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Abstract: AI-Generated Content (AIGC) has made significant advancements in both popularity and
realism. While the development of generative large models offers immense potential to enhance creativ-
ity and operational efficiency, it also introduces a range of risks and challenges, particularly concerning
issues such as copyright infringement due to model misuse and the authenticity of generated content.
In response to the need for standardized management and application of AIGC models, researchers are
increasingly focusing on exploring effective strategies for managing and protecting the authentication
of AIGC models, as well as ensuring the traceability of generated images through digital watermarking
technologies. This survey provides a comprehensive review of three core areas: the evolution of image
generation technologies, traditional and state-of-the-art digital image watermarking algorithms, and
watermarking methods specific to AIGC. Additionally, we examine common performance evaluation
metrics used in this field. Finally, we discuss the unresolved issues and propose several potential
directions for future research.
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1. Introduction

The swift advancement of artificial intelligence (Al) is profoundly transforming society and
reshaping people’s lifestyles. In this progression, Artificial Intelligence Generated Content (AIGC),
at the cutting edge of Al technology, has the remarkable advantage of being able to create a massive
amount of high-quality content with far greater efficiency, reduced cost, and superior quality than
traditional previous techniques. The pervasive application of this technology has seamlessly integrated
into daily life, such as literature review [1], medical diagnosis [2], and painting [3]. However, with the
proliferation and application of AIGC technology, a myriad of new security challenges have emerged,
including concerns about content authenticity, intellectual property rights protection and the potential
abuse risks [4-6]. Therefore, comprehensive research is imperative to address these issues and foster
the healthy evolution of AIGC technology.

Digital watermarking is a potent copyright protection technology that embeds watermark infor-
mation into digital carriers (text, images, audio, etc.) to obtain watermarked versions, allowing for
the extraction of this information when necessary to confirm the copyright ownership [7,8]. With the
aim of continuously improving performance, traditional digital image watermarking technologies
are being developed primarily from two perspectives: the spatial domain and the transform domain.
With the flourishing of deep learning, digital image watermarking schemes have started using the
encoder-decoder structure for watermark embedding and extraction, which can effectively enhance
its robustness in a variety of application scenarios while ensuring high invisibility. Subsequently,
watermarking technology has also been adopted to safeguard the copyright of deep neural network
models, verifying their ownership through a similar embedding and extraction concept. Therefore,
in the context of AIGC, digital watermarking technology is also used to accomplish the purpose of
the AIGC image traceability and the associated model ownership verification, which can effectively
address these existing security threats [9].
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This paper focuses on the image part and provides an overview of the existing image watermark-
ing techniques. Firstly, the development history of four image generation technologies is reviewed,
followed by the corresponding classification descriptions of digital image watermarking algorithms
and AIGC model watermarking algorithms. Finally, the performance indicators of watermarking
algorithms are briefly mentioned.

The organizational structure of this survey is as follows: Section 2 presents four types of image
generation techniques, including Generative Adversarial Networks (GANSs), Transformer models,
Variational Autoencoders (VAEs), and diffusion models. Section 3 represents two kinds of digital image
watermarking schemes, including the traditional-based and the deep learning-based. Watermarking
methods of the Al model and Al-Generated images are involved in Section 4. Section 5 includes some
various performance evaluation metrics for image watermarking algorithms. Section 6 discusses some
promising research directions. Finally, the survey is concluded in Section 7.

2. Image Generation Technologies

In recent years, the field of image generation has experienced remarkable advancement as a
crucial application of artificial intelligence technology. Generative models rooted in deep learning
have been capable of producing spectacular visual content, finding wide application across a spectrum
of disciplines, such as art creation, entertainment, scientific research, and commercial applications.
With the improvement of hardware algorithm capabilities, large-scale generative models have rapidly
evolved, emerging as a substantial driving force at the forefront of artificial intelligence, distinguished
by their extraordinary creativity and intelligent expression. In terms of quality and diversity of image
generation, these models have reached unprecedented levels, indicating the immense potential of
large-scale models in the realm of image generation. This section mostly concentrates on the generative
adversarial networks, the Transformer models, the variational autoencoders, and diffusion models to
introduce the current development status of image generation technologies.

2.1. Generative Adversarial Networks (GANs) Based Techniques for Image Generation

In 2014, Goodfellow et al. [10] published a pivotal academic paper introducing Generative
Adversarial Network (GAN) and marking its inception. The core idea of GAN is grounded in a zero-
sum game strategy, with a network structure typically comprising a generator G and a discriminator
D. G mainly learns to generate data that appears to be authentic, while D primarily focuses on
distinguishing whether the input data originates from a real dataset or is generated. During the
training phase, G and D engage in competition to progressively enhance the generator’s performance.
The ultimate goal is to make the data generated by G challenging to be discerned by D. Considering a
latent vector z with a probability distribution of p,, while the probability distribution of the real sample
X is p4,4,- The corresponding objective loss function of GAN is:

Loan = Exvp,,, [log D(x)] + Eznp, [log(1 — D(G(2)))], )

where the probability values D(x) and D(G(z)) represent the corresponding outputs of the discrimi-
nator for original and generated samples, respectively. Throughout the entire training process, the
performance of the generator enhances as it learns to generate more realistic data, while the capabilities
of the discriminator improve as it better distinguishes between real data and fake data.

GAN is mainly used for generating image data, and through ongoing optimization by researchers,
numerous distinctive GAN architectures have emerged to improve the quality of generated images. DC-
GAN [11] substituted multiple-layers perceptrons with convolutional neural networks and introduced
the batch normalization techniques, resulting in greatly improved image quality and stability. The
emergence of DCGAN has sparked significant attention among researchers, showcasing the feasibility
of incorporating the neural networks into GAN. Reed et al. [12] first introduced the GAN-INT-CLS
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method for text condition-driven image generation, which lies in using the text embedding technique
to encode descriptive text into vectors and integrate them with a generator network. Therefore, the
generator can generate the corresponding images based on specific text descriptions. To further align
image details with text descriptions, Xu et al. [13] developed AttnGAN, which was unique in inte-
grating the attention mechanisms, allowing for a more accurate reflection of text details in varying
image regions, leading to higher quality and resolution. Progressive Generative Adversarial Network
(ProGAN) was proposed by NVIDIA in 2017 [14], which gradually increases image resolution during
training, starting from a low resolution and adding more layers progressively. Although ProGAN
solves the difficulty in generating high-resolution images, its ability to control specific features of
generated images is still limited. Style Generative Adversarial Network (StyleGAN) was devised by
Karras et al. [15] to tackle this issue, incorporating the notion of "Style", and allowing the network to
independently regulate the appearance elements of generated images. This technique can not only
unsupervise these distinct advanced attributes like expressions, poses, and identities, but also learn
randomly transformed image details by adding noise like hair and freckles, greatly improving the
image quality and user control over the scale of particular image attributes. Subsequently, Kang et al.
[16] proposed an open-source library called StudioGAN, which was one of the latest developments in
the application of GAN for real-world image synthesis. StudioGAN supports a wide array of GAN
architectures, tuning methods, adversarial losses, regularization modules, differentiable enhancements,
evaluation metrics, and evaluation baselines, which can facilitate the development of GAN research
and simplify the reproduction and comparison of GAN models for researchers.

