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Abstract

This article develops duality principles and numerical results for a large class of non-convex variational
models. The main results are based on fundamental tools of convex analysis, duality theory and
calculus of variations. More specifically the approach is established for a class of non-convex functionals
similar as those found in some models in phase transition. Moreover, we develop a general duality
principle for quasi-convex relaxed formulations for some models in the vectorial calculus of variations.
Concerning applications of such results are presented for a non-linear model of plates and for non-
linear elasticity. Finally, in some sections we present concerning numerical examples and the respective
softwares.
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1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex optimiza-
tion. It is worth highlighting the main duality principle is applied to double well models similar as
those found in the phase transition theory.

Such results are based on the works of J.J. Telega and W.R. Bielski [1-4] and on a D.C. optimization
approach developed in Toland [5]. About the other references, details on the Sobolev spaces involved
are found in [6]. Related results on convex analysis and duality theory are addressed in [7-13].

Similar models on the superconductivity physics may be found in [14-16].

At this point we recall that the duality principles are important since the related dual variational
formulations are either convex (in fact concave) or have a large region of convexity around their critical
points. These features are relevant considering that, from a concerning strict convexity, the standard
Newton, Newton type and similar methods are in general convergent. Moreover, the dual variational
formulations are also relevant since in some situations, it is possible to assure the global optimality of
some critical points which satisfy certain specific constraints theoretically established.

Among the main results here developed, we highlight the duality principles for the quasi-convex
formulations in the context of the vectorial calculus of variations. An important example in non-linear
elasticity is addressed along the text in details.

Also, for the applications in physics in the final sections, we believe to have found a path to
connect the quantum approach with a more classical one in a unified framework.

Indeed, we have presented a path to model a great variety of chemical reactions through such a
connection between the atomic and classical worlds.

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,
unless otherwise indicated.
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In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological space, as
the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be represented
by another Banach space U*, through a bilinear form (-, -)y : U x U* — R (here we are referring to standard
representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U — R linear and continuous,
we assume the existence of a unique u* € U* such that

flu) = (u,u*)y,Vu € U. 1)
The norm of f , denoted by || f ||+, is defined as

I fllus = sup{|[{w, u*)ul = fullu <1} = [Ju*[|u-- 2)
uel

At this point we start to describe the primal and dual variational formulations.

2. A General Duality Principle Non-Convex Optimization

In this section we present a duality principle applicable to a model in phase transition.

This case corresponds to the vectorial one in the calculus of variations.

Let 3 C R” be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q2.

Consider a functional | : V — R where

J(u) = F(Vuy, -+ ,Vun) + G(ug, - -+ ,un) — (u;, hi) 2,

and where

F(Vuy,---,Vuy) = /Qf(Vul,- -+, Vuy) dx

f: RN*" — R is a three times Fréchet differentiable function not necessarily convex. Moreover,
V={u=(uy, - ,un) € WPRY) : u=uyonaQ},

h = (l’l1,- . /hN) € LZ(Q;RN), and 1 < p < Hoo.
We assume there exists & € R such that
= inf :
"=
Furthermore, suppose G is Fréchet differentiable but not necessarily convex. A global optimum
point may not be attained for | so that the problem of finding a global minimum for | may not be a
solution.
Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.
Define Vy = W&’Z(Q; RN) and

Vo(u) ={¢p € Vo : supp¢ C B(u)},
where
Bu) ={xeQ : f**(Vu(x)) < f(Vu(x))}.

Moreover, Y1 = Y] = LZ(Q;RNX”), Yo=Y = LZ(Q;RNX"), Y3 =Y = LZ(Q;]RN), so that at
this point we define, F; : Vx Vp =R, G1: V=R, GV =>R,G3: Vy = Rand G : V = R, by
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K
Fi(ug) = F(Vur+Vgy -, Vun+Vox) + 5 /Q Vuj - Vi dx
K>
T /Q Vo, - Vg; dx (3)
and K
Gi(uy, -+ ,up) = G(uyg, -+ ,un) + 71 /Q uj uj dx — (uj, fi)12,
Ky
Gz(Vul,- .. ,VMN) = 7 /Q Vu] . Vu] dx,
K;
Gs(Vr, -, Vgn) = = /Q Vo, - Ve dx,
and
Ky
G4(u1,' e ,MN) = 7 /Qu] u]‘ dx.
Definenow J; : V x Vj — R,
Ji(u, @) = F(Vu+ V) + G(u) = (ui hi) 2.
Observe that
Ji(w, @) = F(u,¢)+Gi(u) — G (Vu) — G3(V¢) — Ga(u)
< RB(u¢)+Gi(u) = (Vu,zi) 2 — (VP z3) 12 — (1, 23) 12
+ sup {(01,27) 12 — Gz(01)}
U1€Y1
+ sup {(v2,23) 2 — G3(v2) }
02€Y2
+sup{(u,z3) 12> — Ga(u)}
ueV
= F(u,¢)+Gi(u) = (Vu,z1) 12 = (Vo,23) 12 — (1, 23) 2
+G3(z1) + G3(22) + Gy (23)
= Ji(u,¢,2%), (4)
VueV, ¢ c Vo(u), 25 = (z],25,23) €Y' =Y x Y5 x Y5,
From the general results in [5], we may infer that
inf , = inf (u,¢,z%). 5
(u,¢)elxr/1xvo(u)](u 2 (2 €V x Vi (1) XY Jiw9,27) ©)
On the other hand

inf > inf .
ngj(u) - (u,q;)elxrzlxvo(u) N, ¢)

From these last two results we may obtain

inf > inf F(u, ¢,2%).
L}gV](u) - (u,¢,z*)€\1/'r>l<VQ(u)><Y* J (H ¢:2 )

Moreover, from standards results on convex analysis, we may have
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P o
inf Ji(u,¢,2%) = inf{F(u,¢)+GCi(u)
(V1,25 12 — (Ve 23)2 — (1,23
+G3(zh) + G5 (23) + Gi (23))
= sup {—F (0} +2,9) — Gi(03 +25) — (V2512
(v7,03)eC*
+G;(z1) + G3(22) + Gi(z3)}, (6)
where
C*={v"=(v],v3) € Y x Y5 : —div(v]);i+ (v3); =0,Vie {1,--- ,N}},
Ff (o1 +21,¢) = Sug{<ur — div(zy + 7)) 12 — Fi(u, 9)},
ue
and
Gi(v3 +23) = sup{(u, 03 + z3) 12 — G1(u)}.
ueVv
Thus, defining

J2(¢,2%,0") = F{ (v1 +21,¢) = Gy (02 +23) = (V¢,23) 12 + G2 (27) + G3(22) + G4 (23),
we have got

inf J(u) > inf  Ji(u,¢)

ueV (u,9)eVxVy

- inf (w2

(10,9,2*) €V XV (u) x Y*

S P ]

Finally, observe that

inf J(u)

ueV

inf inf sup [5(o,z*,v*
Z*GY*{(PEVO(M){U*EE* ]2 ((P )}}

> sup {( " inf ]é‘(gb,z*,v*)}. (8)

vrecr L(Z59)EY* xVy(u)

v

This last variational formulation corresponds to a concave relaxed formulation in v* concerning
the original primal formulation.

3. Another Duality Principle for a Simpler Related Model in Phase Transition
with a Respective Numerical Example

In this section we present another duality principle for a related model in phase transition.
Let Q = [0,1] C R and consider a functional | : V — R where

2/ 2_1)2dx+ = /u dx —(u, f) 12,

and where
V={ucW4Q) : u(0) =0and u(1) = 1/2}
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and f € L2(Q).
A global optimum point is not attained for J so that the problem of finding a global minimum for
] has no solution.
Anyway, one question remains, how the minimizing sequences behave close the infimum of J.
We intend to use duality theory to approximately solve such a global optimization problem.
Denoting Vp = W3’4(Q), at this point we define, F: V — Rand F; : V x V) — Rby

F) =5 [ (P =17 ax,

and 1
R g) =5 [ (0 +¢)? =17 dx.
Observe that

F(u) > inf Fi(u,¢), Yu € V.
() = jnf Fi(u,¢), Vu

In order to restrict the action of ¢ on the region where the primal functional is non-convex, we
redefine a not relabeled
Vo = {<p eWH(Q) ¢ (¢)2-1<0,in Q}

and define also
Pz VX V() — R,

F32V><V0—>R

and
G:VxVo—R

Ra(ug) = 5 [ (0 +¢2 =12 dxt 5 [ dx =, fra,

B(u,¢) = Fz<u,¢)+§ /Q ()2 dx

Bl )2 dx 9)

+20

and
_ K "2
Glu,¢) = Z/Q(u) dx
Ky "2
ot [P ax (10)
Denoting Y = Y* = L%(Q) we also define the polar functional G* : Y* x Y* — R by

G (v%v) =  sup {(u,0") 2+ (9, 09)12 — G(u, @)}

(u,¢)€VXVO
Observe that
. > . * * * _ * _ * .
inf J(u) = ( (u,(p),(v*,vg;?erxVox[Y*]Z{G (v*,09) = (u,v") 2 = (P, vp) 2 + F3(u, @) }

With such results in mind, we define a relaxed primal dual variational formulation for the primal
problem, represented by J; : V x Vp x [Y*]2 — R, where
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Ji(u, ¢, 0%, 09) = G*(v", 05) = (u,0") 12 = ($, 09) 12 + B3 (1, ).

Having defined such a functional, we may obtain numerical results by solving a sequence of
convex auxiliary sub-problems, through the following algorithm (in order to obtain the concerning
critical points, at first we have neglected the constraint (¢’)> — 1 < 0 in Q).

1. SetK=~0.landK; =120.0and 0 < e < 1.

2. Choose (u1,¢1) € V x Vp, such that ||u1]|1,0 < 1and [|¢; 1,00 < 1.
3. Setn=1
4.  Calculate (v}, (v§)n) solution of the system of equations:
a]ik (un/ 4)1’1/ ’U;kl/ (US)n)
=0
dv*
and . .
J1 (tn, Pn, 03, (V5)n) —0
v} -
%
that is e e i
aG (Un/ (Uo)n) — Uy = 0
dv*
e 3" (v}, (41)1)
9% WOn o)) _
v} on=0
so that
oF — 9G (utn, Pn)
" ou
and 2G( )
* Un,
(o) = L fn)

o

5. Calculate (u,11, $n+1) by solving the system of equations:

a]ik (un-‘rl/ (Pn+1/ v;kll (US)W>

ou =0
and N I
a]l (un+1l Pnt1, O, (Z’o)n) -0
o
that is OF
__v; _F ___éngﬂgiiLgblj;lZ = 0
and OF
—(v5)n + —3(14”;(}), Pui1) _ g

6. If max{||un — ttys1lleo, [|Pn+1 — Pullo } < € then stop, else set n := n + 1 and go to item 4.

At this point, we present the corresponding software in MAT-LAB, in finite differences and based
on the one-dimensional version of the generalized method of lines.
Here the software.

LR R R R R R R R R R R

1. clearall
m8=300;
d=1/m§;
K=0.1;
K1=120;
for i=1:m8

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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uo(i, 1) = i?+d/2;

vo(i,1)=i*d/10;

yo(i,1)=sin(i*d*pi)/2;

end;

k=1;

b12=1.0;

while (b12 > 107#3) and (k < 230000)

k=k+1;

for i=1:m8-1

duo(i,1)=(uo(i+1,1)-uo(i,1))/d;
dvo(i,1)=(vo(i+1,1)-vo(i,1))/d;

end;

m9=zeros(2,2);

m9(1,1)=1;

i=1;

f1 = 6% (duo(i,1) +dvo(i,1))> — 2;

m80(1,1,i)=-f1-K;

m80(1,2,i)=-f1;

m80(2,1,i)=-f1;

m80(2,2,i)=-f1-K1;

y11(1,i) = K* (uo(i +1,1) — 2% uo(i, 1)) /d*> — yo(i,1);
y11(2,i) = K1 % (vo(i +1,1) — 2% vo(i, 1)) /d%;

m12 = 2% m80(:,:,i) — m9 x d%;
mb50(:,:,1)=m80(:,:,i)*inv(m12);
z(:,i)=inv(m12)*y11(:,i)*dz;

for i=2:m8-1

f1=6x(duo(i,1) +dvo(i,1))> — 2;

m80(1,1,i)=-f1-K;

m80(1,2,i)=-f1;

m80(2,1,i)=-f1;

m80(2,2,i)=-f1-K1;

y11(1,i) = K* (uo(i +1,1) — 2% uo(i,1) + uo(i — 1,1)) /d*> — yo(i, 1);
y11(2,i) = K1 % (vo(i +1,1) — 2% vo(i,1) +vo(i — 1,1))/d?%;
ml12 =2+ m80(:,:,i) — m9 x d> — m80(:,:,i) * m50(:,:,i — 1);
m>50(:,:,1)=inv(m12)*m80(:,:,i);

z(:,1) = ino(m12) x (y11(:,i) * d> +m80(:,:,i) * z(:,i — 1));
end;

U(1,m8)=1/2;

U(2,m8)=0.0;

for i=1:m8-1
U(:,m8-i)=m50(:,:,;m8-1)*U(:,m8-i+1)+z(:,m8-i);

end;

for i=1:m8

u(i,1)=U(1,i);

v(i,1)=U(2,i);

end;

b12=max(abs(u-uo))

uo=u;

Vo=V;

u(m8/2,1)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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end;

for i=1:m8

y(@)=i"d;

end;

plot(y,uo)

Bt R R R R
For the case in which f(x) = 0, we have obtained numerical results for K = 0.1 and K; = 120. For
such a concerning solution u( obtained, please see Figure 1. For the case in which f(x) = sin(7x)/2,
we have obtained numerical results also for K = 0.1 and K; = 120. For such a concerning solution u
obtained, please see Figure 2.

0.5

04r b

031 ]

04 f 1

Figure 1. solution ug(x) for the case f(x) = 0.

0.5

0.45 ]

04 r b

0.35 ]

031 ]

0.25 ]

0.2 ]

0.15 b

011 b

0.05 ]

Figure 2. solution ug(x) for the case f(x) = sin(7mx)/2.

Remark 1. Observe that the solutions obtained are approximate critical points. They are not, in a classical sense,
the global solutions for the related optimization problems. Indeed, such solutions reflect the average behavior of
weak cluster points for concerning minimizing sequences.
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3.1. A General Proposal for Relaxation

Let 3 C R" be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q.
Consider a functional | : V — R where

J(u) = F(Vu) + G(u) = (u, fi)r2,

where
V= {u € WHAQRYN) : u=ugon 80},

up € CH(O;RN),

fi€ L2(Q,' RN ), G : V — R is convex and Fréchet differentiable, and

F(Vu) = [ f(Vu) dx,

where f : RNX" — R is also Fréchet differentiable.
Assume there exists N € N such that

W= {y e RN f(y) < f(y) | = UL W

where foreachj € {1,---,N} W; C RN*" is an open connected set such that dW; is regular. We also
suppose
WjﬂWk =Q,Vj #k

Define

W; = {Uj € Wy (RN ; Vo;(x) € W;, ae. in Q}

and define also

W = {v: (v1,---,0g) : v]-erVje {1,---,N} and supp v; N suppvk:Q,Vj;ék}.

At this point we define
) f(Vu(x) + Voi(x)), if Vu(x) e W;,
h5(u(x),v(x)) - { f(Vu(x)), / if VM(X) ¢ I/V]h, (11)
and
H(u) = vierIlAfl,,/Qh5(u'U> dx,
where

W, ={veW : Vu(x)+ Voj(x) € W, if Vu(x) € W;, ae.inQ, Vje {1,--- ,N}}.
Moreover, we propose the relaxed functional
Ju(u) = H(u) +G(u) = (u, f1) 2
Observe that clearly
inf J;(u) < inf J(u).

ueV ueV

4. A Convex Dual Variational Formulation for a Third Similar Model

In this section we present another duality principle for a third related model in phase transition.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Let ) = [0,1] C R and consider a functional | : V — R where

J(u) = %/Qmin{(u’—l)z,(u’—l—l)z} dx—l—%/Quz dx — (u, )12,

and where
V={uecW2Q) : u(0) =0and u(1) = 1/2}

and f € L2(Q).

A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.

Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.

We intend to use the duality theory to solve such a global optimization problem in an appropriate
sense to be specified.

At this point we define, F: V — Rand G : V — Rby

F(u) — %/Qmin{(u’—l)z,(u’—i—l)z}dx

_ 1 N2 . /
_ Z/O(u) dx /O|u|dx—|—1/2
Fy(u')

(12)

and 1
G(u) = E/Quz dx — (u, f)a.
Denoting Y = Y* = L?(Q)) we also define the polar functional F; : Y* — Rand G* : Y* — Rby
Fi(0%) = sup{(v,0%)12 = Fi(0)}
veY
1 2
= = v* dx+/ v*| dx, 13
> @2 dx+ [ o) (13)
and

G ((@")) = 51615{—<u',v*>L2—G(M)}

_ %/Q((v*)'+f)2 dx — 2o"(1) (14)

Observe this is the scalar case of the calculus of variations, so that from the standard results on
convex analysis, we have

inf J(u) = max{—F(v") - G*(— ("))}
Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation
is attained at some 9* € Y*.
Moreover, the corresponding solution 1y € V is obtained from the equation

=" @y

Finally, the Euler-Lagrange equations for the dual problem stands for

{ (v*)" + f' — v* — sign(v*) =0, inQ, 15)

=0
(@)(0) + £(0) =0, (@)"(1) + f(1) = 1/2,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where sign(v*(x)) = 1if v*(x) > 0, sign(v*(x)) = —1,if v*(x) < 0 and

—1 < sign(v*(x)) <1,
ifv*(x) =0.
We have computed the solutions v* and corresponding solutions 1y € V for the cases in which
f(x) =0and f(x) = sin(mx)/2.
For the solution u(x) for the case in which f(x) = 0, please see Figure 3.
For the solution ug(x) for the case in which f(x) = sin(7tx) /2, please see Figure 4.

0.6

0.4

031

0.1

Figure 3. solution ug(x) for the case f(x) = 0.

0.6

04r b

031 ]

04t 1

Figure 4. solution uy(x) for the case f(x) = sin(mx) /2.

Remark 2. Observe that such solutions ug obtained are not the global solutions for the related primal opti-
mization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning
minimizing sequences.
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4.1. The Algorithm Through Which We Have Obtained the Numerical Results

In this subsection we present the software in MATLAB through which we have obtained the last
numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that
is, for solving the equation

(v*)" + f' —v* — sign(v*) =0, inQ,
{ (v*)'(0) =0, (v*)'(1) =1/2. (16)

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

0%~/ (0%)2 + e,

where a small value for ¢; is specified in the next lines.
Ao K K KA A A KA KA KA A A KA KA

clear all
mg = 800; (number of nodes)
d=1/mg;
e; = 0.00001;
fori=1:mg
yo(i, 1) = 0.01;
y1(i,1) = sin(mwr*i/mg)/2;
end;
6. fori=1:mg—1
dyr(i,1) = (1 (i+1,1) = y1(5,1)) /d;
end;
7. fork =1:3000 (we have fixed the number of iterations)
i=1;
hy =1/+/v0(i,1)% +ey;
mip = 1+d2*h3+d2;
mso (i) = 1/m1p;
2(i) = mso (i) * (dy1(i, 1) * d%);
8 fori=2:mg—1
hs =1/+/v0(i,1)% + ey;
mip =2+ hy *d? +d*> — m50(i — 1);
m50(i) = 1/mqy;
2(1) = mso (i) # (i — 1) + dyy (i, 1)  d2);
end;
9. wv(mg,1)=(d/24+z(mg—1))/(1—mso(mg—1));
10. fori=1:mg—1
v(mg —1,1) = mso(mg — i) x v(mg — i+ 1) + z(mg — i);
end;
11. ov(mg/2,1)
12. vo =v;
end;
13. fori=1:mg—1
u(i,1) = (v(i+1,1) —v(i,1))/d +y1(i,1);

AN aERC N

end;

14. fori=1:mg—1
x(i) =ixd;
end;
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plot(x,u(:,1))

B R R R R R R R S T

5. An Improvement of the Convexity Conditions for a Non-Convex Related Model
Through an Approximate Primal Formulation

In this section we develop an approximate primal dual formulation suitable for a large class of
variational models.

Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet,
[17].

At this point we start to describe the primal variational formulation.

Let O C R? be an open, bounded, connected set which represents the middle surface of a plate
of thickness h. The boundary of (3, which is assumed to be regular (Lipschitzian), is denoted by 9().
The vectorial basis related to the cartesian system {x1, x,, x3} is denoted by (a,, a3), where & = 1,2 (in
general Greek indices stand for 1 or 2), and where a3 is the vector normal to (), whereas a; and a; are
orthogonal vectors parallel to Q). Also, n is the outward normal to the plate surface.

The displacements will be denoted by

= {ﬁa, 123} = fiqa, + fizaz.
The Kirchhoff-Love relations are

ﬁﬂ( (xlr X2, x3) = ulx(xlrx2) - x3w(x1/x2),tx

and ﬁ3(X1,X2,X3) = w(xl,xz). (17)

Here —h/2 < x3 < h/2 so that we have u = (u,, w) € U where

u {u = (1, w) € WH2(Q;R?) x W22(QQ),

ow
ua:w:a—n:OonaQ}
= WA(R?) x W (Q).
It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.
We also define the operator A : U — Y x Y, where Y = Y* = LZ(Q,' szz), by

Au) = {r(u),x(u)},

Uy p+ U WaW,
Yaplu) = LB 4 —F,

Ka/g(u) = —Wap-
The constitutive relations are given by
Nuc‘B (u) = Htxﬁ/\y'Y)\y (u), (18)

Ma/i(u) = hzxﬁ/\yk)\y(u)r (19)

where: {H, B Ay} and {ha pAn = %Haﬂ A }, are symmetric positive definite fourth order tensors. From

now on, we denote {Hupry} = {Hupry} " and {upry} = {hapry} .
Furthermore {N,g} denote the membrane force tensor and { M,z } the moment one. The plate
stored energy, represented by (G o A) : U — R is expressed by

(GoM)w) = 5 [ Nupl0)7ap) dx+ 5 [ Map()eg(u) d 0)
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and the external work, represented by F : U — R, is given by
F(u) = (w, P) 2 + (ta, Pa) 12, (21)

where P, P, P, € LZ(Q) are external loads in the directions a3, a; and a, respectively. The potential
energy, denoted by | : U — R is expressed by:

J(u) = (GoA)(u) — F(u)

Define now J3 : U — R by
J3(u) = J(u) + Js(w).

where

gKbw K(bw—1/100)
Js(w) = o/1 S dx+10 [ ° de.

In such a case fora = 2.71, K = 185,b = P/|P| in QY and

U={uel : |w|o<00land Pw > 0ae.in Q},

we get
B _ ), )
ow  odw ow
. 0J(u)
~ S+ 0(£30), 22)
and
*hu) 321(14)+32]5(”)
ow? T w2 ow?
%] (u)
=3 + O(850). (23)

This new functional J3 has a relevant improvement in the convexity conditions concerning the
previous functional J.

Indeed, we have obtained a gain in positiveness for the second variation 82{53), which has
increased of order O(700 — 1000).

Moreover the difference between the approximate and exact equation

9] (u)
Jw

=0

is of order O(+£3.0) which corresponds to a small perturbation in the original equation for a load of
P = 1500 N /m?, for example. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

5.1. A Duality Principle for the Concerning Quasi-Convex Envelope

In this section, denoting
Vi={p=¢(xy) e WHQxQKR?) : $=00nQ x 030},

we define the functional J; : U x V] — R, where
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1 1
1) = Grl{waph) + Ga {3 (0up + ) + gugy + atos
—(w, P) 2 — (ta, Pu)p2- (24)
where 1
Gi({wap}) = > /Qhaﬁ)\yw,aﬁw,/\y dx
and,

1 1
G ({ 5 (M,X,[; + M‘B,zx) + (Ptx,yﬁ + EZU,,XZU,[;})
1 1 1
o 210] /Q /Q Hyprp E(“a,ﬁ +ugy) + 4)0Cr]/ﬁ(x’y) + FWalt,p
1 1
X (E(“W i) + Pry, (X y) + Ew,/\w,y> dx dy

We define also

R({u},9) = inf (),

weWy=(Q)
and
= inf ).
J3({ua}) 4)13/1 J2({ua}, ¢)
It is a well known result from the modern Calculus of Variations theory (please, see [18] for details)
that
inf [() = inf  Js({ua}):
uel {1y WGP (QR2) '
At this point we denote
Yi =Yy =Y =Y; = L2(Q x O;RY)
and

Yo = Y5 = L2(Q x O;R?).
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Observe that

J(u)
1 1
= Gi({was}) + G2 ({ E(u“’ﬁ +ugy) + Pays + Ew”"w'ﬁ}>
—(w, P)2 — (ua, Pa) 2
= Gi({wap}) — (Wap, Map) 12 + (Wap, Mag) 2

1
+@/ / w,a(x), le(x/y) dx dy — <w, P>L2
1 1
|Q| / / ), Qu(x,y) dx dy + GZ({E(Ma,‘B +upu) + Puys + Ew,txw,‘[i}>
l *
_@ / / (‘(uzx,lB + u/S,zx) + Qba,yﬁ + Ew,aw,}g),vw(x,y) dx dy

1 *
|Q|/ /( Ma/5+uﬁa)+¢ay5+2Zanlg> Uap(%,y) dx dy — (ua, Pa) 2

> lnf { ((03)ap, Mag) 12 + G1((v3)ap) }
+w€Vi/?£(Q){<w,a‘B,Ma‘B>L2 + ﬁ /Q /Qw,a(x) Qu(x,y) dx dy — (w, P>L2}
st ot
X0} (x,y) dx dy — (ua, Pa)p2 + == al / / (,y)Qu(x,y) dx dy}
> —GI(M)— m /Q /Q v,jjﬁ Qu Qp dx dy — m /Q /Q HappuvypVsy dx dy, (25)

Yuel, (M,Q)eC*v= {vaﬁ} € A* where A* = A] N A; N B*,

AT = {{vpg} €Y7+ (vjpg)y, =0, inQ},

* * * 1 *
A = {{vaﬁ} S E al (/Q Uap dy)
X

= {{vzﬁ} S E {v;ﬁ(x,y)} is positive definite in () x Q}

+ P, =0, inQ},
B

and
Cr = {(M,Q) €Y XYy 1 Mygap— </QQ“ dy) -P=0, inQ}.
Xa
Also .
{os) = {oi}
and
{Hapru}t = {Haprn}
in an appropriate tensor sense.
Here it is worth highlighting we have denoted,
Gi(M) = sup {{(v3)ap, Map)2 — G1(v3)}
v3€Y3
1 7 —
= E /Qhaﬁ)\yMaﬁMAy dx, (26)
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where we recall that

{haﬁ/\y} = {hucﬁ/\y}_l
in an appropriate tensorial sense.

Summarizing, defining J* : C* x A* — R by
FMQ,e) = —GiM)— 5 [ [ (355) Qu Qg dx dy
’ ’ 1 2|Q| aJa ap B
_L/ / Hapau00}, dx dy, 27)
20| Ja Ja HYaBAp

we have got

inf J(u) > sup (M, Q),v").
uel ((M,Q),0*)eCH x A*

Remark 3. This last dual functional is concave and such a concerning inequality corresponds a duality principle
for the relaxed primal formulation.

We emphasize such results are extensions and in some sense complement the original duality principles in
the works of Telega and Bielski, [1-3].

Moreover, if ((Mo, Qo),v;) € C* x A* is such that

6" (Mo, Qo),v5) =0,
it is a well known result from the Legendre transform proprieties that the corresponding (ug, ¢o) € V x Vj such
that

(w0),ap = hapru(Mo)ap,

and

+ A
(08)ap = Ha/gA<(”°)A’” '; (10) 0 N (P0) Ay, . (P0)ny N %(020)/\(7]20)]4>’

(vg)rxﬁ,yﬁ =0,
is also such that

61 (o, ¢0) = 0
and

J1(uo, o) = J*((Mo, Qo), v)-

From this and

inf J(u) = inf u,¢) > su *((M,Q),v*),
ueV]() (u,¢)erv1h( ¢) ’ ,Q),v*)I;C*xA*](( Q),v")
we obtain
= .f
J1(uo, ¢o) (u,@lngl Ji(u, )

= sup J* (M, Q),v%)
((M,Q),v*)eC*x A*

= J*((Mo, Qo), )
= inf J(u). (28)

Also, from the modern calculus of variations theory, there exists a sequence {u, } C V such that

uy — ug, weakly in 'V,
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and
J(un) = J1(ug, po) = inf J(u).
ueV
From this and the Ekeland variational principle, there exists {v,} C V such that
||un _vnHV S 1/”/
J(vn) < inf J(u)+1/n,
ueV
and
[6](vn)llv= < 1/n, Vn €N,
so that
vy — ug, weakly in'V,
and

J(vn) — J1(uo, $po) = L}Q‘f/](“)-

Assume now we are dealing with a finite dimensional version of such a model, in a finite elements of finite
differences context, for example.
In such a case we have
vy — g, strongly in RN

for an appropriate N € N.
From continuity we obtain
O] (vn) = 0] (up) =0,

J(wn) = ] (uo)-

Summarizing, we have got
J(uo) = inf J(u),
ueV

5] (uo) = 0.

Here we highlight such last results are valid just for this finite-dimensional model version.

6. A Duality Principle for a Related Relaxed Formulation Concerning the
Vectorial Approach in the Calculus of Variations

In this section we develop a duality principle for a related vectorial model in the calculus of
variations.

Let O C R” be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q) =T..

For 1 < p < 400, consider a functional | : V — R where

J(u) = G(Vu) + F(u) = (u, f)r2,

where
V= {u € WLP(Q;]RN) DU =ugon 80},

ug € CH(Q;RN) and f € L2(Q;RN).
We assume G : Y — Rand F : V — R are Fréchet differentiable and F is also convex.
Also
G(Vu) = /Qg(Vu) dx,

where ¢ : RN*" — R it is supposed to be Fréchet differentiable. Here we have denoted Y =
LP(Q; RN*m),
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We define also J; : V x Y7 — Rby

Ji(w, ¢) = G1(Vu + Vy¢) + F(u) — (u, f) 2,

where
Y; = W' (Q x ;RN)

and

Gi(Vu+ V) = iy [ [ 8(Fux) + V() dxdy.

Moreover, we define the relaxed functional J, : V — R by

Jo(u) = inf J1(u,¢),

PVo

where
VWw={peY: : ¢(x,y) =0, on Q) x 9Q}.

Now observe that

Ji(u,¢) = Gi(Vu+Vyp)+ F(u) — (u,f)2
= —|lﬁ|‘/n/(v)z)*(x,y)'(VM"‘V]/(P(X,]/)) dydx+Gl(vu+vy¢)

+|16| /n /Q o' (x,y) - (Vi + Vyp(x,y)) dy dx + F(u) = (u, f)r2

inf{—|(1)—|/0/ﬂv*(x,y)-v(x,y) dydx+G1(v)}

veY,

v

+ f {ﬁ/@/ﬂv*(x,y)-(Vu+Vy<P(x,y))dydx+F(u)—<“:f>L2}

in
(v,¢) eVxVy

= i)~ P (a0 G ) +5)
+|16| o (/Q v*(x,y) dy) ® nu dr, (29)

V(u,¢p) € Vx Vy,v* € A*, where
A*={v" eY; : div,o*(x,y) =0, inQ}.
Here we have denoted

Gi (o) = sup{fﬁ' Lo o) oty dy dx—cmf)},

veY)

where Y, = LF(Q x Q;RN*") Y3 = L1(Q x O; RN*"), and where

l.}.l:l,
P4

Furthermore, for v* € A*, we have

F* (divx (ﬁ/gv*(x,y) dy) —|—f> - |16| o (/Q v (x,y) dy) ® nug dl

1 X
- (v,ﬁé&%{‘@ J 7 ) (T4 V) dy e = )+ G ) |, (G0)
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Therefore, denoting J5 : Y5 — R by

(%) = ~Gi() ~ F* (dive( [ ' omy v ) ) gy [ (o Gow ) @ mg

we have got
inf Jo(u) > sup J3(v").
ueV vFCA*

Finally, we highlight such a dual functional J; is convex (in fact concave).

6.1. An Example in Finite Elasticity

In this section we develop an application of results obtained in the last section to a model in
non-linear elasticity.

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q).
Concerning a standard model in non-linear elasticity, consider a functional J : V' — R where

J(u)
1 ujj+uj; 1 U +uji 1
= 3 /Q Hij (1]2]1 + 2”m,i”m,j> (2]1 + 2um,k”m,l) dx
—(ui, fi) 12 (31)

where f € L>((;R3) and V = W&’Z(Q;RE‘).

Here {H;jy; } is a fourth-order and positive definite symmetric tensor (in an appropriate standard
sense). Moreover, u = (11, U, u3) € V is a field of displacements resulting from the f load field action
on the volume comprised by Q).

At this point, we define the functional J; : V x V; — R, where

J1(u, ¢)
1 uij+upi  Piy Py 1
- 210] /Q /Q Hijkl( > + > E(um,i + Pmy,) (U + Pmy;)

ugr +uk | Pry T 1
(M P T )i + o))

—(ui, fi) 12, (32)

where
Vi ={p e W2(Qx R : ¢ =00n0Q %0}

We define also the quasi-convex envelop of |, denoted by Q; : V — R, as
= inf ,P).
Qy(u) nf Ji(u, ¢)

It is a well known result from the modern calculus of variations theory (please see [18] for details),
that

inf () = inf Qy(u).
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Observe now that, denoting Y7 = Y} = L2(Qx LR, Y, = Y; = L2(Q x O;R3), and
uiit+ui; Py TPy 1
Gl( 4 2 L + ! 2 +E(”m,i+4’m,yi)(”m,j+47m,yj)>
1 uiit+ui; Py TPy 1
= M/Q/QHW(I( < 2 s + k 2 + 5(”m,i+¢m,yi)<um,j+¢m,yj)>
U +ue Py, T, 1
X ( 5 T 5 %ot E(um,k + Py, ) () + Pmyy,) | dx dy (33)

we have that

Ji(u, )
uiitui; Py Py 1
c1< T S (i by (i +4>m,yj)> — (i, fi)2
1 uij+uji Py TPy 1
= —W /Q /Q( 5 + ) + E(um,j + (Pm,yi)(um,]' + ¢m,y]~) 0'1] dx dy

Ui+ uj; ¢z‘,y- + ¢j,yf 1

2 2

1 u.[. + 1/[',‘ q)i,y- + 4)].,%_ 1
+W/Q/Q( 1]2 “ ]2 +E(”m,i‘l‘ﬁbm,yf)(”m,j‘|‘¢7m,yj))0'ij dx dy — (u;, fi) 2
. 1
veyl{_@ /Q /QUI‘/‘TiJ' dx dy — Gl({vij})}
wint {=o [ [ )y Qyaxdy+ 5 [ [ (o 5 (@adoaln) ) i d

v;relYl | 02)ij ij Y Q[ Ja Ja ij 5 \\02)mi 02 )mj Y

Uij + uji ‘Pi,yj+¢f,yi> . }
(u,¢ EVxV1{|Q|// QZ] < 2 + 2 dx dy <”1rf1>L2

o Hij 03 03 dx d
2|Q|/Q/Q ijkl ij Ok ax ay

1 .
~5] /Q /Q 57 Qui Quk dx dy, (34)

Y
5
=X

v

V(u,p) € VxVy,(0,Q) € A*, where A* = ATNA;N A},

AT = {(U',Q) € Yl* X Yl* : Uij,yj + Qij,yj =0, inQ)x Q}

:{(U,Q)eyl*xyl* : ﬁ(/ﬁ(aﬁ) dy) |Q|(/ (Qlj)dy> Y fi=0, inﬂ},

A3 ={(0,Q) € Y] x Y] : {0y} is positive definite in O x Q}.

Hence, denoting

* 1 + 1 _
J*(¢,Q) = ~20] /Q/QHijkl 0ij O dx dy — 210 /Q/Q(Tij Qmi Quk dx dy,

we have obtained

inf J(u) > sup J(0,Q).

ueV (U,Q)GA*

Remark 4. This last dual functional is concave and such a concerning inequality corresponds a duality principle
for the relaxed primal formulation.
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We emphasize again such results are also extensions and in some sense complement the original duality
principles in the works of Telega and Bielski, [1-3].
Moreover, if (09, Qo) € A* is such that

0]*(00,Qo) =0,

it is a well known result from the Legendre transform proprieties that the corresponding (1o, po) € V x Vy such

that

u) +upp | Py + P, 1
(00)ij = Hijkl( > + > e E(um,k + Py ) (Uing + Py, )

and
(Q0)ij = (00)im(v2y)mjs
is also such that
6J1(uo, o) = 0
and

J1(uo, o) = J* (00, Qo)-

From this and

inf J(u) = inf u,d) > su *(o,Q),
ueV]( ) (u,(p)erVlh( ¢) (U,Q)I::q*]( Q)

we obtain

Ji(uo, o) = inf  Ji(u,¢)

(u,(,b)EVX Vl

= sup J(0,Q)

(0,Q)eA*

= ]* (0'(), QO)

= inf J(u). (35)
ueV

Also, from the modern calculus of variations theory, there exists a sequence {u, } C V such that
uy — ug, weakly in'V,

and

J(un) = J1(uo, o) = leel‘f/](u)-

From this and the Ekeland variational principle, there exists {v,} C V such that
||un - UnHV <1/n,

J(on) < inf J(u) +1/n,
ueV

and
6] (vn) ||y < 1/n, Vn €N,
so that
vy — ug, weakly in'V,
and

J(vn) — J1(uo, ¢o) = L}g‘f/](”)-

Assume now we are dealing with a finite dimensional version of such a model, in a finite elements of finite
differences context, for example.
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In such a case we have
vy, — g, strongly in RN

for an appropriate N € N.
From continuity we obtain
6](vn) — 6] (u) = 0,

J(on) = J(uo).
Summarizing, we have got

J(uo) = inf J(u),

ueV
5](110) =0.

Here we highlight such last results are valid just for this finite-dimensional model version.

7. An Exact Convex Dual Variational Formulation for a Non-Convex Primal One

In this section we develop a convex dual variational formulation suitable to compute a critical
point for the corresponding primal one.

Let O C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).

Consider a functional | : V — R where

J(u) = F(ux,uy) = (u, f)r2,

V =Wy?(Q) and f € L2(Q).
Here we denote Y = Y* = L2(Q)) and Y; = Y; = L3(Q) x L2(Q)).
Defining
Vi={ueV: ule <K}

for some appropriate K; > 0, suppose also F is twice Fréchet differentiable and

det{a2P(”x’”y ) } £0,

001007

Yu € Vj.
Definenow F; : V =+ Rand F, : V — Rby

€ €
Fi(uy, uy) = F(uy, uy) + 5 /0 u dx + 5 /Quﬁ dx,

and ] )
Fy (1t 1ty) = E/Qui dx+§/0u§ dx,

where here we denote dx = dx;dx;.
Moreover, we define the respective Legendre transform functionals F; and F; as

Ff(v") = (v1,07) 12 + (v2,03) 12 — Fi(v1,02),

where v1,v, € Y are such that

oF oF; (v1,v2)
1 avl !
ot — oF; (v1,v2)
2 avz !

and
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E(v") = (v1,01 + f1)12 + (v2,03) 12 — F2(01,02),
where v1,v, € Y are such that
% o 81—"2(01,02)
Ul ‘I‘fl == a'()l ’
x an(’Ul,'U2)
vy = BT
2
Here f; is any function such that
(fi)x=f,inQ.
Furthermore, we define
J'(@") = —F(@©)+F(@©)
= —F©)+ 5 [ @+ AP+ 5 [ (03) (36)

Observe that through the target conditions
vl + fi = ey,

v5 = ey,

we may obtain the compatibility condition
(U1 + f1)y — (02)x = 0.
Define now
A" = (0" = (0],03) € B,(0,0) C Yf : (0} + i)y — (03)x = 0, in 2},

for some appropriate r > 0 such that [* is convex in B, (0, 0).

Consider the problem of minimizing J* subject to v* € A*.

Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the
associated Lagrangian

Ji(@" 9) =T (@) + (¢, (v1 + fly = (02)x)12,

where ¢ is an appropriate Lagrange multiplier.
Therefore

K@) = —F )+ [+ AP dxs o [ (092 dx
e, (01 + )y — (03)a)re @)

The optimal point in question will be a solution of the corresponding Euler-Lagrange equations
for J;.
From the variation of J{ in v] we obtain

L) v+ 3,

v} € ay (38)
From the variation of J{ in v; we obtain
aF* * *
LR v 09 (39)

Jv; € ox

From the variation of J{ in ¢ we have
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(01 + fly — (02)x = 0.
From this last equation, we may obtain u € V such that
vl + f = euy,

and
vy = elly.

From this and the previous extremal equations indicated we have

oFy (v7) 99 _
- a’Z}S{ + u;x - @ — 0,

and oF (v*) d
_oh\w 9 _
avi +uy + o 0.
so that
aFl(ux — Qy, Uy + GUx)
avl

o]+ f =

7

and
. aPl(”x — @y, Uy + (Px)
- avz

v3
From this and equation (38) and (39) we have

e (81—“1*(0*)) . (81—“1*(0*))
Jv} N Jv; y

(1 + fi)x + (02)y
= —elyy — ey + (0] )x + (v3)y + f = 0. (40)

Replacing the expressions of v] and v3 into this last equation, we have

aFl(“x - ?y,uy‘f‘(l)x)) i (aFl(ux - qu,uer(px)
x

—EUyy — EUyy +
. vy ( 8’01 81)2

)y+f=0,

so that

OF (uy — Py, y + ®x) N oF (uy — Py, iy + Px)
0v1 X vy

) +f=0,inQ. (41)
y
Observe that if
Vip =0
then there exists # such that u and ¢ are also such that

~

ux_(Py:ux

and
Uy + @x = ily.
The boundary conditions for ¢ must be such that I € Wg’z .
From this and equation (41) we obtain
dJ(i1) = 0.

Summarizing, we may obtain a solution & € W(}'z of equation 6] (i) = 0 by minimizing J* on A*.
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Finally, observe that clearly J* is convex in an appropriate large ball B,(0,0) for some appropriate
r>0

8. Another Primal Dual Formulation for a Related Model

Let Q C R3 be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

- . [t 2 p\2
J(u) = Z/QVM Vudx—i—z/o(u B)- dx
—(u, fr2, (42)
«>0,B>0,7>0,V=W>2Q)and f € [3(Q).
Denoting Y = Y* = L2(Q)), definenow J; : V x Y* — Rby

Ji(u,05) = —%/QVLL-VL{ dx — (u?,v3) 2

K

—i—?l /Q(—'yVZLH—ZvSu — ) dx+(u, g2
1 *\2 *

toa /Q(vo) dx-l-ﬁ/ﬂvo dx, (43)

Define also
AT={ueV :uf>0 ae inQ},
Va={ueV : |ullo <Ks},

and
Vi=V,NA"

for some appropriate K3 > 0 to be specified.
Moreover define
B'={og €Y : |ogllo < K}

for some appropriate K > 0 to be specified.

Observe that, denoting
¢ =—yViu+205u—f
we have 5 ( )
%] (u, v 1 2
W =2 +4Kju
aZ * M,Z)* i i
]la(u2 0) _ ,Yv2 _200 _’_Kl(_,)/vz _’_200>2
and 5
0 JF (u, v .
%7’30) = K1(2¢ 4 2(—yV*u +20u)) — 2u
so that
det{ész(u, v5)}

o(v})? ou? ouov;

Ki(—yV?+205)%  yVZ+20] + dau?
« «
—4K3 9% — 8Ky p(—yV? + 20%)u + 8Ky gu
+4Ky (—yV2u + 205 u)u. (44)

L) P ) <a2ﬁ‘(u,va>>2
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Observe now that a critical point ¢ = 0 and (—V?u + 2vju)u = fu > 0in Q.
Therefore, for an appropriate large K; > 0, also at a critical point, we have
det{d*J3 (u,05)}
2 _ VZ 20 2
— Ky fu-C L(”) +K1w > 0. (45)

Remark 5. From this last equation we may observe that [} has a large region of convexity about any critical
point (uo,d), that is, there exists a large r > 0 such that ] is convex on B, (ug, ;).

With such results in mind, we may easily prove the following theorem.
Theorem 1. Assume Ky > max{1, K, K3} and suppose (1o, 0}) € Vi x B* is such that
01 (uo,9y) = 0.

Under such hypotheses, there exists r > 0 such that ] is convex in E* = B (uo,9;) N (V4 x B¥),

6] (uo) =0,
and
—J(uo) = 1(uo,99) = inf Ji(u,v5).
(u,05)€E*

9. A Third Primal Dual Formulation for a Related Model

Let QO C R3 be an open, bounded and connected set with a regular boundary denoted by 9.
Consider the functional | : V — R where

J(u) = %/QVqudx—i—%/n(uz—ﬁ)zdx
—(u, f)12, (46)

«>0,B>0,7>0,V=W>2Q)and f € [*(Q).
Denoting Y = Y* = L2(Q)), definenow [} : V x Y* x Y* — Rby

Ji(u,v5,07) = Z/QVu Vudx—l—z QKu dx

ool (v7)?
_<M,Ul>L2+§A)mdx

+2(ocl+£) /0(03 —a(u? = B))? dx + (u, f)
- Q(03)2 dx—ﬁ/ﬂvg dx, W)

where ¢ > 0 is a small real constant.
Define also
AT ={ucV :uf>0 ae inQ},

Va={ueV : |ullo <Ks},

and
Vi=V,NA"

for some appropriate K3 > 0 to be specified.
Moreover define
B ={og €Y : loglleo < Ky}
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and
D* ={o] € Y* : [[o]]| < Ks},

for some appropriate real constants K4, K5 > 0 to be specified.

Remark 6. Define now
Hy(u,v}) = —yV? + 20§ + dau®

For an appropriate function (or, in a more general fashion, an appropriate bounded operator) M, define
BT = {‘US € B* : 208 + M; > 81},

for some small parameter g1 > 0.

Moreover, define
E*={ueVy : Via|u| > /|M; +yV?|.

Since for (u,v§) € Vi x Bf we have u f > 0, in Q, so that for uq,uy € V; we have
sign (u1) = sign (up) in Q,

we may infer that E* is a convex set.
Moreover if (u,v§) € E* x B, then

Vaalu| > \/|My +vV?2|

so that
4o’ > My +yV?
and
205+ M > &
so that

Hy(u,08) = —yV? +20) + 4au® > ¢;.

Such a result we will be used many times in the next sections.

Observe that, defining
¢ =~ (s~ p)

we may obtain

OJ; (u,v5,03) 2 L
ou? A +zx+s " g00<~|—e
o0 1
9(vr)2 205 +K
and
Pl o)
0udv} o
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so that
seed T 0,750
Judv;
2
_ PR (w0, 05) 3 (w,v3,05) (927 (w03, v5)
o(v;)? ou? ouov;
_ —y V2 + 20} +4““—jeu2 - 250
—2v5 +K
= H(u,v}). (48)

However, at a critical point, we have ¢ = 0 so that, for a fixed vy € B* we define the non-active
but convex restriction

(Cy ={uevi: (9 <e},
for a small parameter € > 0.
From such results, assuming K >> max{K3, Ky, K5}, and 0 < ¢ < €1 < 1, we have that

H(u,v3) >0,

forvy € B andu € E* N (Cl);é.
With such results in mind, we may easily prove the following theorem.

Theorem 2. Suppose (1o, 9],0;) € (E* N (Cl)j;a) x D* x Bj is such that
01 (uo, 93, 95) = 0.
Under such hypotheses, we have that

6](ug) =0

and

J(up) = inf J(u)

ue(cl);%
= Ji(uo,97,95)
= inf { sup Ji(u, v{,vs)}

(H,U{)G(Cl)zé x D* ’USGB*

o inf  J{(w01,0) o (49)
vgeg* (u,zq)e(cl);;axp* 1 1270

Proof. The proof that
6] (ug) =0
and
J(uo) = Ji (uo, 67, %5)

may be easily made similarly as in the previous sections.
Moreover, observe that for K > 0 sufficiently large, we have

0%J3 (o, 87, 05)

(0 2 <0, Yvy € B*
0
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so that this and the other hypotheses, we have also

“(ug, 0%,05) = inf “(u, 0,0
Ji (1o, 07, 0p) (u,v;)e(cl);*xD*h( /01, 0p)
0

and
Ji (uo,1,89) = sup Jy (o, 07, 0)-
vy EB*
From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J(uo)

Ji (0,07, 5)

inf { sup Ji(u, v{,vs)}

(u,vi‘)G(Cl);s x D* 3B

= su inf i (u,08,08) b 50)
USEII;* (u,v{)e(cl);;axD* 1 1-90

Moreover, observe that

T (ug, 07,05) = inf T (u, 0f, 0
1 (10,91, 95) (u,z;;)e(cl);;éxD* 1(u,07,9)

IN

Z/Vu-Vudx—i—E/uzdx
2 Ja 2 Jao

K
2,08 — E/Quz dx

1 k)2 _ ok
_E/Q(UO) dx ,B/Qvo dx
1

by Jo(0 — = B dx— )

IN

E‘é&{% [V Vudr + o, 05)
_%/ﬂ(vg)zdx—ﬁ/ﬂvé dx
_|_2(“1—+8)/Q(v§—¢x(u2—/3))2 dx—<u,f>Lz}

= 2 [ vu-vuar+ g [ (2 -p2ax

—(u, )2, Yu € (Cl):;(’;~ (61)

Summarizing, we have got

J(uo) = Ji (uo,97,95) < inf  J(u).
ue(Cy)

X
Ak
%
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From such results, we may infer that

J(up) = inf J(u)

”E(Cl)ZS
= Ji(uo,97,95)
= inf { sup Ji(u, UT,US)}

(u,UT)E(Cl);;S x D* USGB*

= sup { inf Ji (1, vi‘,vé)}. (52)

USGB* (u,UT)G(Cl):;S x D*
The proof is complete. [J

10. An Algorithm for a Related Model in Shape Optimization

The next two subsections have been previously published by Fabio Silva Botelho and Alexandre
Molter in [8], Chapter 21.

10.1. Introduction

Consider an elastic solid which the volume corresponds to an open, bounded, connected set,
denoted by Q C R? with a regular (Lipschitzian) boundary denoted by 9Q2 = Ty UT; where [N Ty = @.
Consider also the problem of minimizing the functional | : U x B — R where

R 1 1 »
J(u,t) = §<“irfi>L2(Q) + §<uirfi>L2(1"t)'

subject to
(Hijx (t)ew (1)) + fi = 0in Q,
(53)
Hij (t)ex (w)n; — fi = 0, on Ty, Vi € {1,2,3}.

Here n = (11,13, n3) denotes the outward normal to 0Q) and

U = {u=(uy,upuz) € W*,R?) : u=(0,0,0)=00nTy},

B = {t : ) — [0, 1] measurable : / t(x) dx = t1|Q|},
o)

where
0<t <1

and | Q)| denotes the Lebesgue measure of Q).

Moreover u = (u,up, u3) € WH2(Q; R3) is the field of displacements relating the cartesian system
(0, x1, %2, x3), resulting from the action of the external loads f € L2(();R®) and f € L2(T;;R3).

We also define the stress tensor {c;i} € Y* =Y = L?(O; R3*3), by

03 (1) = Hija (t)e (u),
and the strain tensor e : U — L2(Q; R3*3) by
1 .
el-]-(u) = E(ui,j + 1/!]',,'), Vi, j € {1,2,3}.

Finally,
{Hija ()} = {tHj + (1 = HHjp},
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where H" corresponds to a strong material and H! to a very soft material, intending to simulate voids
along the solid structure.

The variable ¢ is the design one, which the optimal distribution values along the structure are
intended to minimize its inner work with a volume restriction indicated through the set B.

The duality principle obtained is developed inspired by the works in [1,2]. Similar theoretical
results have been developed in [7], however we believe the proof here presented, which is based on
the min-max theorem is easier to follow (indeed we thank an anonymous referee for his suggestion
about applying the min-max theorem to complete the proof). We highlight throughout this text we
have used the standard Einstein sum convention of repeated indices.

Moreover, details on the Sobolev spaces addressed may be found in [6]. In addition, the primal
variational development of the topology optimization problem has been described in [7].

The main contributions of this work are to present the detailed development, through duality
theory, for such a kind of optimization problems. We emphasize that to avoid the check-board standard
and obtain appropriate robust optimized structures without the use of filters, it is necessary to discretize
more in the load direction, in which the displacements are much larger.

10.2. Mathematical Formulation of the Topology Optimization Problem

Our mathematical topology optimization problem is summarized by the following theorem.

Theorem 3. Consider the statements and assumptions indicated in the last section, in particular those refereing
to Q) and the functional | : U x B — R.
Define J1 : U x B — R by
Ju(u, t) = =Gle(u), t) + (ui, fi) 12(00) + (ir i) 121

where 1
Gle(w),t) = 5 [ Hyu(t)ey(w)en(w) dx,

and where
dx = dx1dxpdxs.

Define also J* : U — R by
J@) = inf{ )}
= inf{—Gle(u), ) + (ui, fid 20y + (Wi fid 2y - (54)
Assume there exists cy,cq > 0 such that

0
Hijklzijzkl > C0ZijZij

" H}jklzijzkl > c1zijzij, Vz = {z;j} € R3*3, such that z # 0.
Finally, define | : U x B — R U {400} by
J(u,t) = J(u,t) + Ind(u,t),
where

0, if (u,t) € A%,

55
+oo, otherwise, (55)

Ind(u,t) = {
where A* = A1 N Ay,

Av={(ut) e UxB : (05(u)),; + fi =0, inQ, Vi € {1,2,3}}
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and
Ay ={(u,t) € Ux B : oy(u)n;j — f; =0, on T}, Vi € {1,2,3}}.

Under such hypotheses, there exists (1, tg) € U X B such that

t = inf t
J(wo,to) (u,t)lgLIxB](u' )

= supJ(d)

nel
= J*(uo)
= f(uO/ tO)
= (t,a)ingxC* G*(o,t)
= G* (U(uO)/ tO)/ (56)

where

GHot) = Sup{<7)1]/0'11>L2(Q) G(v,t)}
ve

= 5 /Qﬁijkl(t)o'ijo'kl dx, (57)
{Hia(t)} = {Hya ()} !
and C* = Cy N Cy, where
C = {0’ cY* : O-ij,j"'fi =0,inQ), Vie {1,2,3}}

and
Co={ceY* : gynj— f; =0, onTy, Vi € {1,2,3}}.

Proof. Observe that

inf  J(u,t) = mf{mf](u t)}

(u,t)eUxB teB

- ;gg{zgg{gg{é | Hiat)ei e () d
+ (i, (Hija (e (1)) j + fi) 12
H,]kzu)ekz( u) ]—ﬁ->Lz<m}}}

— (i
- teB{ueu ueu /Hl]kl Beij()e (u) dx
_/()Hijkl t eij(ﬁ>ekl(u) dx
+ (i, fi) 120 + <ﬁi'fi>L2(Ft)}}}
- teB{ilelg{ / Hija (t)eij()ew (1) dx
(@ fizqey + (00 )2y L)
_ inf{ inf G*(U,t)}. (58)

teB | 0eC*
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Also, from this and the min-max theorem, there exist (ug, ty) € U x B such that
inf ,t) = inf t
it ) %23{;‘;5 hu >}
= plighen)
= J1(uo, to)
= tlgg Ji(uo, t)
= J"(uo). (59)
Finally, from the extremal necessary condition
/1 (uo, to) _ 0
ou
we obtain
(Hijp (to)exi (uo)),j + fi =0in Q,
and
Hijkl(to)ekl(uo)nj —fi=0onTy, Vie {1,2,3},
so that 1 1
Gle(uo)) = 5 {(u0)ir fidr2() + 5 {(u0)is fi) 2(ry)-
Hence (ug, ty) € A* so that Ind(ug, tp) = 0 and o (ug) € C*.
Moreover
J*(uo) = —Gl(e(uo)) + {(u0)i fi)12(0) + ((u0)is fi) 2r)
= G(e(uo))
G(e(uo)) + Ind(uo, to)
= ](uOI tO)
= G*(U'(uo),to). (60)

This completes the proof. [

10.3. About a Concerning Algorithm and Related Numerical Method

For numerically solve this optimization problem in question, we present the following algorithm
1. Sett; =05inQandn=1.

Calculate u,, € U such that

]1(”nrtn) = sup ]1(7/‘, tn)-
uel

3. Calculate t,, 1 € B such that
Ji(un, tyi1) = tlgg Ji(un, t).

4. If |ty 1 — tullo < 107* or n > 100 then stop, else set n := 1 + 1 and go to item 2.

We have developed a software in finite differences for solving such a problem.

Here the software.
3 36 3 34 36 3 5 38 36 3 5 3 3 3 3 34 3 3 o 34 3 3 3 3 3 3 o 3 S N NN

1. clearall
global Pm8 d w uv Ea Eb Lo d1 z1 m9 dul du2 dv1 dv2 3
m8=27;
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m9=24;

c3=0.95;

d=1.0/mS;

d1=0.5/m9;

Ea=210 * 10°; (stronger material)
Eb=1000; (softer material simulating voids)
w=0.30;

P=-42000000;
z1=(m8-1)*(m9-1);
A3=zeros(z1,z1);
fori=1:z1

A3(1,i)=1.0;

end;

b=zeros(z1,1);
10=0.000001*ones(z1,1);
ul=ones(z1,1);
b(1,1)=c3%*z1;

for i=1:m9-1

for j=1:m8-1

Lo(i,j)=c3;

end; end;

for i=1:z1

x1(1)=c3*z1;

end;

for i=1:2*m8*m9
x0(1)=0.000;

end;

XW=XO0;

xv=Lo;

for k2=1:24

c3=0.98*c3;

b(1,1)=c3*z1;

k2

b14=1.0;

k3=0;

while (b14 > 1073?) and (k3 < 5)
k3=k3+1;

b12=1.0;

k=0;

while (b12 > 10~49) and (k < 120)
k=k+1;

k2

k3

k
X=fminunc(’funbeam’,xo);
x0=X;
b12=max(abs(xw-x0));
xw=X;

end;

for i=1:m9-1
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for j=1:m8-1

E1 = Lo(i,j)?  (Ea — Eb);
ex=dul(ij);

ey=dv2(ij);
exy=1/2*(dv1(ij)+du2(i;));

Sx =Elx* (ex +wxey)/(1—w?);
Sy =Elx (wxex+ey)/(1—w?);
Sxy=E1/(2*(1+w))*exy;
dc3(i,j)=-(Sx*ex+Sy*ey+2*Sxy*exy);
end;

end;

for i=1:m9-1

for j=1:m8-1
F(j+(i-1)*(m8-1))=de3( )

end;

end;

for k1=1:1

k1

X1=linprog(f,[ ],[ ],A3,b,uo,ul,x1);
x1=X1;

end;

for i=1:m9-1

for j=1:m8-1
Lo(i,j)=X1(+(m8-1)*(i-1);

end;

end;

bl4=max(max(abs(Lo-xv)))
xv=Lo;

colormap(gray); imagesc(-Lo); axis equal; axis tight; axis off;pause(le-6)
end;

end;

4 4 3438 38 36 36 3 3 3 3 o o e 4 3636 36 3 3 3 S S S oA K 33 3 3 A A K K KA K

Here the auxiliary Function "funbeam’

function S=funbeam(x)
global Pm8 d w u v Ea Eb Lo d1 m9 dul du2 dv1 dv2
for i=1:m9
for j=1:m8
u(ij)=x(+(m8)*(i-1);
v(1,j)=x(mM8*mMI9+(i-1)*m8+j);
end;
end;
for i=1:m9
end;
u(m9-1,1)=0;
v(m9-1,1)=0;
u(m9-1,m8-1)=0;
v(m9-1,m8-1)=0;
for i=1:m9-1

for j=1:m8-1
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dul(ij)=(u(ij+1)-u(ij)/d;
du2(ij)=(u(i+1,)-u(i)/d1;
dv1(i)=(v(ij+1)-v(ij)/d;
dv2(i)=(v(i+1))-v(i,})/dL;

end;

end;

S=0;

for i=1:m9-1

for j=1:m8-1

El = Lo(i,j)®* Ea+ (1 — Lo(i,)3) = Eb;
ex=dul(ij);

ey=dv2(ij);
exy=1/2*(dv1(ij)+du2(i;));

Sx =Elx (ex +wxey)/(1—w?);
Sy = El* (wxex +ey)/(1 —w?);
Sxy=E1/(2*(1+w))*exy;
5=5+1/2*(Sx*ex+Sy*ey+2*Sxy*exy);
end;

end;

S5=S*d*d1-P*v(2,(m8)/3)*d*d1;

B R e R R Rk X R R

For a two dimensional beam of dimensions 1m x 0.5m and t; = 0.63 we have obtained the following
results:

1. Case A: For the optimal shape for a clamped beam at left (cantilever) and load P = —4 10°Nj at
(x,y) = (1,0.25), please Figure 5.

2. Case B :For the optimal shape for a simply supported beam at (0,0) and (1,0) and load P =
—410°Nj at (x,y) = (1/3,0.5), please Figure 6.
In the first case the mesh was 28 x 24. In the second one the mesh was 27 x 24

Figure 5. Density t(x,y) for the Case A.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025

38 of 360

Figure 6. Density ¢(x,y) for the Case B.

11. A Duality Principle for a General Vectorial Case in the Calculus of Variations

In this section we develop a duality principle for a general vectorial case in variational optimiza-
tion.

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q). Let | : V — R be a functional where

J(u) = G(Vuy, -+, Vun) — (u, f) 2,

where
V =W, (;RN)

and
f=f fn) € 2(GRY).

Here we have denoted u = (uq,--- ,uy) € V and
(, fliz = (ui, fi)rz,

so that we may also denote

Assume

G(Vu) = /Qg(Vu) dx
where ¢ : R3N — R is a differentiable function such that
8(y) = +oo
as |y| — oo. Moreover, suppose there exists « € R such that
= inf .
=i

It is well known that
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a = inf J(u)

= inf J**(u)

uev

= f{(Go V)™ ()~ (uf)2). (61)

ueV

Under some mild hypotheses, from convexity, we have that

inf{(G o V)™ () — {u, f)yz}
= sup {~(Go V) (~div ')} = ~(GoV)'(f), (62)

v*EA*

where
A*={v* e Y=Y = 2(;RN) : divo* + f =0}.

Now observe that the restriction v = Vu for some u € V is equivalent to the restriction
curlv; =0, in Q)

where v = {v;} = {vi]'}?zl, Vie {1,---,N}, with appropriate boundary conditions, so that with an
appropriate Lagrange multiplier ¢ = {¢;}, we obtain

(GoV)*(—divo*) = sgg{(u, —div v*) ;2 — G(Vu)}

= sup{(Vu,v");2 — G(Vu)}

ueVv

< inf {sup{(v, v* )12 — G(v) + (¢, curl U)Lz}

PEY* | pey
— inf G*(¢v* 1). 63
¢1£Y* (v* + curl ¢) (63)

where we have denoted
curl v = {curl v;}

and
curl ¢ = {curl ¢;}.

Joining the pieces, we have got

inf J(u) = inf{G(Vu)—(u, f)12}

ueV
> sup {—G"(v" +curlg)}, (64)
(v*,p)eA* xY*

where we recall that Y = Y* = L2((Q; R3N),
We emphasize such a dual formulation in (v*, ¢) is convex (in fact concave).

12. A Note on the Galerkin Functional

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).
Consider the functional | : V — R where

- . Sy
J(u) = Z/QVu Vudx+4/0u dx

—g /Q W2 dx — (u, )2 (65)
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Here V = Wy?(Q),y >0, « >0, § > 0.
We denote also
Y =Y*=L*Q).
At this point we define
At={ueV :uf>0,inQ},
Vo={ueV : |ul|lo <Kz},
for some appropriate real constant K3 > 0 and
Vi=ATNW.
Observe that
J'(u) = =9Viu+au’ — B~ f,
so that we define the Galerkin functional J; : V — R by
1 1
Rw) = S @I = 5 [ (~7V2u+au® — pu— f)? dx.
2 2 Jo
From this, we get
P (u) 3
r . = (—yVu+au® — pu — f)éau
+(—y V2 +3au® — B)2. (66)

Define now
@2 = (—yV2u +au® — pu — f)6au.

At this point, for an appropriate small real constant ¢; > 0 and bounded constant operator
M > g1, we set the intended non-active restriction

Vi3alu| > /My + V2 + B,
By ={ueV; : V3aju| > \/IM; +vV2+Bl|}.

Observe that since for u € V; we have u f > 0in Q) so that if 3, up € Vj then

and define

sign(uy) = sign(uy),in Q,

we may infer that By is a convex set.

V3alu| > \/|M1 + V2 + B,

3au® > My + ’sz + B,

Furthermore, if u € By, then

so that

and hence
J(u) = —y V2 4+ 3au? — B> M; > ¢ > 0.

Observe now that 5
g2 2 2
52 = 120(—yV* 4+ 3au” — B).
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From such a result we may infer that

2
a(P2>

2 = 0, on By,

so that ¢, is convex in Bj.
For a small parameter ¢ > 0 we define the intended non-active restriction

2| <& inQ),

and define
Bs = {u € By : |(p2| <g, inQ}.

Assuming 0 < e < g1 K 1,
Summarizing, if u € B, then

82J1(u) > 0.
With such results in mind, we define the following optimization problem for finding a critical
point of J.
Minimize 1 1
Rw) = S @I3 =5 [ (=772 +a’ = pu— )2 dx,
subject to

u € Bs.

Finally, we may also define the optimization problem of minimizing

J(u) = KiJi(u)+J(u)

= % (—yV2u +au® — Bu — f)? dx
0

+1/Vu-Vudx+§/u4dx
2 Ja 4 Jo
—g/nuz dx — (u, f)r2, (67)

subject to
u € Bs.

Here K; > 0is a large real constant.

13. A Note on the Legendre-Galerkin Functional

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).
Consider the functional | : V — R where

J(u) = %/QVu~Vudx+%/Qu4dx
—g QuZ dx — (u, f)p2 (68)

Here V = W;2(Q), 7y >0, a >0, § > 0.
We denote also
Y =Y* =L%(Q)
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and Fi: V=R, F:V—-RandF;:V — Rby
Fi(u) = Z/ Vu-Vudx
2 Jo !
«
F(u) = 1 /Qu4 dx,
_ E/ 2
F(u) = 2 ot dx.
Moreover, we define F, F;, F; : Y* — R by
Fi(o1) = sup{(u,7);2 — Fi(u)}
ucV
_ 1 ()
= E 0 —’)/vz dx, (69)
Fy(03) = sup{(u,v3)12 — Fa(u)}
ueV
_ 3 @)
= Z 0 a1/3 dx, (70)
Fs(v3) = sup{(u,v3);2 — F3(u)}
ucV
1 2
= = : . 71
35 Jo (03" dx )
Observe now that these three last suprema are attained through the equations,
* aFl(u)
v = 5 = —'yVZu,
*x aPZ(u) — 3
vy =g =
* 8F3(1/l) —
B P

From such results, at a critical point, we obtain the following compatibility conditions

pe UL (_)/__
-2\ B B

From such relations we have

vp U3
_,sz - ‘3 ’
and 3
* U*
i=(3)
so that .
o] = Wz(v—g’)
p
and
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Moreover, we define the functional F; : Y* — R, by
Fj(0") = sup{(u,v] +v3 —03);2 — (u, f)2}.
ueVv
Therefore
0 ifo] +05 —0v;— f=0,inQ
Ff(v*) = / 1 2 3 ! ! 72
1 (@) { 400, otherwise. (72)

Hence, a critical point of | corresponds to the solution of the following system of equations

and
v +v5—0v3—f=0,inQ.

From this last equation we may obtain
vp=-v+ o3t f,

so that the final equations to be solved are

—v§+v;+f+fyvz<%3> =0

and
(i)
vy —al =) =0,inQ),
2 p

with the boundary conditions
*

U3
u=-=>=0, ondQ.
B

With such results in mind, we define the Legendre-Galerkin functional J* : [Y*]?> — R, where

2
* [, % 1 * * Vzv*
I('U) = E/Q(—'U2+’U3+f+’yﬁ3> dx

*\ 3 2
+%/Q<v§—tx(%3> ) dx. (73)

At this point, defining
()
=0vy—al -2,
¢ 2 ‘B
we obtain
2r)
9(v3)? ’
T (v*) YV2\* | 962 (05)*
8(0§)2 = <_1_ B > + pBo +O(9),
%I (v*)  —3a(v})? (o YV?
dvsdvy BB B )
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From such results we may infer that
qee( P @)Y RE) P ()
00390} ~ 0(0%)? 9(v3)? 00300}
2 02\ 2
= (—1—%—#3&%) + O(9) (74)

Observe that a critical point ¢ = 0 so that 6>]*(v*) > 0 at a neighborhood of any critical point.
At this point we define

AT = {v* = (v3,0%) € [Y']? %f >0, inQ},

D* = {v* = (v3,05) € [Y']? : [[o" ]l < K},

for an appropriate real constant K > 0.
Define now E* = AT N D*,

Ci={v" = (v3,v5) € E* : ¢*<¢ inQ},

for a small real constant € > 0,

2 *)2
C = {v*:(vi,zﬁ)eE* : (—1—%4—3&(?3) ) 281},

and
C*=CynG;.

Similarly as done in the previous section, we may prove that C* is a convex set.
Furthermore, for 0 < ¢ < ¢; < 1, we have that J* is convex on C*.

Summarizing, we may define the following convex optimization problem to obtain a critical point
of the primal functional J,

Minimize [*(v3,v3) subject to v* = (v3,v3) € C*.
We call [* the Legendre-Galerkin functional associated to .

13.1. Numerical Examples
We have obtained numerical solutions for two one-dimensional examples.

1. Fory=1.0a=23.0,=2300f=10, inQ = [0,1].
For the respective solution please see Figure 7.

2. Fory=0.01,a=30 =300 f=10, inQ = [0,1].
For the respective solution please see Figure 8.
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3.5

251 b

Figure 7. Solution u(x) = v}(x)/p for the example 1.

3.5

251 b

Figure 8. Solution u(x) = v§(x)/p for the example 2.

14. A General Concave Dual Variational Formulation for Global Optimization

Let Q C R3 be an open, bounded and connected set a regular (Lipschitzian) boundary denoted
by 0Q).
Consider a functional | : V — R where

J(u) = G(u) — (u, f)2, Yu e V.

Here V = W,”(Q), f € L*(Q2) and we also denote Y = Y* = L2(QQ).
Assume there exists & € R such that

a = inf J(u).

ueVv

Furthermore, suppose G is three times Fréchet differentiable and there exists K > 0 such that

9°G(u)
ou?

