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Abstract

Application of intense infrared (IR) laser to analyze carbohydrate polymers is shown. IR free electron
laser (FEL) driven by a linear accelerator possesses unique spectroscopic features in terms of
extensive wavelength tunability and high laser energy in the IR region from 1000 cm™ (10 pm) to 4000
cm! (2.5 um). The FEL can induce IR multiphoton dissociation reaction against various molecules by
giving the vibrational excitation energy to the corresponding chemical bonds. Chitin from crayfish
and cellulose fiber were irradiated by the FELs that are tuned to vC-O (9.1-9.8 um), vC-H (3.5 pm),
and 8H-C-O (7.2 um) in glycoside bonds, and their low-molecular weight sugars were separated,
which were revealed by combining synchrotron-radiation IR spectroscopy and electrospray
ionization mass spectrometry. The intense IR laser can be proposed as “molecular scalpel” for
dissecting and direct analyzing internal components in rigid biopolymers.

Keywords: infrared; free electron laser; carbohydrate; polysaccharides; vibrational excitation;
multiphoton dissociation; synchrotron radiation

1. Introduction

Carbohydrate is one of key players along with protein, nucleic acid, and lipid among biological
polymers in biochemical system [1-3]. Especially, polysaccharides (containing more than 20
monomeric sugars) exist at various states in nature, for example, as components of plant tissues [4,5],
cellular matrices of animal tissues [6,7], outer shells of insect and crustacean [8-10], and cell wall of
microorganism [11,12]. There are two types of natural polysaccharides regarding the chemical
composition: homo-glycan and hetero-glycan. In the former type, amylose, amylopectin, and
glycogen are composed of glucosyl bonds that are linked via o1, 4 or 0-1, 6 bonds [13-15]. Cellulose
is polymerized by B-1,4 bonds [16,17], and chitin is constructed by B-1,4GcNAc units [18,19]. Both
polysaccharides are structured by fiber-like carbohydrate chains, contrasting to globular chains in
starch. In the hetero-glycan, heparin is composed of glucosamine and iduronic acid [20,21],
hyaluronic acid is constructed by glucuronic acid and N-acetylglucosamine [22,23], and
glucomannan is polymerized by glucose and mannose [24,25]. Those carbohydrate polymers perform
important roles in the expression of biological functions in addition to potential resources of
pharmaceutical agents and food additives [26,27]. To understand the functional roles of those
carbohydrates in biological system, it is much necessary to disclose the detailed structure of
polysaccharides.

In many cases, it is important for characterization of whole structures of parent carbohydrate
polymers to analyze a part of the oligomerized or the monomeric states. For detection of monomeric
sugars, colorimetric assay is conventionally used [28-33]. For example, anthrone-sulfuric acids can
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be widely applied for aldose and reducing sugars [28-30], Elson-Morgan method using Ehrlich
reagent is used for detection of glucosamine [31], and carbazole-sulfuric acid is effective for detection
of uronic acids [32,33]. In the clinical chemistry, fluorescence labeling method was developed due to
requiring for detection of small amounts of sugar ingredients in biological tissues [34,35].
Quantification of glucose in blood by using fluorescent-labeling boronic acid derivatives [34] and
detection of glucose and lactose in serum by using fluorescent iron complex combined with oxidases
are developed [35]. For analysis of oligosaccharide structures, various fluorescent labeling reagents
are developed as well, and especially, 2-amino pyridine is useful in derivatization of oligosaccharides
for detection by high performance liquid chromatography (HPLC) [36,37]. Capillary electrophoresis
(CE) can also be a powerful tool for investigating molecular weights of various types of sugars more
sensitively than the conventional HPLC [38,39].

As for structural analysis of natural polysaccharides, major analytical techniques are listed in

Table 1.
Table 1. Various analytical techniques for natural carbohydrate polymers.
Carbohydrate polymers Analytical techniques Ref.
Amylose NIR, Raman, CE, AFM 40
SEC, MALLS, '"H NMR 41
Amylopectin SEC, MALLS, DSC 42
SEM, XRD, FT-IR, 'H NMR, HPAEC-PAD, DSC, RVA 43
Glycogen MALDI-MSI, N-glycosidase hydrolysis 45
H NMR, PAS 46
Cellulose TG 47
s FT-IR, XRD, SEM 48
Chitin .

