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Article

Optimizing Binary Classification: An Alternative New
Loss Function with Statistical Validation
Mahmudul Hasan Rabbi

Department of Applied Mathematics, University of Dhaka, Bangladesh; mdmahmudulhasan-2021211830@amath.du.ac.bd

Abstract: Binary classification is a fundamental task in machine learning with applications in the fields
of financial fraud detection, robotics, sentiment analysis, health care, and autonomous systems. The
binary cross-entropy loss function is more widely used for optimizing classification models. However,
sometimes it demonstrates numerical instability and high variance during the training leading to
inconsistent convergence. To solve this issue, We propose an alternative loss function designed for
binary classification to improve numerical stability and reduce training fluctuations. Experimental
results show that the proposed loss function achieves smoother training dynamics and lower variance
in loss curves compared to conventional approaches. These findings suggest that it serves as a robust
alternative for binary classification tasks, improving model reliability in real-world applications.

Keywords: cross-entropy loss; binary classification; alternative loss function; machine learning opti-
mization; medical diagnostics

1. Introduction
Binary classification is a core fundamental task in machine learning widely applied across various

domains including robotics, medical diagnostics, spam detection financial fraud detection, etc. A fun-
damental element in the training process is the loss function, which directly influences the optimization
and performance of the model. Among the most widely used loss functions for binary classification
the cross-entropy loss is considered the standard due to its simplicity and well-established theoretical
foundations.

However, the cross-entropy loss is not without limitations. It has also some limitations. In practice,
it can exhibit instability during training and high variance, especially when the model is not well-tuned
or the dataset has special characteristics. This kind of instability can lead to erratic convergence,
making it difficult to achieve optimal performance or stable training behavior.

To solve these challenges, we propose an alternative loss function specifically designed for binary
classification tasks. This custom loss is designed to promote smoother convergence and reduce variance
during training, which is essential for tasks that require robust learning dynamics and generalization.
The proposed loss function is particularly useful when stable training behavior is desired and when
the model must generalize well to unseen data.

This study aims to compare the performance of the alternative loss function with the standard loss
in the context of binary classification. We demonstrate that the custom loss function leads to smoother
convergence, lower variance and better overall loss minimization, which ultimately translates into
better model performance. The results indicate that the alternative loss function is more comportable
for binary classification tasks, especially in scenarios where learning stability and generalization are
essential.

2. Methodology
2.1. Experimental Setup

All the experiments were conducted on a system with the following software environment:

• Programming Language: Python 3.12.3
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• Other tools: Jupyter Lab(JupyterLab 4.2.6, Jupyter Core 5.7.2)
• Libraries/Frameworks: PyTorch 2.5.1 [1], Matplotlib [2], TensorFlow 2.18.0 [3], NumPy 1.26.4 [4],

scikit-learn [5], Seaborn [6], SciPy [7], ArviZ [8], PyMC [9].

All the experiments were conducted on a system with the following hardware configuration:

• Operating System: Microsoft Windows 11 Pro(Version 10.0.26100 Build 26100)
• RAM: 7.55 GB of total Physical Memory
• CPU: AMD Ryzen 5-5600G with Radeon Graphics of 6 cores

GPU acceleration was not utilized during the experiments, as the system does not contain any
GPU, all the computations were evaluated using the CPU.

2.2. Dataset and Preprocessing

We used the MNIST [3] dataset that contains images of handwritten digits from 0 to 9. For the
purpose of the binary classification task, we select the digits 0 and 1 by filtering the dataset to only
include samples from these two classes. The data set is divided into two sets(training and test sets),
with a split of 80-20. the test set contains 10,000 samples while The training set contains 60,000 samples.
For preparing the dataset to train the model, we normalized the dataset to the range [0, 1] by dividing
the raw pixel values 255. The images are then reshaped from 28x28 pixels to 784-dimensional vectors
that can be fed into the neural network.

2.3. Loss Functions

This model is trained using two different loss functions for comparison: A custom-designed loss
function and the Binary Cross-Entropy (BCELoss) loss function.

2.3.1. Binary Cross-Entropy Loss

[10] The Binary Cross-Entropy (BCELoss)[11] loss function is normally used in binary classification
tasks. Which calculates the loss between the predicted values and the true binary labels. The BCELoss
function is defined as:

Lbce(y, ŷ) = −y log(ŷ)− (1 − y) log(1 − ŷ)

where y indicates the true label and ŷ represents the predicted probability.

2.3.2. Custom Loss Function

The custom loss function is designed to address some of the limitations of the traditional Binary
Cross-Entropy (BCELoss), particularly its instability and high variance during training. While BCELoss
is widely used for binary classification tasks, it can sometimes cause erratic training behavior, especially
when the model predictions are far from the true labels. This instability can result in slower convergence
and less efficient learning.

The custom loss function aims to mitigate these issues by introducing a more stable and controlled
loss calculation. The function is formulated to reduce the variance typically observed with BCELoss,
which helps to achieve smoother convergence during the optimization process. The custom loss
function is defined as:

Lcustom(ypred, ytrue) = − 1
N

N

∑
i=1

log
(
(1 − ytrue,i − ypred,i + ϵ)(−1)ytrue,i

)
Where: - ypred,i is the predicted probability for the i-th data point. - ytrue,i is the true label for the

i-th data point. - N is the number of data points in the batch. - ϵ is a small constant (1 × 10−7) added to
avoid numerical instability, especially when the arguments inside the logarithm approach zero.

The key component of the custom loss is the term (−1)ytrue,i , which adjusts the sign of the
expression based on the true label. If the true label is 1, the expression multiplies by −1, whereas for
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a true label of 0, it multiplies by +1. This term helps control the loss calculation and prevent large
fluctuations in the gradients during training.

The motivation for this custom loss is to provide a more stable gradient flow, especially in
situations where the BCELoss might cause large loss spikes due to mispredictions, leading to high
variance in training. By smoothing out these fluctuations, the custom loss function enables the model to
converge more reliably and at a faster rate, improving overall training stability and model performance.

2.4. Model Architecture

We used a neural network (Figure 2) architecture that combines fully connected layers with two
subnetworks(residual block) (Figure 1) for improving the model performance and training efficiency.
This model architecture contains the following components:

• An initial linear layer(Dense layer) with 784 input units (corresponding to the 28x28 pixel) and
256 output(binary output) units.

• Two residual blocks each of which contains convolutional layers, batch normalization layers and
ReLU activations layer.

• An adaptive average pooling layer to reduce the spatial dimensions after the residual blocks.
• Some additional fully connected linear layers, a final output layer with a single unit with a

Sigmoid activation to produce a binary output.

Each residual block (Figure 1) contains four convolutional layers, Batch normalization layers
and ReLU activations. The shortcut connections in the residual blocks are used to avoid vanishing
gradients and to allow more efficient training.