Due to the challenge of the disparity between text and image domains, relying solely on the
discriminator is inefficient and struggles to ensure semantic alignment between the generated images
and the input text. Consequently, Qiao et al. [17] utilized the concept of the re-description to learn
text and image generation, and designed MirrorGAN based on the semantic text embedding module,
the global local collaborative attention module, and the semantic text regeneration alignment module
to mirror and regenerate text descriptions from generated images, achieving higher quality image
generation aligned with semantics. Pan et al. [18] explored DragGAN to enhance the controllability
of GAN, synthesizing visual content that aligns with user’s requirements, which allowed for flexible
and precise control over the pose, shape, expression, and layout of generated objects. Based on
feature-based motion supervision and novel point tracking methods, users can use DragGAN to
accurately manipulate the poses, shapes, expressions, and layouts of various categories, ensuring
realistic output results even in the face of some challenging scenes such as content illusion masking and
shape distortion. With the expansion of model parameters and the rapid construction of cross-modal
pre-trained models, GAN-based image generation models have made swift advancements. The GALIP
(Generative Advanced CLIPs) proposed by Tao et al. [19] leveraged the CLIP model to design loss
functions for generators and discriminators, aligning the GAN feature space with the CLIP to guide the
generation of visual concepts. Along with increasing training efficiency, it also reduces computational
costs while achieving performance comparable to large pre-trained models.

The GAN series of networks have achieved tremendous success over the past ten years, with its
key advantage lying in constructing network models by drawing on the adversarial training networks
to reach Nash equilibrium, thereby generating sufficiently realistic data. However, GANSs also face
some challenges such as the unstable training process, pattern collapse, and a lack of diversity in the
generation samples.

2.2. Transformer-Based Techniques for Image Generation

The Transformer model [20], characterized by its unique self-attention mechanism and pow-
erful representation learning capability, has been widely adopted in natural language processing
and computer vision, achieving numerous breakthroughs. In cross-modal image generation tasks,
Transformer-based autoregressive models have also demonstrated superior performance. The fun-
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damental strategy of the Transformer model involves using a specially trained decoding network to
convert the feature sequences into a complete image after an encoder predicts the feature sequence of
an image based on other input conditions such as text and sketches. The self-attention mechanism
enables parallel data processing, significantly boosting computational efficiency and successfully
capturing distant connections in feature sequences. Esser et al. [21] proposed an image generation
model VQGAN that included a Transformer. The model first trained a convolutional neural network-
based GAN to produce the compressed images, and then selected a Transformer network-based image
compression model to restore these compressed images to the original real images, thereby generating
high-resolution images. Employing solely the Transformer architecture and no convolutional layers,
Jiang et al. [22] constructed a TransGAN network, which can generate various image contents with
high fidelity and reasonable texture details. Using Vision Transformers instead of Convolutional
Neural Networks, Lee et al. [23] designed VitGAN, which not only guaranteed stability and conver-
gence of the model training phase but also significantly improved the quality of image generation.
Peebles et al. [24] introduced the Transformer architecture into diffusion models, and proposed DiTs,
which replaced the conventional U-net backbone used in diffusion models with Transformers and
demonstrated significant advantages in improving generated image quality.

2.3. Variational AutoEncoder (VAE)-Based Techniques for Image Generation

The goal of the Variational Autoencoder (VAE) [25] is to generate novel samples by learning the
latent distribution of data, marking the beginning of significant progress in deep learning in the field
of image generation. VAE maps the input data to a latent space via an encoder, then reconstructs these
latent variables back to the data space using a decoder, thereby generating high-quality samples akin
to the training data.

To achieve more precise control over generated images, Sohn et al. proposed the Conditional
Variational Autoencoder (CVAE) [26], whose basic idea is to take the conditional information in the
sampling process of latent variables into account. This allows the model to generate samples with
specific features based on additional information, making it more suitable for tasks requiring specific
conditions, such as image restoration and style transformation. Using a cyclic variational autoencoder
with an attention mechanism, Mansimov et al. [27] designed alignDraw from text to image, which
can generate the corresponding images using text that is not in the training dataset. In order to
solve potential representation ambiguity problems in the traditional autoencoders, Van et al. [28]
put forward the vector-quantized variant autoencoder (VQVAE), which discretized the encoding in
the latent space to obtain the nearest discrete code vector approximating the latent representation.
During the generation stage, this nearest vector was mapped back to a continuous latent representation,
effectively improving the visual quality of the generated image. Huang et al. [29] developed IntroVAE,
which integrated the concept of GAN to enable self-evaluation of the quality of generated samples
and self-improvement to enhance generation performance. Based on the IntolVAE, Daniel et al.
[30] introduced soft IntroVAE, replacing the hinge loss term of generated samples with a smooth
exponential loss, significantly improving the stability of training phase.

