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Abstract: We design and evaluate an incident-aware, geofenced UAV surveillance system for an 

expanding industrial yard. The architecture integrates GPS-enabled multirotor drones, real-time 

object detection (YOLOv11-nano), and a geofencing stack that combines signed-distance safety 

margins, a quadratic programmed control barrier function (CBF) filter, and model-predictive control 

(MPC) for constraint satisfaction under time-varying hazards. Using VisDrone2019 with a 

reproducible 70/15/15 split, the detector attains mAP@0.5 = 0.912; an operating threshold τ = 0.185 

yields the best F1 (≈ 0.61), balancing precision and recall for dense yard scenes. We produce 

exportable patrol artifacts (CSV/GeoJSON) to support deployment and auditing. Simulation studies 

show enforcement of safety margins without excessive path inflation, and multi-UAV sectorization 

enables deconflicted coverage with incident-aware replanning. All training scripts and route files are 

released for reproducibility. Subject to on-site validation of latency and false-alarm rates, the system 

is ready for controlled pilot deployment at TLG—Denton and serves as a model for scalable, 

regulation-aligned UAV security operations. 

Keywords: UAV surveillance; geofencing; control-barrier functions; model predictive control; edge 

AI; multi-UAV patrol; VisDrone 

 

1. Introduction 

This study builds a drone security system for a truck yard that “knows” its legal flight area and 

automatically stays inside it. A lightweight AI model (YOLO) detects people and vehicles in real time, 

while safety logic steers the drone away from roads, construction zones, and other hazards. We also 

plan routes that can be exported and audited, and we show how multiple drones can share the job 

without conflict. The software and routes are shared openly. After checking on-site latency and false 

alarms, the system is ready for a small pilot at the Denton facility. 

Modern industrial complexes are increasingly challenged by expanding operational areas, 

fluctuating environmental conditions, and surveillance blind spots that traditional fixed cameras 

cannot fully address. UAVs equipped with AI-driven video analytics close these gaps by enabling 

mobile and adaptive surveillance. This paper presents the design and evaluation of a UAV 

surveillance system specifically tailored for The Larson Group (TLG) Denton facility, focusing on 

real-time detection, incident-aware routing, and geofence-constrained operations. 

UAVs significantly improve situational awareness and accelerate response times, surpassing the 

limitations of ground-based systems. Deploying computer vision algorithms directly on drones or at 

nearby edge nodes minimizes delays and bandwidth demands, facilitating rapid detection, tracking, 

and alerting even in low-connectivity environments (Xu et al., 2023; Singh et al., 2023). 

The evolution of UAV technology has extended far beyond basic RGB camera payloads. 

Integrating thermal and infrared (IR) sensors with other advanced modules, such as LiDAR, enables 

comprehensive monitoring across varying light levels and adverse weather conditions. This 

multisensor approach enhances object recognition in challenging scenarios like nighttime patrols or 

densely obstructed areas. Recent studies demonstrate that lightweight neural networks combined 
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with IR sensing can provide reliable real-time detection of small and partially obscured targets, 

making them ideal for industrial security operations focused on identifying intruders or unusual 

vehicle activities (Su et al., 2024; Chen et al., 2025; Zhang et al., 2025). 

At the systems level, coordinated multi-UAV operations have become increasingly 

sophisticated. Contemporary frameworks integrate collaborative flight planning, collision avoidance, 

energy-efficient routing, and real-time adaptation to no-fly zones or construction areas. These 

innovations are especially relevant to TLG, where multiple drones must cover expansive and 

evolving perimeters. For example, one UAV can dynamically respond to an active security alert while 

others continue routine patrols, ensuring uninterrupted surveillance while optimizing power usage 

and docking schedules (Meng et al., 2025). 

In addition, geofencing technologies now provide advanced boundary enforcement. “Hard” 

geofencing anticipates UAV motion dynamics, guiding drones to adjust course proactively rather 

than reacting at the boundary itself. This improves both operational safety and regulatory 

compliance, particularly in areas bordering public roads or sensitive neighboring properties. When 

implemented at both the autopilot and mission-planning layers, these geofences provide predictable, 

auditable flight paths suitable for high-security environments (Thomas et al., 2024). 

As UAV deployments scale, cybersecurity and privacy concerns must be integral to design and 

implementation. Research identifies potential vulnerabilities, including GPS spoofing, 

communication jamming, and adversarial manipulation of AI models. Privacy risks such as 

unintentional surveillance of neighboring properties or unauthorized data retention are equally 

critical. Best practices now emphasize encrypted telemetry and video streams, policy-constrained 

data collection zones, and privacy-preserving analytics techniques like on-device redaction (Mekdad 

et al., 2023; Hadi et al., 2023). These requirements align with the ongoing evolution of Beyond Visual 

Line of Sight (BVLOS) regulations, where emerging U.S. policies emphasize pilot certifications, safety 

management systems, and auditable compliance processes (Federal Aviation Administration [FAA], 

2025). 

In conclusion, recent scholarship supports the design decisions behind TLG’s integrated UAV 

surveillance project. By combining edge-based analytics, multisensor payloads, coordinated drone 

fleets, anticipatory geofencing, and strong privacy protections, this initiative lays the groundwork for 

a proactive, scalable, and regulation-ready security ecosystem capable of meeting the complex needs 

of modern industrial operations. 
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Figure 1. Project workflow for UAV operations and ground integration at TLG—Denton, linking patrol 

scheduling, live telemetry, incident response, and auditing. 

The study location (TLG parking facility) operates under defined hours of operation, which also 

dictate the scheduling of UAV patrols to ensure continuous coverage during peak activity periods 

and vulnerable off-hours. Current ground security consists of on-site personnel and traditional 

surveillance measures, such as inward-facing cameras and routine patrols. 

However, these inward-facing cameras have significant limitations, including restricted 

visibility of external perimeters and blind spots, making them susceptible to unauthorized access or 

theft. UAVs provide dynamic, real-time monitoring, extending coverage beyond the fixed range of 

cameras, addressing security gaps, identifying suspicious activity in hard-to-reach areas, and 

enabling rapid responses to potential breaches. 

This integrated approach improves overall facility security while optimizing human resource 

allocation(Thomas et al., 2024). 
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Figure 2. TLG parking lot layout with truck staging, monitoring zones, and dispatch lanes. 
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Figure 3. Live UAV surveillance map with real-time positions, telemetry, and QR-linked SOPs. 

The interface displays altitude, speed, signal strength, and battery levels while providing quick 

access to emergency SOPs, pre-flight checklists, and incident report forms through integrated QR 

codes. The growing complexity of security threats necessitates enhanced situational awareness 

through advanced aerial surveillance. Traditional ground-based systems alone cannot provide 

comprehensive coverage, especially in large, dynamically changing environments such as expanding 

parking lots. 

This project will integrate secure communications, intrusion detection, and unauthorized vehicle 

tracking to create a robust, adaptive defense system(Ashraf et al., 2023). A collaborative UAV 

network will share live camera feeds and telemetry data for continuous, secure, and reliable 

monitoring, enhancing both safety and situational awareness. 
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Figure 4. Coordinated multi-UAV night surveillance with coverage zones and alert hotspot. 

Surveillance zones are highlighted, including a red alert area near the customer parking section. 

The on-screen telemetry display shows key flight data such as altitude, speed, and battery level, 

demonstrating an advanced, cooperative security system for vehicle and perimeter monitoring. 

Traditional security systems often lack comprehensive coverage and rapid response capabilities, 

leading to blind spots and delayed threat detection. With ongoing expansion and construction 

activities, these vulnerabilities are amplified. 

A UAV-based surveillance system will provide flexible, real-time aerial monitoring, improving 

situational awareness, reducing response times, and strengthening security management (Aissaoui 

et al., 2023). 

The following objectives are outlined for the current project. 

• Deploy UAVs for continuous and on-demand surveillance. 

• Implement geofencing to enforce secure perimeters. 

• Integrate UAV feeds with ground systems for real-time decision-making. 

• Establish protocols for incident response and evidence collection. 

Early geofencing for fleets established geo-boundary enforcement and logistics use cases, which 

later informed low-altitude UAS operations and safety envelopes (Reclus & Drouard, 2009). Formal 

safety for “assured containment” in aviation anticipating and constraining vehicle motion was 

articulated in NASA’s case studies and has influenced digital geofences that act before boundary 

violation rather than at it (Hayhurst et al., 2015). Surveyed techniques in geofenced motion planning 

and constrained navigation for UAVs include rule-based and optimization-based approaches, with 

recent work emphasizing predictive constraint handling and map-aware path planners 

(Hosseinzadeh, 2021; Thomas et al., 2024). Practical, deployable geofencing for low-altitude UAS 

highlights platform-independent enforcement in operational airspace (Stevens et al., 2015). For yard-

scale routing, grid-/graph-based planners (e.g., A*) and coverage methods (boustrophedon) remain 

standard, with geo-fence and separation constraints analyzed in industrial settings (Liu et al., 2016). 

The contributions of this work include the following: 

• First incident-aware CBF+MPC geofence controller designed and evaluated using VisDrone-driven 

yard scenarios, integrating predictive safety modeling with real-world operational constraints. 
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• Development of exportable geofenced route artifacts (A*, sector patrol, and lawn-mower 

coverage paths) with reproducible datasets and code pipelines for deployment and auditing. 

• Proposal of a deployment-threshold selection method (τ ≈ 0.185) to balance detection precision 

and recall under dense yard scenes. 

• Integration of multi-layered UAV and ground-based surveillance systems, demonstrating 

reduced blind spots and faster response times in a dynamic industrial facility. 

• Introduction of privacy-aware, regulation-compliant UAV workflows aligned with BVLOS and 

geofencing safety standards. 

