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Abstract

This article develops duality principles and numerical results for a large class of non-convex variational
models. The main results are based on fundamental tools of convex analysis, duality theory and
calculus of variations. More specifically the approach is established for a class of non-convex functionals
similar as those found in some models in phase transition. Moreover, we develop a general duality
principle for quasi-convex relaxed formulations for some models in the vectorial calculus of variations.
Concerning applications of such results are presented for a non-linear model of plates and for non-
linear elasticity. Finally, in some sections we present concerning numerical examples and the respective
softwares.

Keywords: duality theory; non-convex variational analysis; numerical method for a non-smooth
model

MSC: 49N15; 35A15; 49J40

1. Introduction
In this section we establish a dual formulation for a large class of models in non-convex optimiza-

tion. It is worth highlighting the main duality principle is applied to double well models similar as
those found in the phase transition theory.

Such results are based on the works of J.J. Telega and W.R. Bielski [1–4] and on a D.C. optimization
approach developed in Toland [5]. About the other references, details on the Sobolev spaces involved
are found in [6]. Related results on convex analysis and duality theory are addressed in [7–13].

Similar models on the superconductivity physics may be found in [14–16].
At this point we recall that the duality principles are important since the related dual variational

formulations are either convex (in fact concave) or have a large region of convexity around their critical
points. These features are relevant considering that, from a concerning strict convexity, the standard
Newton, Newton type and similar methods are in general convergent. Moreover, the dual variational
formulations are also relevant since in some situations, it is possible to assure the global optimality of
some critical points which satisfy certain specific constraints theoretically established.

Among the main results here developed, we highlight the duality principles for the quasi-convex
formulations in the context of the vectorial calculus of variations. An important example in non-linear
elasticity is addressed along the text in details.

Also, for the applications in physics in the final sections, we believe to have found a path to
connect the quantum approach with a more classical one in a unified framework.

Indeed, we have presented a path to model a great variety of chemical reactions through such a
connection between the atomic and classical worlds.

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,
unless otherwise indicated.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


2 of 360

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological space, as
the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be represented
by another Banach space U∗, through a bilinear form ⟨·, ·⟩U : U × U∗ → R (here we are referring to standard
representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U → R linear and continuous,
we assume the existence of a unique u∗ ∈ U∗ such that

f (u) = ⟨u, u∗⟩U , ∀u ∈ U. (1)

The norm of f , denoted by ∥ f ∥U∗ , is defined as

∥ f ∥U∗ = sup
u∈U

{|⟨u, u∗⟩U | : ∥u∥U ≤ 1} ≡ ∥u∗∥U∗ . (2)

At this point we start to describe the primal and dual variational formulations.

2. A General Duality Principle Non-Convex Optimization
In this section we present a duality principle applicable to a model in phase transition.
This case corresponds to the vectorial one in the calculus of variations.
Let Ω ⊂ Rn be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.
Consider a functional J : V → R where

J(u) = F(∇u1, · · · ,∇uN) + G(u1, · · · , uN)− ⟨ui, hi⟩L2 ,

and where
F(∇u1, · · · ,∇uN) =

∫
Ω

f (∇u1, · · · ,∇uN) dx

f : RN×n → R is a three times Fréchet differentiable function not necessarily convex. Moreover,

V = {u = (u1, · · · , uN) ∈ W1,p(Ω;RN) : u = u0 on ∂Ω},

h = (h1, · · · , hN) ∈ L2(Ω;RN), and 1 < p < +∞.
We assume there exists α ∈ R such that

α = inf
u∈V

J(u).

Furthermore, suppose G is Fréchet differentiable but not necessarily convex. A global optimum
point may not be attained for J so that the problem of finding a global minimum for J may not be a
solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.
We intend to use duality theory to approximately solve such a global optimization problem.
Define V0 = W1,2

0 (Ω;RN) and

V0(u) = {ϕ ∈ V0 : supp ϕ ⊂ B(u)},

where
B(u) = {x ∈ Ω : f ∗∗(∇u(x)) < f (∇u(x))}.

Moreover, Y1 = Y∗
1 = L2(Ω;RN×n), Y2 = Y∗

2 = L2(Ω;RN×n), Y3 = Y∗
3 = L2(Ω;RN), so that at

this point we define, F1 : V × V0 → R, G1 : V → R, G2 : V → R, G3 : V0 → R and G4 : V → R, by
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F1(u, ϕ) = F(∇u1 +∇ϕ1, · · · ,∇uN +∇ϕN) +
K
2

∫
Ω
∇uj · ∇uj dx

+
K2

2

∫
Ω
∇ϕj · ∇ϕj dx (3)

and
G1(u1, · · · , un) = G(u1, · · · , uN) +

K1

2

∫
Ω

uj uj dx − ⟨ui, fi⟩L2 ,

G2(∇u1, · · · ,∇uN) =
K1

2

∫
Ω
∇uj · ∇uj dx,

G3(∇ϕ1, · · · ,∇ϕN) =
K2

2

∫
Ω
∇ϕj · ∇ϕj dx,

and
G4(u1, · · · , uN) =

K1

2

∫
Ω

uj uj dx.

Define now J1 : V × V0 → R,

J1(u, ϕ) = F(∇u +∇ϕ) + G(u)− ⟨ui, hi⟩L2 .

Observe that

J1(u, ϕ) = F1(u, ϕ) + G1(u)− G2(∇u)− G3(∇ϕ)− G4(u)

≤ F1(u, ϕ) + G1(u)− ⟨∇u, z∗1⟩L2 − ⟨∇ϕ, z∗2⟩L2 − ⟨u, z∗3⟩L2

+ sup
v1∈Y1

{⟨v1, z∗1⟩L2 − G2(v1)}

+ sup
v2∈Y2

{⟨v2, z∗2⟩L2 − G3(v2)}

+ sup
u∈V

{⟨u, z∗3⟩L2 − G4(u)}

= F1(u, ϕ) + G1(u)− ⟨∇u, z∗1⟩L2 − ⟨∇ϕ, z∗2⟩L2 − ⟨u, z∗3⟩L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)

= J∗1 (u, ϕ, z∗), (4)

∀u ∈ V, ϕ ∈ V0(u), z∗ = (z∗1 , z∗2 , z∗3) ∈ Y∗ = Y∗
1 × Y∗

2 × Y∗
3 .

From the general results in [5], we may infer that

inf
(u,ϕ)∈V×V0(u)

J(u, ϕ) = inf
(u,ϕ,z∗)∈V×V0(u)×Y∗

J∗1 (u, ϕ, z∗). (5)

On the other hand

inf
u∈V

J(u) ≥ inf
(u,ϕ)∈V×V0(u)

J1(u, ϕ).

From these last two results we may obtain

inf
u∈V

J(u) ≥ inf
(u,ϕ,z∗)∈V×V0(u)×Y∗

J∗1 (u, ϕ, z∗).

Moreover, from standards results on convex analysis, we may have
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inf
u∈V

J∗1 (u, ϕ, z∗) = inf
u∈V

{F1(u, ϕ) + G1(u)

−⟨∇u, z∗1⟩L2 − ⟨∇ϕ, z∗2⟩L2 − ⟨u, z∗3⟩L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)}

= sup
(v∗1 ,v∗2)∈C∗

{−F∗
1 (v

∗
1 + z∗1 , ϕ)− G∗

1 (v
∗
2 + z∗3)− ⟨∇ϕ, z∗2⟩L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)}, (6)

where
C∗ = {v∗ = (v∗1 , v∗2) ∈ Y∗

1 × Y∗
3 : − div(v∗1)i + (v∗2)i = 0, ∀i ∈ {1, · · · , N}},

F∗
1 (v

∗
1 + z∗1 , ϕ) = sup

u∈V
{⟨u,− div(z∗1 + v∗1)⟩L2 − F1(u, ϕ)},

and
G∗

1 (v
∗
2 + z∗2) = sup

u∈V
{⟨u, v∗2 + z∗2⟩L2 − G1(u)}.

Thus, defining

J∗2 (ϕ, z∗, v∗) = F∗
1 (v

∗
1 + z∗1 , ϕ)− G∗

1 (v
∗
2 + z∗3)− ⟨∇ϕ, z∗2⟩L2 + G∗

2 (z
∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3),

we have got

inf
u∈V

J(u) ≥ inf
(u,ϕ)∈V×V0

J1(u, ϕ)

= inf
(u,ϕ,z∗)∈V×V0(u)×Y∗

J∗1 (u, ϕ, z∗)

= inf
z∗∈Y∗

{
inf

ϕ∈V0

{
sup

v∗∈C∗
J∗2 (ϕ, z∗, v∗)

}}
. (7)

Finally, observe that

inf
u∈V

J(u)

≥ inf
z∗∈Y∗

{
inf

ϕ∈V0(u)

{
sup

v∗∈C∗
J∗2 (ϕ, z∗, v∗)

}}

≥ sup
v∗∈C∗

{
inf

(z∗ ,ϕ)∈Y∗×V0(u)
J∗2 (ϕ, z∗, v∗)

}
. (8)

This last variational formulation corresponds to a concave relaxed formulation in v∗ concerning
the original primal formulation.

3. Another Duality Principle for a Simpler Related Model in Phase Transition
with a Respective Numerical Example

In this section we present another duality principle for a related model in phase transition.
Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1
2

∫
Ω
((u′)2 − 1)2 dx +

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ,

and where
V = {u ∈ W1,4(Ω) : u(0) = 0 and u(1) = 1/2}
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and f ∈ L2(Ω).
A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.
Anyway, one question remains, how the minimizing sequences behave close the infimum of J.
We intend to use duality theory to approximately solve such a global optimization problem.
Denoting V0 = W1,4

0 (Ω), at this point we define, F : V → R and F1 : V × V0 → R by

F(u) =
1
2

∫
Ω
((u′)2 − 1)2 dx,

and
F1(u, ϕ) =

1
2

∫
Ω
((u′ + ϕ′)2 − 1)2 dx.

Observe that
F(u) ≥ inf

ϕ∈V0
F1(u, ϕ), ∀u ∈ V.

In order to restrict the action of ϕ on the region where the primal functional is non-convex, we
redefine a not relabeled

V0 =
{

ϕ ∈ W1,4
0 (Ω) : (ϕ′)2 − 1 ≤ 0, in Ω

}
and define also

F2 : V × V0 → R,

F3 : V × V0 → R

and
G : V × V0 → R

by

F2(u, ϕ) =
1
2

∫
Ω
((u′ + ϕ′)2 − 1)2 dx +

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ,

F3(u, ϕ) = F2(u, ϕ) +
K
2

∫
Ω
(u′)2 dx

+
K1

2

∫
Ω
(ϕ′)2 dx (9)

and

G(u, ϕ) =
K
2

∫
Ω
(u′)2 dx

+
K1

2

∫
Ω
(ϕ′)2 dx (10)

Denoting Y = Y∗ = L2(Ω) we also define the polar functional G∗ : Y∗ × Y∗ → R by

G∗(v∗, v∗0) = sup
(u,ϕ)∈V×V0

{⟨u, v∗⟩L2 + ⟨ϕ, v∗0⟩L2 − G(u, ϕ)}.

Observe that

inf
u∈U

J(u) ≥ inf
((u,ϕ),(v∗ ,v∗0))∈V×V0×[Y∗ ]2

{G∗(v∗, v∗0)− ⟨u, v∗⟩L2 − ⟨ϕ, v∗0⟩L2 + F3(u, ϕ)}.