Despite their notable achievements in tasks such as image generation and latent representation
learning, VAEs, and their variations still have drawbacks. Firstly, due to the use of variational inference
and reparameterization, VAEs often struggle to capture fine details in the data distribution. Secondly,
VAEs typically assume that the latent space follows the Gaussian distribution, which limits their ability
to perform on complex distributions. These limitations have resulted in the tendency for VAEs to
produce blurry results in the data reconstruction process, making their performance in generating
high-resolution images generally inferior to other generative models.
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2.4. Diffusion-Based Techniques for Image Generation

Ho et al. [31] introduced the Denoising Diffusion Probability Model (DDPM), which simulates
diffusion and recovery processes in physical systems to generate high-quality data samples. It achieves
realistic image generation by adding noise into the existing images and progressively eliminating it.
This approach, based on random processes, yields remarkable results in terms of generation quality
and diversity, and it also contributes to the model having a more stable training process. The release of
DDPM has shifted the focus from GANSs to diffusion models, establishing them as the mainstream
in image generation. However, one drawback of DDPM is its relatively slow sampling speed. To
address this issue, Nichol et al. [32] proposed an improved DDPM with learnable variance in the
reverse process and cosine noise in the forward process, thereby achieving faster sampling and better
likelihood estimation. By replacing the original Markov process with a non-Markov process, Song et
al. [33] presented the Denoising Diffusion Probabilistic Model (DDIM), which utilized an effective
sampling strategy that greatly improved the sampling speed while minimizing the impact on the
quality of the generated samples.

In order to implement the conditional control during random sampling, Dhariwal et al. [34] first
developed a classifier-guided diffusion process that steered the diffusion process towards specific
classification labels, thereby exerting a degree of control over the generated images. Building upon
this foundation, Ho et al. [35] introduced a classifier-free guided diffusion process, enabling the
joint training of both conditional and unconditional diffusion processes. The sampling procedure is
adjusted according to the scaling factor, a method that relies solely on the diffusion process without
requiring a classifier model. To further improve the performance of text-to-image generation, GLIDE
[36] incorporated randomly sampled Gaussian noise along with text embeddings, obtained through
the CLIP model, into the diffusion model for training. Additionally, a CLIP feature-based guided
diffusion loss was used to compute the similarity between the noisy image and the input text at each
specific diffusion time step. Despite these advancements, however, the diversity of generated images is
insufficient. Imagen [37] released by Google showed an outstanding performance in generating image
details and understanding complex textual input. In addition to optimizing the inference time, the
convergence speed and memory efficiency within the U-Net architecture, noise-level conditioning tech-
niques and cascaded diffusion models were also applied to improve the generation quality. DALL-E-2
[38] consisted of a prior model and a decoder model. The former was responsible for producing the
CLIP image embeddings based on text prompts, while the latter generated the corresponding images
based on the image embeddings. This architecture facilitates a variety of innovative generation tasks,
including image editing and image generation.

In order to enhance the efficiency and stability of the training process for diffusion probabilistic
models, the Latent Diffusion Model (LDM) [39] compressed these high-frequency details of the original
image into a latent space that could fully capture the perceptual content of the image, thereby reducing
computational complexity while maintaining the generative capabilities of the diffusion model. By
leveraging the extensive LAION-2B dataset [40] with 2 billion images for training, the research team
released a series of LDM-based pre-trained models, collectively known as "Stable Diffusion" [41]. At
present, Stable Diffusion stands as the most widely discussed and applied diffusion model in the field
of image generation.

3. Digital Image Watermarking

As illustrated in Figure 1, the watermark is embedded into the original image to protect it. After
some possible attacks, the watermark can still be extracted from the watermarked image, where both
the watermark embedding and extraction processes share a common key. Based on the difference in
the embedding domain of the watermark information, digital image watermarking technologies can
be divided into two types: spatial domain watermarking [42] and transform domain watermarking
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[43]. Spatial domain image watermarking algorithms embed the watermark information directly into
the pixel values of the host image, while transform domain watermarking algorithms embed the
watermark into the coefficients in the transformed domain and then perform an inverse transform on
the modified coefficients back to the spatial domain to obtain the watermarked host image.

r )
%—»‘ Watermark embedding }-»
K A % v [

Original image Watermarked image Attacked image i

Watermark image Extracted watermark
Figure 1. The basic process of digital image watermarking scheme.

3.1. Traditional Image Watermarking

The most commonly spatial domain watermarking algorithm [44] is based on the Least Significant
Bit (LSB) technique, which alters only the least significant bits, minimizing the impact on the visual
quality of the image. However, it is easily susceptible to image attacks. Patchwork [45] is another
classical spatial domain algorithm, which embeds watermark information into the statistical features
of the image, fully leveraging the human visual system’s insensitivity to slight changes. Spatial
domain-based image watermarking algorithms [46,47] are straightforward to implement and have
low computational complexity, but they suffer from poor robustness and are easily compromised by
image attacks or cracked.

Transform domain watermarking algorithms, on the other hand, exhibit relatively stronger
robustness and can withstand some common image processing attacks, such as scaling, rotation, and
filtering of the watermarked image. Notable transform domain watermarking algorithms include
Discrete Cosine Transform (DCT) [48], Discrete Wavelet Transform (DWT) [49], and Fractional Fourier
Transform (DFT) [50]. Although single transform domain schemes provide some improvement in
effectiveness, they are still inadequate to meet the increasing demands, prompting the emergence
of hybrid transform domain image watermarking methods. Wang et al. [51] performed multi-level
DWT and singular value decomposition on the host image to embed the watermark information.
Compared to a single transform domain, this method showed improved robustness against geometric
attacks and some composite attacks. Similarly, Mohammed et al. [52] employed a continuous DCT-
DWT transformation, adaptively selecting the RGB components of the color image for watermark
embedding. According to experiments, this method was resilient to geometric and filtering attacks
and has good invisibility. The performance improvement of multi-transform domain watermarking
algorithms stems from their ability to combine the benefits of various transform techniques, performing
multi-level transformations on the host image. This disperses and conceals the watermark information
more effectively, thereby enhancing the robustness of the watermarked image. At the same time,
multi-transform domain algorithms [53,54] usually also consider the adaptability and invisibility of
the image to achieve an optimal balance between watermark robustness and image quality.