+K>0VueV.
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Define now J; : V x Y — R where,
]1(1/[, 'U) = Gl (u/ U) + P(u)/
where . K
_ _ ¢ 2 o _ 2
G1(u,v) = G(v) 2 Jo? dx + > Q(v u)* dx,
and )
F(u) = E/ﬂuz dx — (u, f)2.
Moreover, we define the polar functionals G : Y* x V — Rand F* : Y* — R, where
Gi(v*,u) = sup{(v,v");2 — G1(u,0)}
veY
= —Gg (v"+Ku)+ 5/ u? dx (75)
— %, > s ,
Gg. (v* + Ku) = supy (v,0") 2 — G(v) — K v? dx + E/ v? dx
Ke B veg e 2 Ja 2 Ja ’
and
F*(=v") = sup{—(u,v")2 — F(u)}
uevVv
1 2
= _— *_ . 7
5 | =) dx (76)
At this point we define the functional J; : Y* x V — R by
* [,k * * K 2 * *
J5(v*,u) = —Gg (v +Ku)+5/ u® dx — F*(—v").
Q
With such results in mind we define
Vi={ueV : ||ulle <Kz},
and

D*={v" € Y" : ||v"]|lo < Ky},

for appropriated real constants K3 > 0 and K4 > 0.
Moreover, we define also the penalized functional J3 : Y* x V — R where

K d 2
B =it w -2 [ ( - 2ot +£u> ix.

Finally, we remark that for ¢ > 0 sufficiently small and K; > 0 sufficiently large, /3 is concave in
D* x Vj around a concerning critical point. We recall that a critical point

o 3G

™ +eu =0, in Q.

15. A Related Restricted Problem in Phase Transition

In this section we develop a convex (in fact concave) dual variational for a model similar to those
found in phase transition problems.
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Let Q = [0,1] C R. Consider the functional | : V — R where
J(u) = %/Qmin{(u’—i—l)z, (u' —1)%} dx
1
+§/Qu2 dx — (u, )2
1 "2 / !
= = dx — dx+1/2
3 P ax— [ | dx+1/
1
g e et e @
Here
V={uecW?Q) : u(0) =0and u(1) = 1/2}.
We also denote V; = W,*(Q),and Y = Y* = [2(Q).
Furthermore, we define the functionals Gand F : V x V; — R by
1
G/I/:_// /2d_/ "y dx+1/2,
(u',v") 2Q(u+v) x Q|u v dx+1/
and 1
F(u,v) = 5 /Quz dx — (u, f) 2.
Moreover we define J; : V x V; — Rby
Ji(u,0) = G(u',v') + F(u,v),
and consider the problem of minimizing J; on the set
A={(u,0) € VxV : (v)? <Ky inQ}.
Already including the Lagrange multiplier ¢ concerning such restrictions, we define
_ T2 2
a(14,0,0) = Ji(1,0) + 3 (¢ (o)? — Ka) 2.
Observe now that
1
]2(”/ o, (P) = ]l(u/ U) + §<4)2/ (,U/)Z - K2>L2
1
= G(,v) + 5 (9% (0 — Ka)a
+F(u,v)
= —W,0}) 2 — (0, 03) 2+ G, 7))
1
+§<<P2r (v')? = Ka)p2
(', 01) 12 + (0, 03) 12 + F(u, 0)
> inf  {—(v1,0])12 — (v2,03) 12 + G1(v1, 72, )
(v1,02)€EY XY
1
—I—§(¢>2, (02)* = K2>L2}
+ inf  {(,0]) 2 + (0, 03) 12 + F(u,0)}
(u,v)eVxVy
— —Gi(v},03,¢) — F*(0},05), ¥(u,0) € V x Vi, (07,05,9) € [Y'F,  (78)

where 1
Gi(u', 7', ¢) = G/, v') + §<<P2/ (0')? = Kp) 2.
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Also,
Gi(o1,02,¢) = sup  {(v1,07) 12 + (01,07) 12 — G1(v1, 02, ) }
(Ul,vz)EYXY
1 *
= 5 L@ dx
1 (v* _ v*)z
* 4 _/ 1~ 9
+ [ ol g [ 00
K> 5
+ > /Q([) dx, (79)
where
1 *\/ 2 ok . *\/ .
B (v%) :{ 5 Jo((@) + f)? dx — o5 (Du(1), if (03) ' 0,inQ), (80)
+oo, otherwise.

From this we may infer that v; = ¢, in (), for some c € R.
Summarizing, denoting v* = (v},v3) = (v}, ¢), and

J'(0",¢) = =G (v",¢) — F*(v")

we have got

inf Jy(u,v)> sup J (0% ).
(u,v)eA ('U*,(P)GY* xRxY*

We have developed numerical results by maximizing the dual functional [* for two examples,
namely.
1. Example A: In this case, we consider f(x) = cos(7tx)/2, K = 1074,
For the optimal
up = (v3)" + f,
please see Figure 9.

2. Example B: In this case, we consider f(x) = cos(7x)/2, K, = 30.
For the optimal

ug = (of)' + f,

please see Figure 10.
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0.5

0.45 b

04r b

0.35 b

031 ]

0.25 b

0.15 b

04 f 1

0.05 b

Figure 9. Solution u((x) for the example A.

0.5

04r b

031 b

0.2 ]

01F 1

0.2 b

-03 1 b

-0.4 1 b

Figure 10. Solution ug(x) for the example B.

16. One More Dual Variational Formulation

In this section we develop one more dual variational formulation for a related model.
Let Q = [0,1] C R and consider the functional ] : V — R defined by

J(u) = %/()((14’)2—1)2 dx-l—%/nuz dx — (u, )12,

where
V={ucW4Q) : u(0) =0and u(1) = 1/2}.

We define also the relaxed functional J; : V x Vj — R, already including a concerning restriction
and corresponding non-negative Lagrange multiplier A2, where

il o, ) = 5 [ (040212t 5 [0 = (u, f) o+ (A7 (02— K)o
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where
Vo={veW,*Q) : (¢/)>-K<0inQ}.

Observe that

1 1

3 (O #0212t 5 [0 dr— (e + (A% (02 = K)o

= (o, (W +9)? 1)+ %/ (' +0)?—1)%dx
Q
+(05, (' +0' ) = 1) 2 + (A%, (0')? = K) 2 — (', 0}) 2 — (0, 03) 12
1
(08 o+ (0, 03) 2 + E/Quz dx — (u, f)2
1

e 1 ,
J;l’ely{ (v5, )2 + 5 /Q(w) dx}

inf {(0h, (01 +02)* = 1)1z + (A2, (02) = K) 2 = (01,012 — (02,08) 12}
(v1,02)€Y XY

1
+  inf {(u’,v}‘)Lz—F(v/,U;)Lz-f-z/ﬂuzdx—<“/f>L2}

AV

(1,0)eVXVy
1 2
= = ()24 —/ ‘4

5 Q(UO> X QUO X
RNV N N T T

4Ja v 2 Jo 2A

1 . 1 )
—E/Q((vl)’—l—f)z dx—i/QKAZ dx + o} (Du(1). (81)

Here, we highlight v = c € R in (), for some real constant c.
Hence, denoting

* * 1 * *
]1 (v ,A) - _E 0(00)2 dx_/()vo dx
1 (v9) 17 (o] —93) dx
4Ja v 2Ja  2A?
1 *y/ 2 _1/ 2 x
> Q((vl) + f)" dx > QKA dx + 07 (1)u(1) (82)

and

we have obtained

inf  Jo(u,0)} > sup Ji(@", A).
(1,0)eVXVy (v*,A)EA* X [Y*]xRxY*

Finally, for
A*={vy5€Y" : vi>€ein O}

we emphasize J{ is concave on A* x [Y*] x R x Y*.
Here £ > 0 is a small regularizing real constant.

Remark 7. The constraint (v')? — K < 0, in Q is included to restrict the action of v on the region where the
primal functional is non-convex, through an appropriate constant K > 0.

17. A Model in Superconductivity Through an Eigenvalue Approach

In this section we intend to model superconductivity through a two phase eigenvalue approach.
Let QO = [0,5] C R be a straight wire corresponding to a one-dimensional super-conducting

sample.
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Consider the functional ] : V x V x R — R where

- n : s 4
J(u,v,E) = 5 /QVu Vudx + 7 /Q|u| dx

2
—%/Q lu|? dx

+E/ Vv'Vvdx—k&/ v|* dx
2 Ja 2 Ja
2
—w—lz/ lo|? dx
2K5 Ja
E
—2</Q(|u|2+|v|2) dx—mT>. (83)

Here, in atomic units, my is the total electronic charge, V = W&’Z(Q) and we set a7 = 10*
corresponding to higher self-interacting energy which is related to a normal phase. We also set
ay = 107! corresponding to a lower self-interacting energy which is related to a super-conducting
phase and respective super-currents.

Moreover, we set y; = 72 = 1, and initially w = 1.8 which is gradually decreased to w = 1.0.

Furthermore, we define

2
2 |ul
|(PN| |Ll|2—‘r |Z)|2
and
2 _ o]
|¢S| |u|2+ ‘Z)|2

where ¢y corresponds to a normal phase and ¢s to a super-conducting one.

At this point we observe that the temperature T = T(x, t) is proportional the frequency w/ (27)
of vibration for the normal phase.

We start the process with w = 1.8 which in atomic units corresponds to a higher temperature and
gradually decreases it to the value w = 1.0

Between w = 1.2 and w = 1.0 the system changes from an almost total normal phase to an almost
total super-conducting phase, as expected.

We highlight that the temperature is proportional to the vibrational kinetics energy

1 ory(x,t) oryn(x,t
Ba(r) = 5 [ 0D Orlol)

so that for
rn(x, t) = e“'ws(x)

and for a suitable vectorial function ws, we have

T x E] w?
so that we may model the decreasing of temperature T through the decreasing of w?.

For w = 1.8, for the corresponding normal phase ¢ and super-conducting phase ¢g, please se
Figures 11 and 12, respectively.

For w = 1.0, for the corresponding normal phase ¢ and super-conducting phase ¢g, please se
Figures 13 and 14, respectively.
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Figure 11. Solution ¢y (x) for the w = 1.8.

« 10-1 08

Figure 12. Solution ¢g(x) for the w = 1.8.
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Figure 13. Solution ¢y (x) for the w = 1.0.

Figure 14. Solution ¢g(x) for the w = 1.0.

Finally, we have set w; /K3 ~ 1 which for large w; corresponds to the super-currents.

18. A Simplified Qualitative Many Body Model for the Hydrogen Nuclear Fusion

In this section we develop a qualitative simple model for the hydrogen nuclear fusion.

Let QO = [0,L]> C R® be a box in which is confined a gas comprised by an amount of ionized
deuterium and tritium isotopes of hydrogen.

Though a suitable increasing in temperature, we intend to develop the following nuclear reaction

Deuterium®™ + Tritium* — Helium* ™ + Neutron (energetic).

We recall that the ionized Deuterium atom comprises a proton and a neutron and the ionized
Tritium atom comprises a proton and two neutrons.

Under certain conditions and at a suitable high temperature the ionized Deuterium and Tritium
atoms react chemically resulting in an ionized Helium atom, comprised by two protons and two
neutrons and resulting also in one more single energetic neutron. We emphasize the higher kinetics
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neutron energy level has many potential practical applications, including its conversion in electric
energy.

At this point we denote by mp, mr, mp, and my the masses of the ionized Deuterium, Tritium
and Helium atoms, and the single neutron, respectively.

Therefore, we have the following mass relation

mp +mr = my, + my.

To simplify our analysis, in such a chemical reaction, denoting the total masses of ionized
Deuterium, Tritium, Helium and single Neutrons by (mp)r, (m7)r, (my,)r and (my)r we assume
there is a real constant ¢ > 0 such that

(mD)T =cmp, (mT)T =cmr, (mHE)T =cmy, (mN)T = Ccmy.

With such statements and definitions in mind, we define the following functional J, where

J(¢,1) = ](¢D, 91, ¢H. PN/ ¥) = G(VP) + F() + Ec (¢, 1),
where, in a simplified many body context,

1
90 (x,9) 1> = o) (1) * + l¢n (% y) Ploy (v) P—,
mp

1
o (2, 9)I = 19y (1) + (I, (x, )2 + |¢§2(x,y)!2)|¢,f(y)\2mfp/

1
|pne (6, )2 = 135 ()2 + (Ipn (x9) P + |9 (1, 9) 1) |oafs (v) P 5—,
2 mp

N = PN (x).
Here x,y € Q) C R3 refers to the particle densities.
Furthermore, we assume ’y? >0, 75 >0, 71[\), >0, 7{,1 >0, ')’I{Iz > 0, ’ygf >0, ’yﬁi >0,
’yg; >0, yv >0, andap >0, a7 >0, g, >0, any >0,apr >0, ag, vy >0, so that
D
G(Ve) = — | (V) (Vey) dy
’)/E D D dx d
5 Q(VCPN) (Von) dx dy

,),T
2 [ (Teh) - (Vo) dy

7T
+5" | (V9ky) - (Vok,) dx dy
,)/T
57 | (V9k) - (VL) dx dy
H,
+ 220 [ (gl (vl dy
2 Jo 2p 2p
H,
+ 00 [ (Tglle) - (Vglt) ax ay
2 fo) N1 N]
T H, H,
T /Q(V(PNZ) (Vo) dx dy
NTN [ (Von) - (Vo) dx, (84)
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and,
. 2
Flg) — “D \ch(x ‘-31']/) 62()C|1,|§2D)|(§1,§2)| dx dy dg, dé,
sz |<PT X — 51,y 52();1 ’g’;T)(flng)'z dx dy d&; d&,
IXDT |¢D(x - Cl,y) %?1 |g;T)T§1’§2)| dx dy dgy dgp
lXHe/ P, (x Cl,y) §2<)€|1,|§’2P>Ie|(§1’§2)| dx dy d&; di,
o lon(x—3)Plen (@)
e
2
ocHE / |pm, (x |(xf:;/3/ (gf)ézg‘er(g]” dx dy &, dés (85)
and the kinetics energy is expressed by
d d
Elp,r) = / 9ol SP - S dx dy
YN 5
o o 5 e
2 OIN BrN
2/ Nl 5 5 ax v %)

where we also assume
rp ~ e“tws(x,y),
rr = e“twg(x,y),
so that considering such a vibrational motion, the temperature T is proportional to w?, that is

T o w?.

Therefore, an increasing in T corresponds to a proportional increasing in w?.

Summarizing, we have supposed

1 1
Eclgn) ~ 5 [ o +1grfdx i+ 30t [ lonfdx G

so that we represent the increasing in T through an increasing in w?.

Moreover, we denote by my the mass of a single neutron and by m,, the mass of a single proton.
Thus, denoting also by A1, A, the proportion of non-reacted and reacted masses respectively, we
have the following constraints.

1.
S 198w P dx = m,

[ 188, Gey) P dx = m,
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3.

S 185 e dx = my,
4.

L Jok (o) P e = m,
5.

S Jok o) P e = m,
6.

| #P @R dy = Ay em,,
7.

L oE @) dy = My emy,
8.

|85 dy = 2z (20 my),

Similar constraints are valid corresponding to the charge of a single proton.
We have also the following complementing constraints,

1.
/Q |¢p|* dx dy = Ay(mp)r,

2.
/Q |pr|* dx dy = Ay (mr)7,

3.
/Q |pp, |* dx dy = Az (mp, )T,

4.
/Q [pn|* dx dy = Az (mn)T,

5.

AM+A=1.

With such results and statements in mind and simplifying the interacting terms, we re-define the
functional | now denoting it by J;, here already including the Lagrange multipliers concerning the
constraints, where
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D
higwEA) = L

(V9P - (V45 dy

Q

D
+ 2 [ (VoR) - (V4R) dx ay
L]
= [(V¢f)- (Vop) d

,YT
Nl/ V‘PNl (chNl)dx dy

o7
% | (V9R,) - (Vky) dx dy
H,
T2p H, H,
T Q(V(PZP) ' (V(PZp) dy

_|_

+

H,
N H, .
21 Q(V(PNl) : (V(/’Nl) dx dy

2
2 [ (Vi) - (Vi) dx dy
+ 50 [ (Von) - (Vpw) dx

&p 4 aT 4

+ 52 [ ool dx+ 5L [ jorl* ax
PR P
2 [ pu e+ 2 [ g dx
~? [ (ol + lgr[?) dx

—wi /Q |oN1? dx + Jaux,s (87)
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where the functional [, stands for

T = = [L(ER)s®)

(
( )

~ [ (E)rw) (/Q 9%, ()P dx—mN) dy

7/Q(Eﬁj)s(y) (/Q [P (x, ) deN) dy

~ [0 ([ 08 = )

(o) ( [ 9P WP dy—rsem, )

~(Ena( [ 05w dy—rsem,

~(En)s (/Q 215 (x, ) dy — Ao 2cmp>

—Es (/Q \pp |2 dx dy — Al(mD)T>

_Eg (/Q |2 dx dy — M(mT)T)

_E, (/Q \pr, |2 dox dy — /\z(mHe)T>

—Es </Q N[ dx dy — Az(mN)T)
*Eg(}\l + Ay — 1). (88)

Remark 8. In order to obtain consistent results it is necessary to set

(an, ap,) > (ap,ar).

In such a case, a higher temperature corresponding to a large w?, though such a nuclear reaction, will result
in a small Ay and a higher kinetics energy for the neutron field, corresponding to a large w? and A, closer to 1.

19. A More Detailed Mathematical Description of the Hydrogen Nuclear Fusion

In this section we develop in more details another model for the hydrogen nuclear fusion.

Remark 9. Denoting by i € C the imaginary unit, in this and in the subsequent sections, for the time-dependent
case we generically define the gradient of a scalar function u(x, t) with domain in R*, denoted by Vu(x, t), as

Vu(x,t) = (iug(x,t), 1y, (x, 1), 10y, (X, 1), 1, (x, 1)),

50 that \
Vu-Vu=—u?+ Zui},.

j=1

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).

Here such a set ) stands for a control volume in which an ionized gas (plasma) flows. Such a gas
comprises ionized Deuterium and Tritium atoms intended, through a suitable higher temperature, to

chemically react resulting in atoms of Hellion and a field of single energetic Neutrons.
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Symbolically such a reaction stands for

Deuterium® 4 Tritium™ — Helium™" + Neutron (energetic).

We recall that the ionized Deuterium atom is comprised by a proton and a neutron and the ionized
Tritium atom is comprised by a proton and two neutrons.

Moreover, the ionized Helium atom is comprised by two protons and two neutrons.

As previously mentioned, resulting from such a chemical reaction up surges also an energetic
neutron which the higher kinetics energy has a great variety of applications, including its conversion
in electric energy.

We highlight the model here presented includes electric and magnetic fields and the corresponding
potential ones.

Denoting by t the time on the interval [0, ], at this point we define the following density functions:

1.  For the Deuterium field
901 = 9P OF + 08 (e v DL . P
2. For the Tritium field
oy, )2 = ¢y () + (19, (0w, 1)1 + 198, (v, t)lz)lqbg(y,t)lznip/

3.  For the Helium field

1
|pn (9, )2 = (935 (v, )2 + (1one (%, ) > + [ (. 8) ) e (. ) P 5=
p p 2 my

4.  For the Neutron field
ON = On(x, 1),

5. For the electronic field resulting from the ionization

Pe = Pe(X, Y, ).

Furthermore, we define also the related densities

po(ut) = [ on(xy O dx,

pr(y.t) = [ lor(xy D dx,
P (v, 1) = /Q [P, (x,y, 1) dx,
pn(x, 1) = lpn(x, D),
pely,t) = /Q e (x,y,1)|* dx.
For the chemical reaction in question we consider that one unit of mass of fractional proportion

ap of ionized Deuterium and a7 of ionized Tritium results in one unit of mass of fractional proportion
ap, of ionized Helium and ay of neutrons.
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Symbolic, this stands for

1=ap+ar=uay, +an.

Concerning the control volume () in question and related surface control (), we assume such
a volume has an initial (fot t = 0) amount of ionized Deuterium of (mp )y and an initial amount of
ionized Tritium of (m7)o. The initial amount of ionized Helium and single neutrons are supposed to
be zero.

On the other hand, about the surface control 9}, we assume there is a part (}; C 0Q2 for which is
allowed the entrance and exit of Deuterium and Tritium ionized atoms.

We assume also there is another part 002 C dQ) such that 9021 N9y = @ for which is allowed
only the exit of ionized Helium atoms and neutrons, but not their entrance.

In 00, is allowed the exit only (not the entrance) of ionized Deuterium and Tritium atoms.

Indeed, we assume the following relations for the masses:

1.
(mp,N)T(t) = mpy,N(t) + /Ot /aQ (om,(x,T) + pn(x,T))u-n dS dr,
2.
mpy,N(t) = mp,(t) + mn(t),
3.
mi ()= [ pr (1) dx,
4.
my(t) = /QpN(x,t) dx,
5.
(mp,)r(t) = /QPHE(X, t) dx + /Ot /BQ pm, (x, T)u - n dldr,
6.
(mn)T(t) = /QPN(x,t) dX+/O /602 on(x, T)u-n dldr,
7.
(mn)r(t) _ an
(mp)r(t)  am,’
so that
anmy, )1 (t) = ap, (mN)T(t),
8.
(mo)(6) = (mo)o— [ [ (po(x 0)u-ndS dv—ap(mx)r(1),
9.
t
(mr)(t) = (mr)o — /0 /anluanz (pr(x,T))u-ndS dt —ar(mpy, N)7(t),
10.
t
(me)T(t) = me(t) +/0 /mz(pe(x, T))u-n dS dr,
11.

me(t) = /Qpe(x,t) dx.
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12.
me(t) = [ 19 xt|2dx—+/ 97 (x, )P dx +/ gt

Here n denotes the outward normal vectorial fields to the concerning surfaces.

Having clarified such masses relations, we define the functional

J(¢,p,t,u,E A, B)

where

J= G(Vu) —|—F( )-l-EC((p,l') +F +F+F,
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’2

andwhereweassume'yp>0 7p>0 'yN>0 'yN>O ’)/N>0 ’y >0’y > 0, ’yﬁ§>
0, yv >0, ')/g>0a1’1d£tD>0 ar >0, “Hg>0 any >0,apr >0, lXHEN>O ag,g>0 tXHE,e<OSO

that

D
6(v) = T [7 [ (vop)-(Vop) ayar

D .t
+ 20 [T [ (V9R)- (VgR) dx dy a
Tt
2 [ [(7eh)- (Vop) ay ar
rYN] /tf/ 4’N1 (V¢N ) dx dy dt

,YNz /tf/ 4’1\12 (V‘PN ) dx dy dt

2 / [ (ot
e
’YNZ tf/ 4’
s [ /Q<V4>N>~<V¢N> d dt
+2 [T [ (V) (Vo) ax dy d,

) dy dt
~(Voye) dx dy dt

) dx dy dt

and

(89)
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o) = 2 [ Qlwx_CTEZ,;E’E?i'?ﬁfél'gz't”z dx dy g, d dt
ff/ |¢T(J€_§KZ ;)Cifiélilg("flr‘jz't”z dx dy dgy dg dt
UCDT ty |<PD x_gféy_)giré)gtggfl,gz’ Hi? dx dy dgy dg dt
tf/ o ( x—|x5_t§| t||¢N(c)2 dx dE dt
s [0 /'% g e
vcge / |4>e €1/y )Czr(?gligze)(flféz,t)lz dx dy dey 48 dt (90)
and the internal kinetics energy is expressed by
Elon) = 5 [ [ looP 5250 dxay
Al % B
A Do
b [ [ Tl 20 25 gy
A [ B

Here it is worth highlighting we have approximated the initially discrete set of indices s of
particles as a continuous positive real variable s.
Moreover,

= /tf||curlA—B Iy dt
1_471_ 0 0112 ’

ty
/ / Emd Kp|¢p |2( >d dydt
+/tf/ Eing - Kp|oL u+a—T) dx dy dt
o Jo M PP ot
tf H, aI'HE
‘|‘/0 LEind'KP|¢2p|2 <u+ ot ) dx dy dt

ty or,
+/0 /QEind-Ke|¢e|2(u+ a—f) dx dy dt, (92)

where K, and K, are appropriate real constants related to the respective charges.
Here u = (11, up, u3) is the fluid velocity field and

I'D, rT/ rI‘Ie/ rN/ re
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are fields of displacements for the corresponding atom fields.

Also A denotes the magnetic potential, By an external magnetic field and B is the total magnetic
field.

Moreover, E;;,; is an induced electric field.

Finally,
Cp [t -
F = —D/f/ V (40)tD * V (x,)1D dxdydt+_T/f/ V(g T1 - V () TT dx dy dt
b
2 / / Vet e T 0 + / V()N - V()N dx dy dt
76 /0 /(‘2 V(x,y)re ’ v(x,y)re dx dy dt, 3)

for appropriate real positive constants Cp Cr, Cg,, Cy, Ce.
Such a functional | is subject to the following constraints:

1.  The momentum conservation equation for the fluid motion

auk a
p(&t tu ]ax>_pfk +Tk]]+(FE)k+(FM)k,
Vk € {1,2,3}.

Here p = pp + p1 + pH, + PN + pe is the total density and P is the fluid pressure field.
Furthermore,

_ ou; au] 2 ouy
T”_#<8_xj+8_xi_§5”za_xk 7
vi,j € {1,2,3},

Fe = {(Fe)) = (K09 + o+ Igfh?) + K. [l v )5

and

Fvo = {(Fm)e}

(KP <|¢5|2 (u + a;—f>
8
7P (u s 57)
d
()

d
K |ge |2 (u n %)) x B. (94)
2. Mass conservation equation:
%
i div (pu) = 0.

3.  Energy equation

D A d ou;
p—e +Vy(E))-u+Ey+ P(divu) = Q. div q + Tjk—],
ot Xy
where we assume the Fourier law

q=—KVT,
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where T = T(x,t) is the scalar field of temperature and Q is a standard heat function.

Also,
DaI'D aI'D

e = gu-u+%§~¥
pr ot Ory
2 9t ot
pHEal‘He al‘He
2 ot ot
pNarN arN
2 9t ot
Qe 0T, OF

29t ot (95)

+

_|._

where the densities £1 and E; are defined through the expressions of F(¢) and F, so that

P(cp):/otf/oﬁl dx dt

tf N
F = / / E, dx dt.
0 Q

Here we recall that since rp is highly oscillating in t we approximately have

and

u~rDz0

in a weak or measure sense. The same remark is valid for the other internal velocity fields.

Moreover,
De oe de

Finally, for a calorically perfect gas we may assume

e = C'UT
h
where o R
v — ')’ _ 1/
for appropriate constants R > 0, v > 1.
4.
P=F(p,T),

for an appropriate scalar function F;.
5. Mass relations

(a)

mp(t) = /QpD(x,t) dx,
(b)

mr(t) = /QpT(x,t) dx,
(c)

mpe(t) = /QpHe(x,t) dx,
(d)

m(t) = /Q on(x, 1) dx,
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(e)
= /Qpe(x,t) dx

(f) t

(mp,)r(t) = /QPHe(x,t) dx+/0 o pn, (x, T)u-n dldr,
(8) t

(my)7(t) = /QpN(x,t) dx —i—/o /802 pon(x, T)u-n dldr,
(h)

(mn)r(t) _ an
(my,)r(t)  an,’
so that
anmy,)r(t) = apy, (my)r(t),

where,
(a) t

(g ) () = mpg N (£) + /0 /a o br (5 T)Ju - n S d,
(b)

mp, N(t) = mpg,(t) +my(t),
(c) t
(mp)(1) = (mo)o— [ [ (po(x1))u-nds dr—ap(min)r(t),
(d) t
(mo)(t) = (mr)o = [ [ (pr(e)u-ndS dr—ar(ma, )7 (),
(e) t
()7 (E) = me(t) +/O /802 (or(x,7))u - n dS dr.

(f)

/|4>p xt|2dx—+/ |<ppxt|2dx—+/ |<p xt|2dxm—p

6.  Other mass constraints

(a)

68w 0 dx = my,
(b)

185, Gy, 2 dx = my,
(©)

L 185 Gy, )2 dx = my,
(d)

/|</)N1 x,y,t) 2 dx = my,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

66 of 360
(e)
/ |<l>Nz x,y,t)[2 dx = my.
7.  For the induced electric field, we must have
1 ’ D2 aI'D
curl E;,; + - curl (Kp|gbp | <u + W)
. or
T2 T
+Kp|4)p | (u + W)
or
e |2 H,
JrKP|4’ ;| ( 50 )
N ore(x,y,t
e [ eGP (w0 + 25 dx ) )
(9] t
10
x(curlA—BO)—Eﬁ(curlA—Bo):O, (96)

where K, and K, are appropriate real constants related to the respective charges.
8. A Maxwell equation:

divB =0,

where
B = By — curl A.

9.  Another Maxwell equation:

divE = 4n(1<,,<|¢,?|2 1T+ 08P + Ko [ 19y )P dx),

where the total electric field E stands for
E = E;,y + Ep,

and where generically denoting

F(¢) = //f5¢,x§t)dxd§dt

At this point we generically denote

we have also

t
(h, ) 12 :/0 /th Iy dx dy dt.

Thus, already including the Lagrange multipliers concerning the restrictions indicated, the
extended functional J3 stands for
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J5 = J3(¢,u,r,P,A,B,E,AE)
= G(V¢)+F(p)+Ec(px)+F+F+F
dup  ouy 9P
+<Akfp< 3 4oy ) —pfk+ vy i T (FE)k — (FM)1<>L2
J
+<A4/ ai: + div (Pu)>L2 + ]Auxl + ]Auxz + ]Aux3 + ]Aux4r (97)
where,
]Aux1
= <A5, th—I—Vx(El) u+ By + +P( dlvu)—a——i— divq— axk>
+{A¢, P—F;(p,T));2, (98)
Jauy, = <A7,mo(t) —/ pp(x,t) dx>
(9] 12
-|-<A8,mT(t) - / or(x, 1) dx>
Q 12
<A9,mHe(t) —/ o, (x,1) dx>
Q 12
<A10,mN(t) _/ pn(x,t) dx>
Q 12
<A111m€ _/ pe(X,t) dx>
@) 12
ty
/o E12(t)(anmpy,)r(t) — ap, (mn)7r(t)) dt, (99)
tr
]Aux;, = _/0 /Q EN)S y,t ( |¢N x,y,t | dx—mN> dy dt
v (E H12d dy dt
—/0 /Q N6 () / o%, (v, )P dx —my | dy
" [ (E W2 d dy dt
—/0 /Q N,)7 () /|¢N2xy, )|*dx —my ) dy
ty
—/ / (EN)s(y, ¢ (/ o (x,y, £)[* dx — N) dy dt
0 Ja
t
[ [0 ([ 100 ) dy (100)
0
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Jaux, = (A12, curl By
+% curl (KP|<P?|2 <u N a;_f)
+Ryply <u+ "%)
+Kp|¢§1pe|2 (u-l- a;?)
T /Q e (x,y, 1) <u(y, ) + w dx))

! E?t( curlA—B0)>

c

x(curl A —By)
2
+(A13, div B) ;2

~|—<A14, div E — 47 <I<p(|¢,’,?|2 + ¢y |* + |¢§’;|2) + K, /Q e (x,, 1) [* dx) >L2. (101)

Here we recall the following definitions and relations:

1.  For the Deuterium field
1
oo (%, y, )17 = @) (v, 1> + [pR (x, v, ) Pl (v, t)lzm—p,
2. For the Tritium field
1
oo (x, v, )17 = [0y (v, ) > + (o8, (X, 1. 8) P + |98, (. v, D)oy (v, t)|2m—p,
3.  For the Helium field
1
|pr, (x,y, 1) > = |4>f;(y, B+ (1o (x,y,8) > + |9} (x/y/f)lz)lﬁ; (y/f)lzﬁ,
P

4.  For the Neutron field

PN = on(x/1),

5. For the electronic field resulting from the ionization

Pe = Pe(X, Y, ).
ey 1) = [ oy, 0P dx,

pr(w,) = [ lgr(xy ) dx,
PH, (Y1) = /Q |@n, (x,y,t)[* dx,
pn(xt) = [pn(x 1%,

pe(y,t) = /Q e (x,y,1)]? dx.
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Also,
P =pPDp +OT + PH, + ON t Le,
1.
t
(mp, N)T(t) = mp,N(t) +/0 /m (on,(x,7) + pn(x,T))u-n dS dr,
2.
my,N(t) =mpy,(t) +mn(t),
3.
mi (t) = [ pn.(x,1) dx,
4.
my(t) = /QpN(x,t) dx,
5.
t
(mo) (1) = (mo)o ~ [ [ (po(x,)u-ndS dr—an(mign)r(t),
6.
t
(o) (®) = (mr)o = [ [ (pr(em)u-ndS dr—ar(mpn)r(E),
7.
(mp,)r(t) = /Qpr(x, t) dx+/0 /602 on,(x, T)u-ndldr,
8.
t
(mn)r(t) = /QPN(x,t) dx+/0 /anz on(x, T)u-n dldr,
9.
(mn)r(t) _ an
(mp,)r(t)  an,’
so that
anmp,)T(t) = ap, (mn)T(t),
10.
t
(me) 7 (£) = me(t) — /0 /anz(pe(x, ))u-n ds dr,
11.
me(t) = /Qpe(x,t) dx.
12.
melt) = [ 19P o arit & [ 197 P dx it 4 [ 8o P de e
Finally,

E=E; ;+ Ep,

and where generically denoting

F(g) = [ f5(gx,8) dx dz,
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we have also

£, { [ 26650 1)

axk

and,
B = By — curl A.

20. A final mathematical description of the hydrogen nuclear fusion

In this section we develop in even more details another model for the hydrogen nuclear fusion.

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9Q.

Here such a set () stands for a control volume in which an ionized gas (plasma) flows. Such a gas
comprises ionized Deuterium and Tritium atoms intended, through a suitable higher temperature, to
chemically react resulting in atoms of Helium and a field of single energetic Neutrons.

Symbolically such a reaction stands for

Deuterium™®™ + Trittum™ — Helium™" 4 Neutron (energetic).

We recall that the ionized Deuterium atom is comprised by a proton and a neutron and the ionized
Tritium atom is comprised by a proton and two neutrons.

Moreover, the ionized Helium atom is comprised by two protons and two neutrons.

As previously mentioned, resulting from such a chemical reaction up surges also an energetic
neutron which the higher kinetics energy has a great variety of applications, including its conversion
in electric energy.

We highlight the model here presented includes electric and magnetic fields and the corresponding
potential ones.

Denoting by t the time on the interval [0, ], at this point we define the following density functions:

1.  For a single Deuterium atom indexed by s:

1
6D (x,9,t,5)1* = |97 (4, t,5)]* + |9R (x, v, 1,5) |9y (v, f/S)\mep/

2. For a single Tritium atom indexed by s:

1
(b, 5)12 = 1¢p (v, £,5) 1 + (9, (x,y, 8,5 P + ok, (.9, £,5) )y (v, t,S)Imep,

3. For a single Helium atom indexed by s:

1
b1, (2,9, ,5) 1% = [y (0, £5) 2 + (Lo (2,9, 8,9) P+ long (2, y,1,9) Py (v, £,5) P,
p

4.  For the Neutron field:
¢N = Pn(x,t,5),

5. For the electronic field resulting from the ionization

Pe = Pe(X,y,t,5).

Furthermore, we define also the related densities

Np(t) 2
oo )= [ [ en(xy bR dxds
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Nr(t) )
PT(W)—/O /Q|4>T(x,y,t,s)| dx ds,
N, (t)
pi, (v, 1) = /0 /Q (b, (5,1, 1,5)|2 dx ds,
Ny(t)
pn(x,t) =/O o (3, £,5) 2 ds,

Ne(t)
pe(y, t) = /0 /Q e (x,,t,5)|* dx ds.

For the chemical reaction in question we consider that one unit of mass of fractional proportion
«p of ionized Deuterium and a7 of ionized Tritium results in one unit of mass of fractional proportion
ay, of ionized Helium and ay of neutrons.

Symbolically, this stands for

1=ap+ar=uay, +an.

Concerning the control volume () in question and related surface control d(), we assume such
a volume has an initial (fot t = 0) amount of ionized Deuterium of (mp ) and an initial amount of
ionized Tritium of (mr)g. The initial amount of ionized Helium and single neutrons are supposed to
be zero.

On the other hand, about the surface control d(), we assume there is a part {3y C 9() for which is
allowed the entrance and exit of Deuterium and Tritium ionized atoms.

We assume also there is another part d(); C dQ) such that 0021 N 902 = @ for which is allowed
only the exit of ionized Helium atoms and neutrons, but not their entrance.

In 9(); is allowed the exit only (not the entrance) of ionized Deuterium and Tritium atoms.

Indeed, we assume the following relations for the masses:

1.
(my, N)T(t) = mp,n(t) + /Ot /mz(pHe(x, ) + on(x,T))u - n dS dr,
2.
mpy, N(t) = mp,(t) +mn(t),
3.
mp, () = /QpHe(x,t) dx,
4.
() = [ pn(xt) dx,
5.
t
(mo) () = (mo)o [ [ - (po(x,))u-ndS dr—an(mign)r(e),
6.
t
(mT) (t) = (mT)O - A /BQIUBQZ (PT(X, T))u -ndSdrt — ocT(mHe,N)T(t),
7.

t
(mp,)r(t) = /QPHE(X,t) dx—i—/o /ao pm, (x, T)u-n dldr,
2
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8.
t
(mn)r(t) /QPN(X,f) dx-I—/O /BQZPN(x,T)u n dldr,
9.
(mn)r(t) _ an
(mp,)T(t)  an,
so that
anmp,)T(t) = ap, (my)7(t),
10.
(me)7(t) = me(t / azpexr ))u-ndS dr,
11.
:/Qpe(x,t) dx
12.
Np(t) D ) M, Nr(t) T ) 1,
| / 0wty ds e+ [T [ o o) dy ds
+/ / |93 (y,t,9)[* dy ds— (102)

mp

Here n denotes the outward normal vectorial fields to the concerning surfaces.
Having clarified such masses relations, denoting by Np(t) Nr(t), Ng,(t), Nn(t), N.(t) the
respective indexed number of particles at time ¢, we define the functional

](¢IPI r,u, E/ Ar Br {ND/ NT/ NHE/NN/ Ne})

where

] = G(Vu) —|—F((P) +Ec(¢,l‘) +F+FE+F+F,
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andwhereweassume'yp > 0, 'yp > 0, 'yN>0 'yN > 0, ')’N > 0, ’y > 0, ’y > 0, ’yﬁ§>
0, yv >0, "yg>0andaD>0 ar >0, “Hg>0 any >0,apr >0, lXHEN>O ag,g>0 tXHE,e<OSO
that

G(V¢) = TE/ /ND(t)/ (V¢7;1yj) . (V‘PE) dy ds dt
/tf /ND(t / (VN) - (Vo) dx dy ds dt
/ /NT / (Vo) (Vép) dy ds dt
/tf /NT(t / (VoR,) - (VoR,) dx dy ds dt
’YN2 /tf /Nr / (VoL,) - (VoL,) dx dy ds dt
’sz ’ / - / (Vgtt) - (Vohc) dy ds dt
’YNl /tf /NHg / (ng ) dx dy ds dt
’YNZ /tf /‘NHg(t / (V(p ) ey ds i
+7 /0 /0 /Q(quN) (V¢n) dx ds dt

e [t Ne(t)
2 [T ] (990 (Vgo) dx dy ds ot (103)

and

)=
Lk / / Pl B BBt e e s s

o Ne®) o pr(x — &1,y — Ea ts — 51) Plor(Er, Ea b s1) P
' / / / [(x,y) — (61, 82)] dx dy gy dGy ds dsy dt

f e t) NT |4)D x_gl'y_gz’t’s_Sl)|2|¢T(§1/C2/t151)|2
/ / / (x,y) — (€1,&)] dx dy dg, dGy dt

”‘He/ N (¢ /NHE / |ph, (x — Clry &2, t,s — 1) Pl (81, 8o, 1) dx dy 46, g ds ds, dt
192}

¥) — (81,62,51)]
NN(t) N (t) |¢N x =g, t,S—Sl)|2|¢N(C,t,Sl)|2
/ / |x_§| dx dE ds ds; dt
tr [Nu(t) (No(t) ¢ [pp,(x é‘l,y &2, )N (G )|
/ R o) 65

H,, e tf NHe Ne |¢He x_gl’y_gz’t/s_sl)|2|¢e(§1,62,t,51)|2
7/0/0 J /n (oY)~ (@1, dx dy dGy da ds dsy dt

tepe [t Ne® Ne(®) £ (x — &1,y — Eastys — 1) 2| (&1, Ea b 51) 2
+7/0 /0 / /Q 1(x,y) — (61,5 dx dy d¢y d¢y ds dsq d{(104)

\

dx dy d¢y d¢o ds dsp dt
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and the internal kinetics energy is expressed by
tr [N,
Ec(¢r) = /f/ bl /| o[2 %D arD dx dy ds dt
2 ot
te Nr(t 2 aI'T arT
2/ / /| o 5L ST dx dy ds di
Ny, (t 2 al‘He ) ang
L e e s
or ar
1 2 OIN N
+2/ / /|N| SN LN gy dy ds dt
tr Ne(t)
z/f/ /|e|zare-%d x dy ds dt, (105)

MOI'EOVEI',
F = /tf || curl A — B || dt

t N,
/f/ bl /Emd Ky|¢D |2< a_D) dx dy ds dt
TR 9
+/f/ " / Eind-Kp|¢;|2(u+§> dx dy ds dt
tr Np,(t)
+/f/ " /Emd Ky gtk ( aHﬂ) dx dy ds dt
b pNe( or,
+/O /O /QE,-nd-Ke|4>g|2(u+ W) dx dy ds dt, (106)

where K, and K, are appropriate real constants related to the respective charges.

Here u = (11, up, u3) is the fluid velocity field and

Ip, r1, Iy, IN, Te

are fields of displacements for the corresponding particle fields.

Also A denotes the magnetic potential, By an external magnetic field and B is the total magnetic
field.

Moreover, E;;,; is an induced electric field.

Also,

Cp [t [No(®)
b= 2 /0 /o /Q V() * V(xy)tD dx dy ds dt
% /otf /ONT(t) /Q V(a)IT -V (xy)tT dX dy ds dt
% /otf /oNHE(t) /Q V(xy)TH, = V (x,9)TH, dx dy ds dt
+C7N /otjr /oNN(t) /Q V() IN V()N dx dy ds dt

C, [ty [Ne(t)
b /0 /0 /Q v(Jc,y) T - v(x,y)re dx dy ds dt, (107)

for appropriate real positive constants Cp Cr, Cp,, Cy, C..
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Finally,

E o= 2 0 <8ND ) (BND )
aNN €H, aNHe(i')
2 ( N ) dt + / ( ) dt
€e [tr [ ON.(F)
+E 0( o5 )dt, (108)

where ep, €7, €N, €H,, €. are small real positive constants.

Such a functional | is subject to the following constraints:

1.  The momentum conservation equation for the fluid motion

Jdu duy ap
P( atk Y ) =pfe— +Tk]r]+(FE)k+(FM)k,

Vk € {1,2,3}.
Here p = pp + p1 + pH, + PN + pe is the total density and P is the fluid pressure field.

Furthermore,
ou;  Ou;
T = V(ax] _xl =39 2 axk>

Vi, j€{1,2,3},

Fe = {(Fe)i} =

Np(t) Nr(t) Ny, () Ne(t)
(Kp(/o |¢FIJD|2 ds—i—/o |¢;|2 ds—i—/o |4,£i;|2 ds) +Ke/0 e |2 ds)E,

and
Fv = {(Fm)k}
= < /O |¢,’§|2(u+aar—f> ds
/O 0 |</>p|2( BarT> i
L (e ) o

e( or,
2
+K, /0 e (u at> ds) x B. (109)
2. Mass conservation equation:
9%
5 + div (pu) = 0.
3. Energy equation
Vil B, +P(d di ouj
th-I- x(E1) -u+Ey+P(divu) = 5 1vq-|-T]kaxk,

where we assume the Fourier law
q = —KVT,
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where T = T(x,t) is the scalar field of temperature and Q is a standard heat function.
Also,

Dal'D al‘D
e = Guous RS0
pTarT arT
2 ot ot
PH, OtH, OrH,
2 ot ot

PN OrN  OTN
T o o
Jr, Or
%a—:.a—:, (110)

+

where the densities £; and E;, are defined through the expressions of F(¢) and F, so that

F(¢):/Otf/QE"1 dx dt

tf N
= / / E, dx dt.
0 O

Here we recall that since rp is highly oscillating in t we approximately have

and

u-rp~0

in a weak or measure sense. The same remark is valid for the other internal velocity fields.

Moreover,
De  oe de

P=F/p,T),

for an appropriate scalar function F;.
5. Mass relations

()

mp(t) = /QpD(x,t) dx,
(b)

mr(t) = /QpT(x,t) dx,
(c)

mpe(t) = /QpHe(x,t) dx,
(d)

my(t) = /QpN(x,t) dx,
(e)

me(t) = /Qpe(x,t) dx,
where,
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(a)

(mp,N)T(t) = my,N(t) + /Ot /Bﬂz (pm, (x,7T))u-ndSdt,
(b)

mpy, N(t) = mpy, (t) +mn(t),
© t
(mo)(1) = (mo)o— [ [ (po(x 1))u-nds dv—an(min)r(t),
(d) t
(mo)(®) = (mr)o— [ | o, (P70 TV S T = g )2(),

(e) t

(mp,)r(t) = /QPHe(x,t) dX+/O /an pn, (x, T)u-n dldr,
® t

(mn)r(t) = /QpN(x,t) dx —i—/o /302 pon(x, T)u-n dldr,
(8)

(mn)r(t) _ an
(my)r(t) am,’
so that
anmpy,)T(t) = ap, (my)7(t),
(h) t
(me)r(£) = me(t) +/O /aQZ (or(x,7T))u-n dS dr.

@)

Np(t) b ) M, Nr(t) T 2 e
met) = [ [Pt o dyaydsie s [T [ loT b o) dy ds e

Np(t) H, ) M,
+/0 /Ql%p(y,t,S)I dydsm—p- (111)

6.  Other mass constraints

(a)

S 1R Gyt o) dx = my,
(b)

S 10k (e, b,9) 2 e = m,
(©)

[ 185 Gyt ) P dx = m,
(d)

A |¢N§ (x/yr t,5)|2 dx = mn,
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(e)
/ |cp s (x,y,t,8) ? dx = my,
()
D 2
/t/ d = 7
4P Gt dx = m,
(®)
/Q |([);(x, t,s)> dx = mp,
(h)
/ |4> (x,t,5)]7 dx =2 mp,
7.
mp(t) = mp Np(t) + my Np(t)
mr(t) = mp Np(t) +my Nr(t),
mHe(t) = 2mp NHg(t) + 2my NHe(t)/
8.  For the induced electric field, we must have
1 A ND(t) D2 arD
curl E;,,; + - curl (K,,/O ¢ | (u + 7) ds
L Nr(t) or
T2 T
+Kp/ |(Pp| (u+ a—> ds
N or
2 H,
+1<,,/ |</)|< at)ds
Ne(t or.(x,vy,
& [ [yt 2 (uto )+ 25 ) )
x (curl A —By) —%g(curlA—Bo) =0, (112)
where K, and K, are appropriate real constants related to the respective charges.
9. A Maxwell equation:
divB =0,
where
B = By — curl A.
10. Another Maxwell equation:
Np (t) Nz (t) N (1)
divE = 4n<1<,,(/0 ’ 9712 ds—l—/o ! ¢y | ds +/0 ) |¢§;|2 ds)
Ne(t)
+Ke/ /Q pe(x,y,t,5)| dx ds), (113)
0

where the total electric field E stands for

E=E; ;+ Ep,
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and where generically denoting

t
F(¢) = /Of /Qf5(4>,x, t&,s) dx d¢ ds dt,

we have also

E, = {/Q—aff’(q”x’t’g’s) 4z ds}.

axk

At this point we generically denote

tr
(h, o) 2 = /0 /th Iy dx dy dt.

Thus, already including the Lagrange multipliers concerning the restrictions indicated, the
extended functional J3 stands for

]3 = ]3(¢/ ur, P/ Ar Br E/ A/ E/ {ND/ NTr NHerNN/ Ne})
= G(V¢)+F(p)+E(pr)+F+FE+F+E

ou ou JP
+<Ak,P (a—tk + u;’—'f) —pfe+ axg T (FE)k — (FM)k>

ax] 12
a .
—|—<A4, a_’; + div (Pu)> ) + ]Aux1 + ]Auxz + ]Aux3 + ]Aux4 =+ ]Aux5/ (114)
L
where,
De A . 510) . Bu]
Jauy, = <A5, N + Vi(E1) -u+P(divu) — o + divq— jka_xk>L2
+(Ne, P=F;(0,T));2, (115)
IAMXZ = <A7/mD(t) _A)pD(x, t) dx>L2
—I—<Ag,mT(t) - / or(x, 1) dx>
Q 12
<A9,mHe(t) —/ om,(x,1) dx>
O 12
A _
< 10, MmN (t) /QPN(X,t) dx>L2
<A11,me(t) — /Qpe(x, £) dx>L2
tr
/0 Eva (1) (anmp, ) () — gy, (mn )7 (1)) dt, (116)
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ty
T = = 7 [ R0 [ 10RGe .t 9P dx =y ) dy
t
—/Of/Q ENl)é Y, t,5) (/ |4)N1 X,Y,t5) |2dx—mN) dy dt
t
_/Of/n EX,)7(y b5 (/ px, (X, y,t,5)[* dx — N) dy dt
t
_/f/(z EHE (y,t,s) (/ |4)N x,y,t,5)|* dx — N) dy dt
0
tf H
—/0 /Q(E e)9y,fs /|<p (x,y,t,9)] dx—mN dy dt,
ty
—/0 /Q(E,l?)(t,s)</n|</),1?(y,t,s)|2 dy—m,,) ds dt,
tf
tr .
—/O /QE ;) /|4> (y,t,5)* dy —2m, | ds dt, (117)

]Aux4 = <A12/ curl Ejg

1 . (No() d
+ curl (Kp/o ’ |q>]!l,)|2 (u-l— %) ds

A NT(t) T2 arT

Kp/ |(Pp| <u+¥) ds

N or

|2 He
+R, / gr ( -t )ds
ke [ [ 1ot (atnn+ PO 00 )

curl A — B0)>

><(cur1A—B0)—12

Cat( 12

+<A13, le B>L2

_ No(t) o NE®) g Nie () oo
+<A14, d1vE—47T(Kp</O ¢y | ds+/0 ¢ | ds+/0 |¢2p| ds)
1<e/0|¢,3|2 dx ds)>L2. (118)

Jauxs = (M5, mp(t) — (mp Np(t) +my Np(t))) 2
+(A16, mr(t) — (mp N (t) +my Nr(t))) 2
+(A17, mp,(t) — (2mp Ny, (t) +2my Ny, (t))) 2
+(A1g, me(t) — (me Np(t) +me Nr(t) +2 me Ny, (t))) 2. (119)

Here we recall the following definitions and relations:

1.  For the Deuterium field

1
90 (x,y,t,9)1> = 195 (v, £,5) [ + [9R (x, v, £,5) Pl (v, t,5)[*—,
mp
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2.  For the Tritium field

1
o1 (x,v,t,9)1> = 19) (v, 1,9) > + (198, (x, 3, £,9) > + |98, (x, 3, £,5) D) |9p) (v, £,5) [P —,
mp

3.  For the Helium field
1
|pn, (X, y,t,5) > = |<Pf,;’ Wt ) > + (198 (X y,t8) >+ |9Ne (%, £,9) ) |<P§; (v, t,S)|2m/

4.  For the Neutron field
N = ¢n(x,L5),

5. For the electronic field resulting from the ionization

Pe = Pe(X,y,1,5).

1.
Np(t) 2
oolyt) = [ [ ooy, ts) P dx ds
2.
Nr(t)
or )= [ [ lor(ryts) dxds,
0 QO
Np, (t)
t) = t,s)>d
o) = [ [ lgn (e b9 dx ds,
Ny (t)
on(e )= [ lon(xts) P ds,
Nt )
o) = [ [ 1gery tis) P dx s
Also,
P =pPD +PT + PH, + PN + e,
1.
t
(mp, N)T(t) = mp,N(t) +/0 /an (o, (x,T) + pn(x,T))u-n dS dt,
2
2.
mpy,N(t) = mp,(t) + mn(t),
3.
mi(t) = [ pr(x) dx,
4,
my(t) = /QpN(x,t) dx,
5.
t
(mo) () = (mo)o ~ [ [ - (po(x,)u-ndS dr—an(mign)r(t),
6.

)0 = (e = [ [ (pr(a, 7)) dS dr = (g )1 (),
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7.
t
(mp,)T(t) = /QPHE(XJ) dx—i—/o /Bﬂz o, (x, T)u-ndldr,
8.
t
(mn)r(t) = /QPN(X,t) dX+/O /msz(x,T)u-ndl"dr,
9.
(my)r(t) _ an
(mu,)r(t)  an,’
so that
an(mp,)T(t) = ap, (my)r(t),
10.
t
t) = t) — , -n dl dr,
(me)T(t) = me(t) /0 aQZ(pe(x T))u-n T
11.
= e /t d
[ ool t) ax
12.
ND(t) D 2 Me NT(t) T 0y M,
me(t) = [ [ @D ts)P dydy dsm—+ o R )P ay as e
Np(t) "
—|—/ / |<p2p v, t,8)|" dy ds e (120)
mpy
Finally,
E=E;;+E,

and where generically denoting

¢) = /Otf /Qf5(4>,x, t,&,8) dx d¢ ds,

we have also

E, = {/Qaff’("”x't'g's) e ds}.

axk

and,
B = By — curl A.

21. A Qualitative Modeling for a General Phase Transition Process

In this section we develop a general qualitative modeling for a phase transition process.

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).

Such a set () is supposed to a be a fixed volume in which an amount of mass of a substance A
with a density function u will develop phase a transition for another phase with corresponding density
function v. The total mass m is suppose to be kept constant throughout such a process.

We model such transition in phase through a functional | : V x V — R where
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- n : ad B
J(u,v) = > /QVu Vudx + 2/0u dx
B/Vv~Vvdx+Q/v4dx
2 Ja 2 Ja
_1 20,2 2y ar _ E / 22\ e
5 Qw(u +07) dx 2<Q(u +0%) dx —mr ). (121)

Here y; >0, 72 >0, a1 >0, ap > 0and V = WH2(Q).

The phases corresponding to u and v are connected through a Lagrange multiplier E, which
represents the chemical potential of the chemical process in question.

We assume the temperature is directly proportional to the internal kinetics E¢ energy where

/ 2 Jry, aru
T2 ot at
For a internal vibrational motion, we assume approximately

1, ~ e “tws(x),
for an appropriate frequency w and vectorial function ws.

Thus, the temperature T = T|(x, t) is indeed proportional to w?, that is, symbolically, we may
write

T o Ey & w?.

Therefore, we start with the system with a phase correspondingtou ~ land v = 0 at w = 1.
Gradually increasing the temperature to a corresponding w = 15, we obtain a transition to a phase
corresponding to u ~ 0 and v ~ 1.

At this point, we also define the index normalized corresponding densities

(P —
and
i u2 02 :

Finally, we have obtained some numerical results for the following parameters:
Q=[01CR,y1=7=1a=01,a = 10>

1. We start with w = 1 corresponding to ¢, ~ 1 and ¢, ~ 0in Q).

For the corresponding solutions ¢, and ¢, please see Figures 15 and 16, respectively.
2. We end the process with w = 15 corresponding to ¢, ~ 0 and ¢, ~ 1in Q.
For the corresponding solutions ¢, and ¢,, please see Figures 17 and 18, respectively.
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Figure 15. Solution ¢ (x) for w = 1.
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Figure 16. Solution ¢, (x) for w = 1.
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Figure 17. Solution ¢ (x) for w = 15.
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Figure 18. Solution ¢, (x) for w = 15.

22. A Mathematical Description of a Hydrogen Molecule in a Quantum
Mechanics Context

In this section we develop a mathematical description for a hydrogen molecule.

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q2.

Observe that a single hydrogen molecule comprises two hydrogen atoms physically linked
through their electrons.

We recall that each hydrogen atom comprises one proton, one neutron and one electron.

Since the electric charge interaction effects are much higher than those related to the respective
masses, in a first analysis we neglect the single neutron densities.

Denoting (x,y,z) € Q x Q x Q and time ¢ € [0, (], generically, for a particle pj;; at the atom Ay
in the molecule M;, we define the following general density:

2w (6w, 2 )P0, (0,2, B Plowm, (2, )
mA].kli '

|¢(ijl)T(x’y’Z’t)|
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Here we have the particle density |¢p, (x, v,z ) |2 in the atom Ay with density |pa,, (v, 2, 1), at
the molecule M; with a global density |¢a, (z, £)[?.

Here we have also denoted, Mp,, the particle mass, m 4,, the mass of atom Ay and my,, the mass
of molecule M;, so that we set the following constraints:

1.
/Q |4’ij1(er/ z,t)|? dx = Mp s
2.
10402 0P dy =,
3.

| 10,z ) dz = my,.
At this point we denote for the atoms A e A; of a hydrogen molecule:

1. mg; = m,: mass of electron ¢; in the atom A;, where j € {1,2}.

2. myp; = mp: mass of proton p; in the atom Aj, where j € {1,2}.

Therefore, considering the respective indexed densities for the particles in question, we define the
total hydrogen molecule density, denoted by |¢p, (x, v,z t)|* as

091 (%, 9,2, 6) P, (v, 2, £) [ pma (2, £) 2
mAlmM

19 (y 2 t) *loa, (v, 2, t) Plom(z 1)
mAlmM

ACH ) Pl9as (v, 2, t) Plpm(z 1)
mAzmM

NP (o2, ) Pl (v, 2, D) Plom(z B2
ma, My

b, (x,y, 2,02 =

(122)

Such system is subject to the following constraints:

1. From the proton p; in the atom Aj:

/(‘2 |4)P1 (x/]//Z, t)lz dx = mP'

2. For the proton p; in the atom Aj:

/Q |¢P2<x1y/21 t)|2 dx = My,

3.  For the atom Aj:

[ 104,20 dy = ma,,
4.  For the atom Aj:

[ 10402002 dy = ma,,

5. For the electrons e; and ey, concerning the physical electronic link between the atoms:

/Q |pe, (x,y,2, 1&)]2 dx + /Q |<])32(x,y,z,t)|2 dx = 2m,.
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6.  For the total molecular density:

/Q iz, 1) 2 dz = ma.

Therefore, already including the Lagrange multipliers, the corresponding variational formulation
for such a system stands for | : V — R, where

J(9,E) = G(V$) + F(¢) + Jaux(9, E).

Here we denote

|(¢ )le . |¢pj(x’y’z’t)|2|¢Aj(]/,Z, t)|2|(PM(Z, t)|2
Pj = ,

ma;mm

(e, (x, 9,2, ) P19 a, (v, 2, 1) Plgpma (2, 1)

mA].mM

|(ge))7* = , Vi€ {1,2}

we assume v, ) >0, Ye; > 0, V4 >0, ym >0, (p,)y >0, &(e;)7 >0 &(p; e)r <0, Vjke{1,2},

G(Ve) = 7”f/ / Vey,) - (Vaby,) dx dy dz dt

t
+ X / ! / (Voe,) - (Vepe,) dx dy dz dt

v
;‘ [ (V4a))- (V) dy dz e
™M
+7/O /Q(V4>M)~(V4>M) dz dt (123)
and
F(¢) =

Ky, t ; X — /A 72— /t 2 : 162, /t 2
(p])-r/f/ D)0 (X = Cy — 82,2 = E3, ) P (81,82, 83, 1) dx dy des dEy dE ds dt

[(x,y,2) — (1,62, 63)|
X(e)r /ff / P(e))r (X =Gy — G2,z — G5, t)|2|¢(ej)T(CL§2, &)
|(x,y,2) — (61,62, 83)|
X(pj e0)r /tf / [D(p)r (¥ = 81,y — 82,2 = 83, 1) Pl o), (61,62, 83, )
2 [(x,y,2) — (1,62, 63)|

dx dy dz d¢y d¢p dés dt

dx dy dz &y A&, Az dt

Finally,

tf
JAux (¢, E) /0 Q izt </ pp; (X, 1,2, t)[? dx—mp> dy dz dt

t
/ (Ee)(y,z,t) </ (|<pel(x,y,z,i?)|2 + e, (%, 2, t)\2) dx —Zme) dy dz dt

b e
/ /EA zt(/ |4, (y,z,t))* dy — mA>dzdt

I ( [ 1otz 0 dz - mM) . (124)

Remark 10. We highlight the two electrons which link the atoms are at same level of energy E.. Morever, each
atom has its energy level E A; and the molecule as a whole has also its energy level Epy.
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23. A Mathematical Model for the Water Hydrolysis

In this section we develop a modeling for a chemical reaction known as the water hydrolysis.

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9Q.

In such a volume () containing a total mass mr of water initially at the temperature 25 C with
pressure 1 atm, we intend to model the following reaction

H,O=0H +H"

which as previously mentioned is the well known water hydrolysis.

We highlight H>O stand for a water molecule which subject to an appropriate electric potential is
decomposed into a ionized OH~ molecule and ionized H™ atom.

It is also well known that the water symbol H,O corresponds to a molecule with two hydrogen
(H) atoms and one oxygen (O) atom.

Moreover, the oxygen atom O has 8 protons, 8 neutrons and 8 electrons whereas the hydrogen
atom H has one proton, one neutron and one electron.

Remark 11. Here we have assumed that a unit mass of HyO reacts into a fractional mass g of OH™ and a
fractional mass ac of HT .
Symbolically, we have:
1=uap+ac.
To clarify the notation we set the conventions:

1. HpO molecule generically corresponds to wave function ¢;.
OH™ molecule corresponds to wave function ¢.
3. HT hydrogen atom corresponds to wave function ¢;.

At this point we define the following densities:

1. For the H,O water density (for charges), denoted by |¢; |2, we have
|(¢1)a, (v, 2 O Pl(¢1)m(z DI
(m)IAI]. (m1)m

(@) 4, (2, 0P| (91 m(z, 1) 2

2
ey 2 )P = Ky Yo (91 (v y,z 1))
j=1

2
TKe Y 1(94)ey (9,2, 1)

j=1 (ml)ﬂj (m1)m
: 0002 DRIz D
o L 000 b OF T

@P)aly, 2 HP(@)m(z )

(m)‘Z (m1)m

8
PR Y 169 (13,2, 1) P (125)
=1

where (1) is the mass of a single water molecule and generically |(¢1) p; (X, 1,2,1) |? refers to
the hydrogen proton p; at the hydrogen atom A; concerning the H,O molecular density and so
on.
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2. For the OH™ density, denoted by |¢,|?, we have
|[(@3) (Y, 2 t) P (¢2) m(z, 1)
250,20 = Kl @)tz PR
H 2 1@y, 2 )P (92)m(z 1) ?
FKe|(¢7' )e, (X, 1,2, 1) (m)g (m2)m
OH~ 2|(@2)m(z )
Q5 )5z, P P
8 O 2 2
0 21(937) a2 D) F[(92)m(2 1)
o L1020 (w2 P00 G
8 O 2 2
o 00 (e 02 0002 D@D DP

where (7)1 is the mass of a single molecule of OH ™.
3. For the ionized hydrogen atom have

30 = Ko} (LI AW OF,
(m3) A

where we have denoted (m3) 4 is the mass of a single atom of H™.

Here K, > 0 and K, < 0 are appropriate real constants concerning a proton and an electron
charge, respectively.

The system is subject to the following constraints:

1.
/Q (1)), (x 2, 1) dx = my, Vj € {1,2},
2.
/0 [(@1)e; (x,, 2, 1) dx = m,, Vj € {1,2},
3.
/Q (D) p; (%, y,2, 1) [? dx = my, Vj € {1,8},
4.
@00 ey z, P dx = me, v € {1,8),
5.
[ 1@,z 0P dx = my,
6.
16950 (5,2, )2 dx = m,
7.
@5 (e, 2 D dx = me,
8.

L1091y, dx = my, v € {1,8),
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9.
169 ey z, P dx = me, v € {1,8),
10.
[ 1@z, 0P dx = m,,
11.
@A vz 0 dy = mf v € 1,2},
12.
1901w,z 0P dy = mS,
13.
@5tz 0 dy = mf,
14.
@914z 0 ay = mS,
15.
@Az 0P dy = m,
16.
| 1@0mG P + @)l O +1 @)z ) dz = m,
17.

/Q(D‘CK(PZ)M(Zr ) — ag|(¢3)m(z t)|?) dz = 0.

Already including the Lagrange multipliers for the constraints, the variational formulation for
such system. denoted by the functional J(¢, E) stands for

I(¢/E) = G(ng) + F(¢) + F1(¢) - IAux(¢fE)r
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where
Yp 2ty H I
CVe) = 7};/0 /QV(‘Pl )p; - V(¢1')p; dx dy dz dt
Ye 2 t H
+7 Z/ / V(‘Pfl)ej V(¢ )e]- dx dy dz dt
j=1 0 Q
Tr 2 rty 0 0
Y [T V@9 V@), dx dy dz dt
j=8 0 Q
TYe 2 ty o 0
T E/O /Q V(@D)e; - V(¢F)e,; dx dy dz dt
j=1

Yp [Uf
+7p/0 /QV(‘P?);:-V(%{),, dx dy dz dt

t
+%/0 /Qv(qbg])ﬁ 'v(‘pé{)el dx d]/ dz dt

e 2 ty — _
t L [T [ V@9 e V@O ey iz
j=1
2t
y /
+2 2/0 /QV(¢9),,,V(¢§J)W dx dy dz dt
j=8
2 tf
"‘% Z/o /Q V(@9)e; - V(95)e; dx dy dz dt
j=1
Yo & [l
+ 225 [7 [ @ty V), dx dy ar
j=1
2 tf
A RCIR PR T

+’Y%O /Otf/gv(f/’?)A V(@) 4 dy dz dt
+ /Otf/QV@?)A'V(ﬁ)A dy dz dt
20 [ [ 994 Vg9 dy dz d
+% /Otf/QV(<P1)M-V(¢1)M dz dt
+% /Otf/ﬂv(sbz)M‘V(cpz)M dz dt
% /Otf /Q V($3)a - V(g)a dy dt.

Here’yp>0/’)’e>0,’7§>0,,’yg>0,7M1 >0, vm, >0,7A3>0‘
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Moreover,

F(¢)
e g ’¢1(x_€1/y— (:2’2 _g3/t)|2|4)1(61/€2/€3/t)|2
7 0 /Q |(x,ylz) — (Clr 62/ 53)| dx d]/ dz dx1 dxy dX3 dt
t _ _ _ 2 )
+% 0 f /n — él'y“x,gyz:;) —g(Séltr)fller(lé)‘Z()fl,gz, s dx dy dz dxy dxy dxs dt
a3 (U [ Iga(x— 81,2 — 83, D) Ples(81, 8, 1)
2l /0 |(x,¥,2) = (81,62,83)| dx dy dz dx, dxs dt
S e e vz

where a1 > 0, ap > 0, a3 > 0 and a3 > 0.
Furthermore,

t
R@ = [ [ Venz0e + 19+ gaf?) dx dy dz at (127)

where V = V(x, Y,z, t) is an electric potential originated from an external electric field E applied on Q).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

93 of 360

Finally,

]Aux (P E

_ Z/ | EDfwzn </¢1 (x,y,2,t)2 dx—m,,> dy dz dt
+]; 7 0wz (1t 0z 0 e ) dy
+:28 L 08wz 0 ( [ 16000 (0202 dx = my ) dy dz a
+]:28 7 [0S0z (1690 Gz 0 dx e ) dy e

* /otf /g)(E2)?(y’Z’ t) </Q [(95)p(x,,2, 1) dx — mp> dy dz dt

+}i‘§ 7 €80z ( [ 1690 6z 0P ax—m, ) dy dz i
+]é/0tf/0(152)2(y,z,t) (/Q|(¢?)gj(x,y,z,t)|2 dx—me) dy dz dt
[ e w0 ([ 168 nR dr—m, ) dy d

+:21 7 G (f o0t 200 dy i ) dz

[0 2o [ (008w dv-ng) aza
[ e ( [ (@m0 i) dza
[ [ @8 ( [0S0 dy-ng) dz

[t ( [0 dy-mit) a
+ [ @0 ([ (@m0 P+ 1@ 0P + @)z 0 P) dz = )
+ [0 [ (acl (@2 O ~ aal )P dz ) 129

24. A Mathematical Model for the Austenite and Martensite Phase Transition

In this section we consider a phase transition of a solid solution of y — Fe (v — iron) and carbon
with a 0.75/100 proportion of carbon, known as austenite, initially at a temperature above and close
to 723 C and rapidly cooled to a temperature of about 25 C, developing a phase transition which
generates a solid solution of « — Fe (x — iron) and carbon known as martensite.

Let Q C R3 be an open, bounded and connected set with a regular boundary denoted by 9Q
which contains an amount of austenite at 723 C and which, as previously mentioned, is rapidly cooled
to a temperature 25 C on a time interval [0, 7], resulting a phase known as martensite.

We recall the v — Fe of austenite phase presents a multi-faced cubic crystalline structure in a
micro-structure with carbon atoms.

On the other hand, & — F, structure of the martensite phase has a CCC cubic centralized crystalline
structure in a micro-structure with carbon atoms.

At this point, we also recall that the F, (iron) atom has 26 protons, 26 electrons and 30 neutrons.
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On the other hand a Carboni, atom has 6 protons and this same number of electrons and neutrons.
Here we define the density function ¢, representing the Austenite phase, where:

1
9106, ,2,1) ): o3, e,z ORI (2 P10 (P (s
A
1
+2|4ﬂ oy ORIR 0z DRI (2 D s
(my
e 7—F 2|47 2 1
+2|¢ (o y 2O P10n (v 2 OF19] (2 OF
(my)

6

Z|(‘P1)P](x vz )P a(y, 2 1) 19T (2, D)
=

- T
6

+ 210 (2, D71 (91) 4 (yrz,f)|2|¢1c(z,t)|2(m1C)z

~ A

6

];“4’1) N (9,2, ) P|(¢1) 4 (y’z’t”Z'(Pf(Z’t)'z(mlW' (129)

Similarly, we define the density function for the Martensite phase, which is denoted by ¢», where:

92(x,,2,)| Z!cp“ (2 ) RI0LF (2 DRI 2, 1) P

(my)?