The project organization and structure outline are:  Project Aim (TL;DR) 

Design, train, and validate an incident-aware, geofenced UAV surveillance system for TLG–

Denton that works in real time and integrates with ground security and facility operations. 

Column A: Context, Scope and Questions 

A1. Why this project? 

● Expanding facility footprint introduces blind spots and dynamic risks 

(frontage road, construction zones, moving fleets). 

● Need scalable air-ground security fusion that reduces response times, 

increases detection coverage, and respects BVLOS and privacy constraints. 

A2. Scope & Boundaries 

● In scope: VisDrone-driven models, YOLOv11-nano fine-tuning, geofence 

design (A*, sector patrol, mower coverage), five CV tasks (det, video det, 

SOT, MOT, counting), Denton site. 

● Out of scope (now): Multi-site roll-out, full swarm autonomy, L4 autonomy 

beyond BVLOS pilots. 

A3. Research Questions (guide the paper) 

1. What detection/tracking performance (mAP@0.5, F1@τ, IDF1/HOTA) is 

sufficient for pilot deployment? 

2. How do geofence constraints and incident-aware routing affect safety and 

coverage? 

3. What operating threshold (τ ≈ 0.185) balances precision/recall under dense 

scenes? 

4. How can compliance, privacy, and BVLOS be embedded in the workflow 

without degrading utility? 

 

Column B — Methods Pipeline & Tasks 
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B1. Materials & Methods (Section 7) 

● Site modeling: Patrol sectors, no-flight buffers, frontage-road hazard 

overlays. 

● Datasets: VisDrone2019 (urban UAV imagery/video; 10 relevant classes). 

Custom split 70/15/15 with reproducible RNG seed (no leakage). 

● Models: YOLOv11n fine-tuned for 100 epochs @ 640²; Ultralytics runtime. 

● Tools: Python 3.12, NumPy, scikit-learn, Matplotlib, Label Studio; optional 

AirSim; NVIDIA RTX 4090, CUDA 12.2. 

● UAV/GCS: Multirotors + thermal option; GPS/IMU; live telemetry to GCS 

with geofence & NFZ alerts. 

B2. Experiments (Section 8) 

● Task 1 — Detection (Images): mAP@0.5, PR curves, confusion matrices. 

● Task 2 — Detection (Video): NMS tuning for dense scenes; latency checks. 

● Task 3 — SOT: Success/precision plots; OPE AUC. 

● Task 4 — MOT: MOTA/MOTP, ID switches; ByteTrack association. 

● Task 5 — Counting: Density maps; MAE/RMSE. 

B3. Geofence & Routing (Section 12) 

● Formal set-based model: R (lot), C (GO zone), N=R\C (NO-GO). 

● A* inside C with barrier margins; sector patrol for multi-UAV deconfliction; 

boustrophedon (lawn-mower)coverage with δ-safety. 

● Incident-aware MPC + control-barrier functions for time-varying hazards. 

 

Column C — Deliverables, Risks & Roadmap 

C1. Artifacts & Evidence (Sections 8–10, 13) 

● Metrics packs: results.csv, PR/F1 curves, confusion matrices, operating-point 

sweeps. 

● Qualitative gallery: 10+ image frames, 3+ video frames (dense & twilight 

scenes). 

● Routes: astar_path.csv, sector_waypoints.csv, lawn_mower_route.csv, 

tlg_routes.geojson. 

● Ops diagrams: dashboards, return-to-charge, three-layer security fusion. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2025 doi:10.20944/preprints202509.1996.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1996.v1
http://creativecommons.org/licenses/by/4.0/


 9 of 76 

 

C2. Risk Matrix → Mitigations (Section 11) 

● Critical: False +/−, environmental sensitivity → ensemble models, HIL 

review, IR/thermal, wind envelopes. 

● High: BVLOS/regulatory, privacy → geofencing, signage, data 

minimization/anonymization, policy SOPs. 

● Medium: Cost/maintenance → phased rollout, leasing, predictive 

maintenance. 

C3. Milestones (checkpoints) 

● M1 Splits reproducible → M2 Model trained → M3 Metrics/threshold 

chosen → 

M4 Qual gallery → M5 Risk & mitigations → M6 Routes export → 

M7 Real-world photos/QRs → M8 Discussion & contributions → M9 Final 

proof. 

C4. Contributions (Section 12 — “Contribution”) 

● Integrated air–ground security loop with incident-aware routing. 

● Deployable operating point (τ ≈ 0.185) balancing precision/recall for yard 

scenes. 

● Reproducible pipeline (data splits, code, routes) and compliance-aware 

workflow. 

C5. Future Directions (Section 14) 

● Multi-lot scaling, autonomous swarms, smarter patrol scheduling, low-

light/domain-adaptation, smart-city integration. 

This project addresses the expanding security and safety surface at TLG–Denton by 

unifying UAV-based perception, geofence-constrained routing, and 

operations/compliance workflows into a reproducible pipeline. Building on 

VisDrone-trained YOLO11n models and a formal safety set-up (A*sector patrol, 

coverage patterns, and incident-aware MPC), we define performance targets 

(mAP@0.5, F1@τ, IDF1/HOTA, MAE) and deliver deployment artifacts (routes, 

dashboards, SOP-aligned flows). The next section (Materials & Methods) details the 

site modeling, dataset preparation, training procedure, tools, and UAV/GCS stack 

that enable rigorous evaluation and a pilot-ready prototype. 

 

2. Materials and Methods 
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In this section, we examine the study location and its critical components, including UAV flight 

paths, designated patrol routes, surveillance coverage areas, the parking lot, the frontage road, and 

nearby construction zones. The proposed system integrates YOLOv11-nano, a lightweight, real-time 

object detection model, fine-tuned on the VisDrone2019dataset using a reproducible 70/15/15 split 

for training, validation, and testing. Geofencing is implemented using control-barrier functions 

(CBF) combined with model predictive control (MPC) to ensure safe, compliant navigation within 

dynamic operational boundaries. 

The UAV hardware consists of GPS-enabled multirotor drones equipped with high-resolution 

cameras and optional thermal imaging sensors for enhanced detection during low-light or night-time 

operations. Exportable route files in CSVand GeoJSON formats support seamless operational 

handoff, auditing, and regulatory compliance. 

Reproducibility Checklist: 

● Dataset: VisDrone2019; custom 70/15/15 split with fixed RNG seed for consistency. 

● Model: YOLOv11-nano; trained for 100 epochs at an input size of 640×640 using the Ultralytics 

runtime. 

● Metrics: mAP@0.5 / mAP@[.5:.95], PR/F1 curves; IDF1/HOTA (planned), MAE/RMSE for 

counting tasks. 

● Operating Threshold: τ = 0.185 (optimal F1 ≈ 0.61) for deployment in dense yard scenarios. 

● Hardware: NVIDIA RTX 4090 GPU, CUDA 12.2; batch size = 16 (training), 1 (evaluation). 

● Routing Algorithms: A*, sector patrol, and lawn-mower coverage patterns with CSV/GeoJSON 

exports. 

● Safety Mechanisms: Signed-distance safety margins, CBF-filtered MPC, and incident-aware 

replanning. 

Figure 5 illustrates the current TLG facility expansion, highlighting areas that require 

comprehensive UAV surveillance to address emerging security and operational challenges. 
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● The image depicts key surveillance zones such as UAV coverage, parking lot monitoring, the 

frontage road, and construction activity. 

● It provides a visual context for the methodology, especially when describing UAV flight paths, 

surveillance cameras, and security integration. 

● This is crucial when discussing how data is gathered, e.g., drones collecting real-time footage 

and vehicles being tracked. 

2.1. Datasets Source, Preprocessing, and Partitioning 

The VisDrone2019 dataset (Tianjin University) was selected as the primary dataset due to its 

suitability for UAV-based surveillance research. VisDrone2019 provides UAV images and videos 

from urban scenes with ten annotated classes relevant to yard surveillance (e.g., pedestrians, cars, 

vans, buses) (Du et al., 2019; Zhu et al., 2020). These categories directly align with the monitoring 

requirements of The Larson Group (TLG) parking lot, where various vehicle types and human 

activities must be detected and tracked for security purposes. 

The original Ultralytics YOLO public dataset configuration came with fixed splits for training, 

validation, and testing. However, for this study, a custom 70; 15; 15 partition was enforced to ensure 

proper model generalization and consistent performance evaluation. This required merging the 

original training and validation sets, reshuffling the combined dataset, and redistributing images into 

three subsets: 

● Training Set (70%): Used to optimize model weights. 

● Validation Set (15%): Used for hyperparameter tuning and overfitting detection. 

● Testing Set (15%): Used strictly for performance evaluation. 

This splitting process ensured that no data leakage occurred between the sets, maintaining the 

integrity of evaluation metrics. 

Dataset Classes: 

The dataset includes 10 classes: pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle, 

bus, and motorbike. These directly correspond to common activities within a parking lot 

environment.The dataset is directly relevant to this project. 

 

2.2. Dataset Partitioning Code 

The custom split was created programmatically using Python. Below is a snippet of the one-time 

script used to perform the dataset merge and shuffle. It outputs three .txt files referencing the 

respective training, validation, and testing image paths. 

# scripts/make_split_visdrone.py 

import random, shutil 

from pathlib import Path 

RNG_SEED = 42 

random.seed(RNG_SEED) 

ROOT = Path("VisDrone")                # Dataset root 

IMG_DIR = ROOT / "images" 

LBL_DIR = ROOT / "labels" 

# Merge official train + val into one pool 

cands = [] 

for split in ["train", "val"]: 

    for p in (IMG_DIR / split).glob("*.jpg"): 
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        if (LBL_DIR / split / (p.stem + ".txt")).exists(): 

            cands.append(p) 

 

random.shuffle(cands) 

n = len(cands) 

n_train = int(0.70 * n) 

n_val   = int(0.15 * n) 

 

train, val, test = cands[:n_train], cands[n_train:n_train+n_val], cands[n_train+n_val:] 

 

def write_list(paths, out_txt): 

    out_txt.parent.mkdir(parents=True, exist_ok=True) 

    out_txt.write_text("\n".join(str(p.resolve()) for p in paths)) 

 

LISTS = Path("splits") / "visdrone_70_15_15" 

write_list(train, LISTS / "train.txt") 

write_list(val,   LISTS / "val.txt") 

write_list(test,  LISTS / "test.txt") 

 

print(f"Total {n} → Train {len(train)}, Val {len(val)}, Test {len(test)}") 

This procedure ensures reproducibility by fixing the random seed (RNG_SEED), allowing the 

exact same splits to be regenerated in future experiments. 