XRD, FT-IR, UV-Vis, MS, 13C NMR 49
Heparin LC-MS, SAX 50
ATR-FTIR 51
Hyaluronic acid HPLC-SEC 52
Nanopore sensor 53
Glucomannan TLC, FT-IR, 3C NMR 54
N-Glycan CE, MALDI-MS, ESI-MS 55

Amylose content is analyzed by various quantitative and qualitative methods including near
infrared (NIR) and Raman spectroscopies, CE, and atomic force microscopy (AFM) [40]. Also, size-
exclusion chromatography (SEC), multiple-angle laser light scattering (MALLS), and 'H nuclear
magnetic resonance (NMR) are employed for analysis of the soluble fraction in hot water from rice
flour [41]. Amylopectin from corn starch is analyzed by SEC, MALLS, and differential scanning
calorimetry (DSC) [42]. In addition, starch alteration by enzymatic hydrolysis is thoroughly
investigated by scanning-electron microscope (SEM), X-ray diffraction (XRD), Fourier transform
infrared (FT-IR) spectroscopy, 'H NMR, high-performance anion exchange chromatography with
pulsed amperometry detection (HPAEC-PAD), DSC, and Rapid Visco Analyzer (RVA) [43]. In
particular, HPAEC-PAD is a reliable tool for determining carbohydrate chain length distribution in
natural polysaccharides [44]. Glycogen associated with lung disease can be analyzed by matrix-
assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) combining with N-
glycosidase hydrolysis [45]. Photoacoustic spectroscopy (PAS) and 'H NMR can be utilized for
investigating fiber and crystallin conformations of cellulose [46]. In addition, thermogravimetric (TG)
analysis was introduced as a new method for determining the relative contents of cellulose,
hemicellulose, and lignin in biomass samples [47]. Chitin is analyzed by various methods by using
FT-IR, XRD, SEM, UV-Vis-spectroscopy, mass spectrometry (MS), and NMR spectroscopy [48,49].
Heparin can be quantitatively analyzed by enzymatic digestion followed by liquid-chromatography
(LC)-MS and strong anion exchange (SAX) chromatography [50]. Particularly, attenuated total
reflectance (ATR) FT-IR is employed for analysis of solid-phase samples from a library of various
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glycosaminoglycan [51]. The molecular distribution of hyaluronic acid can be analyzed by using
HPLC-SEC system [52], and solid-state nanopore sensor is developed as a more sensitive detector
[53]. Sugar composition of glucomannan can be analyzed by ion exchange chromatography and gel
permeation chromatography followed by combining thin-layer chromatography (TLC), FT-IR, and
13C NMR [54]. N-glycan is analyzed by CE combined with MALDI-MS and electrospray ionization
(ESI)-MS [55].

In general, deproteinization and extraction using water and organic solvents at low- or high-
temperatures are frequently employed as pre-treatments for collecting polysaccharides from natural
resources prior to spectroscopic studies [56]. In addition, enzymes are applied to cleave the co-valent
bonds in the glycol-polymers to separate monolithic functional carbohydrates from the complex
polymerized materials [57]. Those procedures are actually necessary for isolating and analyzing
polysaccharides distinct from other ingredients such as proteins, but it is undeniable that the stepwise
routine process is often time-consuming.

Here, a unique spectroscopic approach by using high energy IR laser for direct analysis of solid
polysaccharides is shown. This method demonstrates effects on unveiling chemical components of
biological polymers rapidly by combining IR microscopy and ESI-MS [58-60].

2. Feature of Method

Many biological and organic molecules possess mid-and near- IR absorption bands from 1000 to
4000 cm™ (= 2.5 to 10 um): C=O stretching at 1600-1800 cm™ (5.5-6.0 um), N-H bending at
1400-1600cm™ (6.0-7.0 um), H-C-O bending at 1200-1300 cm™ (7.0-7.5 pm), and O-H, N-H, and C-
H stretching vibrational modes at 2500-3000 cm™ (3.0-4.0 pum) [61,62]. If an intense IR laser is
irradiated onto an organic molecule, IR multi-photon dissociation (IRMPD) reaction can be induced
by the vibrational excitation (VE) energy with the corresponding resonant wavelength, and the
chemical bond can be dissociated by the VE energy that exceeds the bond energy [63-65]. The IRMPD
can be facilitated by IR free electron laser (FEL) [66,67].