+Z|<P”‘ Ty z ) PIgh (2 ) Ple] (2 1)

(m)?
n— e n—F, o 1
+Z|¢ (2 y,2, ) P1gY F(yrsz)|2|¢1(zrt)|2(m%)z
+ Z (@5 (w2, P1(@F) aly, 2, 1) P97 (2, )] 1C 5
j=1 (mz)
6
+ Y1 @5)e (%, 5,2, P[(95) aly, 2, 17195 (2, t)lz%
j:l (m%)
Zl(fpz) (0 y, 2 )P1(@5)aly, 2 1) P95 (2 1)) (130)
j=1 (mA)

For the CFC y — F, (y — iron) corresponding to the Austenite phase, such density functions are
subject to the following constraints:

Defining
Cy = {(e1,0,0), (0,€2,0), (0,0,¢e3), : ¢ € {+1, -1}, Vj € {1,2,3}},

(Cy)1 = {(e1,62,3), : & € {+1,-1}, Vj € {1,2,3}},

and

(C’Y)z = {(81182/0)/ (51/0153)/ (0182/83)/ : gj € {+1'_1}/ V] € {1/2/3}}'

we must have
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(PZX_F"’ (Y, 21 + €162, 20 + €262, 23 + €302, t) = Py Py, 21 4+ 8102, 20 + E282, 23 + 305, 1),

Ve, & € Cy, where J; € R™ is a small real parameter related to v — F, crystalline structure dimensions.
We must have also,

oL Fe(y, 21+ €162,20 + €205, 23 + €36, 1) = ¢ Fe (y,21 + &10z, 20 + 207,23 + €305, 1),
Ve, & € (Cy)1 and,

(¢§:)A(% 21 + 81521 Zy + 8252/ 23 + 83521 t) = (‘P?)A(]// 21 + g1§Z/ ) + g252/ z3 + g352/ t)/

Ve, € € (C“/)Z-
For the CCC o — F, (« — iron) corresponding to the Austenite phase, such density functions are
subject to the following constraints:
Defining
Co = {(e1,82,83), : gj € {+1, -1}, Vj € {1,2,3}},

(Ca)l = {(81,82,83), P €1, &2 € {+1,—1} and g3 = 0},

(Ca)z = {(81,82,83), P81 =& = 0 and €3 € {-I—l,—l}},
we must have

oy Fe(y, 21 + €16, 20 + £26., 23 + €30, 1) = oy Fe(y, 21 + 818,20 + 8262, 23 + 36, 1),

Ve, & € C,, where 8, € R is a small real parameter related to @ — F, crystalline structure dimensions.
We must have also,

(¢§:)A(y,21 + €102, 22 + €202, 23 + €362, t) = (4’%)/1(%21 +&162, 20 + 8202, 23 + 302, t),

Ve, & € (sz)l U (CD()2'
The other constraints for the densities are given by:

1.  For the Austenite phase:

(@)

/Q o3 (6, y, 2, 0P dx = my, Vj € {1,26},
(b)

/Q |pe. Fe(x,y,2,t)|? dx = m,, Vj € {1,26},
(©

183 5 G O dx = my, vj € 1,30},
(d)

Fe
/ 9% (x,y,2,t)[* dx = m],

(e)

/0 [(@F)p; (%, y,2, )| dx = my, Vj € {1,6},
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(f)

@0 (v z, P dx = me, ) € {1,6),
()

1@ (2,0 dx = my, ¥ € (1,6},
(h)

[ 16§14 yz 0P dx = mS,

2. For the Martensite phase:

(a)

/Q |9, e (xy, 2, 1) P dxe = my, W) € {1,26},
(b)

/Q |¢¢exj—Fe(x,y,Z,t)|2 dx = me, Vj € {1,26},
(©

/Q |<P}X\;;Fg (x,y,2,t)|* dx = my, Vj € {1,30},
(d)

x—F, 2 o«
Lo oy z 0P dx = ms,

(e)

/Q (95)p; (x,y,2,1)|> dx = my, Vj € {1,6},
()

1) (2,0 dx = me, ¥ € {1,6),
(8

/Q (95, (% y, 2, 1) |? dx = my, Vj € {1,6},
(h)

@),z D dx = m,
3. For the total F, (iron) mass,
S loT 0P az+ [ 193Gz 0I dz = (me)r,
4.  For the total Carbon mass

[ 195 0R dz+ [ 1650 dz = (mo)r.

At this point we define the functional | which models such a pahse transition in question, where

J(¢,E) = G(V¢) + F(¢) + F1($) + Jaux (¢, E)

where
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) - V(¢S)) dz dt (131)

,?'Y Fe tf
G(V(P) = p / 4) —F v(p —F dx dy dz dt
‘:1
26 ~v—F !
2762 f/ 4)7 Fc V(ng_l:e dx d]/ dz dt
30 55 E ooy
/f/ 4)7 § V¢%]._Fe dx dy dz dt
,?D( Fg tf
+Z P / / (plX Fe V(pl;j—l:g dx dy dZ dt
26 ~a—F .t
+Z’Ye /f/ (Pa F, V(P;;—FE dx dy dz dt
Aoc F. b
/ ‘Plx & Vfl’?\z;Fe dx dy dz dt
‘_1
/ / q)’Y Pe yrz,t) ng'}’ Fe(y,Z,t)) dy dz dt
V on— Fe ,Z,t a—F, ,Z,t d dzdt
Pu v ey y
6 ,?g
Z 7/ / (@)p; - V(¢1 ), dx dy dz dt
6,95 rts c .
+27€/0 /Qv(ﬁbl) V(97 )e; dx dy dz dt
=1
6 45 1
+27/o /Qv(‘l’l) V(9 )n; dx dy dz dt
=1
6 ’?;(7: t c .
+27/0 /Qv(‘l’z) V((pz)pjdXd]/dZdt
=1
° 95 [t c
+27€/0 /QV(¢2) (7 )e; dx dy dz dt
j=1
6 45 1t
JFZ:7/0 /Qv(sbz) (5 )N, dx dy dz dt
j=1
/\C ¢ AC t
Y f 4 ’
+ 2 [0 [ (0@)a-VigHa dydzar+ 4 [7 [ (V(gS)a
2 Jo Ja
/\’Y t t
Y f 4 ’
+7T/0 /Q<V<4>¥>-v<¢1>>dzdt+ T/ / )
AC ¢ -
£ oo suneac [ o
+ 2 Jo Q<V(¢1) (4’1 dzdt >
Also,
F(¢)

[(x,y,2) = (81,82,63)]
y / |(P2(x — gl'y — éz,Z - 63/ t)|2||¢2(§lr§2/ 63/ t)|2
|(x1y/Z) - (61/ 62/ g3)|

i / p1(x — &1,

]/_6212_63,

t) |2| |¢1<§1/ 52/ ‘:3/ t) |2

dx dy dz &y dE, dis dt

dx d]/ dz d(:l dCz dég dt,
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// () (|$1(2, O + ¢z, 1) 2) dz dt,

Finally, Jaux = Jaux; + Jaux, + JAuxs + Jaux, + J Auxs, where

Jau, = %/tf/ E” Fe(y,z,1) (/ |<[>7 Fe( xy,z,t)|2dx—mp> dy dz dt

j=1

—l—i/tf/ 1:"7 Fe (y,z,t) (/ |4>7 Fe(x,y,z,t)|2 dx—me> dy dz dt
=1

+§/tf/ E7 Fe (y,z,t) </ |4>7 FE (x,v,2,t)]? dx—mN) dy dz dt
=1

%/tf/ E”‘ Pf (y,z,t) </ |4>"‘ Fe xy,z,i?)|2 dx—mp) dy dz dt

=1

—i—i/tf/ E”‘ Fe (y,z,1) (/ |<,b”‘ Fe xy,z,t)|2 dx—me> dy dz dt

+Z/ /E”‘ ",z 1) (/ o ( xy,z,t)|2dx—mN) dy dz dt

+/ /E'y By, (/ I~ Fely,z,0)2 dy — mA>dzdt
+/ /QEﬁx Fe( (/ 9% e (y,2,1)| dy—m%) dz dt (132)
0

26 tf

Z/ / (ES)e (y,2,t) | 9o (x,y,2,1) |2 dx—me> dy dz dt
j=1

26 t

Z/f/ El y,zt

j=1

26 ty

Z/ / (E5) p; (¥, 2, t)
j=1

26 t

Z/f/ E2 6] ]/th
j=1

26 t
Z/f/ (ES)Nn y,zt</|¢2 N(xy,zt)|2dx—mN)dydzdt
j=1

L [ Ew0 ([ 1) at0z 0P by~ ) e

[ @m0 ([ 16S)aw 2R dy—nS;) dzat 139

26 te
Jawe = Z/ / EDp (,2,1) ( (1 )p; (x, 9,2, 1) dx—mp) dy dz dt
i
</ (5, (x,¥,2,1) |2dx—mN) dy dz dt
(1S ) = m, ) dy et

| o5) (X2, t)? dx—me) dy dz dt

and,
T, = [ EPO( [ (01G0P + 03 0P) bz~ (e )
+ [ B0 ([ 105G 0P + 105 GNP dz — (o) 134
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]Aux4
b
= + 2 / / EE S y,z t)(¢A (yrzl + €105,20 + €205, 23 + €365, t )
g, E€Cy
— @ (Y21 + E102, 20 + 8202, 23 + B30, 1)) dy dz dt
t
) / / EZ¥(y,z, )¢ “(y, 21+ €102, 20 + €20, 23 + €302, 1)
g, 8€(Cy)
— % T (g, 21 + €102, 22 + 8202, 73 + £302, 1)) dy dz dt
tf N
+ Z /0 /Q EZ ¥ (y,z,t)(9F) a(y, 21 + €102, 20 + €202, 23 + €302, 1)
g,
( ) (y,Zl + £10,,20 + 820,23 + €30, t)) dy dz dt
+ 2 / / EZ(y, 2, t)(¢% " (v, 21 + €102, 22 + €262, 23 + €302, )
g, SE
—f (y,zl + €102, 20 + 8262, 23 + 8305, t)) dy dz dt
t B . . X
+ 2 / / Egle(yle t)((‘PZC)A(]//Zl + €103, Zp + €207,23 + €303, t)
€, 2€(Ca)1U(Cy )2 70 7
( ) (y,Z1 + 515\2, Zy + gzgz, z3 + gggz, i’)) d]/ dz dt. (135)

Finally, for a field of displacements u = (111, up, u3) resulting from the action of a external load
field f = (f1, f2, f3) and temperature variations, we define

]Auxs
N % /otf /Q (Al(x’ t)Hiljkl((eif(”) - ez‘lj(w))(ekl(”) — ey (w)))
+A2(Z, t)Hizjkl((Eij(u) — eizj(w))(ekl(u) — eil(w)))) dx dt

_%/Otf /Qp(xrt)ut(xlt)'ut(X,t) dx dt
—(ui, fi) 2, w56

where )
-
eij(u) = % (g—;‘]ﬁ + 8_x:>
pr(zt) = [ 101(x,y,2 0 dx dy,
p2(z,t) = [ 142,02 0) dx dy,
p(z,t) = p1(z,t) + p2(z,t),
and

_ p1(zt)
Mzt = pl(z,t; +p2(z,1)

_ p2(z,t)
M) = D o)

Remark 12. The system temperature is supposed to be directly proportional to w(z, t)?, which in this model is a
known function obtained experimentally. Finally, the strain tensors {e}](w)} and {elzj(w)} refer to austenite
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and martensite phases, respectively. Such tensors also depend on the temperature and must be also obtained
experimentally.

25. A Note on Classical Free Fields Through a Variational Perspective

This section is strongly based on the first chapter of the book [20], by N.N. Bogoliubov and D.V.
Shirkov.

Therefore, the credit for this section is of these mentioned authors. This section is a kind of review
of such a book chapter indicated. In fact, what we have done is simply to open more and clarify
some calculations, specially about the first variation of the functional L, in order to improve their
understanding.

Let O = Q) x [0, T] C R* where O C R3 is a bounded, open and connected set with a regular
boundary denoted by Q).

Consider the Lagrangian density L : RN x RN*" — R and an action A : V — R where

Au) = /QL(u,Vu) dx,

ax]-

V =W, (Q;RN).
We denote

and 3
i
aix]l‘ = (uz‘)x]..
Assume u € V is such that
OL(u,Vu) =0,
so that

oL(u,Vu) & d <8L(u, Vu)

T B ol e

)—o, inQ, Vie{1,---,N}.
k=1

We define a change of variables
(x/)k = Xi + 5xkl

where x; = (xg, x1, X2, x3) and xg = ¢ (here ¢ denotes time).
Also
gk =0,1fj#k, goo=—1and g1 = g0 = g33 = 1, {¢"} = {gu} ",

N
oxp = Z X;-‘s w!,
j=1

where |¢| < 1 denotes a small real parameter.
We define also

where

and
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Observe that
5ul<x) = u;(x> - uz(x>
= ul(x') —uj(x) + uj(x) — u;(x), (137)
so that
dui(x) = u;(x) —u;(x)
= ui(x) — (uj(x') — uj(x))
n (f
Z %s w] Z d
k=1
- 2 pije wl — Z Méxk + O(?). (138)
j=1 = A
Summarizing, we have got
N .
— g(Z <lpijw1 _ Z Iu;(x) T XK ]>> + O(?).
j=1 k=1 Xk
Define now
Al 91, p2re) = [ Llu(x+epa(x)) +e1(x)] det(x) dx
where we have generically denoted
L{u] = L(u, Vu),
Llu(x +epa(x)) +e1(x)] = L(u(x +ega(x)) + @1 (x), Vu(x + ega(x)) + V1 (x)),
and
ax;-
J(x) = 9y
~ [o(xj+e(ga)(x))
n axk
- (92)j(x)
= {(Sjk +e o, } (139)
From such a last definition we have
- 2
det J(x ; an + O(e%).
so that 34 A )
et] (/)2 r(lx
8 = Z axk !
At this point we define

d
(SA(M, 1, (PZ) = d_( (u P1, P2, € ))|£:0/
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so that

N
OA(u, ¢1,92) = /()(Z M(%)i

+ )n: 52‘[7] g—Z(goz)k) + )n: L[u]a((”)"> dx. (140)

From this and

oL(u,Vu) d <8L(u, Vu)

Olly,

_ —0.inOQ Viell ...
avy) 2 ) 0,in0, Vi€l N},

we obtain

SA(u, @1,92) = i i (/Q di <aaL[u] (4’1)k)> dx

/ —d(L[”;]Jfk‘” 0 gy, (141)

In particular, for
and

we obtain

B N n i aL—[u] N o n aui(x) lw N
- BEAGE R (B (- £257))))

+Lu] X}‘wj) dx) ) : (142)

so that

V{w'} € C(O;RN).
In particular, for
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and
k _ sk
we obtain the Energy-Momentum tensor T,{, where
i &/ OL[u] ouy
T =6 = ( —15’.> — L[u)ék.
kR 1;1; 0(1;)x, 0x7 /
25.1. The Angular-Momentum tensor
In this subsection we define the following change of variables
Xe=xp+ Y " xme Wk,
m#k
where
wkm _ _wmk
With such relations in mind, we set
Sxp = xp—xg
n
= e ) Y w(g gy — 8" wngl). (143)
I=1m<l

We define also,

where

Moreover, we define

¥; (mn) — Z

where

i j I 5]
Aipry = 8ipd] — 8i0p-
Hence,

Yi(m ZA mn)”]( x) = gin”m(x)_gjmun(x)-
=

For the general variation, we define again
Al g1, p2e) = | Llu(x+epa(x)) +e1(x)] det(x) dx
where we have generically denoted
Llu] = L(u, Vu),
Liu(x +epa(x)) +e1(x)] = L(u(x +e@a(x)) +e@1(x), Vu(x + e@a(x)) + eVeq(x)),
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Bx;
J(x) = a_xk
_ d(xj +e(g2)(x))
N axk
d(¢p2)(x)
= {5jk + 2%, } (144)
and p
éA(u/ 4’1/ 4)2) == % (A(ur 471/ 4)2/8)) |€=O/
Moreover, we set
()i = w™ (g"x18%, — g""xm0}),
and
ou; = uj(x) — ui(x)
Thus,
dui(x) = ”;(x> — ui(x)
= ui(x) —uj(x) +ui(x) — ui(x), (145)
so that
Sui(x) = ul(x) — u;(x)
= oui(x) — (ui(x") — ui(x))
= 0u;(x) 2
Su;(x) —k; dzxk Sxi + O(e7)
n n
ou:
= Sui(x)=) ) ) lg(x)swml (g" %85, — g™ x,8F) + O(?)
ISim<ik=1 9%
= ¢ i Z Aj u‘(x)wkl _ i Z Z a1"1’(35)107111((?”3( 5k _gmmx 5k) +O(£2)
= i(kl)™] oxy 19m mOj ,
=1jk<l I=1m<l k=1
With such results in mind, we define
I _ j I
(0t = T A"
n .
-2 (Mw’”’ (8" x,0% — gmmxma,k)>. (146)
=1 axk

Similarly as in the previous section, we may obtain
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SA(u, 1, 92)

_ A, 91, 92,¢) |
de e=0

n n N d aL[u] ou; mm. P ou; . P ml
- Z Z;/ d_<a(ui)xk(Ai(l,m) <)+ﬂ3 mO] _Eg X10 )W >dx

n n N
d
20 XY [ (Lul(g s — g sy ) dx (147)
k=11=1jm<li=1"C Xk
Thus,
SA(u, 91, 92) i E/ d—(M’,;,w’"’) dx,
k=1 m<1’ Xk
where
. ou; mm ou; I >
Uj—=-8 Xm+5—-8X
121123 < i1 9x " E)xmg !

+L[u)(8" %8}, + g™ xmd), (148)

so that
M;(m = (8mmxm7}k—g”x,T,’,‘1)
—ZZ ]: uj(x)
i= 1]<la z(lm) /

= Ly + Sk (149)

where
Liy = (8" xuTf — &' Ty,)
and

Z Z z(lm (x)

i= 1]<l

The tensor {L¥ } is said to be the Orbital angular momentum tensor and {S* ;} is said to be Spin
one.

25.2. A Note on the Solution of the Klein-Gordon Equation

For O = R*, () = R? and denoting as usual by i € C the imaginary unit, consider the Klein-
Gordon equation in distributional sense

3 9%u
8t2 Z—z—mu—o inQ,
j=1 ]

where u € V = W2(Q).
Defining the Fourier transform of u, by

¢(p) = (Z;W /Qe_ip'x”(x) dx,
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in the momenta space, the last equation is equivalent to
2 > 2 2
po— Y pi —m* |$(p) =0,inQ,
=1
where we have denoted p = (po, p1, p2, p3) € R*, and x = (x0, x1,x2,x3) € R4
Observe that a general solution for this last equation is given by the wave function
5 2 v oo 2
$(p) =0\ ps— Y p; —m* |9(p),
j=1
where ¢ € W2(Q).
Indeed,
2 > 2 214 2 > 2 2 2 > 2 2
ps— Y pi—m>|p(p) = |po— Y pi—m*|o|po— Y pi—m*|P(p)
j=1 j=1 j=1
= 0,inQ. (150)
Here, we recall that generically for the Dirac delta function é(t), we have
0, ift #0,
o(t) = 151
®) {—i—oo, ift =0. (151)
Observe that, for the scalar case in the previous section, we have
2
3
27 = Z (%) + mu.
j=0 ]
Also, from
0%u o%u 5 .
ﬁ—l-;@—m u=20,inQ,
j=1 77
we get
2 3 2
/ B_u —2/ a_u dx—mz/uzdx:0,
o\ ot =~ Ja axj Q
]_
so that
Jou 2 3 ou ? 2 2
/Q(g) dxzjg/ ax, dx +m /Qu dx
From such results, we may infer that
2
/ Tdx = / (8_11) dx
Q a\ ot
- 2
- at LZ
3 p) 2
= Z/ o dx—l—mz/ u? dx (152)
= /0 9%
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On the other hand,
3 ou ?
E/o(a—xf) .
N zn)s 2/ (/ ipi ¢ 1”'de> </Qil’§43(l7') e dP') dx
= 27-[)3 Z/ /( pj P] P(p) (p )/Qei(pw,)'x dx) dp dp’
= W ;/Q/Q<_Pj P é(p) d(p) 8(p+p')) dp dp/
= 2n)3/22 | (P (0 d(=p)) ap. (153)
Thus, denoting p = (p1, p2, p3), dp = dp1 dpy dp3, and
po(p) = 4ZPﬁmz
we may infer that
[1%ax = o [ (L i+ $(p) d-p)d
0 (27)3/2 Ja j=1P] p)Jap
= [ (Bet) o) o) g d
(271_)3/2 o) j:lp] Po j:lp] p p
1
= 72 o, (PO(P 9(30(5),5) 9(—polp), ) d. (154)
Summarizing we have got
1
o = s [, (o8 0(po(9). ) 9(—polp), ) d
2
_ aa_j LZ, (155)
so that )
0 5. _ |9
/QT dx_ at L2

may be expressed as a kind of average expectance of pj related to the function ¢(p).

25.3. A Note on the Dirac Equation

In this subsection we denote

3
2 ..
A = ;]g]]Lj L]',
]:

where 5
RN | B
Li=ig ax’ Vje{0,1,2,3}.

We recall that the relativistic Klein-Gordon equation may be written as
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(A2 —m®)u=0, inQ=R%

Moreover, for 4 x 4 matrices 7* indicated in the subsequent lines, we may obtain

3.9 3.9
{Djj}u = [—i(Z 'y]a) —m} [—i(Z 'y]a‘> +m|u
j=o % j=o %

Dii = Az — mz

where

and
Dy =0, ifi #j, Vi,j € {0,1,2,3}.

Here
u = (ug,uy, up, uz)T € V=W2AQ;C*).

In such a case the fundamental Dirac equation stands for

3.9
Z’Y]ax] —m|u=0¢cR inQ.

]_

Summarizing, if (1o, uy, up, ug)T € V is a solution of this last Dirac equation, then ug, u1, up, u3
are four solutions of the Klein-Gordon equation.
In the momentum configuration space, through the Fourier transform proprieties, the Dirac
equation stands for
(p+m)i(p) = 0, in R,

where ;
h = Z g]'f Pj’Yj-
j=0

Observe that
ia(p) = 6(p+m)u(p)
corresponds to a general solution of the Dirac equation.
Indeed,
(p+m)ii(p) = (p+m)s(p+m)u(p) =0 € R, inQ.

On the other hand

P)—5<Po ij—m>

correspond to four solutions of the Klein-Gordon equation.
At this point, we assume such a 71 (p) corresponds to a solution of the Dirac equation as well.
Furthermore, here we recall that (please see the first chapter of the book [20], by N.N. Bogoliubov
and D.V. Shirkov for details):

10 0 0
01 0 0
0
_ , 156
v 00 -1 0 (156)
00 0 -1
0 0 0 1
0 0 10
1
_ , 157
U 0 -1 0 0 (157)
1.0 0 0
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0 0 0 —i
0 0 i 0
2
_ , 158
U 0 i 0 0 (158)
i 00 0
0 01 0
0 00 —1
3
_ 159
U 100 0 (159)
0 10 0
and
0 0 —i 0
0 0 0 -—i
5
_ 160
v i 0 0 0 (160)
0 —i 0 0

where we also denote
aj = 'yo'y], Vje{1,23},

0j = iy, Vjie{1,23},

and
p=1"
On the other hand, a variational formulation for the Dirac equation corresponds to the functional

A :V — R where 1

Au) = 3 /QL(u,Vu) dx,
where

Ju  ou*
ax]' ax]

'yju> — mPutu,

where here
u = (ug, ug, Uy, u3)T € W1'2(Q;(C4).

From such statements and definitions, similarly as in the previous sections (please see [20] for
details), we may obtain

1 Ju Ju*
Tkt — Lo rakOH _ OU g
Zg u’Yaxl axl’yu'

and
Sk,lm — _ aL(ur vu)Au,lmu _ u*Au*,lm aL(u/ Vu)
Olly, Oily, !
where .
Au,lm — io.ml
2 7
Au*,lm _ i lm,
2(7
and where . )
S _ 7 =
2 7
so that
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Thus,
/ ghim gy
— k lm lm k
- 4/ 7 )u) dx
= — sz k lm_ Im kN A (01 Hip’x /
4 27'()3/ (// oy )i(p)e )dpdp> dx
= 1 1 lm lm k ’
T 4(2m)32 /Q/ 70 (P+p)u(p)) dp dp
— 1 1 k lm lm KNn(
T 1 271)3/2/0 P)i(=p)) dp
_ 1 1 klm_ Im k)(5 z_i g_mz u(_) d
= 2 (27)3/2 Jo Y Po ]'le] p p
= 1 1 A k lm lm k o AN A n
T 4(2n)/ 2/01 o(p). p) ("o Y u(—po(p), P)) dp, (161)
where
3
po(p) = \| X p} +m?
j=1

Summarizing, we have got

[ sk dx=4(z;)3/z/ol (u(po(p), D)0 = 4 )u(=po(p), ) dp,

where Ql = R?’, ﬁ = (pl, P2, p3) and dﬁ = dpl dpz dpg,

26. A Note on Quantum Field Operators

This section is strongly based on the chapter 3, page 53 of the book [21], by G.B. Folland.

Therefore, here we have done a kind of review of these pages of such a book chapter indicated.
In fact, we have simply opened more and clarified some calculations, in order to improve their
understanding.

Let O = Q) x [0, T] € R* where ) C R3 is a open, bounded and connected set with a regular
boundary denoted 9Q).

Define V = W'2(Q) and

Vo = Wy (Q).

Consider an operator H : V; = Vo N W?2(Q) — Y where in a distributional sense,

%u 2 2
H(u) = W—i—V u—mu,
and where
Y =Y* =L%(Q).

Suppose there exists operators By : Y — Y and B, : Y — Y such that

Ble(u) = H(u) + %M

and 1
ByBi(u) = H(u) — Sl Yu € V1.
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Assume also ¢y € V; is such that
Ipollz2 =1,
and B¢y = 0.
Now define L
B
o = 2(4’0), Vk € N
Vk!
Observe that
[B1Ba2] = B1By — BoB1 = Iy
We shall prove by induction that
[By, B§] = kBS~1, vk e N. (162)
Indeed, fork =1
[By,By] = I; = 1BY,
so that (162) holds for k = 1.
Suppose now (162) holds for k € N, so that
[By, B] = kBS~1.
In order to complete the induction, it suffices to prove that (162) holds for k + 1.
Observe that
[Blr BIZC-H] — ( Bk+1 Bk+1B )
(ByBY)B, — B5*1B,
(B5By +kBS1)B, — B5t1B,
B5(B1B,) + kBS — BS™1B,
BS(ByB1 + I3) + kB, — BS™' By
BYT1B; + BY + kBS — BS !By
= (k+1)B5. (163)
Thus, the induction is complete, so that
[By, B§] = kB5™!, vk € N.
Moreover, we recall that
Bigo =0,
so that
B¢
Bigy = B[ 2
19k 1 ( N/ )
_ (B5Bi +kBy )y
vk
_ ke (k—1)!
vkl
_ ki
Vk
= Vi1, VkeN. (164)
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Summarizing, we have got
Bi¢y = \/E(Pk_l, vk € N.
Now, we shall prove that
By = Vk +1¢pp11, Vk € N.
Observe that
Bi g0 = graa(y/ (k+1)!
= Ba(Bin)
= (Bagpp) VK. (165)
Summarizing, we have got
(Bagi) V! = reya (y/ (k+ 1)1,
so that
(Bagx) = Vk + 1¢q, Vk € N.
Finally, from such results, we may infer that
BiBapr = Bi(Vk+1¢ps1)
VEF 1B rss
= Vk+1Vk+ 1¢
= (k+1)¢x, VkeN. (166)
Similarly,
BoBigy = Ba(Vkgy 1)
= VkBygy_1
= Vivkey
= k¢y. (167)

Therefore we have got

1 1 1
H ¢ = BiBogy — S¢ = (k+ 1)y — S = <k+ §><Pk,
that is .
Hep = <k+ E)gbk, Vk € N.
Thus, for each k € N, k + % is an eigenvalue of H with corresponding eigenvector ¢.

26.1. An Application Concerning the Harmonic Oscillator Operator in Quantum Mechanics

In this section we have the aim of representing the relativistic Klein-Gordon equation through the
creation and annihilation operations related to the harmonic oscillator in quantum mechanics.
Consider first the one-dimensional Hamiltonian, corresponding to the harmonic oscillator, namely

_ hod? x2
2m dx? 27
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which through an appropriate re-scale results into the following related Hamiltonian Hy, where

1/ 4
HO—E(—W-FJC )

Define now the operators

1 d
s Gl i)

and . p
B2:A :E<x—ﬁ>
Clearly,
_ Iy Iy
Hy = B1B > = ByBy + X
so that
[A, A*] = [By, B2] = B1By — ByB1 = I,
Similarly, as in the previous sections, by induction, we may obtain
[By, B§] = kB5~!, vk € N.
For s
do = Ve,
we define 1
= — B¢y, Vk e N.
(Pk \/E 24)0
Also from the previous section, we may obtain
B2¢k = A*(pk =Vk+ 1¢k+1/
Bipy = Ad = Vky_1, Yk € N.
BBy = A" Ay = k¢,
and
B1Bagpy = AA*(Pk = (k+ 1)(Pk,Vk e Nu{0}.
so that
H0¢k = (k+ 1/2)4710 Vk € N.
Here we recall that
Bigpp = A = 0,
and
l[oll2 = 1.
In reference [21], page 54 it is proven that such a sequence {¢y} is an ortho-normal basis for
L*(R).

Finally, observe that for R* we may define

1 0
(B)j = Aj = —(—-I-x-),
N AT
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and
(By); = A* = ( J +x> Vi € {0,1,2,3}
2)i — i — =\ 3. i | R YR .
] ] \/E ax]. ]
Here generically,
X = (XO,JC1,X2,X3) S R4.
Observe that clearly
2 V2 )
BTCJ- = 7(14] — A7),
and
2 )
X1y = g(Aj +AY), Vj € {0,1,2,3}.

Denoting xo = t where t stands for time, consider the relativistic Klein-Gordon equation,

624) 3 624) 2
—ﬁ—‘-];a—x]z—m (P—O

From the previous results, we may represent such an equation by

1 a2, w1 "
j=1

We highlight from the previous results we know the action of Aj and A on an appropriate basis

of L2(R*) obtained though an appropriate tensorial product of the bases

{{¢x(xj)}, forje{0,1,2,3}}.

We shall call the operators A;ﬁ and A; as the creation and annihilation operators concerning the
original harmonic operator in quantum mechanics.

To justify such a nomenclature, we recall that A]’-‘(Po(x]-) = ¢1(x;) and A;po(xj) = 0, Vj €
{0,1,2,3}.

27. A Dual Variational Formulation for a Related Model

In this section we develop a concave dual variational formulation for a Ginzburg-Landau type

equation.
Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q).
Consider a functional | : V — R defined by
J(u) = 1/ Vu-Vudx
2 Ja
+5 [0 =B dx = (u, £z, (168)

wherey > 0,2 > 0,8 >0, f € L2(Q), and
V =WA(Q).

We also denote Y = Y* = L2(Q).
Define now
Vi={ueV : |ul|o <Kz},
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for some appropriate K3 > 0and, J; : VxY — Rby

K
Bw,95) = 100 + 5+ [ (=vVu+ 205u - )2 dx,

h
where 1

Ki=———~+—
! 4zxK§—|-e

for some small parameter 0 < e < 1.
Observe that

J(u,v5) = %AVu-Vudx%—(uz,vS)Lz
K
+ 5 (7P 205 = )% dx— (u, )2
2k ﬁ/ 2_ g2 4
W2 o)+ 5 [ (2= P dx

inf {%/{)V%Vu dx + (u?,v) 12

ueVy

%/ﬂ(—vvzuj%vgu—f)z dx—<u/f>L2}

. " 0
+ingf-tougha+ 5 [ (0 g2 dr)
— _F(op) — G (t})
J*(03),Yu € i, v§ € Y*, (169)

v

+

where we have denoted

F*(vh) = sup {—(u?,v5) 1 — F(u,05)},
uevy

K
F(u,v5) = %/QVu-Vu clx-l—71/Q(—'yvzu-l-vagu—f)2 dx — (u, )2,

and

Go) =5 [ (0—p)dx,

G*(v) = Slellya{@rvth—G(v)}

_ i/ﬂ(vg)z de+p [ vp dx. (170)

Observe that
oF (u,vj;)

s = 7V 4205+ Ky (= V2 + 205)%,

so that we define
B* = {vf € Y* : —yV?+ 20} + Ky (—V? +205) > 0}.

With such assumptions and definitions in mind, we may prove the following theorem:
Theorem 4. For [*(v§) = —F*(vy) — G*(v;), suppose 0 € B* is such that
51" (65) = 0.

Let uy € Y be such that
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where
H(u,v) = F(u,v5) + (u”, 0) 2.
Suppose
up € V1.
Under such hypotheses,
F*(95) = H(uo, %),
6] (ug) =0,
and
J(uo) = Ji(uo,%p)
— inf Ji(u,%)
ue
= sup J*(2p)
vpEY*
= J*(%)- 171)
Proof. The proof that
F* (%) = H(uo, ),
is immediate from 9y € B*.
Moreover, the proof that
6] (uo) = 0,
and
J(uo) = J1(uo,0g) = J" (0g)
may be done similarly as in the previous sections.
Observe that
J*(wg) = =F(vg) = G*(w) = inf {H(u,75) = G*(v)},
so that J* is concave in v as the infimum of a family of concave functionals in vj.
From this and 6]*(9)) = 0 we get
J* (%) = sup J*(vg)-
viEY*
Furthermore observe that
J(uo) = J1(uo,p)
< Ji(u,vp)
= F(u,85) + (u,95) 12 — G* (%)
< F(u,95)+ sup { (42,952 — G*(95) }
vpEY*
= F(u,8)) +G(u?)
= N 8), Vuewn (172)

Hence
J(uo) = J1(uo, 05) = inf Jy(u,0p).
M€V1
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Joining the pieces, we have got

J(ug) = Ji(uo,0p)
- Mlg‘g Il (ul UO)
= sup J*(vp)
USGY*

= T, (73)
The proof is complete. [

28. The Generalized Method of Lines Applied to Fourth Order Differential
Equations

In this sections we develop an application of the generalized method of lines to a fourth order
equation.

We start by addressing the following ordinary differential equation (ode):

d*u(x)
dx*

€ —f=0,in[0,1],

with the boundary conditions

u(0) =u'(0)=0
and

u(l) =4'(1) =0.

In terms of linear elasticity, such a boundary conditions corresponds to a bi-clamped beam.
In a finite difference context, this last equation corresponds to

(un+2 — AUy +6uy —4uy_ 1 +uy o
€ d4

where N is the number of nodesand d = 1/N.
Considering that, from the boundary conditions, u_1 = 1y = 0, for n = 1 we get

)—fn:O, vne{l,---N-2},

d4
6uy —4uy +uz = flT,
so that
Uy = aqupy + byuz + cq,
where .
d
ay =2/3, bl —1/6andc1 = f16_€
Similarly, for n = 2, we obtain
fod*

—4uq + 6uy — 4uz + uy = -
Hence, replacing the value of 11 previously obtained in this last equation, we have

fod*
—4(aquy + byus 4 ¢1) + 6uy —4us + uy = e

so that
Uy = apuz + bouy + Co,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

118 of 360
where defining mq, = (6 — 44a1), we have also
4b1 + 4
ap=—-",
miz
1
bZ =
miz
1 d*
Cy = —<f2— +4C1).
mqp €
Now reasoning inductively, for #, having
Up—1 = ap_1tn + by 1Uy1+cn1,
and
Up— = Ap—2Up—1 + by—2un +cp2
we obtain
Up—2 = ap—2(@n—1Un + by_1y11 +Cuo1) + by oun +cn2,
so that from this and
fudt
Upyo — AUy + 606Uy — 44Uy 1+ Uy o= o
we obtain
an—2 (anflun + by 1ty + Cnfl) + by 2up +cp2
d4
—4(ay1un + by tyg1 +Cp1) + 6Uy — g Uy = fng , (174)
so that

Uy = Aplp i1 + bptty1 + cp

where defining
mig = (an—2(ap-1) + bp—2 — 4,1 +6)

we obtain 1
ay = ———(ap_2by_1 —4b,_1 — 4)
m12
1
b, = ——,
" mip
and .
1 d
Cn = — <an—2cn1 +ep—2 — 41 — fu )
mip S

Summarizing, we have got
Up = Aplly i1 + byl o +cp,Vn € {1,-N —2}.
Observe now that from the boundary conditions,
un_1 =un =0.
From these last two equations, we may obtain

UN-2 = CN,,
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and
UN-3 = AN_3UN—2 + bN_3UN_1 +CN_3,

and so on up to obtaining
U = aquy + b1M3 + 1.

The problem is then solved.

28.1. A Numerical Example

We develop a numerical example considering

e=1,
and
f=1,in[0,1].
Thus, we have solved the equation
d*u(x) .
e —f=0,in[0,1],

with the boundary conditions
u(0) =u'(0)=0

and
u(l) =4'(1) =0.

In a finite differences context, we have used N = 100 nodes and d = 1/N.
For a solution u(x), please see Figure 19.

%1078

251 b

051 b

Figure 19. Solution u(x) for the example B.

In the next lines, we present the concerning software in MAT-LAB
Bttt R

1. clearall
m8=100;
d=1/mS;
el=1.0;
for i=1:m8
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f(i,1)=1.0;

end;

a(1)=2/3;

b(1)=-1/6;

c(1)=f(1,1)*d*/(6el);
m12=(6-4*a(1));
a(2)=(4*b(1)+4)/m12;

b(2)=-1/m12;
c(2)=1/m12*(4*c(1)+£(2,1)*d* /el);
for i=3:m8-2
m12=(a(i-2)*a(i-1)+b(i-2)-4*a(i-1)+6);
a(i)=-1/m12*(a(i-2)*b(i-1)-4*b(i-1)-4);
b(i)=-1/m12;
c(i)=1/m12*(f(i,1)*d*/el-c(i-2)-a(i-2)*c(i-1)+4*c(i-1));
end;

u(ms8,1)=0;

u(m8-1,1)=0;

for i=2:m8-1;
u(m8-i,1)=a(m8-i)*u(m8-i+1,1)+b(m8-i)*u(m8-i+2,1)+c(m8-i);
end;

for i=1:m8

x(i)=i*d;

end;

plot(x,u)

S o 34 % 3 3 A X K

29. A Note on Hyper-Finite Differences for the Generalized Method of Lines

In this section we develop an application of the hyper finite differences method through an
approximation of the generalized method of lines.
Consider the equation

{ —eu"(x) +o’ —pu—f =0, nQ=10,1], (175)

1(0) =0, u(1) =0

As e > 0is small, in order to decrease the error concerning the approximations used we propose
to divide the domain ) = [0, 1] into N sub-intervals of same measure. Thus we define

Y = Nil ke {01, Ny},

For each sub-interval Iy = [x;_1,x;] we are going to obtain an approximate solution of the
equation in question with the general boundary conditions

u((k—=1)/Nq) = Ulk - 1],

and
u(k/Ny) = U[k].
Denoting such a solution by
{uli, K}
where
= "1
1 N] ’
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and
1

mg N1’
where myg is the fixed number of nodes in each interval Ij.

Observe that in a finite differences context, linearizing it about a initial solution {ug[i, k] }, the
equation in question stands for:

i LA = 2”52’ KL uli = VKD | s, K20 K] — 20ufi, K

—Buli,k] — fli,k] =0, Vie {1, ,mg—1}. (176)

In particular, for i = 1, we obtain

(u[2, k] — 2u[1, k] + 1[0, k)

—e e + Baug[1, k|?u[1, k] — 2aug[1, k)3
—pBu(l,k] — f[1,k] =0, (177)
so that
ull,k] = a[l,kju[2,k]+0b[1,klul0,k] + c[1,k]T[1,k]
el K + E[1,K, (178)
where
all,k] =1/2,
b1,k =1/2,
c[L,k] =1/2,
42
eft, K = f[1LK 5
d2
T[1,k] = (—3aug[1,k*uli, k] 4 2auo[1, k> — pull, k])?,
and
E,[1,k] = 0.
Now reasoning inductively, having
uli—1,k] = a[i—1,kluli, k] +b[i —1,k]u[0,k] 4+ c[i — 1,k|T[i — 1, k]
+eli — 1,k + E/[i — 1,k], (179)
and
i+ LK 2”6[;2’ KLl = VKD | sl K20l K] — 20ufi, K
—Buli, k] — f[i,k] =0, (180)
so that )
(uli + 1 K]~ 2uli ]+ uli — 1K) + Tk + £ S =0,
where,

2

Tli, k] = (—3auoli, K2uli, K] + 200i, kI* + Buli, k])d?,
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we obtain
uli,k] = ali,kluli, k] + bli, k]u[0,k] + c[i, k] T[i, k]

+eli, k] + E[i, k], (181)
where,

ali,k| = 2 —ali —1,k)) 7%,

bli, k] = ali, k|b[i — 1, k],
cli,k] = ali, k](c[i — 1,k] + 1),
S . fli, k)d?
eli, k] = ali, k] (e[z — 1,k + 8),

and

E,[i, k] = ali, k|(E[i — 1,K]) + c[i, k] (T[i — 1,k] — T}[i, k).

Observe that in particular for i = mg — 1, we have u[m8, k| = U[k] and u[0, k] = U[k — 1], so that
from above, neglecting E,[1, k|, we also obtain

ulmg — 1,k] =~ a[mg — 1u[mg, k] + b[mg — 1, k]ul0, k]
+c[mg — 1, k] T[m8 — 1, k] (u[ms, k], u[0,k]) + e[mg — 1,k]
— Hyy 1 (UK, ULk~ 1)). (182)

Similarly, for i = m8 — 2 we may obtain

u[mg — 2,k| ~ a[mg — 2Ju[mg — 1, k| + b[mg — 2, k|u[0, k]
+c[mg —2,k|T[m8 — 2, k] (u[mg — 1,k|, u[0,k]) + e[mg — 2, k]
= Hms,z(U[k], U[k - 1])/ (183)

and so on, up to finding
ull,k] = Hi(U[k], Uk —1]), Vk € {1,--- , N1 }.
At this point we connect the sub-intervals by setting
U] = U[Ny] =0
and obtaining {U[1],- - - , U[N; — 1]}, by solving the equations
7€(u[m8 —1,k] = 2U[k] + u[1,k +1])

7 + Baug[m8, k|PU[k] — 2auo[m8, k|3
—BUK] — flmg, k] =0, Vk € {1,--- ,N; —1}. (184)

Having obtained {U[k|], Yk € {1,---,N; —1}} we may obtain the solution {u[i,k]} where
i€{0,---,mgtand k€ {1,---,Ni}.

The next step is to replace {ug|i, k] } by {u[i, k|} and then to repeat the process until an appropriate
convergence criterion is satisfied.

The problem is then approximately solved.

We have obtained numerical results for e = 0.001, f =1,on (), Ny = 10, mg =100 and a« = § = 1.

For the related software in MATHEMATICA we have obtained U[1],--- , U[9],

Here the software and results:
33 3 3 3 3 o 34 3 3 5 3 3 3 o 3 3 3 o N SN
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1. Clear[u, U, z, N1J;
m8 = 100;
N1 =10;
d=1/m8/N1;
el =0.001;
For[k =1,k < N1+ 1, k++,
For[i=0,i <m8 + 1, i++,
uol[i, k] = 1.01]};
A=10;
B=1.0;
a[l]1=1.0/2;
b[1]=1.0/2;
c[1]=1/2.0;
e[1] =d?/el/2.0;
For[i=2,i < m8, i++,
ali]=1/(2.0-a[i-1]);
b[i] = b[i - 1]*a[i];
c[i] = a[i]*(c[i - 1] + 1.0);
e[i] = a[i] * (e[i — 1] +d?/el);
I;
For[kl =1, k1 < 10, k1++,
Print[k1];
Clear[U, z];
For[k =1,k < N1+ 1, k++,
u[0, k] =Ulk-1];
u[ms, k] = U[k];
For[i=1,i < m8, i++,
z = a[m8 - iJ*u[m8 -i + 1, k] + b[m8 - i]*u[0, k] +
c[m8 - i[*(-3*A*uo[m8 -i + 1, k[**u[m8 -i + 1, k] +
2*A*uo[m8 - i+ 1, k]® + B*u[m8 - i + 1, k])*d? /el +
e[m8 - 1i];
u[mS8 - i, k] = Expand[z]]];
U[0] =0.0;
U[N1] =0.0;
S=0;
For[k =1,k < N1, k++,
S=S+ (el*(-u[m8 - 1, k] + 2*U[Kk] - u[1, k + 1])/d? +
3*A*U[k]*uo[m8, k]? - 2*A*uo[m8, k]® - B*U[K] - 1)?];
Sol = NMinimize[S, U[1], U[2], U[3], U[4], U[5], U[6], U[7], U[8], U[9]];
For[k =1, k < N1, k++,
wi4[k] = U[K] Sol[[2, K]II;
For[k =1, k < N1, k++,
ULK] = w4[k]];
For[k=1,k < N1 +1, k++,
For[i=0,i <m8 + 1, i++,
uoli, k] = ufi, k]]J;
Print[U[5]]];
For[k =0,k < N1+ 1, k++,
Print["U[", k, "]I=", U[Kk]]]
U[0]=0.
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Ul1]=1.27567
U[2]=1.32297
U[3]=1.32466
Ul4]=1.32472
U[5]=1.32472
U[6]=1.32472
Ul7]=1.32472
U[8]=1.32472
U[9]=1.32471
U[10]=0.

E R R R X S X X

Remark 13. Observe that along the domain we have obtained approximately the constant value u = 1.32472.
This is expected since ¢ = 0.001 is small and such a value u is approximately the solution of equation

au —Bu—1=0.

30. Applications to the Optimal Shape Design for a Beam Model

In this section, we present a numerical procedure for the shape optimization concerning the
Bernoulli beam model.

Let Q) = [0,1] C R corresponds to the horizontal axis of a straight beam with rectangular cross
section b x h(x), that is, the beam has a variable thickness h(x) distributed along such a horizontal
axis x, where x € [0,1].

Define now

V ={weW>Q) : w(0)=w(1) =0},

which corresponds to a simply supported beam.
Consider the problem of minimizing in V x B the functional

J(w, h) = %/Q H(x)wx,((x)2 dx

subject to
(H(x)Wxx(x))xx - P(x) = 0, il’l Q,
where ( )3
h(x)°b
H(x) 15 E,

h(x) is variable beam thickness, A(x) = bh(x) corresponds to a rectangular cross section perpendicular
to the x axis, and E is the young elasticity model.
Also, we define

1
B= {h :[0,1] — R measurable : hy,;, < h(x) < hypqax and / h(x) < cohmux},
0

where 0 < ¢y < 1and

C'={weV : (Hx)w(x))x — P(x) =0, in Q}.
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Observe that
inf Jh
(w, h)lgC*xB](w )
= f f h
ﬁrelB wlgC* ](w )}
= mf {sup mf H(x)wxx(x)2 dx — (@, (H(x)wxx (X)) xx — P(x)) 2 } }}
wev (weV Q
= 5212{;25 H(x)d%, dx + <w,P>Lz}}
1 M2
= . 1
22£{MGD*{ Hix) d"}} (185)
where

D*={M€EY* : My —P=0,inQ, and M(0) = M(1) = 0}.

Summarizing, we have got

. : 1 M
inf  J(w,h)=  inf —/ ——dx ;.
(w,h)eC*x B (Mh)eD*xB | 2 Ja H(x)
In order to obtain numerical results, we suggest the following primal dual procedure:
1. Setn=1and
hn(x) = Cohmax.

2. Calculate w, € V solution of equation

(Hn(x>(wn>xx)xx = P(x)/
where o X
Hy(x) = —fzm .

3. Calculate h,,1(x) € B such that
J*(My, hyyq) = inf J*(My, h),
heB

where
M, = Hy (wn)xx/

1 M?

J'(M,h) = 5 [

4. Setn:=mn+1and go to step 2 until an appropriate convergence criterion is satisfied.

We have developed numerical results for ¢y = 0.65, E = 210 107, b = 0.1 m, P(x) =36 102 N
Nypin = 0.072 m and hyg = 0.18 m.
We have also defined

where
04 <t(x) <1, ae inQ.

For the optimal solution w = w(x), please see Figure 20.
For a corresponding optimal solution t = t(x), please see Figure 21.
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Figure 20. Optimal solution w(x) for a simply supported beam.
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Figure 21. Optimal shape solution t(x) for a simply supported beam.
Remark 14. For such a simply-supported beam model, for the numerical solution of equation
(H(x>wxx)xx =P,

with the boundary conditions
w(0) =w(1) =w"(0) =w"(1) =0

firstly we have solved the equation
Oxx — P - O

with the boundary conditions

Subsequently, we have solved the equation

H(x)wyy = v
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with the boundary conditions

w(0) =w(1) =0.
Here we present the software developed in MAT-LAB.

3 o 438 38 38 36 36 36 3 3 S S S 3

clear all

global m8 d d2wo H el ho h1 xo b5
m8=100;

d=1.0/msS;

b5=0.1;

e1=210*107;

ho=0.18;
A=zeros(m8-1,m8-1);

for i=1:m8-1

A(1,i)=1.0;

x0(i,1)=0.55;

x3(i,1)=0.55;

end;

Ib=0.4*ones(m8-1,1);
ub=ones(m8-1,1);
b=zeros(m8-1,1);
b(1,1)=0.65*(m8-1);

for i=1:m8

f(i,1)=1.0;

L@G,1)=1/2;

P(i,1)=36.0*10%;

end;

i=1;

m12=2;

mb50(i)=1/m12;
2(1)=1/m50(1)*(-P(i,1)*d?);

for i=2:m8-1

m12=2-m50(i-1);
mb50(i)=1/m12;
2(1)=m50(1)*(-P(i,1)*d%+z(i-1));
end;

v(mS8,1)=0;

for i=1:m8-1
v(m8-1,1)=m50(m8-i)*v(m8-i+1,1)+z(m8-i);
end;

k=1;

b12=1.0;

while (b12 >107%) and (k < 10)
k

k=k+1;

for i=1:m8-1
H(i,1)=b5*L(i,1)3 % ho® /12%e1;
f1(31,1)=v(i,1)/H(3,1);

end;

i=1;
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m12=2;

m70(i)=1/m12;

z1(1)=m70()*(-f1(i,1)*d?);

for i=2:m8-1

m12=2-m70(i-1);

m70(i)=1/m12;
21(1)=m70()*(-f1(i,1)*d*+z1(i-1));

end;

w(m8,1)=0;

for i=1:m8-1
w(m8-i,1)=m70(m8-i)*w(m8-i+1,1)+z1(m8-i);
end;

d2wo(1,1)=(-2*w(1,1)+w(2,1))/d?%;

for i=2:m8-1
d2wo(i,1)=(w(i+1,1)-2*w(i,1)+w(i-1,1)) /d%;
end;

k9=1;

b14=1.0;

while (b14 > 107%) and (k9 < 120)

k9

k9=k9+1;
X=fmincon(’beamNov2023’,x0,A,b,[ |, [ ]Ib,ub);
bl4=max(abs(xo0-X))

x0=X;

end;

b12=max(abs(x0-x3))

x3=x0;

for i=1:m8-1

L(i,1)=xo0(i,1);

end;

end;
335 b 3 3 o S N

With the auxiliary function "beamNov2023":

ER 2 R R R R R

1.  function S=beamNov2023(x)
global m8 d d2wo H el ho h1 xo b5
S=0;
for i=1:m8-1
S=S+1/(x(i,1)%)/ho3/b5/e1*(H(i,1)*d2wo (i, 1))**12;

end;
33 3 4 3 34 o 3 o 3 e 3 4 3 3 3 e o e e S e S e e o

We develop numerical results also for
V =W3*2(Q) = {w € W>*(Q) such that w(0) = w(1) = w'(0) = w'(1) = 0}.

Such boundary conditions corresponds to bi-clamped beam. The remaining data is equal to the
previous example

For the optimal solution w = w(x), please see Figure 22.

For a corresponding optimal solution t = t(x), please see Figure 23.
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Figure 22. Optimal solution w(x) for a bi-clamped beam.
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Figure 23. Optimal shape solution ¢(x) for a bi-clamped beam.

Remark 15. For such a bi-clamped beam model, for the numerical solution of equation
(H(x>wxx)xx =P,

with the boundary conditions

firstly we have solved the equation

with the boundary conditions

Subsequently, we solved the equation

H(x)wyy =v+ax+b
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with the boundary conditions

obtaining a,b € R such that the boundary conditions
w'(0)=w'(1)=0

are also satisfied.
Here we present the software developed in MAT-LAB.

b R

1. clearall
global m8 d d2wo H el ho h1 xo b5
m8=100;
d=1.0/m8;
b5=0.1;
e1=210*107;
ho=0.18;
A=zeros(m8-1,m8-1);
for i=1:m8-1
A(1,i)=1.0;
xo(i,1)=0.55;
x3(i,1)=0.55;
end;
Ib=0.4*ones(m8-1,1);
ub=ones(m8-1,1);
b=zeros(m8-1,1);
b(1,1)=0.65*(m8-1);
for i=1:m8
f(i,1)=1.0;
L(,1)=1/2;
P(i,1)=36.0*10%;
end;
i=1;
ml12=2;
mb50(i)=1/m12;
z(1)=1/m50()*(-P(i,1)*d?);
for i=2:m8-1
m12=2-m50(i-1);
mb50(i)=1/m12;
2(1)=m50(i)*(-P(1,1)*d>+z(i-1));

end;

v(mS8,1)=0;

for i=1:m8-1
v(m8-i,1)=m50(m8-i)*v(m8-i+1,1)+z(m8-i);
end;

k=1;

b12=1.0;

while (12 > 107*) and (k < 10)

k

k=k+1;
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for i=1:m8-1

H(i,1)=b5*L(i, 1) * ho3/12%¢];
f1(1,1)=v(i,1)/H(G,1);

2(i,1)=i*d /H(,1);

331,1)=1/H(,1);

end;

i=1;

m12=2;

m70(i)=1/m12;

z1(i)=m70(i)*(-f1(i,1)*d?);
22(i)=m70(i)*(-f2(i,1)*d?);
23(i)=m70(i)*(-f3(i,1)*d?);

for i=2:m8-1

m12=2-m70(i-1);

m70(i)=1/m12;
21(1)=m70()*(-f1(i,1)*d*+z1(i-1));
22(i)=m70(i)*(-f2(i,1)*d>+z2(i-1));
23(i)=m70(i)*(-f3(i,1)*d>+z3(i-1));

end;

wl(m8,1)=0;

w2(m8,1)=0;

w3(m8,1)=0;

for i=1:m8-1
w1(m8-i,1)=m70(m8-i)*w1(m8-i+1,1)+z1(m8-i);
w2(m8-1,1)=m70(m8-i)*w2(m8-i+1,1)+z2(m8-i);
w3(m8-i,1)=m70(m8-i)*w3(m8-i+1,1)+z3(m8-i);
end;

m3(1,1)=w2(1,1);

m3(1,2)=w3(1,1);

m3(2,1)=w2(m8-1,1);

m3(2,2)=w3(m8-1,1);

h3(1,1)=-w1(1,1);

h3(2,1)=-w1(m8-1,1);

h5(:,1)=inv(m3)*h3;

for i=1:m8
wo(i,1)=w1(i,1)+h5(1,1)*w2(i,1)+h5(2,1)*w3(i,1);
end;

d2wo(1,1)=(-2*wo(1,1)+wo(2,1))/d?;

for i=2:m8-1
d2wo(i,1)=(wo(i+1,1)-2*wo(i,1)+wo(i-1,1)) /d?;
end;

ko=1;

b14=1.0;

while (b14 > 107%) and (k9 < 120)

k9

k9=k9+1;

X=fmincon(’beamNov2023’,x0,A,b,[ |, [ ],1b,ub);
bl4=max(abs(x0-X))

x0=X;

end;
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b12=max(abs(x0-x3))
x3=x0;

for i=1:m8-1
L(i,1)=xo(i,1);

end;

end;
33 3 34 3 34 3 3 o 3 o 3 3 3 3 3 o 3 S S N S S o

Remark 16. About the numerical results obtained for these two beam models, a final word of caution is
necessary.

Indeed, the full convergence in such cases is hard to obtain so that we have obtained just approximations of
critical points with the functionals close to their optimal values. It is also worth emphasizing we have fixed the
number of iterations so that the solutions and shapes obtained are just approximate ones.

31. Applications to the Optimal Shape Design for a Plate Model

In this section, we present a numerical procedure for the shape optimization concerning a thin
plate model.
Let Q = [0,1] x [0,1] C R? corresponds to the middle surface of a thin plate with a variable
thickness h(x, y).
Define now
V ={we W>?Q) : w=0o0naQ},

which corresponds to a simply supported plate.
Consider the problem of minimizing in V x B the functional

k) =5 [ HGy) (Vo) da

subject to
V2[(H(x,y)V?w(x,y))] — P(x,y) =0, inQ),

where 5
h(x,
HGy) = "l e - ud),
12
h = h(x,y) is variable plate thickness, E is the young elasticity model and ws = 0.3.
Also, we define

B= {h : O — R measurable : hy;, < h(x,y) < hyax and / h(x,y) < COhmax}/
(@)

where 0 < ¢y < 1and

C*={weV : V*[H(x,y)V?w(x,y))] - P(x,y) =0, in Q}.
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Observe that

inf h
(wh)lgC*xB](w’ )

= 1nf inf J(w, h)}

hEB weC*

_ mf{sup mf | <x,y>[v2w<x,y>]2dx—<w,v2[H<x,y>v2w<x,y>1—P(x,y>>Lz}}}

weV

= mf{sup H(x,y)[V?®(x,y))? dx + (@, P>Lz}}

heB weV

- il o) a9

where
D*={MeY* VP2M—-P=0,in(Q, and M =0, on Q}.

Summarizing, we have got

, 1 M?
inf J(wh)= inf 0 / LMY
(wh)eC*x B (mu)epxB | 2 Ja H(x,y)
In order to obtain numerical results, we suggest the following primal dual procedure:
1. Setn =1and
hn(x) = Cohmux.

2. Calculate w, € V solution of equation

V2(Hu(x,y)Vwu(x,y)) = P(x,y),
where . s
Hi(x) = o
3. Calculate hy,1 € B such that
T (¥ 1) = g T (8, ),

where
Mn — Hn(x,y)vz ZUn,
1 M?

4. Setn:=mn+1and go to step 2 until an appropriate convergence criterion is satisfied.

We have developed numerical results for o = 0.75, E = 200 10°, P(x,y) = 2 10> N, hyi, =
0.45 % (0.12) m and hyyax = 0.12 m.
We have also defined

h(xr ]/) = t(x, y)hmaxr
where

045 <t(x,y) <1, ae. in Q.

For the optimal solution w = w(x, y), please see Figure 24.
For a corresponding optimal solution t = t(x, y), please see Figure 25.
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Figure 24. Optimal solution w(x,y) for a simply supported plate.
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Figure 25. Optimal shape solution ¢(x, y) for a simply supported plate.

Remark 17. For such a simply-supported plate model, for the numerical solution of equation

V2[H(x,y)V? w(x,y)] = P,

with the boundary conditions

w = 0ondQ),
firstly we have solved the equation
V% —-P=0
with the boundary conditions
v = 0o0n Q).

Subsequently, we have solved the equation

H(x,y)Vw(x,y) = v(x,y)
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with the boundary conditions

w = 0on oQ.
Here we present the software developed in MAT-LAB.

clear all

global m8 d d2xwo d2ywo H el ho xo b5
m8=40;

d=1.0/mS8;

wb5=0.3;

e1=200%*10°/ (1 — w5?);
ho=0.12;

A=zeros((m8 —1)2, (m8 — 1)?);
for i=1:(m8 — 1)?

A(1,i)=1.0;

x0(i,1)=0.55;

x3(i,1)=0.55;

end;

1b=0.45*ones((m8 — 1)2,1);
ub=ones((m8 — 1)2,1);
b=zeros((m8 —1)2,1);
b(1,1)=0.75*(m8 — 1)?;

for i=1:(m8-1)

for j=1:m8-1

£(1,j,1)=1.0;

L(@i,j,1)=1/2;

P(ij,1)=2*10%; end;

end;

for i=1:m8
wo(:,1)=0.001*ones(m8-1,1);
end;

m2=zeros(m8-1,m8-1);

for i=2:m8-2

m2(i,i)=-2.0;

m2(i,i-1)=1.0;

m2(i,i+1)=1.0;

end;

m2(1,1)=-2.0;

m2(1,2)=1.0;
m2(m8-1,m8-1)=-2.0;
m2(m8-1,m8-2)=1.0;
Id=eye(m8-1);

i=1;

m12=2*Id-m2*d? / d?; m50(:,:,i)=inv(m12);
2(:,1)=m50(:,:,1)*(-P(:,i,1)*d?);

for i=2:m8-1

m12=2*Id-m2*d? / d2-m50(:,:,i-1);
mb0(:,:;,1)=inv(m12);
2(:,1)=m50(:,:,1)*(-P(:,i,1)*d%+2z(:,i-1));
end; v(:,;m8)=zeros(m8-1,1);
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for i=1:m8-1
v(:,m8-1)=m>50(:,:;, m8-1)*v(:, m8-i+1)+z(:, m8-i);
end;

k=1;

b12=1.0;

while (b12 > 107%) and (k < 12)

k

k=k+1;

for i=1:m8-1

for j=1:m8-1

H(,i,1)=L(j,i,1) * ho3/12%e1;
£1G,i,1)=v(,i)/H(,i1);

end;

end;

i=1;

m12=2*1d-m2*d? / d?;
m70(:,:,i)=inv(m12);

z1(:4)=m70(:,: i)*(-f1(:,i,1)*d?);

for i=2:m8-1

m12=2*Id-m2*d? / d*>-m70(::,i-1);
m70(:,:,i)=inv(m12);
21(:;1)=m70(:,:0)*(-f1(:4,1)*d%+21(;,i-1));
end;

w(:,m8)=zeros(m8-1,1);

for i=1:m8-1

w(:;,m8-1)=m70(:,:;,; m8-1)*w(:,;m8-i+1)+z1(:,m8-i);
end;
d2xwo(:,1)=(-2*w(;,1)+w(:,2)) /d%;

for i=2:m8-1
d2xwo(:,i)=(w(;,i+1)-2*w(: i) +w(:,i-1)) /d?;
end;

for i=1:m8-1

d2ywo(:,i)=m2*w(;i)/d?;

end;

k9=1; b14=1.0;

while (b14 > 10~%) and (k9 < 30)

k9

k9=k9+1;
X=fmincon(’beamNov2023A3’,x0,Ab,[ ], [ ] Ib,ub);
b14=max(abs(x0-X))

x0=X;

end;

b12=max(max(abs(w-w0)))

WO=W;

x3=x0;

for i=1:m8-1

for j=1:m8-1
L(j,i,1)=xo((i-1)*(m8-1)+j,1);

end;

end;
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end;

for i=1:m8-1
x8(i,1)=i*d;
end;
mesh(x8,x8,L);

EE R R R R S s ]

With the auxiliary function "beamNov2023A3’, where

S 36 6 36 3 3 S A S A A K S KKK AN K

1.  function S=beamNov2023A3(x)
global m8 d d2xwo d2ywo H el ho xo b5
S=0;
for i=1:m8-1
for j=1:m8-1
X1(j)=x((m8-1)*(-1)+1);
end;
end;
for i=1:m8-1
for j=1:m8-1
S=S+1/((x1(j,i))3)/ho®/el x (H(j,i,1))? * (d2xwo(j, i) + d2ywo(j,i))? * 12;
end;
end;

Remark 18. About the numerical results obtained for this plate model, a final word of caution is necessary.

Indeed, the full convergence in such a case is hard to obtain so that we have obtained just approximations
of critical points with the functional close to its optimal value. It is also worth emphasizing we have fixed the
number of iterations so that the solution and shape obtained are just approximate ones.

32. A Note on the First Maxwell Equation of Electromagnetism

Let O; C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9();.

Suppose E : QO — R3 is an electric field of resulting from a punctual charge g localized at
(0,0,0) € 0.

Let QO C () be also an open, bounded and connected set with a regular (C! class) boundary
denoted by S = 9(), where, in polar coordinates (r,0, ¢) € R3, we have

S={r(6,¢) : 0<0<mand0 < ¢ <27},

and where,
r(0,¢) = X(0,0)i+Y(0,¢)j+ Z(6,9)k.
and
i=(1.0,0),j = (0,1,0),k = (0,0,1) € R.
Observe that denoting
e, = sin(0) cos(¢)i + sin(0) sin(¢)j + cos(0)k,
we have
L1
E= Kqﬁer,
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for an appropriate real constant K.
We highlight the integral
L= [Ends=cs
S
where such a real constant cs5 does not depend on the C! class function
r: [0, 7] x [0,27] — R,
Here n denotes the normal outward field to S.
In this section, we develop such an integral I;, in details.
Denoting
R(6,¢) = [lx(0,¢) s/
we have
1(6,¢) = R(6,p)e,
Moreover, we recall that
dS = ||rg x rg||gs dOd¢,
where
N = Ig X Iy
i h that
is such tha - N
IN||rs
Thus
/E ds = K/¢ 2n/ N N g dod
n .
1 0=0 R9<p o N I 4049
In summary,
d e ae d
E-nds=R / / N do
/ " 1 9=0 R( 9 $)? R(0, )2 ¢
Observe that
N = (R(0,¢)er)o x (R(6,p)er)y
(Rger + R(er)g) x (Rpe, + R(ey)y)
= R9R¢er X e, + Rye, X R(er)¢)
+R(er)p X (Rper) + R*(ey)p x ey. (187)
Consequently, from such results, we obtain
er . N - Rz.
Thus, we have got
d K e a6 d
E-ndS = / —————e; - Ndf
/s 9=0 R( 9 0,¢)2" 9
R e R(6,$)? 46 d
<[ [ kg eyt
= Kg 47r
= 5. (188)
Summarizing, we have got
/ E-ndS = Cs5.
S
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where such a real constant does not depend on function r : [0, 7] x [0,277] — R>.

Consider now a charge g localized at the center of a sphere (), of radius R > 0 and boundary
Sy = 0.

The electric field on the sphere surface generated by gy is given by

_ 1 q0
2™ 4reg R2 2,

where nj is the normal outward field to S.
Clearly

1 qo 2 90
E, - dSy = —— = (47R*) = —.
/Sz 2712 452 4rte RZ( & ) €0

Consider again the set () but now with a charge g localized at a point x inside the interior of (),
which is denoted by Q°.

At first the electric field E generated by gq is not of C! class on Q.

However, there exists R > 0 such that

Br(x) c Q@ =0Q°.

Define Q3 = Q) \ Br(x).

Therefore, E is of C! class on Q3.

Denoting the boundary of Q)3 by S3 = dQ) U 9B, from the previous results and denoting again
S = 00}, we may infer that

E-ndSS:/E.ndS— E-ndS,—cs—cs—=0,
s 9Bg

Ss

for a not relabeled real constant c5, so that

E-ndS; = /E~ndS—/ E-nds,
S BBR(x)

= /E-ndS—q—O
S €0
0.

S3

(189)

Therefore, we have got

/E-ndS:q—O.
S €0

Assume now on () we have a density of charges p(x).
For a small volume AV consider a punctual charge gq localized in x € Q) such that

go ~ p(x)AV.

Denoting by AE the electric field generated by g, from the previous results we may infer that

/AE-ndS: 90 =~ p(x)AV'
S 0] 0]

Such an equation in its differential form, stands for:

/dE-ndS: p(x) dv.
S €0

Integrating in (2 we may obtain
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/E-ndS - //dE-ndS
S SJO
I (190)
Q €
so that
/ Ends— [ P¥y
QO &

From this and the Divergence Theorem, we have

/E~nd5:/ diVEdV:/ pX)
S (@) Q €

Summarizing, we have got
[ divEdy = [ ) 4y,
Q Q €

This is the integral form of the first Maxwell equation of electromagnetism.
For this last equation, the set (3 C () is rather arbitrary so that for () as a ball of small radius
r > 0 with center at a point x € )1, from the Mean Value Theorem fot integrals and letting r — 0", we

obtain

divE=L, in0y.
€0

This last equation stands for the differential form of the first Maxwell equation of electromag-
netism.

Remark 19. Summarizing, in this section we have formally obtained a mathematical deduction of the first
Maxwell equation of electromagnetism.

33. A Note on Relaxation for a General Model in the Vectorial Calculus of
Variations

Let 3 C R” be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by 0Q).
Consider a function g : RN*" — R twice differentiable and such that

<(y) — +oo, as |y| — +oo.

Define a functional G : V. — R by

G(Vu) = %/Qg(Vu) dx

where
V={WR2(RN) : u=uyonoQ}.

Moreover, for f € L2(Q;RN), define also
J(u) = G(Vu) — (u, f) 2.
We assume there exists « € R such that

&= inf J(u).
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Observe that from the convex analysis basic theory, we have that
= i f
« inf J(u)
= inf J"(u)
= inf{(GoV)"™(u)—(u,f)2}. (191)
ueV
On the other hand
(GoV)™(u) < H(u)
= inf AG(V 1-A)G(V
(A,(v,w))elféﬂ]xza(u»){ (V) +( JG(Vo)}
< G(Vu), (192)
where
B(u,A) ={(v,w) €V : Aw+ (1—A)v=u}.
From such results, we may infer that
inf J**(u) = inf {H(u) = (u, f)2} = inf J(u).
Furthermore, observe that
AVw+ (1-A)Vo =Vu,
so that
Vv = Vu+A(Vo—-Vuw)
= Vu+AVg, (193)
where g =v—w € W&’Z(Q; RN) so that
V¢ = Vv —-Vu,
and
Vw = Vv —V¢.
Therefore,
Vw=Vo—-V¢=Vu+AVp—-V¢=Vu—(1-A)Ve¢.
Replacing such results into the expression of H, we have
H(u) = inf AG(Vu—(1-=A)Vep)+(1-A)G(Vu+AVe)},
(W)=, inf JAG(Vu— (1= 1))+ (1= G(Tu-+AV4))
where
Vo = Wo A (O;RN).
Joining the pieces, we have got
=
= inf{H(u) —{u, f)r2}
= inf {AG(Vu—(1-2A)V¢)+ (1 —-A)G(Vu+AVep) — (u, f)2}.

(A gu)el0,1]xVyxV

This last functional corresponds to a relaxation for the original non-convex functional.
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The note is complete.

33.1. Some Related Numerical Results

In this subsection we present numerical results for an one-dimensional model and related relaxed
formulation.
For Q) = [0,1] C R, consider the functional | : V — R where

2/ —1 dx + = /u— de,

V={uecW2Q) : u(0)=0and u(1) = 1/2},

fey=y*=1%2Q).
Based on the results of the previous section, denoting Vy = W1 2(0)), we define the following
relaxed functional J; : [0,1] x V x Vj — R, where

Jihng) =5 [ (= 0= =12+ 222 [ (A9~ 17 v g [ (e R dx

Indeed, we have developed an algorithm for minimizing the following regularized functional
J:[0,1] x V x Vy — R, where

Jo(Au,9) = h(Au,g) + 5 | (') dx,

for a small parameter e3 > 0.
For the case in which f(x) = sin(7tx) /2, for the optimal solution u, please see Figure 26.
For the case in which f(x) = cos(7tx)/2, for the optimal solution u, please see Figure 27.
For the case in which f(x) = 0, for the optimal solution u, please see Figure 28.