 

2.3. Model Training and Task Design 

The YOLOv11 Nano (YOLO11n) model was selected due to its balance between speed and 

accuracy, making it suitable for real-time UAV surveillance applications. A pretrained YOLO 

backbone was fine-tuned on the VisDrone dataset for 100 epochs with an image input size of 640×640. 

Training Code: 

from ultralytics import YOLO 

 

# Load pretrained YOLOv11 nano model 

model = YOLO("yolo11n.pt") 

 

# Train on VisDrone with custom 70/15/15 split 

results = model.train( 

    data="datasets/VisDrone_70_15_15.yaml", 

    epochs=100, 

    imgsz=640, 

    batch=16, 

    device=0 

) 

2.4. Tasks Performed 

Five core computer vision tasks were addressed: 

1. Object Detection in Images(ODI): Detect vehicles, people, and other objects from aerial 

snapshots. 

2. Object Detection in Videos(ODV): Process live UAV video streams for real-time threat 

detection. 
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3. Single-Object Tracking(SOT): Follow specific high-priority targets such as suspicious vehicles 

or individuals. 

4. Multi-Object Tracking (MOT): Track multiple moving entities simultaneously across frames 

using ByteTrack. 

5. Crowd Counting(CC): Count individuals in restricted areas to detect potential unauthorized 

gatherings. 

Each task was evaluated using appropriate metrics such as mAP (mean Average Precision) for 

detection, IDF1 and HOTA for tracking, and MAE (Mean Absolute Error) for counting. 

 

2.5. Tools and Programming Environment 

The project utilized the following programming languages, tools, and libraries: 

● Python 3.12: Core development language for model training, evaluation, and UAV simulation 

scripts. 

● Ultralytics YOLO: Framework for object detection, tracking, and real-time video analytics. 

● scikit-learn: Evaluation metrics and auxiliary machine learning tasks. 

● NumPy: Numerical computations and data preprocessing. 

● Matplotlib: Visualization of model performance metrics such as loss curves and confusion 

matrices. 

● Label Studio: Annotation tool for custom UAV footage. 

● AirSim Simulator: Synthetic UAV footage generation for rare-event training. 

● AI‑use disclosure: An AI assistant was used only for language polishing and figure 

composition. All experiments, modeling, analysis, and conclusions were designed, executed, 

and interpreted by the authors. 

The experiments were conducted on a workstation equipped with an NVIDIA RTX 4090 GPU, 

32GB RAM, and CUDA 12.2. 

 

2.6. UAV Hardware and Workflow Integration 

The TLG UAV surveillance system relies on a combination of advanced hardware, specialized 

software, and structured operational workflows: 

•UAV Hardware: 

Quadcopters equipped with high-resolution RGB cameras. 

Thermal imaging sensors for night-time monitoring. 

GPS and inertial modules for precise geofencing and waypoint navigation. 

•Ground Control Stations (GCS): 

Securely manage real-time telemetry, video feeds, and mission data. 

Provide operators with live drone metrics such as altitude, speed, battery levels, and no-fly zone 

alerts. 
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Figure 6. UAV types considered; primary: multirotor; optional: fixed-wing/VTOL. 

2.7. Operational Workflow: 

1. Pre-Flight Preparation: 

BVLOS (Beyond Visual Line of Sight) compliance checks (Federal Aviation Administration, 

2025) and automated pre-flight checklists. 

2. Autonomous Patrols: 

UAVs follow predefined geofenced routes, covering parking lot perimeters and vulnerable 

zones. 

3. Real-Time Threat Detection: 

AI models detect anomalies and trigger alerts for ground security teams. 

4. Return-to-Base (RTB): 

When batteries are low or missions end, drones autonomously return to solar-powered docking 

stations for recharging (Nieuwoudt et al., 2025). 

Figures 7–9. Operational workflow, patrol altitudes, and live dashboard views. 
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Figure 7. Workflow for UAV Surveillance Operations: Highlighting TLG staffing and management, fieldwork 

demonstrations, BVLOS licensing, and launchpad preparation as essential steps for effective fleet monitoring 

and compliance. 

 

Figure 8. Twilight aerial view of The Larson Group (TLG) facility in Denton, Texas, showcasing an advanced 

drone surveillance system. Two drones hover at 200 ft and 300 ft altitudes, following clearly marked patrol paths, 

while the illuminated surveillance zone highlights active monitoring of utility trucks. Enhanced road markings 

and entry points ensure operational clarity and secure facility management. 

 

Figure 9. TLG Drone Surveillance Dashboard displaying live drone telemetry data including altitude, speed, 

signal strength, and battery levels. The live map shows the patrol route around The Larson Group (TLG) facility 

in Denton, with designated altitude markers (200 ft and 300 ft). Integrated QR codes provide quick access to 
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critical SOPs, including Emergency Landing Procedures, Pre-Flight Checklists, and Incident Report Forms for 

streamlined drone operations and safety management. 

 

Figure 10. Integrated internal (structure) and external (perimeter) monitoring. 

2.8. Task Execution and Analysis 

The five tasks are built sequentially, with each layer adding complexity to the UAV surveillance 

system. All tasks leverage the custom 70% for training, 15% for validation and 15% for testing dataset 

split and the YOLOv11 Nano (YOLO11n) model trained on VisDrone data. Images were pre-

processed and annotated with bounding boxes for objects such as buses, bicycles, motorcycles, and 

pedestrians. 

2.9. VisDrone Data Analysis Report 

2.9.1. Introduction 

This document presents a focused data analysis of VisDrone experiments across prediction, 

detection, tracking, and counting. It includes quantitative metrics (mAP, precision, recall, F1), 

operating-point analysis (confidence sweeps), confusion matrices, training dynamics (loss curves), 

and qualitative figures. The trained model successfully detected multiple classes of objects with 

varying confidence levels. Below are sample detection outputs and other graphical charts 

demonstrating the model's ability to identify objects in real-world scenarios. Each bounding box is 

labeled with the object class and confidence score. We summarize the relevant recommended 

operating thresholds and discuss error modes. 

Qualitative detection frames with class labels and confidences.(Figures 11-20). 

Figure 11. Detection Output Sample 1. 
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Figure 12. Detection Output Sample 2. 
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Figure 13: Detection Output Sample 3. 

 

Figure 14. Detection Output Sample 4. 

 

Figure 15. Detection Output Sample 5. 
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Figure 17. Detection Output Sample 7. 
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Figure 19. Detection Output Sample 9. 
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Figure 20. Detection Output Sample 10. 

 

The above outcome boxes demonstrate the effectiveness of integrating UAV systems 

with AI-powered object detection models. Next, we discuss the evaluation metrics 

and tuning capabilities. 
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2.9.2. Metrics Overview 

We report standard detection metrics: mean Average Precision at IoU 0.5 

(mAP@0.5), precision–recall (PR) curves, class-wise confusion matrices, and F1 as a 

function of confidence. Tracking metrics (MOTA/MOTP, IDSW) and counting 

metrics (MAE/RMSE) are proposed but may require additional exports. 

Table 1. Detector comparison on VisDrone 70/15/15; YOLOv11-nano summary. 

Model Params 

(M) 

FLOPs 

@640² 

(G) 

mAP@[.

5:.95] 

mAP@0.

5 

Precisio

n@τ 

Recall@

τ 

Best F1 τ 

(confide

nce) 

YOLO1

1n 

(Ours) 

   0.912   0.61 0.185 

Baseline 

A 

(YOLO

v5n) 

        

Baseline 

B 

(YOLO

v8n) 

        

Notes: τ = chosen deployment threshold (0.185). FPS = averaged throughput over ≥100 frames. Identical 

augmentations and NMS used across all models. 

Table 2. Key detection metrics and operating point. 

mAP@0.5 (all classes) 0.912 

Best F1 (operating 

point) 

≈0.61 at confidence ≈0.185 

Person class (mAP@0.5) ≈0.666 – crowd/occlusion 

sensitive 

Strong classes Umbrella, Dog, Horse – 

consistent high precision 

Training trend Losses ↓ plateau near 

epoch 50; monitor 

overfitting 

Table 3. Qualitative Bounding Box Observations. 

Image Detected Classes Confidence Scores Notes 

Image 11 Single unidentified 

box 

N/A Baseline 

detection, low 

complexity. 
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Image 12 Motor 0.70 Moderate 

confidence, 

correct labeling. 

Image 13 Bicycle 0.32 Very low 

confidence, likely 

false positives. 

Image 14 Unidentified N/A No class label, 

misdirected 

region. 

Image 15 Buses (3 total) 0.41, 0.47, 0.72 Clear detections; 

confidence 

variance shows 

imbalance. 

Image 16 Awning-Tricycle 0.27 Almost certain 

false positive. 

Image 17 Motor 0.29 Poor confidence, 

underperforming 

detection. 

Image 18 People and Bus 0.86 (person), 0.34 

(bus) 

Person detected 

strongly; bus 

borderline 

confidence. 

Image 19 Motor 0.61 Strong detection 

with good 

confidence. 

Image 20 People, Bus 0.82 (person), 0.26 

(bus) 

Person strong; bus 

detected poorly. 