With such results in mind, we define a relaxed primal dual variational formulation for the primal
problem, represented by J∗1 : V × V0 × [Y∗]2 → R, where
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J∗1 (u, ϕ, v∗, v∗0) = G∗(v∗, v∗0)− ⟨u, v∗⟩L2 − ⟨ϕ, v∗0⟩L2 + F3(u, ϕ).

Having defined such a functional, we may obtain numerical results by solving a sequence of
convex auxiliary sub-problems, through the following algorithm (in order to obtain the concerning
critical points, at first we have neglected the constraint (ϕ′)2 − 1 ≤ 0 in Ω).

1. Set K ≈ 0.1 and K1 = 120.0 and 0 < ε ≪ 1.
2. Choose (u1, ϕ1) ∈ V × V0, such that ∥u1∥1,∞ < 1 and ∥ϕ1∥1,∞ < 1.
3. Set n = 1.
4. Calculate (v∗n, (v∗0)n) solution of the system of equations:

∂J∗1 (un, ϕn, v∗n, (v∗0)n)

∂v∗
= 0

and
∂J∗1 (un, ϕn, v∗n, (v∗0)n)

∂v∗0
= 0,

that is
∂G∗(v∗n, (v∗0)n)

∂v∗
− un = 0

and
∂G∗(v∗n, (v∗0)n)

∂v∗0
− ϕn = 0

so that

v∗n =
∂G(un, ϕn)

∂u
and

(v∗0)
∗
n =

∂G(un, ϕn)

∂ϕ

5. Calculate (un+1, ϕn+1) by solving the system of equations:

∂J∗1 (un+1, ϕn+1, v∗n, (v∗0)n)

∂u
= 0

and
∂J∗1 (un+1, ϕn+1, v∗n, (v∗0)n)

∂ϕ
= 0

that is

−v∗n +
∂F3(un+1, ϕn+1)

∂u
= 0

and

−(v∗0)n +
∂F3(un+1, ϕn+1)

∂ϕ
= 0

6. If max{∥un − un+1∥∞, ∥ϕn+1 − ϕn∥∞} ≤ ε, then stop, else set n := n + 1 and go to item 4.

At this point, we present the corresponding software in MAT-LAB, in finite differences and based
on the one-dimensional version of the generalized method of lines.

Here the software.
***********************

1. clear all
m8=300;
d=1/m8;
K=0.1;
K1=120;
for i=1:m8
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uo(i, 1) = i2 ∗ d/2;
vo(i,1)=i*d/10;
yo(i,1)=sin(i*d*pi)/2;
end;
k=1;
b12=1.0;
while (b12 > 10−4.3) and (k < 230000)
k=k+1;
for i=1:m8-1
duo(i,1)=(uo(i+1,1)-uo(i,1))/d;
dvo(i,1)=(vo(i+1,1)-vo(i,1))/d;
end;
m9=zeros(2,2);
m9(1,1)=1;
i=1;
f 1 = 6 ∗ (duo(i, 1) + dvo(i, 1))2 − 2;
m80(1,1,i)=-f1-K;
m80(1,2,i)=-f1;
m80(2,1,i)=-f1;
m80(2,2,i)=-f1-K1;
y11(1, i) = K ∗ (uo(i + 1, 1)− 2 ∗ uo(i, 1))/d2 − yo(i, 1);
y11(2, i) = K1 ∗ (vo(i + 1, 1)− 2 ∗ vo(i, 1))/d2;
m12 = 2 ∗ m80(:, :, i)− m9 ∗ d2;
m50(:,:,i)=m80(:,:,i)*inv(m12);
z(:,i)=inv(m12)*y11(:,i)*d2;
for i=2:m8-1
f 1 = 6 ∗ (duo(i, 1) + dvo(i, 1))2 − 2;
m80(1,1,i)=-f1-K;
m80(1,2,i)=-f1;
m80(2,1,i)=-f1;
m80(2,2,i)=-f1-K1;
y11(1, i) = K ∗ (uo(i + 1, 1)− 2 ∗ uo(i, 1) + uo(i − 1, 1))/d2 − yo(i, 1);
y11(2, i) = K1 ∗ (vo(i + 1, 1)− 2 ∗ vo(i, 1) + vo(i − 1, 1))/d2;
m12 = 2 ∗ m80(:, :, i)− m9 ∗ d2 − m80(:, :, i) ∗ m50(:, :, i − 1);
m50(:,:,i)=inv(m12)*m80(:,:,i);
z(:, i) = inv(m12) ∗ (y11(:, i) ∗ d2 + m80(:, :, i) ∗ z(:, i − 1));
end;
U(1,m8)=1/2;
U(2,m8)=0.0;
for i=1:m8-1
U(:,m8-i)=m50(:,:,m8-i)*U(:,m8-i+1)+z(:,m8-i);
end;
for i=1:m8
u(i,1)=U(1,i);
v(i,1)=U(2,i);
end;
b12=max(abs(u-uo))
uo=u;
vo=v;
u(m8/2,1)
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end;
for i=1:m8
y(i)=i*d;
end;
plot(y,uo)
**************************************

For the case in which f (x) = 0, we have obtained numerical results for K = 0.1 and K1 = 120. For
such a concerning solution u0 obtained, please see Figure 1. For the case in which f (x) = sin(πx)/2,
we have obtained numerical results also for K = 0.1 and K1 = 120. For such a concerning solution u0

obtained, please see Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1. solution u0(x) for the case f (x) = 0.
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0.35

0.4

0.45

0.5

Figure 2. solution u0(x) for the case f (x) = sin(πx)/2.

Remark 1. Observe that the solutions obtained are approximate critical points. They are not, in a classical sense,
the global solutions for the related optimization problems. Indeed, such solutions reflect the average behavior of
weak cluster points for concerning minimizing sequences.
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3.1. A General Proposal for Relaxation

Let Ω ⊂ Rn be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider a functional J : V → R where

J(u) = F(∇u) + G(u)− ⟨u, f1⟩L2 ,

where
V =

{
u ∈ W1,4(Ω;RN) : u = u0 on ∂Ω

}
,

u0 ∈ C1(Ω;RN),

f1 ∈ L2(Ω;RN), G : V → R is convex and Fréchet differentiable, and

F(∇u) =
∫

Ω
f (∇u) dx,

where f : RN×n → R is also Fréchet differentiable.
Assume there exists N̂ ∈ N such that

Wh ≡
{

y ∈ RN×n : f ∗∗(y) < f (y)
}
= ∪N̂

j=1Wj

where for each j ∈ {1, · · · , N̂} Wj ⊂ RN×n is an open connected set such that ∂Wj is regular. We also
suppose

Wj ∩ Wk = ∅, ∀j ̸= k.

Define
Ŵj =

{
vj ∈ W1,4

0 (Ω;RN) ; ∇vj(x) ∈ Wj, a.e. in Ω
}

and define also

W =
{

v = (v1, · · · , vN̂) : vj ∈ Ŵj ∀j ∈ {1, · · · , N̂} and supp vj ∩ supp vk = ∅, ∀j ̸= k
}

.

At this point we define

h5(u(x), v(x)) =

{
f (∇u(x) +∇vj(x)), if ∇u(x) ∈ Wj,
f (∇u(x)), if ∇u(x) ̸∈ Wh,

(11)

and

H(u) = inf
v∈Wu

∫
Ω

h5(u, v) dx,

where

Wu = {v ∈ W : ∇u(x) +∇vj(x) ∈ Wj, if ∇u(x) ∈ Wj, a.e. in Ω, ∀j ∈ {1, · · · , N̂}}.

Moreover, we propose the relaxed functional

J1(u) = H(u) + G(u)− ⟨u, f1⟩L2 .

Observe that clearly
inf
u∈V

J1(u) ≤ inf
u∈V

J(u).

4. A Convex Dual Variational Formulation for a Third Similar Model
In this section we present another duality principle for a third related model in phase transition.
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Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1
2

∫
Ω

min{(u′ − 1)2, (u′ + 1)2} dx +
1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ,

and where
V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2}

and f ∈ L2(Ω).
A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.
Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.
We intend to use the duality theory to solve such a global optimization problem in an appropriate

sense to be specified.
At this point we define, F : V → R and G : V → R by

F(u) =
1
2

∫
Ω

min{(u′ − 1)2, (u′ + 1)2} dx

=
1
2

∫
Ω
(u′)2 dx −

∫
Ω
|u′| dx + 1/2

≡ F1(u′), (12)

and
G(u) =

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 .

Denoting Y = Y∗ = L2(Ω) we also define the polar functional F∗
1 : Y∗ → R and G∗ : Y∗ → R by

F∗
1 (v

∗) = sup
v∈Y

{⟨v, v∗⟩L2 − F1(v)}

=
1
2

∫
Ω
(v∗)2 dx +

∫
Ω
|v∗| dx, (13)

and

G∗((v∗)′) = sup
u∈V

{−⟨u′, v∗⟩L2 − G(u)}

=
1
2

∫
Ω
((v∗)′ + f )2 dx − 1

2
v∗(1). (14)

Observe this is the scalar case of the calculus of variations, so that from the standard results on
convex analysis, we have

inf
u∈V

J(u) = max
v∗∈Y∗

{−F∗
1 (v

∗)− G∗(−(v∗)′)}.

Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation
is attained at some v̂∗ ∈ Y∗.

Moreover, the corresponding solution u0 ∈ V is obtained from the equation

u0 =
∂G((v̂∗)′)

∂(v∗)′
= (v̂∗)′ + f .

Finally, the Euler-Lagrange equations for the dual problem stands for{
(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,
(v∗)′(0) + f (0) = 0, (v∗)′(1) + f (1) = 1/2,

(15)
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where sign(v∗(x)) = 1 if v∗(x) > 0, sign(v∗(x)) = −1, if v∗(x) < 0 and

−1 ≤ sign(v∗(x)) ≤ 1,

if v∗(x) = 0.
We have computed the solutions v∗ and corresponding solutions u0 ∈ V for the cases in which

f (x) = 0 and f (x) = sin(πx)/2.
For the solution u0(x) for the case in which f (x) = 0, please see Figure 3.
For the solution u0(x) for the case in which f (x) = sin(πx)/2, please see Figure 4.
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Figure 3. solution u0(x) for the case f (x) = 0.
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Figure 4. solution u0(x) for the case f (x) = sin(πx)/2.

Remark 2. Observe that such solutions u0 obtained are not the global solutions for the related primal opti-
mization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning
minimizing sequences.
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4.1. The Algorithm Through Which We Have Obtained the Numerical Results

In this subsection we present the software in MATLAB through which we have obtained the last
numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that
is, for solving the equation {

(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,
(v∗)′(0) = 0, (v∗)′(1) = 1/2.

