tokenization-free approach.
During tokenization, SentencePiece treats the sentences as raw texts and defines a fixed vocabulary
size for creating the vocabulary. It then converts all characters into Unicode including whitespaces.
This feature helps to handle accurate reverse conversion from detokenized tokens to original ones
(lossless tokenization). Using these features, SentencePiece could be easily extended to languages
like Japanese and Chinese, which do not use spaces. This feature makes it an effective approach
for biological sequences as well. SentencePiece also gives flexibility to choose between BPE
and Unigram as subword algorithms which improves the robustness of the entire tokenization
approach [Figure 2]. Transformer models like ALBERT, XLNet, and T5 use SentencePiece in
conjunction with Unigram.

2. WordPiece: WordPiece is a tokenization approach similar to BPE. It has similar merge rules
like BPE but differs in the selection of token pairs to be merged. WordPiece starts by creating
a vocabulary of tokens from the initial words by splitting the word into each character and
appending WordPiece prefix '##. It then merges the tokens based on the below scoring formula.
According to this formula, the pairs which appear less frequently in the text gets merged than
those which appear too frequently. WordPiece was developed by Google to train the BERT model,
then it got reused in many other transformer models like DistilBERT, MobileBERT and MPNET.

freq_of_pair

score = freq_of_first_element x freq_of second_element &



https://doi.org/10.20944/preprints202411.0285.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2024 d0i:10.20944/preprints202411.0285.v1

6 of 17

A. Levels of Tokenization
| DNA Sequence: “AAGTCATGT" |

Word or K-mer level Character- level Subword
Tokenization Tokenization Tokenization

3-mer: ["AAG”, “AGT",
“GTC”, “TCA”" “CAT"
MATGH‘ MTGTH]

[”A", "A": “G“, “T", "C", ["AA”, an, "TCA",
uAn’ MT"’ an' uTu] ,.TGT,,]

B. Types of Subword Tokenizers
| BPE | Unigram |

Training sample: [("AAGT”, 4), ("AGTC", 3),
(“GTCG", 2), ("TCGA, 5)]

Desired Vocabulary size: 10

Training sample after splitting: [(‘A, ‘A, ‘G, ‘T,
4),(A,'G,'T,‘C, 3), (G, T,'C,‘G,2),(T,C,
‘G, A, 5)]

Most frequent pair: ‘GT’ (9 times)

Training sample: [("CGTA", 6), ("GTAC", 4),
("ACGT", 3)]

Desired Vocabulary size: 10

Initial Vocabulary: [A, 'C','G', 'T', 'CG/, 'GT,,
‘TA, 'AC','CGTA]

Tokens with less likelihood are removed
based on loss function.

New Vocabulary: [(A, ‘A, ‘GT’, 4), (A, 'GT’, ‘C,

3),(GT, C, ‘G, 2), (T 'C’ ‘G, ‘A, 5)] New Vocabulary: [A, 'C', 'G','T', 'CG','GT','AC']

| SentencePiece | WordPiece |

Training sample: AGTCGTCGA (Tug’é'f\?i )s]ample: [("AGT", 10), ('CGT", 12),
Desire'd Vocabulary size: 10

Training sample after splitting: [('A, '##G’,
HHT'10), (C##G #4#T',12), (C#4G,##A 4)]

Supports BPE and Unigram methods

Based on the tokenization approach creates

new vocabulary of tokens Merges the pairs based on the score.

) score=(freq_of_pair)/
FX?L\mFE;IeT C.'GT" ‘CGA] (freq_of_first_elementxfreq_of_second_element)
- Example score for GT =(22)/(26x22)

Figure 2. This figure illustrates examples of: A) Level of Tokenization: The section illustrates the
various levels of tokenization applied to a DNA sequence input, producing different tokenized outputs.
B) Types of Sub-word Tokenizers: The second section gives examples of four subword tokenization
techniques: BPE (Byte-Pair Encoding), Unigram, WordPiece, and SentencePiece, showing how each
method segments a DNA sequence into sub-word units.