3.2. Deep Learning-Based Image Watermarking

Conventional image watermarking schemes often exhibit limited generalization capabilities and
struggle to defend against novel types of attacks. These manually designed methods, which heavily
rely on designers’ domain knowledge and specific application scenarios, tend to lack robustness.
However, with the rapid advancement of deep learning, utilizing neural networks for watermark
embedding has emerged as the dominant trend in image watermarking research for image copyright
protection.
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Based on convolutional neural networks (CNN), Haribabu et al. [55] firstly proposed a robust
image watermarking model, where watermark information was embedded by learning image features
through an autoencoder. In the embedding phase, Kandi et al. [56] employed two types of autoen-
coder structures for feature extraction: one for embedding and the other for extraction. The same
autoencoder network was then used in the receiving phase to retrieve the watermark information.
HiDDeN [57] achieved the generation of visually indistinguishable watermarked images and the
extraction of watermark information through joint training of encoder and decoder networks. Ahmadi
et al. [58] adopted two fully convolutional networks with residual structures for watermark informa-
tion embedding and extraction, while also designing a differentiable model for JPEG compression,
which can effectively enhance the robustness against JPEG compression attacks. Mellimi et al. [59]
proposed a deep neural network model capable of incorporating the watermark information into
the high-frequency information of the wavelet domain. While this approach improved watermark
invisibility, the robustness of the watermarked images was weakened due to the limited features
provided by high-frequency information. Building on HiDDeN, Hao et al. [60] added a high-pass
filter before the discriminator and gave higher weight to the central region of the image. This model
was more robust to noise interference, but it concentrated the watermark information in the central
area, resulting in degraded visual quality of the watermarked image. Tancik et al. [61] put forward the
StegaStamp watermarking scheme, which embedded bit-string watermarks into photo images with
exceptionally high perceptual invisibility. The encoder-decoder architecture, trained through deep
learning, effectively enhances the adaptability of this watermarking scheme against various types of
attacks.

In practical applications, digital image watermarking must also account for physical attacks in
real-world scenarios, such as distortions caused by printing and screen capturing. To strengthen
the robustness of digital image watermarking technology against such physical attacks, Liu et al.
[62] designed an anti-printing watermarking scheme, which involved the end-to-end training on
a large dataset of film overlay layer images to improve resilience against film overlays on printed
photos. The DeNoL watermarking method, put out by Fang et al. [63], could enhance the robustness
of watermarking systems across channels (such as screen capture scenarios) by using small sample
data. Compared to traditional technology-based watermarking methods, these deep learning-based
watermarking algorithms achieve superior invisibility and stronger robustness, providing effective
solutions for the performance optimization of watermarking algorithms when they face different
application environments.

4. AIGC Model Watermarking

With the advent of the era of large models, the commercialization of AIGC models has given rise
to a series of security issues. For instance, generative image models like Stable Diffusion require vast
quantities of high-quality image data and continuous computational resources for training, which not
only entails substantial financial costs but also raises concerns about the commercial value of training
data and the protection of intellectual property. In addition, the problems related to false dissemination
and traceability of AIGC-generated content further exacerbate security challenges, including privacy
breaches, ethical violations and the prevention of inappropriate content generation. These issues
such as unauthorized content synthesis, copyright conflicts, and the spreading of fake images are
particularly prominent in the realm of image generation. To address these security threats, digital
watermarking technology is gradually being integrated into AIGC models and their generated content,
forming two main aspects:

e Model right authentication watermarking: aimed at protecting the intellectual property rights
of AIGC models, which can primarily be divided into white-box watermarking and black-box
watermarking, and diffusion model authentication watermarking is also included.
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*  Generation image traceability watermarking: used to track the copyright of generated images
of the diffusion model, including two types: adding to latent space and adding to initial noise.

The application of these watermarking technologies plays a crucial role in addressing content
security issues in the field of image generation and in protecting the intellectual property rights
of model owners, contributing to the construction of a safer and more trustworthy ecosystem for
Al-generated content .

4.1. Watermarking of AI Model

The initial goal of model right authentication watermarking is to protect the copyright of deep
neural networks (DNNs). Depending on whether the watermark extractor needs to understand the
internal details of DNNSs, these methods can be roughly classified into white-box model watermarking
and black-box model watermarking. Furthermore, for both white-box watermarking and black-
box watermarking, their classical processes of watermark embedding and copyright verification are
depicted in Figure 2, respectively. With the burgeon of text-to-image diffusion models, such as Stable
Diffusion, the watermarking algorithms for ownership verification of diffusion models have also
emerged one after another to address copyright protection concerns.

‘White-box model watermarking Black-box model watermarking
Training samplCS} .
Trigger samples. .

Original DNN model Walemmlked DNN model 0r|g|na1 DNN model ‘Watermarked DNN model
(1) watermark embedding process (1) watermark embedding process

Parameters or Watermark
internal structure embedding

4\/,“
parameters or . Outouts »"{.A\\'IA."
Copyright Watermark . " Copyright utputs %( N/ V‘ . Trigeer samples
verified ! extracting internal structure verified ! comparison g -~
: retrieval

Y X/
m.i«
N

Suspect model
(2) copyright verification process

(2) copyright verification process Suspect model

Figure 2. White-box model watermarking and black-box model watermarking.

4.1.1. White-Box Model Watermarking

White-box model watermarking algorithms [64—-66] emphasize the accessibility of the internal
details of the target DNN models during the watermark extraction process. By obtaining the concrete
information like the parameters and internal structure of the DNN model, they accomplish the
copyright verification of the target model. The design concept mainly involves implementing white-
box model watermarking technology by adjusting the model’s parameters or network structure to
embed the watermark. Uchida et al. [67] first proposed a white-box scheme for the copyright protection
of neural network models with the digital watermarking technology, which embedded the watermark
by selecting the model’s weights and designed activation functions to constrain the product of a
custom spreading matrix and the weights within a specific range, thereby reducing the impact on
the model’s original classification accuracy. To enhance flexibility, Rouhani et al. [68] adopted the
layer activation outputs directly related to the input content as the watermark embedding location,
establishing a clever mapping relationship with the inputs. However, the watermark capacity in this
scheme is relatively small. To improve security, Chen et al. [69] exploited the collusion-resistant codes
to generate watermark information, achieving a watermarking scheme capable of resisting collusion
attacks and tracing model users. Wang et al. [70] created an adversarial training mechanism to
constrain the distribution of weights before and after watermark embedding, enhancing the invisibility
of the watermark. To further strengthen the robustness and mitigate the impact of embedding capacity,
Tartaglione et al. [71] proposed a zero-watermark white-box scheme, which randomly selected and
marked the parts of the model’s weights. They constrained the weight updates during the training
process via a loss function, and subsequently verifying the copyright. The above-described white-box
watermarking approaches regard the parameters as the carrier.
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Then Lou et al. [72] proposed a watermarking scheme that uses the model structure as the carrier,
employing a neural network search strategy to determine the optimal network structure for watermark
embedding. During the verification phase, the side-channel information is captured to obtain the
model structure and extract the watermark information. However, the requirement for suspicious
model content information, which is challenging to get in real-world application scenarios, limits the
practicality of the white-box watermarking approach in the verification stage. As a result, white-box
watermarking algorithms will not have a particularly wide variety of applications.