2.5. Training Procedures

This model is trained for 500 epochs using the Adam optimization algorithm with a learning rate,
lr=0.001. A batch size is used for training is sixty four(64). For each loss function, the model is trained
independently and the mean loss history over each epoch are recorded for comparison purpose for the
both loss functions.

The training is performed on CPU as no GPU is available, and the data is loaded from Keras. The
training data is shuffled, and the gradients are computed using backpropagation.

2.6. Evaluation Metrics

To evaluate the model performance for each loss function, we have used the following metrics:

• Accuracy Metrics: Measures how many predictions are correct out of the total number of predic-
tions.

• Loss Function Convergence: To observe the rate at which the loss decreases quickly during the
training.

We also plot the loss curves for each loss function and compare the training time to assess their
relative performance. The statistical comparison of the results is done based on the training stability
and loss reduction efficiency.

2.7. Implementation Details

The experiments are implemented using the PyTorch framework. The code is structured to allow
for easy switching between the loss functions. The model is trained on a CPU as CUDA-enabled GPU
is not available. The random seed is fixed for reproducibility of results, ensuring that the experiments
are consistent across different runs.

The model training and evaluation are conducted in a controlled environment with consistent
hyperparameters to ensure a fair comparison between the loss functions.
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Figure 1. Residual Block Subnetwork: This image represents the residual block architecture, which is used as a
subnetwork in the main model.

Figure 2. Main Model Architecture: This figure shows the overall structure of the model, representing the layers
and operations involved.
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3. Results
This section represents the results of the loss values for two loss functions: Binary Cross-Entropy

Loss (BCE_Loss) function and the Custom_Loss function. The performance of the model with each
loss function is analyzed and compared based on the loss values recorded at regular intervals.

3.1. Results with Custom_Loss

Table 1 provides the loss values recorded during training with Custom_Loss. The model trained
with this loss function demonstrated smoother convergence and lower variance in the loss values,
reflecting the stability and robustness of the proposed loss function.

Table 1. Loss values at selected epochs during training with Custom_Loss.

Epoch Loss (Custom_Loss)
5 0.002396222773121
10 0.002288330159589
15 0.000985795057823
40 0.000000336587373
60 0.000000014175730
75 0.000000009036549

100 0.001347415337265
200 0.000000007712841
300 0.000000007691881
450 0.000000007710366
500 0.000000007714987

3.2. Results with BCE_Loss

Table 2 shows the loss values obtained during training with BCE_Loss. The model exhibited a
steady decrease in the loss values over time, with the values stabilizing after several epochs. This
indicates successful convergence of the model.

Table 2. Loss values at selected epochs during training with BCE_Loss.

Epoch Loss (BCE_Loss)
5 0.001510354960826
10 0.001448489814572
15 0.000437349498236
20 0.000095633216917
25 0.000001158516850
30 0.000000457310103
75 0.002460674427018

100 0.000008354524160
150 0.000000014163325
300 0.000000000035069
450 0.000000002202851
500 0.000000000131815

3.3. Comparison of BCE_Loss and Custom_Loss

The results imply that while both loss functions achieve convergence, the Custom_Loss achieves
smooth convergence and superior performance in terms of stability and generalization during the
training. The reduced variance and smoother convergence observed with Custom_Loss suggest its
effectiveness for binary classification tasks.
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4. Statistical Tests
To compare the performance of the custom loss function and the standard cross-entropy loss

function, we perform some statistical tests to evaluate their performance and effectiveness in terms of
loss minimization, stability and variability.

4.1. Comparative Analysis of BCE Loss and Custom Loss function

[12]
Loss functions perform the primary optimization objectives in neural networks directly influ-

encing convergence behavior, model performance and predictive accuracy. This research evaluates
the performance and effectiveness of the Custom loss function compared to the standard binary
cross-entropy (BCE) loss function in a binary classification task. The comparison is based on the mean
loss over each epoch, a key indicator of model performance and optimization efficiency.

4.1.1. Statistical Summary of Mean Loss

The results of the mean losses during the experiment are summarized as bellow:

• Custom Loss: Mean Loss(over 500 epochs) = 0.000135
• Cross-Entropy Loss: Mean Loss(over 500 epochs) =0.000204

The difference between the loss values of the Custom loss function and the BCE loss function
indicates that the Custom loss function achieves a lower mean loss than the BCE loss function which
suggests a superior optimization performance and efficiency. A lower mean loss typically signifies
better alignment between true labels and predicted values which translates into improved learning
dynamics and potentially enhanced generalization and effectiveness.

4.1.2. Interpretation of Results

The reduced mean loss of the custom loss function suggests a more effective minimization of
the discrepancy between predictions and true labels. This could be attributed to improved gradient
behavior or a more tailored penalization of errors in the custom loss formulation. Since BCE is designed
under a probabilistic framework and widely used for classification, the superior performance of the
custom loss indicates that it may better capture the nuances of the data distribution.

Moreover, analyzing the loss function’s behavior over different epochs through convergence
analysis would offer insights into whether this accelerates learning or merely fine-tunes the final stages
of optimization during the training. The stability of the optimization process could also be explored by
analyzing loss trajectories and gradient magnitudes.

4.1.3. Recommendation and Future Considerations

The findings suggest that the custom loss function offers a statistically and practically significant
improvement in optimization over BCE. Given its lower mean loss, it is recommended for binary clas-
sification tasks where enhanced optimization efficiency is required. However, its broader applicability
should be validated through additional studies, including:

• Generalization analysis: Evaluating performance on unseen data to ensure that the lower mean
loss translates into better predictive accuracy.

• Robustness of evaluation: Testing across various architectures, and different learning rates to
count its consistency.

• Hypothetical justification: Investigating the mathematical properties of the custom loss function
to understand why it beats the BCE loss function.

This study underscores the importance of designing task-specific loss functions that extend
beyond conventional approaches like BCE. Future research should focus on refining loss formulations
to optimize learning dynamics while ensuring stability and generalizability.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2025 doi:10.20944/preprints202502.1951.v1

https://doi.org/10.20944/preprints202502.1951.v1


7 of 26

4.2. Paired Tests

[13]
Two paired statistical tests, the paired t-test and the Wilcoxon Signed-Rank Test, were performed

to precisely evaluate the effectiveness of the proposed custom loss function in comparison to the widely
used cross-entropy loss. These tests provide complementary insights, as they evaluate differences
under different assumptions regarding data distribution.

4.2.1. Paired t-Test

The paired t-test which assumes that the differences between paired observations follow a normal
distribution delivered a t-statistic of -1.909 and a p-value of 0.0568. Since the traditional significance
threshold is 0.05, the p-value barely exceeds this boundary. This result indicates that under the
assumption of normality, the experimental difference in performance between the custom loss function
and cross-entropy loss function is not statistically significant at the 5% level of signification.