(16)

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

|v∗| ≈
√
(v∗)2 + e1,

where a small value for e1 is specified in the next lines.
*************************************

1. clear all
2. m8 = 800; (number of nodes)
3. d = 1/m8;
4. e1 = 0.00001;
5. f or i = 1 : m8

yo(i, 1) = 0.01;
y1(i, 1) = sin(π ∗ i/m8)/2;
end;

6. f or i = 1 : m8 − 1
dy1(i, 1) = (y1(i + 1, 1)− y1(i, 1))/d;
end;

7. f or k = 1 : 3000 (we have fixed the number of iterations)
i = 1;
h3 = 1/

√
vo(i, 1)2 + e1;

m12 = 1 + d2 ∗ h3 + d2;
m50(i) = 1/m12;
z(i) = m50(i) ∗ (dy1(i, 1) ∗ d2);

8. f or i = 2 : m8 − 1
h3 = 1/

√
vo(i, 1)2 + e1;

m12 = 2 + h3 ∗ d2 + d2 − m50(i − 1);
m50(i) = 1/m12;
z(i) = m50(i) ∗ (z(i − 1) + dy1(i, 1) ∗ d2);
end;

9. v(m8, 1) = (d/2 + z(m8 − 1))/(1 − m50(m8 − 1));
10. f or i = 1 : m8 − 1

v(m8 − i, 1) = m50(m8 − i) ∗ v(m8 − i + 1) + z(m8 − i);
end;

11. v(m8/2, 1)
12. vo = v;

end;
13. f or i = 1 : m8 − 1

u(i, 1) = (v(i + 1, 1)− v(i, 1))/d + y1(i, 1);
end;

14. f or i = 1 : m8 − 1
x(i) = i ∗ d;
end;
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plot(x, u(:, 1))

********************************

5. An Improvement of the Convexity Conditions for a Non-Convex Related Model
Through an Approximate Primal Formulation

In this section we develop an approximate primal dual formulation suitable for a large class of
variational models.

Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet,
[17].

At this point we start to describe the primal variational formulation.
Let Ω ⊂ R2 be an open, bounded, connected set which represents the middle surface of a plate

of thickness h. The boundary of Ω, which is assumed to be regular (Lipschitzian), is denoted by ∂Ω.
The vectorial basis related to the cartesian system {x1, x2, x3} is denoted by (aα, a3), where α = 1, 2 (in
general Greek indices stand for 1 or 2), and where a3 is the vector normal to Ω, whereas a1 and a2 are
orthogonal vectors parallel to Ω. Also, n is the outward normal to the plate surface.

The displacements will be denoted by

û = {ûα, û3} = ûαaα + û3a3.

The Kirchhoff-Love relations are

ûα(x1, x2, x3) = uα(x1, x2)− x3w(x1, x2),α

and û3(x1, x2, x3) = w(x1, x2). (17)

Here −h/2 ≤ x3 ≤ h/2 so that we have u = (uα, w) ∈ U where

U =
{

u = (uα, w) ∈ W1,2(Ω;R2)× W2,2(Ω),

uα = w =
∂w
∂n

= 0 on ∂Ω}

= W1,2
0 (Ω;R2)× W2,2

0 (Ω).

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.
We also define the operator Λ : U → Y × Y, where Y = Y∗ = L2(Ω;R2×2), by

Λ(u) = {γ(u), κ(u)},

γαβ(u) =
uα,β + uβ,α

2
+

w,αw,β

2
,

καβ(u) = −w,αβ.

The constitutive relations are given by

Nαβ(u) = Hαβλµγλµ(u), (18)

Mαβ(u) = hαβλµκλµ(u), (19)

where: {Hαβλµ} and
{

hαβλµ = h2

12 Hαβλµ

}
, are symmetric positive definite fourth order tensors. From

now on, we denote {Hαβλµ} = {Hαβλµ}−1 and {hαβλµ} = {hαβλµ}−1.
Furthermore {Nαβ} denote the membrane force tensor and {Mαβ} the moment one. The plate

stored energy, represented by (G ◦ Λ) : U → R is expressed by

(G ◦ Λ)(u) =
1
2

∫
Ω

Nαβ(u)γαβ(u) dx +
1
2

∫
Ω

Mαβ(u)καβ(u) dx (20)
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and the external work, represented by F : U → R, is given by

F(u) = ⟨w, P⟩L2 + ⟨uα, Pα⟩L2 , (21)

where P, P1, P2 ∈ L2(Ω) are external loads in the directions a3, a1 and a2 respectively. The potential
energy, denoted by J : U → R is expressed by:

J(u) = (G ◦ Λ)(u)− F(u)

Define now J3 : Ũ → R by
J3(u) = J(u) + J5(w).

where

J5(w) = 10
∫

Ω

aK b w

ln(a) K3/2 dx + 10
∫

Ω

a−K(b w−1/100)

ln(a) K3/2 dx.

In such a case for a = 2.71, K = 185, b = P/|P| in Ω and

Ũ = {u ∈ U : ∥w∥∞ ≤ 0.01 and P w ≥ 0 a.e. in Ω},

we get

∂J3(u)
∂w

=
∂J(u)

∂w
+

∂J5(u)
∂w

≈ ∂J(u)
∂w

+O(±3.0), (22)

and

∂2 J3(u)
∂w2 =

∂2 J(u)
∂w2 +

∂2 J5(u)
∂w2

≈ ∂2 J(u)
∂w2 +O(850). (23)

This new functional J3 has a relevant improvement in the convexity conditions concerning the
previous functional J.

Indeed, we have obtained a gain in positiveness for the second variation ∂2 J(u)
∂w2 , which has

increased of order O(700 − 1000).
Moreover the difference between the approximate and exact equation

∂J(u)
∂w

= 0

is of order O(±3.0) which corresponds to a small perturbation in the original equation for a load of
P = 1500 N/m2, for example. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

5.1. A Duality Principle for the Concerning Quasi-Convex Envelope

In this section, denoting

V1 = {ϕ = ϕ(x, y) ∈ W1,2(Ω × Ω;R2) : ϕ = 0 on Ω × ∂Ω},

we define the functional J1 : U × V1 → R, where
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J1(u, ϕ) = G1({w,αβ}) + G2

({
1
2
(uα,β + uβ,α) + ϕα,yβ

+
1
2

w,αw,β

})
−⟨w, P⟩L2 − ⟨uα, Pα⟩L2 . (24)

where
G1({w,αβ}) =

1
2

∫
Ω

hαβλµw,αβw,λµ dx

and,

G2

({
1
2
(uα,β + uβ,α) + ϕα,yβ

+
1
2

w,αw,β

})
=

1
2|Ω|

∫
Ω

∫
Ω

Hαβλµ

(
1
2
(uα,β + uβ,α) + ϕα,yβ

(x, y) +
1
2

w,αw,β

)
×
(

1
2
(uλ,µ + uλ,µ) + ϕλ,yµ

(x, y) +
1
2

w,λw,µ

)
dx dy

We define also
J2({uα}, ϕ) = inf

w∈W2,2
0 (Ω)

J1(u, ϕ),

and
J3({uα}) = inf

ϕ∈V1
J2({uα}, ϕ).

It is a well known result from the modern Calculus of Variations theory (please, see [18] for details)
that

inf
u∈U

J(u) = inf
{uα}∈W1,2

0 (Ω;R2)
J3({uα}).

At this point we denote

Y1 = Y∗
1 = Y3 = Y∗

3 ≡ L2(Ω × Ω;R4)

and
Y2 = Y∗

2 ≡ L2(Ω × Ω;R2).
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Observe that

J(u)

= G1({w,αβ}) + G2

({
1
2
(uα,β + uβ,α) + ϕα,yβ

+
1
2

w,αw,β

})
−⟨w, P⟩L2 − ⟨uα, Pα⟩L2

= G1({w,αβ})− ⟨w,αβ, Mαβ⟩L2 + ⟨w,αβ, Mαβ⟩L2

+
1
|Ω|

∫
Ω

∫
Ω

w,α(x), Qα(x, y) dx dy − ⟨w, P⟩L2

− 1
|Ω|

∫
Ω

∫
Ω

w,α(x), Qα(x, y) dx dy + G2

({
1
2
(uα,β + uβ,α) + ϕα,yβ

+
1
2

w,αw,β

})
− 1
|Ω|

∫
Ω

∫
Ω

(
1
2
(uα,β + uβ,α) + ϕα,yβ

+
1
2

w,αw,β

)
, v∗αβ(x, y) dx dy

+
1
|Ω|

∫
Ω

∫
Ω

(
1
2
(uα,β + uβ,α) + ϕα,yβ

+
1
2

w,αw,β

)
, v∗αβ(x, y) dx dy − ⟨uα, Pα⟩L2

≥ inf
v3∈Y3

{−⟨(v3)αβ, Mαβ⟩L2 + G1((v3)αβ)}

+ inf
w∈W2,2

0 (Ω)

{
⟨w,αβ, Mαβ⟩L2 +

1
|Ω|

∫
Ω

∫
Ω

w,α(x) Qα(x, y) dx dy − ⟨w, P⟩L2

}
+ inf

v∈Y1

{
− 1
|Ω|

∫
Ω

∫
Ω

vαβ v∗αβ dx dy + G2({vαβ})
}

+ inf
(v2,{uα})∈Y2×W1,2

0 (Ω;R2)

{
1
|Ω|

∫
Ω

∫
Ω

(
1
2
(uα,β + uβ,α) + ϕα,yβ

+
1
2
(v2)α(x, y)(v2)β(x, y)

)
×v∗αβ(x, y) dx dy − ⟨uα, Pα⟩L2 +

1
|Ω|

∫
Ω

∫
Ω
(v2)α(x, y)Qα(x, y) dx dy

}
≥ −G∗

1 (M)− 1
2|Ω|

∫
Ω

∫
Ω

(
v∗αβ

)
Qα Qβ dx dy − 1

2|Ω|

∫
Ω

∫
Ω

Hαβλµv∗αβv∗λµ dx dy, (25)

∀u ∈ U, (M, Q) ∈ C∗, v = {vαβ} ∈ A∗ where A∗ = A∗
1 ∩ A∗

2 ∩ B∗,

A∗
1 = {{v∗αβ} ∈ Y∗

1 : (v∗αβ),yβ
= 0, in Ω},

A∗
2 =

{
{v∗αβ} ∈ Y∗

1 :
1
|Ω|

(∫
Ω

v∗αβ dy
)

,xβ

+ Pα = 0, in Ω

}
,

B∗ =
{
{v∗αβ} ∈ Y∗

1 :
{

v∗αβ(x, y)
}

is positive definite in Ω × Ω
}

.

and

C∗ =

{
(M, Q) ∈ Y∗

3 × Y∗
2 : Mαβ,αβ −

(∫
Ω

Qα dy
)

,xα

− P = 0, in Ω

}
.

Also {
v∗αβ

}
=
{

v∗αβ

}−1
,

and
{Hαβλµ} = {Hαβλµ}

in an appropriate tensor sense.
Here it is worth highlighting we have denoted,

G∗
1 (M) = sup

v3∈Y3

{⟨(v3)αβ, Mαβ⟩L2 − G1(v3)}

=
1
2

∫
Ω

hαβλµ Mαβ Mλµ dx, (26)
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where we recall that
{hαβλµ} = {hαβλµ}−1

in an appropriate tensorial sense.
Summarizing, defining J∗ : C∗ × A∗ → R by

J∗((M, Q), v∗) = −G∗
1 (M)− 1

2|Ω|

∫
Ω

∫
Ω

(
v∗αβ

)
Qα Qβ dx dy

− 1
2|Ω|

∫
Ω

∫
Ω

Hαβλµv∗αβv∗λµ dx dy, (27)

we have got
inf

u∈U
J(u) ≥ sup

((M,Q),v∗)∈C∗×A∗
J∗((M, Q), v∗).