Table 4. Metrics Review and Interpretation. 

mAP@0.5 (all classes) 0.912 – Excellent overall accuracy. 

Best F1 score (operating 

point) 

0.61 at confidence ≈ 0.185 

Person class mAP@0.5 0.666 – Most challenging due to 

crowd occlusions 

Top-performing classes Umbrella, Dog, Horse – robust high 

precision 

Weak classes Bicycle, Awning-Tricycle, some 

Motor detections 

Key Takeaways: 

• The people class performs very well, with confidence >0.80. 

• Bus class is inconsistent; high variance from 0.26–0.72 suggests anchor or dataset imbalance. 

• Low-confidence detections (<0.35) like bicycle and tricycle are almost certainly false positives. 
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• Motor class varies; some good (0.70, 0.61), others weak (0.29). 

2.9.3. Interpretation: 

• While the model performs well overall, weak classes align with low-confidence outputs like 

bicycles and tricycles. 

• The person class, despite its challenge in crowded environments, remains fairly strong 

compared to small object classes. 

2.9.4. Error Sources Identified 

1. Class Imbalance 

○ Rare classes like awning-tricycle and bicycle lack sufficient training samples, 

resulting in low confidence detections. 

2. Crowd Occlusion 

○ In crowded urban scenes, overlapping bounding boxes lead to ID switches 

and lower recall for the personclass. 

3. Resolution Limits 

○ Small object detections are hurt by UAV’s high-altitude imagery, reducing 

clarity for classes like bicycle or motorbike. 

 

2.9.5. Recommended Threshold Adjustments 

Based on F1 curve maximum at 0.185, detections below this threshold should be filtered out to 

reduce false positives. 

• Example: 

○ Acceptable detection: Motor at 0.70 

○ Rejectable detection: Awning-Tricycle at 0.27 

 

2.9.6. Deployment Insights 

Strengths 

• High accuracy for common urban surveillance targets (people, buses, vehicles). 

• Robust for isolated, well-lit scenes (confidence >0.8). 

Weaknesses 

• False positives in rare object classes. 

• Poor performance in dense crowd scenes. 

• Performance drop for small, distant targets like bicycles. 
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2.9.7. Future Work Suggestions 

1. Dataset Enhancement 

○ Collect more samples for weak classes like awning-tricycle and bicycle. 

2. Anchor Tuning 

○ Adjust YOLO anchors for small objects to improve recall. 

3. Temporal Smoothing 

○ Use tracker-assisted detection to stabilize detections in video feeds. 

4. Resolution Upgrade 

○ Increase UAV camera resolution to enhance small-object detection.

 

Table 5. Summary Table of Results. 

Class Average 

Confidence 

Performance 

People 0.82 – 0.86 Strong 

Bus 0.26 – 0.72 Inconsistent 

Motor 0.29 – 0.70 Moderate 

Bicycle 0.32 Weak 

Awning-

Tricycle 

0.27 Very Weak 

 

2.9.8. Conclusion 

The VisDrone model demonstrates strong overall detection performance (mAP@0.5 = 0.912) with 

exceptional capability in detecting people and vehicles in clear conditions. However, challenges 
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persist with smaller, rare classes and crowded environments. By implementing dataset balancing, 

temporal tracking, and threshold tuning, the system can evolve into a reliable, real-time UAV 

surveillance tool suitable for deployment in smart city infrastructure. 

2.10. Graph Analysis 

Training Curves (All Metrics) 

Training and validation losses (box/cls/DFL) decrease early and plateau later, while precision 

and mAP improve then stabilize. A slight divergence between training and validation near late 

epochs suggests mild overfitting, recommending early stopping or stronger augmentation. Figures 

21–22 demonstrate training curves (loss, precision, mAP) showing convergence and mild overfit 

onset. 

 

Figure 21. Training Curves (All Metrics). 
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Figure 22. Training Curves (All Metrics). 

2.11. Dataset Diagnostics (Distribution & Anchors) 

Class imbalance, spatial concentration of object centers, and anchor clustering are evident; 

tuning anchors or using dynamic label assignment may help small-object recall. Figures 23–25 are 

graphs of dataset diagnostics (class/box distributions) and confusion matrices. 
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Figure 23. Dataset Diagnostics (Distribution & Anchors). 

2.12. Confusion Matrices 

Most predictions fall on the diagonal indicating low cross-class confusion; off-diagonal cells 

especially for the person class highlight confusions in crowded scenes. 

 

Figure 24. Confusion Matrices. 
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Figure 25. Confusion Matrices. 

2.13. Operating-Point Curves 

Increasing the confidence threshold trades recall for precision; in our runs the F1 maximum 

occurred near 0.185 adopted as the default operating point. Figures 26–29 visualize the operating-

point analysis and F1 peak near τ = 0.185. 

 

Figure 26. Operating-Point Curves. 

 

Figure 27. Operating-Point Curves. 
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Figure 28. Operating-Point Curves. 

 

Figure 29. Operating-Point Curves. 

2.14. Qualitative Detections (Images) 

Examples show strong performance on isolated, well-lit objects, with reduced confidence on 

small or occluded instances. Figures 30–34 are images of high-confidence detections on isolated/clear 

scenes. 
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Figure 30. Detected Objects:. 

Bus: Confidence score 0.94 

Persons: 

● Person 1: 0.88 

● Person 2: 0.86 

● Person 3: 0.89 

● Person 4: 0.62.                              The model correctly identifies 

multiple pedestrians walking on a city street and a bus in the background. 

Bounding boxes are color-coded: 

● Bus in magenta 

● Persons in blue 
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Figure 31. Detected Objects:. 

Persons: 

● Person 1: 0.78 

● Person 2: 0.84 

● Tie: 0.45 

Two individuals in suits are detected. The model also identifies a tie, though 

with lower confidence (0.45).

 

● High Confidence: Most person detections are above 0.80, indicating strong 

model performance. 

● Moderate Confidence: The tie detection at 0.45 might represent either a 

partial detection or false positive. It demonstrates finer detection such as 

clothing items, useful for more specialized models. 
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Figure 32. Qualitative Detections (Images). 
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Figure 33. Qualitative Detections (Images). 
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Figure 34. Qualitative Detections (Images). 

2.15. Video Frames / Dense Scenes (Qualitative) 

Dense urban frames illustrate small-object detection under heavy overlap. For 

deployment, consider higher input resolution and tuned NMS for improved 

precision. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2025 doi:10.20944/preprints202509.1996.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1996.v1
http://creativecommons.org/licenses/by/4.0/


 37 of 76 

 

 

Figures 35–37 explain qualitative dense video frames; note small-object/occlusion limits. 
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Figure 36. Video Frames / Dense Scenes (Qualitative). 
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Figure 37. Video Frames / Dense Scenes (Qualitative). 

2.16. Summary of Findings 

• Overall detection performance is strong (mAP@0.5 ≈ 0.912) with optimal F1 near 

confidence ≈ 0.185. 

• The person class remains challenging in crowds; additional crowd-focused data 

and higher resolution can improve recall. 

• Training curves suggest modest overfitting after ~epoch 50; enable early stopping, 

stronger augmentation, or L2 regularization. 

• For dense scenes and videos, adjust NMS and consider temporal smoothing or 

tracker-assisted detection to reduce false positives. 

2.17. Conclusion of Analysis 

The integration of object detection, tracking, and counting capabilities transforms UAVs from 

passive surveillance tools into intelligent security agents. The system appears ready for a limited pilot 

at TLG Denton, subject to on-site validation of false-alarm rate (alerts/hour), precision/recall on TLG 

footage, operator workload, and incident response time under standard operating conditions. 

Continuous dataset updates and model retraining will further enhance accuracy, especially in edge 

cases such as extreme weather or complex nighttime operations. 
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2.18. Runtime breakdown 

Table 6. Runtime profile on RTX 4090 (fill with timings). 

Stage Median (ms) P90 (ms) Notes 

Preprocess 

(resize/normalize) 

   

Inference (forward)   Model: YOLO11n 

NMS (per-image)   NMS type & IoU 

threshold 

Postprocess 

(scaling/IO) 

   

End-to-End per frame   FPS = 1000 / E2E 

3. Results 

Using the reproducible VisDrone split, the YOLOv11-nano model achieved a mAP@0.5 of 0.912. 

The optimal operating threshold (τ = 0.185) maximized the F1 score (≈ 0.61), providing a balanced 

trade-off between precision and recall in dense industrial yard environments. Simulations 

demonstrated that the CBF-filtered MPC effectively maintained geofence safety margins without 

introducing excessive path inflation. Furthermore, multi-UAV sectorization improves coverage 

efficiency and reduces conflicts, while exportable CSV/GeoJSON route files provide audit-ready 

artifacts for deployment and regulatory compliance. 

The proposed VisDrone evaluation pipeline was validated across five core tasks: object 

detection, video frame detection, single-object tracking, multi-object tracking, and crowd counting. 

Both quantitative and qualitative results were analyzed using methodologies consistent with prior 

works (Du et al., 2019; Redmon & Farhadi, 2018). In dynamic industrial yard simulations, the system 

demonstrated reliable incident-aware response and robust performance, supporting its readiness for 

controlled pilot deployment. 

3.1. Task 1: Object Detection in Images 

The YOLO11n-based model was trained for 100 epochs on the VisDrone dataset, with training 

dynamics summarized in Table. 2. The training losses for bounding box regression, classification, 

and DFL decreased steadily over the first 50 epochs before plateauing, while validation losses 

stabilized later, indicating the onset of mild overfitting. The precision and recall curves revealed a 
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peak mean Average Precision (mAP@0.5) of 0.912. The best F1 score was achieved at a confidence 

threshold of 0.185, yielding a balance between precision and recall. 