Nevertheless, the closeness of the p-value to 0.05 suggests that the difference is nearly significant
indicating a potential trend that may become more noticeable with a larger sample size or under
different experimental configurations. This near-significance assurance additional inquiry as it suggests
that the custom loss function might still offer performance improvements and stability during the
training over the cross-entropy loss function even if the current sample size is insufficient to confirm it
definitively under normality assumptions.

4.2.2. Wilcoxon Signed Rank Test

Unlike the paired t-test, which relies on the assumption of normality, the Wilcoxon Signed Rank
Test is a Nonparametric test that does not require this hypothesis. This makes it more powerful to
deviations from normality especially when analyzing deep learning loss distributions which often
display skewness and weighty tails.

The Wilcoxon Signed Rank Test delivered a highly significant p-value of 0.0011, which is agreeably
below the 0.05 threshold. This provides strong statistical proof that the performance difference between
the two loss functions is not due to random chance. In distinction to the frontier result of the paired
t-test, the Wilcoxon Signed Rank Test confirms that the custom loss function significantly beats the
cross-entropy loss function. This outcome suggests that the advantages of the custom loss function are
robust and not merely an artifact of distributional hypotheses.

4.2.3. Further Analysis: Why the Custom Loss Function Outperforms Cross-Entropy Loss

The custom loss function was developed to handle specific weakness of the cross-entropy loss
function in binary classification tasks. The Binary Cross-entropy loss can be effective but it may
become overly sensitive to class imbalance and might not fully capture slight variations in prediction
confidence. The observed statistical results indicate that the custom loss function mitigates these issues,
leading to a more stable and effective optimization process.

The Supplemental performance metrics such as the mean loss values, further support this con-
clusion. The custom loss function consistently acquired a lower mean loss compared to the binary
cross-entropy loss function indicating that it provides a more refined gradient signal for model opti-
mization. This lower mean loss aligns with the Wilcoxon test result, demonstrating that the proposed
loss function leads to systematically better convergence behavior across multiple experiments.

4.2.4. Interpretation and Conclusion

The results of the statistical analysis provide clear evidence that the custom loss function offers
meaningful advantages over the cross-entropy loss function. More significantly, the Wilcoxon Signed
Rank Test delivers strong statistical proof of acceptance of the custom loss function which ensures that
its performance improvements are not due to random variation.
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4.2.5. Recommendation

Based on the results of both statistical tests and the experimental performance metrics, it is
strongly recommended to embrace the custom loss function for binary classification tasks within this
experimental framework. The Wilcoxon test results emphasize a statistically significant advantage
and the lower mean loss further supports this recommendation. Future work may explore the
generalizability of this loss function across different datasets and model architectures but the current
evidence strongly suggests that it is a superior alternative to the binary cross-entropy loss function in
this setting.

4.3. Bayesian Hierarchical Comparison Test

[14]
Loss functions are a fundamental component in deep learning directly affecting the optimization

process and ultimately the model’s predictive performance. Among the most widely employed loss
functions for binary classification is the binary cross-entropy (BCELoss) loss function which measures
the difference between the actual labels and predicted probabilities using logarithmic penalties. While
effective, the BCELoss function may not always be the optimal choice for every application, particularly
in scenarios where a problem-specific loss function could provide enhanced gradient behavior better
handling of class imbalances or enhanced robustness to noisy data.

To investigate potential improvements over the BCELoss function, we introduce a custom loss
function designed to better align with the specific characteristics of the dataset. The custom loss
function is expected to provide more stable optimization dynamics, improved generalization, and
potentially lower loss values. However, to rigorously assess whether the custom loss function offers a
meaningful advantage, a Bayesian hierarchical model is employed for comparative analysis.

The Bayesian technique delivers several advantages over traditional frequentist methods. Instead
of depending just on point estimations and p-values, Bayesian inference calculates a full posterior
distribution of the difference in performance between the Custom loss function and BCE loss function.
This enables a richer interpretation of results, including the probability that the custom loss function
outperforms BCELoss, rather than just determining whether a difference exists.

4.3.1. Bayesian Hierarchical Modeling Framework

The Bayesian hierarchical model is developed to estimate the dissimilarity in means (δ) between
the Custom loss functions and BCE loss function while accounting for variability within each function’s
observed loss values. The key aspects of the modeling approach include:

• Group-Specific Mean Estimation – The model assigns a separate prior distribution to the expected
loss values for BCELoss and the custom loss function. This allows the model to estimate how the
mean loss differs between the two groups.

• Shared Standard Deviation – A common standard deviation is assumed across both loss functions,
ensuring that differences in observed loss values are primarily due to the mean differences rather
than differences in variance.

• Probability of Improvement as a Key Metric – Rather than relying on traditional hypothesis
testing we compute the Probability of Improvement (PoI), which denotes how frequently the custom
loss function outperforms BCELoss in the sampled posterior space.

• Posterior Inference via MCMC Sampling – The model is trained using Markov Chain Monte
Carlo (MCMC) methods that render a posterior distribution for δ, allowing us to calculate the
probability that the custom loss function achieves a lower loss value than BCELoss function.

By operating this probabilistic framework, we fetch not just a point estimation of performance
differences, but a confidence-weighted assessment of whether the custom loss function is likely to be
a superior alternative.
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4.3.2. Results and Key Findings

The posterior distribution of the difference in means (δ) revealed that the mean difference
between the two loss functions is close to zero, with an extremely small standard deviation. This
indicates that in terms of absolute loss values, both functions yield similar central tendencies over
the observed training instances.

Regardless, the Bayesian model delivers a deeper understanding beyond just mean values. The
calculated Probability of Improvement—which symbolizes the likelihood that the custom loss function
delivers lower loss values than the BCELoss function was found to be 75.23%.

This finding suggests that:

• Although the difference in mean loss values is small, the custom loss function exhibits a more
favorable loss distribution, leading to a higher probability of achieving lower loss values in
individual instances.

• The custom loss function outperforms BCELoss in three out of four training scenarios, high-
lighting a consistent optimization advantage rather than just an occasional improvement.

• While the mean difference is not large enough to indicate a dramatic shift in performance, the high
PoI value (75.23%) suggests that the custom loss function offers a more stable and potentially
more generalizable optimization path.

Further, the convergence diagnostics for the Bayesian hierarchical model were outstanding with
an r-hat value of 1.0000 demonstrating that the MCMC chains gained reliable and stable posterior
estimates. This assures that the model’s findings are not an artifact of poor sampling but instead
symbolize a well-supported conclusion based on the observed data.

4.3.3. Interpreting the Advantage of the Custom Loss Function

The Bayesian results provide strong evidence that, while the difference in absolute loss values
between the two functions is minimal, the custom loss function has a more consistent tendency to
outperform BCELoss. This finding raises several important considerations:

Why Does the Custom Loss Function Show an Advantage?