2.2.2. Transforming Tokens Using Frequency-Based Representation

Tokens generated from tokenization are required to be encoded as numerical values and trans-
formed as either vectors or multi-dimensional matrices before feeding them into learning algorithms to
design models. Traditional methods of transforming tokens include ordinal encoding, one-hot encod-
ing, and other encoding methods discussed in the earlier section. This section explores frequency-based
representation methods for the transformation of tokens.

1.  Count-vectorization: This method counts the number of occurrences of each token and represents

it as a vector or matrix [Figure 3]. This method considers high-frequency words as more significant.
2. TF-IDF: In the context of natural language data Term Frequency-Inverse Document Frequency

(TF-IDF) is a statistic based on the frequency of a token in the document. It is used to analyze
the difference between the two documents by the uniqueness of tokens. A higher value of
TF-IDF signifies higher importance of the tokens in the corpus while lower values represent
lower importance. It is calculated by combining two metrics: Term Frequency (TF) and Inverse
Document Frequency (IDF) [Figure 3].

Term Frequency (TF) score

It is based on the frequency of tokens or words in the document. TF is calculated by dividing the
number of occurrences of a token (i) by the total number (N) of tokens in the document (j).
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TF (i) = frequency (i,j) / N (j)
Inverse Document Frequency (IDF) score

It is a measure that indicates how commonly a token is used. It can be calculated by dividing the
total number (N) of documents (d) by the number of documents containing the token (i).

IDF (i) = log (N (d) / frequency (d, 1))
The final TF-IDF score is calculated by multiplying TF and IDF scores.
TF-IDF (i) = TF (i) x IDF (i)

Similar to the Countvectorizer method, TE-IDF also gives priority to the tokens that have the
highest frequency of occurrence in the document or the corpus. However, these count-based
methods fail to capture the semantic relationship between tokens.

Transformation of Tokens using frequency-based representation

1. Count-vectorization

K-mer: ['ATG”, “ATAT”, “CGAT”, “AAA”, “CGAT’] | : IDF Score:

Token ATG ATAT 1 coaT | Asa i IDF= log(Total no. of documents/
G ; ; 5 ; : frequency of documents containing the
ount token)
2. TF-IDF : Token | AAA | ATA | ATG | GTA | cGAT | ATTG ACGTA
IDF 0 o |o03|03)|03) 03 03
Tokens:
K-mer 1: ['ATG", “CGAT”, “AAA”", “ATA", “CGAT"] 0
K-mer 2: ["AAA”, “ATA”, "GTA", “ATTG", “ACGTA"] 0 TF-IDF Score:
Token | AAA | ATA | ATG | GTA | CGAT ATTG ACGTA : TF-IDF= TF x IDF
Count | 2 2 1 1 2 1 1
Token | AAA | ATA | ATG | GTA | CGAT | ATTG ACGTA
TF Score: : K-mer1| 0 | 0 |006 0 |012| 0 0
TF=Frequency of token/Total number of : Kmer2l o | o | o |oo6! o | 006! 006

tokens in the document.

Token | AAA | ATA | ATG | GTA | CGAT ATTG/ACGTA
K-mer1| 02 | 02 | 02 0 0.4 0 0
K-mer 2| 0.2 | 0.2 0 0.2 0 0.2 0.2

Figure 3. Transformation of DNA sequences using frequency-based representations: Count-
vectorization and TF-IDF. The example illustrates how DNA sequences are tokenized and then con-
verted into a numerical format.

2.2.3. Transforming Tokens Using Embedding and Neural Network-Based Representations

More recently, embeddings and neural network-based have been used for token transformations.
Embedding is a learned transformation for corpus where we compare tokens by comparing features
to find relationships between them. Each token is mapped to one vector. Similar tokens have a
representation identical to vectors/matrices. The distributed representation is learned based on their
usage. This allows tokens used in similar ways to have similar representations, naturally capturing
their relation. We have classified the embedding models into two broad categories:

Non-Contextual

Non-contextual representation is short-ranged. It just converts each token into one vector without
considering the context in which they are used. Two same tokens will have the same representation
disregarding their different semantic meanings. Two common algorithms in this category are Word2vec
and Glove.