4.1.2. Black-Box Model Watermarking

Black-box model watermarking schemes [73-75] can overcome this limitation. In these schemes,
the model’s copyright verifier only needs to query the model’s API interface, without accessing the
model’s internal structure. The general framework of the black-box model watermarking scheme [76]
is as follows: during the watermark embedding stage, the model owner uses both the normal training
samples and the selected trigger samples to train the model that needs to be protected, resulting in
a watermarked model; in the copyright verification stage, trigger samples are input into the target
model to obtain the predicted results. If the predicted outputs are consistent with the pre-set ones,
the copyright verification is successful, confirming that the verifier holds the model’s copyright. The
black-box model watermarking schemes take full advantage of the redundant characteristics in deep
neural network neurons and represent the unique copyright identification of the model owner through
the specific input-output pairs. In order to better fit practical application scenarios, researchers mainly
focus on the advancement of the black-box model watermarking.

The concept of backdoor triggering is a typical technique for verification. Zhang et al. [77] studied
the corresponding performance of different triggering backdoor forms, including images independent
of the training set, random noise and the addition of particular strings to selected parts of the training
dataset. Guo et al. [78] used the user information to guide the generation of embedded noise as
a trigger backdoor, establishing a link between the noise and the model users, thereby clarifying
the specific ownership. Based on the genetic algorithm, Guo et al. [79] continued to search for the
optimal watermark embedding position for trigger images in their previous scheme [78]. Sun et al. [80]
employed an additional category for the triggers but selected the images unrelated to the training set
as the trigger set, resulting in weaker concealment. Li et al. [81] concealed the copyright information in
the adopted training samples in an invisible manner to generate trigger samples and constrained the
distribution between trigger samples and training ones, effectively improving the secrecy of trigger
images.

On the basis of the black-box verification framework, various model watermarking schemes
commit to optimizing the performance from distinct perspectives. In response to the challenge
of labeling trigger images, Zhang et al. [82] suggested using the chaos algorithm to label trigger
images to defend against possible forgery attacks. In order to resist escape attacks, where autoencoder
reconstruction strategies are used to modify trigger images, Li et al. [83] added a watermark embedding
stage in the autoencoder reconstruction process, thereby improving the robustness against such attacks,
albeit at the cost of some reduction in the original task accuracy. Based on the irreversibility of
one-way hash functions, Zhu et al. [84] designed a series of continuous one-way hash functions to
scramble trigger images and assign the same pre-set labels, ensuring the security of triggers during the
verification process and thus guarding against obfuscation attacks. In order to counter model-stealing
attacks, Szyller et al. [85] created a defense mechanism that modified the returned results in response to
the accessing data from the attackers. Similarly, Charette et al. [86] injected a specific signal distribution
into the output, allowing the stolen model to learn this distribution and withstand this attack. Li et al.
[87] proposed an initial model training strategy that tightly coupled the model’s original performance
with the watermark pattern. If an attacker wants to forge the watermark pattern, they must spend a
huge computational cost to jump out of the local optimal solution. In a condition when an attacker
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knows the triggering mode and the corresponding target label, they can trigger a backdoor attack.
To address this issue, Xu et al. [88] applied the confidence scores from each category of the triggered
image output as watermark information, thereby enhancing the security of the watermark. Li et al. [89]
used a backdoor-free method for watermark embedding, weakening the connection between specific
triggering patterns and the target labels. Therefore, attackers cannot trigger backdoor attacks based on
the obtained triggering information.

4.1.3. Diffusion Model Watermarking

The prevailing copyright authentication watermarking scheme for the text-to-image diffusion
model mainly hinges on constructing the pairs of trigger words and verification images. These pairs
are adopted to fine-tune the model on the dataset and use input trigger words and output verification
images for model ownership authentication. Zhao et al. [90] established a pre-defined text-image pair
as the trigger input-output and selected some uncommon words, such as "[V]," as the trigger text. The
corresponding output image of the trigger word is a QR code containing the copyright information.
Without requiring the original training data and internal details of the diffusion model, Yuan et al. [91]
crafted a pre-defined prompt and watermark to fine-tune the pre-trained diffusion model, ultimately
achieving the authentication of model copyright. Ma et al. [92] fine-tuned the replication of the image
decoder, where the original image decoder is used for normal image generation. Once a trigger word
is input, a validation image can be generated by combining the finetuned diffusion model with the
fine-tuned image decoder. To allow commonly used words to function as trigger words, Liu et al. [93]
placed a set of commonly used words at a fixed position of the input prompt and matched this prompt
with the validation image. What’s more, the constructed prompts were used to fine-tune the diffusion
model to obtain a watermarked version. Peng et al. [94] learned the watermark diffusion process by
training or fine-tuning the diffusion model and used its shared reverse noise for sampling to extract
embedded watermarks without compromising the performance of the original generation task. In
order to resist forgery attacks, Yuan et al. [95] selected the hash functions and keys to irreversibly
generate trigger prompts, ensuring that attackers could not reverse the construction of the specific
prompts through internal associations, effectively safeguarding the copyright of diffusion models. The
above schemes are primarily aimed at the copyright protection for model owners and are not suitable
for application scenarios that require tracing a large number of model users and their generated
images.

4.2. Watermarking of AI-Generated images

In the context of distributing and deploying the text-to-image diffusion model, concerns have
arisen regarding the potential misuse of generative models, particularly due to the high realism
of the generated images. Accordingly, it is necessary to use traceability watermarking methods to
supervise both the models and the generated images. Generation image traceability watermarking
refers to incorporating watermarks into the process of diffusion models from the texts and images.
Its mechanism mainly involves injecting watermarks into the generated images by fine-tuning the
structure of the model or adding watermark information in crucial stages of model generation. This
traceability watermarking mechanism contains specific identifiers on the basis of model generation,
providing traceable features for the generated content. Then the watermarks can not only maintain
the intellectual property of diffusion models but also trace the responsible parties of the generated
images [96,97]. According to the different embedding positions of watermarks, diffusion traceability
watermarking can be divided into two categories: fine-tuning-based watermarking and initial-noise-
modification-based watermarking. As presented in Figure 3, the watermark can be injected into
various positions of the generation process.
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Initial nosie UNet Latent vector VAE Decoder Generation image

Watermark is adding to the initial noise ) Watermark is adding to the latent space

Figure 3. Illustration of different watermark placement with the Stable Diffusion model, including adding to the
latent space and the initial noise.