0.5

0451 ]

04r b

035 ]

031 b

0.25 ]

02r b

0.15 b

011 b

0.05 ]

Figure 26. Optimal solution u(x) for the case f(x) = sin(7x)/2.
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Figure 27. Optimal solution u(x) for the case f(x) = cos(7mx)/2.

0.5

0451 ]

0.35 ]

031 b

0.25 ]

02r b

011 b

0.05 ]

Figure 28. Optimal solution u(x) for the case f(x) = 0.

We highlight to obtain the solution for this last case which f = 0 is harder. A good solution was
possible only using
Xo = 0

as the initial solution concerning the iterative process.
Here we present the software in MAT-LAB developed.

34434 34 3 A A3

1. clearall
global m8 d u e3
m8=100;
d=1/mS§;
€3=0.0005;
for i=1:2*m8+1
x0(i,1)=0.36;
end;
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b12=1.0;

k=1;

while (12 > 1077) and (k < 60)
k

k=k+1;
X=fminunc(’funDecember2023’,x0);
b12=max(abs(x0-X))

x0=X;

u(m8/2)

end;

for i=1:m8

x(i,1)=i*d;

end;

plot(x,u);

R R R R RS X S s X

With the main function "funDecember2023"

3 e 38 38 36 36 3 3 3 3 o K K KK

1.  function S=funDecember2023(x)
global m8 d u e3
for i=1:m8
u(i,1)=x(@,1);
v(i,1)=x(i+m8,1);
yo(i,1)=sin(pi*i*d)/2;
end;
L=(1+sin(x(2*m8+1,1)))/2;
u(m8,1)=1/2;
v(m8,1)=0.0;
du(1,1)=u(1,1)/d;
dv(1,1)=v(1,1)/d;
for i=2:m8
du(i,1)=(u(i,1)-u(i-1,1))/d;
dv(i,1)=(v(i,1)-v(i-1,1))/d;
end;
d2u(1,1)=(-2*u(1,1)+u(2,1))/d>
for i=2:m8-1
d2u(i,1)=(u(i-1,1)-2*u(i,1)+u(i+1,1))/d>;
end;
S=0;
for i=1:m8
S=S+1/2* L ((du(i,1) — (1 — L) *do(i,1))> — 1)?;
S=S+1/2% (1 — L) * ((du(i,1) + L * do(i,1))*> — 1)?;
S=S+(u(i,1) — yo(i,1))%
end;
for i=1:m8-1
S=S+e3*d2u(i,1)%
end;

PR R L R R R T ]
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33.2. A Related Duality Principle and Concerning Convex Dual Formulation

With the notation and statements of the previous sections in mind, consider the functionals
J:V = Rand J3:[0,1] x V x Vj — R where

J(u) = G(Vu) + % /Ou cudx —(u, f) 2,
and
BAw¢) = AG(Vu—(1—A)Ve)+ (1—NG(Vu+AVe)
+5 [ == 209) - (u— (1 = N)g) d

(@)
—I—(l_/\)/n(u+)\¢)-(u—l—/\¢)dx
“Mu—= A=A, flrz— A= A){u+Ag, f)2. (194)

Here we have denoted
V={ueW2RN) : u=uyonoQ =S},

VO = WS'Z(Q;RN),
Y = Y* = L2(Q;RN*)

and
Y, = Y{ = L2(O;RYN).
Observe that
] () < (m)ré}éfhxvo J3(A, u, ).
Moreover,
Js(A,g) = —(Viu—(1-A)V,vi) 12 + AG(Viu — (1 - A) V)

—(Vu—(1-AM)V$,v3)12+ (1 —-A)G(Vu+AVe)
(= (= Mg+ 5 [ (0= (1= 2)9) - (4= (1= A)g) dx

—(u+Ap,v3) 2+ (1;)\)/0(u+/\4>)-(u+)\47) dx

+(Vu—(1-A)Ve,v])12+ (Vu—(1—A)V,v])2
+u—(1-AN)p,v3)2+ (u+Ap,v1)12
A= (1= N, fz — (1= M)+ Ag, ) 2. (195)
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Therefore,

Js(Au,¢) = villg/{_@lerLz"’_)‘G(vl)}

+ jnf {=(v2,03)12 + (1= 1)G(22)}

+ inf om0+ 5 [ (o) (o) v}

v3€Y]

+oinf = o)+ B33 [ 00 (on) e}

v4€Y]

+ inf {(Vu—(1-A)Ve,vi)2+ (Vu—(1—-A)Ve,v7)2
(u,¢)EV><V0

+(u—(1—-2A)p,v3)12+ (u+Ap,vy);2
—Mu—=(1=A)¢, f)r2 = (1= M) (u+A@, f)12}
e (U e
- e () -a-ve (g2y)
—F5(03,A) = Fi(v3,1)
—|—/S(vi‘)ijn]'(u0)i dS"’/j(v;)ij”j(”O)i ds,
VA€ (0,1),u eV, ¢ € Vy,v" € A¥, (196)

where

G*(v%) = Sg};{@f v")2 = G()},

A
E(v5,A) = sup{(vg,v§>Lz—§/gv3.v3dx}

v3€Y]

1 * *
- > /Q % -0} dx, (197)

Fi(vy,A) = su}; {(m,vZ)Lz _ ! > ) /004 - Uy dx}
(RSN ¢]

1 * *
= m /Q Uy Uy dx. (198)

Furthermore, A* = A} N A5 where
A7 = {v" = (v],03,03,03) € [Y'JP x [{]? : —div (0]); — div (03); + (v3); + (v}); — fi = 0, in Q},
and

A; = {v* = (v],05,05,05) € VP x [Yi]?

(=14 A) div () — Adiv (05); + (=1 + A)(03); + A(05); =0, in Q). (199)

Summarizing, we have got

inf A
(A,u4>)e(15,11)wxvo]3( r9)
(o vy
> inf { —AG*(=L)—-(1-A)G* 2 )
= s {ing {20 (F) - a-we (g
—F3(v3,A) — Fy (o3, A) + /E)Q(Uf)ijnj(uo)i ds + /BQ(UE)ijl]’(uo)i dS}}- (200)
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Remark 20. We highlight this last dual function in v* is convex (in fact concave) on the convex set A*.

33.3. A Numerical Example
For Q) = [0,1] C R consider a functional | : V — R where

) = %/Qmin{(u’(x)—l)z, (W (x) +1)2} dx—i—%/o(u—f)z dx
= %/Q(u’)2 dx—/0|u’|dx—i—%/ﬂ(u—f)2 dx, (201)

where
V={ucW?Q) : u(0)=0and u(1) = 1/2},

Y=Y"=12(Q)and f €Y.
DefineG:Y - Rand F: V — Rby

and
respectively.
Denoting V = Wé’Z(Q), define also J1 : V x Vp x (0,1) — Rby

¢, A) = AGW —(1=A)¢") + (1=A)G(u' +A¢')
FAF(u— (1= A)p) + (1 — A)E(u + Ag)

—(u, )12 (202)
Observe that
(AG)*(v1) = sup{(o1,07)12 = AG(01)}
ey
- e ()
- %/ﬂ(vi‘)z dx+/0|vf| dx, (203)

(1=A)G)"(v3) = sup{(vz,v3);2 — (1 -A)G(v2)}

v EeY

= =00 (5 2y)
_ ﬁ/ﬂ(v;)z dx+/0|v§| dx, (204)

(AF)*(v3) = Suelf;{@a,v?)Lz—/\F(va)}

v*
= AF( 2
(%)

= L (1), (205)
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sup { (vg,03)12 — (1= A)F(vq) }

and
(1=A)F)*(vy) = P
- -0r (2y)
_ ﬁ /Q (0)? dx. (206)
Denoting v* = (v, ,v}) € [Y*]4, define J* : [Y*]* x (0,1) = Rby
Ji(*,A) = —AG (%) - A)G*(uzi;)\))
ar(3) - )
(207)

Similarly as in the previous section, we may obtain
sup J*(v*,A) },

inf > inf

L}QV](M) - )\Eu(}),l){v*eA*

where A* = A] N A3,
Al ={o"eY": (1) +(13) —03 —0vj + f =0, inQ},

and
Ay ={(05A) € [Y]* x (0,1) : —(1—A)(0}) +A(03) + (1 —A)v5 — Avf =0, in Q}.
From such expressions of A] and A5 we may obtain
v = (01)' +Af,
and

vy = () + (1= A)f.

Replacing such expressions for v and v} into the expression of [*, and from now and on denoting

v* = (v},v3) € [Y*]?, we may obtain J; : [Y*]* x (0,1] — R where
—i/ (v})? dx—/ |07 | dx
oA 0 1 0 1

Ji(@5A) =
1
——2(1_/\)/()(v§)2dx—/0|v§|dx
1 /
51 (@) +Af) ax
1 /
3y o (@) + (1= 1)) dx
+ol (Du(1) + o3 (1)u(1). (208)
Consequently, we have got
pI00 2 sup {,nf, i)
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In order to obtain numerical results we have designed the following algorithm:

1. Setn=1and A, =1/2.
Calculate (v*), € [Y*]? such that

Ji (0, An) = sup Ji(v*, An).

v*e[yﬂz
3. Calculate A, 1 € (0,1) such that

R (@A) = inf (@0, ).

4. Setn:=n+1and go to item (2) until the satisfaction of an appropriate convergence criterion.

We have developed numerical results for the following cases

1.
f(x) =sin(mx) /2,
2.
f(x) = cos(mx)/2,
3.
f(x) =0.
Observe that for the optimal point we have
vy =u—(1-2A)¢,
and
vy = u+ A,
so that
u=Av3+(1—A)vj.
For the optimal solution uy(x) found for the cases (1), (2) and (3), please see the Figures 29, 30
and 31, respectively.
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Figure 29. Optimal solution u(x) for the case f(x) = sin(7mx)/2.
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Figure 30. Optimal solution uy(x) for the case f(x) = cos(mx)/2.
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Figure 31. Optimal solution u(x) for the case f(x) = 0.

Here we present the concerning software in MAT-LAB.

B R

1. dearall
global m8 d L v1 v2 v3 v4 yo dv1 dv2 el
m8=140;
d=1/ms§;
e1=0.0001;
L=1/2;
for i=1:2*m8
x0(i,1)=0.01;
end;
for i=1:m8
yo(i,1)=sin(pi*i*d)/2;
end;
x1=1/2;

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

150 of 360


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

151 of 360

k=1;
b12=1;
while (b12 > 107%) and (k < 100)
k
k=k+1;
X1=fminunc(’funFeb24’, xo0);
b12=max(abs(X1-x0))
x0=X1;
X2=fminunc('funFeb24 A’ x1);
x1=X2;
L=(sin(x1)+1)/2;
L
end;
u(m8,1)=1/2;
for i=1:m8-1
u(i,1)=L*v3(i,1)+(1-L)*v4(,1);
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);

330 334 3 34 3 3 o 3 5 3 o 3 3 3 3 34 3 3 o 3 S 3 3 A o S S

Here the auxiliary function "funFeb24"
B R R R K R

1.  function S=funFeb24(x)
global m8 d L v1 v2 v3 v4 yo dvl dv2 el
for i=1:m8
v1(i,1)=x(,1);
v2(i,1)=x(m8+i,1);
end;
for i=1:m8-1
dv1(@i,1)=(v1(i+1,1)-v13,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8
S=S+1/2/sqrt(L? +el) x v1(i,1)? + sqrt(v1(i,1)? +el);
S=S+1/2/sqrt((1 — L) +el) x v2(i,1)% + sqrt(v2(i,1)* +el);
end;
for i=1:m8-1
v3(i,1)=dv1(i,1)+L*yo(i,1);
v4(i,1)=dv2(i,1)-(L-1)*yo(i,1);
S=S+1/2/sqrt(L? +el) x v3(i,1)> + 1/2/sqrt((1 — L)% +e1) x v4(i,1)?;
end;
S=S-(v1(m8,1)+v2(m8,1))/d/2;

e 4 38 38 36 36 36 3 3 3 3 S A 36 36 3 K KA AN N K

Finally, the auxiliary function "funFeb24A"

1.  function S1=funFeb24A(y)
global m8 d L vl v2 v3 v4 yo el
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L=(sin(y)+1)/2;

for i=1:m8-1

dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;

dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;

end;

S=0;

for i=1:m8

S=S+1/2/sqrt(L? +el) x v1(i,1)% + sqrt(v1(i,1)? +el);
S=S+1/2/sqrt((1 — L) +el) x v2(i,1)% + sqrt(v2(i,1)* +el);
end;

for i=1:m8-1

v3(i,1)=dv1(i,1)+L*yo(i,1);

v4(i,1)=dv2(i,1)-(L-1)*yo(i,1);

S=S+1/2/sqrt(L? +el) x v3(i,1)% +1/2/sqrt((1 — L) + el) x v4(i,1)%;
end;

S=5-(v1(m8,1)+v2(m8,1))/d/2;

S1=-S;

3o o o 4 38 38 36 36 36 3 3 3 3 o o 34 4

34. One More Note on Relaxation for a General Model in the Vectorial Calculus of
Variations

Let 3 C R” be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).
Consider a function g : RN*" — R twice differentiable and such that

Q(y) — +oo, as |y| — +oo.

Define a functional G : V — R by

1
G(Vu) = 3 /Qg(Vu) dx,
where
V = {W"2(;RN) : u=uyonoQ}.

Moreover, for f € L?(Q; RN), define also

We assume there exists & € R such that

a = inf J(u).

ueV

Observe that from the convex analysis basic theory, we have that
« = inf J(u
in J(u)
inf J**(u)

= inf{(GoV) () = (u,f)2}. (209)
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On the other hand
(GoV)™(u) < H(u)
m
= 2 Vv]
()L,(Ul, ))EBXBl M)L :
< G(Vu>, (210)
where
m
B = {/\z (A, -+, Am) €R™ A >0, Vj€ {1,---,m}, and 2)‘1 = 1},
j=1
and
m
Bi(u,A) =S 0= (01, -+ ,om) € [V]" : Y Ajpj=uy.
=1
From such results, we may infer that
5 . _ _
inf 1% (u) = inf (H(u) ~ (1, f) 2} = inf (u).
Furthermore, observe that
m
Z iVuj =
and
m—1
i=1
so that
m—1
Vo, = Vu-) Aj(Voj — Vo)
j=1
m—1
= Vu+ Zi AV, (211)
]:

where ¢; = —v; + vy € WS'Z(Q; RN) so that
V(P] = —ij + Vou,

and
Vo = Vo + Ve, Vi€ {1, ,m}.

Therefore,
—1

Vo; = Vo, —V$; = Vu+ Z AV — V.
=1

Replacing such results into the expression of H, we have

(ALg)eBx (V) k=1

m—1 m—1 m—1
H(u) = inf { Y AG (w + Y Vor - v(pj) + AnG (w +) Akvcpk> }
L = k=1

where we recall that
Vo = Wy (Q; RY).
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Joining the pieces, we have got

inf J(u) = inf J*"(u)

ueV ueV

— L}g‘f/{H(u) —(u, f)2}
m—1 m=1

— inf 1{ Y AG (V“ + ) MV - quj)
= k=1

(1,A,9)€VXBxX (Vo)™

+AmG (Vu + i Angbk)
k=1
—(u, f)2}-

This last functional corresponds to a relaxation for the original non-convex functional.
The note is complete.

34.1. A Related Duality Principle and Concerning Convex Dual Formulation

With the notation and statements of the previous sections in mind, consider the functionals
J:V—=TRand J3:BxV x[V]" — R where

J(u) = G(Vu) —1—%/Qu-udx— (u, fr2,

and
J3(A,u, ) E ( k¢k—V¢j>
+AmG < Z kv‘i’k)
_ m—1
Z 7]/ <u+ Z /\k(Pk_V(P]) . <u+ Z /\kgbk—V(P]') dx
j=1 k=1
(_ m—1
/ u -+ Z/\k(pk u+ ZAk(Pk dx
k=1
i <u+ 5 A 4>j,f>
= 12
—(Am) <u4-§jfu¢b > . (212)
LZ
Here we have denoted
V={uecW2QRY) : u=ugondQ =S},
Vo = We A (O, RN),
Y =Y* = L2(O;RN*)
and

Y, = Yy = L2(O;RN).

Observe that

*% < . /\’ , .
]w_mmg%wﬁ(u@
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Moreover,

m—1 m—1
BAuw¢) = =), <W + Y AV — Vo, (Ui‘)j>
j=1 k=1

L2

m—1 m—1
Z /\jG (Vu + Z MV — V(P])

j=1 k=1

m—1 m—1
_<vu + Y MV, (v{)m> + AnG (Vu +) Achl)k)
L2

k=1 k=1

m—1 m—1
-Y <M + ) M — ¢, (U§)j>
j=1 k=1

L2
m—1 ). m—1 m—1
+ 2 7]/ <u+ Z /\k(Pk_(Pj) . <M+ Z /\k¢k—q>j> dx
j=1 Q k=1 k=1
m—1
—<” + ) M (vg)m>
k=1 12
/\m m—1 m—1
+5 <u+ Y )\k(Pk) : <u+ Y Ak‘Pk) dx
0 k=1 k=1

m—1 m—1
+ ) <w+ Y MV — Vo, (v’{)]->

j=1 k=1 12

m—1
+<Vu + ) AV, (Uf)m>
k=1 12

m—1 m—1
) <M + kz Axdr — ¢, (l’é)j>
=1

j=1 = 12

m—1
+<“ + ) Ao (U§>m> N (213)
k=1

L2
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Therefore,

m—1
]3(}\,1/!,47) > inf {Z( U1 ir Ul >L2 +/\]G((U1)]))}

U1€ Y]m 1 j

=1
+ inf {={(01)m, (0])m) 12 + AmG((v1)m) }

(01)m€Y

m—1 )
+ inf { Z <_<(03)jr (03)j)12 + % /0(03)]' - (v3); dx>}

v (i3

+ inf { ((03)m, (V3)m) 2 + = /03 (v3); dx}
m—1 m—1

inf )ml{ Y <Vu + 3 AV — ¢, (vf)j>
k=1 L2

JEVX(V =1

_|_
(g
m—1
+<Vu + Z A Vy, (v{)m>
2

k=1

m—1
+Z<+va¢w$
j=1

L2

m—1
+<u+ Y. A (U§)m> - <“ff>L2}
2

k=1
= —m71 G* @ _ * (UT)m
_ HA]G(M) g ()
m—1
- ; (F3); ((03)j, Af) = (B3) u ((03 )iy Am)

—i—Z/ 0] )k 1]]”0 )i dS,

VAEBucV, pc (V)" Lo e Ar, (214)

where

G*(v%) = Sg};{@f v")2 = G(v)},

(P3)]>'k((v§>]"/\]‘) = SUP{<(7’3)JI v3); L2_2/ 03); - (v3); dx}

v3€Y]

:u/% )idx, Vje {1, m}. (215)

Furthermore, A* = A} N A(A) where
m
Al = {U* = (v1,03) € [Y']" x V7] + =} (div ((®7);)i + ((03)))i) — fi = 0, in Q}
=1

]

and

(v1,03) € Y™ < [V7]"

MY div ((00);); — div ((08)i)i — Ak Yo ((@3))i + ((9)i)i = O,

j=1 j=1
inQ, Vke {1,--- ,m—1}, Vie {1,--- ,N}}. (216)
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Summarizing, we have got

inf Au,
(A,ugb)eBgIl/x(Vo)""l Ja(Au. )

> il s {- S (52
_f(%*),- 3)is ])+2/ (©})k)ijnj(uo); ds}} (217)
j=1

Remark 21. We highlight this last dual function in v* is convex (in fact concave) on the convex set A*.

35. A General Convex Primal Dual Formulation with a Restriction for an
Originally Non-Convex Primal One

Let O C R® be an open bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9().
Consider the functional | : V — R where

J(u) = %/QVqudJH—%/Q(uZ—,B)de
—(u, f)r2, (218)

wherea > 0,8 > 0,7 >0,V = W,*(Q) and Y = Y* = [>(Q).
Define F; : V =+ Rand K : V x Y* — Rby

_7 . 5/ 2 g —
Fi(u) = Z/QVM Vudx—i—z . dx — (u, f)2,
and
B(uvy) = —w?v) z—i—E/ u? dx
] 7 Y0/ L 2 Q
1 *\2 *
+£/Q(vo) dx+ﬁ/000 dx. (219)

Define also Ff : Y* — Rand F; : Y* x Y* — R by

F*(vi) = sup{(u,vy);2 —F(u)}

ueV
1 (0 +f)>

. d 22
2Ja—-yV2+K (220

and
Fy(vi,v9) = sup{—(u,v7);2 — F2(u,0p)}

ueVv

_ 1 (99

T T 2)a205—K
1
206/(00 dx—,B/ vg dx. (221)

if vy € B*, where
B = {05 € Y : |[v5]leo < K/2},

for some appropriate K > 0 to be specified.
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At this point we define
Vo={ueV : |ul|o <Kz},
At={ueV :uf>0inQ},
Vi=W,n A+,
D* ={v] € Y : ||v]]|e < 5/4K},
for appropriate K3 > 0 to be specified, and J; : D* x B* — R by
Ji(01,v9) = —F(v7) + F; (07, v5)-
Moreover, we define JJ : V| x D* x B* — Rby
K
3w o}, 05) = Ji(01,00) + 5 llof = (=792 + K)ull3
1 «
—||ot — (=208 + K)ul|3 222
Fioaa 191 (7200 + Kyul (2)
Observe that 5
o~ J5(u, v, v 1 1 1
o) 111
(07) —yV2+K 2v5-K 5aK?
asz(“ 01, 95) 2 2
—2 10 K (— K —205 4+ K)?,
ou2 1(=7V* +K) +50¢K§( vy +K)
and 52 ( )
J3 (4,01, 0 2 .
221 00 K (— K) — —20% + K).
0udv} 1=V K) SzxKg( % +K)
Now we set Ky, K, K3 such that
Kl > maX{K,K3, 1/“1 ﬁr Y, 1/“/1/’)// 1/,B}r
K> max{Ks,1,a,8,7v,1/a,1/v,1/B},
and K3 ~ 3.
From such results and constant choices, we may obtain
2 ey P(wol0p) 5w 05,05) (95 (,05,98) )
det{éu,v{b (”/ ZJlr’UO)} - a(vi‘)z Ju2 - auavf
Ky (—yV? +20})? 5 (K1>
= 0 2K (—yV 205 ol -,
in V; x D* x B*. (223)

Define now

(—WZ —1—203)2

5aK3

C {Uo S K

+2(—yV2 4+ 203) > C—Old},

where we assume that cg > 0 is such that if v; € C*, then
det{éﬁlviﬂ];(u, vi,v5)} >0, in B*NC*.

Finally, we also suppose the concerning constants are such that B* N C* is convex.
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With such statements, definitions and results in mind, we may prove the following theorem.
Theorem 5. Let (ug, 07,95) € Vi x D* x (B* N C*) be such that

05 (uo, 93, 95) = 0.

Under such hypotheses,
6](ug) =0,
and

— Kl 2 Ak 2

J(uo) = J(uo) + = || = vVuo + 20510 — f|2
_ : Kl - 2 A% |12
=i {1+ G- 09k 20 113
= su inf T3 (u, 05, v

USGE*{(u,v{)EleD* 2( 1 0)}

= J5(ug,97,05)- (224)

Proof. The proof that
8] (uo) = —7V?ug + 205ug — f =0

and
J(uo) = J5 (uo,97,95),

may be done similarly as in the previous sections and will not be repeated.
Furthermore, since
05 (uo,97,95) = 0,
vy € B* x C* and J; is concave in v on Vi X D* x B*, we have
T35 (ug, 07,35) = inf T3 (u, 05, 0
2 (1o, 07, 0p) (107 €V, xD* 2 (u, 01, 0p),

and

J3 (1,03, 05) = sup 5 (uo,97,0p).
vy €B*

From such results and the Saddle Point Theorem we may infer that

K o
J(uo) = J(uo) + 71” — V2o + 20510 — f|13
= su inf I3 (u, 05, 0§
50 00
= J5(ug,7,05)- (225)
Finally, from evident convexity,
_ Ky 2 " 2
J(uo) = J(uo) + Il = vV7uo + 20510 — fl2
. K -
= inf {](u)—i——lH —’yVZu—l—ZvOu—fH%}. (226)
ueVy 2

Joining the pieces, we have got
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K R
J(uo) = J(uo) + = Il = vV2uo + 265u0 — £l
. Kq .
= ing {7+ G = 7Vu 2050 - 113}
= su inf T3 (u, 05, 0
vseg*{(u,vi‘)EleD* 2( ! 0)
= J5(uo, 07, %)- (227)

The proof is complete.
O

36. A general convex dual formulation for an originally non-convex primal one

In this section we develop a convex dual formulation for an originally non-convex primal formu-

lation.
Let QO C R3 be an open bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0.
Consider the functional | : V — R where
- . ® 2 p\2
J(u) = Z/QVu Vudx—l—z/o(u B)- dx
—(u, f)r2, (228)

wherea > 0,8 > 0,7 >0,V = W,*(Q) and Y = Y* = [>(Q).
At the moment, fix a matrix K; > 0 and K > 0 to be specified.
DefineF; :V =+ R, K :V =+ Rand F53: V xY* = R, by

F(u) = %/{)Vu-Vudvag/Quzdx
—(u, )12, (229)
Y K 2

B) = Z/QV”'V” dx+5/0u dx, (230)

* * 1 * *
F3(u,08) = —(u?,v3) 2 +K/Qu2 dx+ﬂ/ﬂ(vo)2 dx+ﬁ/nvo dx + (u, )2

Define also F{' : Y* — Rand F; : Y* — R,

F(vi) = sup{(u,vi);2 — F(u)}
ueV
_ (01
F(v3) = sup{(u,v3);2 — B(u)}
ueV
- 2/ v2+1< az, (232)

At this point we also define

B* = {vj € Y* : ||v}lle < K/2},
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Vo={ueV : |ul|lo <Kz},
t={ueVv :uf>0inQ},
Vi=Wn AT,
T={v"eY" : [|[v"|l <5/4K},
for an appropriate K3 > 0 to be specified.
Furthermore, we define F; : D* x D* x B* — R by
F5(01,03,00) = sup{—(u,v1 +03)12 — F3(1,v9)}
uev
_ @ +0; - )" Z’2 )2
- 2/ 205 — ax
1 *
—ﬂ/n(vg) dx—,B/Qvo dx. (233)
Moreover, we define J; : D* x D* x B* — R by
Ji (w01, 05) = =Fy (v1) = Fa(03) + F5 (01, 03, 05)
and J; : D* x D* x B* — R by
J2(v1,03,0) = Ji(01,03,9)
Ky
+7/Q(v{—v;)2 dx
2
K? 0] vy +v5—f
- — dx. 234
2 Q(—%Vz—‘rK —205+2K ) @4

Now observe that

2
9%J3 (01, 03,93 1 1 1 1
]2(1*3 0):_ S K+ K .l B ) 3
9(v7) —5VZ+K ~IV2 4K 2K-20} —ZK—+2?JO
and )
Phreioso) 1 K ]
9(v3)? -Iv24+K (—2K+205)2  —2K + 203’
and i
2T (v* vk, vt ( 7 l2 - 1 *)
M — _Kl _ K2 *7V +K ZK_ZUO _ 1
9oy 903 2K — 20} 2K + 205"
We set K; > K,
K> Ks,

and K3 ~ /3. Moreover, after a re-scale if necessary, we assume « =~ 0.15.
From such results and constant choices, with the help of the software MATHEMATICA, we may
obtain

2
§ 05 (vt v3,08) 925 (vF, v5,03) 0%J3 (v}, v3,03)
det{3 g3 (01, 03,0)} = SEGAIFIR SRR | SRR
= O(2Ki((—7V? +205)2 +4(—7 V2 + 205)) ). (235)
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Define now
H(v)) = 2((—7V2 + 203)2 + 4(—’)/V2 +20v3)),

Observe that we may obtain cy > 0 such that if v§ € (C* x B*), then
det{62, .. J3 (v1,03,05)} > 0,

where
C*={vy € Y" : H(vy) > coly}.

Furthermore, we assume K > 0 and ¢y > 0 are such that C* N B* is convex.
With such statements, definitions and results in mind, we may prove the following theorem.

Theorem 6. Let (037,05,05) € D* x D* x (B* N C*) be such that

513 (07,03,03) = 0.

Under such hypotheses,
6](ug) =0,
and
J (uo)
_ inf * *, *, *
0?25*{<v;v5>1213*xo* el UO)}
= J2(01,03, %) (236)
Proof. The proof that
J(uo) =0,

—yV2uy +205ug — f =0,
and
J(uo) = J2(01,03, %),
may be done similarly as in the previous sections and will not be repeated.
Furthermore, since
313 63,83,35) = 0,
vy € B*NC* and J; is concave in vj on D x D* x B*, we have
K (oak oAk oAk : * * * oAk
J>(91,0305) = (v;,v;)lglf)*xn* J2(01,v3,95),
and
X (oak o oAk oAk k (oak oAk *
J2(01,33,9) = sup J5(91,03,p).
vy EB*

From such results and the Saddle Point Theorem we may infer that

Ak AKX AKX

J(uo) = J5(871,05,9

= sup { inf J5 (v1,05,v5) }

viEB* (v3,03)€D*xD*
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The proof is complete.
O

37. A Note on the Special Relativistic Physics
Consider in R3 two observers O and O’ and related referential Cartesian frames O(x, y,z) and
O'(x',y',2") respectively.
Suppose a particle moves from a point (xg, Yo, zg) to a point (xg + Ax, yo + Ay, zo + Az) related to
O(x,y,z) on a time interval At.
Denote
I} = A + Ay* + A2,

and I = At
In a Newtonian physics context, we have

I = A2 + Ay? + A2 = AxX + Ay + A2,
and
L = At =AY,

that is, I; and I, remain invariant.

However, through experiments in higher energy physics, it was discovered that in fact is I3 which
remains invariant (this had been previously proposed in the Einstein special relativity theory in 1905),
where

Iy = —CA + Ax* + Ay? + A2,

so that

—CZAt2+Ax2+Ay2+AZZ — _CZAt/2+Ax/2+Ay/2+AZ/2 — L,

for any pair of observers O and O’. Here ¢ denotes the speed of light, and in the case in which v,7' < ¢

we have the Newtonian approximation
At = At.

From the expression of I3 we obtain

SAPE AR AY? AL
+ + +

o AR AR T AR AR
_ 2%+%+%+%. (238)
Thus,
_CzAt’z N (Ax’2 N Ay'? Az’2> At?
A2\ AFE AE? T AE? ) AP
- oA A L (239)
so that

(A_ﬂ)z_ ? — (m—{— +EE)

2 Ax'? Az
€ (At’2 T At’2 + A2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

164 of 360
Letting At, At' — 0, we obtain
ot 1— (@)2°

In particular for constant v and v’ = 0 we have

At 2_1 02

) =l
2

A = [1- Tt
c

Consider now that O is at rest and O’ has a constant velocity

so that

v e

where {e1,e2,e3} is the canonical basis for R3 related to O.

Consider O(x,y,z) and O'(x,y, z) such that the axis x’ coincide with the axis x, axis i’ is parallel
to axis y and axis z’ is parallel to z.

Since v is constant, we have

_ Ax
At
and
=0
Assuming x(0) = 0, and the initial time t = 0, we have Ax = x, and At = t so that
2
r v
t'=1/1 2 t,
so that
2 (t _ ”—”f)
t/ = 1 Ezz t == C2 > 7
-E s
and thus
(-2)
T N
02
- a
On the other hand we have v/ = 0.
We may easily check that the solution
;  x—out
= =,
s

lead us to v’ = 0.
Indeed,

AX\1-% Ay

At At

so that, considering that v is constant, we obtain

’ d(x—ot) dx
dx:—dt _ @& Y _ v-v _0

dat \/_ﬁ \/_ﬁ \/_ﬁ
2 2 2
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that is,

dx' 0
dt '
Thus,
d <x’ - Z—;)
dr Y
so that
2
v
x4/1— Z=a
for some constant ¢; € R so that
X =,
for some ¢y € R.
Therefore
, dx!
dr

=t
x'=x—ot,
/
y=Y
and
Z =z
On the other hand, for the special relativity context, we have the following Lorentz relations
ox
. (t-3)
v2
Vi-a
s x — vt
2’
-2
V'=y
and
7=z

37.1. The Kinetics Energy for the Special Relativity Context
Consider the motion of a particle system described by the position field

r:Qx[0,T] — RY,
where Q C R3, [0, T] is a time interval and
r(x,y,z,t) = (ct, X1(x,y,2,1), Xa(x,y,2,1), X3(x,y,2,1)).

In my understanding, this is the special relativity theory context.
The related density field is denoted by

p:Qx[0,T] = RY,
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where
p(x,y,2,t) = molgp(x,y,z 1),
my is total system mass at rest, and ¢ : Q) x [0, T] — C is a wave function such that
/Q 0(x,y,2,1)[2 dx = 1, Vt € [0, T.
The Kinetics energy differential is given by
Jor or
dEC = —dﬂ’l & . g,
where
o (9N 9% i) (9N X X
ot ot  \ ot ot ot "ot ot ot
X1\, (0X%\* | (9X3)’
— 24 (e 722 78
=) () < (%)
= 2477 (240)
where ) ) )
0X 0X: 0X:
2_ (221 722 723
2= (50) +(3) + (%)
Moreover,
dm = %W(x,y, z,t)|? dxdydz,
Vi-g
so that
dE. = %(& —0?)|¢p(x,y,2,t)|* dxdydz
Ji-z
= mocy/ 2 — v2|p|* dxdydz. (241)
Thus,

Ec(t) = / dE. = / mocy/ 2 — v2|¢|* dxdydz.
Q Q

In particular for a constant v (not varying in (x,y, z, t)), we obtain

Ec(t) = mgcy/ ¢ — 02.

Hence if v < ¢, we have
2

Ec(t) = myg c*.
This is the most famous Einstein equation previously published in his article of 1905.

37.2. The Kinetics Energy for the General Relativity Context

In a general relativity theory context, the motion of a particle system will be specified by a field
(ron): Qx[0,T] - R*

where
(ro)(x,t) = (ct, X1 (a(x, 1)), Xa(i(x, 1)), Xa(id(x, 1)),
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where
a(x, t) = (uo(t), ur(x,t), uz(x, t), uz(x, ),
up(t) =t,
x = (x1,x2,x3) € Q C R3,
and t € [0, T], where [0, T] is a time interval.
The corresponding density is represented by
(poi): QA x[0,T] - RT,
where
(pom)(x,t) = molgp(a(x,1))P,
my is total system mass at rest and ¢ : Q) x [0, T] — C is a complex wave function such that
/Q lp(a(x,t))[>y/—g| det{d (x,t)}| dx = 1,Vt € [0, T]
where
dx = dxq dx; dxs,
g
J aLl]
ik = 8; - 8k Vi, k € {0,1,2,3}.
and g = det{gj}.
Now observe that
or or _ orduj Or duy
ot ot duj ot Ouy Ot
_ v or 9ujdu
N E)u] du, dt odt
ou; du
— g, 127k
= Sk o (242)

Observe that
or Or ouj oy

S, TR 24 2
ot ot Skarar - C T
Moreover, the Kinetics energy differential is given by
Jor or
dEC = —dm E . g,
where
M - -
dm = \/1—7vz|cp(u(x, £))|?\/—g| det{n’ (x,t)}| dx,
T2

so that the total Kinetics energy is expressed by
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that is,
T
E = /O /Q\/%(cz—vz)|¢(ﬁ(x,t)|2~/7—g|det{ﬁ’(x,t)}|dxdt
= / /mocx/cz—v2|cp(u x,t))[*/—g| det{d (x,t)}| dxdt
]auk )
= / /mg ~8jk 5y 8t o((x,1))|2\/—g| det{a' (x, t)}| dxdt. (243)

Summarizing, for the general relativity theory context

T ou;j Ju R R
EC:/O /Qmoc ~8ik 5, atk|cp(u(x,t))\21/—g|det{u'(x,t)}|dxdt.

38. About an Energy Term Related to the Manifold Curvature Variation

In this section we consider a particle system motion represented by a field
r: 0 — R

of C2 class where here Q) = () x [0,T], O c R3isan open, bounded and connected set, and [0, T] is a
time interval.
More specifically, point-wise we denote

r(u) = (ct, X1 (u), Xa(u), X3(u)),

where 1y = t, and u = (ug, uq, up,uz) € Q.
Now, define

dar(u
8 = aij)’
and
Sik = 8j " 8k Vi k€{0,1,2,3}.
Moreover
("} = {gi}
and
g = det{gj}.
We assume

{ag(u) forj € {0,1, 23}}

]

is a basis for R?, Yu € Q.
At this point we define the Christofel symbols, denoted by F}k, by

1 9Qkp | 98jp  IQjk .
1 Z,lp) Zekp | Zojp _ ZojK
Tl 58 { au, + our  ou, , Vj,k,1€{0,1,2,3}.

Theorem 7. Considering these last previous statements and definitions, we have that

0’r(u) ; or(u)
T =T, ViK€ {01,2,3}, Yue .

Proof. Fixu € Qand j, k,m € {0,1,2,3}.
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Observe that

Bgﬁﬁg_fp_@}

1
I = = Ip
]kglm nglg { au]_ i aup

_ 1,98k  98p 98k
= Oy —+ —F - —
2 ou; dup  dup

_ 1) 9gkm  98m _ 98k
2| adu; our  Juy

1) o (or(u) or(u) o (dr(u) or(u) o0 (dr(u) or(u)
) a_u]-<auk .aum)+a_bt;( ou; COum | Oupm ou; ouy

1 { 0°r(u) ~0r(u) n 0°r(u) ~or(u)

2 Jugdu;  duy upmdu;  Juy
0’r(u) or(u) 9’r(u) or(u)
oujouy  Ouy  Oduydur O

B 0%r(u) or(u) 0’r(u) _ ar(u)}

umdu;  Juy oumduy  ou;

1 0°r(u) or(u) n 0’r(u) or(u)
2| dudu,  Quy - Qujduy Jupy
0%r(u) or(u)

T wouy Oy (244)

Summarizing, we have got

0’r(u) or(u)

r or(u) or(u) .
oujouy Oty

At St =T -
K 9u;  Ouy, 8 1m

Since
or(u) .
{W, fOI'] € {0,1,2,3}},

]

is a basis for R*, we may infer that

*r(u) r or(u)
8uj8uk Tk aul ’

Vj,k € {0,1,2,3}, Vu € Q.

The proof is complete.
O

38.1. The Energy Term Related to Curvature Variation

We define such an energy term, denoted by Eq, as

%) %) v

Uy dup

1 ; 0
Eq(¢,1) = 3 /Qg]kglpa—uj <4’

where du = duiduydusduy.
Here ¢ : ) — C is a complex wave function representing the scalar density field.
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Now observe that
0 ( or(w)) 9 [, or(u)
ou; ¢ ouy oy ¢ dup
B 8_4)8r(u)+ 0%r(u) (99" 8r(u)+ . 0%r(u)
B Juj Jduy dujouy du; duy Juduy
P 0¢* ,0%r(u) 0%r(u)
= 3. ) kp+|§b| ) ’
Ju;j Ju; oujouy  dujduy
09" Pr(w) Ir(u)
¢6ul au]auk au,,
89 Pr(u) ar(w)
+o° 8u] oudu,  Juy
9¢ 9™ 2
= au au ng+|¢| rr?crlop 8mo
R a¢ i 8sp T a¢sz 8rk- (245)
From such results, we may infer that
9 99"
— jk —
Eolgor) = 2/ oy o, V8
+—/ g 8" T Ty grs Iqbl2 V=g du
o
jkl
/g r1k<4’au O 5 ) Vg du. (246)

39. A Note on the Definition of Temperature
The main results in this section may be found in similar form in the book [16], page 261.
Consider a system with N = Z]I.iol N; and suppose each set of N; particles has a set of C; possible
states.
Therefore, the number of states of such N; particles is given by

where we have considered simple permutations as equivalent states.

Define
Sj = ln(Al”j),

and define the system entropy, denoted by S, as

where A > 0 is a normalizing constant.

Thus,
Ny (C)Nj
_ ]
S=A Z ln( NI )
j=1 ]
so that
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If N is large enough, we have the following approximation

In particular for C; = 1, Vj € {1,---,Np} we obtain
No No
=1 =1

At this point we define the following local density Nj where

A i (x, 1)
N]'(X, t) = WN,

where

No
|p(x, 1) = Z; |9 (x, )]
=

Here, ¢; : ) — C denotes the wave function of the particles corresponding to the system part N;.
The final definition of Entropy is given by

No
S(x,t)=A (Z; Si(x, t))
]:
where

Si(x,t) = —Nj(x,t)In(Nj(x,t))

|pj(x, )2 | (x, )2
A N1n<—¢(x,t)|2 N . (247)

Here we highlight the position field for each particle system part N; is given by
f‘j(X, t) =X+ 1‘]' (X, t)/

where 1; is related to the internal energy, that is, related to the atomic/electronic vibrational motion
linked with the concept of temperature, as specified in the next lines.
The total kinetics energy is given by

2 or;(x, ) ‘ ar;(x, t) .

1%
E(x’t) - _Ejgmpj|¢j(x’t) of of

At this point, we define the scalar field of temperature, denoted by T(x, t), such as symbolically

s 1
OE  T(x,t)’
More specifically, we define
Ny £
- i
T(x, t) = . 35 7
=1 9¢;
so that st o)
N ri(x, ri(x,
_%Z]‘:Ol Mp; oj(x,t) 5=
) = oN (9PN
AT i
Aler 1“( o7 “)
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39.1. A Note on Basic Thermodynamics

Consider a solid Q) C R? where such a Q) is an open, bounded and connected set with a regular
(Lipschitzian) boundary denoted by 0().

Denoting by [0, T] a time interval, consider a particle system where the field of displacements is
given by

1i(x,t) = r(x,t) +u(x, t) + (13);(x, t),

where r : Q x [0,T] — R is a macroscopic displacement field, u : Q@ x [0,T] — R is the elastic
displacement field and (r3); : Q x [0, T] — R denotes the displacement field related to the atomic and
electronic vibration motion concerning the concept of temperature, as specified in the previous section.
In particular for the case in which
r(x, t) =x,

we define the heat functional, denoted by W, as

1 T ou(x,t) du(x,t)
W= 5/0 /QP(x,t) l) 2D g ar
T
_/ /F-udxdt
0 JO
1 /T
+§ /0 /Q Hjjppeij(u)eg (u) dx dt

1§t 7 29(r3);(x, 1) 9(r3);(x, t)
+2]§/0 /()mpj|¢j(x,t)l S dxdt, (248)

where
Ny .
p(x,t) = Zmp,|4>](x,t)|
j=1
is the point wise total density,
1 T
2 /o /Q Hijppeij(u)ey (u) dx dt

is a standard elastic inner energy for small displacements u, F(x, t) is the resulting field of external
forces acting point wise on (), and for the term

1M T za(r3)j(x/t) a(r3)j(xrt)
2;/0 [ gy PR SRS

we are refereing to the definitions and notations of the previous section.
At this point we denote

1N T ,0(r3);(x, 1) 9(r3)(x, 1)

and

1T du(x,t) du(x,t)
Er = 5/0 /Qp(x,t) YRR dx dt

T
—/ /F udx dt
0 (@)

1 T
+§A /QHijkleij(u)ekl(u) dx dt. (249)
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Hence W = Et + E;;, and from the previous section we may generically denote
0 E;y, =T 68,

Therefore
OW = 0Er + 0E;, = 0Er+ T 6S.

For a standard reversible process we must have  Er = 0.
so that
OW =TJ¥S.

For a general case in which other types of internal energy (such as E; indicated in the previous
sections and even Ej; ) are partially and irreversibly converted into a ET type of energy, in which

dEr #0,

we may have
0 W < TéS.

Remark 22. Indeed, in general the vibrational motion related to E;, is of relativistic nature so that in fact we
would need to consider

N T 2|, Ors)i(xt) 9(rs);(x,t)
Ei, = 2];/0 /Qmp]. c|pj(x,t)] \/c — n . T —gj dx dt.

40. A Formal Proof of Castigliano Theorem

In this section we present the mathematical formalism of a result in elasticity theory known as the
Castigliano’s Theorem.

Let QO C R3 be an open, bounded and connected set with a regular (Lipischitzian) boundary
denoted by 0Q).

In a context of linear elasticity, consider the functional | : V' — R where

N
J(u) = Eip — (uj, fi) 2 — 2%(36]')1’1']'/
iz

u = (uy,up,u3) € Wg'Z(Q;R3) =V, f=(fifof3) € L2(LR3),Y = Y* = [2((;R3), and
PjeR, Vie {1,2,3}, je{1,--- ,N}

for some N € N.
Here we have denoted

1
Ein=3 /QHijkleij(u)ekl(”) dx,

1(ou; Ouj
eij(u) = 5 <8x] + o |
Moreover H;jy is a fourth order positive definite and constant tensor.
Observe that the variation of | in u; give us the following Euler-Lagrange equation

N
—(Hijiaen (1)) j — fi — Y Pijé(xj) = 0, in Q. (250)
=
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Symbolically such a system stands for
M) _ o\
. 0,Vie {1,2,3},
so that N
O(Ei, — (uy, fi) 12 — Yot q ui(xj) Py
(Bin = (i fi) 12 = Ly i) Bj) =0, Vie {1,2,3}. (251)

aui

We denote u € V solution of (250) by u = u(f, P), so that multiplying the concerning extremal
equation by u; and integrating by parts, we get

Hy(u(f,P).f,P) = zEmw(f,P))—<ui<f,P>,fi>Lz—iuxxj,f,maj
= 0,VfeY", PecR¥W, g (252)
Therefore p
(a7, P)1,P)) =
so that
Z‘L’f,j;?—di”@ (F.P), fiiz + i (5 £, )Py ):o,
that is

dEin I(Ein — (ui, fi)r2 — Tq i () Py)
dPl']' auk ! aPij
d

N
_ﬁi]- <<ui,fi>L2 + ]; Mi(Xj)Pﬁ)

- 0 (253)

From this and (250) we obtain

dE;, _
dP;j —uilx) =0,
so that

_dE, 4 (1 -
ui(xj) = ap; dpij(2/QHZJklez](u(frP))ekl(u(frP))dx)r
vie {1,2,3},Vje{1,---,N}.
With such results in mind, we have proven the following theorem.

Theorem 8 (Castigliano). Considering the notations and definitions in this section, we have

) = ot = g (5, Hawe 0l P)eutu(7, ) ),
Vie{1,2,3},Vje{l,--- N}

40.1. A Generalization of Castigliano Theorem

In this subsection we present a more general version of the Castigliano theorem.
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Considering the context of last section, we recall that
N
Hy(u(f,P),f,P) = 2Eu(u(f,P))— (ui(f,P),fi)2 — gui(xjrf’ P)P;
=
= 0, VfeYs, PcR¥W, (254)
Therefore, for x; € Q) such that
xp #x;, Vi€ {1,--- N},
we have
(5 (7). £,P) 80500 ) =0,
dfi 12
so that
d
2( 37 Eulu(f, P 630 )
N
—<% ((“i(f/ P), fi)iz + Y wi(xj, £, P)Pij>L2> r5(xk>>
! j=1 12
_— (255)
that is
d
(T Bz, P00 )
d N d
<;—< (D)= Gl fP) i = Y %qu>;ﬁu>>y
(%(uUPf» Y %JPRJ >
(256)

From such results, we may obtain

(FFEnF, P00 ) = ((3), 800} 1z =0,

so that

that is

) = (3 Enlu(F,P)). 2%

Vi e {1,2,3}, Vx; € Q such that x; # xj, Vj € {1,---,N}.
With such results in mind, we have proven the following theorem.

Theorem 9 (The Generalized Castigliano Theorem). Considering the notations and definitions in this
section, we have

) = (7 (EalulF, P05 )

Vi€ {1,2,3}, Vxx € Qsuch that x; # xj, Vj € {1,--- ,N}.
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40.2. The Virtual Work Principle

Considering the definitions, results and statements of the previous section and subsection, we
may easily prove the following theorem.

Theorem 10 (The virtual work principle). Let x; € Q) such that x; # x;,¥j € {1,--- ,N}.
For a virtual constant load Py € R on x; at the direction of uy(x;), define now | : V.— R where
N
J(u) = Ein — (u, fi) 2 — Y, ui(x) Pyj — Pyeuge(x7).

=

Under such hypotheses,

uk(xl) = (d Ein(u‘;g’kp’ Plk)))Plk 0,

Vk € {1,2,3}, Vx; € Q) such that x; # xj, Vj € {1,---,N}.

Proof. The proof is exactly the same as in the Castigliano Theorem in the previous section except by
setting the virtual load Pj; = 0 in the end of this calculation and will not be repeated. O

41. Duality for a General Relaxed Primal Variational Formulation

Let QO C R3 be an open, bounded and connected set with a regular boundary denoted by 9.
Consider a functional | : V — R where

](u)z%/QVqudx—i—%/Q(uz—ﬁ)z dx — (u, f) 2,

where V = Wy2(Q), 7> 0,a >0,>0,Y = Y* = [2(Q), Y, = Y{ = [2((4R?), and f € [2(Q).
We define the associated relaxed functional J; : V x V x (0,1), by

Jg ) = 5L [ (Tu— (1= N)¥9)- (Vu—(1-1)Vg) dr

+M/ (Vi + AV§) - (Vi + AV§) dx
ot [ (= =27 - ax+ CS [ (G ag) — 2 ax
A (1= s (- A+ Ap @57)

Moreover, we define, F; : Vx V x (0,1) = R, K: VxVx(0,1) 2R, F:VxVx(0,1) =R,
Fo:VxVx(0,1) >R F5:VxVx(0,1) =R and Fs: V x V x (0,1) > R, by
Ay
Rg,0) = 5 [ (Tu=(1-2)Vg)- (Tu=(1-1)Vg) dx

(1

Ey(u,¢,\) = ;A)'V/Q(ww\w) (Vu+AV¢) dx

Fug,0) = 5 [ ((u— (1= NP - 2 dx

Fy(u,¢,A) = @ /Q((u + Ap)? — B)? dx,
Fs(u, ¢, A) = =A{u— (1= A)p, )2,

Fs(u, ¢, A) = =(1 = M) (u+ A9, f) 12,

respectively.
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Observe that
]1(M,¢,1/l) = Fl(u/(l)/)\)_'—FZ(ur(p//\)
F3(u/¢/)\) + F4(M,(P,/\)
Fs(u,¢,A) + Fo(u, ¢, 1), (258)
Thus,
]1(”/47/“) 2 Pl(u/4)/A>+F2(u/¢/A)
+((u—(1=2)9)> - B,03) 12
+((u+Ap)* = B,v}) 12
Fs(u/(Pr)L) + F6(ur¢//\)
P3(u/4)/A> + F4(u/¢/A)
+ inf {—<Z)3,Z)§>L2 + ﬁ3('03,)\)}
v3€Y
+ inf {—(v4,0}) 12 + Fa(vg, M)} (259)
U4€Y
where
B(v3,A) = > / 03 dx,
- (1—-A)a
Fy(vg, A) = — /Qvﬁ dx,
Therefore, defining £ : Y* x (0,1) — Rand Fj : Y* x (0,1) — Rby
F(v3,A) = sup{(vs.v5);2 — F3(v3,A)
v3€Y
_ 1 *\2
= oo @ (260)
and
Fi(vi,A) = sup{(vs.0))2 — Fa(vy,A)
’U4€Y
_ 1 *\2
= 2in /Q (v3)? dx, (261)
we may also infer that
Ji(u, ¢, 1) > inf {<U1/UT>L2+F1(01,)\)}
+ mf {<02r v3)12 + Ba(v2, )}
(1S
+ inf { (vs, div v]) ]2 —|—/ —B)vydx—A <'05,f>Lz}
v5€Y
+ inf { (ve, div v3) ]2 —|—/ —B)vydx—(1— A)<v6,f>Lz}
—Fs* (v3,A) — Ef (v3,2)
= —F(v],A) - F5(v3,A)
—F5* (v1,03,A) — Fg (03,04, A)
F3 (03, A) — Ef (v3, M), (262)
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if v* = (vj,---,v;) € A* where,
A* = {o* € [Y{]* x [Y*]* : v§ > 0and v} >0, inQ},
Fl(’()l,A) = )\2—7/ 0101 dx,
E (v, A =—/ vy - U dX,
Fo(05,03,4) = [ (03 = B)os dx = Afos, £z,
Fo(os,03,4) = [ (02— Boj dx = (1= 1) (w6, )12,
and
Fi(vi,A) = sup {(01,0]);2 — Fi(v1, 1)}
€Y
= L/ vl -0y dx (263)
- 2,),)\ 0 1 1 ’
Fi(v3,A) = sup {{v2,03);2 — Fa(v2,A)}
ZizEYl
= ;/ vs - U5 dx (264)
T o291 -A)Ja P 2
E5(vi,03,A) = sup{(vs,07)12 — Fs5(v5,03,A)}
U5€Y
(div (divoy +Af)° Af)?
= 2
2/ o dx +ﬁ/ o dx, (265)
and
Fg(v3,03,A) = sup{(ve,v7) > — Fe(vs, 03, M) }
V€Y
1 (divey+(1-2A)f)>?
= — d . d . 2
Z/Q 5o x+/3/004 x (266)
Denoting, as above indicated, v* = (v},v3,v5,v}) € [Y7]? x [Y*]%, we define J* : [Y]]? x [Y*]?
(0,1) = Rby
J'(@",A) = —F(v1,A) —F(03,A)
—F5(01,03,A) — Fg (03,03, A)
—F5 (0}, A) — Ef(v3, M), (267)

Observe that we have got

f > inf L, A

DI = e o 109
> inf < sup [J*(0%,A) p. (268)

)LE(O,l){U*EE* ( )}
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41.1. A Numerical Example

We have obtained numerical results for v = 0.1, « = 3.0, = 5.0 and f = 10, in (), for the special
case in which ) = [0,1] C R.
Such results have been performed through the following algorithm:

1. Setn=1and A, = 1/2.
Calculate v}, € A* such that

J* (03, An) = sup J*(0%, An),

vt EA*

3. Calculate A, 41 € (0,1) such that

T (v}, Aps1) = /\eif})frl) (05, A),

4. Setn:=n+1and go to step 2 until the satisfaction of an appropriate convergence criterion.

Here, we recall that for the optimal points

div o] +Af o

2,();; _(1_)\)¢’
and .,
d1vvz+(*1—A)f:u+A¢,
20,
so that div ot 41 div ok 4 (1A
u:A( 1vvl*+ f>+(1_)\>< 1V02+£ - )f)
203 2v;

For such a corresponding optimal ug please see Figure 32.
For the solution u; of the primal problem obtained through the generalized method of lines,
please see Figure 33.

2.5

051 ]

Figure 32. Optimal solution uy(x) through the concerning dual formulation.
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25

051 i

Figure 33. Optimal solution u1 (x) through the concerning primal formulation.

We may observe the solutions 1y and u; are qualitatively similar, as expected.

Here we present the software developed to perform such numerical results.
40404044 6 36 3 2 3 A o 4 6 KA

1. clearall
globalm8 dLA3 AByouveldvldv2dv3v5v6ov3v4avlv2K5e5L112L3
m8=100;
d=1/mS§;
e1=0.00001;
€5=0.001;
K5=10000.0;
A3=0.1;
A=3.0;
B=5.0;
for i=1:m8
uo(i,1)=5;
yo(i,1)=10.0;
end;
L=1/2;
for k=1:50
k
i=1;
m12=2 + 6% A *uo(i,1)?> xd*/ A3 — 2+ A+ B/ A3 x d?
mb50(i)=1/m12;
2(i)=m50(i) * (yo(i,1) xd>/ A3+ 4 x Axuo(i,1)3 x d*>/ A3);
for i=2:m8-1
m12=2+ 6% A xuo(i,1)?> xd?/ A3 — 2% Ax B/ A3 xd> — m50(i — 1);
mb50(i)=1/m12;
2(i)=m50(i) * (yo(i,1) x d*/ A3 + 4% Axuo(i,1)3 xd>/ A3+ z(i — 1));
end;
w(m8,1)=0;
for i=1:m8-1
w(m8-i,1)=m50(m8-i)*w(m8-i+1)+z(m8-i);
end;
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uo=w;
uo(m8/2,1)
end;
for i=1:4*m8
x0(1,1)=3.0;
end;
fori=1:1
x1(i,1)=1/2;
end;
for k1=1:10
k1
k=1;
b12=1.0;
while (b12 > 107%) && (k < 50)
k
k=k+1;
X=fminunc(’funFeb30LG’,x0);
b12=max(abs(x0-X))
x0=X;
end;
X1=fminunc(’funFeb31LG’,x1);
x1=X1;
end;
u(ms,1)=0;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);
33 S 3 S A A N AN

With the auxiliary function "funFeb30LG", where

B R R R X S S X

1.  function S=funFeb30LG(x)
globalm8dL A3 AByouveldv2dvldv3v3v4dv5ivovlv2K5e5L11L2L3
for i=1:m8
v1(3i,1)=x(1,1);
v2(i,1)=x(m8+i,1);
v3(i,1)=x(2*m8+i,1);
vA(i,1)=x(3*m8+i,1);
end; for i=1:m8-1
dvl1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+(yo(i,1)? % L2 +2 % yo(i,1) * L+ dv1(i,1) + dv1(i,1)® + 4 x B x v3(i,1)*) / (4 * v3(i,1)?);
S=S+(yo(i,1)%> * (1 — L)> + 2% yo(i,1) * (1 — L) * dv2(i,1) + dv2(i,1)> + 4 * B x v4(i, 1)*) /(4 *
v4(i,1)?);
S=S+v1(i,1)?/sqrt(L? + 1) /2/ A3+ v2(i,1)?/sqrt((1 — L)% + 1) /2/ A3;
S=S+v3(i,1)*/2/sqrt(L?> +e1)/ A + v4(i,1)*/2/sqrt((1 — L)? + el)/ A;
end;
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for i=1:m8-1

u(i,1)=L * (yo(i,1) * L + dov1(i, 1))/ (v3(i,1)?) /2;

u(i,D=u(i,)+(1 — L) * ((1 = L) *yo(i, 1) +dov2(i, 1)) /2/ (v4(i,1)?);
end;

Finally, we present the auxiliary function "funFeb31LG"

B R R Rk R 2 T k]

1. function S1=funFeb31LG(x)
globalm8dLL1L21L3 A3 AByouveldv2dvldv3v5v6v3vdvlv2K5ed
L=(sin(x(1,1))+1)/2;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+(yo(i,1)? * L> + 2 x yo(i,1) * L * dvl(i,1) +dv1(i,1)® + 4 % B* v3(i,1)*) /(4 x v3(i, 1)?);
S=S+(yo(i,1)> * (1 — L)? + 2% yo(i, 1) * (1 — L) * dv2(i,1) + dv2(i,1)® + 4 * B * v4(i,1)*) /(4 *
v4(i,1)?);
S=S+v1(i,1)?/sqrt(L* +e1)/2/ A3+ v2(i,1)?/sqrt((1 — L)% + 1) /2/ A3;
S=S+v3(i,1)*/2/sqrt(L?> +e1)/ A + v4(i,1)*/2/sqrt((1 — L)? +el)/ A;
end;
S1=-S;

33 o e 4 43836 36 36 36 3 3 3 o o 838 38 36 36 36 3 3 3 o o o S S e e e e

Remark 23. Observe that the functional [* is convex in A* however, the restrictions vy > 0and vy > 0 in
Q) may cause a difference between the solution obtained through J* and the solution got through the primal
formulation |, a so-called duality gap.

Anyway, through such a relaxation process, utilizing the dual functional [* we may still obtain a good
qualitative approximation of the global optimal point for the primal formulation ].

Indeed, such a global solution obtained through the dual functional J* may be an excellent initial solution
for obtaining a more accurate one through the standard Newton Method, for example.

42. A Global Existence Result for a Model in Non-Linear Elasticity

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by Q2 = S.
Define a functional | : V — R by

J(u) = %/Q Hijrryij(w)yia (u) dx — (ui, fi) 12,

where n ,
Ui~ U
')/ij(u) = % + Eum,ium,jr

V={uecW?R? : u=1donS CoOl

We also denote Y = Y* = L2((;R3), so that f = (f1, f2, f3) € Y.
Here {Hijkl} is a fourth order constant, positive definite and symmetric tensor.
With such assumptions and statements in mind, we may prove the following theorem.
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Theorem 11. Assume {Hjjy } is such that

Lim J(u) = +oo.
[[ully —eo

Under such hypothesis, there exists ug € V such that

J(up) = min J (u).

ueV

Proof. From the hypotheses, there exists « € R such that

a = inf J(u).

ueV
Let {u,,} C V be a sequence such that
1
a < J(up) <a+ E,Vn e N.
Suppose, to obtain contradiction, there exists a subsequence {7} C N, such that
[t llv = oo.
From the hypotheses, we have
J(uy, ) — 400, ask — oo.

This contradicts
lim J(un, ) =a € R.

k—00

From such results we may infer that there exists K > 0 such that
lunlly <K, ¥n € N.

Consequently, from this, the Sobolev Embedding and Rellich Kondrashov theorems, there exists
uy € VN L=®(Qy; R3) for which, up to a not relabelled subsequence, we have

uy — up, weakly in W1'4(Q,' R3),
Uy — up, strongly in L4(Q),
Uy — up, strongly in L*(Q); R3).

Let ¢ € CX(Q)).
Thus,

A(un)i  9(uo);
ax]' ax] P 12
d
= '<(un)i_(u0)ira_;pj>
L2
d
< |(un)i — (40)illoo a_z;
1
— 0, asn — oo. (269)
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Since ¢ € C®(Q) is arbitrary and C®(Q)) is dense in L*(Q)) we may infer that
I(un)i  9(uo)i 4
ax; ax; weakly in L*(Q)),
Vi, j € {1,2,3}.
Define W = L*(Q) with the norm
[ollw = sup{(v, @)1z, ¢ € CZ(Q), [[@[l12 < 1}.
We may easily verify that
(un)i _ 9(u)i :
ox; — ox; strongly in W,
Vi, j € {1,2,3}.
Thus,
{ 9(1n)i }
ax]'
is a Cauchy sequence in W.
Hence, for each nn € N there exists n; € N such that m,l > n;, then
()i 1
H o, Bx] S
where 11, may be taken as an increasing subsequence in N.
In particular, we have got
a(unk+1)i _ a(unk)i < l
ax]- Bx] k2
W
Define now
gl — |a(u711)i + l_zl a(unk+])i _ a(unk)i
ax]‘ =1 ax] E)x]
and
g= 9(ttny )i i i 9ty )i _ 9 (ttny )
Jx; = o ox;
Observe that
9 (4 o ”ﬂk+1 ()i
lglw < H o RN e
wo k= w
a(u =1
< —_
Tl 9 ; k2
< oo (270)

From such results we may infer that g(x) € R, a.e. in Q.
Moreover, since an absolutely convergent series is also convergent, we may infer that

Aun )i _ )i, <a<unk+1>i B a(unkx-) Ly, a6 in 0,

ax]' o ax] =1 ax] ax]

for some h;j; € L*(Q), Vi,j € {1,2,3}.
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From such results, we have
M — hjj, a.e.in Q)
an
nd Aun)i o)
Un; )i Up)i A
- , weakly in L*(Q2),
ax]' ax]
so that ;
% = hjj, a.e. in Q).
Y
Consequently, we have got
Ot )i — a(uo)i, a.e. in Q.
BXj ax]
Now fix i,j,m € {1,2,3}.
Observe that from the Cauchy-Schwarz inequality, we have
2
/ O(tn )m (tn,)m i
X
O ax] ax]
2
H A(thn; )m : (1 )m
Bxl- 4 ax] 4
< Ky, VIeEN (271)

for some appropriate real constant K; > 0.
Therefore, up to a not relabeled subsequence there exists vy € L?(Q) such that

Mm — 0, weakly in LZ(Q)/

axi ax]
Since
a(“nl)m a(unl)m N 9(1o)m 3(uo)m, ae. inQ,
axi ax] axi ax]
we obtain 5 5
vy = (10)um (Mo)m, a.e.in Q),
axi ax]

so that

0(uun )m Ot )m (o) m 9(tho)m

axi ax] axi ax]

, weakly in L2(Q2),

Vi, j,m e {1,2,3}.
Therefore, from such results we may infer that

Yij(un;) = 7ij(1o), weakly in L*(Q),Vi,j € {1,2,3}.
Moreover, since ] is convex in {;; } we finally obtain
o= hm inf](ul’ll) 2 ](u())/
|—o0

so that
J(ug) = min J(u).
uev

The proof is complete.
O
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43. A Note on a General Relaxation Procedure for the Vectorial Case in the
Calculus of Variation

Let () C R" be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by dQ2. Consider a continuous and bounded below functional F : V. — R where

V={uecW2RN) : u=uyonoQ}.
Define H; : V — R by
Hi(u) = inf{A1F(v1) + (1 — A)F(wy1); 0< A <1, vy, wy €V, Mop+ (1 — A)wy = u}.
Observe that as it has been shown in a previous section, we have
F*™(u) < Hy(u) < F(u), Vu e V.
Moreover, also as indicated in a previous section, we may obtain

Hl (M) = (¢1,A1)iél‘£0><[011}{/\11:<u — (1 — )\1)4)1) + (1 — Al)F(M + )\14)1)},

where V) = W&’z(Q,' RN).
Reasoning inductively, having H : V — R, define Hy 1 : V — Rby

Hiyp(u) = inf{Ag Hi(vps1) + (1= Agyr) He(wpp1)
0 < M1 <1, 01, Wiyt €V, Apq0kp1 + (1= Aggy) Wiy = ul (272)
Thus

Hypq(u) = inf Mt He(u = (1= Agp)Prsr) + (1= Agqr ) Hie (4 + A Prern) )
(Prs1, k1) EVO X [01]

Observe that
F**(u) < Hgyq(u) < Hg(u) < F(u), Vk € N.

Define Hy : V — R by

Ho(u) = kginoo Hi(u) = 1:21£1 Hy(u), Vu e V.

Suppose, to obtain contradiction, that Hy is not convex.
Hence, there exists il € V such that

(Ho)1 (%) < Ho(#),
where
(Ho)l(u) = inf{}\lHo(Ul) + (1 — /\1)HQ(ZU1) ; 0< A <1, 0,w €V, Aovg + (1 — )\1)7/01 = Ll}.
This contradicts
Hy(u) = lim Hi(u) = inf Hy(u), Vu € V.
k——+o0 keN

Therefore Hy is convex on V so that from this and

F*(u) < Hy(u) < E(u), Yu € V
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we may infer that
Ho(u) = F™(u), Yvu € V.

44. A Note on Another General Relaxation Procedure for the Vectorial Case in the
Calculus of Variation

Let ) C R" be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q). Consider a continuous and bounded below functional F : V — R where

V={ueW2O;RY) : u=uyonaQ}.

Fix k € N.
Define (H; ) : V — R by

k
(Hy)r(u) = mf{ AjF(vj) : 0<Aj<landv; €V, Vje {1, - k},
j=1
k k
2/\] =1land 2/\]"0] =Up,. (273)
j=1 j=1
Observe that

() < (Hy)esr () < (H)e(u) < F(u), Yu € V.
Define H, : V — R by

Hy(u) = lim (Hy)y(u) = inf{(Hy)(u)}, Vu € V.

Reasoning inductively, having Hy, : V — R, we may obtain (Hy,); : V — R by

]

k
(Hp)p(u) = inf{ » AjHp(vj) : 0<A;<landv; €V, Vje{l, - k},

j=1

k k
2/\]- =1land Z;Ajvj = u}. (274)
]:

Observe that
F*™(u) < (Hm)kr1(u) < (Hm)i(u) < F(u), Vu € V.

Now we define
Hy () = Jim (i )(u) = inf {(Hu ()}, Y € V,

Vm € N.
Therefore, we have obtained a sequence { Hy, : V — R} such that

F*(u) < Hyq1(u) < Hpu(u) < F(u), Vu e V.
Thus, we may define H : V — R by

Ho(u) = Jim Hy(u) = inf {H(u)}, Yu € V.

Suppose, to obtain contradiction, that H : V — R is not convex on V.
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Hence, there exists i1 € V such that
(H)q1(2) < H(a),
where
(H%)1(u) = inf{A1H(01) + (1 = A))HO(wy) : 0 < Ay <1, v, wy €V, Moy + (1= A)wy = u},

YueV.
This contradicts
0 .
H"(u) = 7%1_1){}0 Hy,(u) = r:lrellf\l{Hm(u)}' YueV.
Therefore, HY is convex on V so that from this and

F**(u) < H(u) < F(u), Yu € V,

we may infer that
HO(u) = F**(u), Vu € V.

45. A Proximal Relaxed General Approach Also Suitable for the Vectorial Case in
the Calculus of Variations

Let QO = [0,1] C R and consider a proximal relaxed functional J; : V x Vj x [0,1] x Y* — R

where
him,9,0,2%) = 2/ M= 1) d
”/Q« A¢)E 1) dx
2/ u—f dx+§/ﬂ(u—f)2dx
— [z frdxs o [ @R (275)
where

V={ueW?Q) : u0)=0and u(1) =1/2},

Vo = Wp2(Q), and Y = Y* = [2(Q).
In order to obtain a critical point of such a proximal relaxed primal formulation, we propose the
following algorithm:

1. Setn=1,e=10"*and z} = 0.
2. Calculate (uy, pn, An) € V x Vj x [0,1] such that

7 /)\ 7 ") = i f 7 /)L/ ; .
J1(ttn, P, Ans ) (u,(p,/\)eglxvox[o,l]h(u P zn)

3. Calculate z}; 11 € Y* such that
]1 (ui’l/ 4771/ Anl Z:H_]) = Z*lglf;* ]1 (un/ (Pn/ /\n/ Z* )/

so that indeed,
Zy1 = K(un = f).

4. If|lz; ; — z;lle < & then stop. Otherwise set n := n + 1 and go to item 2.
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We have obtained numerical results for K = 100 and
f(x) = sin(mx) /2.

For the optimal solution u(x) obtained, please see Figure 34.

0.6

Figure 34. Optimal solution u(x) for the case f(x) = sin(7x)/2.