1. Word2Vec
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Word2Vec is a statistical method that attempts to explain word embedding based on the corpus. It
can do that by implementing two strategies:

e  Continuous Bag-of-Words, or CBOW model.
e  Continuous Skip-Gram Model.

CBOW is a representation of text that describes the occurrence of words within a document. This
model is only concerned with whether known words occur in the document, not where in the
document. We convert a corpus of text of variable-length (unstructured data) into a fixed-length
vector which is structured and well-defined and thus preferred by NLP Algorithms. The CBOW
model learns the embedding by predicting the current word based on its semantics or context.
The continuous skip-gram model on the other hand, learns by predicting the surrounding words
given a current word. Both models are focused on learning about words given their local usage
context, where the context is defined by a predefined window of neighboring words. For Example,
a window size of 2, means that for every word, we’ll consider the 2 words behind and the 2
words after it [Figure 4]. The Skip-Gram model works well with small-scale data, and better
represents rare words or phrases. However, the CBOW model trains faster than Skip-Gram and
better represents high-frequency words, thus giving a slightly better accuracy. The key benefit of
the approach is that high-quality word embeddings can be learned efficiently i.e. with low space
and time complexity, allowing larger embeddings to be learned from large-scale data. DNA2vec
is the DNA equivalent of Word2vec i.e. it is used specifically for applying the Word2vec approach
to DNA sequences. It is used to transform tokens of variable length k-mers preferably 3 to 8
using the skip-gram model approach and thus captures efficient information of the sequences (Ng
2017). Another example is the kmer2vec model which is more focused on embedding fixed-length
k-mers, typically between 3 to 6 to capture sequence relationships. This model is useful for tasks
that require uniform k-mer lengths such as identifying specific patterns within genomic sequences

(Ren et al 2022).
Word2Vec model
A. Training sample: B. Word embeddings
K-mer= [‘ATG", “CGAT”, “AAA”, “ATA’, {003 o
“CGATA"] H
P00 écG_ g c
Window size=2 : T ﬁﬂc gGT * I
1001 #GC 1
ATG CGAT AAA ATA CGATA : #CG
: " e
(ATG,CGAT) | (CGATATG) | (AAA,ATG) | (ATA CGAT) | (CGATA AAA) 1 0007 gca o CT
. $CA
(ATG, AAA)  (CGATAAA) | (AAA,CGAT) | (ATAAAA) | (CATAATA) & oo oo MT
CGAT, ATA AAA, ATA)  (ATA, CGATA :
( )« ) ) b o] e S6A JAG FTA QAT
(AAA, CGATA) :
1 =003 T

-0.03 -002 -0.01 0.00 0.01 0.02 0.03

Figure 4. Illustration of Word2Vec model applied to k-mer sequences: (A) Training sample showcasing
how Word2Vec processes a k-mer sequence using a window size of 2, traversing through the sequence
to capture context-based relationships between neighboring k-mers. (B) A sample k-mer embedding
plot: A graphical representation of the k-mer embeddings generated by the Word2Vec model. The X
and Y axes indicate the relative distance between the k-mers, reflecting contextual similarities. Dense
clusters suggest high similarity between k-mers, while loosely clustered or outlier k-mers suggest
lower similarity or significant deviation from central groups.
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2. Global Vectors for Word Representation (GloVe)

The GloVe model is an extension of the Word2vec model for efficiently learning word vectors.
Word2Vec only captures the local context of words. GloVe considers the entire corpus and creates
a large matrix from the words in the corpus. The matrix has the words as the rows and their
occurrence frequency as the columns for a corpus of text. For large matrices, we factorize the
matrix to create a smaller matrix. GloVe combines the advantages of two-word vector learning
methods: matrix factorization and local context window methods like Skip-gram which reduces
the computational cost of training the model. The resulting word embeddings are different and
improved. Word tokens with similar semantic meanings or similar contexts are placed together,
for example, ‘queen” and ‘women’. Being an extension to Word2vec, GloVe can be used for the
representation of biological sequences as well. In a recent study, the GloVe model was integrated
into a hybrid machine-learning model to classify gene mutations in cancer (Aburass et al 2024).