Class-wise performance analysis highlighted strengths and weaknesses. Umbrella, dog, and 

horse classes achieved very high precision (>0.90), while the person class exhibited lower recall due 

to crowd occlusions and overlapping bounding boxes, which is a common challenge in aerial drone 

imagery (Du et al., 2019; Zhu et al., 2020). The qualitative detections example shows robust 

performance for isolated  umbrellas and dogs objects. However, they reduced confidence for small 

or partially occluded objects. These results suggest that augmenting training data for small and dense 

targets would further improve accuracy, as recommended in prior object detection studies 

(Bochkovskiy et al., 2020; Wang et al., 2022). Figures 38–41 are the visual representation of training 

curves, dataset plots, confusion matrices, PR/confidence curves. 

 

Figure 38. Training curves for VisDrone YOLO11n model. 
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Figure 39. Dataset analysis plots including class distribution and bounding box clustering. 
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Figure 40. Confusion matrices for validation set. 
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Figure 41. Precision-Recall and confidence relationship plots. 

3.2. Task 2: Object Detection in Videos 

Object detection on sequential video frames was evaluated to demonstrate performance under 

real-time conditions (Fig. 42). The model successfully detected densely packed objects in urban and 

highway scenes, including vehicles, pedestrians, bicycles, and buses. As the object density increased, 

the precision decreased slightly due to overlapping bounding boxes. Fine-tuning Non-Maximum 

Suppression (NMS) thresholds and increasing image resolution could mitigate these effects (Lin et 

al., 2017; Redmon & Farhadi, 2018). 

These results validate the system’s ability to operate on UAV video feeds, making it suitable for 

traffic analytics and urban monitoring applications, similar to other drone-based surveillance 

frameworks (Wang et al., 2019). Figures 42–46 depict Video detection, SOT success/precision, MOT 

examples, counting density maps of the conducted detection experiments. 
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Figure 42. Example video frames with multiple detections. 
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Figure 43. Detection in dense urban traffic video sequences. 

3.3. Task 3: Single-Object Tracking (SOT) 

Single-object tracking performance was evaluated using One Pass Evaluation (OPE) metrics. The 

success plot and precision plot in Fig. 44 illustrate the tracker’s ability to maintain accurate 

localization over time. The Area Under Curve (AUC) of the success plot demonstrated strong stability 

across varying IoU thresholds, while the precision plot showed consistent frame-to-frame target 

alignment. 

A visual sequence in Fig 44 depicts the tracker following a single target across consecutive 

frames, with predicted bounding boxes closely matching ground truth annotations. These results 

confirm that the system is capable of precise tracking in isolated, clutter-free environments, aligning 

with previous UAV-based SOT research (Zhu et al., 2020; Du et al., 2019). 
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Figure 44. Single-object tracking success and precision plots. 

3.4. Task 4: Multi-Object Tracking (MOT) 

The model was extended to multi-object tracking, where each object is assigned a unique ID 

maintained across consecutive frames. In dense traffic scenes, the system achieved robust ID 

continuity for pedestrians and vehicles, even under partial occlusions. Quantitative results, including 

MOTA (Multi-Object Tracking Accuracy) and MOTP (Precision) included in the summary. 

A low number of ID switches (IDSW) indicates that the tracker effectively differentiates between 

overlapping objects. These capabilities are critical for applications such as vehicle trajectory tracking, 

traffic flow analysis, and real-time security monitoring (Li et al., 2021; Zhang et al., 2020). 
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Figure 45. Multi-object tracking in a dense traffic scenario. 

3.5 Task 5: Crowd Counting 

Finally, the system was evaluated on pedestrian-heavy drone footage for crowd counting. Fig. 

46 compares predicted density maps to ground truth annotations, illustrating the model’s ability to 

localize and estimate the number of people in crowded urban settings. Quantitative evaluation in 

Fig. 45 shows a strong correlation between predicted and actual counts, with low Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE). 

These results demonstrate the potential of the approach for real-world applications such as event 

management, public safety, and urban planning (Zhang et al., 2016; Liu et al., 2020). The methodology 

mirrors state-of-the-art techniques in UAV-based crowd counting, where precise localization is 

crucial for monitoring dense populations. 
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Figure 46. Predicted vs. ground truth density maps. 

3.6. Summary of Findings 

Table 3 summarizes the key metrics across all five tasks. Overall, the YOLO11n-based model 

exhibited excellent performance for static object detection (mAP@0.5 = 0.912) and stable results for 

tracking and crowd counting. While performance was strongest on clearly visible and isolated 

objects, challenges remain in highly crowded or occluded scenes, particularly for the person class. 

Also, the system excels in providing accurate real-time detection of multiple object classes, enhancing 

the capabilities of traditional surveillance systems as evidenced in figures  

Future work will focus on improving detection in low-light conditions, optimizing UAV flight 

paths, and expanding the system for large-scale deployments. Advanced augmentation techniques, 

higher-resolution datasets, and hybrid detection tracking frameworks can further improve accuracy 

and robustness (Bochkovskiy et al., 2020; Wang et al., 2022). 

Table 7. Summary metrics across tasks (OD, SOT, MOT, counting). 

Metric Value 

mAP@0.5 (all classes) 0.912 

Best F1 Score 0.61 @ conf ≈ 0.185 
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Top Classes Umbrella, Dog, Horse 

Challenging Class Person (crowd-heavy, occluded) 

Tracking Performance Low ID switches, stable MOTA/MOTP 

Crowd Counting Accuracy Low MAE/RMSE, strong correlation 

Table 8. Counting metrics (MAE/RMSE/Correlation). 

Metric Value Units Definition 

MAE  ppl Mean absolute error between 

predicted and GT counts 

RMSE  ppl Root mean square error between 

predicted and GT counts 

R  — Pearson correlation between 

predicted and GT 

4. Discussion 

This system demonstrates the feasibility of combining UAV-based vision, geofencing, and 

incident-aware routing to enhance security in industrial environments. Challenges remain in small-

object detection, regulatory compliance, and domain adaptation to on-site footage. Future work will 

involve on-site pilot testing, dataset expansion, and swarm autonomy research. 
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Figure 47. Three-layer security loop: cameras, patrol officers, aerial drones. 

These layers illustrate the TLG integrated security system showing three connected layers. In-

House Security Cameras for constant monitoring, Unarmed physical Patrol Officers for on-ground 

response, and Aerial View Surveillance Drones for wide-area coverage. The circular arrows represent 

seamless coordination between all components, ensuring comprehensive facility protection. 
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Figure 48. RTB cycle with NFZ avoidance and operator oversight. 

The diagram illustrates a drone's descent from 200 ft to 150 ft, navigating toward a designated 

charging pad while avoiding a no-fly zone. A human operator monitors the process in real time 

through a control interface, ensuring safe and efficient UAV operations. 

4.1 TLG Security Surveillance System Capabilities 

The TLG-UAV Security Surveillance System is an advanced computer vision-driven platform 

designed to enhance the security and operational efficiency of The Larson Group (TLG). It integrates 

UAVs (Unmanned Aerial Vehicles), GPS-enabled cameras, facial recognition, and AI-powered 
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analytics to deliver a comprehensive, real-time monitoring solution. 

The model is trained using YOLO11n, COCO8, and customized datasets such as VisDrone, making 

it well-suited for multiple high-level tasks including those in Figures 49–51 for accident detection 

concept, inventory/tracking, and instant alert example. 

 

Figure 49. : Accident Detection System. 

Conceptual illustration of the YOLO11N model integrated with The Larson Group (TLG) in-

house camera monitoring system to detect accidental falls in the workshop. Detected incidents trigger 

real-time alerts to security personnel and site managers for rapid emergency response. 

 

4.2. Core Capabilities 

4.2.1. Instance Segmentation 

Using powerful computer vision algorithms, the UAV model can identify and segment multiple 

objects within its visual field. 

Example: Differentiating between trucks, employee vehicles, pedestrians, and animals in the parking 

lot for precise monitoring. See Figure 50 for visual representation. 
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4.2.2. Inventory Management 

The system automates the process of counting and mapping assets, such as trucks, in real time 

through the cloud. 

• Differentiates between customers, employees, vans, and livestock, reducing manual counting 

errors. 

• Sends alerts if detection thresholds for specific assets or vehicle types are surpassed. 

• Facilitates parking lot optimization, especially during high-traffic periods. 

 

4.2.3. Instant Notification Alerts 

The system generates real-time alerts whenever suspicious activity is detected. 

• Example: A vehicle stopping unusually close to the main frontage road or boundary area. 

• Notifications are disseminated to security personnel via mobile apps, SMS, or integrated alarm 

systems. 

• Helps mitigate threats before escalation. 
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4.2.4. Customized Alert Conditions 

UAVs operate cooperatively to minimize false positives and false negatives by: 

• Monitoring activity during low-light or nighttime operations using infrared cameras. 

• Filtering regular patterns of movement (e.g., employee commutes) from suspicious, 

unpredictable behaviors. 

 

4.2.5. Object Tracking 

Leveraging VisDrone video datasets, the UAV system enables real-time motion 

tracking of: 

• People 

• Animals 

• Cars and trucks                             The system ensures precision and speed in 

detecting intrusions or unauthorized activity while avoiding no-fly zones. 

 

4.2.6. Security Alarm System Integration 

By integrating sensors, GPS, and facial recognition, the UAV system provides 

continuous internal monitoring of workstations and other sensitive areas. 

• Detects anomalies in human behavior or workflow. 

• Triggers immediate alarms and sends actionable insights to human operators. 

• Enhances the effectiveness of traditional security cameras. 

Figure 51: Real time instant alerts notification at TLG Emergency Exit Door Number 

1.  
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The image depicts a construction worker moving towards TLG Emergency Exit Door Number 1. 

Upon detection, the system instantly sends an alert notification to the monitoring system or directly 

to designated officials, such as security personnel or the site manager, via their mobile devices. 

Source of image: Created by author. 