Oscillation of FEL is based on a successive interaction of accelerated electron beam (EB) with
synchrotron radiation (SR) in a periodic magnetic field called as undulator (Figure 1) [68-74]. The EB
is originated from a radiofrequency (RF) electron gun (2,856 MHz) and is accelerated to 100 MeV by
an RF linear accelerator. The SR is stored in an optical cavity, which possesses concave mirrors at
both ends. The stored SR is amplified through FEL interactions with EB. As the result, FEL lasing and
power saturation can be achieved and highly coherent intense laser light is extracted through a
coupling hole in one of the concave mirrors (Figure 1).

Linear accelerator

Electron beam

Electron gun
(2,856 MHz)

Optical
cavity

Synchrotron radiation (SR)

Figure 1. Oscillation system of free-electron laser (FEL). The system is composed of major three parts: Linear

accelerator, Periodic magnetic field, and Optical cavity.

Samples are typically put on a slide base or put in a glass tube, and the laser beam can be
transported from a beam port onto the sample surface as shown in Figure 2. Since the size of the
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transported FEL beam is large (>10 mm in diameter), a focusing lens or an off-axis parabola mirror is
used for focusing FEL beam onto the sample.

Beam line from beam port to sample film

: Beam port
" Reflection P

Reflecti
mirror 3 & m

"Reflection firror 2
“mirror3 b

4 3
J Reﬂectmn

Focus' \ mirror 1

&

P Sample film

Figure 2. An example of irradiation set up. Right: overall beam line; Left: local beam line above sample film.
The FEL is introduced onto the sample through three reflection mirrors and one focusing lens from beam port.
The photograph is taken at LEBRA, Nihon University.

The infrared FEL has unique characteristics compared to thermal light source in laboratory-level
IR spectroscopy instrument as follows (Figure 3):

(1) Tunable wavelengths

The oscillation wavelengths of the FEL are tunable generally within the 2.0 - 20 um (5,000 — 500
cm) range, which covers the absorption frequencies of various vibrational modes of biomolecules
(Figure 3a). Many organic molecules have a variety of vibrational modes such as C=O stretching, N-
H bending, H-C-O bending, and O-H stretching vibrational modes at 1000-3000 wavenumbers (cm-
1). The FELs can excite those vibrational modes wavelength-selectively, and the IRMPD reaction can
modify the chemical structure of many molecules in biological matters, gas-phase chemicals, and
organic materials. A wavelength of the oscillation beam can be tuned by adjusting the space interval
of the undulator or changing the kinetic energy of EB. The typical FEL spectra at 5.8 um (1,724 cm)
and 9.6 pm (1,041 cm') are shown in Figure 3b [75]. The full-width at half maximum was
approximately 100-300 nm in both wavelengths.

(2)  Pulse structure

The FEL has complex temporal structure called “pulse train” or “burst pulse,” where several
thousands of micro-pulses having 0.1-2 ps duration are bunched in one macro-pulse [70,71]. One
macro-pulse has 2-15 us duration, and the repetition rate is ranged from 2 to 5 Hz. The interval of the
micro-pulse is 350 ps that is originated from the frequency of electronic gun (2,856 MHz). In the burst
mode experiments, micro-pulse rate is divided by 64 (44.6 MHz), where one macro-pulse consists of
several hundred micro-pulses [72-74].

(3)  High laser energy

The macro-pulse energy is ranged from 5 to 25 mJ, and the beam diameter can be set to
approximately 200-400 um on the sample surface by using a parabolic mirror or a focusing lens made
of CaF: (f = 100 mm) in general. The irradiation effect of the FEL at various fluences on the sample
can be investigated by changing the laser energies.
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Figure 3. Characteristic of FEL. (a) Tunable wavelengths in IR region containing various vibrational modes of

molecules. (b) Representative FEL spectra from 5.5 to 11.5 um [75].