Contextual
1. Embeddings from Language Models (ELMo)

ELMo are another way to convert a corpus of text into vectors or embeddings. ELMo word
vectors are calculated by using a two-layer bidirectional language (biLM) model. Each layer has
2 passes, a forward pass, and a backward pass. It first converts the words into vectors. These
vectors act as inputs to the first layer of the biLM model. The forward pass extracts and stores the
information about the word in vector form and the context before it. The backward pass extracts
and stores the information about the word and the context (other words) after it. This information
contributes to the formation of intermediate word vectors which act as an input to the second
layer of biLM. The final representation is done by the weighted sum of the initial word vectors
and the two intermediate word vectors formed by the two layers. Recent studies use ELMo-based
models to create embeddings for downstream tasks like protein structure prediction (Heinzinger
et al 2019) (Sharma and Daniel Jr 2019).

2.  Transformers

Transformers are a type of neural network architecture used for NLP tasks. Transformers make use
of an attention mechanism i.e. when a transformer looks at a piece of data, like a DNA sequence,
it doesn’t just focus on one part. It pays attention to all the different parts at the same time. This
helps it understand how everything fits together and find important patterns or relationships
between tokens in the corpus of data for generating embeddings. A transformer model uses
self-attention mechanisms to relate different positions within a single sequence. This allows each
position in the sequence to attend to all other positions in the sequence, enabling the model to
capture contextual information more effectively than traditional models.

BERT

BERT rely on this attention mechanism. In contrast to traditional (uni)directional models that
read sequences from either the left or the right, transformers, including BERT use a bidirectional
approach by using MLM in which tokens are masked at different intervals and models use pre-
ceding and succeeding tokens to predict the hidden tokens. BERT is an encoder-only transformer
model. It takes input sequences and transforms them into fixed-size representations that capture
important features. Word2vec or GloVe models generate a single-word embedding representation
for each word in the vocabulary, whereas BERT will form a contextualized embedding that takes
into account the context for each occurrence of a given word and will be different for each word ac-
cording to the sentence. This enables BERT to provide more nuanced and accurate representations.
This feature can be useful for tasks like classification and understanding genomic sequences that
can have messages read in both directions and function via both short and long-range interactions.
In genomics, DNABERT is a specialized adaptation of BERT for DNA sequences (Ji et al 2021). It
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is pre-trained on short sections of genomic data, learning patterns, and relationships. A newer
version of DNABERT, DNABERT-2, uses BPE and other techniques to improve performance
(Zhou et al 2023). GenomicBERT uses unigram empirical tokenization to handle longer genomic
sequences effectively and BERT attention mechanism to capture contextual relationships across
large-scale biological datasets (Chen et al 2023). Other models like BioBERT, focusing on biomedi-
cal literature are leveraged to extract meaningful information from a vast biomedical text corpus
(Lee et al 2020; Yu et al 2019). Similarly, Clinical BERT is employed in medical decision-making by
analyzing clinical notes (Huang et al 2019).

Generative Pre-trained Transformers (GPT)

GPT are a type of transformer model but follows a different architecture than BERT. GPT models
are based on a decoder-only framework. A decoder takes the representations generated from an
encoder and uses these to generate predictions. GPT is trained using tasks like Autoregressive
Language Modelling (ALM), where the model sees a series of sequences and predicts the next
sequence. It will be suitable for tasks involving sequence prediction and understanding directional
sequences in genomics. Numerous models inspired by GPT such as DNAGPT (Zhang et al 2023),
BioGPT (Luo et al 2022), GeneGPT (Jin et al 2024), and ScGPT (Cui et al 2024), are being pre-trained
on genomic sequences and biomedical literature. These models are then employed in various
specialised tasks like gene sequence recognition and protein sequence prediction. For example,
DNAGPT has been specifically designed for DNA sequence tasks, while BioGPT focuses on
generating biomedical text that can be adapted for genomic applications.