4.2.1. Fine-Tuning-Based Watermarking

Fine-tuning-based watermarking involves embedding watermarks by fine-tuning part of the
diffusion model, such as VAE or UNet [98], or fine-tuning an extra pre-trained watermark embedder,
aiming to embed watermarks while generating the image, and the embedded watermark could be
accurately extracted or detected by the watermark extractor, which is trained or fine-tuned together
with the watermark embedder.

Fine-tuning the decoder of VAE. The schemes [99-102] involve watermark embedding from the
perspective of fine-tuning the decoder of VAE, enabling the VAE decoder to simultaneously embed
watermarks and decode latent vectors into images. Based on a pre-trained watermark embedding
encoder-decoder framework, Fernandez et al. [99] fine-tuned the pre-trained watermark decoder
together with the image decoder of the diffusion model to generate images containing specific binary
sequence watermarks, thereby achieving copyright protection of the model and user traceability. But
this method could only embed a fixed watermark. If the user needs to modify the watermark, the
image decoder of the diffusion model must be fine-tuned again. Xiong et al. [100] first designed
an information encoder to convert the watermark information into an information matrix and then
embedded this information matrix into the intermediate output of the image decoder to obtain a
watermarked image. In order to improve the security, it is necessary to dynamically adjust the polarity
of the loss value to control the use of the information matrix. If the user does not use the information
matrix, the quality of the generated image will significantly decrease. Kim et al. [101] proposed a
mapping network to convert watermark information into intermediate fingerprint images within
the diffusion model dimension and weight-modulated them with a decoder to embed watermark
information. This method only required one forward transmission process for different watermark
information, greatly saving computational cost. Ci et al. [102] employed a pre-trained watermark
encoder to perform secondary processing on the intermediate output of the image decoder to embed
watermark information, ultimately obtaining a watermarked image that can be extracted by the
pre-trained watermark decoder for copyright authentication and user traceability.

Fine-tuning the extra watermark encoder-decoder. Methods [103-105] embed watermarks into
the latent vector before VAE. Bui et al. [103] put forward a lightweight secret information encoder to
map secret information into the latent space and embedded the secret information by making small
offsets to the latent space. Due to the use of a pre-trained autoencoder as the base model, there is
no need to learn image distribution, resulting in a simple training process and good performance in
embedding and extracting secret information. Considering the dilemma that the watermark embedding
and extracting schemes in pixel space cannot balance image quality and watermark robustness, Meng
et al. [104] chose to embed and detect in latent space and proposed a progressive training strategy that
could effectively resist different watermark attacks, maintaining the quality of the generated image
containing watermarks. Zhang et al. [105] designed a plug-and-play watermarking framework that
embedded watermarks without modifying the components of the diffusion model while using the
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watermark embedding strength factor to balance the contradiction between watermarked images and
watermark extraction quality. The watermark scheme performed good generalization and could be
transferred to different versions of diffusion models.

Fine-tuning the U-Net. Methods [106,107] embed the watermark into Unet space. Min et al. [106]
fine-tuned the first layer network of the diffusion model based on the U-Net structure and embedded
watermarks within a certain number of denoising iterations. Specifically, the watermark information is
first converted into an intermediate output containing watermark information through a pre-trained
linear layer. Then in the final few sampling steps of image generation, this intermediate output was
input into a fine-tuned diffusion model to generate a watermarked image. In the white-box scene, Feng
et al. [107] first trained a set of encoder and decoder modules of watermark information in the latent
space and added the watermark into the generated image with a watermark low-rank adaptation
module. Furthermore, prior preserving fine-tuning was designed to protect the original generation
performance.

Most fine-tuning-based methods do not alter the layout of the generated image. However, when
the model undergoes fine-tuning or compression by an attacker, the embedded watermark can be
easily removed.

4.2.2. Initial-Noise-Modification-Based Watermarking

The denoising sampling process based on DDIM is approximately reversible when the random
seed is fixed. Therefore, the approximate reversibility of DDIM can be used to achieve more robust
watermark embedding and extraction. The method based on this characteristic embeds the watermark
pattern into the initial noise of the diffusion model and then detects the presence of the watermark
from the inversed initial noise reconstructed using the DDIM inversion process from the watermarked
generated image.

Robustness-enhanced methods. Wen et al. [108] proposed a diffusion watermarking scheme,
namely Tree-Ring, which embedded watermarks in the frequency domain of initial noise, and the
watermark embedding area is circular, which enhances the robustness of watermarks against rotation
attacks. The L1 distance between the extracted watermark information and the embedded one is
calculated and compared with a pre-set threshold to achieve traceability. However, this cannot
accomplish identifying various keys. Ci et al. [109] extended the Tree Ring scheme to multiple-keys
watermarking, achieving stronger watermark extraction robustness through discretization and lossless
watermark embedding strategies, which could effectively resist rotation attacks. Arabi et al. [110]
embedded watermark information into the initial latent vector using generated Fourier patterns and
designed a two-stage detection framework for extracting watermark information, which could defend
against forgery attacks and removal attacks.

Fidelity-enhanced methods. The above methods modified the distribution of the initial noise,
hence the layout of the generated images will be modified. To address this problem, some researchers
focus on the lossless watermarking based on the reversibility of the diffusion process, which could be
achieved by distributing and maintaining watermark embedding. Yang et al. [111] proposed a lossless
watermarking method, which first encrypted the watermark message to uniform distribution by a
cryptography algorithm and then utilized the inverse transform sampling method to transform the
watermark from uniform distribution to a Gaussian distribution, thereby reducing the impact on the
generated image. Many deep-learning-based watermarking schemes have been proposed based on
noise encoder and decoder frameworks. The method studied by Lei et al. [112] was mainly driven
by watermark information, using an encoder to directly generate initial noise containing watermarks
and then using DDIM-based forward and backward processes combined with an information decoder
to generate watermarked images and extract watermark information. Yu et al. [113] considered a
diffusion model as hiding secret images, which combined approximately the same initial noise with
a different prompt and constructed an image-hiding method using public and private keys to get
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a watermarked generation image. Zhang et al. [114] followed the embedding method of Tree-Ring
but performed DDIM inversion on the existing image and then added the watermark to the initial
noise vector after inversion. And an image enhancement module was introduced after generating the
watermarked image to improve the visual quality. This method needs to optimize the initial Gaussian
noise of each image to ensure that the denoised results closely match the original results.