We applied the FEL to analyze solid-phase carbohydrate polymers with combination of
synchrotron-radiation infrared microscopy (SR-IRM) and ESI-MS. It can be suggested that the FEL
can unveil the persistent structure of the carbohydrates accompanied by releasing their monomeric
units without any pre-treatments under atmospheric conditions. The use of SR-IRM analysis
improves the spatial resolution with a high signal-to-noise (S/N) ratio compared to that using a
thermal radiation beam in laboratory-level instrument because high-energy light can be focused onto
a small area (several micro-meters squares) of a dry sample film [76,77].

Analytical studies of two representative carbohydrates by using FELs are shown as described
below.

3. Analysis of Chitin

Chitin is a main component of outer shell of crustaceans including shellfish, shrimp, crab, and
beetle [78,79]. We analyzed natural powder of the outer shell of crayfish by using the FEL oscillation
system (Figure 4-6) [58]. Several adult crayfishes (Procambarus clarkii) were collected from local ponds
and maintained in separate plastic containers under a dark/light cycle of 12 h/12 h, and fresh water
was changed during feeding. Five molting shells were collected and one solid arm was rip out from
the shell and mashed in a mortar, and the resulting powder (ca. 50 mg) was placed in a 5 mL
triangular flask. This powder was directly subjected to the FEL irradiation (Figure 4). For detection
of conformational changes of polysaccharide structure, SR-IRM in BL6B of UVSOR was used [80].
The instrument was composed of an IRT-7000 IR microscope combined with an FT/IR-6100 series
spectrometer, and the mid-IR spectra were measured by Michelson-type interferometer in reflection
mode. The sample powder (ca.10 mg) was suspended in water (1 mL), and the mixture (20 pL) was
placed on a stainless-steel base. After drying, the plate was put on a horizontally mutable stage, and
observations were performed by 16 x Cassegrain lens with an aperture of 50 pm x 50 pm.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Crushing of

Laser Irradiation

SR-IRM
LC-ESI-MS

ek,

Figure 4. Scheme from sample preparation to structural analysis of solid-state crayfish shells [58].

The broadband peak around 1100 cm? corresponds to the glycoside bond (vC-O), and the
intensity was largely decreased after the irradiation at 9.8 um compared to the non-irradiation (Figure
5). In addition, both peaks at 1550 cm™ and at 1650 cm! were clearly decreased by the irradiation.
This region contains N-H bending vibrational mode and C=O stretching vibrational mode of N-
acetylglucosamine residues in chitin, respectively. Therefore, it can be implied that a part of
carbohydrate chain in crayfish was cleaved, and the N-acetylglucosamine was released by the
irradiation.

Absorbance (a.u.)

1650 1550

NG/
2000 1800 1600 1400 1200 1000 800
Wavenumber (cm-')

1 1 1 J

Figure 5. SR-IRM spectra of outer shell of crayfish [58]. Upper: irradiation at 9.8 pm; bottom: non-irradiation.

LC-ESI-MS analysis is shown (Figure 6). An elution peak at 4.6 min was more increased in the
case of irradiation at 9.8 pm than the case of irradiation at 5.0 um (low-absorption wavelength), and
other peaks are hardly changed. The increased eluate indicates N-acetylglucosamine (b). Mass
chromatograms showed that the intensity of mass peaks corresponding to 243 Da was more increased
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at 9.8 um than at 5.0 um (c). The mass value of 243 Da corresponds to a sodium ion adduct of N-
acetylglucosamine residue (221 Da) because of negative-ion mode measurement.

(a)

Irradiation at 9.8 um

ol

25 4 55 7 85 10
Retention Time (min)

T

Irradiation at 5.0 um

2.5 4 5.5 7 8.5 10
Retention Time (min)

S0000 15 015 243.016
Vo 243.016
v 243.035
v SymTae 243.067
40000 + 0 V) 242983
v
>
% 30000
C
(O]
IS
20000
4 242.995
— 1} T Y 24303
243.075
242.988 ., - 243.024
0 1 1
0 5 10 15

Retention Time (min)

Figure 6. LC-ESI-MS analysis of crayfish arm after irradiation by FEL [58]. (a) LC profiles after FEL irradiation
at 9.8 um (red) and 5.0 um (black). (b) LC profile of N-acetyl glucosamine alone. (c) ESI-MS chromatograms of
243 Da after irradiations at 9.8 um (red) and 5.0 pm (black).