Table 1. Algorithms comparison: This table presents a detailed comparison of different encoding
algorithms including ordinal encoding, one-hot encoding, word embedding, and BERT.

| Aspect | Ordinal Encoding | One-hot encoding | Word embedding | BERT |
Encoding Each token is as-| Each tokenisrepresented by | Tokens that have the same | BERT pro-
form signed an integer | a vector (matrix). meaning have similar repre- | vides con-
value. sentations. Each tokenisrep- | textualized
resented by real-valued vec- | embedding
tors. by taking into
account the
context of
each  token
occurrence.
Semantic rela- | Does not capture the | Does not capture the rela- | Captures the relationship be- | It  captures
tionship relationship between | tionship between tokens. tween tokens. the relation-
tokens. ship between
tokens.
Categorical Suitable for ordinal | Suitable for both nominal | Suitable for both nominal | Suitable for
variables variables but not for | and ordinal variables. and ordinal variables. both nominal
preferred nominal. and ordinal
variables.
Memory con- | Lower memory | High memory consumption | More efficient in terms of | High memory
sumption and | usage but may not | due to large dimensions. memory than one-hot encod- | consumption
training time | scale well with large ing. but scales
datasets. with more
data for better
accuracy.
Handling Can not handle OOV | Can not handle OOV words. | Struggles with OOV words. | Efficiently
OOV (Out of | words. handles OOV
Vocabulary) words  with
words the help
of  modern
tokenizers.
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Table 2. Overview of Tokenization Types.
Tokenization | Method Pros Cons Reversibility
Approach
Character To- | Splits the data into a | Handles OOV words by | It doesn’t capture the seman- | Non-
kenization set of characters. breaking them into charac- | tic relationship between the | reversible
ters. Also, it has a limited | tokens.
size of vocabulary since it
contains only a unique set of
characters.
Word  Tok- | Splits the data into to- | Large amounts of text canbe | Fails at handling Out of Vo- | Reversible
enization kens using a certain | easily tokenized without us- | cabulary (OOV) words. Fur-
delimiter. ing complex computation. thermore, doesn’t scale well
with big datasets as it gen-
erates a huge amount of vo-
cabulary.
K-mer based | The data is split into | Computationally less expen- | Does not capture the rela- | Non-
Tokenization | fragments of desired | sive method to generate to- | tionship between the tokens | reversible
k-length. kens for genomic sequences. | and generates a larger vocab-
ulary.
Subword Tok- | Splits the data into | Transformer-based mod- | Increases  computational | Non-
enization subwords (or n-gram | els use this algorithm for | cost while reducing the | reversible
characters). The most | preparing vocabulary. Has | model interpretability.
frequently used to- | a decent vocabulary size. It
kens are given unique | does capture the semantic
IDs and the less fre- | relationship between the
quent tokens are split | tokens.
into subwords.
Table 3. Overview of Sub-word Tokenization Techniques.
Method name | Type of Model Feature
Byte pair en- | Frequency-based Initially developed as a compression algorithm, found applica-
coding (BPE) bility in sub-word tokenization using frequency-based merge
rules.
WordPiece Score-based Select tokens based on a scoring mechanism to create an effec-
tive tokenizer model.
Unigram Probability and loss | By quantifying a loss function, iteratively removes less efficient
function based tokens from a larger vocabulary based on their probabilities to
build a fixed size vocabulary.
SentencePiece | Data-driven tokeniza- | Does not require pre-tokenization and is language indepen-
tion dent. Provides flexible integration with BPE, Wordpiece, and
Unigram methods

ML Applications in Genomics

ML has significantly transformed genomics, offering powerful tools and methods for a range
of applications. In this section, we explore the primary applications of ML in genomics, including
classification, prediction, and language generation.