At this point we present the software in MAT-LAB we have developed to obtain such numerical

results.
336 5 3 36 3 5 38 36 3 5 34 36 3 5 34 3 3 o 38 36 3 3 3 3 3 3 3 3 3 3 3 e o S N K

1. clearall
globalm8duvyoel Kz
m8=100;
d=1/mS§;
e1=0.0005;

K=100.0;

for i=1:m8

yo(i,1)=sin(pi*i*d)/2;

z(i,1)=0;

end;

for i=1:2*m8+1

x0(i,1)=0.3;

x1(1,1)=0.3;

end;

kl=1;

b14=1.0;

while (b14 > 107%) && (k1 < 11)
k1

k1=k1+1;

k=1;

b12=1.0;

while (b12 > 107%) && (k < 16)
k

k=k+1;
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X=fminunc(’funMarch24PhaseT’,x0);
b12=max(abs(X-x0))
x0=X;

u(m8/2,1)

end;
b14=max(abs(x1-x0));
z=K*(u-yo);

x1=xo;

u(m8/2,1)

end;

for i=1:m8

x(i,1)=i*d;

end;

plot(x,u)

Here the auxiliary function "funMarch24PhaseT"

e 38 38 36 36 36 36 3 3 3 o e 438 36 36 3 3 S S S K

1.  function S=funMarch24PhaseT(x)
globalm8duvLyoel Kz
for i=1:m8
u(i,1)=x(@,1);
v(i,1)=x(i+m8,1);
end;
L=(sin(x(2*m8+1,1))+1)/2;
u(ms,1)=1/2;
v(m8,1)=0.0;
du(1,1)=u(1,1)/d;
dv(1,1)=v(1,1)/d;
for i=2:m8
du(i,1)=(u(i,1)-u(i-1,1))/d;
dv(i,1)=(v(i,1)-v(i-1,1))/d;
end;
d2u(1,)=(=2 % u(1,1) + u(2,1))/d%
for i=2:m8-1
d2u(i,)=(u(i+1,1) — 2% u(i,1) +u(i —1,1))/d%
end;
S=0;
for i=1:m8
S=S+L * ((du(i, 1) — (1 — L) xdv(i,1))> —1)2/2;
S=S+(1 — L) * ((du(i,1) + L*do(i,1))> — 1)?/2;
S=S+(u(i,1) — yo(i,1))?/2;
S=S+K * (u(i,1) —yo(i,1))?/2 — z(i,1) * (u(i,1) — yo(i,1));
end;
for i=1:m8-1
S=S+el x d2u(i, 1)?;
end;

e o 438 38 36 36 36 3 3 3 3 o 34 36 6 K K
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46. Another Proximal Relaxed General Approach also Suitable for the Vectorial
Case in the Calculus of Variations

Let Q = [0,1] C R and consider a proximal relaxed functional J; : V x [Vp]® x B x Y* — R where

T gz = 5L [ (0 Argh -+ Aagh + Aagh — )2 — 17 dn
#2 [ (0 + Mg+ s+ Ao — 43)2 — 1)2
#2 [( + Aagh o+ s+ Ao — 1) — 1)2 dx
+% /Q((”' + A + Ao + Asps)® —1)% dx
[ a8 [ pra
_/Qz*(u_f) dx+%/0(z*)2 dx, 276

where
V={ucW?Q) : u(0)=0and u(1) = 1/2},

Vo = WiA(Q), Y = Y* = [3(Q), f € L*(Q) and
4
B = {)\: (/\1,---,)\4) €R4 : A] >0, V]E {1,"' ,4}and ZIA]Zl}
]:

In order to obtain a critical point of such a proximal relaxed primal formulation, we propose the
following algorithm:

1. Setn=1,e=10"*and z} = 0.
2. Calculate (uy, ¢y, An) € V x [Vp]® x B such that

7 /)\ 7 *) = i f 7 /)L/ ; .
]1(”71 (Pn n Zn) (u,tp,A)ellglx[VonBh(u 4) Zn)

3. Calculate z}, 1 € Y* such that
]1(unr Pn, A, ZZ+1) = z*uglf/* ]1(unr P, An, Z*)/

so that indeed,
Zyy1 = K(un — f).

4. If [|z; ; — z;llo < ¢ then stop. Otherwise set n := n + 1 and go to item 2.

We have obtained numerical results for K = 100 and

f(x) =0.0.

For the optimal solution u(x) obtained, please see Figure 35.
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0.5
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Figure 35. Optimal solution u(x) for the case f(x) = 0.

At this point we present the software in MAT-LAB we have developed to obtain such numerical

results.
33 3 3 36 3 o 3 36 3 5 3 36 3 o 3 3 3 o b N3

1. clearall
globalm8duvyoel Kz
m8=100;
d=1/mS§;
e1=0.0007;
K=100.0;
for i=1:m8
yo(i,1)=0.0*sin(pi*i*d)/2;
z(i,1)=0;
end;
for i=1:4*m8+3
x0(i,1)=0.3;
x1(1,1)=0.3;
end;
kl=1;
b14=1.0;
while (b14 > 107%) && (k1 < 11)
k1
k1=k1+1;
k=1;
b12=1.0;
while (b12 > 107%) && (k < 16)
k
k=k+1;
X=fminunc(’funMarch24PhaseTC’,x0);
b12=max(abs(X-x0))
x0=X;
u(m8/2,1)
end;
bl4=max(abs(x1-x0));
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z=K*(u-yo);

x1=xo;

u(m8/2,1)

end;

for i=1:m8

x(i,1)=i*d;

end;

plot(x,u)

324 3 34 3 36 o 36 o 3 o 3 4 3 e 3 3 o 3 o 3 o 3 3 4 3 e S e S 2 S NN

With the auxiliary function "funMarch24PhaseTC"

4 3438 36 36 3 e 3 S A S A A K KKK

1.  function S=funMarch24PhaseTC(x)
globalm8duvLyoel Kz
for i=1:m8
u(i,1)=x(i,1);
v(i,1)=x(i+m8,1);
v1(3i,1)=x(i+2*m8,1);
v2(i,1)=x(i+3*m8,1);
end;
L1=(sin(x(4*m8+1,1))+1)/2;
L2=min((sin(x(4*m8+2,1))+1)/2,1-L1);
L3=min((sin(x(4*m8+3,1))+1) /2,1-L1-L2);
L4=1-L1-L2-L3;
u(ms8,1)=1/2;
v(m8,1)=0.0;
v1(m8,1)=0.0;
v2(m8,1)=0.0;
du(1,1)=u(1,1)/d;
dv(1,1)=v(1,1)/d;
dv1(1,1)=v1(1,1)/d;
dv2(1,1)=v2(1,1)/d;
for i=2:m8
du(i,1)=(u(i,1)-u(i-1,1))/d;
dv(i,1)=(v(i,1)-v(i-1,1))/d;
dv1(@i,1)=(v1(,1)-v13i-1,1))/d;
dv2(i,1)=(v2(3,1)-v2(i-1,1))/d;

end;
d2u(1,)=(—2 % u(1,1) + u(2,1))/d%
for i=2:m8-1
d2u@i,)=(u(i+1,1) — 2% u(i,1) + u(i—1,1))/d%
end;
S=0;
for i=1:m8
S=S+L1x* ((du(i,1) + L1 *dv(i,1) + L2 % dv1(i,1) + L3 * dv2(i, 1
S=S+L2* ((du(i,1) + L1 *do(i,1) + L2 x dv1(i, 1) + L3 x dv2(i, 1
S=S+L3x* ((du(i,1) + L1 *do(i,1) + L2 x dvl(i, 1) + L3 x dv2(i, 1
S=S+L4* ((du(i,1) + L1 *dv(i,1) + L2 * dv1(i,1) + L3 * dv2(i, 1
5-S+(u(i,1) — yo(i,1)%/2

S=S+K * (u(i,1) —yo(i,1))?/2 — z(i,1) * (u(i,1) — yo(i,1));
end;

) -
) -
) —
)?
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)2 —1)?/2;
))? —1)2/2;
))2 1)?/2;

1)
1
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for i=1:m8-1
S=S+el * d2u(i, 1)%;
end;

LRI IEE T T R E T2

47. A Dual Variational Formulation for a Non-Convex Primal One

Let Q C R3 be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVqudx

+5 02— B dx = (u, ). 277)

Here V = Wy?(Q),a >0,8> 0,9 >0,and f € [2(Q) =Y = Y*.
Denoting Y7 = Y; = L?(C;R3), define F; : Y] > R, F:VxY - RandF;:Y — Rby

F(Vu) = %/QVLL -Vu dx,

Ra(uo) =5 [ 02— pRav+ o [ wdv—(u )

and
F(u) = Ig/guz dx.

Definealso, F; : Y; - R, F: Y] x Y*xY* - Rand F3: Y* — R, by

Fi(v1) = sup {{(v1,v7)2 — Fi(v1)}
1€Y1
- i/ 0} dx 278)
= 27 Jy i :
E5(vf,08,2") = sup {—(Vu,v7) 2+ (1,22
(nv)eVxY

+(v,v5)12 — F2(u,v)}

1 [ (divo}+z*+ f)? 1 )
= — ~_ 0 d
2/0 PR /Q(UO) *

4B /Q o8 dx, (279)

if vy € B*, where
B* ={v5 €Y" : ||205]|e < K/2}.

Moreover,

F5(z*) = sup{(u,z)p2 — F(u)}
ueV
_ 1 *)2
= = /Q (z*)? dx. (280)
At this point we define J* : Y] X B* x Y* — R by

Ji (01,05,2%) = =Ff (v1) = 5 (0], 05, 27) + 5 (27).
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Assume (97,95,2%) € Y{ x B* x Y* is such that
ST°(87,35,2°) = 0
Observe that
I (61,05,2%) = —F(v)—F(v],9,2") + F(z9)
< —<VM,Z7T>L2 + F(Vu)
K
+<Vu,z>;>L2+<u2,@g>L2+_/Quz dx
1
Zoc/ dx—ﬁ/ 0y dx
X 1 N
—{u fra = (w22 + o Q(Z*)z dx
1
< BV *——/*d—/*d}
< F( u)—l—vsg};*{(u vy) 12 7 07’0 x—p Qvo X
—(u, f) —I—E/ u? dx — (u,2%) z—l—i (2%)2 dx
+J L2 2 ’ L 2K Jo
«
= B(Vw)+5 [ (2B dr—(u )iz
K 2%\ 2
+E/(‘)<u_f) dx
K 2%\ 2
= J(u) —I—E/Q<u— f) dx, Vu e V. (281)

Define now ug € V by

up =

~| e

From this and (281) we have

k(A% < _
J* (93, 05,£2%) L}g{f/{ 2/ u— ) dx}

Furthermore, from the variation of J* in v] we obtain

ot div o] +2* + f
-1 — 1 = )=,
+v( 205 + K

so that

D

div 07 +2* + f
* 1
1_7v< 205 + K )

From the variation of [* in z*, we get

R A N
205 +K o

=~|

so that
2* div o] + 2" + f
ung = — = _ ).
7K 205 + K

From the variation of [* in v;, we obtain

ﬁg_(divzﬁ;+2*+f 2
14

=0
265 + K ) P
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so that
6§ = a(u — B)
Joining the pieces, we have also
01 = yVuy,
Z= Kuo,
so that from this and
div 9] + 2% + f = (205 + K)uo,
we obtain
YV2ug + Kug + f = a(ud — B)2ug + Ku,
so that
—yV2ug + a(u% —B)2ug—f =0,
that is,
6] (uo) = 0.
Finally, from the Legendre transform proprieties, we also obtain
F (01) = (Vuo, 91) 12 — Fi(Vug),
B (01,95,2°) = —(Vuo,07)12 + (1o, 2%) 12
+<0, UAE>L2 — Fz(uo,()) (282)
and
F5(z*) = (up,2") 12 — F3(up).
Therefore
FO,6,5) = ~F(8) - (01,6, + F (&)
= F1(Vug) + Fx(u0,0) — F3(uo)
= J(uo). (283)
Observe now that from 5] (ug) = 0, for K > 0 sufficiently large, we have
J(ug) = inf ](u)-I-E/ (u — up)? dx
0/ ucV 2 Jo 0 ’
Joining the pieces we have got
J(ug) = inf ](u)—l—K/ (u — ug)? dx
VT ey 2 Jo 0
= J*(0],0;,2%). (284)

We have obtained numerical results for the case A, where v = 0.1, « = 3.0, B = 5.0, f(x) = 10.0
and K = 120.

For the optimal solution u(x), where

(01%)' +2z" + f

u(x) = 20, +K

please see Figure 36.
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Figure 36. Optimal solution u(x) for the case A.
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Here we present the software in MATLAB through which we have obtained such results.

e 438 36 36 36 3 3 3 3 3 o A 43436 36 36 3 S S A K K KN

clear all

globalm8 dyozl Kel dvldv2v3v4vliv2A A3BLu

m8=100;
d=1/mS§;
A3=0.1;
A=3.0;
B=5.0;
K=120;
e1=0.0007;
for i=1:m8
yo(i,1)=10.0;
z1(i,1)=0.0;
end;

L=1/2;

for i=1:2*m8
x0(i,1)=3.0;
end;

for k1=1:30
k1

k=1;
b12=1.0;

while (b12 > 107%) && (k < 15)

k
k=k+1;

X=fminunc(’funMarch24LGA7’,x0);
b12=max(abs(X-x0))

x0=X;
u(m8/2,1)
end;

for i=1:m8-1

Z1(1,1)=K*(dv1(i,1)+z1(i,1)+yo(i, 1))/ (2*v2(i,1)+K);
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end;

end;

for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);

LR R R TR TR R R R R R a2 T

With the auxiliary function "funMarch24LGA7"

b R R R R 2

1.  function S=funMarch24LGA7(x)
globalm8 dyozl z2Keldvldv2v3v4vliv2AA3BLu
for i=1:m8
v1(3i,1)=x(,1);
v2(i,1)=x(i+m8§,1);
end;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+0v1(i,1)2/2/ A3 +1/2x (dv1(i, 1) + z1(i, 1) + yo(i,1))?/ (2 % v2(i, 1) + K);
S=S+v2(i, 1) * B+ v2(i,1)?/2/ A;
end;
for i=1:m8-1
u(i,1)=(dv1(i,1)+z1(i,1)+yo(i 1))/ (2*v2(i,1)+K);
end;
u(ms8,1)=0;

e 4 38 38 36 36 36 3 3 3 3 o 34 38 36 36 3 S S A A K KKK

48. A Convex Dual Variational Formulation for a Relaxed Non-Convex Primal One
Let Q = [0,1] C R and consider a functional | : V — R where

2/ —1 dx + = /u— 2dx,

V={uecW?Q) : u0)=0and u(1) = 1/2}.

where
Denoting Vp = W&’Z(Q), we define J1 : V x V x [0,1] — R where

Ji(u, ¢, A) = 2/ (' —(1—=A)¢)2—1)%dx

- ZA)/Q(( +A¢')? — 2dx-|—%/ﬂ(u—f)2dx. (285)
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Observe that

(0 = (1= R = 105) i+ [ (= (1= g2 - 1

—((u' +A¢")? -1, 4>L2+(1;/\)/0((14’+A4>’)2—1)2dx
(W' = (1= 1)) = 1L,03) 2 — (W — (1= A)¢,0) 12
+((u + AP —1,05) 2 — (U + A/, 05) 2
+(u' = (1=, 07) 2 + (' + AP, 03) 12
+ =2 ax (286)

Ji(u, ¢, )

Therefore
* A 2
hwgd) = infd—(o305)+5 [ (02)7 dx

+ inf { (v4,04) 12 + @ /0(04)2 dx}

'046

+ inf { (03,07 )2 + <z7% —1,03)2
‘U3€

+ inf {—(04,07) 12 + (07 — 1,03) 12
'54€Y

F i (= (=29, (@) )iz — (12, (03) 2

+% / (u— £)?dx + o} (1u(1) + vﬁ(l)u(l)}

— 1 *\2
= 2/\/ v%)? —1_)\)/0(04) dx
- d —/ d
/003 X 004 X
*)2 *\2
_/ (011 dx—/ (Uzz dx
o 4u; o 4v;
_1 *)/ 2 _ 1/ *\/ . 2
5 [ (@D + AR dx =3 [ ((03) + (1= 1)) d
= J'(v],v3,03,05, M), (287)
V(u, ¢, A) € V x Vg x [0,1], V(v],v5,05,0;) € [Y*]> x B*, where
B* = {(v},v;) €EY* xY* : v >0andvj >0, inQ},

and

1 1
k(% ok ok % _ = *\2 _ *\2
](01102103/04//\) - 2/\ 0(03) dx 2(1—A) /0(04) dx

_/Qvi;dx—/nzqu
(v1)? (v5)?
_/Qﬁdx—/nﬁdx
_%/Q((”T)”r)\f)z dx—%/ﬂ((vé)’+(1—)\)f)2 dx.  (288)

From such results, we may infer that

inf Ji(u,¢,A) > inf { sup ]*(v{,vﬁ,v;vz,)x)}.
(

(u,tp,/\)EVX VoX[O,l} )LE[O 1] UT,U;,Z’;,Z’Z)E[Y*] « B*
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We have developed numerical results for the cases f(x) = sin(7rx)/2 and f(x) =0
For the corresponding optimal solution u(x) for the case f(x) = sin(7tx)/2, please see Figure 37.
For the corresponding optimal solution u(x) for the case f(x) = 0, please see Figure 38.

0.6

Figure 37. Optimal solution u(x) for the case f(x) = sin(7x)/2.

0.6

0 0.1 02 03 04 05 06 07 08 09 1

Figure 38. Optimal solution u(x) for the case f(x) = 0.

Here we present the software in MATLAB through which we have obtained such numerical

results.
334 3 3 o 3 o 3 3 S o S o e o e S e S S

1. clearall
globalm8 d you L vl v2v3 v4 dvl dv2Kdzl zl el
m8=100;
d=1/mS§;
K=1.0;
€1=0.0007;
L=1/2;
for i=1:m8
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yo(i,1)=0.0*sin(pi*i*d)/2;
end;
for i=1:4*m8
x0(1,1)=0.8;
end;
x1(1,1)=1/2;
for k1=1:12
k1
k=1;
b12=1.0;
while (b12 > 107%) && (k < 15)
k
k=k+1;
X=fminunc(’funMarch24A18’ xo0);
b12=max(abs(X-x0))
u(m8/2,1)
x0=X;
end;
X1=fminunc(’funMarch24A19’,x1);
x1=X1;
u(m8/2,1)
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);
3 S 3 S e S S

With the auxiliary functions "funMarch24A18" and "funMarch24A19":

B R

1. function S=funMarch24A18(x)
globalm8dyouel vliv2v3v4ddvldv2L
for i=1:m8
v1(i,1)=x(1,1);
v2(i,1)=x(i+m8,1);
v3(i,1)=x(i+2*m§,1);
v4(i,1)=x(i+3*m8,1);
end;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+(v1(i,1))?/ (2% v3(i,1)2) /2 +v3(i, 1)*/2/ (L + €1) + 03(i,1)? + (dv1(i, 1) + Lxyo(i,1))? /2 +
01(i,1)2/2/ (L + el);
S=S+(v2(i,1))2/ (2% v4(i,1)%) /2 + v4(i,1)*/2/((1 — L) + el) + v4(i,1)%;
S=S+(dv2(i,1) + (1 — L) xyo(i,1))2/2 + v2(i,1)2/2/((1 — L) + el);
end;
5=5-v1(m8,1)/2/d-v2(m8,1)/2/d;
for i=1:m8-1
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u(i,1)=L*(dv1(i,1)+L*yo(i,1))+(1-L)*(dv2(i,1)+(1-L)*yo(i,1));
end;
u(ms,1)=1/2;

e 4 838 36 36 36 36 3 3 3 3 o A 4 38 6 K K KK

1.  function S1=funMarch24A19(x)
globalm8dyoel viv2v3v4dvldv2Lu
L=(sin(x(1,1))+1)/2;
S=0;
for i=1:m8-1
S=S+(v1(i,1))?/ (2% v3(i,1)2) /2 +v3(i, 1)*/2/ (L + €1) + 03(i,1)? + (dv1(i, 1) + Lxyo(i,1))? /2 +
01(i,1)2/2/ (L + €1);
S=S+(v2(i,1))2/(2 % v4(i,1)%) /2 + v4(i,1)*/2/((1 — L) + 1) + v4(i, 1)?
S=S+ (dv2(i, 1) + (1 — L) * yo(i,1))?/2 + v2(i,1)2/2/((1 — L) +el);
end;
S=S-v1(m8,1)/2/d-v2(m8,1)/2/d;
S1=-S;

B R R R R

49. A Dual Variational Formulation for the Shape Optimization of a Beam Model

Let Q) C [0,1] C R be the horizontal axis of a straight beam with a variable thickness H(x).
Consider the problem of minimizing a relaxed functional ] : V x [0,1] x B — R, where

Jwa i) = 220 [ L (kL) - (- )8 (1)l e
+<1_2¢ /Q %(H(Ll) +AH; (La)) wy, dx, (289)
subject to
- <(1 - A)Eo%(H(Ll) + AHl(b))wax)xx _p
~0, inQ. 290)
Here

H(x) = Li(x)ho,
Hy(x) = La(x)ho,

ho = 0.2m, b = 0.15m, Eg = 107 Pa, P = 400N.
Also, for a simply supported beam,

V={wecW>(Q) : w(0) = wy(0) = w(1) = wye(1) = 0},

B = {(Ll,Lz) : ) — R? measurable : 03<L; <1,

—07<1,<07inQ, / Ly (x) dx = 0.61 and / Ly(x) dx = 0}. (291)
(@) (@]
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Moreover, we define Y = Y* = L2(Q), and
A = {(wA, L, L) €Vx[0,1] xB :
b
(AEogg (L) = (1= W) Hs (1) P
b
+ <(1 - A)EOE(H(Ll) + AHl(Lz))?’wxx) _p
=0, inQ}. (292)
Observe that
(w,/\,Llf}iz)eA J(w AL, L)
= f f ALy L
(ALy, L;?G[Ol]xB{wev{ztrel Uw, A Ly, Lo)
b
_<w' (AEOE(H(LO -(1- /\)Hl(LZ))wax)
XX
b
+ <(1 —M)Eog5 (H(L1) + AHl(LQ))gwxx) - P> }}}
xx L2
_ , AEy [ b - .,
Ty Lz?e[ouxza{i,‘;k’i{ié‘fv{ 2 /Q 12(H(L1) (1= A)Hi(L2)) wy, dx
1-— /\ E b
< (AEO_ (L) = (1=2A)H, (LZ))wax)
XX
b
+<(1 — \)Eos (H(L1) + AH1(L2))3wxx> - p> }}}
xXx L2
. AEy [ b i
= f - H(L 1—A)VH; (L d
(/\le,L;?G[O,l]xB{ZZB{ 2 /Q 15 (H(L1) = (1= A)Hi(L2)) 5y dx
1—A)E b
_( . ) o/ 5 H(L1) + AH;(Ly))3@2, dx + <w,p>L2}}
i i (My)?
BRI Bl A e e
(M1)? }}
+2(1 - Eob/lz/ H(Ly) + AHp(Ly))3 axy (293)

where
C*={(M, M) € Y"xXY* : (M1)xx + (M2)xx + P =0, in Q}.

We have obtained numerical results through the following algorithm. It is worth highlighting the
convergence criterion in this software slightly differs from the one in the algorithm.

1. Setn=1,e=10"*and (L), =1/2, (L), =0.1, A, = 1/2.
2. Calculate w, € V such that

XX

(Bogg () = (1= M) (L2 )

+((1 A B0 (H((Lo)n) +AH1<<Lz>n>>3<wn>xx) P

xx

=0, inQ, (294)
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3. Calculate A,41 € [0,1] such that

J(@Wn, Ayt (L1)n, (L2)n) = Ainf J((wn, A, (L1)n, (L2)n)-
€[0,1]

4. Calculate ((L1)n+1, (L2)n+1) € B such that

T ((M)n, (M2)u, A1, (L)ngr, (L2)ngr) = inf 5 ((Ma)n, (M2)n, Anya, La, La),

(L,Lp)€B
where )
(My)n = _)‘n+1EOE(H((L1>n) — (1= Ag1)(L2)n)? (wn) v,
(Ma) = ~(1 = Aus) B (H((LD) + Aa (L)) (0,
and
\ 1 (M)
J (M, M) 2AEob/12 /Q (H(Ly) — (1 - NH (L)) ™
1 (My)?
A= NEb/12 Jo (H(Ly) + )Z\Hl(Lz))3 dx. (295)
5. If

1((L)nt1, (L2)ngr) = (L) (L2)nllo <&,
then stop, otherwise n := n + 1 and go to item 2.

We have obtained numerical results for a case A with the constant values above specified.
For the optimal solution L;(x), please see Figure 39.

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Figure 39. Optimal solution L (x) for the case A.
Here we present the software in MATLAB through which we have obtained such results.

3 o 8 8 636 36 36 3 3 3 3 o o 34 36 6 3 3 3 S A XX K

1. clearall
global m8 d you L1 L2 ho Eo BL H H1 Ho Hol
m8=100;
d=1/mS§;
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P=400;

Eo=107;

for i=1:m8 yo(i,1)=P; end;
ho=0.20;

B=0.15;

for i=1:m8

L1(,1)=1/2;
L.2(i,1)=0.3;

uo(i,1)=0.1;
Ho(i,1)=L1(i,1)*ho;
Ho1(i,1)=0.1*L2(i,1)*ho;
end;

L=1/2;

for i=1:m8
H(i,1)=L1(,1)*ho;
H1(1,1)=L2(i,1)*ho;

end;

for i=1:2*m8
x0(i,1)=0.3;

end;

x1(1,1)=1/2;
A=zeros(2*m8,2*m8);
for i=1:m8

A(1,)=1.0;
A(2,i+m8)=1.0;

end;

b=zeros(2*m8,1);
b(1,1)=m8*0.61;

for i=1:m8

Ib(i,1)=0.3;
Ib(i+m8,1)=-0.7;

end;

for i=1:m8

ub(i,1)=1;
ub(i+m§,1)=0.7;

end;

i=1;

ml12=2;

mb50(i)=1/m12;
2(i)=m50(i) * (—yo(i, 1) * d*);
for i=2:m8-1
m12=2-m50(i-1);
mb50(i)=1/m12;
2(i)=m50(i) * (—yo(i,1) xd?> + z(i — 1));
end;

v(m8,1)=0;

for i=1:m8-1
v(m8-i,1)=m50(m8-i)*v(m8-i+1,1)+z(m8-i);
end;

kl1=1;
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b14=1.0;

while (b14 > 107%) && (k1 < 15)

k1

k1=k1+1;

for i=1:m8

y1G,1)=0v(i,1)/(Eo x L * B/12x (H(i,1) — (1 — L) * H1(i,1))3 + Eo * (1 — L) * B/12% (H(i, 1) +
L*H1(i,1))3%);

end;

i=1;

m12=2;

m60(i)=1/m12;

z1(1)=m60(i) * (—y1(i, 1) x d?);

for i=2:m8-1

m12=2-m60(i-1);

m60(i)=1/m12;

z1()=m60(i) * (—y1(i,1)  d> + z1(i — 1));
end;

u(ms,1)=0;

for i=1:m8-1
u(m8-i,1)=m60(m8-i)*u(ms-i+1)+z1(m8-i);
end;

k=1;

b12=1.0;

while (b12 > 107%) && (k < 100)

k

k=k+1;
X=fmincon(’'funMarch2024Beam1’,xo,[ 1,[ ],A,b,Ib,ub);
b12=abs(max(xo0-X))

x0=X;

L1(m8/2,1)

end;

Ho=H;

Hol=H1;
X1=fminunc(’funMarch2024Beam?2’,x1);
x1=X1;

b14=max(abs(u-uo))

uo=u;

end;

for i=1:m8

x(i,1)=i*d;

end;

plot(x,L1);

E R R X X

With the auxiliary function "funMarch2024Beam1"

1.  function S1=funMarch2024Beam1(x)
global m8 d you L1 L2 ho Eo B L Ho Hol
for i=1:m8
L13,1)=x(,1);

L2(i,1)=x(i+m8,1);
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end;

d2u(1,)=(—2 % u(1,1) + u(2,1))/d%

for i=2:m8-1

d2u(i,)=(u(i+1,1) =2 u(i,1) +u(i —1,1))/d%

end;

for i=1:m8

H(i,1)=L1(i,1)*ho;

H1(i,1)=L2(i,1)*ho;

end;

S=0;

for i=1:m8-1

S=S+L (Eo x B/12% (Ho(i,1) — (1 — L) x Hol1(i,1))® * d2u(i,1))?/(Eo * B/12 % (H(i,1) — (1 —
L) x H1(i,1))3);

S=S+(1 — L) * (Eo % B/12 % (Ho(i,1) + L * Ho1(i,1))3 * d2u(i,1))?/(Eo * B/12 % (H(i,1) + L *
H1(i,1))%);

end;

S1=S;

PR R R R R R R R R R R R R R 2

And the auxiliary function "funMarch2024Beam?2"

e o e S8 3438 36 36 36 3 3 3 o o 438 38 36 36 363 3 3 o o 4 38 36 36 3 e S

1.  function S=funMarch2024Beam?2(x)
global m8 d you L1 L2 ho Eo B L Ho Hol
L=(sin(x(1,1))+1)/2;
d2u(1,)=(—2 % u(1,1) + u(2,1))/d%
for i=2:m8-1
d2u(i,)=(u(i+1,1) — 2% u(i,1) +u(i —1,1))/d%
end; for i=1:m8
H(i,1)=L1(i,1)*ho;
H1(3i,1)=L2(3i,1)*ho;
end;
S=0;
for i=1:m8-1
S=S+L* Eo* B/12 (H(i,1) — (1 — L) » H1(i,1))® * d2u(i, 1)%;
S=S+(1—L)* EoxB/12% (H(i,1) + L+ H1(i,1))3 x d2u(i,1)%;
end;
B R R R R R R

50. A Dual Variational Formulation for a Relaxed Primal Formulation Related to a
Shape Optimization Model in Elasticity

Let QO C RR3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9Q).
Consider the problem of minimizing a relaxed functional J : V x [0,1] x B — R where

J(u, A A, Ap) = %/()Hijkl()\r A1(x), Az(x))eij(u)e (u) dx,

subject to
(Hijr (A, M (x), A2(x))ew (w)) j + fi = 0, in Q, Vi{1,2,3}.

Here for simplicity V = W&’z(Q,'Rg’), Y =Y = LH(R%), Y, =Y = L2((;R¥3), and
f € L2(O;R3).
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Also, u = (uq,up,u3) € V denotes the field of displacements resulting from the action of f,
1 ..
{eij(w)} = {2<”i,j + uj,i)}, vi,j€{1,2,3},

and E, < E(A,Aq,A) < Eg, Eq > Ep > 0, where Aq(x) = 1 corresponds to the presence of a stronger
material with Young modulus E, at the point x € Q). Moreover, A1(x) = 0 corresponds to the presence
of a much weaker material with elasticity model E;, simulating a void space at the point x € (2. On
the other hand, A and A;(x) are a real parameter and a function related to the relaxation process for
the minimization of | in Aq.

Furthermore,

E(AA1(x),A2(x)) = Al(Ar(x) = (1= A)A2(x))°Eq + (1 = (A1 (x) — (1 = A)A2(x)))>Ep]
+(1 = A)[(A1(x) + AA2(x)) Ea + (1 = (A1(x) + AA2(x)))’Ey),  (296)

Hijia (A, A(x), A2(x)) = E(A, A1 (x), A2(x)) Ajjias
where
A = Abijo + f(0ibji + 6:16j6),
Vi, j k1 €{1,2,3}.
Here {4;;} is the Kronecker delta and A >0, fi > 0 are appropriate real constants.

At this point we define
B = {()\1,/\2) : O — R? measurable : 0 < Aq(x) <1,
—0.8 < Ay(x) <08, inQ, /Q A1 (x) dx = coVol(Q) / Aa(x } (297)
and
A = {(wAA,A ) eV X[01]xB :
(Hiji (A, A1, A2)e(w)) j+ f; =0, in Q, Vi € {1,2,3}}. (298)
Observe that

inf LA A A
ninf A A A)

= inf
/\)\1 /\2 E[Ol]XB

Lol
el

/\)\1 /\2 E[O 1]><B

ueV ueV

J(u, A, A, Ag) + (i, (Hija (A, M, A2)er (w)j + fi) 2 } } }

V uEV /Hz]kl /\ )\1/)\2)61]( )ekl< )d
e

(i, (i (A, A1, A2)ea () + fidpz b}
/ H1]kl (A, Al/AZ)eZ](u)ekl( @) dx + (i, fi), }}

T ) e[Ol]xB{uev

= Hiip (A, Aq, A d 299
/\)\1/\2 6[01]><B UGC*{ / Hija (A, v, A2) il x}} 2%

where
{Hiji (A, A1, A2)} = {Hijia (A, Ay, A2) }
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in an appropriate tensor sense and
C* = {0’ = {U'i]'} S Yl* D 0ijj +fl =0,inQ), Vi€ {1,2,3}}

We have obtained numerical results concerning the optimal shape of a two-dimensional beam
though the following algorithm:
1. Setn=1,e=10"% A, = 1/2, (A1)n(x) =1/2, (A2)n(x) = 0.
2. Calculate u,, € V such that

(Hijt (An, (M)n, (A2)n e (un)) j + fi = 0, in Q, Vi € {1,2,3}.

3. Calculate A, 1 € [0,1] such that

It Awst, () 0) = inf {J(an, (A1) 0))

4. Calculate ((A1)y+1, (A2)n+1) € B such that

_I(unl )\n-&-l/ ()‘1)1’14-1/ (A2)7H~2) = 1nf {_I(ul’l/ A}’l-‘rl/Al/ /\2)}
(A1,A2)€B
5 Set(A2)ni1 = 0.
6.  If [[(AM)n+e1 — (AM)ullo < ¢, then stop. Otherwise n := n + 1 and go to item 2.

We developed numerical results for a two-dimensional beam, in a two-dimensional elasticity
context for two cases, namely, case A and case B.

For the case A we consider a two-dimensional beam of dimensions 1m x 0.5m, clamped at x =0
and with a vertical load of P = —42000000 (4) 500j applied to the point (xg,yo) = (1, 0.25).

For the case B, we consider a a two-dimensional beam of dimensions 1m x 0.5m, simply supported
at (x,y) = (0,0) and (x,y) = (1,0), with a vertical load P = —42000000 500j applied to the point
(XO,]/O) = (1/3, 05)

Denoting u = (u,v), for both cases we define the strain tensor as

e(u) = (ex(u), ey(u), exy(u))T,

where e (u) = 1y, e,(u) = vy, and

exy(u) = %(uy + vy).

We also set E; = 205 10° P, and E, = 300 P,, v = 0.33 and ¢y = 0.6091 for both the cases.
Moreover the stress tensor ¢ is given by

o= H(e(u)),
where
1 v 0
H= E(/\rAl(x)rz)\Z(x)) v 1 0 ) (300)
1—v 1
0 0 5(1 —v)

For the optimal shape obtained through A; for the case A, please see Figure 40.
For the optimal shape obtained through A; for the case B, please see Figure 41.
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Figure 40. Optimal shape A1 (x,y) for the beam of case A.

Figure 41. Optimal shape A1 (x,y) for the beam of case B.

Here we present the software through which we have obtained such results, in a finite differences
context for the case B.

We highlight the convergence criterion in the software is a little different from the one in the
algorithm above described.

R R R R R R R 2 R

1. clearall
global Pm8 d w Ea Eb Lo d1 z1 m9 dul du2dvldv2c3 Lol Luv
m8=24;
m9=22;
¢3=0.95;
d=1.0/mS;
d1=0.50/m9;
Ea=410 * 10° x 500;
Eb=300;
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w=0.30;
P=-42000000*500;
z1=(m8-1)*(m9-1);
A3=zeros(2*z1,2*z1);
for i=1:z1
A3(1,i)=1.0;
A3(2,i+z1)=1.0;
end;

L=1/2;
b=zeros(2*z1,1);
b(1,1)=c3%*z1;

for i=1:z1
uo(i,1)=0.0;
uo(i+z1,1)=-0.80;
end;

for i=1:z1
ul(i,1)=1.0;
ul(i+z1,1)=0.80;
end;

for i=1:m9-1

for j=1:m8-1
Lo(i,j)=c3;
Lo1(i,j)=0.1%*c3;
end;

end;

for i=1:z1*2
x1(1,1)=c3%*z1;
end;

x3(1,1)=1/2;

for i=1:4*m8*m9
x0(i,1)=0.000;
end;

XW=X0;

xv=Lo;

for k2=1:22
¢3=0.98%*c3;
b(1,1)=c3*z1;

k2

b14=1.0;

k3=0;

while (b14 > 1073%) && (k3 < 5)
k3=k3+1;
b12=1.0;

k=0;

while (b12 > 10~%9) && (k < 120)
k=k+1;

k2

k3

k

X=fminunc(’funbeamMarch24’,xo0); xo=X;
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b12=max(abs(xw-x0))

xw=X;

end;

X1=fminunc(’funbeamMarch24A1’,x3);

x3=X1;

for i=1:m9-1

for j=1:m8-1

E1=3 % L * ((Lo(i,j) — (1 — L) % Lo1(i,j))?> * Ea — (1 — (Lo(i,j) — (1 — L) * Lo1(i,j)))* * Eb);
E1=E1+3 % (1 — L) * ((Lo(i,j) + L * Lo1(i,j))?> * Ea — (1 — (Lo(i,j) + L x Lo1(i,})))? » Eb);
E2=3*Lx* (Lo(i,j) — (1= L)% Lo1(i,j))?>* Eax (—(1— L)) — (1 — (Lo(i,j) — (1 — L) * Lo1(i, })))? *
Ebx(—(1-1L));

E2=FE2+3 % (1 — L) % ((Lo(i,j) + L % Lo1(i,j))?> * Ea* L — (1 — (Lo(i,j) + L * Lo1(i,)))? * Eb* L);
ex=dul(ij);

ey=dv2(i,j);

exy=1/2*(dv1(ij)+du2(i;));

Sx1=E1* (ex + wxey) /(1 — w?);

Syl=E1 * (w * ex +ey) /(1 — w?);

Sxyl=E1/(2* (1 +w)) x exy;

Sx2=E2 % (ex + w x ey) /(1 — w?);

Sy2=E2 * (w * ex +ey) /(1 — w?);

Sxy2=E2/(2 (1 +w)) x exy;

dc31(i,j)=-(Sx1*ex+Syl*ey+2*Sxy1l*exy);
dc32(i,j)=-(5x2*ex+Sy2*ey+2*Sxy2*exy);

end;

end;

for i=1:m9-1

for j=1:m8-1

f(j+(i-1)*(m8-1))=dc31(i,j);

f((m9-1)*(m8-1)+j+(i-1)*(m8-1))=dc32(i,j);

end;

end;

for k1=1:1

k1

X1=linprog(f,[ 1,[ 1,A3,b,uo,ul,xl);

x1=X1;

end;

fori=1:z1

x1(i+z1,1)=0;

end;

for i=1:m9-1

for j=1:m8-1

Lo(i,j)=X1(j+(m8-1)*(-1));
Lol(i,j)=X1((m8-1)*(m9-1)+j+(m8-1)*(i-1))*0.0;

end;

end;

bl4=max(max(abs(Lo-xv)))

xv=Lo;

colormap(gray); imagesc(-Lo); axis equal; axis tight; axis off;pause(le-6)
end;

end;
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33 o o 4 8383836 36 36 3 3 3 3 o o 38 3% 36 36 36 3K 3 S Sk

With the auxiliary function "funbeamMarch24"

3 e e 383438 36 36 36 3 3 3 3 o o 38 38 38 36 36 3 3 3 o o b S S 3 K

1.  function S=funbeamMarch24(x)
global Pm8 d w u v Ea Eb Lo d1 m9 dul du2 dvl dv2 Lol L
for i=1:m9
for j=1:m8
u(i)=x(+(m8)*(-1);
v(i,j)=x(M8*m9+(i-1)*m8+j);
end;
end;
u(m9-1,1)=0; v(m9-1,1)=0; u(m9-1,m8-1)=0; v(m9-1,m8-1)=0;
for i=1:m9-1
for j=1:m8-1
dul(ij)=(u(ij+1)-u(ij))/d;
du2(ij)=(u(i+1,j)-u(ij)/d1;
dvi(ij)=(v(ij+1)-v(ij))/d;
dv2(i)=(v(i+1)-v(i ) /dL;
end;
end;
S=0;
for i=1:m9-1
for j=1:m8-1
El=Lx* ((Lo(i,j) — (1 — L) * Lo1(i,§))® * Ea + (1 — (Lo(i,j) — (1 — L) * Lo1(i, })))® * Eb);
E2=(1—L)* ((Lo(i,j) + L * Lo1(i,j))® * Ea + (1 — (Lo(i,j) + L x Lo1(i,})))? = Eb);
ex=dul(ij);
ey=dv2(i,);
exy=1/2*(dv1(ij)+du2(i;));
Sx=(E1+ E2) * (ex + w xey) /(1 — w?);
Sy=(E1+ E2) * (w x ex +ey) /(1 — w?);
Sxy=(E1+ E2)/ (2% (1 4+ w)) * exy;
5=5+1/2*(Sx*ex+Sy*ey+2*Sxy*exy);
end;
end;
S=S*d*d1-P*v(2,(m8)/3)*d*d1;

3 e e 83838 36 36 36 3 3 3 3 o o 34 38 36 36 36 3 3 3 o S o 3%

And the auxiliary function "funbeamMarch24A1"

3 e 4 4 4 636 3 3 3 3 3 3 S 4 34 3 AN X 3K

1.  function S1=funbeamMarch24A1(x)
global Pm8 d w uv Ea Eb Lo d1 m9 dul du2 dvl dv2 L Lol
L=(sin(x(1,1))+1)/2;
for i=1:m9-1
for j=1:m8-1
dul(ij)=(u(ij+1)-u(ij))/d;
du2(ij)=(u(i+1,j)-u(ij)/d1;
dv1(ij)=(v(ij+1)-v(ij))/d;
dv2(ij)=(v(i+1j)-v(ij)/d1;
end;
end;
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S=0;

for i=1:m9-1

for j=1:m8-1

El=L* ((Lo(i,j) — (1 — L) * Lo1(i,§))® * Ea + (1 — (Lo(i,j) — (1 — L) * Lo1(i, })))3  Eb);
E2=(1—L)* ((Lo(i,j) + L * Lo1(i,j))® * Ea + (1 — (Lo(i,j) + L x Lo1(i,})))? » Eb);
ex=dul(i;);

ey=dv2(ij);

exy=1/2*(dv1(@i,j)+du2(i;));

Sx=(E1+ E2) * (ex +w*ey) /(1 — w?);

Sy=(E1+ E2) * (w x ex +ey) /(1 — w?);

Sxy=(E1+ E2)/ (2% (1 4+ w)) * exy;

5=5+1/2*(Sx*ex+Sy*ey+2*Sxy*exy);

end;

end;

S1=S5;

51. An Existence Result for a General Parabolic Non-Linear Equation

Let O C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).
Consider the parabolic non-linear equation

% =eViu+gu)+ L, gj(u)aa—;jj +f, inQx(0,T),
u(x,0) = iy, in Q, (301)
u =0, onoQ) x [0, T].

Heree > 0, f € L2([0, T], W2(Q)) N L*(Q x [0, T]), flg € H}(Q) N L®(QY), where t denotes time
and [0, T] is a time interval.

Also g : R — Rand g; : R — R are continuous functions neither necessarily linear nor
convex, Vj € {1,--- ,m}.

We assume there exist K33 > 0 and K; > 0 such that

K33
o X ———=7,
gl < i

Kq
g < =1
Il < X2,

Vie{1,---,n}.
At this point, we recall that fixing v > 0,

(Ia—7V3) ™ IX(Q) = Hy(Q)
is a bounded and linear operator, so that for each h € L?(Q)) there exists a unique u € H}(Q) such that
(I; — yV?)u = h.

In such a case we denote
u=(I; —yV3n,

so that
lullipn < (I — V2 Hllo2,0-
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Moreover, fixing N € N and defining

T
Aty = —,
NN

in a partial finite differences context, discretizing in ¢ consider the approximate equation system

Uy — U 1 .
"J’TN” = V2,1 + g(un) + Zigj(u”)(u”)"f + fu, in Q),
j=
vne{0,1,---,N—1}.
From such a system, for n = 0, we obtain
m
Uy — g = €V2(u1)Ai’N + g(ip)Atn + Z gj(ﬁo)(ﬁo)xin'N + foAtn.
j=1

Hence

m
U = (Id — S(VZ)AtN)71 (ﬁo + g(fo)Atn + Egj(ﬁo)(ﬁo)x].AtN +f0AtN> ,
=1

so that

[|uq 1,2,Q
< (I —e(V2)Aat) 7!

m
X <||ﬁ0 02,0 + Ig(@0) lop0AtN + ) 187 (110) (1i0)x; lo2,0 At + ||fo||0,2,QAtN>- (302)
=1

Observe that there exists K > 0 such that || || 01 < Kz 50 that
| fulli20 < Kz, Yn € {0,1,--- ,N —1},

for some appropriate Kz > 0.
From such results and the hypotheses, we may infer that

lu1ll120 < I|(Is — e(V2)Atn) 7 ([80]l12,0 + KssAtn + Ki|[o][12,0AtN + KaeAty)

< (L —e(VHAtN) M (1oll12,0 + Killo|l1,2,00tn + K3Aty), (303)

where
K3 = K33 + Kz,
so that
[uill120 < a1lldoll1 20 + a2,
where
ar = [[(Ig — e(V*)Atn) 71 (1 + KiAty),
and

w2 = ||(Is — e(V?) Aty) 7! [KsAty.

In fact, generically we may similarly obtain

lunt1lli20 < arllunli20 + a2,

vne{0,1,--- ,N—1}.
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From such a result, inductively we may obtain
. j-1
lujlli20 < (1) [d0ll120+ Y, akay.
k=0
In particular for j = N, we get
lunll12,0
N R
< (a)Vlaglr 20+ Y afaz
k=0
1—alN
_ Nya 1
(1) [0l 20 + 7= a2
N
T\ ! T\ N
_ _ 2y 2 — 0
= H(Id e(V )N) <1+K1N) loll12,0
1—alN
1
. 304
1-— 5] “2 ( )
Observe that
N
T\ ! T\V
I —e(V?) = 1+ K —
H("l wig) | (1)
T\N
< 1+Ki—
< ( =+ 1N)
— AT as N — oo. (305)
Also,
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X2

‘1—041

[(5-ec8) ot
N 1 — a1
< K3y
Y
_ Ksn

‘1—” Id—e (V2)L H 1+1<1N)‘
= K3

N 1—‘ (Id—e(v2)§)_l‘ (1+Kl%)‘
= Ks

¥_< (Id—e(v2)§)_l —1+1) (¥ +xKi)

%—( (Id—s(v2)§)_l —1) (¥+1<1) —~N oK
_ 2

—( (14 —s(V%)_lH - 1) (%) -k - <H (14 —e(vz)%)_lH - 1)1<1

(e B[ @) -5 (Joaaem) )
= . Ks

K+ ( I+ T2 (s(VZ)%)] _ 1) (%) n <H(Id _E(VZ)%)lH _1>K1
< K

oot (= o) | = 1) (3) + (| (e =em28) - 1)x
< 5

Kl+<nfdn—zrlu D] =) (1) (|-t 1)
< Ks

o= (57 o7 ) () ([ (et ) 7 1)
< K
R *(H SN EUE
7 K- ||Ke<v2>|||'aSNﬁ°°' .
From such results we may infer that
oo o a2,

so that
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lim sup (1= a{\’)az 1+ eKlT)K3 .
N—soo T—a; |~ |Ky—[[eV2]]|

From these results, denoting now more generically u, = ul) joining the pieces, we have got

. N (1+eMT)K;
limsup [[uN|[12,0 < €7 [|doll100 + 1o—-r-
Now N Ky — [[eV2]]]

Consequently, we may infer that there exists K4 > 0 such that

N
||“j

120 <Ky, Vj€{0,1,--- ,N},VN e N.
Define now

t t
u{)\](x,t) = u,ﬂ\](x) (n-l—l — m) -I-unNH(x)(m —n),

ift € [nAty, (n+1)Aty], Y(x,t) € Q x [0, T].
Observe that
ul (x,t) = ull (x), if t = nAty, ¥n € {0,1,---,N},

and
aué\](x,t) . ”nN+1 —uy!
ot o Aty
m
= Vi +g(uy) + )0 80 () )x, + fo, (307)
j=1

ift € [nAty, (n+1)Aty], Y(x,t) € Q x [0, T].
Fix ¢ € C°(Q)).
Thus, fixing t € [nAty, (n + 1)Aty], we have

aué‘]
L2

< (Vg V)2l + [(g(un), ) 2]

m
+ [ 1L i) )9 dx -+ I(g, fu) o
j=1
< elluyylizalleliza + Kl lhzallelhzo + Ksllellhzo
< K5||§0H1,2,Q/V§0 € CSO(Q)/ (308)
for some appropriate K5 > 0.
Since ¢ € C(Q) is arbitrary, we may conclude that
ouN
‘ Zo < Ke YN €N,
ot
H-1(0)

uniformly in ¢ on [0, T], for some appropriate constant K¢ > 0.
Also, from the definition of uév we have that there exists K7 > 0 such that

g’

120 <Kz, VYNeN

also uniformly in ¢ on [0, T].
From such results, there exist 1y € L?([0, T], H}(Q2)) and vy € L?([0, T}; H1(Q)) such that

udl — up, weakly in L2((0, T); W*(QQ)),
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and
dug 72 -1
5 o weakly-star in L*([0, T], H " (Q))),

so that we may easily obtain
auo

Uy = ?
in a distributional sense.
At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- ,N — 1} such that t € [nAty, (n + 1)Aty].
Let o € C®(Q2 x (0,T)).
From this, we may infer that

N
—fq)(x, t) dx
N N
- Up'q — Uy
= /Q Ay ¢(x,t) dx

e/Q |Vull,; - Vol dx

+ / g (uy
+/Q |fng| dx
(Ks|[ul 120 + K20) || @ll12.0

IN

)qu)‘ dx

IN A

(309)

for some appropriate constants Kg > 0, Kg > 0, Kpo > 0.

d
// uo(pxtdxdx

K9/Q||(P||l,2,0 dt
(0,T)s (310)

Hence,

IN

for some appropriate K19 > 0.
Since such a ¢ € C°(Q x (0, T)) is arbitrary, we may infer that

for N € N, for some K5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vg € H~(Q x (0, T))

N
du

< Ky,
ot =1

H-1(Qx(0,T))

such that, up to a not relabeled subsequence

au(l)\l . 1
T weakly-star in H™*(Q x (0, T)).

T ' dx d
/O/Q?goxt—)/o/ﬂvoq)xt,

as N — oo, Vo € H{(Q x (0,T)).
On the other hand

Therefore,

1) < Kie,
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VN € N, for some Ki¢ > 0.
From this and the Kakutani Theorem, there exists ug € L2(Q x (0, T)) such that, up to a not
relabeled subsequence,
udl — up, weakly in L2(Q x (0, T)).

Now fix again ¢ € CX(Q x (0,T)).
Observe that

T T
dxdt = 1 / / N o, dx dt
/0 /Quoq)t X Nli)l’(l)o 0 QMO Q)t X

. T aué\’

_ _Z%gnoo/o /Q_at ¢ dx dt
T

= —/ /voq)dx dt, (311)
0 O

Since such a ¢ € CX(Q x (0, T)) is arbitrary, we may infer that

ou
%= 5P

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

ulN
lim | —Lgdx=
N—coJO Ot Q

aﬂq, dx,

Vo € H}(Q).
Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

ué\lk(t) — up(x, t), strongly in L*(Q)), for almost all t € [0, T].
so that, up to subsequences,
ué\]"(t)(x, t) — up(x,t), a.e. in Q, for almost all t € [0, T].

Here we emphasise the sequence {Ni(f)} C N may depends on ¢.
Since g is continuous we have that

g(ué\]"(t)(x,t)) — g(up(x,t)), a.e. in Q, for almostall t € [0, T].
Fixt € (0,T).
Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q\ F) < € and

ko € N such that if k > kg, then

|g(ué\]"(t) (x,1)) — g(up(x,t))| <e, foralmostall x € F.
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Let ¢ € CX(Q)). Observe now that

| (s K0 (2, 0)) — g(ug(x, 1)) @ dx

< / g0y 1)) — gluao(x, 1) ] dx

= [ Igtn" (xf)—(uo(xt)||¢|dx+/ (1)) ~ gluo(x, 1) 9] dx

< [ ellglhsdx+ [ |g<u0 (x,1)) = guo(x, )] gl dx

< ellgllom(@) + (8@ ) loza + I800) loz) I9llosallxoelosa

< ellpllom(Q) + K l@llosam(©\ F)!/4

< el m(Q) + Kanllgllogn '/, ¥k > ko, (312)

for some appropriate constant Kp; > 0 which does not depend on ¢.
Since such a € > 0 is arbitrary, we may infer that

Ni(t
/()g(%"”)rpdx—)/ﬂg(u@wdx, ask — oo,

Yo € CP(Q).
Similarly, fixing j € {1,-- -, n}, since gj is continuous we have that

gj(ué\]k(t)(x, t)) — gj(uo(x,t)), a.e. in Q, for almostall t € [0, T].

Fix againt € (0, T)

Let ¢ > 0 (a new value). From the Egorov Theorem, there exists a closed set F; such that
m(Q\ F;) < eand kg € Nsuch thatif k > ko, then

181 (uh ) (x,£)) — gj(uo(x,1))| < ¢, for almostall x € F,.

Observe now that
/ |g]-<uNk“>(x, 1) = g;uo(x, )| dx
. Va5 0 )) = gyaol )P+ [ gy ) = o ) P

1

[ &t 150" (1) = ;00 ) P,

< m(Q) +21<1/Q;m\P1 dx
< m(Q) +2K2e, Vk > k. (313)

IN

IN

Since such a € > 0 is arbitrary, we may infer that

(e (ug)|> dx — 0, ask — oo,
q 18itto &j

Vie{l,---,n}.
Select again ¢ € C°(Q2). Since

”gj(”(l)\]k(t)) —gj(uo)llo2,n — 0, ask — oo

and
Vué\]k(t) — Vug, weakly in L2((Q; R™),
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we obtain,
/g] ())x] <de—/ 8j(uo)(uo)x; ¢ dx
< Qg,(uffk“)( O g — [ g(0) g ")y, g dx
/g] ) ( x; @ dx — /gj(uo)(uo)xjfpdx
< ligj(ug “>>—g]-<uo>||omr<7||<o||w
’/g] 1) ( q)dx—/g] 1g) uo)x ¢ dx
— 0, ask — oo, (314)
Vie{l,---,n}.
From such results, we have
N(t)
0 = lim (/ 0 (pdx+£/ Vu V(pdx
k—oo \ JO
/ (uo (pdx—Z/g](uO (uo )xj(pdx
— Ne() o d >
/Qf ¢ dx
- au()
= /qu)dx-l-e/QVuOqu)dx
m
—/ 8(uo) g dx — Z/ (o) (u0)x; ¢ dx
— dx. 315
| fodx (315)
so that, from this and by the density of C°(Q2) in H}(Q2), we have got
8u0
N godx—l—e/ Vug -V dx
- / s(w)gdx— Y- [ g(u) (o), dx
o) /0
- /Q fodx =0, Vo € HY(Q), (316)

a.e.on [0, T].
Observe now that
(O x (0,T)) = (0Q2 x [0, T]) U (30, T] x Q).

Letp € CX(QAx (0,T)).

Hence
lim// (pdxdt // q)d x dt.
N—c0

From this, since C2°(Q x (0,T)) is dense L?(Q) x (0, T)) we may infer that

g [ Sreasa= [ Geeaar
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Vo € L2(Q x (0,T)).
Let ¢ € C*(Q x [0, T]) such that
¢(x,T) =0, in Q.
From such results, we may obtain
) T aué‘]
dm [0 ] e
= lim ( / / ”0 (P dx dt — / N(x,0)¢(x,0) dx)
N—co
= —/ / Uevy P dx dt — /Q up(x,0)p(x,0) dx. (317)
However, since u}’ — uj, weakly in L>(Q x (0,T)), we obtain
T d T 0
: N 29 _ o9
I\szo/o /Q“O o dx dt /0 /Quo o dx dt.
From these last results, we may infer that
~ o . N
/Quo ¢(x,0)dx = I\l{lg(l)o 1o (x,0)¢(x,0) dx
= /Q up(x,0) ¢(x,0) dx, (318)

so that

/Qﬁo(x)(p(x,O) dx = /ng(x,O)go(x,O) dx,

Vo € C*®(Q2 x [0, T]) such that ¢(x, T) =0, in Q.
Therefore, we may infer that 1 (x,0) = p(x) in this specified weak sense.
Similarly, it may be proven that

up =0, onoQ) x [0, T],

in an appropriate weak sense.
Hence, we have obtained that u is a solution, in a weak sense, of the parabolic non-linear equation
in question.

52. An Existence Result for a General Non-Linear Parabolic Equation, a Simpler
Case

Through a discussion with my colleague Prof. Maycon Aratjo, we realized the geometric series
in Laplace operators to express the inverse operator

(I; — SAi’NVZ)_l

in the previous section may be not well established from a theoretical point of view in the concerning
infinite dimensional function space. We will deal in more details with such an issue in a near future
research.

Anyway, the present section comprises a new version including some improvements and correc-
tions cocerning the previous one.

We thank the colleague Maycon Aratjo for his valuable comments and suggestions.

About the references, the main one is [22]. Other related results may be found in [7,8].
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Let O C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q).
Consider the parabolic non-linear equation

W= eV2u+gu)+f, inQx(0,7T),
u(x,0) = dg, in Q, (319)
u=0,onoQ) x [0, T].

Heree > 0, f € L1*°(Q x [0, T]), flp € H}(Q2) N L*(Q2), where t denotes time and [0, T] is a time
interval.

Also g : R — Ris a C! class function neither necessarily linear nor convex.

We assume there exists K33 > 0 such that

K33
o < ——22
b= Q)12

g

52.1. The Main Theoretical Result
At this point, we recall that fixing v > 0,

(Ia = V3™ IX(Q) = Hy(Q)
is a bounded and linear operator, so that for each h € L?(Q) there exists a unique u € H} (Q) such that
(I —yV?)u = h.

In such a case we denote

u=(Is—2V*)"'n,
so that
120 < [[(I = VA |k

In our discussions, we also realized that not necessarily we have

[

0,2,Q2-

(I = V)| < 1.

Indeed, for Aty small, depending on the domain geometry, such a norm may be larger than 1.
In order to deal with such an issue, we propose the following new development.
Let N € N and define T

Aby = —.
NTN

Let f € W2(Q).
For u € H}(Q) such that
(I — eAtNVHu = f,

there exists a real constant K; > 0 = Ky(Aty), such that

[

12 < K|l flloe-
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Observe that
112, = llu—ebtyV2ul2,
= (u—eMNVu,u—eAtN V) 2
+(V (u — eAtyV2u), V(1 — eAty V1)) 2
= (u,u)2 — 2eAtn(u, V?u) 2 + 2 (AtN) > (V2u, V2u)
+(V(u — eAtyV2u), V(1 — eAty V1)) 2
= (u,u)p2 4 2eAtn(Vu, Vi) 2 + 2 (Atn)2(VEu, V2u) 2
+(V (u — eAtyV2u), V(1 — eAtyV2u)) 2
> Jlul3,
+H(V (u — eAtyV2u), V(1 — eAty V) 2. (320)
On the other hand

IV (1t — et V2u) [lo,2
> sup{(V(u—eAtyV?u), V)2 = ¢ € C°(Q), |[Vllor <1, Vo -n =0, ondQ} (321)

Let ¢ € W2 be such that || V¢ jo2 # 0 and

2

V<u
2
Vepr = |Voilloz=—— TValos

and
V¢1-n =0, ondQ.

From this and (321), we obtain

IV (1 — et V2u) [lo,2
sup{(V(u — eAtn(V?u), V)2 = ¢ € C°(Q), |[Vlloa <1, Vo -n =0, ondQ}
1

Vil
1
u — e (V2u), —V? —_—
<( N< ) ¢1>L2 ||V§b1||0,2
1
[Vullo2

v

v

(V(u—eAtN(V?u), Vi) 2

= ((u—eMtn(V?u), —V?u) 2

= (Vu,Vu)» + eAN(V2u, V) 2

1 1
Vo2 Vo2

1
= [|Vu + eAtN (VU Vi)
|| ||0,2 N< >L ”quO,Z

[Villo,2- (322)

Y

From such results, we may obtain

I, = lullgs+ Vull,
= |lulli, (323)

so that
ulliz < || f[l1,2-

Remark 24. There is a simpler path to prove this last result.
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Define
B = (I; — ety V)71 L2(Q) — HY(Q) C L2(Q).
Let e1 > 0. Denoting
A} = {he W'2(Q) : Vh-n =0, ondQ},
observe that by density there exists f € H} such that
If = Fllz < &1
Thus
[u =112 < K7 e1.
Observe also that B = B* < I in L2(Q)) and —V/? is positive in H}(Q) and H}(Q).
Thus
B*(-V?)B < —V?, in A}.
Therefore,
(Vu,Vu)» < (V, V)2 + (Kzep)?
= (V[(Iz = esty V)7 1, V(g — et V) 7 ) 2 + (Ker)?
= (VIBf] VIBf])12 + (K7e1)?
= ((=V)Bf], [Bf]) 12 + (Kpe1)?
= (B (=V?)[Bf], )12 + (Kre1)?
< (VA iz + (Kger)?
< (VA Ve + (Kper)
< (VY2 + (K5 +1)e. (324)
Thus,
iz +1VulS, < IBfIG2 + VA2 + (K7 +1)ed
< lflloa + 1V£152 + (KF + 1)ef. (325)

Since such an 1 > 0 is arbitrary, we may infer that

2+ 1Vull§2 < IFIG2 + IV F 1520

so that
[ull12 < [ fll12-

Now we define the norm
11y — eAtn V) 71

1(Ls — eatnV2) "Ml = sup{||(Is — eAty V) " fll1p : f € WH(Q) and | fl12 < 1}
From the last results

lullip = 1(Iq — eAtNV2) T fll2 < NIflhe VF € WH2(Q),
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so that
(I — eAty V) Ml < 1.

Now, fixing again N € N and defining again

T
Aty = —,
NTN

in a partial finite differences context, discretizing in ¢ consider the approximate equation system

Up41 — Un

= eV, + g(uy) + fu, inQ),
Aty

vne{0,1,--- ,N—1}.
From such a system, for n = 0, we obtain

Uy — g = sz(ul)AtN + (1) Aty + foAtN.

Hence
uy = (I — e(V2)Atn) "L + g (o) Aty + fotn),

so that

[|u1 1,2,0
< (L —e(VH)AtN) s

x(|loll1,2,0 + llg (o)

12,00t8 + [ foll1,2,0AtN)- (326)

Observe that there exists K > 0 such that || || e x[o,7] < Ka2 so that

||f1’l 1,2, S K36/ Vn € {011/ rN_l}/

for some appropriate Kzg > 0.
From such results and the hypotheses, we may infer that

[ ll12,0 < [[(Ig — e(V2)Atn) 1« (Il
< |[(Iz — (VA AtN) T (loll1,2.0 + K [l

12,0 + KazAtn + Kz fo[|1,2,0At N + KzeAtn)
1200tN + K3Aty), (327)

where
K3 = K33 + Kag,

and K; = Ks3, so that

luilli2,0 < a1ldolli20 + a2,

where
a1 = ||[(I; — e(VH)Aty) "« (1 + Ky Aty),

and
ay = ||(I; — e(V?)Aty) . K3Aty.

In fact, generically we may similarly obtain

luntill12,0 < @1llunlli20 + a2,

vne{0,1,--- ,N—1}.
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From such a result, inductively we may obtain
. i1
lujlli20 < (1) [d0ll120+ Y, akay.
k=0
In particular for j = N, we get
[unlli2.0
N N o
< (a)V|aolli20+ Y afar
k=0
1—alN
_ N 1
(1) [0l 20 + 7= a2
N
T\ ! T\N
_ _ 2y~ — n
= H(Id eV )N) * <1+K1N) ll40ll1,2,0
1— N
=l (328)
1-— o1
Observe that
a1 = [[(Ig — e(V?)Atn) 71« (1 + Ky Aty).
Define now Af
N
Aty) = ——.
7( N) |1 — “1|
Observe that
M- = [1—[|(Is—e(V?)Atn) (1 + KiAty)|
= 1= [|(Ig — e(V*)Atn) " Mlw — Ka [ (I — e(V2) Atn) At (329)
so that
Aty
At =
7( N) |1 — all
. Atyn
11— [1(Ia — e(VZ)Atn) 7 = Ka || (Ig — e(V2) Aty ) 71 Aty
. Atn
- _ _ 2 -1
1-)1(a €(AVtN)AfN) Il — Kq||(I — e(V2)Atn) 14 | Aty
= ! (330)
T 1= [(Lg—e(V2)Aty) L _ ’
MRl — Ky | (I — (V2)t) 71l
Define

1— |1y — e(V2)Atn) " |

L = limsup

N—soo Aty
We have two possibilities:
Either
L = +oo,
or
L=KgeR
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for some
Kg > 0.

Observe that, up to a not relabeled subsequence, {N} = { N}, we have

_ _ 2 -1
N—oo Atn

If L = +oco, then we may obtain
lim y(An) = 0.

N—oo

On the other hand, if L = Kg, redefining a larger K; > 0 if necessary, such that K; > 2Kg, we may
obtain, again up to a not relabeled subsequence,

lim y(Ayn) < ! R.

N—o0 - |K1 —Kg| <

Therefore, in any case, there exists a real constant C > 0 such that

lim y(An) <C.
N—oo
Consequently, from such results we may infer that, up to a not relabeled subsequence,

1— N
lim —( 2 )42
N—co 1—uq

< (14 e8T)K; C.

From these results, denoting now more generically u, = ul joining the pieces, up to a not
relabeled subsequence, we have got

limsup |luj 12,0 < €517 [|dg[[10,0 + (1+€517T)KsC.
N—oo

Thus, for a not relabeled subsequence { N} = { Ny}, we may infer that there exists Ky > 0 such
that
[uM 120 <Ky, Vi€ {0,1,--- ,N}LYN € N.
Define now
t t
) = ) (4 1= 50 ) (095 ),

ift € [nAty, (n+1)Aty], Y(x,t) € Q x [0, T).
Observe that
ull (x,t) = ull (x), if t = nAty, Vn € {0,1,--- ,N},

and
Bué\’(x,t) . urI:[—&-l —uy
ot - Aty
= eVPu 4+ g(un) + fu, (331)

ift € [nAty, (n +1)Aty], Y(x,t) € Q x [0, T].
Fix ¢ € C2(Q).
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Thus, fixing t € [nAty, (n + 1)Aty], we have
a”é\] N N
W0 0) | < (Vo Vo)ial + s ()) )izl + Il fuliz]
LZ
< ellullqlizallelliza + Killul li20llelliz0 + Ksll@l2o
< Ksll@llip0, Ve € CZ(Q), (332)

for some appropriate K5 > 0.
Since ¢ € C(Q) is arbitrary, we may conclude that

uniformly in ¢ on [0, T], for some appropriate constant K¢ > 0.
Also, from the definition of ué\] we have that there exists Ky > 0 such that

N
dug

<
5t <Ks VN €N,

H1(Q)

lu 1120 < K7, VN €N

also uniformly in ¢ on [0, T].
From such results, there exist 1y € L%([0, T], H}(Q2)) and vy € L?([0, T]; H~1(Q)) such that

ud — ug, weakly in L2((0, T); W*(QQ)),

and
duy' 72 -1
5 o weakly-star in L*([0, T], H " (Q0)),
so that we may easily obtain
vy = 240
07 ot

in a distributional sense.
At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- ,N — 1} such that t € [nAty, (n 4+ 1)Aty].
Letp € CX(QAx (0,T)).
From this, we may infer that

aué‘]
‘/Q T(p(x, t) dx
N N

Mn+1 — Uy
— R ——— ,t d
/ q)(x ) X

Aty
< e [ 1Vuly - Voldst [ lg(u) (s, )] dx
+ [ Ufugl dx
< (Kgllul 120 + K0)ll9ll120
< Kyllolliz0, (333)

for some appropriate constants Kg > 0, K9 > 0, Ko > 0.
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Hence,
T aué\’
A t)dx d
/0 T @(x, 1) dx dx
< K29/Q||(P||1,2,th
< Kpllollzaxom); (334)

for some appropriate K19 > 0.
Since such a ¢ € C(Q) x (0, T)) is arbitrary, we may infer that

for N € N, for some K5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vg € H~(Q x (0, T))

N
du

< Ky,
ot =1

H-1(Qx(0,T))

such that, up to a not relabeled subsequence

8u6\7
ot

T ! dx d
/O/Q?q)xt—)/o/ﬂvoq)xt,

as N — oo, Vo € H{(Q x (0,T)).
On the other hand

— vy, weakly-star in H~1(Q x (0, T)).

Therefore,

149 l0,2,0x(0,7) < Kie,

VN € N, for some Ky > 0.
From this and the Kakutani Theorem, there exists g € L?*(Q x (0,T)) such that, up to a not
relabeled subsequence,
ud) — up, weakly in L2(Q x (0, T)).

Now fix again ¢ € CZ(Q x (0,T)).
Observe that

T T
dxdt = i //Nddt
/0 /o”o(”t * NS Jo Jo 0P

. T aué\’

— _ﬁlflo/o /Q_at ¢ dx dt
T

S / /voq)dx dt, (335)
0 Q

Since such a ¢ € C°(Q) x (0, T)) is arbitrary, we may infer that

au()

T

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

. oulN ou
lim /Qa—fgodx:/ﬂa—to<pdx,

N—oo

Vo € H}(Q).
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Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

u(l)\]k(t) — ug(x, t), strongly in L*(Q)), for almost all ¢ € [0, T].

so that, up to subsequences,
é\l"( )(x, t) — up(x,t), a.e. in Q, for almostall t € [0, T].

Here we emphasise the sequence {Ni(f)} C N may depends on ¢.
Since g is continuous we have that

g(ué\]k(t)(x,t)) — ¢(up(x,t)), a.e. in Q, for almostall t € [0, T].
Fixt € (0,T).
Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q\ F) < € and
ko € N such that if k > kg, then

|g(uO (x t)) — g(uo(x,t))| <e, foralmostall x € F.