Remark 3. This last dual functional is concave and such a concerning inequality corresponds a duality principle
for the relaxed primal formulation.

We emphasize such results are extensions and in some sense complement the original duality principles in
the works of Telega and Bielski, [1–3].

Moreover, if ((M0, Q0), v∗0) ∈ C∗ × A∗ is such that

δJ∗((M0, Q0), v∗0) = 0,

it is a well known result from the Legendre transform proprieties that the corresponding (u0, ϕ0) ∈ V × V1 such
that

(w0),αβ = hαβλµ(M0)λµ,

and

(v∗0)αβ = Hαβλ

(
(u0)λ,µ + (u0)µ,λ

2
+

(ϕ0)λ,yµ
+ (ϕ0)µ,yλ

2
+

1
2
(v20)λ(v20)µ

)
,

(v∗0)αβ,yβ
= 0,

is also such that
δJ1(u0, ϕ0) = 0

and
J1(u0, ϕ0) = J∗((M0, Q0), v∗0).

From this and

inf
u∈V

J(u) = inf
(u,ϕ)∈V×V1

J1(u, ϕ) ≥ sup
((M,Q),v∗)∈C∗×A∗

J∗((M, Q), v∗),

we obtain

J1(u0, ϕ0) = inf
(u,ϕ)∈V×V1

J1(u, ϕ)

= sup
((M,Q),v∗)∈C∗×A∗

J∗((M, Q), v∗)

= J∗((M0, Q0), v∗0)

= inf
u∈V

J(u). (28)

Also, from the modern calculus of variations theory, there exists a sequence {un} ⊂ V such that

un ⇀ u0, weakly in V,
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and
J(un) → J1(u0, ϕ0) = inf

u∈V
J(u).

From this and the Ekeland variational principle, there exists {vn} ⊂ V such that

∥un − vn∥V ≤ 1/n,

J(vn) ≤ inf
u∈V

J(u) + 1/n,

and
∥δJ(vn)∥V∗ ≤ 1/n, ∀n ∈ N,

so that
vn ⇀ u0, weakly in V,

and
J(vn) → J1(u0, ϕ0) = inf

u∈V
J(u).

Assume now we are dealing with a finite dimensional version of such a model, in a finite elements of finite
differences context, for example.

In such a case we have
vn → u0, strongly in RN

for an appropriate N ∈ N.
From continuity we obtain

δJ(vn) → δJ(u0) = 0,

J(vn) → J(u0).

Summarizing, we have got
J(u0) = inf

u∈V
J(u),

δJ(u0) = 0.

Here we highlight such last results are valid just for this finite-dimensional model version.

6. A Duality Principle for a Related Relaxed Formulation Concerning the
Vectorial Approach in the Calculus of Variations

In this section we develop a duality principle for a related vectorial model in the calculus of
variations.

Let Ω ⊂ Rn be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω = Γ.

For 1 < p < +∞, consider a functional J : V → R where

J(u) = G(∇u) + F(u)− ⟨u, f ⟩L2 ,

where
V =

{
u ∈ W1,p(Ω;RN) : u = u0 on ∂Ω

}
,

u0 ∈ C1(Ω;RN) and f ∈ L2(Ω;RN).
We assume G : Y → R and F : V → R are Fréchet differentiable and F is also convex.
Also

G(∇u) =
∫

Ω
g(∇u) dx,

where g : RN×n → R it is supposed to be Fréchet differentiable. Here we have denoted Y =

Lp(Ω;RN×n).
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We define also J1 : V × Y1 → R by

J1(u, ϕ) = G1(∇u +∇yϕ) + F(u)− ⟨u, f ⟩L2 ,

where
Y1 = W1,p(Ω × Ω;RN)

and
G1(∇u +∇yϕ) =

1
|Ω|

∫
Ω

∫
Ω

g(∇u(x) +∇yϕ(x, y)) dx dy.

Moreover, we define the relaxed functional J2 : V → R by

J2(u) = inf
ϕ∈V0

J1(u, ϕ),

where
V0 = {ϕ ∈ Y1 : ϕ(x, y) = 0, on Ω × ∂Ω}.

Now observe that

J1(u, ϕ) = G1(∇u +∇yϕ) + F(u)− ⟨u, f ⟩L2

= − 1
|Ω|

∫
Ω

∫
Ω

v∗(x, y) · (∇u +∇yϕ(x, y)) dy dx + G1(∇u +∇yϕ)

+
1
|Ω|

∫
Ω

∫
Ω

v∗(x, y) · (∇u +∇yϕ(x, y)) dy dx + F(u)− ⟨u, f ⟩L2

≥ inf
v∈Y2

{
− 1
|Ω|

∫
Ω

∫
Ω

v∗(x, y) · v(x, y) dy dx + G1(v)
}

+ inf
(v,ϕ)∈V×V0

{
1
|Ω|

∫
Ω

∫
Ω

v∗(x, y) · (∇u +∇yϕ(x, y)) dy dx + F(u)− ⟨u, f ⟩L2

}
= −G∗

1 (v
∗)− F∗

(
divx

(
1
|Ω|

∫
Ω

v∗(x, y) dy
)
+ f

)
+

1
|Ω|

∫
∂Ω

(∫
Ω

v∗(x, y) dy
)
⊗ nu0 dΓ, (29)

∀(u, ϕ) ∈ V × V0, v∗ ∈ A∗, where

A∗ = {v∗ ∈ Y∗
2 : divyv∗(x, y) = 0, in Ω}.

Here we have denoted

G∗
1 (v

∗) = sup
v∈Y2

{
1
|Ω|

∫
Ω

∫
Ω

v∗(x, y) · v(x, y) dy dx − G1(v)
}

,

where Y2 = Lp(Ω × Ω;RN×n), Y∗
2 = Lq(Ω × Ω;RN×n), and where

1
p
+

1
q
= 1.

Furthermore, for v∗ ∈ A∗, we have

F∗
(

divx

(
1
|Ω|

∫
Ω

v∗(x, y) dy
)
+ f

)
− 1

|Ω|

∫
∂Ω

(∫
Ω

v∗(x, y) dy
)
⊗ nu0 dΓ

= sup
(v,ϕ)∈V×V0

{
− 1
|Ω|

∫
Ω

∫
Ω

v∗(x, y) · (∇u +∇yϕ(x, y)) dy dx − F(u) + ⟨u, f ⟩L2

}
, (30)
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Therefore, denoting J∗3 : Y∗
2 → R by

J∗3 (v
∗) = −G∗

1 (v
∗)− F∗

(
divx

(∫
Ω

v∗(x, y) dy
)
+ f

)
+

1
|Ω|

∫
∂Ω

(∫
Ω

v∗(x, y) dy
)
⊗ nu0 dΓ,

we have got

inf
u∈V

J2(u) ≥ sup
v∗∈A∗

J∗3 (v
∗).

Finally, we highlight such a dual functional J∗3 is convex (in fact concave).

6.1. An Example in Finite Elasticity

In this section we develop an application of results obtained in the last section to a model in
non-linear elasticity.

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Concerning a standard model in non-linear elasticity, consider a functional J : V → R where

J(u)

=
1
2

∫
Ω

Hijkl

(ui,j + uj,i

2
+

1
2

um,ium,j

)(uk,l + uj,i

2
+

1
2

um,kum,l

)
dx

−⟨ui, fi⟩L2 (31)

where f ∈ L2(Ω;R3) and V = W1,2
0 (Ω;R3).

Here {Hijkl} is a fourth-order and positive definite symmetric tensor (in an appropriate standard
sense). Moreover, u = (u1, u2, u3) ∈ V is a field of displacements resulting from the f load field action
on the volume comprised by Ω.

At this point, we define the functional J1 : V × V1 → R, where

J1(u, ϕ)

=
1

2|Ω|

∫
Ω

∫
Ω

Hijkl

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2
1
2
(um,i + ϕm,yi )(um,j + ϕm,yj)

)
×
(

uk,l + ul,k

2
+

ϕk,yl
+ ϕl,yk

2
+

1
2
(um,k + ϕm,yk )(um,l + ϕm,yl )

)
dx dy

−⟨ui, fi⟩L2 , (32)

where
V1 = {ϕ ∈ W1,2(Ω × Ω;R3) : ϕ = 0 on Ω × ∂Ω}.

We define also the quasi-convex envelop of J, denoted by QJ : V → R, as

QJ(u) = inf
ϕ∈V1

J1(u, ϕ).

It is a well known result from the modern calculus of variations theory (please see [18] for details),
that

inf
u∈V

J(u) = inf
u∈V

QJ(u).
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Observe now that, denoting Y1 = Y∗
1 = L2(Ω × Ω;R9), Y2 = Y∗

2 = L2(Ω × Ω;R3), and

G1

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2
+

1
2
(um,i + ϕm,yi )(um,j + ϕm,yj)

)
=

1
2|Ω|

∫
Ω

∫
Ω

Hijkl

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2
+

1
2
(um,i + ϕm,yi )(um,j + ϕm,yj)

)
×
(

uk,l + ul,k

2
+

ϕk,yl
+ ϕl,yk

2
+

1
2
(um,k + ϕm,yk )(um,l + ϕm,yl )

)
dx dy (33)

we have that

J1(u, ϕ)

= G1

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2
+

1
2
(um,i + ϕm,yi )(um,j + ϕm,yj)

)
− ⟨ui, fi⟩L2

= − 1
|Ω|

∫
Ω

∫
Ω

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2
+

1
2
(um,i + ϕm,yi )(um,j + ϕm,yj)

)
σij dx dy

+G1

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2
+

1
2
(um,i + ϕm,yi )(um,j + ϕm,yj)

)
+

1
|Ω|

∫
Ω

∫
Ω

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2
+

1
2
(um,i + ϕm,yi )(um,j + ϕm,yj)

)
σij dx dy − ⟨ui, fi⟩L2

≥ inf
v∈Y1

{
− 1
|Ω|

∫
Ω

∫
Ω

vijσij dx dy − G1
(
{vij}

)}
+ inf

v2∈Y1

{
− 1
|Ω|

∫
Ω

∫
Ω
(v2)ij Qij dx dy +

1
|Ω|

∫
Ω

∫
Ω

(
σij

1
2
((v2)mi(v2)mj)

)
dx dy

}
+ inf

(u,ϕ)∈V×V1

{
1
|Ω|

∫
Ω

∫
Ω
(σij + Qij)

(ui,j + uj,i

2
+

ϕi,yj + ϕj,yi

2

)
dx dy − ⟨ui, fi⟩L2

}
≥ − 1

2|Ω|

∫
Ω

∫
Ω

Hijkl σij σkl dx dy

− 1
2|Ω|

∫
Ω

∫
Ω

σij Qmi Qmk dx dy, (34)

∀(u, ϕ) ∈ V × V1, (σ, Q) ∈ A∗, where A∗ = A∗
1 ∩ A∗

2 ∩ A∗
3 ,

A∗
1 = {(σ, Q) ∈ Y∗

1 × Y∗
1 : σij,yj + Qij,yj = 0, in Ω × Ω}.

A∗
2 =

{
(σ, Q) ∈ Y∗

1 × Y∗
1 :

1
|Ω|

(∫
Ω
(σij) dy

)
xj

+
1
|Ω|

(∫
Ω
(Qij) dy

)
xj

+ fi = 0, in Ω

}
,

A∗
3 = {(σ, Q) ∈ Y∗

1 × Y∗
1 : {σij} is positive definite in Ω × Ω}.