1. Classification

ML techniques have been instrumental in classification tasks such as identifying gene expressions,
categorizing cell types, protein classification, and distinguishing between healthy and diseased tissues.
Techniques like Random Forest (RF), Word2Vec, and Convolutional Neural Network (CNN) have been
widely used. For example, CNN was used to identify N4-methylcytosine sites in DNA sequences,
demonstrating the effectiveness of deep learning algorithms in genomic data analysis (Wahab et al
2021). Similarly, Word2Vec-based models such as Bio2Vec and Prot2Vec were used to classify protein
sequences. These embeddings helped capture the sequences’ semantic relationship, improving classifi-
cation accuracy (Asgari and Mofrad 2015). In another case, word embeddings combined with a deep
learning framework were used to identify DNA replication origins (Wu et al 2021). This approach
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showcases the effectiveness of deep learning algorithms in handling complex classification tasks in
genomics.

2. Prediction

Predictive modeling in genomics focuses on forecasting genomic outcomes based on biological
data. Techniques such as regression models, Recurrent Neural Networks (RNNs), and Long Short-Term
Memory (LSTM) Networks are commonly used.

For example, a Residual Fully Connected Neural Network (RFCN) was employed for predicting
gene regulatory networks (Liu et al 2021). Similarly, CNN and RF models were used to compare ML
and DL approaches in promoter prediction across various species (Bhandari et al 2021). In another
paper, LSTM and CNN models were used to predict RNA modifications using one-hot encoding, word
embedding, and RGloVe, showcasing the versatility of neural network models in handling diverse
genomic data types (Wang et al 2022).

3. Language Generation

GLMs, particularly transformer-based models like BERT and GPT are apt at generating new
sequences of nucleotides or amino acids that conform to the grammar and structure of the genetic
code. These models leverage NLP techniques to capture genomic data’s contextual relationships.

Genomic sequences exhibit a time series like property where nucleotides (A, C, G, T) or amino
acids are organized into meaningful units whose meaning is dependent on their context. These
units can range from kmers and genes to larger genomic regions. GLMs are designed to capture this
hierarchy, allowing for the generation of sequences that incorporate the genomic context.

GLMs consider the surrounding nucleotides or amino acids to accurately predict the next element
in the sequence (Sanabria et al 2024). This contextual awareness is essential for generating biologically
plausible sequences that align with the rules of the genetic code.

GLMs utilize various language modeling techniques to represent and generate nucleotide or
amino acid sequences (Tahmid et al 2024). One prominent approach is ALM used by GPTs, which
predicts the next token (nucleotide or amino acid) in a sequence based on the preceding tokens
(Pourmirzaei et al 2024). This technique allows GLMs to generate novel genomic sequences and
aid in tasks such as sequence completion, mutation prediction, or identifying regulatory regions
within genomes. These capabilities highlight the versatility and potential impact of applying language
modeling to genomics.

Functional Annotation

Functional annotation is an important process in genomics that involves identifying and assigning
biological information to raw sequences and their products. This process helps in understanding the
functional elements of a genome, such as genes or proteins, and their roles in biological processes and
pathways.

Historically, tools like BLAST (Basic Local Alignment Search Tool) were used to perform sequence
similarity searches to infer functional information based on the similarity of the unknown sequence
to the known sequences. BLAST identifies regions of local similarity between sequences and aligns
them to determine the likelihood of functional and evolutionary relationships. This approach, while
effective, is limited by its dependency on existing annotations and its linear, non-contextual nature
(Ejigu and Jung 2020). This method often needs to be revised when dealing with novel sequences or
those with low similarity to known genes.