Let ¢ € C(Q)). Observe now that

<g<u£¥k< J(x,1)) — g(uo(x, 1)) dx

< / 8(1tp" (x,) = gluo(x, 1)) ] dx

-/ |g<uNk“ (50) = 8o D) gl dx+ [ 108" (1)) = (uo 1) I dx

< [elollods+ [ lgtn* )(x/f))—g(uo(x/f))l|§0|Xo\pdx

< el glloom () + (g (ug" )||020+||8(u0)||02Q)||§0||04Q||XQ\F||04Q

< ellpllem(©) + Kallgloaam(@\ F)*

< ellglleo m(Q) + Kanllglloa €%, ¥k > ko, (336)

for some appropriate constant K»; > 0 which does not depend on ¢.
Since such a € > 0 is arbitrary, we may infer that

/Qg(ug]"(t))q) dx — /Qg(uo)(p dx, ask — oo,

Vo € CX(Q).
From such results, we have
u(f)\fk( )
0 = klgg(/o o q)dx+£/ Vuo V(pdx
/ g(u (pdx / ka t)(p dx)
= autogodx+s/ Vug- Ve dx

- d —/ dx. 337

/ngo)rp x— [ fodx (337)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

233 of 360
so that, from this and by the density of C°(Q2) in H}(Q2), we have got
/% dxte [ Vi Vo dx
oot ? o 0Ye
- /Qg(uo)(p dx — /chp dx =0, Vg € Hi(Q), (338)
a.e. on [0, T.
Observe now that
(O % (0,T)) = (0Q2 x [0, T]) U (30, T] x Q).
Letp € CX(QAx (0,T)).
Hence
B gL
From this, since CZ°(Q x (0,T)) is dense L2(Q) x (0, T)) we may infer that
im [ o= [ [ Geaca
Vo € L2(Q x (0,T)).
Let ¢ € C*(Q) x [0, T]) such that
¢(x,T) =0, in Q.
From such results, we may obtain
) T aué\l
dm fy fo et
T ]
P _ NO@ - N
= 1\%@00( / / uy dx dt /Q up (x,0)@(x,0) dx)
= —/ / o, P dx dt — /Q up(x,0)@(x,0) dx. (339)
However, since ué\] — ug, weakly in L%(Q x (0,T)), we obtain
T
lim/ /”0 aq)dxdt‘ / /uoa—q)dxdt.
N—o0 O ot
From these last results, we may infer that
. g N
/Quo ¢(x,0)dx = 1\11133)0 1o (x,0)¢(x,0) dx
= /Q up(x,0) ¢(x,0) dx, (340)

so that

/Qﬁo(x)(p(x,o) dx = /ng(x,O)(p(x,O) dx,

Vo € C®(Q x [0, T]) such that ¢(x,T) =0, in Q.
Therefore, we may infer that ug(x,0) = ilp(x) in this specified weak sense.
Similarly, it may be proven that

uy =0, on Q) x [0, T],

in an appropriate weak sense.
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Hence, we have obtained that u is a solution, in a weak sense, of the parabolic non-linear equation
in question.
The objective of this section is complete.

53. An Existence Result for a General Hyperbolic Non-Linear Equation

Let 3 C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).

Consider the hyperbolic non-linear equation

aa%’ =eV2u+g(u)+f, inQx(0,T),
u(x,0) = iy, in Q,

u(x,T) =ug, inQ,

u=0, onoQ) x [0, T].

(341)

Heree > 0, f € L2([0, T], W2(Q)) N L®(Q x [0, T}]), flo, us € H}(Q) N L*(Q), where t denotes
time and [0, T] is a time interval.

Also g : R — Ris a continuous function neither necessarily linear nor convex.

We assume there exists K33 > 0 such that

K33
o X ———=7,
gl < e

Fixing N € N and defining

T
Aty = —,
NTN

in a partial finite differences context, discretizing in ¢ consider the approximate equation system

Upy1 — 22Uy + Uy
2
Aty

= eVu, + (uy) + fu, inQ),

vne{l, ---,N—1}.
From such a system, for n = 1, we obtain

Uy —2uq + g = sz(ul)Ai’%\[ + g(ul)At%\] —|—f1At%\,.

Hence
(2 + V208w = (1w + g — (1) A, — FidE,),
so that
[|u1 12,0
2\ A2 -1
< L +e(VA)Aty) |l
X (||”2||o,2,0 + l4olloz0 + 11§ (u1)llo2,0 A8 + ||f1||0,2,QAt12\I)‘ (342)

Observe that there exists Ky > 0 such that || || 0 x[o,7] < K2 so that
||f1’lHl,2,Q S K3/ VTI € {0/ 1/' o /N - 1}/

for some appropriate K3 > 0.
From such results and the hypotheses, we may infer that

lu1ll120 < 121 +e(V2) M%) M (lu2ll12,0 + KssAty, + [[o]l12,0 + K3AtR)
< |1@L+e(VHAR) I (lu2lli20 + lholl12,0 + KssAt), (343)
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where Kgs = K33 + K3.
On the other hand, through a symbolic auxiliary notation, we have
(2I; +e(VH)Aty) ™t = ! ——
(215 +e(V?)Aty)
. 1
2(I; + £(V2) A, /2)
2)AR /2
= g sVAn2 ) (344)
2 I +e(V2)A8, /2
so that s
1 e(V2)A2, /4
2L +e(VA)AtN) | < 5 N :
(211 +&(V)Aty) ||—2+| (Id+€(v2)At%\]/2)
Now denote
e(V?)
On = AWV .
(Ig +e(V2)At5, /2)
Thus, )
1 OnAt
@ +e(VA)a) M < 5+ =,
so that

12,0 K85At%\]).

12,0 + |lio

1 ONAL
< |2
lutlliz0 < (2 +—7 ([lua

Consequently, from such results, we may infer that

-
1 ONAR .
(5 +— N) lu1lli20 < (u2lli20 + l1folli20 + KssAty ),

so that

OnALS /2
21— ——N2 < (|lu + || + KgsAL%)).
( (5 6xai2 /) ) 2o < (lalhzo + oz + Ksafd)

Therefore,

120 + [f0ll12,0 + KesAtRy).

GNAi’Z
2— —— B |20 < (Juz
( (1+9NA1’%\]/2)>’ -

Let e; € R be such that
0 < &1 < max{g, 1}.

Define & = ¢||V?|| and observe that

_ b
(14 6NAL%/2)

Hence, there exists Ny € N such that if N > Nj, then

— &, as N — oo.

On

(1+6yAE,/2)

< €.

From these results, if N > Nj, we have

QNAt%\] 2
2———= | > (2—(&+ €)Aty) > 0.
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Therefore, defining &« = & + €1, we have got,

(2 anf)llnlho0 < (lu2ll o0 + ol + Kssdt).
so that

lu1ll120 < ailuz

12,0 + B1llo

12,0 T 71,
where

a0 =(2— let%\])il,

B1=m
and 7 = a1K85At%\[.

Reasoning inductively, for n > 2 having

lun—1ll120 < @n—1llunlli2,0 + Bu-1lldoll120 + Yn-1,

we are going to obtain a;, B, and vy.

Similarly as above, we may obtain

(2-— ocAtlz\,)Hun

12,0
12,0 + lun-1ll120 + KgsAt2,

12,0 + &1ty

IN

| tns1

A

= ||un+1

12,0 + Bu-1llio

Thus,

(2 — aAty; — ay 1) ||un
< |

12,0
lunsall120 + Ba-tlldoll12,0 + 1u-1 + KssAty.

Consequently,

”un 1,2,0 < an”unJrl

12,0 + Bullfo

12,0+ T,
where

1
2—aAt3 — o,y

ﬁn = “n,Bn—l/

Ky =

and

Tn = “n(')’n—l + K85At%\l)'

We recall that & = ¢||V?|| + ¢1. Here we assume T > 1 and

aT? <

N —

Consider the sequence {b, } C R such that

b =1/2,
and 1
bn+1 = m, Vn € N,
We may easily obtain by induction that
n
by = Pl
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Define

an:bn_lz ; ,VT[ZZ.
Observe that

20 T? N—-1 2aT?
< +
N N N
N-1 1

N 'N
= 1, vne{l,---,N—1}. (347)

IN

Observe that

IN

a1

<

< it o+ 5 (348)

At this point we shall prove by induction that

aT aT

zxngun+—+nN2,Vn€{l N-—1}.

For n = 1 we have already proved it above.
Suppose now that for n > 1, we have

aT aT?
Ay S ay + W + nv.

Observe that

Mpy] = ——F
2—¢x——rxn_1

_ 1 n 1 1
2 —ay 2—“%—%1 2 —ay

1
zx—z—txn 2 —ay

TZ
Ap41 + ( ntoap+a— >
aT
N

= ap41+

IA

TZ
s -+ N2
2

NZ°

IN

py1+ -7 +1n

aT
Rk 649
N
The induction is complete, indeed we have proven that

aT aT
&y < ap+——+n

N Nz,Vne{l . ,N—1}.
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Thus, we have obtained
aT  aT?
g < ap+ W + HV
- aT? N aT?
= n N N
2072
< ap+ N
< 1,Vne{l,---N—1}. (350)
Summarizing,
0<a,<1,Vne{l,---,N—1}.
Now denoting more generically &)Y = &, we may infer that
0<all <1,Vne{l,---,N-1}, YN > N,.
From such results we may also obtain that there exist Kj5 > 0 and Ky > 0 such that
IBY| < Kis,
and
72| < Kie,
Vne{l,---N—1}, YN > Np.
We recall that
u% = uf,
so that since
lun_1llz0 < aN g llunlliza + BN -1lldollzo + N1/
from this and these last results we may infer that
[l 1120 < Kis,
Vn e {0,---,N—1}, VN > Ny, for some appropriate real constant K5 > 0.
Define now N N N
WN (x, 1) = Lot1 2y Uy
7 2 7
A,
if (x,t) € Q x (nAty, (n +1)Aty], V(x,t) € Q x [0, T], and
t T
u (x, 1) = fig(x) + () (x) t+/0 /0 WN(x, 1) du dr,
where (u})(x) is such that
ué\](x, T) = uf(x).
Here we highlight that
Oup (x, 1) N
T W (x, )
N N N
_ ey 2 (351)

2
AR,

if (x,t) € Q x (nAty, (n+1)Aty], V(x,t) € Q x [0, T].
Observe that
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Pug (x,t) oyl —2u
o B At
= eViuy +8(w)) + fu, (352)
ift € (nAty, (n+1)Aty], Y(x,t) € Q x [0, T].
Fix ¢ € CX(Q).
Thus, fixing t € (nAty, (n + 1)Aty], we have
Puy N N
0 0) | < eV, Vgl + lisud), 0)ra
L2
+(s fu) 12|
< eluy lizall9liza + Kollw l2ollellhzo
+Kasll¢lli2,0
< Kxllelhza Ve € CZ(Q), (353)

for some appropriate Ky > 0.
Since ¢ € C(Q) is arbitrary, we may conclude that

uniformly in ¢ on [0, T], for some appropriate constant K¢ > 0.
Also, from the definition of ué\] we have that there exists K7 > 0 such that

2. N
0 ug
ot2

< K, VN > Ny,
H-1(Q)

g’

120 < K7, VN > Ny

also uniformly in ¢ on [0, T].
From such results, there exist ug € L?([0, T], H}{(Q2)) and vy € L2([0, T]; H~1(Q)) such that

udl — up, weakly in L2((0, T); W*(QQ)),

and
?ulY
atzo — vg, weakly-star in L>([0, T], H~1(Q))),
so that we may easily obtain
— 82u0
07 o

in a distributional sense.
At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- ,N — 1} such that t € (nAty, (n+ 1)Aty].
Letp € CX(QAx (0,T)).
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From this, we may infer that

o%ul
/Q atzo ¢(x,t) dx

= / u’lq\]‘*l — 2+ u"N_l @(x,t) dx
Q A3 !

s/ |Vull - V| dx

IN

(@)
+ [ lg) ol )] dx

+ [ Ufugl dx

(Ks([|ul 1120 + K20) | @ll1.2.0
Kollpll12,0, (354)

INIA

for some appropriate constants Kg > 0, Kg > 0, Ko > 0.
Hence,

T aZuN
/0 /QTZOqo(x,t) dx dx

K9/Q||(P||1,2,n dt
Kigllg

IN

IN

12,0%(0,T)s (355)

for some appropriate Ki9 > 0.
Since such a ¢ € C°(Q) x (0, T)) is arbitrary, we may infer that

2. N
0 ug
ot2

< Kis,
H-1(Qx(0,T))

for N > N, for some Ky5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vg € H~1(Q x (0, T))
such that, up to a not relabeled subsequence

2. N
o ug
ot2

A ' dx d
/()/(28t2qoxt—>/()/ovogoxt,

as N — o0, Vo € H}(Q x (0,T)).
On the other hand

— vy, weakly-star in H~1(Q x (0, T)).

Therefore,

149’ llo2,0x(01) < Kies

VN > Ny, for some K4 > 0.
From this and the Kakutani Theorem, there exists ug € L*(Q x (0,T)) such that, up to a not

relabeled subsequence,
udl — up, weakly in L2(Q) x (0, T)).

Now fix again ¢ € C(Q x (0,T)).
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Observe that

T T
dvdt = i // Ny dx dt
/0 /QuO(Ptt X Nl—r>noo ) 0”0 Pt AX
) T BZu(I)\]
[ ]

T
_ / / oo dx dt, (356)
0 Q

Since such a ¢ € CX(Q) x (0, T)) is arbitrary, we may infer that

82140

%= 3

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

) o2uly 0%ug
NowoJo Of q)dx:/o oz P %

lim

Vo € HY(Q).
Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

ué\lk(t) — ug(x, t), strongly in L*(Q)), for almost all ¢ € [0, T].
so that, up to subsequences,

ué\lk(t)(x, t) — ug(x,t), a.e. in Q, for almost all t € [0, T].

Here we emphasise the sequence {Ni(f)} C N may depends on ¢.
Since g is continuous we have that

g(ué\lk(t)(x, t)) — g(up(x,t)), a.e. in Q), for almostall t € [0, T].
Fix t € (0,T).
Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q\ F) < € and
ko € N such that if k > kg, then

|g(u (x t)) — g(uo(x,t))| <e, foralmostall x € F.

Let ¢ € CZ(Q)). Observe now that

[ (g é““ J(x,1)) — g(uo(x, 1)) dx

< / 801" (x,) = gluo(x, 1)) ] e

= [ Igt" (Xf)—g(uo(Xt))||(P|dx+/ D(x,1) = gluolx, )| o] dx
< [ellollodx+ [ 10" (x,1) = guo(x, )] lolxonr

< ellgloom(©) + (13" oz + 18(0) o2 @llosllxaelloso

)+
el|plloom () + K1 || @llo4,0m(Q\ F)/*
e ll@llo m(Q) + K|l @llo €/, ¥k > ko, (357)

VANVAN
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for some appropriate constant K»; > 0 which does not depend on ¢.
Since such a € > 0 is arbitrary, we may infer that
(uN"(t)) dx — (uo)p dx, ask — oo
fo) g 0 (P 0 g 0 4’ 7 12
V¢ € CX(Q)). From such results, we have
Q2u Nk(t)
0 = klirn(/Q 8t2 (pdx+e/ Vuo V(pdx
— 00
N;
— [ 8" ") ax
— /(2ka(t)g0 dx)
82u0
= /QW q)dx+s/QVu0-prdx
- / 8(uo) g dx
/ fodx. (358)
so that, from this and by the density of C°(Q) in H}(Q)), we have got
82u0
/QW (pdx—l—s/QVu0~V(pdx
- /Q 8(uo) g dx
- [ foax=0, vp e Hy(), (359)

a.e.on [0, T].
Hence, we have obtained that ug is a solution, in a weak sense, of the hyperbolic non-linear
equation in question.

54. A Numerical Procedure Combining the Euler Method and the Hyper-Finite

Differences Approach
Let QO = [0,1] C R and consider the equation
u’(x) — Au(x) + Bu(x) +1=0, inQ,
{ 2(0) 2 0, (1) 26 (%60

Here A >0, B > Oand u € W,*(Q).
We may represent such an equation, as a first order system

o' — Aul/e+Bu)/e+1/e=0, inQ,
W =v, inQ, (361)
u(0) =0, u(1) =0.

Consider now such a system with generical unknown boundary conditions iy and 9y, that is,

v — Aul/e+Bu/e+1/e=0, inQ,
' =0, inQ, (362)
M(O) = qu, '0(0) = Zj().
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Defining d = 1/mg, where mg is total number of nodes, in finite differences we have

Il — Aud_ /e+ Buy_1/e+1/e=0,
el — v, (363)

up = ﬁo, 0y = UA().

This is simply the explicit Euler method. We may symbolically obtain {u, } and {v,} as functions
of 1ip and 9y (by using the MATHEMATICA or MAPLE software and by truncating the concerning
polynomial solutions), through the iterations

3 d_p, d_d

Un = Op-1+ Ay g% e e
Uy = Up_1+ 0, _1d (364)
ug = tly, vg = 0.
However, it is well known the error in this process could be big. In order to minimize such an error,
we use the hyper-finite differences approach for the one-dimensional analogous of the generalized
method of lines. More specifically, we will subdivide the interval [0.1] into N; sub-interval of same

measure, and redefine a not relabeled d as

1
mgNy’

Hence, on each sub-interval | 51, |, using the MATHEMATICA or MAPLE software we may

obtain an approximate solution

{uik, vix}
as functions of the initial conditions
{10k vox}
wherei € {0,---,mg}, Vke {1---,Np}.
In order to obtain such a solution,
{uik, vix}
we use following interactions
Unk = Up—1k t Aui_l,k% —Bu, 144 -4,
Upk = Upn—1k + Un—l,kd (365)

Uk = ok, Vox = Ook-

Observe that for obtaining an approximate solution for the original equation in question, we must
calculate {1k, 9o} though the solution of the system:
For the boundary conditions:
Up1 = 0, umSINl =0.

For the solution and its derivative continuity on the nodes related to the N; sub-intervals,
Uk = Uok+1, Umsk = Vok+1, Vk € {1, -+ Ni}.

Having obtained {1, 99k}, Vk € {1,---, N;} we may obtain
{unp,vpi} Vne{0,-- ,mg}, Vk e {1,---,Np}.

Here we present the software in Mathematica through which we have obtained the numerical
results, for the case ¢ = 0.01, A = B = 1 and N; = 16 subintervals.
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1. m8=100;
N1 = 16;
d =1.0/m8/N1;
el =0.01;
A=1.0;
B=1.0;
For[k =1,k < N1+ 1, k++,
Print[k];
u[0, k] = uo[k];
v[0, k] = vo[k];
For[i=1,i <m8 + 1, i++,
z1=(v[i —1,k| + Axd/elxu[i —1,k]> = Bxuli —1,k] xd/el — 1.0 xd/el);
z2 =uli-1, k] +v[i-1, k]*d;
z1 = Series[z1, { uo[k], 0, 8}, { vo[k], 0, 8 }];
z2 = Series[z2, { uo[k], 0,8 }, {vo[k], 0, 8 }];
z1 = Normal[z1];
z2 = Normal[z2];
v[i, k] = Expand[z1];
u[i, k] = Expand[z2]]];
S=u[0,1)2 + u[m8,N1}%;
For[k =1, k < N1, k++,
S=S+ (u[m8,k] —ul0,k +1])%
S=S+ (v[m8,k] —v[0,k +1])?];
sol = FindMinimum|[
S, {uo[1], uo[2], uo[3], uo[4], uo[5], uo[6], uo[7], uo[8], uo[9],
uo[10], uo[11], uo[12], uo[13], uo[14], uo[15], uo[16], vo[1],
vo[2], vo[3], vo[4], vo[5], vo[6], vo[7], vo[8], vo[9], vo[10],
vo[11], vo[12], vo[13], vo[14], vo[15], vo[16]}]
Clear[U];
For[k=1,k < N1 +1, k++,
wlk] = uo[k] /. sol[[2, k]]]
For[i=1,i < N1+1,i++,
Uli- 1] = wli]]
U[N1] = u[m8,N1];
For[i=0,i < N1 +1,i++,
Print["uo[",i+ 1, "]=", U[i]]]
uo[1]=1.14453*10"%°, in fact u(0) =0
uo[2]=0.817448
uo[3]=1.17018
uo[4]=1.28552
uo[5]=1.32107
uo[6]=1.33205
uo[7]=1.33546
uo[8]=1.3365
uo[9]=1.33677
uo[10]=1.33667
uo[11]=1.33596
uo[12]=1.33331
uo[13]=1.32382

1=
1=
1=
uo[14]=1.2902
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uo[15]=1.175
10[16]=0.820243
uo[17]=0, in fact u(1) = 0.

B R R R R R R R R R R R R R R R R R R 2

Remark 25. Observe that along the domain the solution is approximately 1.33 which is close to 1.3247, which is

3

an approximate solution of equation u”> — u — 1 = 0. This is expected since ¢ = 0.01 is a relatively small value.

55. A Proximal Numerical Procedure Combined with the Euler Method
Let Q = [0,1] C R and consider the Ginzburg-Landau type equation

(x) — Aud(x) + Bu(x) +1=0, inQ,
{M(O)ZO, u(1) = 0. (366)

Here A >0, B > 0and u € W,?(Q).
We may represent such an equation, as a first order system

v — Aud/e+Buj/e+1/e=0, inQ,
u'=v, inQ, (367)
u(0) =0, u(1) =0.

Consider now such a system with generical unknown boundary conditions iy and 9y, that is,

v — Aul/e+Bu/e+1/e=0, inQ,
u'=v, inQ, (368)
u(O) = ﬁo, Z)(O) = Z)A().

Defining d = 1/mg, where mg is total number of nodes, in finite differences we have

Il — Aud_ /e+ Buy_1/e+1/e=0,
el =0, (369)
up = ﬁo, [ 230.

This is simply the explicit Euler method. Setting 1y = 0, we may symbolically obtain {u, } and
{vn} as functions of vy = 9 (by using the MATHEMATICA or MAPLE software and by truncating the
concerning polynomial solutions), through the following iterations, which already include a proximal
formulation about an initial fixed solution {(Ujp), }.

On = Op1 + A& — Bu, 1% -4,
Up = Up_1+ 0y 1d — P (”n - (uO)n)d (370)

Up =0, Up = UA().

Vne{l, --,mg}.
Indeed, in such a case we have

d
Uy = Uy 1+Aun 15 Bun 15

d
hy = <un_1 Yo, qd+ K ) e( ) (371)

A

MOIO, 0Up = 0g.

Vned{l, -, mg}.
We emphasize such a procedure may make the error in the explicit Euler method very small, in
fact proportional to .
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Thus, having obtained u, = u,(vy), we may obtain v, through the boundary condition u(1) = 0,
that is, through a solution of equation u,,3(vg) = 0.

With such an vy calculated, we may obtain explicitly u, = u,(vg), Vn € {1, ---mg}. The next step
is to replace { (Up)» } by {u, } and then to repeat the process until an appropriate convergence criterion
is satisfied.

We have obtained numerical results for e = 0.01, A = B =1, m8 = 100 and K = 10.

Here we present the software through which we have obtained such results.

We highlight in this software we have fixed a total number of 800 iterations.

E R R St R X

1. m8 = 100;
Clear[zl, z2, u, v, vo];
d=1.0/m§;
el =0.01;
A=10;
B=1.0;
K=10.0;

For[i=0,i <m8 + 1, i++,

uoli] = 0.01];

For[k =1, k < 800, k++, (here we have fixed the number of iterations)
Print[k];

Clear[vo];

u[0] = 0.0;

v[0] = vo;

For[i=1,i<m8 + 1, i++,

z1 = (v[i- 1] + A*d/el*uli — 1)3 - B*u[i - 1]*d/el - 1.0*d/el);
z2 = (ufi- 1] + v[i- 1]*d + K*uo[i]*d/el)/(K*d /el + 1.0);
z1 = Series[z1, {vo, 0, 9}];

z2 = Series[z2, {vo, 0, 9}];

z1 = Normal[z1];

z2 = Normal[z2];

v[i] = Expand[z1];

u[i] = Expand[z2]];

S = (u[m8])?;

sol = FindMinimum([S, vo];

w =vo /.sol[[2, 1]];

VO =Ww;

For[i=0,i <m8 + 1, i++,

uo[i] = uli]l;

Print[u[m8/2]]];

For[i=0,i <m8/10 + 1, i++,

Print["u[", 10*1, "]=", u[10%*i]]]

u[0]=0.
u[10]=1.09119
u[20]=1.29955
u[30]=1.32239
u[40]=1.32427
u[50]=1.3245
u[60]=1.32386
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u[70]=1.31754
u[80]=1.27924
u[90]=1.04636
u[100]=7.31252 % 1018

B R R R R R R R R

Remark 26. Observe that along the domain the solution is close to 1.3247, which is an approximate solution of

3

equation u® —u — 1 = 0. This is expected since € = 0.01 is a relatively small value.

56. A Proximal Numerical Procedure Combined with the Euler Method for
Solving Partial Differential Equations

Let Q) = [0,1] x [0,1] C R and consider the Ginzburg-Landau type equation

2, A3 — ;
eVeu—Au+Bu+f=0, inQ, (372)
u =0, onodQ.
Here A > 0,B >0, f € L>(Q) and u € W,*(Q).
We may represent such an equation, as a partially first order system
Ox + 1y — Aud/e+ Bu/e+ f/e =0, inQ,
Uy =0, in(Q), (373)
u =0, onoQ)
Defining d = 1/mg, d; = 1/mg and denoting
[ 2 1 0 0 |
1 -2 1 0 0
1 -2 1 - 0
my= . . .. p (374)
0 0 1 -2 1
0 0 1 =2

where mg is total number of nodes in x, and myg is the number of nodes in y, in a finite differences
context, we may have

% + %”n—l - Au2_1/8+ Buy,_1/e+ fu/e=0,
ml = v, (375)

u0:0, Z)O:’ﬁo.

This is simply an adaptation of the explicit Euler method. Observe that we may obtain {u, }
and {v,} as functions of vy = 9 through the following iterations, which already include a proximal
formulation about an initial fixed solution {(Ujp), }.

Uy =Upy_1— %un,ld + Aud 4 — Bu, 14— @,
Up = ty_1 + y—1d — K (uy — (Up)n)d (376)
up = 0, 0o = ﬁo.

Ve {1, ms).
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Indeed, in such a case we have, through a concerning linearization,
nd
On = Oyt — 1 +3 A ()5 qtu1f —2 A (o) & — Bity 1§ — ke,
Uy = (un,l o, qd+ K?d(uo)n) / (1 n KTd) (377)

Ll0=0, UOZUAQ.

Ve {1, ms).

We emphasize such a procedure may make the error in the explicit Euler method very small, in
fact proportional to .

Observe now that in particular for n = 1, we have

d
v = v fig
= (Mp)vo + (y1)1, (378)
where
(M) = I identity matrix (mg — 1) x (mg — 1),
and ,
(yl)l = _flg
Also,
d d
U = (UO d‘f—K(uo)lg)/(l—f—KE)
= (MZ)lvO + (]/2)1; (379)
where o
(MZ)l = d—d,
(1 +1<E)
and

(y2)1 = <W) / (1 + Kg)

Reasoning inductively, having

Up—1 = (M1)n-190 + (Y1) n—1,
and
Uy—1 = (Mp)n—120 + (Y2)n-1,

and replacing such relations into the concerning system (387), we obtain

o0 = (Mi)uot o+ (2)um1 — 2 (M) + (g2)a-1)d
1

+3 A(ug)a 1 (M) -1 + (]/Z)n—l)g - ZA(UO)%AEEI

B((Ma)t + (2)u) £
= (Mi)n+ (y1)n, (380)

where

(M) = (M) = 2 (M2 1) +3 APy (Mz)y1)E = B(M2)-1)%,
1
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and
m d
yi)n = W1)n-1— d_zz((yZ)n—l)d +3 A(”C)%—l((}/Z)n—l)E
1
d d d
—2A(u0)51; — Bl(y2)u1) ] — fur (381)
Moreover,
d d
w = ((Me)aae (gt + (M)osood + (n)oad + K)o r? ) /(14K5)
= (M2)nvo + (y2)n, (382)
where (M) (My)yrd
1+ _
(Mz)n: 2)n—1 dlnll
(1 + Kg)
and p p
(12 = (2hios + hcad + Klir§ )/ (14K5).
Summarizing, we have obtained
on = (M1)nvo + (Y1)n,
and

Uy = (MZ)nUO + (y2)n/

Vne{l,---,mg}.
Consequently, from this and the boundary condition u,,, = 0, we may have

tmg =0 = (M2)mg00 + (y2)ms

so that
Up = —[(MZ)msrl (y2) ms-

From such results we have obtained {u,} and {v,}, Vn € {1,--- ,mg}.

The next step is to replace { (i), } by {u,} and then to repeat the process until an appropriate
convergence criterion is satisfied.

We have obtained numerical results fore = 001, A=B =1, f =1, in (), m8 = 100 and K = 100.

For the solution u = u(x, y) obtained, please see Figure 42.
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Figure 42. Solution u(x,y) for ¢ = 0.01

Here we present the software in MAT-LAB through which we have obtained such results.

e o 4 3% 38 36 36 36 3 3 3 3 o A 34 36 36 K K A A K

1. clearall
m8=100;
m9=100;
d=1/mS§;
dl=1/m9;
e1=0.01;
A=1;
B=1;
K=100;
f=ones(m9-1,1);
for i=1:m8
uo(:,i)=1.4%ones(m9-1,1);
Yo(:,i)=f;
end;
m2=zeros(m9-1,m9-1);
for i=2:m9-2
m2(i,i)=-2.0;
m2(i,i+1)=1.0;
m2(i,i-1)=1.0;
end;
m2(1,1)=-2.0;
m2(1,2)=1.0;
m2(m9-1,m9-1)=-2.0;
m2(m9-1,m9-2)=1.0;
Id=eye(m9-1);
b12=1.0;
k=1;
while (b12 > 10719) && (k < 9010)
k
k=k+1;
M1(,:,1)=Id;
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y1(;,1)=-Yo(;,1)*d/el;

M2(:,;,1)=Id*d/(K*d/el+1);

y2(:,1)=K*uo(;,1)*(d/el)/(K*d/el+1);

for i=2:m8

M1(:,: 1) =M1(:,:,i-1)-m2 / d1?*d*M2(:,:,i-1)+3* A*diag(uo(;,i-1).*uo(:,i-1))*M2(;,;,i-1)*d /el;
M1(;,:,1)=M1(:,:i)-B*M2(:,:,i-1)*d /el;
yl(:,i):yl(:,i-l)—mZ/dlz*d*yZ(:,i-l)+3*A*(uo(:,i—1).*uo(:,i—l)).*y2(:,i—1)*d/e1,'
y1(:1)=y1(:,i)-2*A*(uo(:,i-1).*uo(:,i-1).*uo(:,i-1))*d /el-B*y2(;,i-1)*d /el-Yo(;,i-1)*d /el;
M2(:,:,i)=(M2(:,:,i-1)+d*M1(;,:,i-1)) / (K*d /el+1);
yv2(:,1)=(y2(:,i-1)+d*y1(:;,i-1)+K*uo(:,i)*d /el) / (K*d /el+1);

end;

vo(:,1)=-inv(M2(:,;;m8))*y2(:,m8);

for i=1:m8

u(:,1)=M2(:,i)*vo(;,1)+y2(:,i);

end;

u(m9/2,m8/2)

b12=max(max(abs(u-uo)));

uo=u;

end;

for i=1:m8

x1(i,1)=i*d;

end;

for j=1:m9-1

y3(j,1)=j*d1;

end;

mesh(x1,y3,u)

33 o o 8 43436 36 36 36 3 3 3 3 oo 4 4K 3

Remark 27. Observe that along the domain the solution is close to 1.3247, which is an approximate solution of
equation u® — u — 1 = 0. This is expected since ¢ = 0.01 is a relatively small value.

57. A Proximal Numerical Procedure Combined with the Euler Method for First
Order Systems Applied to a Flight Mechanics Model

Let Q) =[0,¢t f] be a time interval.
Consider the first order system of ordinary differential equations given by

{ = fi{wd), on [0, vie {1, 4}, (383)
1(0) = 0, up(0) = 0.12, u4(0) =0, ul(tf)—11000

Here f; : D; C R* — R is a smooth function on its domain D;, Vj € {1,--- ,4}.
In finite differences, such a system stands for

% —f]({un 1}), Vie{l,--- 4}, (384)
(u1)o =0, (u2)o = 0.12, (ug)o =0, (ul)mS = 11000.

Vn € {1,--- ,mg}, where mg is number of nodes and d = ¢ f/ mg. This is just the explicit Euler method.
It is well known, at first the error in this procedure may be big.

However, such an error may be made very small by introducing a proximal formulation and
related linearization about a fixed initial solution { (1), }, in a Newton type approach context.
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In such a case the approximate system stands for
et = Ai{ (i)
+ oty UG (1), g — (g, )u1) — Ks((1)n — ((tt9,)n),
Ui)p—(Ui)y— ofi({(ug),—
W=t — g (o)1) + oy DG (), — (10,)01), (385)
Vj € {2,3,4},
(ul)o =0, (u2)0 =0.12, (u4)0 =0, (ul)mg = 11000.
Indeed, setting the boundary conditions
(u1)0 =0, (uz)o =0.12, (1/[3)0 = 0o, (u4)0 =0
we will calculate
{(uj)u(vo)}
through the following iterations
(u1)n = ((u1)n-1 + fi({(uo)n—1})d+
yiy 2l (1), — (g )w1)d +Ks d ((0,)n) ) /(14 Ks d),
P) W
() = ()1 + f({0)uos D+ Ehy DO () (g ), (386)
Vj e {2,3,4},
(u1)o =0, (uz)o = 0.12, (u3)o = vo, (ua)o = 0.

Observe that the boundary condition u;(tf) = 11000 corresponds to (u1)mg(vo) = 11000 so
that, through this last equatlon we may obtain vy. Having obtained vy, we may obtain {(u;),} =
[()n(00)}, V1 € {1, mg}, ¥j € {1, ,4).

The next step is to replace {(uo,)n}) by {(u]-)n} and then to repeat the process until an appropriate
convergence criterion is satisfied.

We have obtained numerical results for a model in flight mechanics.

More specifically, we model an in-plan climbing motion of an airplane AIR BUS 320, through the
variables /1, y, V, x where h denotes the airplane altitude, vy is the angle between its velocity and the
axis x, V is the airplane speed and x corresponds to its horizontal coordinate.

The concerning system of equations is given by

h = Vsin(y)
T = ﬁ(l—"sin(ﬂ +ap)+ L) — & cos(y)

V= mi(Pcos(a +ap) — D) — gsin(vy) (387)

x = Vcos(v), on [0, ],

1(0) = 0, 7(0) = 0.12, x(0) = 0, h(t;) = 11000.
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Here t; = 5155, F = 240000N, m; = 120000K, S; = 260 m?,a = 0.138, g = 9.8m/s,

0.0065 1\ **% 3

ap = 0.0175, (Cr)o = 0, (C)s = 5.0, (Cp)o = 0.0175, K3 = 0, K, = 0.06,
CL=(CL)o+ (CrL)aa,
Cp = (Cp)o + K1Cp + K, C3,

1 2
L= 35p(h)V°CiS,

1 2
D = Ep(h)V CDSf.
For numerical purposes, we define
up =h, up =y(=0b), us =V, ug = x.

Here we present the software in MATHEMATICA through which we have obtained the numerical

results.
333 34 36 3 o 3 36 3 o 3 36 3 o 3 3 3 o 3 K3

1.  m8 =20000;
tf = 515.0;
d =tf/m8;
K5=10.0/d;
h1 =11000.0;
Clear[h, b, V, x,u, a, c];
h =u[1];
b =u[2];
V =ul3];
x =ul4];
mf = 120000.0;
g=958;
Sf = 260.0;
a=0.138;
af = 0.0175;
CLo =0.0;
CLa =5.0;
CDo =0.0175;
K1=0.0;
K2 =0.06;
CL =CLo + CLa*a;
CD = CDo + K1*CL + K2*CL?;
F =240000.0;
r=1.225 % (1.0 — 0.0065 * 1 /288.15)42%5;
L=1/2%r% V2% CLx*Sf;
D1=1/2%r% V2% CD xSf;
f[1] = V*Sin[b];
f[2] = 1/mf/V*(F*Sin[a + af] + L) - g/ V*Cos[b];
f[3] = 1/mf*(F*Cos[a + af] - D1) - g*Sin[b];
f[4] = V*Cos[b];
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For[i=0,i <m8 + 1, i++,

uo[i, 1] = 11000%*1/msS;

uo[i, 2] =0.15;

uoli, 3] = 120;

uoli, 4] = 50000*i/mS8];

Clear[u];

For[i=1,i <5, i++,

For[j=1,j <5,j++,

cli, jl = DIfil, u[jlll};

uol0, 1] = 0.0;

uo[0, 2] =0.12;

uol0, 3] = 120;

uol0, 4] = 0.0;

For[k3 =1, k3 < 30, k3++, (Here we have fixed a total of 30 iterations)
Print[k3];

Clear[vo, UJ;

uU[0, 1] =0.0;

U[0, 2] =0.12;

Ulo0, 3] = vo;

U[o0, 4] = 0.0;

For[i=1,i <m8 + 1, i++,

Clear[u];

u[l] =uoli-1, 1];

u[2] =uoli-1,2];

uf[3] =uoli-1, 3];

u[4] = uoli-1, 4];

z1 = Expand[U[i - 1, 1] + K5*(uoli, 1])*d + f[1]*d];

z2 = Expand[U[i - 1, 2] + 0.0*K5*(uol[i, 2])*d + f[2]*d];

z3 = Expand[U[i - 1, 3] + 0.0*K5*(uol[i, 3])*d + {[3]*d];

z4 = Expand[U[i - 1, 4] + 0.0*K5*(uol[i, 4])*d + f[4]*d];

For[k =1,k <5, k++,
z1=2z1+c[1,k]*(U[i-1,k]-uo[i-1, k
z2 =72+ c[2, k]*(U[i-1,k] -uo[i- 1, k
z3 =23+ c[3,k]*(U[i-1,k]-uo[i-1, k
z4 =274+ c[4, k]*(U[i-1,k]-uo[i-1, k
Uli, 1] = Expand[z1/(1.0 + K5*d)];
Uli, 2] = Expand[z2/(1.0 + 0.0°K5*d)];
Uli, 3] = Expand[z3/(1.0 + 0.0°K5*d)];
Uli, 4] = Expand[z4/(1.0 + 0.0*K5*d)]];
Print[U[m8, 1]];

S = (U[mS8, 1] - hl);

sol = NSolve[S == 0, vo];

vo=vo /. sol[[1, 1]];

Print[vo];

Print[U[m8, 2]];

Print[U[m8, 3]];

Print[U[m8, 4]];

For[i=0,i <m8 + 1, i++,

For[k =1,k <5, k++,

uoli, k] = U[i, K]IJ;

)¥d;
)¥d;
)*d;
Yl

—_— e
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Print[U[m8/2, 11]];

B R R R S R

1. For[i=1,i< 11, i++,
Print["h(", 2000*i*d, "s)=U[", 2000%, ",1]=", U[2000%i, 1]]]

h(51.55)=U[2000,1]=1099.37
h(103.5)=U[4000,1]=2199.41
h(154.55)=U[6000,1]=3299.45
h(206.5)=U[8000,1]=4399.5
h(257.55)=U[10000,1]=5499.6
h(309.5)=U[12000,1]=6599.74
h(360.55)=U[14000,1]=7699.8
h(412.5)=U[16000,1]=8799.76
h(463.55)=U[18000,1]=9899.89
h(515.5)=U[20000,1]=11000.

2. For[i=1,i <11, i++,
Print["gamma(", 2000*i*d, "s)=U[", 2000, ",2]=", U[2000%1, 2]]]

gamma(51.5s)=U[2000,2]=0.120754
gamma(103.s)=U[4000,2]=0.120085
gamma(154.5s)=U[6000,2]=0.117905
gamma(206.s)=U[8000,2]=0.116329
gamma(257.5s)=U[10000,2]=0.119054
gamma(309.s)=U[12000,2]=0.125181
gamma(360.5s5)=U[14000,2]=0.122861
gamma(412.s)=U[16000,2]=0.111435
gamma(463.5s)=U[18000,2]=0.115118
gamma(515.s)=U[20000,2]=0.115257

3. Forli=1,i< 11,it++
Print["V(", 2000*i*d, "s)=U[", 2000%, ",3]=", U[2000%, 3]]]

V(51.55)=U[2000,3]=107.325
V(103.5)=U[4000,3]=113.338
V(154.55)=U[6000,3]=119.7
V(206.5)=U[8000,3]=126.381
V(257.5s)=U[10000,3]=133.568
V(309.5)=U[12000,3]=142.044
V(360.5s)=U[14000,3]=152.19
V(412.5)=U[16000,3]=162.209
V(463.5s)=U[18000,3]=172.269
V(515.5)=U[20000,3]=185.79

4. For[i=1,i <11, i++,
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Print["x(", 2000%i*d, "s)=U[", 2000%i, " 4]=", U[2000%i, 4]]]

x(51.5s)=U[2000,4]=5318.63
x(103.s)=U[4000,4]=10930.8
x(154.5s)=U[6000,4]=16860.9
x(206.s)=U[8000,4]=23137.6
x(257.5s)=U[10000,4]=29795.8
x(309.s)=U[12000,4]=36872.5
x(360.5s)=U[14000,4]=44395.
x(412.s)=U[16000,4]=52396.6
x(463.5s)=U[18000,4]=60960.3
x(515.s)=U[20000,4]=70129.5

3 o 4 8 38 36 36 36 3 3 3 S K KKK KA

58. A Review of the Convergence of Newton’s Method Combined with a Proximal
Approach

Firstly we highlight similar results to those presented in this section have been presented in my
book entitled "Functional Analysis, Calculus of Variations and Numerical Methods for Models in
Physics and Engineering", reference [8], in Chapter 25, page 488.

Let f : R" — R be a C? class function and consider the problem of finding a critical point of f,
there is, to find a point £y € R" such that

f'(%) =0
Fix k € Nand let x; € R".
Define F : R" x R" — R by
1
Fxx) = flx) + f(x) - (x = x) + S U (i) (x = x0)] - (x = x)
K
ol = e, (388)

for some K > 0 to be specified.

Let x11 € R” be such that

[aF(x, xk)} “o
ox X=Xf+1
so that
F () + f7 () (o1 — xk) + K1 — %) = 0,

that is

X1 = X — (" () + KIp) L (xg).

Now, assume xy € R" is such that
I ()|l < Ky, ¥x € Br(xo)

for some r > 0.
Assume K; > 0 is such that
K—K; > 0.

Suppose also 0 < &7 < 1is such that

f'(x) > a1 (K + K) Iy
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and . .
(1= 5 )1 < (") +KI) () + Kl) = H(x,y) < (14 )L
Vx,y € Br(xo).
We recall that
(0l <Ky,
so that
(K—Ki)l; < Klg+ f"(x),
and therefore I
/! X + KI -1 < d —,
(") + Kl <
Vx € Br(xo).
Suppose also
f'(x) = f'(y) = Hs(x,y) - (x —y),
where Hs(x,y) is a symmetric matrix such that
Hs(x,y) aq
< 2] (121
and
H5(x,y) Z Dél(K + K])Id,
Vx,y € Br(xo).
Assume also K > 0 is such that
X1 € Br(l—ao)(xo)/
where
(1-3m)
Ky — 1-— A_Lal .
Reasoning inductively, suppose
x(), xl/ e /xk+l S Br(xO)
Observe that
Xes2 — g1 = —(f" (1) + K1) L (xeg1),
and
X1 — X = — (" (x) + KIp) 7' (xp),
so that
(f" (xk31) + Klg) (xpq2 — xp41) = —f' (X1,
and
(f" (xx) + KIg) (xp 1 — x5) = —f" (%)
Hence,
(f" (xkg1) + Klg) (g2 — Xk1) = (" (1) + KIg) (g1 — x6) — f (1) + ' (x),
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so that
(tke2 = x1) = (f" (oern) + KL) 7O (xigr) + KIg) (rier — x0) = 1 (xis1) + f (x)]
= (f"(xxs1) + KI) " (" (i) + Klg) (31 — xx)
—Hs (x¢q1, %) (kg1 — xx)]
= (f"(xks1) + KI) (" (1) + KIg) (1 — x50)]
—(f" (xk11) + KIg) ™ Hs (g1, xk) (X1 — Xx)
= [H(xps1, %) — (f" (x%41) + KLg) " Hs (g1, %)) (i1 — Xx)- (389)
Observe that
Hs(xep1, 1) > aq(Ky +K)Iy
>y (f" (x4) + Klg), (390)
so that
(f" (xk41) + KIg) " Hs (1, %) > aq Iy
Consequently, from such results we may infer that
Id <1 - 2061)
_ a1y
= I (1 + 1 ) wqly
> H(xppr, %) — (F (1) + Klg) " Hs (xi41, )
« N
2 Id(l — Zl) — (K — Kl) 1Id H5(xk+1,xk)
X a1
> 1) = _ =2
= Id<1 4) I”’(l 2)
_ Ly
4
> 0. (391)
from such results we may infer that
7 1 3uq
k+1,Xk) — k1 d 5(Xk1 X)) S |1 —— .
1, 30) = (7 )+ KL Hsten 90l < (1552
Defining
o 3061
0=(1-%)
we have got
%42 = xj1ll < wollxjy1 —x5ll, Vi€ {1,---,k}.
Therefore
llxjy2 = xjp1ll < aollxjrr — xjll
< agllxj— x|
< )™ — ol (392)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v

259 of 360

Thus,

X2 =21l = kg2 = X1 + X1 — -+ — X2+ X2 — 11|

Xkt — X ||+ xesn — xell + -+ [l — x|
k1

ah||x1 — xo|
=1

IN

IN

J

[ee]

g1 — xo|

IN

j=1
_ &0 _
= 2 fn -l (393)

Therefore

N

X2 — X0l < [[xkg2 — %1 +x1 — x0]|

[ 2k2 — x1 || + [Jx1 — xo|
X0

1—060

IA

IN

llx1 — xol| + [[x1 — xo|

L — o
1—¢X0 1 0

1
1-— %)
= r (394)

IA

(1 —ao)r

Summarizing,
X2 — X0 <7,

so that
X+2 € Br(xo).

The induction is complete, so that
X; € By(x0), Vk € N.
From such results we have also obtained
[xkt2 = X1 [l < wollen — xkll, VE €N
Thus, from these results and the Banach fixed point theorem, there exists £y € B_r(xo) such that
kh_r;f.}o X = Xp.

Hence,

0 = kh_{n Xk+1 — Xk
= klg{}o(—f"(xk) + KI;) 7 (x)
= —(f"(%0) + KIz) "' f' (%0)- (395)

Since det(f”(£9) + KI;)~! # 0, from this last equation we obtain
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The objective of this section is complete.

58.1. Applications to a Ginzburg-Landau Type Equation
Let Q = [0,1]2 C R3 and consider a functional F : V — R where

F(u) = %/()Vu-Vudx—l—%/Qu‘de

B[ o
=5 ot dx — (u, f)2, (396)

where V = H}(Q), f € L2(Q),a >0, > 0and y > 0.
Letu € H}(Q) and ¢ € H}(Q).
Observe that

O0F(u; ) = 'y/QVu-Vgodx

zx/Qu3godx—,B/Qu(pdx
—{@, f)r2- (397)

Consider the problem of finding 1 € H}(Q) such that
OF(ug; ¢) =0, Yo € HA(Q).

Fixing N € N, consider now a mesh in finite differences for (), where we defined = 1/N and the
related grid
On = {(j/N,k/N) ¥j k € {0,1,--- ,N}.

Denoting by Vy the finite-dimensional space in a finite diferences context corresponding to V
and considering the functional F, we assume there exist 19 € V, the corresponding u}’ € Vyand r > 0
such that the hypotheses indicated in the last section also for the corresponding function Fy : Vy — R
are satisfied so that, as developed in such a previous section, we may obtain a solution uy : 2 — R
such that

P]/\](uN) =0
that is,
—yV3un + aud; — Bun — fn =0,

where V3, is the finite dimensional operator corresponding to the Laplace operator V2.
Also,
Fi(u) = —y V3 + 3a diag (u?) — Bl

so that

— Vi +aui — pur — fy

- (—’yV%\,uz + au — Buy — fN)

= VRl — ) + s — 1) — Baus — 1)

= V3 (ug — up) +3a (#2) (ug — uq) — Bluy — un)

= (—'yv%\, + 3u diag @ — ,Bld) (up — uq)

= (i) (uy — ) (398)

Fy(u1) — Fyy(uz)

where (u1); < @; < (u2)j, Vuy, uz € By(up).
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From such results, concerning the notation of the last section, we may infer that
Hs(u1,u2) = Fy(ii(u, u2))
= Vi + 3udiag {[(#) (w1, u2)]*} — Bla. (399)
Now fix M, N € N.
Observe that
—'yV%\]uN + ucu‘;’\, —Bun — fn =0,
and
—yV3up + aud; — Buy — fur = 0.
At this point, denoting ulN = {uﬁc}, we define
N, if i—1)d,jd k—1)dkd],
Ny = | W F @) € G1) ) ((6=1) dkd o0
Vji,ke{l,---,N}.
We also denote for a not relabeled operator V3,
]+1k —2uy k+” ]k+1 —2u} k"'” -1
2 (=N 7 " 7 ’
V(g (x,y) = § if (x,y) € ((j —1)d,jd] x (k—1)d,kd], (401)
Vi,ke{l,---,N}
and
V@ (x,y) = V2 (x —d,y —d), ifx € (1—d, 1] ory € (1—4d,1].
Moreover, we define
uy (x,y) = (V3 (VR (@ (x,))), in Q.
Observe that
—yViuy = —yViiy
= —a(@y)’ +pay + fx
= —a(u)))’ +puy + fn
—af(i)* = (ug))’] + p(ag’ — ug’), (402)
Similarly, we may obtain
= —a(uf")®+ pug' + fu
—al(#")° = (ug")] + Baig" — ug’). (403)
Consequently, from such results, we have
uy — '
= (=2 +3a(@™M)? = ply)
X | fn = fan = 3w(@N )2 () — ) + 3a(@)? (uh! — )
+B(ud) — 1)) — Blud! — "] (404)
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where N

is on the line connecting 1Y, 71} and 1M is on the line connecting u}! and #}! and 2N is on
the line connecting u}} and u}!.

From these results, we obtain

N_ M
|ug — ug

1,2,Q2
= [[(=yV*+3a(@¥M)? — ply) 7|

% [Ifn = futlloaa +3al (AN B 4 ol () — ) o0+ 32l (@) 3 40| (! = 2 1020
+Bll 1y — 1) 20+ Bl (" — 3" llo2.0]
< [K8||fN — fumlloz.0 + Koll () — ) 2,0 + Kol (ug" — 1) 0,2,0] (405)

for some appropriate constants Kg > 0, K9 > 0.
Lete > 0.
Observe that there exists Ny € N such that if M, N > N, then
Ify— futlloza < 5
N M110,2,0 3 KS,

N =N < &
[ (ug" — g o0 < 3Ky’

and )
H(ué\/l - ﬁ{)v[) 0,2,Q) < 37K9'
so that,
g —ug' 120 < e
Therefore, {ul)'} is a Cauchy sequence in H} (Q)) so that there exists iy € H}(Q) such that
ull — 1y, strongly in H} (Q).
Let ¢ € H}(Q).
From such results and from the Sobolev Imbedding theorem, we may infer that
0 = lim (9(Vuf, Vo)
+a((u) )’ )2 — Blul, 9) 12
- <fNr §0>L2)
= (1{Vio, V)2
+a(itg, )2 — Blilo, ) 12
—(fr9)12)- (406)
Thus,
1(Vido, V)12 +a(dg, )2 — Blio, )2 — (f, 9)12 =0,
Vo € H}(Q).

From this result we may infer that 7 is a weak solution of equation F/(7y) = 0.

59. On the Convergence of the Newton’s Method Combined with a Proximal
Formulation for a General Parabolic Equation

Let O C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9Q).
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Consider the parabolic non-linear equation

%:€v2u+g(u>+fr anX(OIT)I
u(x,0) = 1, in Q, (407)
u =0, onoQ) x [0, T].

Heree > 0, f € L([0, T], W2(Q)) N L*(Q x [0, T]), flg € H () N L®(QY), where t denotes time
and [0, T] is a time interval.

Also g : R — R is a continuous function neither necessarily linear nor convex.

We assume there exists r > 0 such that

18" () [leo < Ko,

and
lg(u) ]l < K7

Yu € B,(#iy), for some K, > 0 and K; > 0.
Here
B, (i) = {u € Hy(Q) : [lu— g

120 <7}

Moreover, fixing N € N and defining

T
Aty = —,
NTN

in a partial finite differences context, discretizing in ¢ consider the approximate equation system

Upt1 — Un

= eV + §(Uns1) + fn, in Q,
Aty

vne{0,1,---,N—1}.

Fix M € N. In a finite elements context for the variable x € R", denoting hj; = Lo/ M, for an
appropriate fixed Ly > 0 consider a mesh with a concerning thickness /1, and a related solution u}}! of
the following system

uM M

—u
%}\]n = Sv%\/lu%kl +g(1/l%’,1) +f;lv1, in Q,

vne{0,1,---,N—1}.
Here V3, is the operator in a finite elements context corresponding to the Laplace operator V2.
We highlight in the next lines, as the meaning is clear, we may denote simply V3, = V2.
Observe that there exists a not relabeled r > 0, K; > 0 and K, > 0 such that

lg" (™)l < Ka,

and
—KiIy < —eVi — ¢ (uM) < K1y,

vuM € B, (ad"), vM € N.
Observe also that there exists Ny € N such thatif N > Nj, then

K+2K;A
0< +—2tN < 1.
K+1-KjAty
Indeed, we may find a9 € R such that
K+ 2K)AtN

0 <wap <1, VN > Np.

S K+1-K Aty
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Let My C N be a sequence such that My < My41, YN € N.
Fix N > Np.
For n = 0, we are going to calculate u; = uiVI”’N though the following iterations, which already

include a proximal formulation and concerning linearization.

My, N
Setul—uo—uON ,

Having u£, let u* ™ be such that

ukT — g = Vb ALy + g(uh)) Aty

+¢/ () (T — k) Aty + fiaty — Kkt —ub), (408)
Here we suppose K = K > 0 is large enough so that

u% € Br(l&“o) (uo).

Reasoning inductively, suppose u{, u}, - - - k+1 €Br ( 0), and observe that

Ukt — 0y — eVEET ALy — g(uf)) Aty
—g (uf) (uf T — ) Aty — oty + Kl — uf)
= 0, (409)

and

k+2 — 1y — €v2u11<+2At _ g(ullc—i-l))AtN
-8 (”If+1)(”lf+2 — kT Aty — fidty + KT — uktT)
= 0, (410)

so that for an appropriate ﬁ’l‘,

(Id—sVNAtN ¢ (u k+1)AtN+KId)( Uk 2 k)

= (g () + & () Aty + KIg) (b5 = ). (411)
Hence,
luy ™ —
-1
< H I — eV3 Aty — g(uk+l)AtN+1<1d) ((—g’(a )+g(uk+1))AtN+KId)‘
o =
< K+2KAty Huk+l_ull(”
K+1— KAty
< aoHu’;H—u’;H. (412)

Thus, we have got

) X -
[l P2 — Y| < woll ™ = )|, Vi€ {1, K},
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Therefore
j+2 i+1 i+1 i
" —ul | < aollulT — |
i i—1
< aglluh — )|
i+1
< ap fug —ul. (413)
Thus,
32 —uill = ™ = T = g - |
< 2=l T = d - |
k+1f 1 0
< Y apllug —ull
j=1
ST 0
< {3”“1—”1”
j=1
X0 1 0
= 1_a0||”1—”1||- (414)
Therefore
k k
””1+2_u(1)|| < ||”1+2_”%+”%_”(1)||
< P+ k= )
X0 1 0 1 0
< _ _
< l_ao\lul upl| + llug —uq|
1
= -
1 r
1 — an) —
< 1_%( ) 57
’
= —. 415
N (415)
Summarizing,
k+2 _ 0 r
Hul u1||<N/
so that

k+2 1
The induction is complete, so that
uk e Bﬁ(u(l)), Vk € N.
From such results we have also obtained
k+2 k+1 k+1 k
it — uf T < wolluy™ —uy||, Vk € N.

Thus, from these results and the Banach fixed point theorem, there exists u; = uiVIN N e By (ud)

such that
lim uf = u; = u! NN,
1 1
k—o0
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5 k1~
0 = kll_I)I;lo (”1 g
—eVAUE Aty — g(ub)) Aty
—g/ () (T — k) Aty — ity + KA — uf))
= up—1ig— sVzulAtN — g(ul)AtN — filtn, (416)
so that R
uy — 1 .
S S v 7R +g(u1) + f1,in Q,
Aty

Reasoning inductively again having uy € B (flg) and uj € By (uj_1), Vj € {2,---,n} similarly
as we have obtained u; in the last lines, we may obtain

My, N
Upy1 =u, N € Bﬁ(un),

such that
Upy1 — Un

AL = €V2un+1 +g(un+]) +fn, in Q.
N

The induction on 7 is also complete.
Fixne {1,--- ,N—1}.

Observe that
H”Tl - ﬁOH = ||uﬂ —Uy_1+tUy_1—Up 2+ - — UL+ U — ”0”
< ug = upq || - [Jug — |
n
< =
= NT’
< r (417)

Summarizing u, € B,(1y), Vn € {0,1,--- ,N —1}.
From these results, denoting now more generically u, = ulfinvN = ull, we may infer that there
exists K4 > 0 such that

ulN|| <Ky, Vj€{0,1,--- ,N},VN € N.
; j

With a completely analogous reasoning, we may obtain that

||”]N 120 <Ky, Vj€{0,1,--- ,N},VN €N,

for some K4 > 0.

Define now
t

W (%, £) = u (x) <n+1 - ﬁ) +unNH(x)<m —n>,

ift € [nAty, (n+1)Aty], Y(x,t) € Q x [0, T].
Observe that
udl (x,t) = ul} (x), if t = nAty, Vn € {0,1,---,N},

and
ol (x,t)  ul g —uy
ot N Aty
= evzunN-s-l +g(“nN+1) + fu, (418)

ift € [nAty, (n+1)Aty], Y(x,t) € Q x [0, T].
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Fix ¢ € C(Q)).
Thus, fixing t € [nAty, (n + 1)Aty], we have
a”(l)\[ N N
?r(l) < eV, Vo) 2| + (g (u11), 9) 2]
LZ
+[(@, fu) 12|
< €||”£:]+1 li20lleli2a + K18||unN+1 li20llelli20 + Ksllellzo
< Ksllolliza, Yo € CZ(Q), (419)

for some appropriate K5 > 0.
Since ¢ € C(Q) is arbitrary, we may conclude that

uniformly in ¢ on [0, T], for some appropriate constant K¢ > 0.

N
dug

<
5 < K6,VN > Ny,

H-1(Q)

Also, from the definition of 1)’ we have that there exists K; > 0 such that
g 120 < K7, YN €N

also uniformly in ¢ on [0, T].
From such results, there exist 1y € L%([0, T], H}(Q2)) and vy € L?([0, T]; H~1(Q)) such that

ud — ug, weakly in L2((0, T); W*(QQ)),

and
duy' 72 -1
5 o weakly-star in L*([0, T], H " (Q0)),
so that we may easily obtain
0y = 20
07 o

in a distributional sense.
At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- ,N — 1} such that t € [nAty, (n 4+ 1)Aty].
Letp € CX(QAx (0,T)).
From this, we may infer that

aué\]
/Q ?(p(x, t) dx
N N

Uyl — Un
/Q—AtN ¢(x,t) dx
< S/Q|VunN+1-Vgo| dx
+ [ Is@n) o )l dx+ [ |fugl dx
< (Ksllupilh20 +K20) 9l 20
< Kollolza, (420)

for some appropriate constants Kg > 0, Kg > 0, Ko > 0.
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Hence,
T ¢ oulN
0
—_— t)dx d
/0 T @(x, 1) dx dx
< K9/Q||<P||1,2,Qdf
< Kpllollzaxom); (421)

for some appropriate K19 > 0.
Since such a ¢ € C(Q) x (0, T)) is arbitrary, we may infer that

for N € N, for some K5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vg € H~(Q x (0, T))

N
du

< Ky,
ot =1

H-1(Qx(0,T))

such that, up to a not relabeled subsequence

8u6\7
ot

T ! dx d
/O/Q?q)xt—)/o/ﬂvoq)xt,

as N — oo, Vo € H{(Q x (0,T)).
On the other hand

— vy, weakly-star in H~1(Q x (0, T)).

Therefore,

149 l0,2,0x(0,7) < Kie,

VN € N, for some Ky > 0.
From this and the Kakutani Theorem, there exists g € L?*(Q x (0,T)) such that, up to a not
relabeled subsequence,
ud) — up, weakly in L2(Q x (0, T)).

Now fix again ¢ € CZ(Q x (0,T)).
Observe that

T T
dxdt = i //Nddt
/0 /o”o(”t * NS Jo Jo 0P

. T aué\’

— _ﬁlflo/o /Q_at ¢ dx dt
T

S / /voq)dx dt, (422)
0 Q

Since such a ¢ € C°(Q) x (0, T)) is arbitrary, we may infer that

au()

T

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

. oulN ou
lim /Qa—fgodx:/ﬂa—to<pdx,

N—oo

Vo € H}(Q).
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Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

u(l)\]k(t) — ug(x, t), strongly in L*(Q)), for almost all ¢ € [0, T].

so that, up to subsequences,
é\l"( )(x, t) — up(x,t), a.e. in Q, for almostall t € [0, T].

Here we emphasise the sequence {Ni(f)} C N may depends on ¢.
Since g is continuous we have that

g(ué\]k(t)(x,t)) — ¢(up(x,t)), a.e. in Q, for almostall t € [0, T].
Fixt € (0,T).
Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q\ F) < € and
ko € N such that if k > kg, then

|g(uO (x t)) — g(uo(x,t))| <e, foralmostall x € F.

Let ¢ € C(Q)). Observe now that

<g<u£¥k< J(x,1)) — g(uo(x, 1)) dx

< / 8(1tp" (x,) = gluo(x, 1)) ] dx

-/ |g<uNk“ (50) = 8o D) gl dx+ [ 108" (1)) = (uo 1) I dx

< [elollods+ [ lgtn* )(x/f))—g(uo(x/f))l|§0|Xo\pdx

< el glloom () + (g (ug" )||020+||8(u0)||02Q)||§0||04Q||XQ\F||04Q

< ellpllem(©) + Kallgloaam(@\ F)*

< ellglleo m(Q) + Kanllglloa €%, ¥k > ko, (423)

for some appropriate constant K»; > 0 which does not depend on ¢.
Since such a € > 0 is arbitrary, we may infer that

/Qg(ug]"(t))q) dx — /Qg(uo)(p dx, ask — oo,

Vo € CX(Q).
From such results, we have
u(f)\fk( )
0 = klgg(/o o q)dx+£/ Vuo V(pdx
/g(u (pdx—/ka godx)
= autogodx+s/ Vug- Ve dx

- d —/ dx. 424

/ngo)rp x— [ fodx (424)
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so that, from this and by the density of C°(Q2) in H}(Q2), we have got
/% dxte [ Vi Vo dx
oot ? o 0Ye
- /Qg(uo)(p dx — /Qf(p dx =0, Vo € H}(Q), (425)
a.e. on [0, T.
Observe now that
(O % (0,T)) = (0Q2 x [0, T]) U (30, T] x Q).
Letp € CX(QAx (0,T)).
Hence
B gL
From this, since CZ°(Q x (0,T)) is dense L2(Q) x (0, T)) we may infer that
gm [ resa= [ Grodar
Vo € L2(Q x (0,T)).
Let ¢ € C*(Q) x [0, T]) such that
¢(x,T) =0, in Q.
From such results, we may obtain
) T aué\l
dm fy fo et
T d
P _ NO@ - N
= 1\%@00( / / uy dx dt /Q up (x,0)@(x,0) dx)
= —/ / o5, P dx dt — /Q up(x,0)@(x,0) dx. (426)
However, since ué\] — ug, weakly in L%(Q x (0,T)), we obtain
T
lim/ /”0 aq)dxdt‘ / /uoa—q)dxdt.
N—o0 O ot
From these last results, we may infer that
. o N
/Quo ¢(x,0)dx = 1\11133)0 1o (x,0)¢(x,0) dx
= [ m0(x,0) ¢(x,0) dx, (427)

so that

/Qﬁo(x)(p(x,o) dx = /ng(x,O)(p(x,O) dx,

Vo € C®(Q x [0, T]) such that ¢(x,T) =0, in Q.
Therefore, we may infer that ug(x,0) = ilp(x) in this specified weak sense.
Similarly, it may be proven that

uy =0, on Q) x [0, T],

in an appropriate weak sense.
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Hence, we have obtained that u is a solution, in a weak sense, of the parabolic non-linear equation
in question.

60. More Results on the Convergence of Newton’s Method Combined with a
Proximal Approach for a Parabolic Equation

Let 3 C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).

Consider the parabolic non-linear equation

%—’t‘ =eV2u+g(u)+f, inQx(0,T),
u(x,0) = fly, in Q, (428)
u=0,onoQ) x [0, T].

Heree > 0, f € L2([0, T], W2(Q)) N L*(Q x [0, T]), flg € H}(Q) N L®(QY), where t denotes time
and [0, T] is a time interval.

Also g : R — R is a continuous function neither necessarily linear nor convex.

We assume there exists ¥ > 0 such that

18" () lleo < Ko,

and
llg(u)llo < K7

Yu € B, (i), for some K, > 0 and K7 > 0.
Here
B (i) = {u € Hy(Q) : [u—1ol120 <1}

About the references, the main ones are [6,22? ]. Other related results may be found in [7,8].
Consider the operator
-V2:D cC 2(Q) = L*(Q),
where
D = H}(Q)nH*(Q)

is dense in L2(Q)) concerning the L?(Q) norm.
From the standard spectral analysis theory (please see [8], for details), denoting the spectral
decomposition of —V? by
{E(A), A €]0,+)},

we may obtain

—Vzu:/ AE(A)u,
0

Yu € D.
Fix M € N and define

M
(—VZ)M:/O AE(M),

which is a bounded operator in D.
Also from the standard spectral theory, we have

lim [|(—=V2)pu — (—V2)ullgz =0, Vu € D.

M—o00

Similarly, defining the self-adjoint densely defined in L?(Q)),

B; : Hy(Q) — L*(Q),
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by

Denoting by
{Ej(A), A € R},

the spectral decomposition of B; and fixing again M € N, we define

(Bj)m = —i/_l\;; AdE;(A),

so that v
(By)w(u) = —i/_M AdE;(A)u, Vu € HY(Q).

We may also infer that
[(Bj)m(u) — (—i)Bj(u)]lo2 — 0, as M — oo,

Vu € H}(Q).
Finally, we define
Vm = ((Bi)m, -+, (Bu)m),

which is a bounded linear operator from H}(Q) into L?(Q).

60.1. The Main Result

Fix again M € N (a new value).
Moreover, fixing N € N and defining
T

Aty = —,
NTN

in a partial finite differences context, discretizing in ¢ consider the approximate equation system

Upy1 — Un

A = V)Mt + 8 (i) + fu, in Q)
N

vn e {0,1,--- ,N—1}.

Denoting u, = u)l we may write

M unM

u —
e gv%\/fu%rl +8(”nM+1) + fn, inQ),
Afn
Vne{01,--- ,N—1}.

Observe that there exists a not relabeled > 0, K; = K;(M) > 0 and K; > 0 such that
lg" (™)l < Ka,

and
—K1Id S —SV%/I —g’(uM) S Klld/

vuM e B, ().
Fix K > 1.
Observe also that there exists Ny = Ny(M) € N such that if N > Nj, then

K+ 2K)Aty

0 - & v
S KT1-KAty

<L
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Indeed, we may find a9 € R such that

K+ 2K,AtN

0< K+1—KAty

<wapg <1, VN > Npy.

Let N = Ny C N be a sequence such that Ny < Npj41, VM € N.

and Ny > NO(M)

For n = 0, we are going to calculate u; = ui\A"’NM though the following iterations, which already
include a proximal formulation and concerning linearization.

Set u1 = uo =1, ,

Having uf, let u’f“ be such that

u’f“ —1fy = 8(V2)Mu1+1AtN +g(u1))AtN
+¢' (b)WY —ub) Aty + fraty — Kkt —ub), (429)

Here we suppose r > 0 is large enough so that

uj € Br(x—am (up).
M

Reasoning inductively, suppose u{, u}, - - - k“ €B (1), and observe that
Nm
it — ity — e(V2) M Aty — g(uf)) Aty

—g' (uf) (u ™ — uk) Aty — fisdty + Kb — k)
= 0, (430)

and

k+2 — g — (VZ)Muk+2AtN g( k+1))AtN
—g/ (uy ™) (k2 — Wk Aty — oty + K(uf 2 =l
= 0, (431)

so that for an appropriate i,

(Lz —eViybty — g/ (u k+1)AtN+KId)( TRyt

= (=) + g () Aty + K1y ) (k! = b)), (432)
Hence,
||ul{+2 - ul{-ﬁ-l ||
-1
< (- eVhidtn - g (A Aty + K1) ((—g/(a >+g<k+1>>AtN+1<zd)\
J ]
K+ 2K)Atn Huk+l—ukH
~ K+1-KAty 1
= “OH”Q{H_”Q{H' (433)

Thus, we have got

+2 e+l ' .
7 = | < wollu} ™ = wll, v € {1, k).
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Therefore
j+2 i+1 i+1 '
" =i < aollu — u
i i—1
< aglluh — )|
i+1
< ap fug —ul. (434)
Thus,
k k k k
||u1+2—u%|| = ||u1+2—u1“+u1“—"'—M%Jru%—uﬂl
< 2= T = ] — ]
k+1 . . 0
< Y apllup — uf|
j=1
o . 1
< {)”“1_”(1)“
j=1
&0 1 0
= 1_a0||”1—”1||- (435)
Therefore
k k
””1+2_u(1)|| < ||”1+2_”%+”%_”(1)||
<l =l - )
X 1 0 1 0
< 1_a0‘|”1_“1||+||”1_”1||
1 1 0
= 1-a g — i
1 r
1— an)——
< 1_%( ap) >
r
= —. 436
N (436)
Summarizing,
k r
H”1+2 —uf|l < Nat’
so that

u’1‘+2 € Bﬁ(u%).

The induction is complete, so that

uk € BNL(u(l)), Vk € N.

M

From such results we have also obtained

||u’{Jr2 - u'{+1|| < oc0||u'{+1 —uk||, vk e N.

Thus, from these results and the Banach fixed point theorem, there exists 1; = ui\A’NM €Br (u(lj)
M
such that
klim u’{ =y = uiM’NZNM.
— 00
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g k1~
0 = kll_I)I;o(ul g
—s(Vz)Mull‘HAtN — g(uf)) Aty
—g/ () (T — k) Aty — ity + KA — uf))
= uy —1ip— e(Vz)MulAtN — g(ul)AtN — flAtN, (437)
so that .
Uy — i .
1ATO =e(V?)pur +g(ur) + f1, in Q,
N

Reasoning inductively again having u; € B+ (i) and u; € B (uj1), Vj € {2,---,n}
M M
similarly as we have obtained u; in the last lines, we may obtain

M, Ny
Upp1 = U, € Bﬁ(”n)/

such that
Up41 — Un
Aty
where we recall to have denoted N = Nyy,.
The induction on 7 is also complete.
Fixne{l,---,Ny —1}.