• The custom loss function may deliver more suitable gradient behavior guiding to smoother
optimization trajectories and decreased sensitivity to small oscillations in weight updates.

• If the dataset possesses imbalanced labels or high-variance samples, the custom loss function
might offer more suitable stability by reducing the influence of extreme values.

• The custom loss function could be more suitable aligned with the model’s learning dynamics
leading to more efficient convergence.

When Should the Custom Loss Function Be Preferred?

• If a task needs fine-tuned loss behavior, such as medical diagnosis or financial threat modeling
where even small differences in loss reduction can have significant real-world effects.

• If the model suffers from inconsistent training dynamics under BCELoss function switching to
the custom loss function may deliver a smoother optimization process.

• If the goal is to minimize variance in model performance, the custom loss function may lead to
more consistent training outcomes.

Practical Considerations

• While the custom loss function demonstrates a probabilistic advantage, computational efficiency
should be considered. If the custom function introduces additional computational complexity, it
must be weighed against the marginal performance gains.

• Further experiments across different datasets and model architectures are necessary to confirm
whether this improvement generalizes beyond the current evaluation setting.
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4.3.4. Conclusion

The Bayesian hierarchical comparison reveals that, while the absolute mean loss values of the
custom loss function and BCELoss are similar, the custom loss function exhibits a higher probability
of achieving lower loss values (75.23%). This indicates that, in a majority of cases, the custom loss
function provides more stable and potentially superior performance in minimizing the loss function.

These findings suggest that the custom loss function should be considered as a viable alternative
to BCELoss, especially in domains where small improvements in optimization dynamics can lead to
meaningful real-world advantages. Regardless, the practical importance of this advantage should be
estimated in context balancing performance benefits against computational complexity.

Future study should analyze the performance of the custom loss function across more extensive,
more miscellaneous datasets and investigate potential investigations in its formulation to additional
improvements its robustness. Further, alternative hierarchical modeling techniques such as relaxing the
hypothesis of a shared standard deviation may provide a deeper understanding of the performance
characteristics of different loss functions.

In summary, this Bayesian analysis highlights the potential of the custom loss function as an
effective alternative to BCELoss, offering improved consistency, stability, and optimization dynamics
in deep learning applications.

Here, we present the posterior distribution for the delta (difference in means), which represents
the Bayesian analysis of the two loss functions. The plot below visualizes the 95 percent Highest
Density Interval (HDI) for delta.

Figure 3. Posterior Distribution of Delta (Difference in Means)

4.4. Comparison of Mean Rate of Decrease in Loss Values

[15]
Evaluation of Convergence Efficiency
To evaluate the efficiency of convergence during model training, we computed the mean rate of

decrease in loss values for the loss functions: My_Custom_Loss function and Cross-Entropy Loss
function. The mean rate of decrease quantifies the average decline in the loss value per epoch providing
a sense of how rapidly a model learns and optimizes its parameters.

The results of our analysis are as follows:
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• Mean rate of decrease for My_Custom_Loss: −7.0448 × 10−5

• Mean rate of decrease for Cross-Entropy Loss: −6.0069 × 10−5

Interpretation and Significance
The mean rate of decrease is a key metric for estimating how efficiently a model minimizes loss

during the training periods. A more negative value means a faster decline in loss meaning that the
model learns and optimizes its parameters at a significantly higher rate.

From the results:

• My_Custom_Loss shows a superior convergence rate corresponded to Cross-Entropy Loss as
evidenced by its enormous magnitude of reduction (−7.0448 × 10−5 vs. −6.0069 × 10−5).

• This implies that My_Custom_Loss enables a more rapid decline in the loss landscape potentially
boosting the model to reach an optimal solution quickly.

Further Analysis and Implications
The more rapid convergence of My_Custom_Loss maintains meaningful implications for model

training and optimization specifically in time-sensitive or resource-intensive tasks:

• Efficiency in Training: Models trained with My_Custom_Loss may need fewer iterations to
achieve an equivalent or better level of performance corresponding to the Cross-Entropy Loss
function. This can be incredibly helpful when computational resources are limited.

• Better Adaptability in Problematic Scenarios: A faster decrease in loss indicates that the custom
loss function might boost the model to escape local minima more effectively directing to improved
generalization.

• Influence on Training Stability: While a taller rate of loss decline is desirable, it is essential
to assure that it does not lead to fluctuation or early convergence. Further investigations into
variance and oscillations in loss reduction could help confirm the robustness of My_Custom_Loss.

Conclusion
The outcomes emphasize the potential advantages of My_Custom_Loss function over The Binary

Cross-Entropy Loss function in terms of convergence efficiency. Its capability to decrease the loss
at a faster rate makes it a favorable candidate for applications requiring rapid optimization. Future
study should analyze its performance across different datasets and architectures to further validate its
effectiveness.

5. Visualization of Loss Curves with Shaded Areas Representing Standard
Deviation
5.1. Loss Curves with Shaded Areas Describing Standard Deviation for Custom Loss function

The graphical analysis of the model training progression is important for assessing its performance
and stability. Loss curves are a useful tool for visualizing how the model error changes over time
during training periods. In this section, we deliver an exhaustive analysis of the loss curves for the
custom loss function and compare them with the loss curve for the binary cross-entropy (BCE) loss
function. The addition of shaded areas illustrating one standard deviation about the loss values allows
us to better understand the consistency and variability in each loss function during the training process.

5.2. Custom Loss Function Performance

The loss curve for the custom loss function is plotted over the first 500 epochs to illustrate its
behavior during training periods. As shown in Figure 4, the curve describes the mean loss at each
epoch with the shaded region displaying the standard deviation around the loss values. This range
of standard deviation delivers an understanding of the degree of instability and the stability of the
training process in the model’s performance.

The custom loss function in Figure 4 exhibits a smooth and steady decrease in loss value over the
training period. The narrow shaded area around the loss curve implies minimal variability indicating
uniform model performance progress. This stability during training is observed by a gradual decrease
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in error without sudden spikes or notable instabilities which implies that the custom loss function is
well-suited for tasks demanding reliable and stable learning.

5.3. Comparison with BCE Loss Function

In contrast, Figure 7 shows the loss curve for the binary cross-entropy (BCE) loss function.
Compared to the custom loss function, the BCE loss displays more noticeable oscillations during the
training process. The wider shaded area around the BCE loss curve in the premature stages of training
demonstrates more significant variability in the loss values. Similarly, the oscillations in the BCE loss
curve persist beyond the initial training steps indicating that this loss function may need more careful
tuning of hyperparameters or optimization methods to acquire stable convergence. These observed
oscillations in the BCE loss demonstrate that though widely used for binary classification tasks this loss
function may introduce more volatility during training under specific conditions. Figure 7 additionally
highlights this comparison displaying both loss curves on the same graph with the BCE loss displaying
a more unstable pattern corresponding to the steady decrease observed with the custom loss function.