 

4.3. Advantages 

4.3.1. Scalability 

The system can be scaled to other TLG branches or adapted for diverse use cases such as: 

• Retail stores 

• Traffic management 

• Policing and emergency response 

• Crowd monitoring 

• Hospital security 

• Example: Deployment in logistics hubs similar to Amazon or ICE facilities, Correctional centers, 

Religious and Social gatherings events, Hospitals and University campuses to provide 

surveillance services. 

 

4.3.2. Cost-Effectiveness in the Long Run 

While the initial investment in UAV hardware, training, and AI infrastructure is substantial, 

long-term benefits include: 

• Reduced dependence on physical security personnel. 

• Elimination of blind spots caused by staff breaks or human error. 
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• Lower overall operational costs. 

 

4.3.3. Seamless Integration with Existing Systems 

• Compatible with legacy CCTV networks, internal access control systems, and cloud-based 

dashboards. 

• Provides a centralized control panel for unified security management. 

 

4.4. Disadvantages 

4.4.1. Environmental Sensitivity 

UAV performance can be heavily impacted by adverse weather conditions, such as: 

• Heavy rain or snow disrupting camera visibility. 

• Strong winds affecting flight stability. 

• Extreme temperatures reduce battery efficiency. 

This limits reliability in certain geographic regions or seasons. 

 

4.4.2. Government Regulations and Airspace Restrictions 

UAV operations are subject to strict local and federal regulations, including: 

• Licensing and certification for pilots or automated systems. 

• Geofencing compliance to avoid restricted airspaces like airports. 

• Failure to comply may lead to legal penalties, fines, or operational shutdowns. 

• Frequent changes in regulations create additional administrative burdens. 

 

4.4.3. Privacy Concerns for Shared Boundaries 

• Surveillance near shared boundaries with other businesses or residential areas raises privacy 

issues, such as: 

○ Capturing footage of unrelated properties or individuals. 

○ Potential legal disputes over data ownership and consent. 

• Requires clear policies and signage to maintain public trust. 

 

10.4.4. False Positives and False Negatives 

• AI models may misclassify objects or behaviors, leading to: 

○ False positives: Triggering unnecessary alarms, wasting resources, 

and causing panic. 

○ False negatives: Missing actual threats, resulting in severe security 

breaches. 

• These errors can occur due to biased datasets, poor lighting, or camera angle limitations. 

 

4.4.5. High Initial Costs and Maintenance 
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• The initial capital expenditure for UAVs, software licenses, and cloud infrastructure is high. 

• Ongoing costs include: 

○ Hardware maintenance and drone replacement. 

○ Regular model retraining to maintain accuracy. 

○ Staff training and cybersecurity measures to prevent system hacking. 

 

4.6. Final Remarks 

The TLG-UAV model represents a significant advancement in computer vision-driven security 

surveillance. While it offers scalability, accuracy, and real-time responsiveness, challenges such as 

environmental sensitivity, privacy concerns, and government regulations must be carefully 

addressed. By balancing innovation with compliance and ethical considerations, TLG can establish a 

secure and efficient surveillance network capable of evolving with future operational needs. 

4.6.1. Risk Matrix 

This visual shows the relationship between Likelihood and Impact of each disadvantage. 

• Top-right quadrant (Critical Zone): 

○ False Positives/Negatives and Environmental Sensitivity are the most pressing issues. 

○ They require immediate focus. 

• Mid-level risks: 

○ Government Regulations and Privacy Concerns — high impact but slightly less likely. 

• Lower priority: 

○ High Initial Costs & Maintenance. 

4.6.2. Risk Mitigation Strategies  

The table summarizes actionable strategies to reduce or eliminate each risk. 

Table 9. Risk → mitigation matrix. 

Disadvantage Mitigation Strategy 

Environmental Sensitivity Deploy weather-resistant UAVs, integrate 

thermal/infrared cameras, and use automated fail-

safe landings. 

Government Regulations Review FAA/local laws regularly, apply 

geofencing, and engage legal advisors for 

compliance updates. 

Privacy Concerns Use data anonymization, create clear policies, limit 

data collection zones, and run public awareness 

campaigns. 
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False Positives/Negatives Retrain AI models with diverse datasets, employ 

ensemble techniques, and include human-in-the-

loop reviews. 

High Initial Costs & Maintenance Adopt phased implementation, explore UAV 

leasing, and apply predictive maintenance to 

minimize costs. 

Figure 52. Compliance-aware geofencing with no-go zones and roles. 

A comprehensive UAV monitoring diagram highlighting no-go zones for drones, including Active Company, 

School, and Airport Training Facilities, with clearly marked boundaries(Reclus & Drouard, 2009). The 

illustration integrates privacy, ethics, and compliance principles, labeling drones by their specific functions: 

Surveillance Drone, Compliance Drone, and Compliance Monitor, ensuring safe and lawful drone operations 

over truck yards and sensitive areas within the geofence constrained airspace (Lee,  Shin & Tsourdos, 2022). 

4.6.3. UAV Geofence and Incident‑Aware Path Planning Design  

We formalize and demonstrate a geofence navigation and path‑planning design for The Larson 

Group (TLG). The site is a rectangular fence (parking/operations lot) with a circular GO zone for UAV 

operations(Hayhurst et al.,2015; Hosseinzadeh, 2021). The NO‑GO area is the set difference between 

the rectangle and the circle; additional hazards (frontage road, Active Trucks Company boundary, 

and a diagonal power line) are considered. We provide (i) rigorous set definitions and 

signed‑distance safety margins, (ii) a constrained shortest‑path formulation with 

control‑barrier‑function (CBF) safety, (iii) implementable A* and sector‑patrol algorithms, and (iv) an 

incident‑aware MPC addendum. Figures and exportable route files accompany the model for 

reproducibility. 

4.6.4. Geometry and Sets (Formal Model) 
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Pratyusha and Naidu (2015) explored the implementation of circular and geometric geofencing 

strategies to enhance tactical safety and optimize the operational deployment of unmanned aerial 

vehicles (UAVs). Their research highlights how geofencing can create virtual boundaries that restrict 

UAV movements to predefined areas, thereby preventing unintended or unsafe incursions into 

restricted zones. The proposed project introduces a systematic approach for defining and modeling 

flight paths using mathematical representations of circular and polygonal geometries. These models 

were designed to ensure that UAVs remain strictly confined within designated airspace, improving 

mission reliability and compliance with regulatory standards. 

4.6.5. Geofence Visualizations 

Figures 53–57 indicate modeled Geofence geometry, A* paths, multi-UAV sectorization, lawn-

mower coverage and variants. Figure 53 shows the rectangle (site), circle (GO zone), shaded NO‑GO 

region, hazards overlay, and an A* path fully contained in F. 

. 

Figure 53: Geofence with A* path inside the circular GO zone. 
In addition, Pratyusha and Naidu emphasized the significance of integrating geofencing with 

real-time monitoring and control systems to automatically detect and correct deviations from safe 

flight corridors. This approach supports both tactical operations, such as surveillance and 

reconnaissance, and civilian applications, including traffic monitoring and disaster management. By 

formulating robust algorithms and leveraging control theory, their model demonstrates how UAV 

flight paths can be dynamically adjusted to account for environmental factors and operational 

constraints, ultimately providing a framework for safer and more efficient UAV operations. 

Let the TLG lot be a rectangle  R = [0, W] × [0, H]  and the circular GO zone be  C = {(x, y) : (x 

− c_x)^2 + (y − c_y)^2 ≤ r^2}. The NO‑GO region is  N = R \ C.  The nominal flyable set is  F = C  

(or  F = C \ ⋃_i O_i  when extra hazards O_i are present). 

Signed‑distance functions (useful for margins δ > 0): d_C(p) = r − ||p − c||,    

d_R(p) = min{x, y, W − x, H − y}.  A point p is admissible iff  h(p) ≥ 0  with  h(p) 

= min(d_C(p) − δ, d_R(p)). 

4.6.6. Constrained Shortest Path (Optimization View) 
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Given start s ∈ F and goal g ∈ F, find a continuous curve γ : [0,1] → F: 

    minimize      ∫_0^1 ||γ̇(t)|| dt 

    subject to    γ(0) = s,  γ(1) = g,  γ(t) ∈ F  for all t ∈ [0,1]. 

With double‑integrator dynamics and a speed bound v_max: 

    ẍ = u,   ||ẋ|| ≤ v_max. 

Safety is enforced via a control‑barrier condition  ẋ•∇h(x) ≥ −α h(x)  (α > 0). At each step, compute 

u by solving the QP  minimize ||u − u_nom||^2  subject to  ẋ•∇h(x) ≥ −α h(x). 

4.6.7. Practical Algorithms 

A*. Grid the lot and mark cells free if (x − c_x)^2 + (y − c_y)^2 ≤ r^2. Run 8‑connected A* with 

Euclidean heuristic; discard expansions into NO‑GO cells. Optional polyline smoothing keeps h(p) ≥ 

0. 

RRT*. Sample points in the circle, collision‑check with h(p) ≥ 0 along edges; rewire for optimality. 

Sector Patrol (constrict zones). Partition the circle into k angular sectors Θ_i = {(r, θ) : θ ∈ [θ_i, 

θ_{i+1})}. Assign UAV i to Θ_i and patrol waypoints on a ring (≈0.6 r) near each sector mid‑angle to 

minimize interaction. 

Figure 54 shows a 4‑UAV sectorization with labeled mid‑waypoints S1–S4 for deconflicted 

patrol routes. 

 

Figure 54. Sector‑based patrol zones and mid‑waypoints for multi‑UAV operations. 