= l‘S(Vz)MunJrl +g<un+l) + fu, inQ),

Observe that
lun — 1ol = flun — g1 +up1—ty2+- - —up+u; —u|
< up = upall -+ [Jug — o]
n
< =
=~ NMT’
< r (438)

Summarizing u, € B,(y), Vn € {0,1,--- , Ny —1}.
From these results, denoting now more generically u, = ulN=Nu uM, we may infer that there
exists K4 > 0 such that
[uM|| < Ky, Vj € {0,1,--- ,Nm}, VM € N.

With a completely analogous reasoning, we may obtain that

||u;v1||1,2,0 S K4/ v] € {0/1/' o /NM}

for some K4 > 0.

Recalling again, we have denoted N = Nj,, define now

WM (x,8) = uM(x) <n+1 - ﬁ) +uﬁl(x)<L —n),

ift € [nAty, (n +1)Aty], Y(x,t) € Q x [0, T].
Observe that

ub(x,t) = ubl(x), if t = nAty, Vn € {0,1,--- ,N = Ny},
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and
oudl(x,t)  uly —uy
ot B Aty
= (V) miyy +g(uyy) + fu, (439)
ift € [nAtyn, (n+1)Aty], Y(x,t) € Q x [0, T].
Fix ¢ € C2(Q).
Thus, fixing t € [nAty, (n + 1)Aty], we have
a”SA M M
SFTaA el(Vmttr, Vi) o] + {8 (171), 9) 2]
L2
+{ @, fu) 12
< €||”2/I+1 l12allelliza + K18||u;11v[+1||1,2,Q||§0||1,2,Q + Ksll@ll12,0
< Ks|l¢lli20 Vo € CZ(QY), (440)

for some appropriate K5 > 0.
Since ¢ € C(Q) is arbitrary, we may conclude that

M
au

<
5 < KG,VM > Njs,

H1(Q)

uniformly in ¢ on [0, T, for some appropriate constant Kg > 0 and N3 € N.
Also, from the definition of ué” we have that there exists K7 > 0 such that

g

120 < K7, VM €N

also uniformly in f on [0, T7.
From such results, there exist 1y € L([0, T], H}(Q2)) and vy € L?([0, T}; H1(Q)) such that

ud! — uy, weakly in L?((0, T); W (Q))),

and
dug' 72 -1
= weakly-star in L([0, T], H " (Q))),
so that we may easily obtain
20
07 o

in a distributional sense.
At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- , Ny — 1} such that t € [nAty, (n+ 1)Aty].
Letp € CX(QAx (0,T)).
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From this, we may infer that

ouM
N a—?(p(x, ) dx

M M
Uyiq — Un
/Q —AtN ¢(x,t) dx

e/ﬂ |VM”nM+1 -Vme| dx

+ [ 180y oot dx+ [ [fugl dx

(KslluM 111120 + K20) | @ll12,0
Kolloll1,2,0, (441)

IN

ININ

for some appropriate constants Kg > 0, K9 > 0, Ky > 0.

Hence,
T E)ué\’I
/0 /Q 7 (x, t) dx dx

K / dt
9/ loll1,20
Kygllg

IA

IA

12,0%(0,T)/ (442)

for some appropriate Ki9 > 0.
Since such a ¢ € C°(Q) x (0, T)) is arbitrary, we may infer that

for N € N, for some Ky5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vg € H~1(Q x (0, T))

M
dug

< Kys,
ot ="

H-1(Qx(0,T))

such that, up to a not relabeled subsequence

auf)w
ot

I ! dx d
/()/()at¢xt—>/()/(200¢xt,

as N — o0, Vo € H{(Q x (0,T)).
On the other hand

— v, weakly-star in H1(Q x (0, T)).

Therefore,

g

02,0x(01) < Kie,

VM € N, for some Ky > 0.
From this and the Kakutani Theorem, there exists ug € L?>(Q x (0,T)) such that, up to a not
relabeled subsequence,
udt — uy, weakly in L2(Q x (0, T)).

Now fix again ¢ € C(Q x (0, T)).
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Observe that
T ' T o
/0 /Quo(ptdxdt = A}Ilgloo/ /”0 q)tdxdt
= — 1
Mlinoo/ / q)dx dt
T
- / / oo dx dt, (443)
0 Ja

Since such a ¢ € CX(Q) x (0, T)) is arbitrary, we may infer that

auo
%=

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

M

. iy o1l
dim i = f e dx

Vo € H}(Q).
Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

ugAk(t) — ug(x,t), strongly in L2(Q2), for almost all ¢ € [0, T].
so that, up to subsequences,
ug/[k(t)(x,t) — up(x,t), a.e. in Q), for almostall t € [0, T].

Here we emphasise the sequence { M (t)} C N may depends on ¢.
Since g is continuous we have that

g(uéw"(t) (x,t)) — g(up(x,t)), a.e. in Q, for almost all t € [0, T].
Fix t € (0, T).
Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q \ F) < e and
ko € N such that if k > kg, then

|g(uéw"(t)(x, t)) — g(uo(x,t))| <e, foralmostall x € F.

Let ¢ € CX(Q)). Observe now that

s ) = sl )

< [ lg 0™ (1) = guo( )] gl dx

= [ 1s(™ ()~ gCuoCe )] gl dt [ g™ (1)) ~ g(uolx )] ol d

< [ellgls dx+ [ 190s" 1) = gluto(x, )] lolxaar dx

< el lleom(€2) + (llguy™ )H0,2,0+||8(“0)||0,2,Q)||§0||0,4,QHXQ\F||0,4,Q

< lpllem(©) + Katll pllos,am(©\ F)*

< ellplleo m(Q) + Katlllloa €%, ¥k > ko, (444)
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for some appropriate constant K»; > 0 which does not depend on ¢.
Since such a € > 0 is arbitrary, we may infer that
/Qg(ug/l"(t))q) dx — /Qg(uo)q) dx, ask — oo,
Vo € C(Q).
From such results, we have
- aug" " 2 My (1)
0 = lclgrt}o(/() 5 (pdx—e/(V) (DU - @ dx
_/Qg( Mk(t))(de / ka(t)(de>
8u0
= /QW godx—l—s/QVuo-Vq)dx
- dx— [ fodx 445
/Qg(uo)q? x— | fodx (445)
so that, from this and by the density of C°(Q2) in H}(Q2), we have got
/% dxte [ Vi Vo dx
a ot ¢ a ¢
— /Qg(uo)(p dx — /chp dx =0, Vo € H}(Q), (446)
a.e. on [0, T.
Observe now that
(O % (0,T)) = (0Q2 x [0, T]) U (3[0, T] x Q).
Letp € CX(QAx (0,T)).
Hence I oaM ;
; Up _ 9o
A}Ilinoo/o /()F(deoit_/o /Q o5 @ dx dt.
From this, since C°(Q) x (0,T)) is dense L?(Q) x (0, T)) we may infer that
) T 1 oul! T 1 dug
Vo € L2(Q x (0,T)).
Let ¢ € C*(Q x [0, T]) such that
¢(x,T) =0, in Q.
From such results, we may obtain
WA ST
= lim —/ / uMa(P dx dt —/ ud(x,0)9(x,0) dx
M—o0 0 ot Q U ’
= / / Uevy q) dx dt — /Q up(x,0)@(x,0) dx. (447)
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However, since u}! — 1, weakly in L*(Q x (0,T)), we obtain
T d T g
I P axar= [ [ o P axa
M1£>Iloo,/() /QMO ar 0o Jo'0 9 ™
From these last results, we may infer that
f ,Odzl'/M,O ,0)d
Jioe0ds = lim [ ud'(x,0)p(x0) dx
= / up(x,0) ¢(x,0) dx, (448)
Q

so that
/Qﬁo(x)go(x,O) dx = /ng(x,O)q)(x,O) dx,

Vo € C®(Q x [0, T]) such that ¢(x,T) =0, in Q.
Therefore, we may infer that 1 (x,0) = p(x) in this specified weak sense.
Similarly, it may be proven that

up =0, onaQ) x [0, T],

in an appropriate weak sense.
Hence, we have obtained that u is a solution, in a weak sense, of the parabolic non-linear equation
in question.

61. On the Convergence of Newton’s Method for a More General Non-Linear
Parabolic Equation
Let O C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by o).
Consider the parabolic non-linear equation

W = eV2u+g(u,Vu)+f, inQx(0,T),
u(x,0) = iy, in Q, (449)
u=0,ondQ) x [0, T].

Heree > 0, f € L2([0, T], W2(Q)) N L*(Q x [0, T]), flg € H(Q) N L®(QY), where t denotes time
and [0, T] is a time interval.

Also g : R — Ris a C! class function neither necessarily linear nor convex.

We assume

llgll1,c0 < Ks,

for an appropriate real constant Kg > 0.
Moreover, from now and on, we denote

By(ilo) = {u € Hy(Q) : [Ju—pll120 <7}

About the references, the main ones are [6,22? ]. Other related results may be found in [7,8].

Consider the operator
~V?:D c L2(Q) = L2(Q),

where
D = H}(Q) N H*(Q)

is dense in L2(Q)) concerning the L?(Q) norm.
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From the standard spectral analysis theory (please see [8], for details), denoting the spectral
decomposition of —V?2 by
{E(A), A € [0, +00)},

we may obtain

V2= /Ooo AE(\)u,

Yu € D.
Fix M € N and define

M
(—VZ)M:/O AE(A),

which is a bounded operator in D.
Also from the standard spectral theory, we have

lim ||[(=V?)mu — (=V?)ullop =0, Yu € D.

M—o00

Similarly, we define the self-adjoint densely defined in L2(Q}),
B; : Hj(Q) — L*(Q),

by
Bi(u) = i2%
I N E)x]-'
Denoting by
{Ej(A), A € R},

the spectral decomposition of B; and fixing again M € N, we also define

(Bj)m = —i/_l\;; AdE;(A),

so that N
(Bj)m(u) = —i/ AdE;(M)u, Yu € H}(Q).
-M
We may infer that
[(Bj)m(u) — (—i)Bj(u)[lo2 — 0, as M — oo,
Yu € H}(Q).

Finally, we define
Vv = ((Bi)m, -, (Bu)m),

which is a bounded linear operator from H} (Q) into L?()).

61.1. The Main Result
Fix again M € N (a new value).

Moreover, fixing N € N and defining

T
Aty = —,
NTN

in a partial finite differences context, discretizing in t consider the approximate equation system

Up+1 — Un
Aty

vne{0,1,--- ,N—1}.

= S(VZ)Mun-H + &1, (Va)ung1) + fu, inQ,
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Denoting 1, = u}! we may write
g — 2 M M M
n .
Ay VMt 81, (V) i1) + fu, in Q,

vne {0,1,---,N—1}.
We assume g is also such that there exists r > 0, K; = K1(M) > 0 and K; > 0 such that

18u(1, Viaut) + (Vi)go (1, (Vm)u) || < Ky,
where we have denoted v = V pqu, and
I = Vi = Gull < Ky,
Vu € B,(#}!), where we have denoted

Gm(u) = g(u, (Vm)u),

and
G () = gu(u, (Va)u) + (Vin)go (1, (Vm)u).

Fix K > 1.
Observe also that there exists Ng = Ny(M) € N such that if N > Ny, then

K+ 2KyAtN

0 < K 1-KiAty

<L

Indeed, we may find &g € R such that

K+ 2K, Aty

0 - e v
S K+1-KAty

<wp <1, VN > Nj.

Let {N = Njy} C Nbe a sequence such that Ny < Njg41, VM € N.
and Ny > No(M)
For n = 0, we are going to calculate u; = ui\A”’NM though the following iterations, which already

include a proximal formulation and concerning linearization.

. M,N
Set u(l) =g =1y "M,

Having uf, let u¥ ™ be such that

u'{“ -1y = E(VZ)Mu,I-HAtN + GM(u'{)AtN

+Gh () (b — ub) Aty + fidty — Kkt —uf), (450)
Here we suppose r > 0 is large enough so that

uj € Br(k—am (up).
M

Reasoning inductively, suppose u{, u},- - -, u11<+1 €B o (19), and observe that
MII-H — 1y — E(VZ)ML{I{-HAtN — GM(MII)AtN

— Gy (ub) (T — k) Aty — fiaty + Kk — k)
=0 (451)
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and
u?z—%—<v5Mﬂ“Am—cMw?UNN
1 1 1

= 0, (452)

so that for an appropriate i,

(1a = eV3rAtn — Giy (™) Aty + KIg ) (w2 — 1)
= ((~Ghu() + Ghy (™)) Aty + K1) (! = u). (453)
Hence,
3 ™2 = ™|
-1
< (zd — eV, Aty — Gy () Aty + de) ((—G'M( 5Y 4 Ghy (b)) Aty + K1d> ‘

k1 _ ok
[ =

K+ 2KAtny H“kH kH

S K+1-Kanl" —h
< ucOHuI{H—ull‘H. (454)

Thus, we have got

i+2 1 i .
12 — ) < wolluf T — ), Wie {1, k).
Therefore
j+2 i+1
" —ul " < aollu)T — |
i—1
< D‘%Hul_”]l |
i+1
<l - ) (455)
Thus,
R R R ]
< 2=l b =+ d - |
k+1 S 0
< Y agllug —ull
j=1
S 0
< Zwéllul—ulﬂ
j=1
X0 1 0
= 1_a0||”1—”1||- (456)
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Therefore
k k
””1+2 - ”(1)” < ||”1+2 - ”% + ”% - ”(1)||
< )+ k= )
&0 1 0 1 0
< 1 _ao\lul —uy || + flug — ui]
1 1 0
= m””l —uy
1 r
< 1—ap)—
g th( “O)NM
r
= —. 457
N (457)
Summarizing,
k
e
so that

u’1‘+2 €B_r (u}).
The induction is complete, so that

uk € BNL(u(l)), Vk € N.

M
From such results we have also obtained
||u’{Jr2 - u’{+1|| < txo||u'{+1 —uk||, vk e N.

Thus, from these results and the Banach fixed point theorem, there exists 17 = ui\A’NM €B (u})

v 0
such that
0 = li ( k+1 _ -~
—£(v2)Mu11€+1AtN — GM(ull‘)AtN
—Gha(uh) (w5 = uf) Aty — sty + K(kHT = b))
= up—1ip— s(Vz)MulAtN — GM(Ml)AtN — fiAtn, (458)

so that .

up —uy

e(V)mu1 + Gu(ur) + f1, in Q,
Aty

Reasoning inductively again having u; € Bﬁ(ﬁo) and u; € Bﬁ(uj,l), Vi e {2,---,n}

similarly as we have obtained u; in the last lines, we may obtain
— M,Np
Upp1 = U, € Bﬁ(”n)/
such that

Up+1 — Un
Aty

where we recall to have denoted N = Nj,.

= 8(vz)Mun-H + 81, (Vm)ung1) + fu, in Q,

The induction on 7 is also complete.
Fixne {1,---,Ny —1}.
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Observe that
||un - ﬁOH = Hun — Uy 1+ Uy 1 —Up 2+ - — U+ U — MOH
< up —upall o [Jug — o]
n

< =

= NMV

< r (459)

Summarizing u, € B,(1y), Vn € {0,1,--- , Ny —1}.
From these results, denoting now more generically u, = ulN=Nu uM, we may infer that there
exists K4 > 0 such that

luM]| < Ky, Vj € {0,1,-++, Ny}, VM € N,

With a completely analogous reasoning, we may obtain that

|uM||120 < Ky, Vj € {0,1,---,Nu}.
]

for some K4 > 0.
Recalling again, we have denoted N = N}, define now

t t
) =t (1= ) ) (50 ),

ift € [nAty, (n+1)Aty], V(x,t) € Qx [0, T].
Observe that

ub(x,t) = ubl(x), if t = nAty, Vn € {0,1,--- ,N = Ny},

and
auf)w(x, ty ”nM+1 —uM
ot a Aty
= e(V2)puiy + gy, (Van)ully) + fu, (460)

ift € [nAty, (n+1)Aty], Y(x,t) € Q x [0, T].
Fix ¢ € C(Q)).
Thus, fixing t € [nAty, (n + 1)Aty], we have

auSA
L2

< el ((Vm)upia, (V@) ol + (g (e, (Vm)uh), 9) 12|

+[(@, fu) 12|
< el llipallellizo + Kislludiilizalellizo + Ksllelliza
< Ksll@lli20, Ve € CZ(Q), (461)

for some appropriate K5 > 0.
Since ¢ € C®(Q) is arbitrary, we may conclude that

M
au

< K¢, VM > N-
5t < K¢, VM > N3,

H(Q)

uniformly in ¢ on [0, T], for some appropriate constant K4 > 0 and N3 € N.
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Also, from the definition of uéVI we have that there exists Ky > 0 such that

VM e N

also uniformly in ¢ on [0, T].
From such results, there exist 1y € L%([0, T}, H}(Q2)) and vy € L%([0, T}; H~1(Q)) such that

ubt — up, weakly in L2((0, T); W*(Q)),

and

oug! 72 -1
a5 — vp, weakly-star in L([0, T|, H " (Q})),
so that we may easily obtain
L
° 7 ot

in a distributional sense.
At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- , Ny — 1} such that t € [nAty, (n+ 1)Aty].
Letp € CX(Q2x (0,T)).
From this, we may infer that

auo
ot @(x, t) dx

M M
_ [
= /Q —AtN ¢(x,t) dx

e [ 1Vl - Vgl dx

+ [ 18ty (Vaui) (s, )] dx+ [ |fugl dx
(Ksllup11l12,0 + Kao)

IN

IA A

(462)

for some appropriate constants Kg > 0, K9 > 0, K9 > 0.

Hence,
/ / (p x,t) dx dx

Ky
o)

IN

IN

Kioll@ll1,2,0x(0,1)- (463)

for some appropriate K19 > 0.
Since such a ¢ € CX(Q x (0, T)) is arbitrary, we may infer that

for N € N, for some Ky5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vg € H~(Q x (0, T))

M
dug

<
ot < Kis,

“1(Qx(0,T))

such that, up to a not relabeled subsequence

aué\/I . 1
o o weakly-starin H " (Q x (0,T)).
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Therefore,

// godxdt—)/ /vocpdxdt

as N — o0, Vo € H{(Q x (0,T)).
On the other hand
(0,1 = Kie,

VM € N, for some Ky > 0.
From this and the Kakutani Theorem, there exists ug € L?(Q x (0, T)) such that, up to a not
relabeled subsequence,
udt — uy, weakly in L2(Q x (0, T)).

Now fix again ¢ € C(Q x (0, T)).

Observe that
T ' T o
/0 /Quo(pt dxdt = A}Ilgloo/ / uy @ dx dt

— — 1.
Mlinoo/ / gD dx dt

T
—/ /voq) dx dt, (464)
0 Ja

Since such a ¢ € CX(Q) x (0, T)) is arbitrary, we may infer that

I

Y0 = oy

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

. E)ué"l auo
i o A= /Q ot ¢

Vo € H}(Q).
Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

ugAk(t) — ug(x,t), strongly in L2(Q2), for almost all ¢ € [0, T].
so that, up to subsequences,

uSAk( )(x,t) — up(x,t), a.e. in Q), for almostall t € [0, T].

Observe also that
(VZudl(x,t) € L*(Q), VM € N, for almost all ¢ € [0, T].

Fixing t € (0, T), from such a result, similarly as it has been obtained in reference [? ], up to a
subsequence, we may obtain a measurable functions /1; such that

(Vi) udl(x,t) — hy € R, ae. in Q.

From such a result, also similarly as it has been made in reference [? ], we may obtain a measurable
vectorial function h, such that

(Va)udl(x,t) — hy € R™, ae. in Q.
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Consequently, considering that
(V) ubdl(x,t) — Vug(x,t), weakly in L*(Q),

we obtain
(Van)udl(x,t) — Vug(x,t), ae. in Q.

Here we emphasise the sequence {M = M;(t)} C N may depends on .
Since g is continuous we have that

g™ (x, 1), (Vp)ud™ D (x, £)) — g(ug(x,t), Viug(x, 1)), a.e. in Q, for almost all t € [0, T).

Fix t € (0,T).

Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q\ F) < € and
ko € N such that if k > kg, then

18V (x, 1), (Van)ub™ D (x, £)) — g(uo(x, £), (Var)ud™ ¥ (x,£))| < ¢, for almost all x € F.

Let ¢ € CZ(Q)). Observe now that

) ), (Va0 1) (), T, 1))
< [ lgln™ ”(x,t>,<vM>u34k“><x, 1)) = g(uo(x, 1), Vuo(x,1))| |g] dx
= [ g™ e, 1), (Tan)ug™ ) (x,0)) = g o (1), Vo, )] ]
- |g<u34k“>< £, Vaatg™ ) (x,1)) = gluox, 1), Vuo(x,1))] || dx
< oo d
< [ elglax
[ 190 ), (Taa)uag ™ ) = g0 (x, ), Tato(, 1) gl
< ellplloom(@) + (g™, (Van)ug™ ¥ (x, ) o2
+1|g (1o, Vo) lo2.0)ll¢lloaallxayrlloso
< e @llom(Q) + Kal@llogam(Q\ F)'/*
< e gl m(Q) + Ka [l plloan e,k > ko, (465)

for some appropriate constant K»; > 0 which does not depend on ¢.
Since such a € > 0 is arbitrary, we may infer that

/Qg(uéwk(t), (VM)uéVIk(t)(x, £)e dx — /Qg(uO,Vuo)q) dx, ask — oo,

Yo € CX(Q).
From such results, we have
g 2 My (1)
0 = khﬁ)n:Q(/s:) at qux—S/(_)(v )Mk(t)uo k (pdx

M, M,
= s T g~ [ N0 ax)

= a;;()q)dx—i-e/ Vug -V dx

—/Qg (uo, Vug) (pdx—/nf(p dx. (466)
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so that, from this and by the density of C°(Q2) in H}(Q2), we have got
/ oty dx+e [ Vi Vo dx
oot ¥ g ove
~ [ 8w, Vu)p dx— [ fodx=0, Vg € Hy(), (467)
a.e. on [0, T.
Observe now that
(O % (0,T)) = (0Q2 x [0, T]) U (30, T] x Q).
Letp € CX(QAx (0,T)).
Hence ; v ;
. auo auo
I\}Ignoo/o /()F(deoit_/o /ngodxdt.
From this, since C°(Q) x (0,T)) is dense L?(Q) x (0, T)) we may infer that
) T 1 oul! T 1 dug
A}Ilinoo/o /()W(pdxdt—/o /Qy(pdxdt,
Vo € L2(Q x (0,T)).
Let ¢ € C*(Q x [0, T]) such that
¢(x,T) =0, in Q.
From such results, we may obtain
. T Buéw
A}Ili)noo/o / ot ¢ dx dt
= lim —/ / a(P dx dt—/ ub(x,0)9(x,0) dx
M—o0 Q 0 ! !
= / / o, P dx dt — /Q up(x,0)@(x,0) dx. (468)
However, since u}! — 1, weakly in L*(Q x (0,T)), we obtain
lim/ /”0 (dedt / /uo—dxdt
M—rc0
From these last results, we may infer that
/Q iy ¢(x,0) dx = A}I@w/ﬂ ub(x,0)p(x,0) dx
= / up(x,0) ¢(x,0) dx, (469)
Q

so that

/Qﬁo(x)go(x,O) dx = /ng(x,O)q)(x,O) dx,

Yo € C®(Q x [0, T]) such that ¢(x,T) =0, in Q.
Therefore, we may infer that 1 (x,0) = p(x) in this specified weak sense.
Similarly, it may be proven that

up =0, on9Q) x [0, T],

in an appropriate weak sense.
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Hence, we have obtained that u is a solution, in a weak sense, of the parabolic non-linear equation
in question.

61.2. An Existence Result for a General Parabolic Non-Linear Equation, a New Development and Result for a
Simpler Case

Let O C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q).
Consider the parabolic non-linear equation

% =eViu+g(u) + 1, g]'(u)%’:]_ +f, inQx(0,T),
( ,0) = iy, in Q, (470)
=0, ondQ x [0, T].

Heree > 0, f € L2([0, T], W2(Q)) N L*(Q x [0, T]), flg € H}(Q) N L®(QY), where t denotes time
and [0, T|] is a time interval.

Also g : R — Rand gj : R — R are continuous functions neither necessarily linear nor
convex, Vj € {1,---,m}.

We assume there exist Kz3 > 0 and K; > 0 such that

K33
o < ———=7,
gl < oo

K
Igjlleo < gl

Vie{l,.--,n}.
At this point, we recall that fixing v > 0,

(Is = yV?) 7 L2(Q) = Hy(Q)
is a bounded and linear operator, so that for each h € L?(Q) there exists a unique u € H}(Q) such that
(I; —yV?)u = h.

In such a case we denote
u=(Ij—yv3)~

so that

(I —yV?)~

Moreover, fixing N € N, define
Aty =

z| =

Fix M € N.
Let {N = Nj} € Nbe a subsequence such that Ny; < Np11, VM € Nand

1
(V3 Aty || < V2

d
an 1
MZ

Denoting N = Ny, in a partial finite differences context, discretizing in ¢ and also denoting

(V) Atn, |l <

{u,} = {uM}, consider the approximate equation system
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unit; Un _ e(VH) mttns1 + g(un) + Y &i(un) (Bi)m(un) + fu, in Q,
j=1

vne{0,1,---,N—1}.
From such a system, for n = 0, we obtain

m
ur — g = e(V)m(u1) Aty + g(fo) Aty + Y (10) (Bj) miloAtn + foAt.
j=1
Hence
m
uy = (Ig — (V) mAtn) ™" { o + g () Aty + Y &;(1h0) (Bj) mtloAtn + foty |,
j=1
so that
u1ll1,2,0

< (I — e(V*)mdtn) 7|

m
X (Hﬁo 0208tN + ) [Igj(i0) (Bj) mttollo2,0 At + 1l fo 0,2,QAfN>- (471)
=1

02,0+ 11g(io)

Observe that there exists K > 0 such that || f || x[0,r] < K2 so that

||fn 1,2, < K36/ Vn € {Or]-r' c rN_ 1}/

for some appropriate Kz > 0.
From such results and the hypotheses, we may infer that

120 < |1 — e(V2) mAtn) " (ldoll1 2,0 + KasAtn + Kq |1
< (L — e(VHmAtn) [ (1o]l1,2,0 + K |10

[|u1

12,00fN + KzeAty)
l12,00tN8 + K3Aty), (472)

where
K3 = K33 + K3g,

so that

lluilliz0 < ailioll1,20 + a2,

where
a1 = ||(I; — (V) mAty) (1 + KiAty),

and
ay = [|(Is — e(V*) mAtn) 1| K3Aty.

In fact, generically we may similarly obtain

lunt1ll12,0 < @1llunlli20 + a2,

vne{0,1,--- ,N—1}.
From such a result, inductively we may obtain

j—1

k
12,0+ 2 a0,
k=0

120 < (a1)/||

[luj
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In particular for j = Ny = N, we get

[un 12,0
N RS
< (a)ollio0+ Y, afar
k=0
1—alN
_ Nin 1
= (a1)" [[flo]l1,2,0 + 1—a %)
—1||N N
- Is— (V)M 1+K11 l40ll120
N N “
1-— oci\’
1= 061 ny.
Observe that
) -1 T\ N
I; — — 1+Ki—
l(-ewnd) [ (o)
T N
< Ky(1+Ki—
< b( + 1N>
< KpelT, YM €N,
for some real constant K, > 0.
Moreover, since
[(V*)mdtn,, || < 1/M?, YM € N,
there exists a real constant Ks; > 0 such that
N
1 _ M
Mg, <K, VM €N.
1-— o1
Consequently, we may infer that there exists K4 > 0 such that
||LIJM 12,0 < Ky, V] S {0, 1,--- ,NM},VM e N.
Define now
t t
M M M
uy (x,t) = uy (x) (n-l— 1-— m) +u, 1 (x) (m - n),
ift € [nAtn, (n+1)Aty], V(x,t) € Q x [0, T].
Observe that
ub(x,t) = ubl(x), if t = nAty, Vn € {0,1,--- , Ny},
and
oudl(x,t)  uy —u
ot a Aty

= (V2 4 g(u) + igjm%(B»M(u% T fo
2

ift € [nAtyn, (n+1)Aty], Y(x,t) € Q x [0, T].
Fix ¢ € C®(Q).
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Thus, fixing t € [nAty, (n + 1)Aty], we have
oug' M M
B0 0Y | < eVl Vool +1(8(ul), o)
L2
& M M
[ g Bm(d)g) dx+ (g, fu)ra]
=1
< elluylhzollelizo +Killuylhzallelizo + Ksllelhzo
< Ksllollipn, Ve € C2(Q), (476)
for some appropriate K5 > 0.
Since ¢ € C®(Q) is arbitrary, we may conclude that
ouM
’ Zo < Ke, VM €N,
ot
H1(Q)

uniformly in ¢ on [0, T], for some appropriate constant K¢ > 0.
Also, from the definition of ué’l we have that there exists Ky > 0 such that

[y

120 < K7, VYM €N

also uniformly in ¢ on [0, T].
From such results, there exist 1y € L%([0, T], H}(Q2)) and vy € L%([0, T}; H~1(Q)) such that

ud! — uy, weakly in L2((0, T); W (Q))),

and
oug! 72 -1
= o weakly-star in L([0, T], H " (Q))),
so that we may easily obtain
0y = 240
07 ot

in a distributional sense.
At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- ,N — 1} such that t € [nAty, (n +1)Aty].
Letp € CX(Q2x (0,T)).
From this, we may infer that

oul)!
/Q T(p(x, t) dx
M M

B u,q — Uy
= /Q—AtN o(x, 1) dx
< e [ 1(V)uufly- Vol dx
m
+ [ 18ty ol 0l dx+ [ 1Y i) (B (i) dx
j=1
+ /Q | fug| dx
< (Ksl[ub 100 + Ka0) |l @ll120
< Kool (477)

for some appropriate constants Kg > 0, Kg > 0, K9 > 0.
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Hence,
T r ou
/0 N 7(p(x, £) dx dx
< Ko 2,0 dt
Q
< (0,T)s (478)

for some appropriate K19 > 0.
Since such a ¢ € C*(Q) x (0, T)) is arbitrary, we may infer that

for M € N, for some K5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vg € H~(Q x (0, T))

M
dug

< Ky,
ot =015

“1(Qx(0,T))

such that, up to a not relabeled subsequence

auéw N
ot

)
// uO (pdxdt—>//00¢dxdt

as N — oo, Vo € H{(Q x (0,T)).
On the other hand

vy, weakly-star in H~1(Q x (0, T)).

Therefore,

(0,1) < Kie,

VM € N, for some Ky > 0.
From this and the Kakutani Theorem, there exists g € L*(Q x (0,T)) such that, up to a not
relabeled subsequence,
udt — gy, weakly in L2(Q x (0,T)).

Now fix again ¢ € CZ(Q x (0,T)).

Observe that
T ) T o
/0 /Quoqot dx dt = A}Ignoo/ / uy @ dx dt

= gm ) e

T
—/ /vo(p dx dt, (479)
0 JO

Since such a ¢ € CX(Q x (0, T)) is arbitrary, we may infer that

ou
0= 5

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

. aué"l auo
i o A= /Q o P

Vo € H}(Q)).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

295 of 360

Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uéA"(t) — up(x, t), strongly in L*(Q)), for almost all ¢ € [0, T].

so that, up to subsequences,
ugAk(t) (x,t) = up(x,t), a.e. in Q, for almostall t € [0, T].

Here we emphasise the sequence { M (t)} C N may depends on ¢.
Since g is continuous we have that

g(uéw"(t) (x,1)) — g(up(x,t)), a.e. in Q, for almost all ¢ € [0, T].
Fixt € (0,T).
Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q\ F) < € and
ko € N such that if k > kg, then

18V (x, 1)) — g(uo(x,1))| < ¢, for almost all x € F.

Let ¢ € CX(Q). Observe now that

'/Q(g(ugdk(t) (x,t)) — guo(x,t))) g dx
= /o 1g0g™ " () — gluo(x,£))| |9 dx

= [ 1s(" () — gluoCe )] gl det [ g™ (1)) — g(uo(x )] ol d

< [ellollodx+ [ 190" (x1) ~ gluol, 1) gy dx

< ellgllwm(Q) + (g™ ) o0 + (0 loza)Igllosnlxa s loso

< &) gllom(Q) + Ko [ @lloaam(Q\ F)/*

< e @l m(Q) + Katll@lloan /% Vk > ko, (480)

for some appropriate constant K»; > 0 which does not depend on ¢.
Since such a € > 0 is arbitrary, we may infer that

/Qg(ugd"(t))q) dx — /Qg(uo)q) dx, ask — oo,

Vo € CX(Q).
Similarly, fixing j € {1, ,n}, since g; is continuous we have that

g]-(uéw"(t) (x,1)) — gj(uo(x,t)), a.e. in Q, for almostall t € [0, T].

Fix againt € (0, T)
Let ¢ > 0 (a new value). From the Egorov Theorem, there exists a closed set F; such that
m(Q\ F) < eand ko € N such that if k > ko, then

|g]-(u£/1"(t)(x,t)) —gj(uo(x,t))| < ¢, foralmostall x € Fy.
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Observe now that

] 18508 e, 1)) = g5 o, 1) P

< [ g™ 1)~ gl )P dxt [ 1" (3, 1)) ol )P dx

< [ @t [ I’ 0 ) P,

< m(Q) +2K? /QXQ\H dx

< &m(Q) 4 2K3e, Vk > ko. (481)

Since such a € > 0 is arbitrary, we may infer that

/Ig] — gj(u)|* dx — 0, as k — oo,

Vie{1,---,m}.
Select again ¢ € C°(Q2). Since

lgi (uy™ ™) = gi(uo)llozn — 0, ask — oo

and
(VM)ué\Ak(t) — Vug, weakly in L2((Q; R™),
we obtain,
M(t M (t
M B * ) g [ i)y o
< B M(u(])\/lk(t)) @ dx — A)gj(uo)(Bj)M(uéwk(t)) @ dx
(o) By)aa 1y ") g dx — [ gi(u0)(10)s, @ v
< i) = 8j(w0) lo2.0Krll@ o
] [ 8100 Baa( ) g [ 5(u0) ) g
— 0, ask — oo, (482)
Vie {1, ,mb.
From such results, we have
My (t)
— 1 0 _ 2 My (t)
0 = kh_)n;(/Q o @ dx s/(V Imty @ dx
~ [ s ¢M—2/& (B (g™ ) dx
_ Mi(t) o d
/Qf ¢ x)

o auo
= /Qw(pdx—i-e/QVuo Ve dx
m
_/Qg(uo)q) dx—'Z/ng(uo)(uo)qu) dx
j=1

—/qu) dx. (483)
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so that, from this and by the density of C°(Q2) in H}(Q2), we have got
/% dxte [ Vi Vo dx
Q of 4 a0 ¢
m
—/ 8(uo) ¢ dx — Z/ gj(uo) (uo)x; ¢ dx
— [ Fodx =0, ¥p e Hy(), (484)
o)
a.e. on [0, T.
Observe now that
9(Qx (0,T)) = (0Q x [0, T]) U (30, T] x Q).
Letp € CX(QAx (0,T)).
Hence v
. T auo T auo
A}Ilinoo/() /()7¢dxdt—/() /ngodxdt.
From this, since C2°(Q x (0,T)) is dense L?2(Q) x (0, T)) we may infer that
[ f s [ [ s
Vo € L2(Q x (0,T)).
Let ¢ € C*(Q) x [0, T]) such that
¢(x,T) =0, in Q.
From such results, we may obtain
. T au34
[,
= lim / / Ma(P dx dt — / ub(x,0)9(x,0) dx
M—o0 Q 0 ! !
= / / uo— dx dt—/ﬂuo(x,O)(p(x,O) dx. (485)
However, since 1}’ — 1, weakly in L?(Q) x (0, T)), we obtain
o [ [ M 0P fP
Jim [ / udt 50 dx di = / / o 22 dx dt.
From these last results, we may infer that
~ o . N
/Q g ¢(x,0) dx = A}Ilgloo o (x,0)¢(x,0) dx
= /Q up(x,0) ¢(x,0) dx, (486)

so that

/Qﬁo(x)(p(x,o) dx = /Quo(x,O)q)(x,O) dx,

Vo € C®(Q x [0, T]) such that ¢(x,T) =0, in Q.
Therefore, we may infer that 1 (x,0) = lp(x) in this specified weak sense.
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Similarly, it may be proven that
up =0, onaQ) x [0, T],

in an appropriate weak sense.
Hence, we have obtained that u is a solution, in a weak sense, of the parabolic non-linear equation
in question.

62. On the Convergence of Newton’s Method Combined with a Proximal
Approach for an Eigenvalue Problem

Let QO C R3 be an open, bounded and connected set a regular (Lipschitzian) boundary denoted
by 0Q).

Consider the eigenvalue problem of finding u € V and A € R such that

—eV2u+g(u)—Au=0, inQ,
u =0, onadQ), (487)
Ja u? dx = Hu||%/2,Q =1.

Heree >0,V = H}(Q),and g : R — Ris a C! class function, such that either g is linear or such
that
g(tu) =tg(u),vt >0, Vu e R

In a finite differences or finite elements context, already including a proximal formulation, we
shall look for a sequence {u,} C RN for an appropriate N € N such that

u
—eVuy i1+ §(uni1) — m + K(ty1 —un) =0,

Vn € NU{0}.
Now considering a concerning linearization of g, such an equation approximately stands for
u
—eV 21 + g (tn) + 8 (tn) (tn 1 — 1n) — m + K(up1 —un) =0,
n

Vn € NU{0}.
Assume 1y € RN is such that there exists ¥ > 0 such that

Klld < g'(u) < KZId/
Yu € B,(ug), for some Ky, Kp > 0.

Suppose there exists a symmetric matrix Hg (1, v) such that

u v
— — — = Hg(u,v)(u —v),
full ol

and
—K3l; < He(u,v) < K3y,

Yu,v € B,(ug), for some K3 > 0
And also there exists a symmetric matrix Hs(u, v) such that

8(u) —g(v) = Hs(u,0)(u —0),

and
Kyl; < H5(u, Z)) < Ksly,
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Yu,v € By(up), for some Ky, K5 > 0. Moreover, we assume that these last constants, K > 0 and
0 < wq < 1 are such that

(1—a1)(—eV* + K1) + Kyly — K3y — Kply) > aqKIy = K Iy — (1 — a1)K I,

so that
(—€v2 + KiI; + Kld)_l(—K4Id + Koy + K3l + Kly) < (1—aq)y

Observe that
eV24+¢ (u)+KI; > —eV2+Kl;+KI; >0

and
0 < —Hs(u,v) + He(u,v) + §'(v) + K Ij < —Kyly + Kol + Kz + K1y,

Yu,v € B(ug) so that

(eV2+g'(u) + K Ig) ™' (= Hs(,0) + He(u,0) + &' (v) + K 1)
(—eV2 4+ K1y + KI;) "N (—Kyly + Kol + Ksly 4 K1)
(1 — (X])Id, (488)

Yu,v € By(up).
Summarizing, defining ag = 1 — a7 we have got

1692 + g/ (1) + K L)~} (— Hi(u,0) + Ho(1,0) + §'(0) + K I) | < g < 1,
Yu,v € By(up).
Suppose K > 0 and a; > 0 are such that uy € B,(1_g)(u0)-
Reasoning inductively, suppose also

Ug,Ug, -, Upy1 € BT’(”O)'

From the results above we have

u
_€v2”n+2 +g(”n+1) + g/(un+1)(”n+2 - ”n—i—l) - Hun——i—iﬂ + K(un+2 - ”n+1) =0,
n+
and u
—eV2up i1 + §(un) + & (1n) (tng1 — un) — m + K(upyq1 —un) =0,
so that
_E(Vzun—ﬂ - vzun—i-l) + g/(”n-l-l)(”n—I—Z —Upq1) + K(ygo — tiy41)
u u
= —gluns1) + g(tn) + T — 4 8 () (1 — ) + K (g1 — )
lunall funll
= (=Hs(tnt1,tn) + He(uny1,un) + g (tn) + Klg) (41 — thn). (489)
Therefore
Up+2 — Un+1
= ((—eV2+ &' (tns1) + KIg) " (—Hs (g1, tn) + Ho(tns1, ttn) + &' () + K1)
X (un-H - un)/ (490)
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so that
ltns2 — upial|
< ((—eV? + &' (uns1) + KIg) " (—Hs (41, 1n) + He (41, 1n) + &' (un) + K1)
X ||tpg1 — tn|
< aollunyr — unll- (491)
Summarizing, we have got
[ujs2 —ujall < aollujyr —ujll, Vj€{1,--- ,n}
Therefore
i —ujall < wollujyr — uyl
< aflluj — uj||
< ah Hluy — ug). (492)
Thus,
ltno —urll = |upg2 —tpgr +tpgr — - — up +up — uq|
< ungo = wpga ||+ g1 — unll 4+ Jluz — uq |
n+1
< ) g ||u1 — uo|
j=1
0 .
< o) |11 — g
j=1
o
= © g — |- (493)
1-— L%}
Therefore
lunia —uoll < |lung2 — uy +ug —ugl|
< gz — u|] 4 [Jug — uo|
X0
< 1 l[ur — uoll + [[u1 — uo|
=1 _“0”“1 — up|
< ! (1—wg)r
1-— oo 0
= 7 (494)
Summarizing,
ltngo —uoll <7,
so that

Upgo € By(u()).

The induction is complete, so that

un € Br(up), ¥n € N.
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From such results we have also obtained
tni2 — ups1ll < aolluns1 — unll, Vn € N.
Thus, from these results and the Banach fixed point theorem, there exists #y € Er(uo) such that
nh_r}r;o u, = to.

From such results we obtain

n—oo

0 = lim (—svzunH + g(n) + ¢ (1) (tsr — 1)

u
- ”u:” +K(un+1 - uﬂ))

. R il
= —eV2iy +g(1p) — ||ﬁg|| (495)
Summarizing, we have got
. fo
—€V2u0 + ¢(ip) — o] =0.
Consequently, defining
8 o
Uo = =1/
ldollo.2.0
A= 1
17o]l

and recalling that
g(fﬁo) = tg(ﬁ()), Vi >0,

we have obtained
—eV2iiy + g(iip) — Adlg = 0,

and
lio0llop0 = 1.
The objective of this section is complete.

Remark 28. For the general case we may drop the hypotheses of g being linear or g(tu) = tg(u), vVt >
0, Yu € R, by defining the following iterations:

u u

—eV2u 1+ || g(—") — "+ K(tyq —uy) =0, Vn € NU{0}.
[unll ) Nl

However in such a case some changes on the hypotheses are necessary in order to obtain the related theoretical

results.

62.1. A Numerical Example

For ) = [0,1] C R, we have obtained numerical results for the following eigenvalue equation

—eu + Aud —Au =0, in Q,
u =0, ondQ), (496)
Ja u? dx = ||u||%’2,Q =1,

wheree = 0.01,and A = 1.0
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Observe that for a fixed K > 0 we may obtain for this last equation
—en" + AP+ Ku—Ku—Au=0,inQ,
so that
—eu" + AP+ Ku—Mu=0,inQ,

where A; = K + A. In this example we have fixed K = 500.

In order to obtain such numerical results we have used the following algorithm:
1. Chooseuy € W&’z, setn =1, b = 10~* and 14y = 100.
2. Calculate u, 11 € W&’z solution of equation

eu’ .+ A—u% +Ku _ M _0,in0
e 415 5,00 " lunllozo ’

3. If ||ups1 — tnlleo < b1p OF 11 > Ny, then stop. Otherwise n := n + 1 and go to item 2.

For the optimal solution # obtained, please see Figure 43.

0.8 ]

06 b

04r b

02r b

Figure 43. Solution u(x) for ¢ = 0.01

Here we present the software in MAT-LAB through which we have obtained such numerical

results.
333 3 36 36 3 3 3 3 o 3 3 o S %

1. clearall
m8=100;
d=1/mS§;
K=500;
A=1;
el1=0.01;
for i=1:m8
uo(i,1)=0.1;
end;
b12=1.0;
k=1;
while (b12 > 107%) && (k < 100)
k
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k=k+1;

S=0;

for i=1:m8-1

S=S+uo(i,1)? * d;

end;

S=sqrt(S);

m12=2+K*d?;

mb50(1)=1/m12;

z(1)=m50(1)*(uo(i, 1)/ S * d*-A*uo(i, 1)3/S? x d* / el);
for i=2:m8-1

m12=2+Kxd?-m50(i-1);

mb50(i)=1/m12;

2(i1)=m50(i)*(uo(i,1) /S * d*> — A xuo(i,1)3/S? xd*> /el +z(i — 1));
end;

u(ms8,1)=0;

for i=1:m8-1
u(m8-i,1)=m50(m8-i)*u(m8-i+1)+z(m8-i);
end;

b12=max(abs(uo-u));

uo=u;

end;

for i=1:m8

x(i,1)=i*d;

end;

plot(x,uo/S)

B R R R Sttt X
Remark 29. With the high value K = 500 we have obtained the following eigenvalue for this problem:
1
A= <S - K> e = 133.8090 ¢ = 1.338.

63. On the Convergence of Newton’s Method Combined with a Proximal
Approach for a General Parabolic non-Linear System

Let 3 C R™ be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q).
Consider the parabolic non-linear system

ou; .
% = sjvzu]’ + gj(u) + Z}r{=1 Z;nzl gjkl(u)?,%’l‘ +f]', in Q) x (0, T),
uj(x/ O) = (ﬁO)]I in (), (497)

uj =0, on 0 x [0,T], Vie {1, ---,r}.

Here
u=(uy,- -, up) = {u]-} € H(l)(Q;]Rr),

ej > 0, f = {fj} € L*([0, T, W2((uR")) NLY(Q x [0, T;R"), 4 = {(dp);} € HH(LR")N
L®(0);R"), where t denotes time and [0, T] is a time interval.

Also gj : R = Rand gy : R — R are C! class functions neither necessarily linear nor
convex, Vj, ke {1,---,r}, 1 €{1,--- ,m}.

We define

r m au
Fi(u) = &;V2u; + g;(u) + k_zl l_lgjkl(u)a—xl; +fir
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Vj e {1,---,r}, so that the system in question stands for

ou;j
J_F i o
T F(u), Vje{1,---,r}.

Fixing N € N and defining Aty = T/ N, in a finite differences context we may define the following
approximate system

Unt1 — Un = Fi(ups1), Vj€{1,---,r}, Vn e {0,--- ,N—1}.
Aty

Fix n = 0. In a Newton’s method context combined with a proximal approach, we shall obtain
through the following iterations,

Define u = iy and having u¥ let 1" be such that

L0 — Bk an(”If) k+1 .k k+1 _ k
up —uy = j(ul)AtN—i-AtN a—u, (uy™ —uy) — K(uy™ — uy).

At this point we assume there exist ¥ > 0 and K; > 0, such that

< {5
_1d_{aul }— 114d,

Yu € B, (ﬁo) .
Moreover, generically denoting F(u) = {F;(u) }, we assume there exists a matrix operator Hs(u,v),
such that
F(u) — F(v) = Hs(u,v)(u —0),

and
—K3Id S H5(M,Z)) S K3Id,

Vu,v € B,(ilp), for some appropriate real constant K3 > 0.
Now suppose K > 0 and 0 < a1 < 1 are such that there exists Ny € N such that if N > Nj, then

(1 —ay)(Ig — K1 [gAty) — KiIgAty — K3lgAty) > a1 K I; = K Iy — (1 — aq)K Iy,

so that
(I; — Ky Aty + KI) Y (K LAty 4+ KsIyAty + K 1) < (1 —aq)K I

Observe that such an Ny may be such that

oF;(u
I — { a]LE )}AtN +KI; > I; — Ky LAty + KI; > 01,
I

and
9F;(0)
aul

0 < Hs(u,v)Atn — { }AfN + Kl; < K1 Aty + K31;Aty + K 1,

so that

(Id - { agﬁ? }AtN + K1d> B (H5(u,v)AtN - { al;f:’) }AtN n K1d>

Iy — KiIAty + K1) YKy Iy Aty + K3 I Aty + K )

(
(1 — Dcl)Id, (498)

<
<

Yu,v € Br(ﬁo), VN > Np.
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Hence, denoting ap = (1 — a1), we have got
- LW kg B H At IO ppys 4 K
d 2u; N +Klg 5(u,0) Aty 2 N +Klg
< H (I — KiLiAty + KIp) "V (Ki LAty + K3LyAty + K 1) H
< ap. (499)
Yu,v € Br(ﬁo), VN > Np.
Fix now a new N > Nj.
Suppose now K = KIY > 0and 0 < a1 = (1)) < 1 are such that
u% S Bﬁ(l—ao) (ﬁo)
Reasoning inductively, suppose u(l), u%, S, u’{“ € B% (up), and observe that
oF; (uk)
o1 == B+ o] 0 b ) 1),
and
k+2 1 k+1 oF; (1) k+2 o k+1 k+2 kel
ui ™ —up = Fi(ui ) Aty + Aty o (i —uy™) — K(uy ™ —uj™),
so that
oF; (uf*1)
I; — b AN S A KI k+2 _  k+1
(d { o tn + Kl | (7 up )
OF; (uk
- ((P(W) — () Aty - {%}Am +1<1d> (T~ )
OF;(uk)
= <H5(u’{+1,u’1()AtN - {éTll Aty + Ky | (uf —uf). (500)
Thus,
ullc+2 _ ullc+1
-1
OF; (uk+1) OF;(uk)
= | —{—L L 2 Aty +KI Hs (uk* ik Aty — &~ S Aty + K1
(d { 3 N+ Kl 5(ug " uy) Aty o, N +Klg
x (k1 — uk) (501)
1 1)

Summarizing, we have got

k2 k1
o = |

OF; (uk+1 - OF; (uk
= (Id — {%}AtN—l—Kld) H5(1/l’;+1,u]1<)AtN _ ég{ul) Aty + Kl
l 1

x|[ub Tt — uk|
< alluf Tt — k. (502)

Thus, we have got

+2 +1 j+1 j .
g™ = w7 < wolluy™ =l Vi€ {1k}
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Therefore
j+2 i+1 i+1 i
" —ul | < aollulT — |
i i—1
< aglluh — )|
i+1
< ap fug —ul. (503)
Thus,
32 —uill = ™ = T = g - |
< 2=l T = d - |
k+1f 1 0
< Y apllug —ull
j=1
ST 0
< {3”“1—”1”
j=1
X0 1 0
= 1_a0||”1—”1||- (504)
Therefore
k k
””1+2_u(1)|| < ||”1+2_”%+”%_”(1)||
< P+ k= )
X0 1 0 1 0
< _ _
< l_ao\lul upl| + llug —uq|
1
= -
1 r
1 — an) —
< 1_%( ) 57
’
= —. 505
N (505)
Summarizing,
k+2 _ 0 r
Hul u1||<N/
so that

Uit € By ().
The induction is complete, so that
uk e Bﬁ(u(l)), Vk € N.
From such results we have also obtained
kT2 — uk | < [kt — uk|, vk € N.
Thus, from these results and the Banach fixed point theorem, there exists 1] € B (u(lj) such that

lim uf = uy.
k—o0
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o kel
0 = kh_r}.}o (u1 iy
OF;(uk)
—F<u';>AtN—AtN{ O
+K(uf ! — u’f))
= U; — ﬁo - F(Lll)AtN (506)
so that "y — @
1— Uy _ .
A F(u1) in Q,

Reasoning inductively again having u; € B (fig) and u; € By (uj-1), Vj € {2,---,n} similarly
as we have obtained 4 in the last lines, we may obtain

Uyl € B%(un),

such that

Upi1— U .
”*TN" = Ftyy1), in Q.

The induction on 7 is also complete.
Fixne{l,---,N—1}.

Observe that
”un - uO” = ||un — Uy 1+tUy 1 —Upp+ - — Ut U — uO”
< lun —up—all 4+ flug — uol|
n
< =
= Nr
< . (507)

Summarizing u, € B,(fy), Yn € {0,1,--- ,N —1}.

From these results, denoting now more generically u, = unN , we may infer that there exists KL >0
such that
120 <Ky Vjie{0,1,--- ,N},YN e N.

N
[[u j
Define now

t t
u{)\](x,t) = u,ﬂ\](x) (n-l—l — m) -I-unNH(x)(m —n),

ift € [nAtyn, (n+1)Aty], Y(x,t) € Q x [0, T].
Observe that
ul (x,t) = ull (x), if t = nAty, Vn € {0,1,---,N},

and
oud (x,t)  ul g —uy
ot B Aty
= F(ul.,,), (508)

ift € [nAty, (n+1)Aty], V(x,t) € Q x [0, T].
Fix ¢ € C®(;R").
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Thus, fixing t € [nAty, (n + 1)Aty], we have
ou
'< > /(P> < [(FOYn).9)1e
L2
< Vo € CC (LR, (509)

for some appropriate K5 > 0.
Since ¢ € C®(Q;R") is arbitrary, we may conclude that

uniformly in ¢ on [0, T], for some appropriate constant K¢ > 0.
Also, from the definition of ué\] we have that there exists Ky > 0 such that

N
dug

<
5 < K6,VN > Ny,

“1(O;Rr)

lu) 1120 < K7, VN €N

also uniformly in ¢ on [0, T].
From such results, there exist ug € L*([0, T], H} ((;R")) and vy € L2([0, T]; H"}((;R")) such

that
udl — up, weakly in L2((0, T); W2 (Q;R")),

and N

)

% — v, weakly-star in L2([0, T], H 1 ((; R")),
so that we may easily obtain

T
07 ot

in a distributional sense. At this point, we provide more details about this last result.
Fixt € (0,T). Thus, there exists n € {0,1,--- ,N — 1} such that t € [nAty, (n + 1)Aty].
Let 9 € C®(Q2 x (0, T);R").
From this, we may infer that

/qu
uN

_ n+1
= /Q—At o(x,t) dx

(F(upi1), )12
Kolloll1,2,0, (510)

IA A

for some appropriate constant K9 > 0.
Hence,

// <pxtdxdt

Ky
o)

IN

IN

) (511)

for some appropriate K19 > 0.
Since such a ¢ € CX(Q x (0, T);R") is arbitrary, we may infer that
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N
du

<
o < Kis,

H-1(Qx(0,T);R")

for N € N, for some Kj5 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists vy € H~1(Q x (0, T); R")
such that, up to a not relabeled subsequence
oul N

TR weakly-star in H~1(Q x (0, T); R").

Ly ! dx d
/O/Q?(pxt—)/o/nvggoxt,

as N — o0, Vo € H}(Q x (0, T); R").
On the other hand

Therefore,

g’

02,0x(0,7) < Kie,

VN > Nj, for some K4 > 0.
From this and the Kakutani Theorem, there exists uy € L?(Q x (0, T); R") such that, up to a not
relabeled subsequence,
udl — uy, weakly in L2(Q x (0, T);R").

Now fix again ¢ € CX(Q x (0,T);R").
Observe that

T T
dedt = 1 / / N oy dx dt
/0 Luo¢t X NlE)l’lo 0 QMO Q)t X

. T aué\]

_ _zéli“oo/o /Q_at ¢ dx dt
T

— / / oo dx dt, (512)
0 O

Since such a ¢ € CX(Q x (0, T);R") is arbitrary, we may infer that

Ju
0= g

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

. oul dug
lim qu)dx—/ﬂwq)dx,

N—oo

Vo € HY (O, R").
Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

ué\lk(t) — up(x, t), strongly in L2(Q);R"), for almost all ¢ € [0, T].
so that, up to subsequences,
ué\]"(t)(x, £) = ug(x, ), a.e. in Q, for almostall t € [0, T].

Here we emphasise the sequence {Ni(f)} C N may depends on ¢.
Fixje{1,---,r}.
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Since g; is continuous we have that
gi(up™ ) (x,1)) = gi(uo(x,1)), ace. in Q, for almost all £ € [0, T].
Fix t € (0, T).
Let ¢ > 0. From the Egorov Theorem, there exists a closed set F such that m(Q\ F) < € and
ko € N such that if k > kg, then

187(up= Y (x,£)) — gj(uo(x,1))| < ¢, for almost all x € F.

Let ¢ € CX(Q)). Observe now that

5 50) = g 1)

< /|gju x,t>>—gj<uo<x,t>>||qo|dx

N
= [l 1) - gj(uo(xf)||4’|dx+/ 1810 (x,1)) = g; (o (v, )| || dix
< /Pan)noodw 1185056 5, 1)) = g0 )] Il e
N;
< ellpllom(QQ) + (|lg(u k())HO,Z,Q"'||gj(u0)||0,2,0)||§0||0,4,QHXQ\F||O,4,Q
< clpllem(©) + Katll pllos,am(©\ F)4
< e lglle m(Q) + K[l lloan €4, Vk > ko, (513)

for some appropriate constant Kp; > 0 which does not depend on ¢.
Since such a & > 0 is arbitrary, we may infer that

/g] (pdx—>/g] up)p dx, ask — oo,

Vo e C2(Q),Vjed{l, -, r}
Similarly, fixing j,p € {1,---,n},and ] € {1,--- ,m}, since gj, is continuous we have that

gjpl(ué\]k(t)(x, t)) = gipi(uo(x,t)), a.e. in O, for almostall t € [0, T].
Fix againt € (0, T)
Let ¢ > 0 (a new value). From the Egorov Theorem, there exists a closed set F; such that
m(Q\ F) < eand ko € N such that if k > ko, then

|81 (1 (t)(x t)) — gjpi(uo(x,t))| < e, foralmostall x € Fy.

Observe now that

< [ Igim (e t)) = g (wolae ) P+ [ g™ (x,) = gy, 1) P dx
< [ @axt [ lgin(0) — gl 0)Pxas 4

< szm(Q)—f—ZK%/)(Q\Fl dx

< &m(Q) +2Kie, Vk > ko. (514)
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Since such a € > 0 is arbitrary, we may infer that
[ 185010 = i1 (0) P dx = 0, as k = oo,
Vijpe{l,---,r},1e{l,--- ,m}.
Select again ¢ € C°(Q2). Since
119" = gjpi(110) o2 = 0, as k = oo
and
Vué\lk(t) — Vuy, weakly in L2(Q;R7™™),
we obtain,
‘/ g]pl “0);7 )Xz ¢ dx — / g]pl uo)((uo)p)x, ¢ dx
< d Ni(t) d
< g]pl Mo)p Ny @ dx — g]pl ug) ((10)p" )z, @ dx
\ [ & 0) (@) ), @ dx = [ gjpn(uo) (o)) e
< llgi(ug™") = g (o) llo2.0K7 19 llo
‘/ g]pl ug) ((uo)p ())Xz (de_/ g]pl ug)((uo)p)x, ¢ dx
— 0, ask — oo, (515)
Vijpe{l,---,r}, 1e{1,--- ,m}
From such results, for an arbitrary ¢ € C*(€);R"), we have
3 (1) "
_ ] g Nk(f)
0 = ,}gr;o(/n—at ¢ dx — (Fi(ug"™), ¢j)1
d(up);
= /Q o Lgjdx+€j(V(u0);, V)2 — (gi(uo), )12
- Z Z g]pl(uo )le(P]> <f]' (Pj>L2 (516)
p=1I=
so that, from this and by the density of C®(Q2;;R") in H}(Q; R"), we have got
d(up);
/Q o Pidx
= < (uO)]rV§”]>L2 + (gJ(MO) ‘P]>
T m
Z (jpt (10) (u0)p)x,, #7) 12 + {fjs #7) 12, (517)
p=11=1

Vjie{l,---,r}, Vo € HY(Q;R"), ae.onl0,T],
Observe now that
(O % (0,T)) = (0Q x [0, T]) U (3[0, T] x Q).

Let 9 € CX(Q2 x (0,T);R").

Hence
//—godxdt //8“0 dx dt.
N—)oo
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From this, since C°(Q x (0, T); R") is dense L?(Q x (0, T); R") we may infer that
. T 1 oul T 1 dug
dm [0 Spedxar= [0 [ TReda
Vo € L2(Q x (0,T);R").

Let ¢ € C*(Q x [0, T]; R") such that
¢(x,T) =0, in Q.

From such results, we may obtain

N%oo/ / ot q)dx dt
= lim —/ /uNa—(pdxdt—/uN(xO)go(xO)dx
N—o0 0 9t Q OV ’
/ / o, (P dx dt—/Quo(x,O)(p(x,O) dx. (518)

However, since ué\] — up, weakly in L?(Q x (0, T); R"), we obtain

lim/ /uo aq)dxdt / /uo 9 iy a.
N—o0

From these last results, we may infer that

R L N
/0”0 ¢(x,0)dx = lim | uj(x,0)¢(x,0)dx

_ /Q o (x,0) ¢(x,0) dx, (519)

so that

/Qﬁo(x)go(x,O) dx = /ng(x,O)q)(x,O) dx,

Vo € C*(Q x [0, T];R") such that ¢(x, T) =0, in Q.
Therefore, we may infer that 1 (x,0) = p(x) in this specified weak sense.
Similarly, it may be proven that

up =0, onaQ) x [0, T],

in an appropriate weak sense.
Hence, we have obtained that u is a solution, in a weak sense, of the parabolic non-linear system

in question.

64. A Note on the Convergence of the Finite Elements Method

In this section we develop some remarks on the convergence of the finite elements method.
This section is based on reference [18], Chapter 7.

For the proofs not presented here and for more details please see reference [18], Chapter 7.
We start by recalling the following classical result.

Theorem 12 (Lax-Milgram). Let V be a separable Hilbert space with a inner product

():VxV =R,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v

313 of 360

and related norm
l-1:V— Rt

llul| = \/(u,u), Vu e V.

Leta:V x V — R be a bilinear form such that

where

1.  ais continuous, that is, there exists M > 0 such that
|a(u,0)| < Mllul| [[o], Yu,0 €V,
2. ais coercive, that is, there exists &« > 0 such that
a(v,v) > «||v||?, Yu € V.

Moreover, let L : V. — R be a linear and continuous functional.
Under such hypotheses, there exists a unique u € V such that

a(u,v) = L(v), Vo € V.

Definition 2. Let V be a Banach space. We say that a sequence {V,, } of finite dimensional subspaces of V is a
Galerkin scheme for V' if for each v € V, there exists a sequence {vy} C U |V, where v € Vi, Vk € N, such
that

vx — v, strongly in norm, as k — oo.

Remark 30. Let Q) C R? be a polygonal set. A triangulation T of Q) is a finite union of subsets of Q, such that

1.
Q= UgerK,

2. Eachset K € T is a triangle,

3. Foreach pair K1, Ky € T, such sets are quasi-disjoints, that is, their interiors are disjoint.

We define

T)= jam(K) =
h(T) r}(ﬂg%(dzam() h,

where
diam(K) = sup{|x,y| : x,y € K}.

In such a case we also denote T = T,.
Moreover, we define

Vi, ={v e C(Q) : visaffineon each K € Ty, and v = 0, on 902 }.

We denote by a; the vertices in the triangulation Ty, where

je{l,--- I(h)}

Let {¢;} C V}, be such that
@j(ax) = O, V1 < j, k < I(h).
Here
1, Zf] =k,
Ojk = (520)
0, ifj #k.

Observe that { @1, , @y } is a basis for V.
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At this point we define
I(h)
Py(v) =) v(aj)gj, Yo e V.
j=1
Here we assume { T}, };,~¢ be a regular family of triangulations of ).
Let {hy,} C R" be a sequence such that
0<hyy1 < hy VneN,
and
lim h, = 0.
n—00
We denote Vy, = V), and P, = P, , Vn € N.
Consider the Ginzburg-Landau type equation
—AV2utaud —pu—f=0, inQ,
(521)
u =20, on Q.
Herey > 0,0 >0, > 0and f € L?>(Q).
Assume uy,, € V), is a weak solution of this last equation, in the following sense,
V{Vitn, V) 2 + ity @) 12
—Blun, @)1z = (f, 9)12,
= 0, Vg € V. (522)
We assume there exist ug € H} N WY (Q), r > 0, a1 > 0and M > 0 such that
arllu—o %,2,0
< V(1 —0),V(u—0))2 +a(38(u,0)(u—0), (4 —0))2 — p{(u — ), (u = v)) 2,
and

YV~ 0), V(e — )2 + (3820, 0) (1 — o), (1 — )12 — B{(u ), (14— ) 2
< Mlu—ollp0llu —wli20, (523)

Yu,v,w € Br(up).
Here 1i(u,v) is on the line connecting u and v so that

u? — 03 =30 (u —v).

Similarly as we have done in previous sections, we assume ug and r > 0 are such that we may obtain
up € Br(ug), Vn € N.

Also similarly as in the previous section, we may consider such a ball either related to the H} (Q) norm or
the W1 (Q)) one.

Let m,n € N be such that m > n.

Observe that u,, uy, € Vy, so that

YV, V (up — wm)) 2 + (it (1t — Um)) 2

—Bum, (un = um)) 2 = (f, (un = tm)) 2
— 0, (524)
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so that, for ¢ € V,;, we obtain

YV (= 1), V (s — )} 12 + (16 — 103,), (tn — ) 12

V(= @) 2+ a{ (1 — 143,), (n — 9)) 12
Un — @))p2
V(@ = )2+l (uy — 103,), (@ — ttn)) 2
( Um), (@ — tm)) 2
= YV (n — ), V(9 = tm)) 12 + (= 13,), (¢ — ttm)) 2
—B((un — tm), (¢ — tm)) 2. (525)

|
=
AAQ,—\
=
N
|
=
3
\—/\_/:—/\_/
—~
=
BN
|
=
3
~—
~
)
N}

|
e
=
B
|

Summarizing, we have got

YV (= 1), V (1t — thm)) 12 + (3 (4 — 1), (1 — thm)) 12
—B{(tn — tm), (tn — tim)) 2
= YV (= ttm), V(@ = ) 2 + a(3iLy (un — ), (¢ — tm)) 12
—B{(tn — tm), (¢ — tm)) 12 (526)

Vo € Vy, where il is on the line connecting uy, and uy.
Here we recall that xq > 0and M > 0 are such that

')/<V(1/tn - Mm), V(”n - um)>L2 ‘I— 0(<31/l~%(1/ln — um)/ (un — um)>L2
_ﬁ«u" - um)r (un - um)>L2

> apllun —umlisq (527)

and

YV (tn = ttm), V(@ — ) 12 + (3105 (g — tum), (¢ — tm)) 2

—B((un — um), (un — @)) 2
< Mllupm — up | — tm

1,2,0 1,2,/ (528)

where a1 and M does not depend on m, n.
From such results, we may infer that

| — tn

M
12,0 < ’x—1||um —¢ll120 Vo €V,

so that

([t — 1un

120 < a—]vllHum — Py (um)ll1 20, Ym > n.
Moreover, since u,, € H}(Q), there exists a sequence {v, = v{'} C C®(Q) such that
logt — umll120 — 0, as k — co.
From such results, for a not relabeled subsequence we have
vy = Uy, ae. inQ,
Vot = Vi, ae. in Q.

Lete > 0.
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From the Egorov theorem, for each m € N there exists a closed set Fy, C Q) such that m(Fy,) < €/2™ and
vy = Uy, uniformly in Q\ Fy,

Vot = Vuy, uniformly in Q \ Fy,.
Define F = U, _, Fy, so that
m(F) < Y (Fu) < ) /2" <e.
m=1 m

=1

Observe that there exists ko = ki’ € N such that if k > ko = ki, then

g — umll120 <&
and

08" = thmlleo,00F, < &
and

IVoR' — Vi o0\, <&
Fixing m € N we may find jy € N (which does not depend on m) and I,,, € N
!
1P (vy) = Pi(ur) lo2,00F < Kig,

and

IVP;(vf) — VP;(uy)

0,2,0\F < Ksg, V] > jO/ vVli>1l, €N, Vk > kl,

for some appropriate real constants K1 > 0, Ks > 0.
At this point we highlight that concerning the finite elements method ||t o is uniformly bounded in m
so that
{0 o k> ki, m € N}

is also uniformly bounded in m and k > k'
With such results in mind, fix n > jo and select m,, > max{n,k{},1,,} so that for Vm > my and k > kl!,
we have

|V, — VP, (v))

02,Q/Fy,

< NVuy — Vo' + Vo' — VP, (o) lo2,0/E,
< |\ Vum = Voillloga + Vo) — VPu(v)llo2,0/F,
< e+Ky/n, (529)

for some appropriate K7 > 0.
From such results, we may infer that

| wm — Pu(um))l1,2,0
< lwm = Pa(o') + Pa(0f') — Pu(um))) 12,0
< Mum = Pa(og) 12,0 + 1Pu(0F) = Pa(um) l 2,078, + [1Pa(0f") = Pu(um) 12,8,
< Ko(e+Ky/n+e'/?), (530)
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for some appropriate K9 > 0, so that
M
lum — unll1p0 < a—1||“m — Py(um) 1,20
< Kyole +Ky/n+€?), Ym > my, (531)
where M
Kig = Kg—.
10 9“1
Therefore, if p,1 > my, then
M
lu —unlli20 < a—l”uz = Pu(u) 120
< Kyole+Ky/n+e/?) (532)
and
M
lup —unll120 < “—1””;1 = Pu(up)ll120
< Kyole +Ky/n+€?), (533)
so that
g —uplliz,0 = lw —un+un—uplliz0
< lwp = unlli2,0 + lup — ualli2,0
< 2K10(€ +Ky/n+ 81/2). (534)

Consequently, from such results we may infer that {u,} is a Cauchy sequence in H}(QY) so that there

exists ug € H(Q) such that
Uy — g, strongly in H}(Q).

Let q) c UHENVVI'
Indeed, we have got

0 = lim (y(Vits, Vo) + (i, ¢)y2
—Bun, 4’>L2 —({f, @)12)
= Y(Vuo, Vo) 2 +a(u, ¢) 12
—Bun, 4’>L2 —(f, ¢)2- (535)

Summarizing, we may infer that

Y(Vug, V)12 + a{uj, ¢) 2

—Bun, @12 — (f, @)12
= 0, Yo € H}(Q). (536)

Therefore ug € HE(QY) is a weak solution of the equation in question so that, under the indicated hypotheses,
the finite element method is convergent.
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65. A Dual Functional for a General Weak Primal Variational Formulation
Combined with the Newton’s Method

Let QO = [0,1] C R and consider a weak variational formulation for a Ginzburg-Landau type
equation corresponding to a functional | : V x V — R, where

J(u, %) :/Qv]‘(—su”vLAu?’—Bu—f) dx,

wheree >0,A>0,B>0and f € Y = Y* = L?(Q).
Moreover u € V = W(}’Z(Q).
Observe that the variation in v of ], which stands for

o (u,v1) _

v}
corresponds to the following Ginzburg-Landau type equation
" 3 — i
—eu’ +Au’ —Bu—f=0,inQ.
In a Newton type approach context, we linearize such an equation about a initial solution ug € V,

obtaining,
—eu” +3Audu —2Aul —Bu—f=0,inQ.