Hence, denoting

J∗(σ, Q) = − 1
2|Ω|

∫
Ω

∫
Ω

Hijkl σij σkl dx dy − 1
2|Ω|

∫
Ω

∫
Ω

σij Qmi Qmk dx dy,

we have obtained
inf
u∈V

J(u) ≥ sup
(σ,Q)∈A∗

J∗(σ, Q).

Remark 4. This last dual functional is concave and such a concerning inequality corresponds a duality principle
for the relaxed primal formulation.
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We emphasize again such results are also extensions and in some sense complement the original duality
principles in the works of Telega and Bielski, [1–3].

Moreover, if (σ0, Q0) ∈ A∗ is such that

δJ∗(σ0, Q0) = 0,

it is a well known result from the Legendre transform proprieties that the corresponding (u0, ϕ0) ∈ V × V1 such
that

(σ0)ij = Hijkl

(
uk,l + ul,k

2
+

ϕk,yl
+ ϕl,yk

2
+

1
2
(um,k + ϕm,yk )(um,l + ϕm,yl )

)
and

(Q0)ij = (σ0)im(v20)mj,

is also such that
δJ1(u0, ϕ0) = 0

and
J1(u0, ϕ0) = J∗(σ0, Q0).

From this and
inf
u∈V

J(u) = inf
(u,ϕ)∈V×V1

J1(u, ϕ) ≥ sup
(σ,Q)A∗

J∗(σ, Q),

we obtain

J1(u0, ϕ0) = inf
(u,ϕ)∈V×V1

J1(u, ϕ)

= sup
(σ,Q)∈A∗

J∗(σ, Q)

= J∗(σ0, Q0)

= inf
u∈V

J(u). (35)

Also, from the modern calculus of variations theory, there exists a sequence {un} ⊂ V such that

un ⇀ u0, weakly in V,

and
J(un) → J1(u0, ϕ0) = inf

u∈V
J(u).

From this and the Ekeland variational principle, there exists {vn} ⊂ V such that

∥un − vn∥V ≤ 1/n,

J(vn) ≤ inf
u∈V

J(u) + 1/n,

and
∥δJ(vn)∥V∗ ≤ 1/n, ∀n ∈ N,

so that
vn ⇀ u0, weakly in V,

and
J(vn) → J1(u0, ϕ0) = inf

u∈V
J(u).

Assume now we are dealing with a finite dimensional version of such a model, in a finite elements of finite
differences context, for example.
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In such a case we have
vn → u0, strongly in RN

for an appropriate N ∈ N.
From continuity we obtain

δJ(vn) → δJ(u0) = 0,

J(vn) → J(u0).

Summarizing, we have got
J(u0) = inf

u∈V
J(u),

δJ(u0) = 0.

Here we highlight such last results are valid just for this finite-dimensional model version.

7. An Exact Convex Dual Variational Formulation for a Non-Convex Primal One
In this section we develop a convex dual variational formulation suitable to compute a critical

point for the corresponding primal one.
Let Ω ⊂ R2 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.
Consider a functional J : V → R where

J(u) = F(ux, uy)− ⟨u, f ⟩L2 ,

V = W1,2
0 (Ω) and f ∈ L2(Ω).

Here we denote Y = Y∗ = L2(Ω) and Y1 = Y∗
1 = L2(Ω)× L2(Ω).

Defining
V1 = {u ∈ V : ∥u∥1,∞ ≤ K1}

for some appropriate K1 > 0, suppose also F is twice Fréchet differentiable and

det

{
∂2F(ux, uy)

∂v1∂v2

}
̸= 0,

∀u ∈ V1.
Define now F1 : V → R and F2 : V → R by

F1(ux, uy) = F(ux, uy) +
ε

2

∫
Ω

u2
x dx +

ε

2

∫
Ω

u2
y dx,

and
F2(ux, uy) =

ε

2

∫
Ω

u2
x dx +

ε

2

∫
Ω

u2
y dx,

where here we denote dx = dx1dx2.
Moreover, we define the respective Legendre transform functionals F∗

1 and F∗
2 as

F∗
1 (v

∗) = ⟨v1, v∗1⟩L2 + ⟨v2, v∗2⟩L2 − F1(v1, v2),

where v1, v2 ∈ Y are such that

v∗1 =
∂F1(v1, v2)

∂v1
,

v∗2 =
∂F1(v1, v2)

∂v2
,

and
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F∗
2 (v

∗) = ⟨v1, v∗1 + f1⟩L2 + ⟨v2, v∗2⟩L2 − F2(v1, v2),

where v1, v2 ∈ Y are such that

v∗1 + f1 =
∂F2(v1, v2)

∂v1
,

v∗2 =
∂F2(v1, v2)

∂v2
.

Here f1 is any function such that
( f1)x = f , in Ω.

Furthermore, we define

J∗(v∗) = −F∗
1 (v

∗) + F∗
2 (v

∗)

= −F∗
1 (v

∗) +
1
2ε

∫
Ω
(v∗1 + f1)

2 dx +
1
2ε

∫
Ω
(v∗2)

2 dx. (36)

Observe that through the target conditions

v∗1 + f1 = εux,

v∗2 = εuy,

we may obtain the compatibility condition

(v∗1 + f1)y − (v∗2)x = 0.

Define now

A∗ = {v∗ = (v∗1 , v∗2) ∈ Br(0, 0) ⊂ Y∗
1 : (v∗1 + f1)y − (v∗2)x = 0, in Ω},

for some appropriate r > 0 such that J∗ is convex in Br(0, 0).
Consider the problem of minimizing J∗ subject to v∗ ∈ A∗.
Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the

associated Lagrangian
J∗1 (v

∗, φ) = J∗(v∗) + ⟨φ, (v∗1 + f )y − (v∗2)x⟩L2 ,

where φ is an appropriate Lagrange multiplier.
Therefore

J∗1 (v
∗) = −F∗

1 (v
∗) +

1
2ε

∫
Ω
(v∗1 + f1)

2 dx +
1
2ε

∫
Ω
(v∗2)

2 dx

+⟨φ, (v∗1 + f )y − (v∗2)x⟩L2 . (37)

The optimal point in question will be a solution of the corresponding Euler-Lagrange equations
for J∗1 .

From the variation of J∗1 in v∗1 we obtain

−
∂F∗

1 (v
∗)

∂v∗1
+

v∗1 + f
ε

− ∂φ

∂y
= 0. (38)

From the variation of J∗1 in v∗2 we obtain

−
∂F∗

1 (v
∗)

∂v∗2
+

v∗2
ε
+

∂φ

∂x
= 0. (39)

From the variation of J∗1 in φ we have
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(v∗1 + f )y − (v∗2)x = 0.

From this last equation, we may obtain u ∈ V such that

v∗1 + f = εux,

and
v∗2 = εuy.

From this and the previous extremal equations indicated we have

−
∂F∗

1 (v
∗)

∂v∗1
+ ux −

∂φ

∂y
= 0,

and

−
∂F∗

1 (v
∗)

∂v∗2
+ uy +

∂φ

∂x
= 0.

so that

v∗1 + f =
∂F1(ux − φy, uy + φx)

∂v1
,

and

v∗2 =
∂F1(ux − φy, uy + φx)

∂v2
.

From this and equation (38) and (39) we have

−ε

(
∂F∗

1 (v
∗)

∂v∗1

)
x
− ε

(
∂F∗

1 (v
∗)

∂v∗2

)
y

+(v∗1 + f1)x + (v∗2)y

= −εuxx − εuyy + (v∗1)x + (v∗2)y + f = 0. (40)

Replacing the expressions of v∗1 and v∗2 into this last equation, we have

−εuxx − εuyy +

(
∂F1(ux − φy, uy + φx)

∂v1

)
x
+

(
∂F1(ux − φy, uy + φx)

∂v2

)
y
+ f = 0,

so that (
∂F(ux − φy, uy + φx)

∂v1

)
x
+

(
∂F(ux − φy, uy + φx)

∂v2

)
y
+ f = 0, in Ω. (41)

Observe that if
∇2 φ = 0

then there exists û such that u and φ are also such that

ux − φy = ûx

and
uy + φx = ûy.

The boundary conditions for φ must be such that û ∈ W1,2
0 .

From this and equation (41) we obtain

δJ(û) = 0.

Summarizing, we may obtain a solution û ∈ W1,2
0 of equation δJ(û) = 0 by minimizing J∗ on A∗.
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Finally, observe that clearly J∗ is convex in an appropriate large ball Br(0, 0) for some appropriate
r > 0

8. Another Primal Dual Formulation for a Related Model
Let Ω ⊂ R3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.
Consider the functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx

−⟨u, f ⟩L2 , (42)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

Denoting Y = Y∗ = L2(Ω), define now J∗1 : V × Y∗ → R by

J∗1 (u, v∗0) = −γ

2

∫
Ω
∇u · ∇u dx − ⟨u2, v∗0⟩L2

+
K1

2

∫
Ω
(−γ∇2u + 2v∗0u − f )2 dx + ⟨u, f ⟩L2

+
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx, (43)

Define also
A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and
V1 = V2 ∩ A+

for some appropriate K3 > 0 to be specified.
Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K}

for some appropriate K > 0 to be specified.
Observe that, denoting

φ = −γ∇2u + 2v∗0u − f

we have
∂2 J∗1 (u, v∗0)

∂(v∗0)
2 =

1
α
+ 4K1u2

∂2 J∗1 (u, v∗0)
∂u2 = γ∇2 − 2v∗0 + K1(−γ∇2 + 2v∗0)

2

and
∂2 J∗1 (u, v∗0)

∂u∂v∗0
= K1(2φ + 2(−γ∇2u + 2v∗0u))− 2u

so that

det{δ2 J∗1 (u, v∗0)}

=
∂2 J∗1 (u, v∗0)

∂(v∗0)
2

∂2 J∗1 (u, v∗0)
∂u2 −

(
∂2 J∗1 (u, v∗0)

∂u∂v∗0

)2

=
K1(−γ∇2 + 2v∗0)

2

α
−

γ∇2 + 2v∗0 + 4αu2

α

−4K2
1 φ2 − 8K1 φ(−γ∇2 + 2v∗0)u + 8K1 φu

+4K1(−γ∇2u + 2v∗0u)u. (44)
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Observe now that a critical point φ = 0 and (−γ∇2u + 2v∗0u)u = f u ≥ 0 in Ω.
Therefore, for an appropriate large K1 > 0, also at a critical point, we have

det{δ2 J∗1 (u, v∗0)}

= 4K1 f u − δ2 J(u)
α

+ K1
(−γ∇2 + 2v∗0)

2

α
> 0. (45)

Remark 5. From this last equation we may observe that J∗1 has a large region of convexity about any critical
point (u0, v̂∗0), that is, there exists a large r > 0 such that J∗1 is convex on Br(u0, v̂∗0).

With such results in mind, we may easily prove the following theorem.

Theorem 1. Assume K1 ≫ max{1, K, K3} and suppose (u0, v̂∗0) ∈ V1 × B∗ is such that

δJ∗1 (u0, v̂∗0) = 0.

Under such hypotheses, there exists r > 0 such that J∗1 is convex in E∗ = Br(u0, v̂∗0) ∩ (V1 × B∗),

δJ(u0) = 0,

and
−J(u0) = J1(u0, v̂∗0) = inf

(u,v∗0)∈E∗
J∗1 (u, v∗0).