Next, commercially available chitin powder was irradiated by the FEL, and SR-IRM spectra of
the chitin is shown in Figure 7. A peak at 1005 cm™ corresponding to vC-O was decreased (upper)
compared to the irradiation at 5.0 pm (2,000 cm?) (middle) and non-irradiation (bottom) after
irradiation at 9.8 pm (1020.4 cm™). Amide carbonyl band at 1651 cm™ (vC=0) in N-acetyl glucosamine
residues was more increased than the peak at 1617 cm™ after irradiation at 9.8 pm (upper) compared
to the irradiation at 5.0 pm (middle). Therefore, the glycoside bonds were cleaved and the main chain
of chitin was deformed by the C-O targeting irradiation similarly with the outer shell of crayfish.
Taken together, it can be concluded that the FEL irradiation at 9.8 um can degrade the chitin chain

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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and release N-acetylglucosamine units. This method requires no pretreatment such as boiling in
acidic water or solubilization using organic solvents.

vC=0
1651, 1617 Irradiation at 9.8 um

Irradiation at 5.0 um

I U

Absorbance (a.u.)

Non-irradiation

T

i

i

i

i
R —

1005 cm-!

N

1 1 1 L 1 1 1 1 J

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800
Wavenumber (cm™)

Figure 7. SR-IRM spectra of chitin powder [58]. Upper: irradiation at 9.8 um; middle: irradiation at 5.0 um;
bottom: non-irradiation.

4. Analysis of Cellulose

Cellulose is a major element of woods, and the degradation product, mono- and oligo-
saccharides, attract attentions as the carbon source of bacteria fermenting bioethanol [81,82]. In
addition, cellulose nanofibers are developed as functional biomaterials such as biocompatible cell
membranes, antibacterial sheets, and food packaging composites in healthcare and pharmaceutical
industry [83,84]. However, the cellulose is structured by many glycoside linkages and is generally
difficult to be chemically regulated. As shown in SR-IRM spectrum of cellulose (Figure 8), there are
four bands at9.1,7.2, 3.5 pm, and 3.0 pm [59]. These bands can be assigned to vC-O, d9H-C- O, vC-H,
and vO-H around the acetal carbon in cellulose, respectively. The FEL was tuned to those
wavelengths and irradiated to the cellulose fiber in a glass bottle at room temperature under
atmosphere.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 8. Wavelengths of FEL targeting glycoside bonds in cellulose [59]. Upper: FT-IR spectrum; Bottom:
resonant wavelengths around glycoside bond applied for the FEL irradiation.

The cleavage of the glucoside bonds was revealed by SR-IRM analysis (Figure 9). The vC-O
modes are observed from 1000 to 1100 cm™ (right panel), and after irradiations at 9.1 um, and 9.1 um
following 7.2 um, or 3.5 um, these bands were clearly decreased compared to the non-irradiation
(top) and irradiation at 3.0 um (bottom). In the NIR region at around 3400 cm™ (gray dotted line), the
half width (as indicated by a double-headed arrow) was about 350 cm™ in the non-irradiation sample
(top) and 400 cm™ in the sample after irradiation at 3.0 um (bottom). On the contrary, all three
irradiations at 9.1 um, 9.1 um following 7.2 pm, and 9.1 um following 3.5 um shortened the half
width to about 300 cm™. These changes in the hydroxy group region mean that the FEL irradiations
except for 3.0 um largely altered the structure of cellulose from the non-irradiation sample. Together
with the spectral change in the mid-IR region, it is surely that the irradiations targeting the acetal
group caused the dissociation of the glucoside bonds in the cellulose.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 9. SR-IRM spectra of cellulose after FEL irradiation [59]. Right: mid-IR region; left: near-IR region.

ESI-MS profiles of the non-irradiated sample (a) and samples after irradiation at 9.1 um
following 7.2 um (b) and 3.5 um (c) are shown in Figure 10. There were many peaks detected after
irradiations compared to the non-irradiation. This indicates that these irradiations caused
fragmentation of the cellulose chain. Mass peaks at 689.2, 527.2, 365.1, and 203.0 Da can be assigned
to tetra-saccharide, tri-saccharides, cellobiose, and glucose as each sodium ion adduct, respectively.