With such results in mind, we define the functional J; : [V]?> — R, where
J1(u, ug, 07) = / vt (—eu” +3Aufu —2Aul — B u — f) dx.
Q

We also define the functionals F; : [V]> — Rand F, : V — R, where

K
Fi(u,up,07) = J1(u, up,v7) + E/ u? dx,
QO

and K
_K 2
F(u) = Z/Qu dx.

Moreover, we define the polar functionals F;' : [V]? x Y* — Rand F; : Y* — R as

Ff (up,v],2") = sup{(u,z*) ;2 — Fi(u, up,v7)},
ueVv

and

F(z") sup{(v,2%)12 — F(v) }

veY
= % /Q (z*)? dx. (537)
Finally, we define the dual functional J* : [V]2 x Y* — R by
J*(ug,v5,2%) = —Ff (ug,05,2%) + F; (z%).
Remark 31. Observe that

Fy (o, v}, 2") = sup{(u,2°) ;2 — Fy (1, u0,7)},
ueV
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and such a supremum is attained through the equation
] X *
$(<M,Z Y2 — Fi(u,up,07)) =0,
which stands for
z* — (—e(v})" + 3Aubv; — Bo}) — Ku =0,
so that
e(v})" — 3Aujv; + Buj + z*
u= .
K
Consequently, we may obtain
Ff(ug,v3,z%) = i/ (e(v})” — 3Audv; + Boj +z*)* dx
2K Ja
+ /Q (2413 + f)o} dx. (538)

Hence, the variation in v} of [*,
oJ* _ 9F(v])
v ov}

=0,

stands for
—eu” +3Audu —2Aul —Bu—f =0, inQ,
where, as above indicated,
e(v})" — 3Audv; + Boj + z*
u= K .

We have obtained a critical of J* through the following algorithm.

1. Setn=1,bpp =10"% 1y = 100, z; = 0 and choose (1)1 € V.
Calculate (v7), € V such that
9J* ((uo)n, (v1)n, z3)

ov} =0
3. Calculate u;, € V such that
oH (un, (uo)n, (UT)H/Z;D
= 0,

ou

where
H(u, (ug),vy,z%) = (u,z*) — F(u,up,07),

so that

e(vf)n — 3A(u0)7 (01)n + B(v])n + 7,

Uy = K

4. Set (up)py1 = uy and zj | = Kuy.
5. If |[(u0)n+1 — (M0)nlleo < bip OF 1 > Nypyy, then stop. Otherwise, n := n + 1, and go to item 2.
Here we highlight that if g = lim, .« 1, with corresponding limits 0] and 2* = Kily, the solution
of equation indicated in the item 2, given by
o (0, 97,2) _
v} ’

will stand for
—eff + A3 — Bilg — f =0, in Q.

We have obtained numerical results fore =0.1,A=B=1and f =1, in Q.
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For such an optimal solution 7y obtained please see Figure 44.

06 ]

0.2 ]

Figure 44. Solution il (x) through the dual functional for ¢ = 0.1.

Here we present the software in MAT-LAB through which we have obtained such numerical
results.

3 o 4 836 36 36 36 3 3 3 3 o o 38 38 36 36 36 3 3 3 S o S S 3

1. clearall
globalm8 dyoKuouzABelvl
m8=100;
d=1/mS;
K=10;
A=1;
B=1;
el=0.1;
z(:,1)=0.1*ones(ms,1);
yo(:,1)=ones(mS8,1);
uo(:,1)=1.2*ones(m8,1);
for i=1:m8
xo(i,1)=1.2;
end
b12=1.0;
k=1;
while (b12 > 1074) && (k < 100)
k
k=k+1;
b14=1.0;
kl1=1;
while (b14 > 107%) && (k1 < 35)
k1
k1=kl1+1;
X=fminunc(’funJune2024C10’,xo0);
b14=max(abs(X-x0));
x0=X;
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u(m8/2,1)

end;
b12=max(abs(u-uo));
uo=u;

z=K*u;

end;

for i=1:m8

x(i,1)=i*d;

end;

plot(x,u);

3438 36 36 36 3 3 3 3 o o A 434 36 36 3 K A A K K KN

With the auxiliary function "funJune2024C10", where

1.  function S=funjJune2024C10(x)
globalm8 dyoKuouzABelvl
for i=1:m8
v1(i,1)=x(,1);
end;
v1(m8,1)=0;
d2v1(1,1)=(-2*v1(1,1)+v1(2,1))/d%;
for i=2:m8-1
d2v1(i,1)=(v1(i+1,1)-2*v1(i,1)+v1(i-1,1)) /d?;
end;
for i=1:m8-1
u(i,1)=(el * d201(i,1) +z(i,1) =3 * A*xuo(i,1)> * v1(i,1) + Bxv1(i,1))/K;
end;
u(ms8,1)=0;
S=0;
for i=1:m8-1
S=S+(—el * d201(i, 1) * u(i, 1)) + v1(i,1) * 3% A xuo(i,1)? x u(i, 1)
—Bx0l1(i, 1) *u(i,1) + K*u(i,1)2/2 — yo(i,1) * v1(i,1) — 2% Ax uo(i,1)3 x v1(i, 1);
S=S —z(i,1) *u(i,1) — v1(i,1)2/2;
end;
S=-S;

34 434 34 6 3 S S S S A 43 3 NN A A A NN

66. A New Convex Dual Variational Formulation for a Galerkin Type Non-Convex
Primal One

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q.
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Consider a functional ] : V x [Y]?> — R where
1 u? v3 ?
J(u,v9,v1) = 5 /Q —eV2u + vou —f+u +K7 —i—K?O dx
2
1 u? v
+% /Q(vo — A(u? — B))? dx. (539)

Heree >0, A >0, B>0, K>0,f € [2(Q)NL2(Q),u €V =Wy*Q), 09,01 €Y = Y* =
L2(Q).
Observe that the minimization of ] corresponds to the solution of the following system of equa-

tions:
1/[2 ”02
—eV2u 4 vou — f + 0y +K5 +K?° =0,inQ,
2 2
0 +I<”3 +I<v2—0 —0,inQ,
and

vg — A(u®> — B) =0, in Q.

From such a solution we may obtain the solution of the following Ginzburg-Landau type equation:
—eVZu4+AW? —B)u—f=0,inQ,

which is our final objective in this section.
Define the approximate relaxed functional J; : V x [Y]2 — R where

€
J1(u,v9,v1) = J(uo,vo,v1) + 71 /QU% dx,

where €1 > 0 is a small real constant.
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Observe that

Ji(u,v9,v7) = —<—5V2u—|—vou—f—|—v1—l—K +K—,vl>

2
_ V2 _
2/( eVeu + vou f—i—vl+K2+K2> dx

2
<'01 —|—K +K 20 >
02
K K
2/ v+ 2 + 2 dx
1
2 * 2 2
(00— Au —B),v3>L2+§/Q(Uo—A(u _B))? dx
u? v3
+ —£V2u+vou—f+vl+K7+K70,zf{
L2
P
*
+ 01+K2 —|—K2
+<UO—A(u2 +5 / 0% dx
u}igfy{—(wl,vi‘hz—i-i/ﬂw% dx}
1
wlzl‘éf{ <w2,v§>Lz-|-§/Qw%dx}
1nf — (w3, 0%) z—i—l/wzdx
W3 3, V3/L 2 Q 3

2 2
+ inf { —€V2u+’00u—f+‘01 -I-Ku? -l-K?O,v’{
L2

A%

(u,09,01)EV X Y2

~|—<vo A(u”—B), §> ~|—%1 vldx}

= 5 [ enrar—g [(@Pdxc-; [ @2 ax

—F* (01,02,03) Vo = (v],v5,0v3) € AY, (540)
where
A* ={v* € [Y*]® : vj+v5 >0and v} <0, inQ, v} =0, ondQ}.
Also
F*(v") = F* (07,03, 03)

42 2
= sup {—<—£V2u+vou—f+vl-|—1< -I-KzO *>
L2

(1,00,01)EV XY?

2 2
—{ v +KLZ +K@,U§
272

. e
_<Z)Q —A(u® - B)'U3>L2 — El /Qv% dx}. (541)
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Hence, defining J7 : A* — R by

_1 *\2 _1 *\2 k(%
@) == [(@rdr—g [(@Pdx—3 [ @3 dr—F ),
we have obtained
inf J1(u,v9,v1) > sup Ji(0*).
(u,09,01)EV X[Y]2 ( ) v*eg* l( )

Remark 32. We highlight that for K > 0 sufficiently large, |{ is concave on the convex set A*. Moreover, this
last inequality is in fact an equality so that there is no duality gap between such approximate primal and dual
formulations.

66.1. A Numerical Example for a Related Similar Functional

In order to obtain numerical results we proceed in following fashion.
Firstly we define Q) = [0,1] C R and in a Newton’s method context, we linearize the Ginzburg-
Landau equation in question namely,

—eu + Au® —Bu—f =0, inQ
about an initial solution 1, obtaining the following approximate equation
—eu” +3Auju — 2Aul — Bu— f =0, in Q.

Now we define the functional J; : [V]? x [Y*]> — R, where

K
Ji (w,ug, wy,03,03) = <—su” +3Aufu —2Aul — Bu — f +wy + 2u2,vi‘> .
L

5 2 % _1 *\2 _1/ %12
+<w1+2u ,02>L2 2/0(01) dx 5 Q(02) dx. (542)

Again, similarly as in the Newton’s method approach, we obtain a quadratic approximation for
the non-quadratic terms

K
(0] +3),
2
expressed by
K
Ku?((v3)o + (v3)0) — Eu%(v’{ +03).

With replacements in mind, we define the functional J3 : [V]? x [Y*]> — R, where

J5 (1, ug, wy, 03,05, (07)o, (03)0) = <—£u" +3Aufu —2Au — Bu — f, UT>L2
K
+<K” (01)o + (2)o >L < 2“0:”1 + 02>
1
+(w1,vf+v§>Lz—§/ dx—f/ x.  (543)

Let 1 € V be such that

a]; (u/ Uup, W1, vy{/ U;, (U‘T)OI (UE)O)
Jou

so that we define the functional J§ : V x [Y*]> — R by

J3 (uo, wy, 01,5, (v7)o, (03)0) = J5 (8, ug, w1, 07,05, (v7 )o, (03)0).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v

325 of 360
The variation in v} of J; stands for
a];(uOI w1, U{/ U;, (’UT)O/ (UE)O) — a]ik(ﬁl Up, Wi, UT/'U;I (UT)O/ (05)0) o1l
00} ou v}
9J3 (1, ug, w1, 07,03, (7)o, (03)o0)
+ *
v}
o a];(ﬁ/ uO/wlrvT/ U;, (UT)OI (U;)O) (544)
o ov} '
Similarly, the variation of ] in v3, stands for
9J3 (uo, w1, 01,03, (07)o, (v3)0)  _ 9J3 (&, up, w1, 01,3, (vF)o, (03)0) O
Jv; ou dv;
+ a]; (uA/ Up, w1, UT/ ’Uzl (UT)O/ (UE)O)
Jv;
_ L3 m0,w1,01,05, (0o, (03)) 59
v} ’

Summarizing, a critical point of |3 must satisfy the following equations:

9J5 (8, o, w1, 01,3, (v3)o, (3 )o)

=0,
ou

which stands for
—&(v})" + 3Audv} — Bot + 2Ku((v})o + (v3)0) = 0,

9J5 (11, ug, wy, vy, v3, (v3)o, (v3)o)

ov} =0

which stands for
" 2 3 K 2 *
—eu” +3Auyu —2Auy — Bu — f +wy — U~ = 0,

9J5 (11, ug, wy, vy, v3, (v7)o, (v3)o)

= 0,
dv;
which stands for
wl—Eu%—vﬁ =0,
2
and * (4 * * * *
9J3 (@, 1o, w1, v}, 03, (v1)o, (v3)0) _
8w1 !
which stands for
vi +v5, =0.

It is worth highlighting such a system is linear in (u, wq, v}, v; ) so that we have obtained numerical
results, in a Newton’s method context, through the following algorithm.

1. Setn =1, by =10"% 1y = 100, (v3)o =04, (v3)0 = 0.4 and (up) = 1.2.
2. Calculate (uy, (w1)n, (07 )n, (v3)n) such that the following linear system of equations is satisfied

(a)

9J3 (4, (tt0)n, (w1)n, (03)n, (V3)n, ((©1)0)u, ((V3)0)n) _
ou !

(b)
9J5 (n, (tt0)n, (w1)n, (03)n, (v3)n, ((©1)0)w, ((V3)0)n) _
ov} g
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(©)
9J5 (4, (tt0)n, (w1)n, (03)n, (V3)n, ((01)0)u, ((V3)0)n) _
ov} !

(d)
9J3 (ttn, (10)n, (@1)n, (03)n, (¥3)n, ((¥3)0)m, ((©3)0)n) _ o

8w1

3. Set (ug)us1 = ttn, ((07)0)n+1 = (07)n, and ((93)0)n+1 = (03)n-
4. If||(u0)n+1 — (40)nlleo < b1z OF 11 > Myyay, then stop.
Otherwise 1 := n 4 1 and go to item 2.

We have obtained numerical results fore = 0.01, A=B=1and f =1, in Q.
For such an optimal solution 7l obtained please see Figure 45.

0.4 1

0.2 f H

Figure 45. Solution il (x) through the dual functional for ¢ = 0.01.

Here we present the software in MAT-LAB through which we have obtained such numerical

results.
33 3 34 3 e o e o 3 3 e S o e o e NS S

1. clearall
global m8 d youKel A B vl v2uo vol vo2 K1
m8=200;
d=1/mS;
K=10;
K1=38;
el1=0.01;
A=1;
B=1;
uo(:,1)=1.2*ones(mS8,1);
yo(:,1)=ones(ms8,1);
vol(:,1)=0.4*ones(mS8,1);
v02(:,1)=0.4*ones(mS8,1);
xo=1.2*ones(4*mS§,1);
bl14=1;
kl1=1;
while (b14 > 107%) && (k1 < 100)
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k1

k1=k1+1;

b12=1;

k=1;

while (b12 > 107%) && (k < 25)
k

k=k+1;
X=lIsqnonlin(’funJune2024DC25’,x0);
b12=max(abs(X-x0));
x0=X;

u(m8/2,1)

end;
bl4=max(abs(u-uo));
uo=u;

vol=vl;

vo2=v2;

end;

for i=1:m8

x(i,1)=i*d;

end;

plot(x,u);

R R R R R R L

With the auxiliary function "funJune2024DC25",

34 34 4 3 S S S A3 S AN

1.  function W=funJune2024DC25(x)
global m8 d youKel A B vl v2vol vo2 uo
for i=1:m8
u(i,1)=x(@,1);
v1(i,1)=x(i+m8,1);
v2(i,1)=x(i+2*m8,1);
w(i,1)=x(i+3*m8,1);
end;
v1(m8,1)=0;
u(ms8,1)=0;
d2v(1,1)=(=20v1(1,1) +01(2,1))/d%
d2u(1,)=(—2 % u(1,1) + u(2,1))/d%
for i=2:m8-1
d2v1(iD)=(v1(i +1,1) — 2% 01(i,1) + 01(i —1,1))/d?;
d2u@,D)=(u(i+1,1) — 2% u(i, 1) + u(i—1,1))/d%
end;
for i=1:m8-1
W(i,1) = —el xd201(i,1) + 3% Axuo(i,1)?> xv1(i,1) — B* v1(i,1) + 2 K*vol(i,1) * u(i, 1) +
2% K#*v02(i,1) % u(i,1);
W(i+m8,1) = —el *d2u(i, 1) +3* Axuo(i,1)?*u(i,1) —2*uo(i,1)>x A— Bxu(i,1) —yo(i,1) +
w(i, 1) — Kxuo(i,1)?/2 — v1(i,1);
W(i+2+m8,1) =w(i,1) — K*uo(i,1)>/2 — v2(i,1);
W(i+3%m8,1) =0l(i,1) +v2(i,1);
end;
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67. A Convex Dual Variational Formulation for a Burger’s Type Equation
LetQ=[0,1] C R.
Consider the Burger’s type equation
Viyy —U Uy =0, 1In(),
546
{ u(0) =1, u(l) =0. (546)
Here v > 0 is a real constant.
Define the Galerkin type functional | : V — R where
J(u) = 1/(vu — 1 y)? dx
- 2 a XX X 7
and
V={uecW2Q) : u(0) =1, and u(1) = 0}.
Denoting Y = Y* = [2(Q)), define F; : Vx Y* - Rand F, : V x Y* — Rby
o 1 _ * 2 212
Fi(u,v)) = 7 (Vixy — 1 uy + 0] + Ku” + Kuf)” dx,
Q
and 1
B(u,0}) = 5 /Q(zq + Ku? + Ku?)? dx,
respectively. Here K > 0 is an appropriate large real constant.
Definealso J; : V x Y* — R by
Ji(u,v1) = Fi(u,v7) + Fa(u,07),
Observe that
h(woy) = F(uor)+ B(u,01)
= —(0] + Vi, V)2 — (4, 03) 12 — (ux,03) 12 + F1 (1, 07)
—(v1,07)12 — (,05) 12 — (ux, 0g) 12 + Fa (1, 07)
(01 + Vit U312 + (4, 03) 12 + (i, 03) 12
+(0v1,07) 12 + (1, v5) 12 + (Ux, Vg) 12
> inf  {—(v1,05)12 — (v2,05) 12 — (v3,03) 12 + Fi(v1,02,03) }
(v1,02,03)€[Y]
+ inf  {—(01,07)12 — (02,03) 12 — (v3,03) 12 + Fa(v1,02,03) }
(v1,02,03)€[Y]?
+ inf  {(0] +vuxy, v)) 2 + (U, 05) 12 + (Uy, 03) 12
(u07)EVXY*
+(01,07) 12 + (4, 05) 12 + (ttx, Vg) 12}
= —F(03,03,03) = F (v7,05,05)
+v(v3)x(0)up(0),V(u,0]) € Vx Y*, Yo* € A*N B, (547)
where

A* = {v* = (v},v3,03,05,0;,07) € [Y*]6 s v(v))xx + 05 — (03)x =0, inQ},

B* = {v* € [Y*]® : vj >0, v5 >0, vj +05 =0, in Qand v}(0) = v}(1) = 0}.
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Moreover, denoting
- 1
Fi(v1,0p,03) = 5 /Q(vl — VU3 + Kv% + Kv%)2 dx,
and 1
Ei(v1,03,v3) = > /Q(vl + Kv3 + Kv?)? dx,
for v* € B*, we have
F (vy,v3,03)
= sup  {(v1,03) 12 + (v2,03) 12 + (03,05) 12 — Fi (01,02, 03) }
(Ul /02,03 ) € [YP
1 (20305 + 2K((v5)* + (v5)?)) 1 2
_ dx + = / 2 dy, 548
2(1(2_1)/0 UZ x+2 0(04) x (548)
F; (v3,v5,0¢)
= sup  {(01,07) 12 + (02,05) 12 + (03,05) 12 — Fa(01,02,03) }
(01,02,03)€[Y]?
1 (03) 1o (vg)? 1
_ 1 d —/Ld —/*2(1. 549
iKJo o VIR Jo o X 07 A 549)

Here we define J* : [Y*]® — R by
J*(0") = —Fj (v}, 03,03) — 5 (07,05, 05) + v(03)(0)uo(0)-
It is worth highlighting we have got

inf  Ji(u,07) > sup J*(v%).
(M,UT)EVXY* v*E A*NB*

Finally, we also emphasize that J* is convex (in fact concave) in the convex set A* N B* so that we
have obtained a convex dual formulation for an originally non-convex primal dual one.

Remark 33. The conditions which define B* must be replaced by those concerning the reqularized set
Bl ={v* € [Y']® : v} >¢ 05 >¢ v} + 05 =3¢ in Qand v} (0) = vj(1) = ¢}

for an appropriate real constant 0 < & < 1. Therefore, through B}, we may define an approximate dual
formulation so that will be particularly interested in the system behaviour as

e—0T.

68. A Convex Dual Variational Formulation for an Approximate Navier-Stokes
System

Let Q C R? be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q2 = S.
Consider the approximate incompressible and time independent Navier-Stokes system, where

szu—uux—vuy—Px:Q
szv—uvx—vvy—Py:Q
VZP—i—ui—i—vﬁ—f—Zuyvx =0, in ),
u:uo,?]:v(),P:P(), ono() = S.

(550)
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Here v > 0 is a real constant. Moreover, n denotes the outward normal field to () = S.
Define the Galerkin type functional | : V — R, where
py = 1 V2 P)%d
J(u,0,P) = 5 Q(v U—uuy—0u, — Py)"dx
1
t5 /Q(vvzv —uvy —v o, — Py)?dx
1
+§ /Q(VZP +ul + vﬁ + 2uyvx)2 dx, (551)

and
V={u=(u,0,P) € W2A,R? : u=uy, v=uvyand P = PyondQ}.

Denoting Y = Y* = [?(Q), define F; : VXxY* = R K :VxY" - R F:VxY" — R,
Fi:VxY* >R FE:VxY" —-Rand Fy: VxY* = Rby

1
Fi(u,v5y) = > /Q(I/VZM — 1 Uy — v ty — Py + Ku? + Ku? + Ko + Ku§ +v5y)? dx,

Fy(u,vgy) = % /Q(vvzv —u vy — v vy — Py + Ku? + Ko + Ko? + Kvi +vy)? dx,
F3(u,v5y) = % /Q(V2P +ul + vﬁ + 2uy vy + Ku? + Kvi + Ko2 + Ku§ + v39)? dx,
Fy(u,v5y) = % /Q(Ku2 + Ku? 4+ Kv? + Ku§ + vi)? dx,

F5(u,vg) = % /Q(Ku2 + Kv2 + Ko? + Kvﬁ +0%y)? dx,

and
1
Fo(u,070) = 5 /Q (Kuj + Ko} + Ko} + Kuj, + v39)? dx,

respectively. Here K > 0 is an appropriate large real constant.
Define also J; : V x [Y*]> = R by

J1(w,v50,60,970) = Fi(u,v5) + F2(u, vgp)
+F3(u,v79) + Fa(u,v5)
+F5(u,vg0) + Fs(u,079)- (552)
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Observe that
J1(uw, 050,050, v70) = Fi(w,v50) + F2(u,v50)
+F3(w,v79) + Fa(u, 05)
+F5(u, v59) + Fo(u,v7)
= —(0% + vV — Py, 0}) 2 — (,03) 12 — (1, 03) 2

—(v,v3) 12 — (uy, v5) 12 + Fi(w,v5)
— (v} +vV?0 — Py, vg) 2 — (u,05) 12 — (02, 03) 12
—(v,95) 12 — vy, v10) 12 + F2(u, vgp)
— (V30 + V2P, vi1) 12 — (1, 03) 12 — (0, 033) 2
—(vx, Vi) 12 — (uy, 015) 12 + F3(w,v7)
—(v50, Vi6) 12 — (U, Vi7) 12 — (U, Vig) 12
—(v,079) 12 — (uy, 030) 12 + Fa(u, v59)
—(v60, 021) 12 — (1, 0p2) 12 — (0x, V33) 2
—(v,v34) 12 — (vy, 35) 12 + F5(u, vgp)
—(v70,026) 12 — (Ux, V27) 12 — (0, V28) 12
—(vx, v39) 12 — (uty, 030) 12 + Fo(u, v79)

(v +VV2U — Py, 07) 12 4 (1, 05) 12 + (1, 05) 2

+(0,v3) 12 + (uy, v5) 2

+(vgo +vV?0 — Py, 08) 12 + (1,05) 12 + (02, 0§) 12

+(v,v9) 12 + (vy, 07p) 12

+(039 + V2P, v}y ) 12 — (ux, 03) 12 — (0, Vi3) 2

+(0x, Vig) 12 + (1y, 015) 12

+(050, v16) 12 + (4, V17) 12 + (U, V1g) 12

+(v,v19) 12 + {1y, 39) 12

+(060,v21) 12 + (4, V22) 2 + (0x, V33) 12

+(0,034) 12 + vy, U35) 12

+(070,v26) 12 + (Ux, Va7) 12 + (vy, V3g) 12

+(vx, v39) 12 + (Uy, v30) 12- (553)
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From such a result, we obtain
J1(w, v50, Vg0, v70)
> inf ~ {—(01,07)12 — (v2,v3) 2 — (v3,03) 12
(v1,++ vs5)€[Y]5
—(04,v3)12 — (vs,03) 12 + Fi (01, -+, vs)}
(v6,~~,i£§)e[y}5{_<v6’ V)12 — (07,07)12 — (v8,V5) 12
—(v9,v8) 12 — (v10,95) 2 + F2(v6, -+ ,010) }
(011,---%11;115)6[1/]5{_(?}11,UT1>L2 = (012,012) 12 — (013, 013) 12
—(v14,074) 12 — (015,015)12 + F3(011, -+, 015) }
(016,.“2120)6[1(]5{—(016/ 016) 12 — (017, 017) 12 — (v18, U1g) 12
—(019,v19) 12 — (020,v39) 12 + Fa(v16, - -, v20) }
(021,---,025)€[Y]5{_<021,v§1>L2 — (022, v35) 12 — (v23,033) 12
—(024,v34) 12 — (025,V35) 12 + F5(v21, -+ ,v25) }
(026,“};130)6[Y]5{—(0261 v36) 12 — (027, 037) 12 = V28, V28) 12
—(vz9, 039) 12 — (v30,v30) 12 + Fo(v26, - - -, 030) }
inf {(v8o + vV2u — Py, v7) 12 + (4, 03) 2 + (14x, 03) 12
T W 0% 02 Ul EV X [Y]P
+(v,v3) 2 + (uy, v5) 2
—(vgo + vV?0 = Py, 08) 12 + (1,05) 12 + (03, 08) 12
+(v,v9) 12 + vy, 070) 12
+(039 + V2P, 0}1) 12 + (x, 055) 12 + (0, 013) 2
+ (02, V1) 12 + (Uy, 075) 2
+(050, V16) 12 + (4, V17) 12 + Uz, V1g) 12
+(v, Vi) 12 + {1y, v30) 12
(060, V21) 12 + (U, V22) 12 + (0, V23) 12
+(0,034) 12 + (Vy, U35) 12
+(070, V26) 12 + (Ux, Va7) 12 + (0y, V2g) 12
+(0x, 39) 12 + (Uy, V30) 2}
= —F(v],-,05) = E(vg, -, 05p) — B (011, -+, vis)
—Ff (vig, -+ ,v39) = F5 (031, -+, 035) — Fg (v, -+, 03)
v /m uo(Vot -n) dS +v /aQ 20(V0: - ) dS + /aQ Py(Vol, -n) dS, (554)
if v* = (v],---,05) € A" NB*, where A* = A} N A; N A3,
A7 = {v*e [Y*]%° - szvi‘ +v5 — (v3)x — (V5)y
vy — (Vip)x — (V14)y + 017
—(v1g)x — (v30)y — v3p — (v39)y = 0, in O}, (555)
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A5 = {v*e [Y*]30 N +1/VZUZ — (vg)x — v
—(v10)y — (v15)x + V19 — (023)x
+034 — (035)y — (v3g)y — (V39)x =0, in O}, (556)
Ay = {0 e Y] 1 (v])x+ (0f)y + VZvi; =0, inQ}, (557)
B* = {v*e [Y*]30 : 0]+ 0]y =0, vg +v5 =0, v]; +05 =0,
v] >0, vg >0, v]; >0,
V] >0, v37 >0, v5 >0, inQ),
v] =vg =v}; =0, on o0} (558)

Moreover, denoting

. 1
Ei(v1,---,v05) = 2 /Q(vl — VU3 — VU5 + Kv% + Kv% + Kvi + Kv%)2 dx,

N 1
E(ve, -+ ,v10) = 5 /0(1;6 — V708 — V9V + Kv% + Kvé + Kv% + Kv%o)2 dx,

- 1
F3 (011, e, 015) = E /Q(Ull + U%Z + U%g + 2014015 + KU%Z + KU%3 + KU%4 + KU%S)Z dx,

- 1
Fy(v16, -+ ,v20) = 5 /0(016 + Kol + Kuig + Kvig + Kvgy)? dx,
- 1
F5(021, e ,'025) = E /0(021 + KU%Z + K’U%?) + K'U%4 + K'U%S)z dx,

- 1
F6(026r e ,'030) = E /0(026 + K'U%7 + KU%S + KU%g + K’U%O)z dx,

we have

F (v}, ,03)
= sup  {(v1,07) 12 + (02,03) 12 + (03,03) 2
(01, ,05)€[Y]
(v, 03) 12 + (vs,05) 12 — By (01, -+ ,v5)}
_ 1 / 2050} + 2050% + 2K((05)% + (03)? + (v])% + (0%)?)
0

d
2(4KZ 1) o *

—1—%/0(01‘)2 dx, (559)
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E(vg,--- ,v1p)
= sup  {(ve,v5) 12 + (v7,07) 2 + (vs, 05) 2
(vs,- v10) €Y
(v9,05) 12 + (010, V9) 2 — Fa(vg, - -+, 010) }
B 1 / 20505 + 20505 + 2K((U;)2 + (Z)§)2 + (U;)2 + (vi‘o)z) "
-~ 2(4K2-1) Jo v}
1
+5 /Q (0)? dx, (560)
ﬁ:f(vﬁr' “+,Us5)
= sup {(v11,011) 12 + (v12,07) 12 + (13, V13) 12
(011, ,v15) €Y
(014, 054) 12 + (015, 075) 12 — F3(v11, - -+ ,015) }
S By C EY[(CA GRS (U N R
4(K2=1) Jo 0t
1
+5 /Q(v’{l)z dx, (561)
FZ(”T@' “,U30)
= sup {(v16,v16) 12 + (017, 017) 12 + (v18, Vg 12
(v16,+ 020)E[Y]®
<'019, UT9>L2 + <U20/ U;0>L2 - F2(Ul5/ o 1020)}
_ 1 / ((v37)* + (v1)* + (©59)? + (050))
4K Jo 0{6
1 2
+5 /Q (v7)? dx, (562)
ﬁg(vélf' ", 035)
= sup {(v21,031) 12 + (v22,039) 12 + (23, V23) 12
(021, vp5)€[Y]®
<UZ4/ v§4>L2 + <U25, U;5>L2 - ﬁ5(021/ e 1025)}
_ i/ ((v3)> + (035)* + (v3)* + (v35)%) dx
4K Jo 77;1
1
+5 /Q (03)? dx, (563)
Fé*(vé&' “,039)
= sup  {(v26,036) 12 + (027, V37) 12 + (V28, V3g) 12
(026, v30) EY]?
(v29,039) 12 + (030, U30) 12 — Fe (025, - -+ ,v30) }
_ i/ ((v37)* + (035)* + (v39) + (v35)%) dx
4K Jo 036
1
+5 /Q(v%)2 dx. (564)
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Here we define J* : [Y*]3° — R by

(") = —F (v, ,05) = F(vg,- - ,05) — B (07, -, 075)
—FI(UT@' “,03) —?5*(7’;1/' S+, U35) —F§(v§6,--- ,030)

inf J1(w, 050,060, v79) = sup  J*(0%).
(0,020,080 05 EVX[Y]3 v*EA*NB*
Finally, we also emphasize that J* is convex (in fact concave) in the convex set A* N B* so that we
have obtained a convex dual formulation for an originally non-convex primal dual one.

Remark 34. Here we highlight the conditions which define B* must be appropriately reqularized through a
small parameter
O<ekl,

similarly as we have done in the previous section.

69. A D.C. Type Dual Variational Formulation for a Burger’s Type Equation

In this section we shall write a primal Galerkin type variational formulation for a Burger’s type
equation as a difference of two convex functionals (the so called D.C. approach) and establish a related
convex dual variational formulation.

Let Q) =[0,1] CR.

Consider the Burger’s type equation

(566)

Viyy —U Uy =0, inQ),
u(0) =1, u(1) =0.

Here v > 0 is a real constant.
Define a Galerkin type functional | : V — R, where

J(u) = %/Q(vuxx —u ux)2 dx,

and
V={ueW"2Q) : u0) =1, and u(1) = 0}.
Denoting Y = Y* = [2(Q), define F,F, : V x Y* — Rand F3,F; : V — Rby
1 K K
kN _ L _ * 2 22 X1 2 X1 2 4
Fi(u,v3) 2/0(1/11” u uy + vay + Ku® + Kuy)” dx + 5 /Qu dx + > /qu x,
1 Ky Ky 2
F(u,v3y) = 5 /Q(v’go + Ku? 4 Ku?)? dx + > /Quz dx + 5 /qu dx,
Ki [ 2 Kl/ 2
F = — _
() = /Qu dx+ 5 [l ax
and
Ky 2 Kl/ 2
E = — =
1 (1) 5 /Qu dx + > qudx,
respectively.
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Here K, K; > 0 are appropriate large real constants such that
Ki > K.
Definealso J; : V x Y* — R by

J1(u,v59) = Fi(u,v5) + F(u,v5y) — F3(u) — Fa(u),

Observe that

inf u,vy) =0
(u,vgo)EVXY*h( ! 50) !

so that, denoting

- 1 K
Fi(v1,0p,03) = = /Q(Ul — o3 + K‘U% + Kv%)2 dx + 71 /Q(vz dx + —/ v3)? dx,

2

- 1 K K
F>(vg,05,06) = E/ﬁ(%—i—Kzﬁ—i—KU%)z dx + 71/0(174)2 dx + 71/0(05)2 dx,
= _ K 2 Ky 2

F3(z1,22) = 5 /Q(Zl) dx + 5 /Q(Zz) dx,

- K K
Fizm) = 5 [ (@ ax+ 5 [ o) a

we have

+ F>(u,v59) — F3(u) — Fy(u)
12— (Ux,23) 12 + Fi(u,v50)
— (ux,z3) 12 + B2 (u, 050)
+ (ux, z3) 12 — F3(u)
12 + (ux,z3) 12 — Fa(u)
— (ux,23) 2 + Fi(u, v50)
—(u,z3) 12 — (ux, z3) 12 + F2(u, 050)

+ sup {(z1,20) 12 + (22, 23) 12 — F3(21,22)}
(zl,zz)EY

sup {(z3,23)12 + (24,23) 12 — Fa(2z3,24)}
(z3,24)€Y

= —(z1,u)p2 — (ux,23) 12 + F1(u,05)
—(u,23) 12 — (Ux, 23) 12 + F2(u, v50)
+F(25,25) + B (z4,25), Yu eV, (z,---,2) € [Y']4 (567)

0<Ni(u,v5) = F(u,05

Ux,2

IA
|

Ux,2

From such results, similarly as obtained in [5], we may infer that
0= inf u,vs
(u,vgo)GVth( 50)

inf  {—(u,z],)12 — (ux,25) 12 + Fi1 (1, 05)
(u,0%,)EV XY

—(u,z3) 12 — (ux, 23) 2 + Fa(u,050) }
+E5(23,25) + Ff(23,23), V25 = (z5,- -+ ,z}) € [Y*]4. (568)

IN
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On the other hand, observe that

—(u,27, )12 — (Ux, 23) 2

—(Vitxx + U5, 07 )12 — (1, 03) 12 — (ux, 03) 12 + F1 (1, v59)
—(u,z3) 12 — (ux, z3) 12

—(vs0,06) 12 — (, 03 )12 — (ux, 05) 12 + Fa(u, v50)

(
(

Vilxy + 050,07 ) 2 + (1, 05) 12 + (U, 03) 2

+

+(v50, ) 12 + (4,01 ) 12 + (U, U5) 2

inf —(v9,z — (3,2
(01,02,03)€ [Y]a{ (v2,21)12 — (v3,22) 12

<Ulr01> — (02,03)12 — (v3,03) 2 + F1(01,02,03) }

" (v4,05, Ue)G[Y] { (v4,23)12 = (05, 24) 12

Y]

—<776r V)12 — (va,03) 12 — (vs,05) 12 + Fa(v4, 05,06) }

inf  { (Vi + 050, 07) 2 + (4, 03) 12 + (Ux, 03) 12
u,v5))EVXY

(
+(v50,V6) 12 + (4, 0) 12 + (x, v5) 2}

*

= —F(v],v3,03,2],25) — F5 (v, 0%,0¢, 23, 23) — v(0])x(0)u(0), (569)

ifv* = (v3,---,v) € A* N B*, where
A* = AT N AL,
A7 ={0* € Y*]® : v(v])x + 05 — (v3)x + 0} — (v3)x =0, inQ},
={v* € [Y*]® : v; +vi =0, v} >0, v; >0, inQ},
and
B* = {v* € [Y*]® : v}(0) = v}(1) = 0}.

At this point we recall that

Fi (v1,03,03,21,23)
= sup  {(02,27)12 + (v3,23) 12
(v1,02,03)€[Y]?
+(v1,07) 2 + (02,93) 12 + (03,05) 12 — F1(v1,02,03) }
Ky [ (05 +2z7)2 4 (0} +25)?
= — dx
2 (ZKUT +Kq)%2— (v’l‘)2
+/ (00)2((v5 +2}) (v5 + z5) + K(v3 + 23)? + K(v5 + 23)?)
(2Kv; + K1)2— (v 1)2

dx

-3 /Q (0})? dx, (570)

F; (v}, v5,05,23,23)
= sup  {(v4,23)12 + (v5,25) 12
(v4,05,06)€[Y]3

+(ve, vg) 12 + <v4, vy)2 + <?75/ v3) 12 — F2(v4,05,06) }

(v; +z3 + (vi +z4 /
_ 7
2/ ko)) T2 (571)
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F(z1,z3) =  sup {(z1,2])p2 + (21,2])12 — B3(21,22)}
(z1,22)€[Y]?
= L/ (z*)2 dx—l—i/ (z*)2 dx (572)
2K1 O 1 2K1 0O 2 !
and
Bz = sup {{za,2)+ (27 — Fa(zs,29)}
(23,24)€[Y]?
—— / (252 dx+ —— [ (23)2 dx (573)
T 2K Ja 2Ky Jo 't ‘

Moreover, for Ky > 0 sufficiently large, up to a restriction for the dual variables related to a ball of
radius proportional to Kj, from the standard results on convex analysis and duality theory, we have

(ulvggng{*W/ZT/hZ — (ux,23) 2
(it + 08, 05) 12 — (1,03, )12 — (112, 03) 12 + Fy (1,08
—(u,z3) 12 — (Ux, 23) 12
— (050, V)12 — (1,03, ) 12 — (ux, 05) 12 + F2 (11, 050) }
= sup {—F(v],03,03,21,23) — F5 (0,05, 05, 23, 23) — v(0])x(0)u(0)}. (574)

v*e A*NB*

Consequently, from such results and (568) we have got

0= inf , U3
(u,v;SleVXYh (u USO)

Z7€Y"  prearnB
+F5 (2,25) + Ff(23,23) }- (575)

< inf{ sup {—F*(vf, 03,03, 21,23) — (0}, 03,03, 25,24) — v(0})+(0)u(0) }

Therefore, defining J* : [Y*]'* — R by

J'(*,2") = —F(v],03,93,21,23) — F* (v}, 05,05,23,23) — v(07)x(0)u(0)

+F (21, 23) + Fi (23,21), (576)
we have got

0= inf  Ji(u,vi)) < inf sup J*(v%,z") .
(u,v8))EV XY ze[Y*]* (oreA*nB*
Finally, we also emphasize that J* is concave in v* on the convex set A* N B* and convex in z*, so
that, after the supremum evaluation in v*, we have obtained a final convex dual formulation in z* for
an originally non-convex primal dual one.

70. A Convex Dual Formulation for the Rank-One Approximation of a
Non-Convex Primal One

In this section, we develop a convex dual formulation for an approximate rank-one primal
formulation found in some vectorial phase transition models.

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0().

Define a functional | : V — R by
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2
J(u) = %/Q <"‘z‘jkl <§—Z; —ﬁij> (%’; - ,Bkl)) dx — (u;, fi) 2,

where {a;j; } is a a fourth order constant positive definite and symmetric tensor, {8;;} € RN, f =
(f1, f2, f3) € L2(Q;RN) and
V =Wy (RY).

From now and on we denote Y = Y* = L2(Q) and

Yl — Yl* _ [Y]3N+N+3+1.

Definealso F; : Y] = R, F : Y| — Rand F3 : [Y]N*3+1 — Rby

Fi(w,¢,1,vs0)
_ 1 2 2 2
= E/Q(‘xijkl(wij_ﬁij)(wkl_,Bkl)+K|§| + K| +050> dx, (577)
N 3
K 2
By (w,&1,050) = Y ) - / (wij — &mj+ KIE + Ky |* + Uso) dx,
iz 2 /o
and K )
_ M 2 2
Ba(&mos0) = 5 [ (KIEP+ Kl +os0)
respectively.
Here K, K; > 0 are real constants such that K; > K > 1.
Moreover, define
]1(14,7,0,6,77,05())
= —(&mj (v7)ij) 2 + F1(w, &, m,050)
+F(w, ¢, 1,vs0) + F3(¢, 17, v50)
ou; , ,
+<a—l (Ul)ij> — (ui, fi) 2. (578)
x] 2
L
Observe that
]1(1/[,30,6,77,7]50)
> lnf - iti, U* 17 +F w,q,n,0
= (cj,vy)e[YP*N{ <‘:z’7] ( 1)1]>L2 1(w,¢,1,v50)
+P2(w/ 6/ 1, 050) + P3(€r n, 050)}
. ou; , ,
+141211;{<a_36;’(01)ij> _<uirfi>L2}
12
= —F5(07), Vo € A, (579)
where
Fy(i) = sup  {{Gmj (v7)ij)12 — Fr(w, &, 1,0s50) — Fa(w, &, 1,050) — F3(&, 17, vs0) }
(&melY]3tN
and

At ={v; € Y'PN ¢ (v]);;+ fi=0,Vie{l,---,N}, inQ}.
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On the other hand

W
= —(inj, (v1)ij) 2 + Fi(w, &, 1, 0s0)
+Fx(w,&,1,vs0) + F3(&, 17, vs0)
= —(Cinj, (v1)ij) 2 — (wij, (W1)ij) 12 — (Gi, (03)i) 12
1, (03) )12 — (vs0, V) 12 + Fi(w, &, 17, v50)
Wij, (w2)1]>L2 —(Gi, (v3)i) 2
1j, (v6)j) 12 — (vs0,07) 12 + F2(w, &, 17, 0s0)
Gir (vg)i) 2 — (1, (v9)) 2
50, U1o>L2 + F3(w, ¢, 1,v50)
Dij) 2 + (G, (03)i) 2
2+ <U5O, U4>L2
ij)z + (i (05)i) 2
12 + (050, 07) 12
12+ (17, (09)) 12 + (vs0, V1p) 2 (580)

+

—(
—(
—(
—(
—(
(w
<77( )]
(w
(
(Ci

£ 3

=

~

—~

g

N %
\/\/\/\/v

77]/( 6)j
+ 8)i

Thus,

144
> inf {—(C,‘Uj, (UT)ij - <wij/ (wf)ij>L2 — (G, (v3)i) 12

(w,¢,1,050) €Y
—(nj, (v3)j)12 — (vs0,v3) 12 + Fi(w, &, 1,050) }

+ (wgﬂlrz}sf) {—(wij, (w3)ij) 12 — (Gis (05)i) 12

—(1j, (vg)j) 12 — (vs0,v7) 12 + F2(w, &, 17,050) }
+ inf {=(Gi, (vg)i) 12 — (mj, (v9)) 12

(6177/050)6[Y]3+N+1
—(vs0,v10)12 + F3(w, &, 17,0s0) }

+ inf {<wij/ (w7)ij) 12 + (Gi, (03)i) 2
w,¢,1,050) €Y

(
+(1j, (03); >L2 + (vs0, v3) 2
<w11r (w )1]>L2 + (Gis (v5)i) 12
( )

< )

+

+(j, (v6)) 12 + (vs0,07) 12
i, (08)i) 12 + (1, (v3) ) 12 + (vs0, V10) 12 }
= —F(w],v],05.03,0;) — F5 (w3, v3,vg,07) — F5 (v§, 05, v5),
V(w*,v*) € A%, (581)

+

0" = (o}, 3,3, 3, 08, 04, 05, 08, 03, 03) € V2N = 13,

A3 = {(w"v")eYy xY; : (wi‘)ij—i— (w;)ij =0,Vvie{l,---,N}, Vje€{1,2,3},inQ),
(03)i + (v5);i + (v5); =0, Vie {1,--- ,N}, inQ,
(03);+ (vg); + (v5); =0, Vj € {1,2,3}, inQ
v + v+ 0], =0, inQ}, (582)
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A5 ={(w",0v") €Yy xY;5 : v] € AT},
and
A* = A3 N A;.
Furthermore,
i (i, o7, v3,03,v3)

= sup  {(&imj, (01)ij) 12 + (wij, (w1)ij) 2 + (Giv (03)i) 12
(w,&1,050) €Y1

+(1j, (v3))) 12 + (v50,93) 12 — Fi(w, &, 17, 0s0) 3, (583)

T3 * * * *
Fy (wy,v35,v5,07)

= sup  {{(wij, (w3)ij) 2 + (G, (v5)i) 12
(w,&,11,050) €Y1

+(11j, (08)j)12 + (v50,03) 12 — F2(w, &, 1, 050) }, (584)

F3 (v§, v5, v7)
= sup {(8i, (08)i) 12 + (), (vg) )12
(&m,050)€[Y]PHN+1
+(vs0, v19) 12 — F3(&,77,v50) }- (585)
Denoting
I (w*,0%) = —F (w],v1,v3,v3,v3) — F5 (w],v5,v5,v7) — F5 (v5,05,04),
we have got

i f > i f r Yy orltls
;QV](L{) o (u,w,@,iy,lvr;())EVxYl h(u @ C T USO)

> sup JH(w,00). (586)
(w*,v*)eA*

Finally, we emphasize J* is a convex (in fact concave) functional.

71. A Dual Variational Formulation for a General Non-Convex Primal One

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).
Consider a functional | : V — R where

J(u) = %/QVu-Vudx
-l-% /Q(u2 — B dx — (u,f)2, (587)
where y > 0,& > 0,8 > 0and f € L?(Q).

Hereu eV = W&’Z(Q) and we denote Y = Y* = L2(Q).
At this point, we define the functionals F; : V =R, K : VXY — Rand F3 : V — R, where

Fi(u) = %/QVu-Vu dx,
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F(u,v) = ﬁ/ (u? — B+0)? dx—l—E/ w?dx — (u, f)p2;
7 2 0 2 o) 7 L2r
and
K 2
F(u) = E/Qu dx,
for some constant K > 0.
Moreover, we define
3
V1 = {M eV . ||u||oo < E}
and the following polar functionals
Fi(v1,2") = sup{(u,01 +2%) 12 — Fi(u)}
ucv
(v +27)°
= ; 588
2/ 'yV2 ax (588)
Fy(vi,09) = sup  {{u,—o7)p2 + (v,09)12 — Fa(u, 0)}
(uv JEV XY™
(—oi+f)?
= dx
2 200 +K
+ﬂ /Q(Uo) dx-i—ﬁ/QvO dx, (589)
if vy € B*, where
K
B* = {vé €Y 1 120500 < §}
and,
F(z") = sup{(v,z%)p2 - B(0)}
veY
1 2
= — ¥ . 590
5% @ ax (590)
Finally, denoting
5
D = {v; €Y i =0+ flleo < ZK},
we also define J{ : D* x B* x Y* — Rby
Ji(v1,0,2") = —F(01,27) = B (01,09) + F5(27)
K1 vl +z¢ z 2
—V2 K|,
Kl Ul +f z* 2
_ 1
2 205 +K K 591)

Observe that if Ky > 0 is sufficiently large, then J; is convex in (v],z*), Vo§ € B*.
Let (97,95,2%) € D* x B* x Y* be such that

SJ1(97,05,2) = 0.
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From such a concerning convexity of J; in (v},z*) we may infer that

J:(6%,6%,2%) < Ji (vl 00,2), Vo € D*,2* € Y*,

In particular fixing u € Vi, for v} = (2v§ + K)u and z* = Ku, we obtain

S~
— %
—
(&
— %
N
D
O *
<
D>
*
N—

Ji(v1,20,27)

* * ’)/
—(u,v] +z >Lz+§/QVu-Vu dx

IA

K
+<u,v;>Lz+<uZ,ag>Lz+5/Qu2 dx
K
—<”rf>L2+<“/Z*>L2_E/Q“2 dx
1 a3k \ 2 Ak
_ﬂ/ﬂ(%) dx—ﬁ/ﬂvodx

2
Ky || —yV2u+205u— f
2 —yV2

+

0,2

IN

sup {% /Q Vi Vidx + (u?,05) 12 — (u, f) 2

vpEY*
—i/(v*)zdx—ﬁ/ vy dx
22 Jo 00 070
2
Ky || —7V?u + 205u — f

+ 2 —yV2

02
_ T ) @ 2_ g2
= Z/QVu Vudx+2/0(u B)- dx

2
—yV2u +205u — f
—V2

~{u fp o

02
2

—yV2u+20%u — f
2

= () + 5

(592)

0,2

Summarizing, we have got

2
—yV2u + 205u — f
2

Kq
2

Ji(67,06,2%) < J(u) + ,Vu e V.

0.2
Let ug € V be such that

2

~| M

Assume ug € V7.
Similarly as in the previous sections, we may prove that
A% 2
0o = a(ug — B),
8] (ug) = —yV2uqg + 269ug —f=0,

and
J(uo) = J1(91,95,2%),
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so that

—yV2u+205u — f
_'sz

ueVy

() = mm{ﬂuw?

Ak A% pk

2
0,2}
= Ji(%1,%,2")

_ f * */ A*, *Y 593
(v;,z*)lgD*xY* Ji(v1,95,27) (593)

The objective of this section is complete.

72. A D.C. Type Duality Principle Suitable for Non-Convex Variational
Optimization

In this section we develop results concerning a D.C. approach inspired by the results of ].J. Telega,
W.R. Bielski and co-workers, [1-4] and Toland, [5].

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q).

Consider a functional | : V — R where

J(u) = %/()Vu-Vudx
+2 /Q (2 — B)? dx — (u, )2, (594)

where e > 0,4 >0, 8> 0and f € L?(Q).
Hereu € V = Wé’z(Q) and we denote Y = Y* = L2(Q).
At this point, for a large constant K; > 0, we define the approximate functional J; : V x Y — R,

by
Ji(u,0) = E/ Vu-Vudx—l—g/(v—ﬁ)zdx
1 7 - 2 a 2 a
Ky
5 0= dx =, f)pa. (595)
We define also the functionals F; : V - R, KL :Y >R, F5: VXY - R,and F; : V — R, where
I3
Fi(u) = E/OVu-Vu dx — (u, f)12,
_“ _p)2
0)=5 [ (0P dx
_K 2 5/ 2
F(u,v) = 5 /Q(v u)dx+2 U dx
and

K 2
== d
5 | e,

Moreover, we define the following polar functionals

for some appropriate constant K > 0.

F(07) = sug{—<u,vT>Lz—F1(u)}
ue
_ —] +f)?
- 2/ ey W (56)
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F(0) = Sgﬁ{@,vﬁhz—Fz(v)}

1

- o / (03)? dx + B / o5 dx, (597)

F(v1,05,2") = sup {(u,0] +2")p2 — (v,03)12 — F3(u,0) }
(u,0)EVXY

_ Ul +z 1 w12
_ 2 ik S ix s e /Q (05)? dx, (598)

if v5 € B*, where
K
B* = {vﬁ EY* 1 205 ]|00 < E}

and,

Fi(z*) = Slé};{<w12*>Lz—F4(W)}

- % /Q (2°)? dx. (599)

Finally, we define
5
D* = {z* €Y' ||z < ZK}’

and J; : D* x B* x Y* — Rby
Ji(v1,03,2%) = =F (v1) = B (v3) = F5 (07,02, 27) + Fy (27).

Let 1 € R be such that

inf ,0) = 1.
(u,v;lngYhO/l 7]) M

Observe that

v < Ji(u,0)
= F(u) + R(0) + F3(u,0) — F(u)
= —(u,z% 2+ F(u)+ F(v) + F(u,0)
+(u,2") 2 — Fa(u)
—(u,z*) 2+ F1(u) + B(v) + F3(u,v)
(

+sup{(w,z*);2 — Fa(w)}
weyY

= —(u,z%p+F(u)+ k() +EKuov)+F((z), VueV,veY, zf € D*. (600)

IN

From such results we may infer that

ap < inf {—(u,z")2 +F(u) + F(v) + F(u,0)} + F (z").
(uv)eVxY
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On the other hand, for an appropriate value of K > 0 and z* € D*, from standard results in
convex analysis, we have
inf  {—(u,z")2+ F(u)+ E(v) + F3(u,0)}
(uv)eVxY
= sup  {—F(v7) = By (03) — F5 (07,02, 27) ). (601)
(v,v5)EY* X B*

Joining the pieces, we have got

ar < sup {=F(07) - K (vy) - B (01,03, 27) } + Fi(27),
(v7,03)€Y* < B*

so that
w< infd sup {—F(0]) - Fi(e3) — (o], 05,2)} + Fi(=) b,
Z°E€D" | (v1,08)€Y* xB*
that is,
vy = inf  Ji(u,v) < inf sup  J;(v],03,2%)
(u0)€VxY Z°€D" | (07,05)€Y* xB*

Let (03,03,2%) € D* x B* x Y* be such that
O] (07,05,2°) = 0.

Let (19,v9) € V x Y be such that

and

Similarly as in the previous sections, we may prove that

01 (ug,v9) =0,

and
Ji(ug,vo) = J (97,05,2%),
so that
Ji(uo,v0) = Ji(97,05,27)
= s [ELonE). (602)

(v3,v3)EY* x B
The main objective of this section is complete.

72.1. A Numerical Example

We have obtained numerical results for an one-dimensional case where, O = [0,1] CR, A =B =
1, f=2and
1. CaseA:e=0.1
2. CaseB:e=0.01
3. CaseC:e=0.001.

For the optimal solutions 1y € V obtained for the cases A,B and C, please see Figures 46, 47 and
48, respectively.
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Solution u((x) through the dual functional for the case A, ¢ = 0.1.

Solution ug(x) through the dual functional for the case B, ¢ = 0.01.
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0.6 . . . . . . . . .

Figure 48. Solution ug(x) through the dual functional for the case C, ¢ = 0.001.

Here we present the software in MAT-LAB through which we have obtained such numerical
results.

1. clearall
globalm8d AByoel Kle2uzKv2
m8=100;
d=1/mS§;
yo(:,1)=2*ones(m8-1,1);
z(:,1)=1.2*ones(m8-1,1);
A=1;
B=1;
e1=0.001;
€2=0.00000001;
K1=1000000;
K=30;
for i=1:2*(m8-1)
x0(i,1)=0.7;
x1(1,1)=1.1;
end;
b14=1.0;
k7=1.0;
while (b14 > 10~%) && (k7 < 70)
k7
k7=k7+1;
b12=1.0;
k=1;
while (b12 > 107%) && (k < 10)
k
k=k+1;
X=fminunc('funJuly2024A1’,xo0);
b12=max(abs(X-x0));
x0=X;
u(m8/2,1)
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end;

z=K*u;
bl4=max(abs(x1-x0));
x1=xo;

end;

for i=1:m8-1
x(i,1)=i*d;

end;

plot(x,u);

B R R S X s X

With the auxiliary function "funJuly2024A1", where

3 o 6 8 36 36 36 36 36 3 3 3 o o 4 38 36 36 3 3 3 3 A S X X K

1.  function S=funJuly2024A1(x)
globalm8d AByoel Kle2uzKv2
m2=zeros(m8-1,m8-1);
yl=ones(m8-1,1);
for i=2:m8-2
m2(i,i)=-2.0;
m2(i,i+1)=1.0;
m2(i,i-1)=1.0;
end;
m2(1,1)=-2.0;
m2(1,2)=1.0;
m2(m8-1,m8-1)=-2.0;
m2(m8-1,m8-2)=1.0;
for i=1:m8-1
v1(3i,1)=x(1,1);
v2(i,1)=x(i+(m8-1),1);
end;

S =1/2%(—vl+yo)" *inv(—el * m2/d?) * (—vl +yo) +v2' *v2/2/ A+ B*v2' *yl;
for i=1:m8-1

S =S+ (v1(i,1) +z(i,1))?/ (2% v2(i,1) + K) /2 + v2(i,1)2/2/K1;

end;

u = inv(—el xm2/d?) x (—vl + yo);

3 3 o S 4 4383836 36 36 36 3 3 3 o o 8 838 36 36 36 36 3 3 3 3 o o 4 38 3% 36 36 36 3 S S S S 3

73. A Concave Dual Variational Formulation for an Originally Non-Convex
Primal One

In this section we develop results also inspired by the approach found in the articles of ].J. Telega,
W.R. Bielski and co-workers, [1-4] and Toland, [5].

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q.

Consider a functional | : V — R where

J(u) = %/QVu-Vudx

+5 [0 = B dx = (u, f)pz, (603)

where ¥ > 0,4 > 0,8 > 0and f € L?(Q).
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Consider also the functionals F; : VXY - R, : V xY — Rand F5: V — R, where

1
Fi(u,05) = %/QVM-Vudx—i—E(uZ,vS)Lz
K
+E/Qu2 dx — (u, f)2

1 *\2 *
—ﬂ/ﬂ(vo) dx ﬁ/ﬂvo dx,

F(u,v5) = %/QVLL-Vudx
1, K
+§<u2,’00>[‘2+5‘/0u2 dx,
F3(u) =K/ u? dx,
Q

for some appropriate constant K > 0.

Moreover, we define the following polar functionals

ueV

B 1/ (0f +2*/2+ f)?
 2Ja(—yV2+205)/2+K

Z*
Ff(v],v5,2") = sup{<u,vi‘+§> —Fl(u,v(’g)}
2

dx

1 *\2 *
"‘ﬂ/ﬂ(vo) dx—l—ﬁ/ﬂvo dx,

*

E5(vi,v5,2") = sup{<u,—vi‘+%> —Fz(u,zf(;)}
L2

ueV

1 (-0t +2*/2)2
= —/ dx,
2 Ja (—yV2+205)/2+K

if vy € B*, where

K
B — {vg €Y : [208]le < Z}'

and,

F5(z") = sup{(w,z");2 — F3(w)}

weY

1 *\2
= = dx.
4K/Q(Z )* dx
Finally, we define
At ={z"eY": fz*>0,inQ},
* * + * 5
D*=3z"€ A" : |z ||oo§§K ,
and J; : Y* x B* x D* — Rby

J2(v1,05,2%) = —F (v1,05,2%) = By (01,09, 2") + F5 (27).

Observe that the variation of ] in v] stands for
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i +z/24f —0v] +2"/2 _0
(—yV24+205)/2+K = (—=yV2+205)/2+K
so that
207 + f = 0.
The variation of 5 in z* stands for
RO R CO S W L SR
2(=yV2+205)/2+K 2(=yV?+4+205)/24+K 2K
Finally, the variation of |5 in vj stands for,
1 vi+z/2+f 1 —v} +2*/2 2y s—0
2\ (=yV2+20v})/2+K 2\ (=yV2+20v)/2+K ® e
With such results in mind, we define the functional J; : Y* x B* x D* — R, by
J3(v1,0,2%)
K
= J(5,95,2%) - S 11201 + £l
+8K2 1 op+z/24f 0 1 —0] +2z"/2 +i 2
2 2(=yV2+205)/2+K  2(=V2+205)/2+K  2K||,
2
B S R I
2 12\ (—VZ+205)/2 +K 2\ (—7V2+205)/2+K x 0

Observe that for K, > 0 sufficiently large J5 : E* — R is concave in v} on E*, where

JE(v3) = sta (US,Z*)GB*XD*]Q*(UT,vé,z*),
and
E*={v] € Y" : |20} + f|le < 5}.

Let (0%F,05,2%) € E* x B* x D* be such that
1- 9
0J5(97,05,2) = 0.

Let uy € V be such that

2%
T 2K

Similarly as in the previous sections, we may prove that

Up

5](1/1()) =0,

and
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so that

J(wo) = J5(01,%,27)

= sup J3(v3,9,£)
T)TEE*

= sup J5(v7)

*
vjEE*

— ). (610)
The main objective of this section is complete.

74. A Dual Variational Formulation for an Originally Non-Convex Primal One

In this section we develop results also inspired by the approach found in the articles of ].J. Telega,
W.R. Bielski and co-workers, [1-4] and Toland, [5].

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q).

Consider a functional | : V — R where

J(u) = %/QVqudx
—l—% /Q(u2 —B)?dx — (u, f)2, (611)
where y > 0,4 >0, > 0and f € L2(Q).

Hereu e V= W&’Z(Q) and we denote Y = Y* = L?(Q).
Consider also the functionals F; : V. — Rand F, : V x Y — R where,

S . 5/ 2
F(u) = Z/QVu Vu dx+2 . dx, (612)
Fy(u,v5) = <u2 )12
2——/ u? dx
1
— / (03)? dx — B / o5 dx (613)

for some appropriate constant K > 0.
Moreover, we define the following polar functionals

Fi(o) = sup{(n,0i)2— Fi(u)}
ueV

1 (v7)?
2Joviir ™ (619

and

Fy(v1,00) = inf{<u/UT>L2—F2(u/US)}

_ (o1 +f)° f dx
2 21)0

—|—ﬂ/0(03) dx+ﬁ/nvg dx, (615)
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if vy € B*, where
K
B — {v;; €Y' ¢ 1205l < E}'
Finally, we define
AT={ueV: fu>0inQ},
4 3
Vi=ueAt . ||u||oo§§ ,
v 3
D* = L= Al 1 < =
{v © H—WV“rKHOO_Z}
and J; : D* x B* — R by
J2(v1,v5) = —F(01) — F; (07, 0p).
Observe that the variation of J5 in v] stands for
I T e
o1 —yV2+K 205 —K '
On the other hand, the variation of J; in v stands for
—0i+f\*_ %
—= _ —_— = —= 0’
P2 <2v;; - K) x P
so that )
v¥ v
1 0
—(—=t—) -2 —pg=o0.
s (—’sz + K) « P
With such results in mind, we define the functional J; : D* x B* — R, by
J5(v1,0p)
= J2(v1, %)
+K2 . —o; + £
2| —yV2+K  2v5-K||,
2
Kz —7]1‘+f 2 Z)E]k
to (21)0——1( i (616)
0,2

Here we assume K, > K > max{1,«,8,7v,1/«,1/v}.
Let (93,0;) € D* x B* be such that

0J5(97,05) = 0.
Let uy € V; be such that
—YV2+K

Similarly as in the previous sections, we may prove that

uo

0] (ug) =0,
and

J(uo) = J5 (91, 0p)-
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Moreover, at a critical point of J5 we have ¢1 = ¢, = @3 = 0 so that,

’J; (07, 05) 2
a(vy)? o),

9J; (v3,v5) ’
Avy)? o),

and with the help of software MATHEMATICA, at a critical point, we may obtain

%] (v}, v8) K3(—yV? + dau?® + 20})?
d“{ 0t o0, 22+ KK —2vpp T O >0

With such results in mind, since

6] (uo) = —yV?ug + 2a(ug — B)ug — f =0,

necessary, we may infer that there exist r,r; > 0 such that

—yV2u+20(u? — B)u — f
—yV2+K

Jw) = inf ){1<u>+§2

joining the pieces, assuming an approximate finite dimensional version for the model in question, if
uGBr(uo

2
0,2}
J5(01, %)

= inf J3(v1,v5)- (617)

(vl,vO)EBr1 (07,9
The main objective of this section is complete.

75. A Convex Dual Variational Formulation for an Originally Non-Convex Primal
One

In this section we develop results again inspired by the approach found in the articles of ].J. Telega,
W.R. Bielski and co-workers, [1-4] and Toland, [5].

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by Q).

Consider a functional | : V — R where

J(u) = %/QVM-Vudx
+5 =B dx = (u, f)pe, (618)
where ¥ > 0,4 > 0,8 > 0and f € L?(Q).

Hereu e V= W&’Z(Q) and we denote Y = Y* = L?(Q).
Consider also the functionals F; : V —+Rand F, : V x Y — R where,

_ . 5/ 2
F(u) = Z/QVu Vu dx+2 Qu dx, (619)
Fy(u,vp) = <u2 V)12
frre — 2/u dx
21oc/ (v5) dx—,B/ vy dx (620)
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for some appropriate constant K > 0.
Moreover, we define the following polar functionals Fj" : Y* — Rand F; : Y* x Y* — R where,

Fi(o1) = S:€{<MIUT>L2_F1<M)}

1 (v7)?
= 2Javiak ™ o2

Fy(v1,00) = inf{<u/UT>L2—Fz(u/US)}

_ (zor+f)° f dx
2 200

+ﬂ /Q(vo) dx+‘B/QUO dx, (622)
if v € B*, where
B — {vg EY* ¢ 2050 < g}

Finally, we define
AT ={ueV : fu>0inQ},

Vl = {u S At ||u||oo < g}/

D+={v{ey* : fvv—;H(_o 1nQ}
% 3
D*=3vieD" : | —=+—1 <=
{vle H—W“rKHm_Z}
and J; : D* x B* — R by
J>(v1,v5) = —F(01) — F; (07, 0p).

Observe that the variation of J5 in v] stands for

B A .0
—yV24+K 205 -K 7

On the other hand, the variation of J; in v stands for
—vf + f 2 vt
1 =) - _pg=0
< 205 — K ) o ’

v} 2_vg_ﬁ_0
—yVZ+K « -

With such results in mind, we define the functional |3 : D* x B* — R, by

so that
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J5(v1,95)
= J(v1,9)
+K2 . —o; + £
2 —yV2+K 205 K|,
2
K2 —”01‘~|-f 2 Z)a
—“ = —— - 623
+2 (203—K o P (623)
0,2

Observe that for K, > K > max{1,«,,v,1/a,1/7} we have that J; is convex in (v}, v;) on D* x B*.
Let (93,0;) € D* x B* be such that
5J3(07,95) = 0.
Let ug € V be such that
A%
—yV2+K

Similarly as in the previous sections, we may prove that

uo

0] (ug) =0,

and

so that from a concerning convexity,

Juo) =J3(01,%0) = . inf T (@1%0).

Fix o] € D*. Let u € V; be such that
—01+f

T 25—k

where 7 € B* is such that
o5 = a(u® — B).
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From these results and definitions we may obtain
J(uo) = J3(21,%)
— f * *I *
(v3,95 )lgD* x B* s (’01 UO)
J3 (1, 95)
= —F(0]) + (wo1)p2
+E/(u2—ﬁ)2dx—(u f) 2—5/ u? dx
2 Jo S 2
2
+K2 —yV2u +205u — f
2 —yV2+K 0
o
< +§/Q(u2— Zdx —(u, f)2 — = /u dx
2
+& —yV2u +205u — f
2 —yV2+K 0
=7 Vu-Vudx—l—g/(uz—,B)zdx—(uf)z
2 Jo 2 Ja 7/ /L
2
LK —yV2u + 205u — f
2 —yV2+K 0s
g+ K| Ve 2 plu— f 2 (624)
Since
8] (ug) = —yV?ug +2a(uf — B)uo — f =0,
joining the pieces we have obtained
2
: Ko || =7V?u +20(u® — B)u — f
— inf 22
J (uo) ulgvl{](u) + > —V2+K 0.2
J3 (%1, %)
— b (00, (625)

(vi,v§)ED* xB*
The main objective of this section is complete.

76. A Duality Principle and a Related Convex Dual Functional Suitable for
Non-Convex Local Optimization

In this section we develop a new duality principle with a related convex dual functional.
Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9Q).

Consider a functional | : V — R where
-7 :
J(u) = > /QVu Vu dx
+5 02— B dx = (u, f)pz, (626)

where v > 0,4 > 0,8 > 0and f € L?(Q).
Hereu e V= Wg’Z(Q) and we denote Y = Y* = L?(Q).
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Define the functionals F; : V x Y* - Rand F, : V — R by
Fi(u,v5) = %/QVu-Vu dx + (1%, v}) 12
€ 2
5 [ dx =, ),
1 . .
~% /0(00)2 dx—ﬁ/ﬂvo dx, (627)
and .
B(u) = [ v
2 (1) 5 /Qu dx,
where & > 0 is small real constant such that ¢ < 1.
Define also the polar functionals Fj : Y* x Y* — Rand F; : Y* — R by
F(o1,00) = stauev{(u,07)2 — F(1,v)}
B A .
 2Ja—V24+20i4e
1 *\2 *
+ﬂ/0(vo) dx—f—,B/QvO dx, (628)
and
Fy(v1) = sup{{w,v);2 — Ba(w)}
weL?
-1 / (0%)2 dx (629)
T 2ot ’
Moreover, define
B* ={vj € Y" : ||2v5]| < K/2},
Dt ={vf €Y* : v} f>0,inQ},
and
D*={o] € D" : [o]]l < 1}.
Assuming K; > max{vy,«,B,1/a,K,1} and
1
- > Kl/
€
define [* : D* x B* — R by
J*(v1,00) = —F(v1,09) + By (07)
ok o +f 2
—Kql|=20 S L A— 630
-2 ﬁ+<—7Vz+203+€) (630)
02
Clearly, we have
PJ*(v1, vp)
——5 - =0(1/¢) >0,
9(v})?
and 2 )
J* (01,95 >
2SN (K
3(0;)? Olfa/e) <0,
on D* x B*.
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Let (97,9)) € D* x B* be such that

Since [* is convex in v] and concave in vj on D* x B*, from this and the Min-Max theorem we
may infer that

J*(01,99) = inf {SUP I*(vi‘,vé)}.

;
vpeDb* v} EB*

Let ug € V be such that

Similarly as in previous sections we may obtain

8] (ug) =0,

and
J(uo) = J*(97,95)-

Joining the pieces, we have got

J(uwo) = J*(1,%p)

= inf {sup ]*(vi‘,vg)}. (631)

V1 ED" | B
Remark 35. Defining ;' : D* € R by

* [, % * [,k Lk
Ji(01) = sup J*(v7,0p),
vy EB*
we have that | is convex in D* as a supremum of a family of convex functions in vy.
In such case, we have

J(uo) = J*(91, %)

= inf {sup ]*(v}‘,vé)}

vi€D" | ppeB
— : f * *
UTIQD* Ji(v1)
= J). (632)
The objective of this section is complete.

77. Conclusions

In the first part of this article we have developed a relaxation proposal and duality principles
suitable for a large class of models in physics and engineering.

In a second part we develop duality principles for the quasi-convex envelop of some vectorial
models in the calculus of variations.

We highlight such dual variational formulations established are in general convex (in fact concave).

Finally, in the last sections, we develop mathematical models for some types of chemical reactions,
including the hydrogen nuclear fusion and the water hydrolysis. Among such results, we highlight our
proposal of modeling the Ginzburg-Landau theory in super-conductivity as a two-phase eigenvalue
approach.
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