9. A Third Primal Dual Formulation for a Related Model
Let Ω ⊂ R3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.
Consider the functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx

−⟨u, f ⟩L2 , (46)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

Denoting Y = Y∗ = L2(Ω), define now J∗1 : V × Y∗ × Y∗ → R by

J∗1 (u, v∗0 , v∗1) =
γ

2

∫
Ω
∇u · ∇u dx +

1
2

∫
Ω

K u2 dx

−⟨u, v∗1⟩L2 +
1
2

∫
Ω

(v∗1)
2

(−2v∗0 + K)
dx

+
1

2(α + ε)

∫
Ω
(v∗0 − α(u2 − β))2 dx + ⟨u, f ⟩L2

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx, (47)

where ε > 0 is a small real constant.
Define also

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and
V1 = V2 ∩ A+

for some appropriate K3 > 0 to be specified.
Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K4}
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and
D∗ = {v∗1 ∈ Y∗ : ∥v∗1∥ ≤ K5},

for some appropriate real constants K4, K5 > 0 to be specified.

Remark 6. Define now
H1(u, v∗0) = −γ∇2 + 2v∗0 + 4αu2

For an appropriate function (or, in a more general fashion, an appropriate bounded operator) M1 define

B∗
1 = {v∗0 ∈ B∗ : 2v∗0 + M1 ≥ ε1},

for some small parameter ε1 > 0.
Moreover, define

E∗ = {u ∈ V1 :
√

4α|u| ≥
√
|M1 + γ∇2|.

Since for (u, v∗0) ∈ V1 × B∗
1 we have u f ≥ 0, in Ω, so that for u1, u2 ∈ V1 we have

sign (u1) = sign (u2) in Ω,

we may infer that E∗ is a convex set.
Moreover if (u, v∗0) ∈ E∗ × B∗

1 , then

√
4α|u| ≥

√
|M1 + γ∇2|

so that
4αu2 ≥ M1 + γ∇2

and
2v∗0 + M1 ≥ ε1

so that
H1(u, v∗0) = −γ∇2 + 2v∗0 + 4αu2 ≥ ε1.

Such a result we will be used many times in the next sections.

Observe that, defining
φ = v∗0 − α(u2 − β)

we may obtain
∂2 J∗1 (u, v∗0 , v∗1)

∂u2 = −γ∇2 + K +
α

α + ε
4u2 − 2φ

α

α + ε

∂2 J∗1 (u, v∗0 , v∗1)
∂(v∗1)

2 =
1

−2v∗0 + K

and
∂2 J∗1 (u, v∗0 , v∗1)

∂u∂v∗1
= −1
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so that

det

{
∂2 J∗1 (u, v∗0 , v∗1)

∂u∂v∗1

}

=
∂2 J∗1 (u, v∗1 , v∗0)

∂(v∗1)
2

∂2 J∗1 (u, v∗1 , v∗0)
∂u2 −

(
∂2 J∗1 (u, v∗1 , v∗0)

∂u∂v∗1

)2

=
−γ∇2 + 2v∗0 + 4 α2

α+ε u2 − 2 α
α+ε φ

−2v∗0 + K
≡ H(u, v∗0). (48)

However, at a critical point, we have φ = 0 so that, for a fixed v∗0 ∈ B∗ we define the non-active
but convex restriction

(C1)
∗
v∗0

= {u ∈ V1 : (φ)2 ≤ ε},

for a small parameter ε > 0.
From such results, assuming K ≫ max{K3, K4, K5}, and 0 < ε ≪ ε1 ≪ 1, we have that

H(u, v∗0) > 0,

for v∗0 ∈ B∗
1 and u ∈ E∗ ∩ (C1)

∗
v∗0

.
With such results in mind, we may easily prove the following theorem.

Theorem 2. Suppose (u0, v̂∗1 , v̂∗0) ∈ (E∗ ∩ (C1)
∗
v̂∗0
)× D∗ × B∗

1 is such that

δJ∗1 (u0, v̂∗1 , v̂∗0) = 0.

Under such hypotheses, we have that
δJ(u0) = 0

and

J(u0) = inf
u∈(C1)

∗
v̂∗0

J(u)

= J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

{
sup

v∗0∈B∗
J∗1 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

 inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

J∗1 (u, v∗1 , v∗0)

. (49)

Proof. The proof that
δJ(u0) = 0

and
J(u0) = J∗1 (u0, v̂∗1 , v̂∗0)

may be easily made similarly as in the previous sections.
Moreover, observe that for K > 0 sufficiently large, we have

∂2 J∗1 (u0, v̂∗1 , v∗0)
∂(v∗0)

2 < 0, ∀v∗0 ∈ B∗
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so that this and the other hypotheses, we have also

J∗1 (u0, v̂∗1 , v̂∗0) = inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

J∗1 (u, v∗1 , v̂∗0)

and
J∗1 (u0, v̂∗1 , v̂∗0) = sup

v∗0∈B∗
J∗1 (u0, v̂∗1 , v∗0).

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J(u0) = J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

{
sup

v∗0∈B∗
J∗1 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

 inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

J∗1 (u, v∗1 , v∗0)

. (50)

Moreover, observe that

J∗1 (u0, v̂∗1 , v̂∗0) = inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

J∗1 (u, v∗1 , v̂∗0)

≤ γ

2

∫
Ω
∇u · ∇u dx +

K
2

∫
Ω

u2 dx

+⟨u2, v̂∗0⟩L2 −
K
2

∫
Ω

u2 dx

− 1
2α

∫
Ω
(v̂∗0)

2 dx − β
∫

Ω
v̂∗0 dx

+
1

2(α + ε)

∫
Ω
(v̂∗0 − α(u2 − β))2 dx − ⟨u, f ⟩L2

≤ sup
v∗0∈Y∗

{
γ

2

∫
Ω
∇u · ∇u dx + ⟨u2, v∗0⟩

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx

+
1

2(α + ε)

∫
Ω
(v∗0 − α(u2 − β))2 dx − ⟨u, f ⟩L2

}
=

γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx

−⟨u, f ⟩L2 , ∀u ∈ (C1)
∗
v̂∗0

. (51)

Summarizing, we have got

J(u0) = J∗1 (u0, v̂∗1 , v̂∗0) ≤ inf
u∈(C1)

∗
v̂∗0

J(u).
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From such results, we may infer that

J(u0) = inf
u∈(C1)

∗
v̂∗0

J(u)

= J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

{
sup

v∗0∈B∗
J∗1 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

 inf
(u,v∗1)∈(C1)

∗
v̂∗0
×D∗

J∗1 (u, v∗1 , v∗0)

. (52)

The proof is complete.

10. An Algorithm for a Related Model in Shape Optimization
The next two subsections have been previously published by Fabio Silva Botelho and Alexandre

Molter in [8], Chapter 21.

10.1. Introduction

Consider an elastic solid which the volume corresponds to an open, bounded, connected set,
denoted by Ω ⊂ R3 with a regular (Lipschitzian) boundary denoted by ∂Ω = Γ0 ∪Γt where Γ0 ∩Γt = ∅.
Consider also the problem of minimizing the functional Ĵ : U × B → R where

Ĵ(u, t) =
1
2
⟨ui, fi⟩L2(Ω) +

1
2
⟨ui, f̂i⟩L2(Γt)

,

subject to 
(Hijkl(t)ekl(u)),j + fi = 0 in Ω,

Hijkl(t)ekl(u)nj − f̂i = 0, on Γt, ∀i ∈ {1, 2, 3}.
(53)

Here n = (n1, n2, n3) denotes the outward normal to ∂Ω and

U = {u = (u1, u2, u3) ∈ W1,2(Ω;R3) : u = (0, 0, 0) = 0 on Γ0},

B =

{
t : Ω → [0, 1] measurable :

∫
Ω

t(x) dx = t1|Ω|
}

,

where
0 < t1 < 1

and |Ω| denotes the Lebesgue measure of Ω.
Moreover u = (u1, u2, u3) ∈ W1,2(Ω;R3) is the field of displacements relating the cartesian system

(0, x1, x2, x3), resulting from the action of the external loads f ∈ L2(Ω;R3) and f̂ ∈ L2(Γt;R3).
We also define the stress tensor {σij} ∈ Y∗ = Y = L2(Ω;R3×3), by

σij(u) = Hijkl(t)ekl(u),

and the strain tensor e : U → L2(Ω;R3×3) by

eij(u) =
1
2
(ui,j + uj,i), ∀i, j ∈ {1, 2, 3}.

Finally,
{Hijkl(t)} = {tH0

ijkl + (1 − t)H1
ijkl},
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where H0 corresponds to a strong material and H1 to a very soft material, intending to simulate voids
along the solid structure.

The variable t is the design one, which the optimal distribution values along the structure are
intended to minimize its inner work with a volume restriction indicated through the set B.

The duality principle obtained is developed inspired by the works in [1,2]. Similar theoretical
results have been developed in [7], however we believe the proof here presented, which is based on
the min-max theorem is easier to follow (indeed we thank an anonymous referee for his suggestion
about applying the min-max theorem to complete the proof). We highlight throughout this text we
have used the standard Einstein sum convention of repeated indices.

Moreover, details on the Sobolev spaces addressed may be found in [6]. In addition, the primal
variational development of the topology optimization problem has been described in [7].

The main contributions of this work are to present the detailed development, through duality
theory, for such a kind of optimization problems. We emphasize that to avoid the check-board standard
and obtain appropriate robust optimized structures without the use of filters, it is necessary to discretize
more in the load direction, in which the displacements are much larger.

10.2. Mathematical Formulation of the Topology Optimization Problem

Our mathematical topology optimization problem is summarized by the following theorem.

Theorem 3. Consider the statements and assumptions indicated in the last section, in particular those refereing
to Ω and the functional Ĵ : U × B → R.

Define J1 : U × B → R by

J1(u, t) = −G(e(u), t) + ⟨ui, fi⟩L2(Ω) + ⟨ui, f̂i⟩L2(Γt)
,

where
G(e(u), t) =

1
2

∫
Ω

Hijkl(t)eij(u)ekl(u) dx,

and where
dx = dx1dx2dx3.

Define also J∗ : U → R by

J∗(u) = inf
t∈B

{J1(u, t)}

= inf
t∈B

{−G(e(u), t) + ⟨ui, fi⟩L2(Ω) + ⟨ui, f̂i⟩L2(Γt)
}. (54)

Assume there exists c0, c1 > 0 such that

H0
ijklzijzkl > c0zijzij

and
H1

ijklzijzkl > c1zijzij, ∀z = {zij} ∈ R3×3, such that z ̸= 0.

Finally, define J : U × B → R∪ {+∞} by

J(u, t) = Ĵ(u, t) + Ind(u, t),

where

Ind(u, t) =

{
0, if (u, t) ∈ A∗,
+∞, otherwise ,

(55)

where A∗ = A1 ∩ A2,

A1 = {(u, t) ∈ U × B : (σij(u)),j + fi = 0, in Ω, ∀i ∈ {1, 2, 3}}
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and
A2 = {(u, t) ∈ U × B : σij(u)nj − f̂i = 0, on Γt, ∀i ∈ {1, 2, 3}}.