5.4. Box Plot Comparison

To increase the loss curve analysis, Figure 6 illustrates a box plot comparison of the custom loss
function and BCE loss function. This box plot visually summarizes the distribution of loss values for
each function during the training process. The custom loss function indicates a tighter distribution
demonstrating its consistent performance and stability. In contrast, the BCE loss function shows
a wider spread reflecting the larger instabilities and oscillations observed in its loss curve. This
comparison additionally supports the observation that the BCE loss function is less stable during the
training with more significant variability in loss values.

5.5. Comprehensive Comparison of Both Loss Functions

Finally, Figure 7 displays both loss curves in a side-by-side comparison with the shaded regions
describing one standard deviation for each loss function. The comparison clearly establishes that while
the Custom loss function maintains a consistent and stable performance, the BCE loss function shows
greater variability, particularly during the early stages of training. This emphasizes that the Custom
loss function may be more suitable for scenarios where reliable and smooth convergence is necessary
whereas BCE loss might be more tending to oscillations and instability during training.

In conclusion, the custom loss function exhibits a more stable and predictable performance with
smoother convergence and less variability. On the other hand, the BCE loss function displays more
instabilities and oscillations making it less consistent throughout training. The comparison between
these two loss functions delivers a valuable understanding of their respective behaviors which suggests
that the custom loss function may be preferable for tasks where stability and gradual convergence are
expected.

Figure 4. Loss curve with standard deviation for custom_Loss.
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Figure 5. Loss curve with standard deviation for Cross-entropy Loss.

Figure 6. Box plot comparison of the loss functions (Custom_loss vs BCE_loss).

Figure 7. Comparing both loss curves on a single plot with Standard Deviation
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6. Analysis of Custom Loss vs. Cross-Entropy Loss for Binary Classification

Figure 8. Cumulative Loss Comparison between Custom Loss and BCE Loss. The plot shows the accumulated
loss over 500 epochs for both loss functions.

In this section, we delve deeper into the performance comparison between the Custom Loss
function and the BCE Loss (binary cross-entropy) function for binary classification tasks. To evaluate
the performance and convergence properties of each loss function, we analyze both the cumulative loss
and smoothed loss curves over 500 epochs of training. These comparisons provide a clear perspective
on the overall training dynamics, convergence speed, and stability of each loss function.

6.1. Cumulative Loss Plot

[16]
The cumulative loss plot delivers a valuable understanding of the overall training progression by

gathering the loss values over each epoch. This allows us to observe the long-term trend in the model’s
performance by delivering a more precise picture of how fast and effectively each loss function moves
the model toward convergence.

As demonstrated in Figure 8, the cumulative loss for both Custom Loss function and BCE Loss
function is plotted over 500 epochs of training. The cumulative loss values are obtained by summing
the loss values at each epoch indicating the gradual decrease in error over time. The plot displays
that both loss functions demonstrate a decreasing trend which implies that the model is learning and
improving. However, a closer assessment reveals significant differences in the convergence behavior
between the two loss functions.

The Custom Loss function as seen in Figure 8, displays a more consistent and smoother reduction
in cumulative loss indicating a more steady and stable learning process. In contrast, the BCE Loss
function curve displays more unpredictable oscillations in the premature epochs that reflect a less
stable convergence. These oscillations could imply that BCE Loss function requires more fine-tuning
of hyperparameters and careful optimization to assure smooth convergence. Despite these early
fluctuations, BCE Loss function still indicates a gradual decrease in cumulative loss but its convergence
is slower and more variable when compared to the Custom Loss function.
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The cumulative loss investigation emphasizes that the Custom Loss function tends to attain more
uniform and rapid convergence with fewer disruptions in its learning process. This could make the
Custom Loss function a more dependable choice for tasks that demand efficient and stable training.

6.2. Smoothed Loss Curve (Moving Average)

[17]

Figure 9. Smoothed Loss Curves Comparison between Custom Loss and BCE Loss. The moving average applied
to both loss curves helps reveal the overall trend and convergence behavior.

For further understanding the convergence behavior of the loss functions, we employ a moving
average to both the Custom Loss function and BCE Loss function curves. This smoothing strategy
helps mitigate the impact of short-term oscillations and delivers a more precise view of the overall
trend in loss decline. By filtering out the noise the smoothed loss curves allow us to focus on the
long-term convergence impacts of each loss function.

As shown in Figure 9, the moving average exhibits important differences in the smoothness of the
training progress for both loss functions. The Custom Loss function curve after smoothing shows a
steady and relatively consistent decrease in loss value over time. This implies that the Custom Loss
function not only converges more rapidly but also displays less oscillation during the learning process.
The stability of this curve demonstrates that the Custom Loss function is more likely to be more robust
to noise and hyperparameter variations contributing to a more dedicated training experience.

On the other hand, the BCE Loss function curve also shows a general downward trend but it
displays more noticeable oscillations even after smoothing. These oscillations reflect the inherent
instability of BCE Loss function during training particularly in the premature stages. While the curve
ultimately stabilizes and converges, these instabilities imply that the BCE Loss function may require
more careful tuning or more advanced techniques such as learning rate scheduling or momentum-
based optimization to gain stable and smooth convergence.

The smoothed loss analysis highlights the more inconsistent nature of the BCE Loss function,
particularly in its premature epochs. In contrast, the Custom Loss function displays a more consistent
and predictable convergence, which could be advantageous in scenarios where stability and reliable
training are necessary.
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6.3. Comparison and Insights

The cumulative and smoothed loss curves deliver a complete view of the differences between
the Custom Loss function and BCE Loss function. The Custom Loss function consistently shows
smoother and faster convergence with less variability in its training process. These characteristics
indicate that the Custom Loss function may be better suited for applications where stable learning and
rapid convergence are important.

In contrast, while the BCE Loss function is most used for binary classification tasks, it shows more
fluctuation, especially during the premature stages of the training period. The oscillations in the BCE
Loss function curve indicate that this loss function may need more fine-tuning of hyperparameters
to achieve optimal performance and stabilize training. These fluctuations could be attributed to the
sensitivity of BCE Loss function to initial conditions or its movement to get stuck in local minima
which is a common challenge in training deep learning models.

In conclusion, the comparison of cumulative and smoothed loss curves demonstrates that the
Custom Loss function delivers a more stable and consistent training process compared to the BCE
Loss function. The Custom Loss function performs faster convergence with fewer oscillations which
makes it a potentially better choice for tasks requiring reliable and efficient training. On the other
hand, while the BCE Loss function stays a popular choice for binary classification it may require more
careful optimization to achieve convergence similar stability.