1000 -
. 800 - - —
2 oo @
C
*GE’ 400 -
= 200 -
0 n La o = T T T
100 200 300 400 500 600 700 m/z
365.1 —
1000 - 2451 3471 407.1 Irradiation
> 800 4 185.1 263.1 \ 425.1 509.1 at 9.1 pum
@ 600 - ' 569.2 | after 7.2 um
2o 527.2 I
=
7

Irradiation

2 at 9.1 um

@ after 3.5 um

m .

€ 527.2

= 569.2 671.4 689.2
L L/L 5872 / -7

100 200 300 400 500 600 700 m/z

Figure 10. ESI-MS profiles [59]. (a) Non-irradiation; (b) Irradiations at 9.1 pm after 7.2 um; (c) Irradiations at 9.1

pum after 3.5 pm. Blue numbers indicate mono-, di-, tri-, and tetra-saccharide of glucose.
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Productions of cellobiose and glucose can also be investigated by mass chromatography analysis
(Figure 11). The continuous irradiations at 9.1 um following 3.5 pm (light green) and 7.2 um (deep
blue) afforded more amount of cellobiose than the singe irradiation at 9.1 pm (brown), and the
continuous irradiations following 3.5 um was most effective for production of glucose. It can be
considered that the VE at 3.5 um can disrupt the interchain hydrogen bonds and unveil the fiber
structure, which leads to cleavage of the glucoside bonds by the IRMPD reaction at C-O stretching
vibrational mode. The irradiation at 3.0 pm (light blue) that corresponds to the O-H stretching mode
was not effective for production of those saccharides. This implies that the glucoside bond was not
affected by the activation of the hydroxy group.

Intensity cellobiose Intensity glucose
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Figure 11. MS chromatograms of cellobiose and glucose after irradiation by FELs [59]. Black: non-irradiation;
brown: irradiation at 9.1 um; light green: irradiation at 9.1 um following 3.5 um; deep blue: irradiation at 9.1 pm
following 7.2 pm; light blue: irradiation at 3.0 pm.

5. Discussion

In this study, we show a physicochemical approach using an intense IR laser as a “molecular
scalpel” to analyze solid-phase carbohydrate polymers using chitin and cellulose as model samples.
In the case of chitin, the glycoside bonds were cleaved by laser irradiation targeting the C-O
stretching vibrational mode (9.8 um), and N-acetylglucosamine residue was released from the crude
shells of crayfish. In the case of cellulose, the continuous irradiation targeting C-O and C-H stretching
modes was effective for the cleavage of the glucoside bonds. It can be estimated that the VE giving to
the acetal group is effective in degrading polysaccharides into their monomeric sugars.

The physical method using intense IR laser requires no specific conditions such as acidic or
alkaline solutions, organic solvents, high pressures, and high temperature, although high electric
power for maintaining the instrument operation is needed. One beneficial point of the use of FEL for
analysis of complex polymers is the wavelength-tunability. For example, both cleavage of glycoside
bonds and dissociation of the hydrogen bonds in the assembled carbohydrate chains can proceed in
one sample tube by changing the irradiation wavelengths. Furthermore, the laser-induced
dissociation reaction can be completed within several shots of macro-pulse (several milliseconds) due
to the pulse structure of the FEL. These physical characteristics have an advantage over the
biochemical system using microbial enzymes with regard to the rapidness and the simplicity of the
experiment setup. By the similar approach, we can modify lignin that is one of major components of
woods alongside cellulose, and the rigid aromatic polymer can be analyzed by the FEL irradiation
[60].