Under such hypotheses, there exists (u0, t0) ∈ U × B such that

J(u0, t0) = inf
(u,t)∈U×B

J(u, t)

= sup
û∈U

J∗(û)

= J∗(u0)

= Ĵ(u0, t0)

= inf
(t,σ)∈B×C∗

G∗(σ, t)

= G∗(σ(u0), t0), (56)

where

G∗(σ, t) = sup
v∈Y

{⟨vij, σij⟩L2(Ω) − G(v, t)}

=
1
2

∫
Ω

Hijkl(t)σijσkl dx, (57)

{Hijkl(t)} = {Hijkl(t)}−1

and C∗ = C1 ∩ C2, where

C1 = {σ ∈ Y∗ : σij,j + fi = 0, in Ω, ∀i ∈ {1, 2, 3}}

and
C2 = {σ ∈ Y∗ : σijnj − f̂i = 0, on Γt, ∀i ∈ {1, 2, 3}}.

Proof. Observe that

inf
(u,t)∈U×B

J(u, t) = inf
t∈B

{
inf

u∈U
J(u, t)

}
= inf

t∈B

{
sup
û∈U

{
inf

u∈U

{
1
2

∫
Ω

Hijkl(t)eij(u)ekl(u) dx

+⟨ûi, (Hijkl(t)ekl(u)),j + fi⟩L2(Ω)

−⟨ûi, Hijkl(t)ekl(u)nj − f̂i⟩L2(Γt)

}}}
= inf

t∈B

{
sup
û∈U

{
inf

u∈U

{
1
2

∫
Ω

Hijkl(t)eij(u)ekl(u) dx

−
∫

Ω
Hijkl(t)eij(û)ekl(u) dx

+⟨ûi, fi⟩L2(Ω) + ⟨ûi, f̂i⟩L2(Γt)

}}}
= inf

t∈B

{
sup
û∈U

{
−
∫

Ω
Hijkl(t)eij(û)ekl(û) dx

⟨ûi, fi⟩L2(Ω) + ⟨ûi, f̂i⟩L2(Γt)

}}
= inf

t∈B

{
inf

σ∈C∗
G∗(σ, t)

}
. (58)
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Also, from this and the min-max theorem, there exist (u0, t0) ∈ U × B such that

inf
(u,t)∈U×B

J(u, t) = inf
t∈B

{
sup
û∈U

J1(u, t)

}

= sup
u∈U

{
inf
t∈B

J1(u, t)
}

= J1(u0, t0)

= inf
t∈B

J1(u0, t)

= J∗(u0). (59)

Finally, from the extremal necessary condition

∂J1(u0, t0)

∂u
= 0

we obtain
(Hijkl(t0)ekl(u0)),j + fi = 0 in Ω,

and
Hijkl(t0)ekl(u0)nj − f̂i = 0 on Γt, ∀i ∈ {1, 2, 3},

so that
G(e(u0)) =

1
2
⟨(u0)i, fi⟩L2(Ω) +

1
2
⟨(u0)i, f̂i⟩L2(Γt)

.

Hence (u0, t0) ∈ A∗ so that Ind(u0, t0) = 0 and σ(u0) ∈ C∗.
Moreover

J∗(u0) = −G(e(u0)) + ⟨(u0)i, fi⟩L2(Ω) + ⟨(u0)i, f̂i⟩L2(Γt)

= G(e(u0))

= G(e(u0)) + Ind(u0, t0)

= J(u0, t0)

= G∗(σ(u0), t0). (60)

This completes the proof.

10.3. About a Concerning Algorithm and Related Numerical Method

For numerically solve this optimization problem in question, we present the following algorithm

1. Set t1 = 0.5 in Ω and n = 1.
2. Calculate un ∈ U such that

J1(un, tn) = sup
u∈U

J1(u, tn).

3. Calculate tn+1 ∈ B such that
J1(un, tn+1) = inf

t∈B
J1(un, t).

4. If ∥tn+1 − tn∥∞ < 10−4 or n > 100 then stop, else set n := n + 1 and go to item 2.

We have developed a software in finite differences for solving such a problem.
Here the software.
**************************************

1. clear all
global P m8 d w u v Ea Eb Lo d1 z1 m9 du1 du2 dv1 dv2 c3
m8=27;
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m9=24;
c3=0.95;
d=1.0/m8;
d1=0.5/m9;
Ea=210 ∗ 105; (stronger material)
Eb=1000; (softer material simulating voids)
w=0.30;
P=-42000000;
z1=(m8-1)*(m9-1);
A3=zeros(z1,z1);
for i=1:z1
A3(1,i)=1.0;
end;
b=zeros(z1,1);
uo=0.000001*ones(z1,1);
u1=ones(z1,1);
b(1,1)=c3*z1;
for i=1:m9-1
for j=1:m8-1
Lo(i,j)=c3;
end; end;
for i=1:z1
x1(i)=c3*z1;
end;
for i=1:2*m8*m9
xo(i)=0.000;
end;
xw=xo;
xv=Lo;
for k2=1:24
c3=0.98*c3;
b(1,1)=c3*z1;
k2
b14=1.0;
k3=0;
while (b14 > 10−3.5) and (k3 < 5)
k3=k3+1;
b12=1.0;
k=0;
while (b12 > 10−4.0) and (k < 120)
k=k+1;
k2
k3
k
X=fminunc(’funbeam’,xo);
xo=X;
b12=max(abs(xw-xo));
xw=X;
end;
for i=1:m9-1
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for j=1:m8-1
E1 = Lo(i, j)2 ∗ (Ea − Eb);
ex=du1(i,j);
ey=dv2(i,j);
exy=1/2*(dv1(i,j)+du2(i,j));
Sx = E1 ∗ (ex + w ∗ ey)/(1 − w2);
Sy = E1 ∗ (w ∗ ex + ey)/(1 − w2);
Sxy=E1/(2*(1+w))*exy;
dc3(i,j)=-(Sx*ex+Sy*ey+2*Sxy*exy);
end;
end;
for i=1:m9-1
for j=1:m8-1
f(j+(i-1)*(m8-1))=dc3(i,j);
end;
end;
for k1=1:1
k1
X1=linprog(f,[ ],[ ],A3,b,uo,u1,x1);
x1=X1;
end;
for i=1:m9-1
for j=1:m8-1
Lo(i,j)=X1(j+(m8-1)*(i-1));
end;
end;
b14=max(max(abs(Lo-xv)))
xv=Lo;
colormap(gray); imagesc(-Lo); axis equal; axis tight; axis off;pause(1e-6)
end;
end;

****************************************************
Here the auxiliary Function ’funbeam’

function S=funbeam(x)
global P m8 d w u v Ea Eb Lo d1 m9 du1 du2 dv1 dv2
for i=1:m9
for j=1:m8
u(i,j)=x(j+(m8)*(i-1));
v(i,j)=x(m8*m9+(i-1)*m8+j);
end;
end;
for i=1:m9
end;
u(m9-1,1)=0;
v(m9-1,1)=0;
u(m9-1,m8-1)=0;
v(m9-1,m8-1)=0;
for i=1:m9-1
for j=1:m8-1
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du1(i,j)=(u(i,j+1)-u(i,j))/d;
du2(i,j)=(u(i+1,j)-u(i,j))/d1;
dv1(i,j)=(v(i,j+1)-v(i,j))/d;
dv2(i,j)=(v(i+1,j)-v(i,j))/d1;
end;
end;
S=0;
for i=1:m9-1
for j=1:m8-1
E1 = Lo(i, j)3 ∗ Ea + (1 − Lo(i, j)3) ∗ Eb;
ex=du1(i,j);
ey=dv2(i,j);
exy=1/2*(dv1(i,j)+du2(i,j));
Sx = E1 ∗ (ex + w ∗ ey)/(1 − w2);
Sy = E1 ∗ (w ∗ ex + ey)/(1 − w2);
Sxy=E1/(2*(1+w))*exy;
S=S+1/2*(Sx*ex+Sy*ey+2*Sxy*exy);
end;
end;
S=S*d*d1-P*v(2,(m8)/3)*d*d1;

************************************************

For a two dimensional beam of dimensions 1m × 0.5m and t1 = 0.63 we have obtained the following
results:

1. Case A: For the optimal shape for a clamped beam at left (cantilever) and load P = −4 106Nj at
(x, y) = (1, 0.25), please Figure 5.

2. Case B :For the optimal shape for a simply supported beam at (0, 0) and (1, 0) and load P =

−4 106Nj at (x, y) = (1/3, 0.5), please Figure 6.
In the first case the mesh was 28 × 24. In the second one the mesh was 27 × 24

Figure 5. Density t(x, y) for the Case A.
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Figure 6. Density t(x, y) for the Case B.

11. A Duality Principle for a General Vectorial Case in the Calculus of Variations
In this section we develop a duality principle for a general vectorial case in variational optimiza-

tion.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω. Let J : V → R be a functional where

J(u) = G(∇u1, · · · ,∇uN)− ⟨u, f ⟩L2 ,

where
V = W1,2

0 (Ω;RN)

and
f = ( f1, · · · , fN) ∈ L2(Ω;RN).

Here we have denoted u = (u1, · · · , uN) ∈ V and

⟨u, f ⟩L2 = ⟨ui, fi⟩L2 ,

so that we may also denote
J(u) = G(∇u)− ⟨u, f ⟩L2 .

Assume
G(∇u) =

∫
Ω

g(∇u) dx

where g : R3N → R is a differentiable function such that

g(y) → +∞

as |y| → ∞. Moreover, suppose there exists α ∈ R such that

α = inf
u∈V

J(u).

It is well known that
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α = inf
u∈V

J(u)

= inf
u∈V

J∗∗(u)

= inf
u∈V

{(G ◦ ∇)∗∗(u)− ⟨u, f ⟩L2}. (61)

Under some mild hypotheses, from convexity, we have that

inf
u∈V

{(G ◦ ∇)∗∗(u)− ⟨u, f ⟩L2}

= sup
v∗∈A∗

{−(G ◦ ∇)∗(−div v∗)} = −(G ◦ ∇)∗( f ), (62)

where
A∗ = {v∗ ∈ Y = Y∗ = L2(Ω;R3N) : div v∗ + f = 0}.

Now observe that the restriction v = ∇u for some u ∈ V is equivalent to the restriction

curl vi = 0, in Ω

where v = {vi} = {vij}3
j=1, ∀i ∈ {1, · · · , N}, with appropriate boundary conditions, so that with an

appropriate Lagrange multiplier ϕ = {ϕi}, we obtain

(G ◦ ∇)∗(−div v∗) = sup
u∈V

{⟨u,−div v∗⟩L2 − G(∇u)}

= sup
u∈V

{⟨∇u, v∗⟩L2 − G(∇u)}

≤ inf
ϕ∈Y∗

{
sup
v∈Y

{⟨v, v∗⟩L2 − G(v) + ⟨ϕ, curl v⟩L2

}
= inf

ϕ∈Y∗
G∗(v∗ + curl ϕ). (63)

where we have denoted
curl v = {curl vi}

and
curl ϕ = {curl ϕi}.

Joining the pieces, we have got

inf
u∈V

J(u) = inf
u∈V

{G(∇u)− ⟨u, f ⟩L2}

≥ sup
(v∗ ,ϕ)∈A∗×Y∗

{−G∗(v∗ + curl ϕ)}, (64)

where we recall that Y = Y∗ = L2(Ω;R3N).
We emphasize such a dual formulation in (v∗, ϕ) is convex (in fact concave).