In the context of ML, functional annotation can be enhanced by both rule-based and DL ap-
proaches in an alignment-free manner (Wade et al 2024). Rule-based models are interpretable and can
report features that are important for a predicted outcome. These models are built on predefined rules
and statistical correlations, making it straightforward to understand which features contribute to a
specific prediction. For instance, identifying DNA modification sites using rule-based algorithms can
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yield easily interpretable results, allowing researchers to directly correlate specific nucleotide patterns
with functional annotations (Wahab et al 2021).

DL models, such as those based on transformers, offer a more complex but powerful approach
to functional annotation. These models can automatically learn intricate patterns in genomic data,
providing insights that might be missed by rule-based methods. For example, BERT and other
transformer models can generate attention scores that highlight which parts of the input sequence are
most influential for a given prediction. These attention scores can then be mapped back to biological
functions, helping to assign biological relevance to important features.

In genomics, attention mechanisms within transformer models have been used to predict en-
hancers, promoters, and other regulatory elements by identifying key sequence motifs and their
interactions (Du et al 2019). Similarly, specialized approaches like DNABERT and genomicBERT focus
on DNA sequences, offering more precise annotations by leveraging the bidirectional nature of BERT
to capture context from both directions in the sequence (Ji et al 2021).

NSP in BERT models enhances function annotation by understanding the relationship between
genetic elements. In identifying operons or polycistronic messages in prokaryotic genomes, NSP can
help predict whether a sequence of genes is likely to be transcribed together, revealing functional units
within the genome. For instance, in a study of bacterial genomes, NSP was used to predict operon
structures, significantly improving the accuracy of functional annotations compared to traditional
methods. By analyzing the sequence context, NSP can identify co-regulating genes, providing insights
into their collective biological functions (Mao et al 2019).

Overall, combining rule-based and deep learning methods provides a robust framework for
functional annotation, enhancing our ability to decipher complex genomic information.

3. Conclusion

The application of NLP techniques in genomics, particularly through GLM, offers significant
advancements in identifying, understanding, and predicting biological functions by using the sequence
information alone. This interdisciplinary approach leverages the strengths of NLP to process and
interpret genomic sequences as natural language, enabling new possibilities for research and medical
applications.

One of the most promising applications of GLM is in personalised medicines. By training models
on combined healthcare and genomic data, researchers can identify genetic markers associated with
physiological and lifestyle factors. This will enhance robust prediction of susceptibility to various
diseases. For instance, deep learning models can analyze patterns in DNA sequences associated with
genetic disorders, potentially leading to early diagnosis and personalized treatment plans. BERT-based
models have shown great potential in identifying disease-related gene expressions and mutations,
offering insights that can guide clinical decision-making (Zhang et al 2021).

GLM also plays a critical role in functional genomics, where understanding gene function and
regulation is paramount. The ability to accurately annotate genes and regulatory elements helps in
constructing detailed maps of genetic interactions and pathways. These annotations are crucial for
elucidating the mechanisms of gene expression and regulation, which can lead to the discovery of new
therapeutic targets.

While the future of GLM in genomics is promising, there are significant limitations. Training
on a variety of large-scale genomic datasets is computationally demanding, requiring substantial
processing power and time. Like other ML approaches, class imbalance in genomic datasets also
presents a challenge, as rare sequences might get overlooked, potentially biasing predictions. The lack
of standardized benchmarks in new sequencing projects will pose a critical challenge for evaluating
the outcomes of language models. Understanding how language models generate predictions in
genomics is often more challenging than in natural language tasks, as the complete ‘grammar” and
"vocabulary’ of the genome are still being uncovered. For this reason, the risk of model hallucination,
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where the model produces information that doesn’t accurately reflect the underlying data, is especially
concerning in genomics.

With these limitations in mind, future research in GLM may focus on developing more efficient
models for the processing of large-scale genomic data while ensuring interpretability and validation
benchmarks. GLM offers enormous potential for understanding genetic information and improving
health outcomes. By addressing challenges and continuing to innovate, we can achieve significant
achievements in genomic research and healthcare.