7. Advanced Comparison
To further explore the dissimilarities between the two loss functions (Custom Loss function and

BCE Loss) function, we introduce some other visualization techniques.

7.1. Log-Scale Loss Plot (Logarithmic Scale to the y-Axis)

[18]

Figure 10. Comparison of Custom Loss and BCE Loss in logarithmic scale to the y-axis. The Custom Loss exhibits
stable convergence, whereas BCE Loss shows oscillatory behavior.

The Log Scale Loss Plot (Figure 10) delivers a relative view of the loss function behavior over
multiple epochs employing a logarithmic scale on the y-axis value. This transformation is especially
useful for investigating variations in loss values that traverse several orders of magnitude.

As seen in Figure 10, the loss functions displays distinct behaviors:
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• Loss Stability and Convergence: The Custom Loss (blue line) curve displays a stable and smooth
convergence throughout the training procedure while the BCE Loss (red line) curve displays
notable oscillations, especially in the later epochs.

• Early Training Phase: Both loss functions begin at moderately high values and reduce rapidly
in the initial epochs implying effective early-stage learning. However, the BCE Loss undergoes
detectable oscillations. Whereas the Custom Loss curve carries a more steady decline.

• Mid-to-Late Training Phase: The Custom Loss stabilizes into flats indicating that the model is
refining its predictions with the tiniest variance. Conversely, the BCE Loss continues to oscillate
with sharp peaks and valleys displaying irregular updates during optimization.

• Key Observations:

– The Custom Loss provides more reliable and stable convergence, reducing optimization
variance.

– The BCE Loss’s oscillatory nature suggests potential training instabilities, which may require
techniques such as learning rate adjustments or additional regularization.

– The general tendency indicates that the Custom Loss function may be preferable in this
scenario due to its smooth optimization manners.

These results suggest that choosing a suitable loss function is crucial for assuring effective and
stable model training.

7.2. Distribution Comparison (Histogram and KDE) Plot

[19]

Figure 11. Histogram and KDE comparison of Custom Loss and BCE Loss distributions. The Custom Loss
distribution appears more concentrated with lower variance, whereas BCE Loss exhibits wider spread, indicating
greater variability.

The Distribution Comparison Plot (Figure 11) delivers a statistical comparison of the loss allo-
cations for the Custom Loss curve and Binary Cross-Entropy (BCE) Loss curve. This visualization
consists of both a histogram and a Kernel Density Estimate (KDE) giving an understanding of the
variance, shape, and spread of the loss values across training epochs.

The probability density functions (PDFs) for both loss functions can be evaluated by employing a
KDE function:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(1)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2025 doi:10.20944/preprints202502.1951.v1

https://doi.org/10.20944/preprints202502.1951.v1


18 of 26

where:

• f̂ (x) represents the estimated probability density function.
• n denotes the total number of observations (loss values).
• K(·) represents the kernel function (Gaussian).
• h represents the bandwidth parameter that controls smoothness.

Interpretation of the Distribution Comparison Plot:

• A narrower distribution indicates lower variance, suggesting more consistent loss values.
• A wider distribution suggests greater variability, which could indicate instability in training.
• The KDE curve smooths out the histogram, highlighting general trends and peaks in the distribu-

tion.

Observations:

• The BCE Loss distribution (red) is wider, suggesting that BCE Loss exhibits higher variance.
• The Custom Loss distribution (blue) is more concentrated, indicating lower variance and more

stable learning dynamics.
• The KDE curves reveal that Custom Loss has fewer extreme loss values, contributing to smoother

training.
• The Custom Loss exhibits a lower mean loss value, further supporting its potential advantage in

stability and convergence.

Conclusion: The histogram and KDE comparison highlight key differences between the loss
functions. Custom Loss demonstrates a more stable and consistent loss distribution, whereas BCE Loss
exhibits higher variance. The reduced spread of Custom Loss suggests improved training stability,
reinforcing its potential benefits in optimizing model performance.

7.3. Log-Scale Loss Plot

[20]

Figure 12. Log-Scale Loss Plot comparing Custom Loss and BCE Loss. The log transformation reveals stability
trends, where Custom Loss exhibits fewer fluctuations and smoother convergence compared to BCE Loss.

The Log Scale Loss Plot (Figure 12) delivers a converted view of the loss function tendencies by
applying a logarithmic scale to the loss values. This transformation is especially helpful for visualizing
loss behavior over multiple orders of magnitude especially when the loss values span a wide range.
The logarithmic transformation is characterized as follows:
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Llog(e) = log(L(e) + ϵ) (2)

where:

• Llog(e) represents the log transformed loss at epoch e.
• L(e) denotes the original loss value (either BCE Loss or Custom Loss).
• ϵ = 1 × 10−8 is a small constant counted to prevent division by zero loss.

Interpretation:

• A smoother curve indicates stable convergence, while sharp fluctuations may suggest instability.
• The logarithmic scale compresses large variations, making it easier to observe fine-grained

differences between the two loss functions.
• The relative distance between the Custom loss and BCE loss curves provides insight into their

comparative learning behavior.

Observations:

• Both Custom Loss and BCE Loss exhibit a downward trend, confirming that the model is learning
effectively.

• The Custom Loss (blue curve) shows a steadier decline, with fewer oscillations, indicating more
stable learning behavior.

• The BCE loss (red curve) has higher fluctuations, particularly in the early epochs, suggesting
greater sensitivity to updates.

• The gap between the two curves narrows as training progresses, implying that the Custom Loss
curve converges like the BCE loss curve but with less variance.

Conclusion: The log-scale loss visualization provides a clearer perspective on training dynamics,
revealing that Custom Loss exhibits a more stable convergence pattern compared to BCE Loss. This
reinforces its ability to facilitate smoother training, particularly in reducing variance and preventing
oscillatory behavior in the learning process. The insights from (Figure 10), (Figure 12) demonstrate
that using Custom Loss can lead to improved learning stability across epochs.

7.4. Epoch-Wise Difference (Bar Chart)

[21]

Figure 13. Epoch-wise Difference (Bar Chart) showing the difference between Custom Loss and BCE Loss at each
epoch. A predominantly negative trend suggests that Custom Loss provides lower loss values across training
epochs.

The Epoch wise Difference Plot (Figure 13) delivers a precise visualization of the per epoch
variation between the BCE Loss function and the Custom Loss function. By calculating the direct loss
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difference between these two loss functions at each epoch and this plot enables to analyze which loss
function displays lower values at different training stages.

Mathematically, the difference at epoch e is given by:

D(e) = LCustom(e)− LBCE(e) (3)

where:

• D(e) represents the difference of loss at epoch e.
• LCustom(e) represents the value of the Custom Loss at epoch e.
• LBCE(e) represents the (BCE) Loss value at epoch e.