Finally, we suggest other possible applications of the FEL in polymer science. Similarly with
natural carbohydrates, textile fiber is also rigid polymers. For example, fiber plastics such as polyester
and polyamide, fiber proteins such as wool keratin and silk fibroin are polymerized by co-valent
linkages of C-C, C-O, and C-N bonds [85-88]. Textiles often contain dyes, and those insoluble
materials cause environmental pollution [89]. As for analysis of dyes, CE is frequently used, and
heating with strong acids or alkaline solutions are employed as the pre-treatments [90]. A direct
analysis of textile dyes was pioneeringly performed by using matrix-assisted IR laser desorption
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electrospray ionization mass spectrometry [91]. In that study, the IR laser was tuned to 2.9 um
corresponding to O-H stretching mode of water, which induced desorption of particles of textile fiber.
We can suppose the use of FEL as molecular dissection tool for analysis of textile fibers. The textile
organic materials exhibit many IR absorption bands as C-O stretching and N-H bending modes, and
the irradiation experiments can be performed on the above organic fibers if the FEL can be tuned to
those wavelengths. It can be expected that the fragmentation patterns of fibers are different
dependent on the irradiation wavelengths, which can allow us to estimate the molecular
compositions of the fiber structures. In addition, the monomer materials can be produced from the
rigid polymerized fibers by the laser irradiation, and the system can be applied to regenerate the
textiles that are wasted in the soil and ocean environments.

As another persistent polymers, per- and poly-fluorinated alkyl substances (PFAS) can be
represented, and those small amounts of contaminations including in drinking water are analyzed
by solid-phase extraction followed by liquid chromatography/tandem mass spectrometry
(LC/MS/MS) [92]. In addition, PFAS contents along with volatile organic compounds in kitchenware
are investigated by using GC-MS [93]. We can suppose that the FEL irradiation can affect the
conformation of PFAS dependent on the specific wavelengths. Stretching vibrational mode of C-F is
observed at 1000-1500 cm!, and the VE energy targeting the C-F bonds can be deposited onto the
fluorinated molecules, which can induce the degradation of the backbone conformation. This pre-
treatment by using the FEL can be applied to the following analyses by the conventional
chromatography and mass spectrometry. These studies are now undergoing in our laboratories.

6. Conclusions

We summarized various analytical techniques for carbohydrate polymers briefly and described
an original spectroscopic approach by employing intense IR laser in polymer analysis. The FEL
oscillates in IR region from 1000 cm™ (10 um) to 4000 cm™ (2.5 um) and can be applied to irradiate
rigid carbohydrates represented as chitin and cellulose. After the wavelength-specific irradiations to
their solid-phase materials under atmospheric conditions, each monomeric sugar and
oligosaccharides are detected by ESI-MS, and the conformational changes of the parent polymeric
structures are observed by SR-IRM. The fragmentation and degradation mechanisms are based on
IRMPD reaction that is induced by the VE energy from a linear accelerator. The IR laser described
herein can be used not only for unveiling rigid carbohydrate polymers but also as a pre-treatment
method for dissolving the intact polymerized structure prior to separation from other ingredients by
LC and molecular analysis by MS. In addition, the FEL technique can be adopted to irradiate many
types of biological and organic molecules by tuning the irradiation wavelengths to their specific
vibrational modes. Nonetheless, the current FEL system is installed at a synchrotron radiation facility,
and it is expected to develop a laboratory-level IR laser instruments that possess both high laser
energy and wavelength tunability in future.
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Abbreviations

The following abbreviations are used in this manuscript:

FEL Free electron laser

IRMPD Infrared multi photon dissociation

SR-IRM  Synchrotron radiation infrared microscopy
ESI-MS Electron spray ionization mass spectrometry

SR Synchrotron radiation

VE Vibrational excitation

EB Electron beam

RF Radiofrequency

HPLC High performance liquid chromatography

CE Capillary electrophoresis

NIR Near infrared

AFM Atomic force microscopy

SEC Size-exclusion chromatography

MALLS  Multiple-angle laser light scattering

NMR Nuclear magnetic resonance

DSC Differential scanning calorimetry

HPAEC- High-performance anion exchange chromatography with pulsed
PAD amperometry detection

MALDI- . . e . .
MSI Matrix-assisted laser desorption/ionization-mass spectrometry imaging
PAS Photoacoustic spectroscopy

TG Thermogravimetric

XRD X-ray diffraction

SEM Scanning-electron microscope

MS Mass spectrometry

ATR Attenuated total reflectance

LC-MS  Liquid chromatography mass spectrometry
TLC Thin-layer chromatography
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