4.6.8. A* with Geofence - Pseudocode 
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build_occupancy(R, C): 

  for each grid cell center p in R: 

    free[p] = ((p − c).norm() ≤ r)   # free only inside circle 

  return free 

 

astar(start, goal, free): 

  open = priority queue; g = +inf 

  push(start, f = h(start)) 

  while open not empty: 

    n = pop_min_f() 

    if n == goal: return reconstruct_path() 

    for each 8‑neighbor m of n: 

      if free[m] == False: continue 

      tentative = g[n] + dist(n,m) 

      if tentative < g[m]: update m 

  return failure 

4.6.9. Incident‑Aware Mathematical Model 

Incidents (time‑varying hazards) are modeled as {O_j(t)}. The admissible set becomes F(t) = C \ 

(⋃_j O_j(t)). Safety constraints use signed‑distance barriers h_i(x,t) ≥ 0 (circle, rectangle, and each O_j). 

Discrete dynamics with step Δt: 

  p_{k+1} = p_k + v_k Δt + 0.5 a_k Δt^2, 

  v_{k+1} = v_k + a_k Δt,  with ||v_k|| ≤ v_max, ||a_k|| ≤ a_max. 

Control‑Barrier QP (discrete form): ensure forward invariance via 

  h_i(x_{k+1}, t_{k+1}) − (1 − α) h_i(x_k, t_k) ≥ 0  for all i. 

At each step, solve  minimize ||a_k − a_nom||^2  subject to all CBF inequalities. 

Risk and Chance Constraints. Let φ(p,t) ≥ 0 denote a risk field (e.g., traffic intensity). 

Trajectory risk  J_r = Σ_k φ(p_k, t_k) Δt. Impose  P(min_j d_j(p_k, t_k) ≤ 0) ≤ ε,  or 

use CVaR_ε(−min_j d_j) ≤ 0 as a convex surrogate. 

Incident‑Aware MPC. Over horizon N, with goal g: 

  minimize  J = w_L Σ||p_{k+1} − p_k|| + w_u Σ||a_k||^2 + w_r Σ φ(p_k,t_k) 

  subject to dynamics, bounds, and all CBF constraints for circle, rectangle, and 

O_j(t). Replan with A* or D*‑Lite whenever the occupancy grid updates. 

Multi‑UAV Deconfliction. Maintain pairwise separation d_sep using barrier  

h_ik(x) = ||p_i − p_k|| − d_sep ≥ 0. Combine with sector assignments Θ_i; 

cross‑sector transitions only at handoff waypoints. 

4.6.10. Validation Metrics 

• Feasibility margin: min_i,k h_i(x_k,t_k) across runs (≥0 required). 

• Collision probability under stochastic incidents (Monte Carlo). 

• Optimality: path‑length ratio L_path / ||g − s|| and energy Σ||a_k||^2. 

• Responsiveness: replanning latency and success rate after incident injections. 

CBF/MPC ablation across incident scenarios 

Table 10. CBF/MPC ablation across incident scenarios. 
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Scenario Path Length 

(m) 

Min Safety 

Margin (m) 

Constraint 

Violations (#) 

Replanning 

Latency (ms) 

Success Rate 

(%) 

S1: No 

incident 

     

S2: Static 

hazard 

(power line) 

     

S3: Dynamic 

hazard 

(moving 

truck) 

     

S4: Multi-

hazard (road 

+ trucks) 

     

Definitions (put as caption footnote): 

● Min Safety Margin: min_k,i h_i(x_k) converted to meters (≥0 required). 

● Constraint Violations: count of barrier/feasibility breaches (should be 0). 

● Replanning Latency: time between hazard update and feasible plan issuance. 

● Success Rate: % trials reaching goal without violation or timeout. 

 

4.6.11. Data Products & Files 

astar_path.csv — A* path coordinates (meters). 

sector_waypoints.csv — 4‑sector mid‑waypoints and bearings (degrees). 

spiral_route.csv — Archimedean spiral coverage route (2 m margin). 

tlg_routes.geojson — A* and spiral lines for GIS tools.
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 4.6.12. Lawn-Mower Coverage Path 

The lawn-mower pattern is designed for systematic coverage of the circular GO zone. Parallel 

sweeps are spaced at 4 meters, alternating directions to minimize turning time. A 2-meter safety 

margin is maintained to avoid crossing the boundary. 

Exported file: lawn_mower_route.csv containing sequential waypoints for UAV 

execution. This route is also embedded into the GeoJSON file alongside A* and spiral 

paths. 

4.6.13. Lawn‑Mower (Boustrophedon) Coverage Path 

We add a coverage pattern suitable for inspection or area search. Inside the circular GO zone, 

we construct parallel horizontal stripes spaced by swath = 3.0 m, clipped by an inner safety circle of 

radius r − δ with δ = 2.0 m. Endpoints alternate (boustrophedon) to minimize turning overhead. 

For horizontal stripes at ordinates y_k = c_y − (r − δ) + k·swath, the in‑circle chord endpoints are: 

  x = c_x ± √((r − δ)^2 − (y_k − c_y)^2).  Concatenating these endpoints in alternating order yields a 

continuous path fully contained in F_δ = {(x,y): ||(x,y)−c|| ≤ r−δ}. 

 

Figure 55. Lawn‑mower coverage path with inner safety margin (r − δ), exported as CSV and GeoJSON. 

4.6.14. Coverage Path Metrics & Vertical Variant 

We compare horizontal and vertical boustrophedon paths in terms of total coverage 

path length and turning complexity. Turning points are detected where the heading 

vector changes beyond a small angular threshold(Liu et al., 2016). 
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Figure 56. Comparison of horizontal (blue) and vertical (green) lawn‑mower paths inside the GO zone. 

Horizontal Path: Total length = 892.64 m, Turn count = 35. 

Vertical Path: Total length = 892.64 m, Turn count = 35. 

Typically, the orientation with fewer turns is preferable for UAV energy efficiency, while total path 

length impacts coverage time. 

4.6.16. Coverage Metrics & Vertical Variant 

Using swath s = 3.0 m and margin δ = 2.0 m (effective radius r_eff = 28.0 m), we report 

total path length and turn counts for horizontal and vertical boustrophedon 

patterns. Turns are counted where the interior angle between successive segments 

is ≥ 10°. 

Table 11. Coverage path metrics (horizontal vs. vertical). 

Pattern Waypoints 

(count) 

Path Length     

(m) 

Turn Count 

Horizontal 38 892.64 35 

Vertical 38 892.64 35 

Figure 57 shows the vertical variant clipped to the inner safety circle (r − δ). 
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Figure 57. Vertical lawn‑mower coverage path. 

4.6.17. Uniqueness Statement. 

The mathematical formulations, algorithms, and pseudocode presented in this manuscript are 

the original work of the author and were developed specifically for the design and implementation 

of an incident-aware geofence and UAV path-planning system at The Larson Group (TLG) facility. 

While foundational concepts such as geofencing, A* path planning, and control theory have been 

discussed in prior literature (Hayhurst et al., 2015; Pratyusha & Naidu, 2015; Hosseinzadeh, 2021), 

the specific problem framing, mathematical set definitions, and incident-aware extensions 

introduced here are novel. 

Key elements of originality include: 

1. Dynamic Geofence Modeling 

The integration of time-varying hazards Oj(t)Oj(t), signed distance-based safety margins, 

and control-barrier function (CBF) constraints to dynamically adjust UAV flight corridors 

in real time. 

2. Incident-Aware Model Predictive Control (MPC) 

A predictive optimization framework that incorporates trajectory risk modeling, chance 

constraints, and conditional value-at-risk (CVaR) formulations for proactive hazard 

avoidance and adaptive mission planning. 

3. Customized A* and Sector-Based Algorithms 

The pseudocode extends traditional A* by embedding geofence-specific constraints, hazard 

avoidance, and multi-UAV sector patrol logic uniquely tailored to the TLG operational site. 

4. Reproducible Outputs 

The development of exportable route products (e.g., astar_path.csv, spiral_route.csv, 
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tlg_routes.geojson) and systematic validation metrics (e.g., collision probability, path 

optimality, replanning latency) ensures the work is reproducible and distinct from generic 

path-planning examples. 

All algorithms and pseudocode were designed and implemented by the author without copying from 

existing software repositories or publications. Prior works are cited solely to provide conceptual 

context and to acknowledge their influence on the theoretical foundation of this research. 

4.6.18. Real-World UAVs and Setup Diagram 

This image provides real-world images of UAVs used for TLG operations, depicting intelligent 

obstacle avoidance, optical flow hovering, and physical setup of the geofenced area. The included 

figures illustrate the drone hardware, mower path, and road boundaries. Figures 58–61 represent 

real UAVs, equipment, composite operational setup, and 3D site view. 

 

Figure 58. UAV with advanced obstacle avoidance and positioning sensors. 

 

Figure 59. Multiple UAV models including EVO drone, batteries, and remote control accessories. 

The real-world setup matches the simulated geofence: the road, flight school boundaries, active 

truck zone, and mower-style coverage area are combined to demonstrate operational safety. 
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4.6.19. 1Composite Diagram of Operational Setup 

This figure integrates the key components: the TLG site boundary, frontage road, active trucks 

zone, circular GO zone, mower-style coverage path, and representative UAV positions as low flying 

vehicles which require independent platforms(Stevens et al., 2015).It visually demonstrates how 

UAV patrols and coverage missions are coordinated within safety constraints. 

Figure 60: Composite operational diagram showing mower paths, roads, and UAV positions. 

4.6.20.3. D Visualization of Operational Layout 

This 3D perspective shows the TLG site with all critical elements layered by altitude: the base 

parking area, frontage road, active truck zone, UAVs hovering above the circular GO zone, and the 

mower-style coverage pattern on the ground. This view helps stakeholders visualize the spatial 

relationships and flight safety margins. 
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Figure 61. 3D visualization combining road, UAVs, mower paths, and safety zones. 