4. List of Abbreviations

e  EHR: Electronic Health Record

¢ GLM: Genome Language Modeling

¢  ML: Machine Learning

e  BERT: Bidirectional encoder representations from transformers
e NLP: Natural Language Processing

e NER: Named Entity Recognition

®  NSP: Next Sentence Prediction

¢  MLM: Masked Language Modeling

¢  LLMs: Large Language Models

¢ DNA: Deoxyribonucleic acid

e  RNA: Ribonucleic acid

e OOV: Out-of-vocabulary

e  BPE: Byte Pair Encoding

¢  TF-IDF: Term Frequency-Inverse Document Frequency
¢  CBOW: Continuous Bag-of-Words

*  GloVe: Global Vectors for Word Representation

¢  ELMo: Embeddings from Language Models

e  biLM: bidirectional Language Model

¢  GPT: Generative Pre-trained Transformers

e ALM: Autoregressive Language Modelling

¢  RF:Random Forest

¢ CNN: Convolutional Neural Network

¢ RNNs: Recurrent Neural Networks

¢ LSTM: Long Short-Term Memory

*  RFCN: Residual Fully Connected Neural Network
e  BLAST: Basic Local Alignment Search Tool
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Table 4. Supplementary table: Sequence processing methods.
Method name Method type Tokenizer strategy Language restriction | Reversibility | Application
Conventional word splitting | Rule-based tokeniza- | Separates words based on | Space-separated lan- | True Natural Language
tion space and/or punctuation. guages
Conventional sentence split- | Rule-based tokeniza- | Separates sentences based on | Full-stop separated | True Natural Language
ting tion full stops. languages
Penn TreeBank Rule-based tokeniza- | Separates contracted words. | Use of contracted | True Natural Language
tion words in the lan-
guage
TweetTokeniser Rule-based tokeniza- | Separates audio streams | Space-separated lan- | False Natural Language
tion in the form of string into | guages
small tokens based on space
and/or punctuation.
MWET (Multi-Word Expres- | Rule-based tokeniza- | Processes tokenized set and | Needs predefined to- | True Natural Language
sion) tion merges MWE into single to- | kens.
kens.
TextBlob Rule-based tokeniza- | Separates text into tokens | None True Natural Language
tion based on space, punctuation,
and/or tabs.
spaCy Rule-based tokeniza- | Separates text(various lan- | Space-separated lan- | True Natural Language
tion guages) into words based on | guages
space.
GenSim Rule-based tokeniza- | Separates text based on space | Contracted words True Natural Language
tion and/or punctuation.
Keras tokenizer Rule-based tokeniza- | Separates text into integer se- | None False Natural Language
tion quence or vector that has a
coefficient for each token
Moses Rule-based tokeniza- | Separates text based on | Space-separated lan- | True Natural Language
tion spaces. guages
MeCab Sequence segmenta- | Segments sentences into their | None False Natural Language
tion parts of speech.
KyTea Sequence segmenta- | Segments sentences into their | None False Natural Language
tion parts of speech and pronun-
ciation tags.
Byte Pair Encoding (BPE) Sequence  segmen- | Recodes sequences into a | None False Natural Language
tation (requires | standardized format by fre-
pre-tokenized input) quency.
Wordpiece Sequence  segmen- | Recodes sequences into a | None False Natural Language
tation (requires | standardized format by like-
pre-tokenized input) lihood. Variant of BPE
Unigram Sequence  segmen- | Recodes sequences into a | None False Natural Language
tation (requires | standardized format by like-
pre-tokenized input) lihood, producing a set of to-
kens and their probabilities.
Variant of BPE
SentencePiece Data-driven tokeniza- | Empirically derives tokens | None True Natural Language
tion by sequence segmentation
with BPE or its variants i.e.
WordPiece, Unigram.
k-mers Rule-based tokeniza- | Sequence data is split into to- | None False Biology
tion kens of fixed length
Khmer Rule-based tokeniza- | Sequences are arbitrarily | None False Biology
tion split into subsequences.
Tab Rule-based tokeniza- | Separates text based on tabs | Tab-separated text True Natural Language
tion between them.
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