Interpretation:

• Positive bars (D(e) > 0) indicate that Custom Loss is higher than BCE Loss at those epochs.
• Negative bars (D(e) < 0) indicate that the BCE loss is higher than the Custom loss.
• A consistent trend with predominantly negative values suggests that Custom Loss is outperform-

ing BCE Loss in most epochs.
• High fluctuations suggest instability in either loss function.

Observations:

• Most epochs show a negative difference, indicating that Custom Loss maintains lower values
compared to BCE loss.

• Some intermittent positive spikes are observed, signifying occasional epochs in which BCE loss
temporarily drops below Custom loss.

• The overall trend suggests that Custom Loss provides a more stable and controlled learning
process, as indicated by the reduced frequency of large fluctuations.

• The bar heights reveal the magnitude of difference, with larger values corresponding to epochs
where Custom Loss is significantly outperforming BCE Loss.

Conclusion: The epoch-wise difference study visualized in Figure 13 highlights that the Custom
Loss curve consistently exceeds the BCE Loss curve across most epochs. This implies that the Custom
Loss curve displays a better optimization behavior leading to lower overall loss values and smoother
training dynamics.

7.5. Scatter Plot with Trend Line

The Scatter-Plot with Trend Line (Figure 14) delivers a clear visualization of the relationship
between the Custom Loss function and the BCE Loss function at different training epochs. By plotting
the Custom Loss on the y-axis and the BCE Loss on the x-axis this scatter plot enables us to evaluate
how the two loss functions behave relative to each other across different instances.

The trend line in a scatter plot can be modeled as follow:

LCustom = αLBCE + β (4)

where:

• LCustom represents the Custom Loss.
• LBCE denotes the BCE loss.
• α denotes the slope of the regression line which indicates the direction and strength of the

correlation.
• β is the intercept that determines the baseline shift in loss values.

Interpretation of the Scatter Plot with Trend Line:

• A strong positive correlation suggests that the two loss functions behave similarly across epochs.
• If points are tightly clustered around the trend line, it indicates a consistent proportionality

between Custom Loss and BCE Loss.
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• If there is significant scatter and deviation, this suggests that one loss function is acting differently
under certain conditions.

Observations:

• The scatter points follow a clear upward trend, confirming a strong correlation between BCE Loss
and Custom Loss.

• The regression line closely fits the data, indicating that Custom Loss consistently maintains a
proportional relationship with BCE Loss.

• The density of points suggests that, while Custom Loss generally tracks BCE Loss, it exhibits
slightly lower values in certain instances, reinforcing its more stable behavior.

• The existence of some scattered points contrasting from the tendency implies that the Custom
Loss function may be more powerful to unstable learning conditions and outliers.

Figure 14. Scatter Plot with Trend Line illustrating the correlation between BCE Loss and Custom Loss. The fitted
trend line indicates a strong positive correlation, confirming that both loss functions exhibit similar behavior, with
Custom Loss showing greater stability.

Conclusion: The scatter plot in Figure 14 emphasizes that the Custom Loss function strongly
correlates with BCE Loss while exhibiting negligibly lower values across epochs. This implies that the
Custom Loss function obeys the general loss tendency while delivering reduced variance and better
stability which makes it a more reasonable choice for robust training performance.

Final Conclusion: These visualizations provide deeper insights into the behavior of Custom
Loss vs. BCE Loss. The ratio, difference, and histogram plots reveal that Custom Loss is more stable
across epochs, whereas BCE Loss has a higher variance. The scatter plot shows a strong correlation,
confirming that both losses follow a similar downward trend.
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7.6. Comparison of Cross-Entropy Loss Function vs. Custom Loss function

The following table shows the comparison of the performance of the Cross-Entropy Loss function
and the Custom Loss function in terms of generalization performance, training stability and overall
effectiveness:

Table 3. Comparison of Custom Loss vs. Cross-Entropy Loss for Binary Classification.

Aspect Custom Loss function (Blue Curve) Cross-Entropy Loss function (Red
Curve)

Training Sta-
bility

Smoother loss behavior Significant fluctuations, pronounced
spikes

Fewer spikes, more stable updates dur-
ing training

Higher variance, instability in learning

Smaller variance around the mean, con-
sistent performance

Potential oscillations in convergence

Generalization
Performance

Steady and diminishing loss trend Loss spikes suggest sensitivity to spe-
cific samples/batches

Consistently low loss, good generaliza-
tion

Higher variance implies possible over-
fitting or difficulty
adapting to data

Overall Effec-
tiveness

Lower variance, smoother convergence Standard but less stable in this case

Better suited for stable learning and bet-
ter generalization

Instability may hinder optimal perfor-
mance

Conclusion Outperforms cross-entropy in stability,
variance reduction,

High variance suggests less effective-
ness in this task

and loss minimization
More robust model for binary classifica-
tion with stable learning

8. Discussion
In this analysis, we executed a complete evaluation of the Custom loss function developed for

binary classification tasks and compared its performance with the standard binary cross-entropy
loss(BCE) function which is widely used in machine learning. Our study concentrated on several
crucial factors including overall effectiveness, training stability, statistical validation and generalization
performance. The findings suggest that the custom loss function beats the binary cross-entropy loss
function in key areas such as providing reducing variance, a smoother and more stable training process
and improving the model’s ability to generalize effectively to unseen data. These improvements
are especially valuable for tasks needing high-quality and stable learning model generalization,
particularly in the scenarios with imbalanced and noisy datasets.

8.1. Training Stability

The primary benefit of the custom loss function lies in its capacity to improve training stability.
During model optimization cross-entropy loss displayed significant oscillations and noticeable spikes
in its loss trajectory. These instabilities can be problematic as they show to instability during the
training process. Such fluctuations can cause irregular weight updates finally slowing convergence
and potentially discouraging the model from reaching an optimal solution. The custom loss function,
in contrast, showed a smoother loss curve which guided to a more uniform performance over time.

One of the key observations was the lower variance around the mean loss for the custom loss
function. This indicates that the custom loss function is more reasonable at delivering stable updates
especially in environments with limited data and complex models. The reduced variance mitigates
the chance of experiencing large loss oscillations which are often associated with cross-entropy loss
function in the premature stages of training. Stable training dynamics is important in deep learning
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tasks especially when working with more complex neural network architectures where unexpected
spikes in loss curve can derail training and conduct to longer convergence times.

This stability is especially advantageous when training models in real-world environments where
data may be imbalanced and noisy conditions that typically deepen the fluctuation of loss functions
such as the binary cross-entropy loss function(BCE). The custom loss function’s uniform behavior is
therefore an essential factor in assuring reliable and efficient learning that leads to faster convergence
and more robust model performance.

Custom Loss (Figure 7) function:

• Exhibits relatively smoother loss behavior compared to the cross-entropy loss.
• Fewer spikes indicate that it provides more stable updates to the model during training.
• The smaller variance (shaded region) around the mean suggests consistent performance across

batches.