Embedding the watermark into the initial noise can achieve high robustness, and by maintaining
the Gaussian distribution of the initial noise, the impact on the quality of the generated image is
minimized. However, it is important to note that watermarking schemes based on the approximate
invertibility of DDIM require the use of a consistent diffusion model for both watermark embedding
and extraction. This means that the extraction process necessitates the use of the diffusion model. In
practical applications, using the diffusion model itself as the watermark extractor is neither convenient
for storage nor for deployment.

5. Performance Evaluation

It is crucial to comprehensively evaluate watermarking schemes from different perspectives.
This paper mainly considers four key aspects: watermark capacity, watermark detection accuracy,
fidelity, and robustness. The watermark capacity refers to the effective watermark payload contained
in the watermark algorithm. Watermark detection accuracy measures the performance of watermark
extraction. Fidelity assesses whether the original performance of the watermarked model will decrease
after adding the watermarks. Robustness evaluates whether watermarked models or images can resist
malicious or non-malicious attacks.

5.1. Watermark Capacity

According to the exact content of the embedded watermark information, watermarking algo-
rithms can be divided into zero-bit watermarking and multi-bit watermarking. In the case of zero-bit
watermarking, the watermark detection algorithm is used solely to analyze whether there exists a
watermark in the carrier. A multi-bit watermarking corresponds to an n-bit string, which needs to
determine not only whether the detected carrier contains a watermark but also identify the content of
the retrieved string. Zero-bit watermarking has higher robustness due to its simple task and is often
used for copyright protection. While multi-bit watermarking has greater flexibility and can be used for
fingerprint recognition and content traceability.

5.2. Watermark Detection Accuracy

In zero-bit watermarking schemes, watermark detection is essentially a binary classification
problem. Therefore, its detection success rate is mainly evaluated by classification metrics such as
True Positive Rate (TPR) and False Positive Rate (FPR). FPR represents the probability of negative
samples being mistaken for positive ones, while TPR refers to the proportion of actual positive samples
correctly predicted as positive ones. Overall, for the practical application of proposed watermarking
algorithms, high TPR under low FPR is the goal that watermarking algorithms need to pursue. True
Positive Rate at 0.01 False Positive Rate [115], which is a typical indicator in the generation image
traceability watermarking methods.

In multi-bit watermarking schemes, it is necessary not only to detect the presence of watermarks
but also to ensure the integrity of watermark information extraction. Information extraction integrity
is accomplished through bit error rate (BER) [116] or bit accuracy [117]. Through the detection process,
BER denotes the probability of each bit being incorrect, while bit accuracy represents the probability of
each bit being correct. Increasing the effective payload of the watermark often causes a shift in the
distribution of the training data, thereby reducing the quality of the generated image. However, this
can be alleviated by increasing the resolution of the generated image.
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5.3. Fidelity

When embedding watermarks into the generative model, it often leads to changes in the model
structure, which in turn affects its performance, including the model and the generated image quality.
For the model, the CLIP [118] metric evaluates the correlation between watermarked images generated
by the watermarked model and text prompts. The lower the CLIP value, the less impact of the
watermark embedding on the semantics of the generation image for the generation model. The
generation image quality mainly evaluates the quality of watermarked images, indicating the degree
of impact on the image after watermark embedding. Mainly through two aspects, including reference
indicators and non-reference indicators. Reference indicators include the Peak Signal to Noise Ratio
(PSNR) [119], the Structural Similarity (SSIM) [120], and the Fre’chet Inception Distance (FID) [121].
No-reference indicators include the Natural Image Quality Assessment Score (NIQE) [122], and the
Perceived Image Quality Assessment Score (PIQE) [123]. The quality of watermarked images improves
with increasing SSIM and PSNR and decreasing FID, NIQE, and PIQE.

5.4. Robustness
5.4.1. Robustness Against Image Processing

Robustness means that the ability of watermarked images can still detect and extract the wa-
termark information after various non-malicious or malicious image processing operations. Non-
malicious image precessing operation refers to the inevitable post-processing of an image, including
compression, filtering, or printing. For example, when an image is uploaded to a social media platform,
it may undergo the compression operation during transmission, potentially degrading the hidden
watermark. In contrast, malicious image precessing operation means the transmission of images to
malicious tampering individuals with ulterior motives, with the aim of destroying and erasing the
watermark signals, and even altering the identity of copyright owners. For non-malicious attacks,
attack technologies typically add random perturbations, JPEG compression, random cropping, scal-
ing, rotation, blurring, color enhancement, and other attack methods and evaluate the accuracy of
watermark recovery, thereby determining whether the watermarking scheme is robust.

In the research field of AIGC watermarking, the focus should be more on the scheme’s resistance
to malicious attacks, especially against watermark removal attacks and watermark forgery attacks. In a
white-box scenario, attackers can access the decoder of the watermark extractor, but cannot obtain the
true watermark or encoder of the watermark extractor. Jiang et al. [124] proposed the WEvade method,
which added the adversarial perturbation to the generated image to make the assumed watermark
output by the decoder different from the original watermark, thereby achieving the watermark forgery.
Li et al. [125] used pre-trained diffusion models for content processing and generated GANs for
watermark removal or watermark forgery and only needed to be watermarked-generated images to
remove watermarks under black-box access.