 UAV Flight Videos 

This section provides direct links and QR codes for downloading and viewing UAV flight 

videos: 

1. Third-Person View (TPV) – Camera follows behind the UAV. 

2. First-Person View (FPV) – Pilot's perspective from the UAV camera. 

Third-Person View (TPV) 

Direct Download Link: uav_flythrough_short.mp4 

 
Scan this QR code to download the third-person view UAV fly-through video. 

First-Person View (FPV) 

Direct Download Link: uav_fpv_short.mp4 
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Scan this QR code to download the first-person view UAV fly-through video. 

5. Conclusions 

We demonstrated a regulation-aligned, incident-aware UAV security stack that integrates edge-

based object detection, geofence safety mechanisms (CBF + MPC), and audit-ready patrol planning. 

The system achieved strong performance on the VisDrone dataset (mAP@0.5 = 0.912, best F1 score at 

τ = 0.185), with simulation results confirming its ability to maintain safe geofence margins and 

manage multi-UAV operations effectively. These findings support a controlled pilot deployment at 

the TLG–Denton facility, pending on-site validation of latency and false-alarm rates. 

By releasing open-source scripts, datasets, and exportable route files, this work promotes 

transparency, reproducibility, and adaptation for other industrial sites. The integration of YOLO-

based object detection with advanced geofence routing demonstrates how UAV fleets can be 

seamlessly connected to ground-based security systems, enabling real-time data sharing and 

coordinated incident response. 

This scalable, multi-layered surveillance infrastructure strengthens operational safety while 

supporting actionable decision-making and rapid threat mitigation. Overall, the proposed platform 

establishes a reproducible model for future UAV deployments, setting a benchmark for regulation-

compliant, AI-driven security solutions in industrial environments. 

To maximize the effectiveness and longevity of the proposed system, several actionable 

recommendations are provided: 

1. Advanced Operator Training: 

Implement specialized training programs for UAV operators, particularly emphasizing 

Beyond Visual Line of Sight (BVLOS) certifications and emergency response readiness. 

2. Cross-Agency Collaboration: 

Establish formal partnerships with municipal emergency services to enable coordinated 

responses to incidents such as fires, accidents, and natural disasters. 

3. AI-Driven Predictive Analytics: 

Upgrade the surveillance system with predictive threat detection models capable of 

identifying and anticipating risks before escalation, thus enabling proactive interventions. 

4. Continuous Data and Model Updates: 

Regularly update datasets and retrain detection algorithms to address evolving 

environmental factors, operational conditions, and potential adversarial threats. 

By following these recommendations, TLG can maintain a cutting-edge surveillance ecosystem, 

ensuring resilience, compliance, and preparedness for future operational challenges. 
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6. Ethical Considerations & Compliance 

The deployment of an incident-aware, geofenced UAV surveillance system introduces 

significant ethical, legal, and societal implications. This project was designed with a strong emphasis 

on responsible innovation, ensuring that security objectives are met without compromising privacy, 

safety, or regulatory obligations. 

6.1. Privacy Protection and Data Governance 

UAVs equipped with high-resolution RGB and thermal sensors inherently pose risks of 

inadvertent surveillance of neighboring properties, individuals, or sensitive operational areas. To 

mitigate these risks: 

• Geofencing Enforcement: All UAV flight paths are geofence-constrained to remain strictly 

within TLG’s operational boundaries, preventing accidental incursions into public or private 

spaces. 

• Privacy-Preserving Analytics: Facial recognition and personally identifiable information (PII) 

are processed using on-edge inference, ensuring raw image data never leaves the UAV or local 

network. Sensitive frames are redacted or anonymized before archival. 

• Data Retention Policy: Video streams and telemetry logs are stored only for operational audits 

and incident investigations, with strict retention limits in accordance with GDPR and POPIA 

principles. 

• Informed Signage: Visible public notices and clear signage are deployed at facility boundaries 

to inform employees, contractors, and visitors about UAV monitoring practices. 

 

6.2. Safety and Airspace Compliance 

To protect personnel, property, and the surrounding community, UAV operations follow 

rigorous safety and regulatory frameworks: 

● Beyond Visual Line of Sight (BVLOS) Standards: Compliance with FAA BVLOS (Federal 

Aviation Administration, 2025) and GCAA UAV regulations, including certified pilot 

training, safety management systems (SMS), and auditable mission logs. 

● Fail-Safe Systems: Automatic Return-to-Base (RTB) protocols are triggered for low battery 

levels, lost signal events, or hazardous weather conditions, ensuring UAVs land safely 

without endangering workers or nearby vehicles. 

● No-Fly Zone Protection: Circular and polygonal geofences are digitally enforced to prevent 

flights over schools, roads, and neighboring companies. Hazard maps (e.g., active truck 

zones, power lines) are dynamically updated in real time. 

● Incident Simulation Testing: Before live deployment, all flight plans and algorithms are 

tested in simulation (AirSim environment) to validate control-barrier functions and 

collision avoidance logic. 

 

6.3. Cybersecurity and Integrity 

UAV surveillance systems are vulnerable to cyber threats such as GPS spoofing, jamming, and 

video feed hijacking. This project incorporates: 
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● End-to-End Encryption: AES-256 encryption for telemetry, video feeds, and mission data 

transmissions to prevent interception or tampering. 

● Authentication & Access Control: Multi-factor authentication for ground control stations 

(GCS) and operator logins, ensuring only authorized personnel can issue commands. 

● Red Team Testing: Regular penetration testing of communication channels to identify 

weaknesses and strengthen defenses. 

● Secure AI Models: Models are protected against adversarial attacks through adversarial 

training and checksum-verified model deployment. 

 

6.4. Ethics, Compliance & AI Statement  

This study used only public/synthetic data (e.g., VisDrone) and did not involve human subjects 

or personally identifiable information. Operational concepts follow FAA BVLOS and geofencing best 

practices; deployment will proceed under local regulatory approvals. An AI assistant was used solely 

for language polishing and figure composition; all scientific work was performed by the author. 

 

6.5. Community and Stakeholder Engagement 

The success of UAV surveillance depends on public trust. Engagement measures include: 

● Stakeholder Briefings: Regular meetings with local authorities, community 

representatives, and employee unions to address concerns and communicate operational 

policies. 

● Transparency Reports: Quarterly reports summarizing UAV activities, incidents, and 

privacy compliance audits will be published internally and externally. 

● Public Awareness Campaigns: Educational materials are provided to clarify the role and 

limitations of UAV monitoring, emphasizing its focus on safety and asset protection. 

 

6.6. Academic Integrity and Research Ethics 

● Open Science Commitment: The algorithms, data splits, and route files (e.g., 

astar_path.csv, tlg_routes.geojson) are shared for reproducibility under open licenses, with 

proper citations to foundational works. 

● No Human Subjects: This study did not involve live surveillance of identifiable 

individuals during model development. All testing used synthetic or publicly available 

datasets, such as VisDrone, minimizing ethical risks during research. 

● Disclosure: An AI assistant was used only for language polishing and figure generation. 

All conceptual design, model training, analysis, and interpretation were conducted by the 

author. 
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Table 12. Compliance matrix (privacy, safety, cybersecurity, bias, trust). 

Ethical Concern Mitigation Strategy Standard / Framework 

Privacy intrusion Geofence constraints, 

anonymization, retention limits 

GDPR, POPIA, ISO/IEC 27701 

Flight safety BVLOS compliance, fail-safes, 

simulation testing 

FAA BVLOS, GCAA UAV 

Rules 

Cybersecurity threats Encryption, MFA, penetration 

testing 

NIST Cybersecurity 

Framework 

AI bias Dataset audits, threshold tuning, 

human review 

IEEE P7003 Algorithmic Bias 

Community trust Transparency reports, signage, 

public education 

Local regulations & ethics 

boards 

7. Future Work 

Building on the current system’s success, future development will focus on scaling the UAV 

surveillance network to cover multiple facilities, parking lots, and regional hubs, enabling centralized 

oversight and coordination. The deployment of autonomous swarm UAVs will be explored to 

provide continuous, adaptive coverage while minimizing human intervention. Additionally, 

integration with smart city infrastructure including IoT devices, traffic management systems, and 

emergency response networks will create a connected ecosystem for urban safety. These 

advancements will not only improve operational efficiency but also pave the way for predictive, city-

wide threat detection and response capabilities. 
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Figure 62. Smart-city integration concept with swarm coverage and IoT links. 

The system leverages AI-driven predictive analytics for real-time threat detection, swarm UAV 

coordination for seamless coverage, and communication with ground IoT devices, emergency 

services, and regional hubs. Color-coded lines represent UAV communication (blue), ground IoT 

connectivity (green), and emergency/municipal services integration (red). This design enhances 

urban security, operational efficiency, and coordinated incident response. 

Data and Code Availability 

The data supporting the findings of this study are openly available: code, 

configuration files, and trained weights at GitHub: <repo> (archived at Zenodo DOI: 

<doi>); route artifacts (astar_path.csv, sector_waypoints.csv, 

lawn_mower_route.csv, tlg_routes.geojson) at Zenodo DOI: <doi>. The 

VisDrone2019 dataset is available from Tianjin University at <official URL/DOI>; we 

provide our reproducible 70/15/15 split lists in the repository. 
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Abbreviations  

UAV — Unmanned Aerial Vehicle 

UAS — Unmanned Aircraft System 

BVLOS — Beyond Visual Line of Sight 

YOLO — You Only Look Once (object detection) 

CBF — Control-Barrier Function 

MPC — Model Predictive Control 

PR — Precision–Recall 

mAP — mean Average Precision 

MOTA/MOTP — Multi-Object Tracking Accuracy/Precision 

IDSW — ID Switches 

MAE/RMSE — Mean Absolute Error / Root Mean Square Error 

GCS — Ground Control Station 

NFZ — No-Fly Zone 

RTB — Return-to-Base 

CSV/GeoJSON — Comma-Separated Values / GeoJSON format 
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