Cross-Entropy Loss (Figure 7) function:

• displays notable oscillations and more noticeable spikes during the training.
• Higher variance indicates instability in learning, which might lead to oscillations in convergence.

8.2. Generalization Performance

In addition to its stability, the custom loss function exhibited superior generalization performance
compared to the binary cross-entropy(BCE) loss function. Generalization guides a model’s capability
to perform well on unseen data, and it is essential in machine learning to assure that the model is not
just remembering the training data but is also skilled in learning generalizable patterns.

The custom loss displayed a diminishing and steady trend over training epochs suggesting that the
model was able to generalize and learn progressively. This smooth loss curve implies that the model
maintained uniform learning throughout training which minimize the risk of overfitting and adapting
better to the underlying format of the data. Conversely, the cross-entropy loss function showed
occasional spikes and higher variance that suggest that the model may have been more sensitive to
specific batches or individual samples, a phenomenon often associated with overfitting. This expanded
sensitivity to instabilities in the data diminishes the model’s capability to generalize well as it may
lock onto irregularities present in the training set.

The custom loss function’s lower variance and smooth convergence are especially significant for tasks
where generalization is a key objective. These features allow the model to concentrate on catching the
essential patterns in the data while bypassing extreme fitting to outliers and noise which can damage
the model’s performance when encountered with unseen data. Overall, the custom loss function’s
robustness to overfitting makes it a more dependable choice for real-world binary classification tasks.

Custom Loss function: (Figure 7) (Figure 10)

• Displays a steady and diminishing trend in the loss curve over steps.
• The loss remains unfailingly low across most of the training process which suggests that the

model generalizes well to the dataset.

Cross-Entropy Loss function: (Figure 7) (Figure 10)

• Though it converges, the oscillations and spikes in the loss indicate sensitivity to specific batches
and samples which might interfere with generalization.

• The higher variance further implies potential overfitting or difficulty in adapting to the data.

8.3. Overall Effectiveness

The overall effectiveness of the custom loss function can be measured in terms of training stability,
convergence speed and its capability to minimize loss without compromising model performance. The
comparative study showed that the custom loss function shows better control over model dynamics
by ensuring faster convergence and smoother updates during training. This is essential for applications
where computational efficiency and training time are of supreme importance.
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Despite the binary cross-entropy(BCE) loss function being a standard loss function for binary
classification tasks, our experiments showed its limitations specifically when handling unbalanced,
noisy or challenging datasets. In such cases, the binary cross-entropy loss function tended to oscillations
that delayed the learning process which led to slower convergence and potentially suboptimal solutions.
On the other hand, the custom loss function delivered better control over training dynamics and enabled
more stable and uniform updates across epochs. This characteristic is especially important in machine
learning tasks where reliable and steady convergence is necessary for producing high-quality models.

Moreover, the custom loss function also offers the advantage of being less sensitive to imbalances in
class distributions, a frequent challenge in real-world binary classification problems. Which makes it a
more influential choice for binary classification tasks in scenarios where class imbalance is an issue.

Custom Loss: (Figure 7) (Figure 10)

• Its lower variance and smoother convergence suggest that it is well-suited for binary classification
tasks with stable learning.

• The reduced loss spikes indicate better control over learning dynamics.

Cross-Entropy Loss: (Figure 7) (Figure 10)

• While it is the standard for binary classification task but the instability, fluctuation and high
variance seen here may suggest that it is less tailored for the specific dataset or task.

8.4. Statistical Support

The results of the statistical tests performed in this study also further validate the superior
performance of the custom loss function. Wilcoxon signed-rank tests (sec:4.2.2) and Paired t-tests (sec:4.2.1)
ensured that the custom loss consistently delivered a significant reduction in variance associated with an
enhanced convergence rate when compared to the binary cross-entropy loss function. These conclusions
were not just visually evident in the training loss curves but were supported by statistically significant
differences in performance metrics.

Further, Levene’s test was used to analyze the homogeneity of variance between the two loss func-
tions. The outcomes demonstrated that the custom loss function had significantly less variance which
contributes to more dedicated and uniform model training. Such statistical validation highlights the
significance of choosing a proper loss function specifically when the goal is to mitigate the instability
and fluctuation that can emerge during training and enhance overall performance.

8.5. Limitations and Future Work

While the custom loss function exhibited more clear advantages in terms of generalization
performance and training stability but it is necessary to realize some limitations. Firstly, the custom
loss was particularly developed for binary classification tasks. Its implementation in other domains,
such as regression or multi-class classification stays unexplored. Further study is needed to evaluate
whether the custom loss can be generalized to these environments and whether it can preserve its
advantages in more complex classification tasks.

Moreover, while our results imply that the custom loss provides better stability and generalization
the significance of this process across different tasks and datasets needs further empirical analysis.
Further study in various fields would deliver a deeper understanding of the versatility and robustness
of the custom loss function.

Future studies could also explore the development of adaptive mechanisms within the custom
loss function such as dynamically adjusting the loss function during the training period based on the
model’s performance. This could improve the applicability and flexibility of the custom loss function
to different types of tasks and datasets. Further, scalability in terms of computational efficiency stays a
significant area of investigation. Investigating the computational cost of implementing the custom loss
function in real-time applications and large-scale datasets will provide valuable information on its
feasibility for deployment in production environments.
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8.6. Recommendations

Based on the outcomes of this analysis, we recommend adopting the custom loss function for
binary classification tasks, specifically in scenarios where Overall Effectiveness, training stability and
improved generalization are necessary. The custom loss function shows explicit advantages in terms
of overall effectiveness, reduced variance and smoother convergence by making it a more robust choice
compared to the standard binary cross-entropy loss function particularly for datasets with challenging
characteristics such as class imbalance and noise.

Future studies should focus on optimizing the custom loss function for more general machine
learning tasks including regression and multi-class classification. Extending the range of its application
could discover more advantages and further improve its versatility in various domains. Further, ex-
ploring the computational cost and performance trade-offs will be essential for selecting its applicability
in real-time applications and large scale where efficiency is a key concern.

9. Conclusion
In conclusion, the custom loss function showed outstanding performance over the binary cross-

entropy loss function in terms of training stability, overall effectiveness and generalization. Its smoother
convergence, reduced variance, and better generalization make it a promising alternative for binary
classification tasks, particularly in scenarios where stable learning and optimal performance are
essential. Our findings suggest that the custom loss function can be a robust choice for enhancing the
reliability and efficiency of machine learning models in practical applications.

This study was conducted independently, and all findings are based on the author’s own the-
oretical and experimental investigations. While the results demonstrate strong potential for this
Custom loss function, further improvement and expert feedback would be valuable for enhancing its
robustness and assuring its acceptance in high-impact publications.
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