5.4.2. Robustness Against Model Processing

After obtaining a watermarked model in public, the attacker’s goal is to apply various attack
technologies to invalidate the verification process of the watermark, and the attack does not degrade
the model’s performance while minimizing the computational cost. Model processing attacks involve
modifications to the model’s parameters or structure in order to erase the watermark, with common
methods including model fine-tuning, model compression, and functionality-equivalent attack. Model
fine-tuning: the attacker adopts a small number of samples to fine-tune the watermarked model,
attempting to remove the watermark while maintaining the model’s overall performance [126]. Four
kinds of commonly used fine-tuning methods consist of Fine-Tuning Last Layer (FTLL), Fine-Tuning
All Layers (FTAL), Re-Training Last Layer (RTLL), and Re-Training All Layers (RTAL). Model com-
pression: weight pruning and weight quantization are commonly used techniques to compress the
model size, facilitating efficient inference and deployment in the resource-constrained scenario. Weight
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pruning is to set the parameters with smaller absolute values to zero, as these parameters with smaller
absolute values have less impact on the performance of the model performance [127]. Weight quanti-
zation refers to representing model parameters in a low precision format (e.g., 8-bit integers or lower)
to reduce storage requirements [128]. Functionality-equivalent attack: this is an attack targeting
the white-box model watermarking, which can achieve watermark removal without compromising
model performance by adjusting model parameters or structure appropriately. This is straightforward
and efficient, requiring no access to the dataset, no additional training of the model, and no prior
knowledge about watermarking algorithms [129]. The DNN model watermarking scheme always
considers these model processing attacks during the design angle, but the robustness of the AIGC
watermarking scheme to these attacks is not adequately addressed.

5.4.3. Robustness Against Adversarial Attacks

Adversarial attacks are always malicious in nature and aim to disrupt the effectiveness of the
copyright verification process in the watermarked models. Evasion attack: this type of attack targets
watermarking schemes based on trigger-based backdoor models. Due to the different distribution of
trigger samples compared to normal test samples, the attacker can exploit this characteristic to detect
trigger samples and escape the watermark verification process [130]. Model extraction attack: it refers
to the process of obtaining a new functional approximation model by simulating the input-output
mapping of the victim model [131], including multiple model extraction methods, such as retraining,
cross-structure retraining, distillation, etc. While these attacks require a certain amount of computing
resources and data, making the cost higher, they can effectively remove various types of watermarks
from the model. Forgery attack: also known as ambiguity attack, it refers to an attacker forging a new
watermark without altering the model, thus causing ambiguity during model ownership verification
[132]. The model owner may struggle to verify the copyright when the watermark is not unique,
making the verification process unclear. Collusion attack: multiple attackers, each with the same host
neural network but distinct implanted fingerprints, collaborate to generate an unmarked model [133].
In order to better adapt to real-world application scenarios, more consideration on the robustness
against the adversarial attacks, including but not limited to the adversarial attacks mentioned above,
is crucial and needed for the AIGC watermarking algorithms.

Table 1 presents a comparison of AIGC watermarking methods in three aspects, including
watermark capacity, fidelity, and robustness, wihch is able to offer a referential idea to think about the
performance of the designed AIGC watermarking schemes.
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Table 1. A qualitative comparison of some AIGC watermarking algoritms in performace indictors.
Watermark Fidelity Robustness
Types Methods . . . non- ..
capacity generation  generation . . malicious
. malicious .
1Images model . operation
operation
Fernandez etal. | v X v v
[99]
Xiong etal. [100] n v X v v
Addingto  Km et al. v v v v
the latent C[i ot .111
sapce [102] n v X v v
Bui et al.
[103] n v X v X
Meng etal. [104] n v X v v
Zhang et al. [105] n v X v X
Min et al.
[106] n v X v v
Feng et al.
[107] n v X v v
Wen et al.
[108] 0 v v v X
Cietal
Adding to [11%9*]‘ 0 v v v X
the initial  Arabi etal. [110] 0 v X v v
Yang et al.
[111] n v v v v
Lei et al.
[112] n v v v v
Yu et al.
[113] n v X v v
Zhangetal. [114] 0 v X v X

* 0 means zero-bit watermarking, and n means multi-bits watermarking. v" denotes this metric is considered and X denotes this
is not considered.

6. Discussion

Currently, researchers have presented several AIGC watermarking algorithms, greatly advancing
the development of copyright protection and user traceability technologies for image generation
models. Nonetheless, several challenges remain in the watermarking for generative models.

¢  Trade-off between watermark capacity, fidelity, and robustness. Watermarking in the latent
domain, either for modifying the initial noise or the latent vector, offers enhanced robustness
and has a smaller effect on the generated content’s quality. However, due to the typically lower
dimensionality of the latent representations, the amount of watermark information that can be
embedded is considerably smaller. In contrast, the pixel domain allows for the embedding of
more watermark information, but embedding watermarks in the pixel domain can degrade the
quality of the generated image, and its robustness is generally lower. Future research needs to
focus on how to better balance these competing factors.

* Robustness of watermarks against neural network-based attacks. Most existing AIGC water-
marking methods evaluate the robustness performance limited to image post-processing attacks
but do not have strong defense ability against the attacks of generative models. More water-
mark attack patterns based on neural networks should be considered in the design process of
watermarking technologies to ensure greater robustness.
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* Joint generative scalable watermarking. Thinking that the current generation model has a large
number of parameters that are difficult to train and fine-tune, the research about watermarking
schemes can focus on lightweight additional modules. By training watermark encoder-decoder
models with low computational overhead and strong scalability, watermarking schemes can be
incorporated into any image generation models.

7. Conclusions

Recent years have witnessed the rapid growth of AIGC technology, which accelerated its ap-
plicability across a wide range of fields, driven by the evolution of GANSs, Transformers, VAEs, and
diffusion models. As AIGC continues to grow, both diverse opportunities and difficulties have emerged
currently, with model ownership protection and generation image traceability becoming prominent
research areas. In this context, watermarking is considered a key and effective solution strategy for
addressing these issues. Consequently, this paper starts with digital image watermarking, introduces
DNN authentication watermarking and diffusion model authentication watermarking, and lists ad-
vanced AIGC watermarking technology from two perspectives of scenario applications. Finally, the
crucial performance evaluation metrics for watermarking algorithms and some potential research
prospects of AIGC watermarking are provided.
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Abbreviations

The following abbreviations are used in this manuscript:

DCGAN Convolutional Generative Adversarial Networks

GAN-INT-CLS  Matching-aware discriminator & Learning with manifold interpolation
AttenGAN Attentional Generative Adversarial Networks

VQGAN Vector Quantised Generative Adversarial Networks

TransGAN Transformer-based Generative Adversarial Networks

VitGAN Vision Transformer-based Generative Adversarial Networks

DiTs Diffusion Transformers

IntroVAE Introspective Variational Autoencoder

DeNoL Decoupling Noise Layer
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