12. A Note on the Galerkin Functional
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider the functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

4

∫
Ω

u4 dx

− β

2

∫
Ω

u2 dx − ⟨u, f ⟩L2 (65)
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Here V = W1,2
0 (Ω), γ > 0, α > 0, β > 0.

We denote also
Y = Y∗ = L2(Ω).

At this point we define
A+ = {u ∈ V : u f ≥ 0, in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

for some appropriate real constant K3 > 0 and

V1 = A+ ∩ V2.

Observe that
J′(u) = −γ∇2u + αu3 − β − f ,

so that we define the Galerkin functional J1 : V → R by

J1(u) =
1
2
∥J′(u)∥2

2 =
1
2

∫
Ω
(−γ∇2u + αu3 − βu − f )2 dx.

From this, we get

∂2 J1(u)
∂u2 = (−γ∇u + αu3 − βu − f )6αu

+(−γ∇2 + 3αu2 − β)2. (66)

Define now
φ2 = (−γ∇2u + αu3 − βu − f )6αu.

At this point, for an appropriate small real constant ε1 > 0 and bounded constant operator
M1 > ε1, we set the intended non-active restriction

√
3α|u| ≥

√
|M1 + γ∇2 + β|,

and define
B1 = {u ∈ V1 :

√
3α|u| ≥

√
|M1 + γ∇2 + β|}.

Observe that since for u ∈ V1 we have u f ≥ 0 in Ω so that if u1, u2 ∈ V1 then

sign(u1) = sign(u2), in Ω,

we may infer that B1 is a convex set.
Furthermore, if u ∈ B1, then

√
3α|u| ≥

√
|M1 + γ∇2 + β|,

so that
3αu2 ≥ M1 + γ∇2 + β,

and hence
δ2 J(u) = −γ∇2 + 3αu2 − β ≥ M1 > ε1 > 0.

Observe now that
∂2 φ2

∂u2 = 12α(−γ∇2 + 3αu2 − β).
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From such a result we may infer that

∂2 φ2

∂u2 ≥ 0, on B1,

so that φ2 is convex in B1.
For a small parameter ε > 0 we define the intended non-active restriction

|φ2| ≤ ε, in Ω,

and define
B3 = {u ∈ B1 : |φ2| ≤ ε, in Ω}.

Assuming 0 < ε ≪ ε1 ≪ 1,
Summarizing, if u ∈ B3, then

δ2 J1(u) ≥ 0.

With such results in mind, we define the following optimization problem for finding a critical
point of J.

Minimize
J1(u) =

1
2
∥J′(u)∥2

2 =
1
2

∫
Ω
(−γ∇2u + αu3 − βu − f )2 dx,

subject to
u ∈ B3.

Finally, we may also define the optimization problem of minimizing

J3(u) = K1 J1(u) + J(u)

=
K1

2

∫
Ω
(−γ∇2u + αu3 − βu − f )2 dx

+
γ

2

∫
Ω
∇u · ∇u dx +

α

4

∫
Ω

u4 dx

− β

2

∫
Ω

u2 dx − ⟨u, f ⟩L2 , (67)

subject to
u ∈ B3.

Here K1 > 0 is a large real constant.

13. A Note on the Legendre-Galerkin Functional
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider the functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

4

∫
Ω

u4 dx

− β

2

∫
Ω

u2 dx − ⟨u, f ⟩L2 (68)

Here V = W1,2
0 (Ω), γ > 0, α > 0, β > 0.

We denote also
Y = Y∗ = L2(Ω)
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and F1 : V → R, F2 : V → R and F3 : V → R by

F1(u) =
γ

2

∫
Ω
∇u · ∇u dx,

F2(u) =
α

4

∫
Ω

u4 dx,

F3(u) =
β

2

∫
Ω

u2 dx.

Moreover, we define F∗
1 , F∗

2 , F∗
3 : Y∗ → R by

F∗
1 (v

∗
1) = sup

u∈V
{⟨u, v∗1⟩L2 − F1(u)}

=
1
2

∫
Ω

(v∗1)
2

−γ∇2 dx, (69)

F∗
2 (v

∗
2) = sup

u∈V
{⟨u, v∗2⟩L2 − F2(u)}

=
3
4

∫
Ω

(v∗2)
4/3

α1/3 dx, (70)

F∗
3 (v

∗
3) = sup

u∈V
{⟨u, v∗3⟩L2 − F3(u)}

=
1

2β

∫
Ω
(v∗3)

2 dx. (71)

Observe now that these three last suprema are attained through the equations,

v∗1 =
∂F1(u)

∂u
= −γ∇2u,

v∗2 =
∂F2(u)

∂u
= αu3

v∗3 =
∂F3(u)

∂u
= βu.

From such results, at a critical point, we obtain the following compatibility conditions

u =
v∗1

−γ∇2 =

(
v∗2
β

)1/3
=

v∗3
β

.

From such relations we have
v∗1

−γ∇2 =
v∗3
β

,

and

v∗2 = α

(
v∗3
β

)3
,

so that

v∗1 = −γ∇2
(

v∗3
β

)
,

and

v∗2 = α

(
v∗3
β

)3
.
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Moreover, we define the functional F∗
4 : Y∗ → R, by

F∗
4 (v

∗) = sup
u∈V

{⟨u, v∗1 + v∗2 − v∗3⟩L2 − ⟨u, f ⟩L2}.

Therefore

F∗
4 (v

∗) =

{
0, if v∗1 + v∗2 − v∗3 − f = 0, in Ω,
+∞, otherwise.

(72)

Hence, a critical point of J corresponds to the solution of the following system of equations

v∗1 = −γ∇2
(

v∗3
β

)
,

v∗2 = α

(
v∗3
β

)3
,

and
v∗1 + v∗2 − v∗3 − f = 0, in Ω.

From this last equation we may obtain

v∗1 = −v∗2 + v∗3 + f ,

so that the final equations to be solved are

−v∗2 + v∗3 + f + γ∇2
(

v∗3
β

)
= 0

and

v∗2 − α

(
v∗3
β

)3
= 0, in Ω,

with the boundary conditions

u =
v∗3
β

= 0, on ∂Ω.

With such results in mind, we define the Legendre-Galerkin functional J∗ : [Y∗]2 → R, where

J∗(v∗) =
1
2

∫
Ω

(
−v∗2 + v∗3 + f +

γ∇2v∗3
β

)2

dx

+
1
2

∫
Ω

(
v∗2 − α

(
v∗3
β

)3
)2

dx. (73)

At this point, defining

φ = v∗2 − α

(
v∗3
β

)3
,

we obtain
∂2 J∗(v∗)
∂(v∗2)

2 = 2;

∂2 J∗(v∗)
∂(v∗3)

2 =

(
−1 − γ∇2

β

)2

+
9α2(v∗3)

4

β6 +O(φ),

∂2 J∗(v∗)
∂v∗2∂v∗3

=
−3α(v∗3)

2

β3 +

(
−1 − γ∇2

β

)
.
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From such results we may infer that

det
(

∂2 J∗(v∗)
∂v∗2∂v∗3

)
=

∂2 J∗(v∗)
∂(v∗2)

2
∂2 J∗(v∗)
∂(v∗3)

2 −
(

∂2 J∗(v∗)
∂v∗2∂v∗3

)2

=

(
−1 − γ∇2

β
+ 3α

(v∗3)
2

β3

)2

+O(φ) (74)

Observe that a critical point φ = 0 so that δ2 J∗(v∗) > 0 at a neighborhood of any critical point.
At this point we define

A+ =

{
v∗ = (v∗2 , v∗3) ∈ [Y∗]2 :

v∗3
β

f ≥ 0, in Ω
}

,

D∗ = {v∗ = (v∗2 , v∗3) ∈ [Y∗]2 : ∥v∗∥∞ ≤ K},

for an appropriate real constant K > 0.
Define now E∗ = A+ ∩ D∗,

C∗
1 = {v∗ = (v∗2 , v∗3) ∈ E∗ : φ2 ≤ ε, in Ω},

for a small real constant ε > 0,

C∗
2 =

{
v∗ = (v∗2 , v∗3) ∈ E∗ :

(
−1 − γ∇2

β
+ 3α

(v∗3)
2

β3

)
≥ ε1

}
,

and
C∗ = C∗

1 ∩ C∗
2 .

Similarly as done in the previous section, we may prove that C∗ is a convex set.
Furthermore, for 0 < ε ≪ ε1 ≪ 1, we have that J∗ is convex on C∗.
Summarizing, we may define the following convex optimization problem to obtain a critical point

of the primal functional J,

Minimize J∗(v∗2 , v∗3) subject to v∗ = (v∗2 , v∗3) ∈ C∗.

We call J∗ the Legendre-Galerkin functional associated to J.

13.1. Numerical Examples

We have obtained numerical solutions for two one-dimensional examples.

1. For γ = 1.0, α = 3.0, β = 30.0, f ≡ 10, in Ω = [0, 1].
For the respective solution please see Figure 7.

2. For γ = 0.01, α = 3.0, β = 30.0, f ≡ 10, in Ω = [0, 1].
For the respective solution please see Figure 8.
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Figure 7. Solution u(x) = v∗3(x)/β for the example 1.
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Figure 8. Solution u(x) = v∗3(x)/β for the example 2.

14. A General Concave Dual Variational Formulation for Global Optimization
Let Ω ⊂ R3 be an open, bounded and connected set a regular (Lipschitzian) boundary denoted

by ∂Ω.
Consider a functional J : V → R where

J(u) = G(u)− ⟨u, f ⟩L2 , ∀u ∈ V.

Here V = W1,2
0 (Ω), f ∈ L2(Ω) and we also denote Y = Y∗ = L2(Ω).

Assume there exists α ∈ R such that

α = inf
u∈V

J(u).

Furthermore, suppose G is three times Fréchet differentiable and there exists K > 0 such that

∂2G(u)
∂u2 + K > 0, ∀u ∈ V.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


46 of 360

Define now J1 : V × Y → R where,

J1(u, v) = G1(u, v) + F(u),

where
G1(u, v) = G(v)− ε

2

∫
Ω

v2 dx +
K
2

∫
Ω
(v − u)2 dx,

and
F(u) =

ε

2

∫
Ω

u2 dx − ⟨u, f ⟩L2 .

Moreover, we define the polar functionals G∗
1 : Y∗ × V → R and F∗ : Y∗ → R, where

G∗
1 (v

∗, u) = sup
v∈Y

{⟨v, v∗⟩L2 − G1(u, v)}

= −G∗
Kε
(v∗ + Ku) +

K
2

∫
Ω

u2 dx, (75)

G∗
Kε
(v∗ + Ku) = sup

v∈Y

{
⟨v, v∗⟩L2 − G(v)− K

2

∫
Ω

v2 dx +
ε

2

∫
Ω

v2 dx
}

,

and

F∗(−v∗) = sup
u∈V

{−⟨u, v∗⟩L2 − F(u)}

=
1
2ε

∫
Ω
(v∗ − f )2 dx. (76)

At this point we define the functional J∗2 : Y∗ × V → R by

J∗2 (v
∗, u) = −G∗

Kε
(v∗ + Ku) +

K
2

∫
Ω

u2 dx − F∗(−v∗).

With such results in mind we define

V1 = {u ∈ V : ∥u∥∞ ≤ K3},

and
D∗ = {v∗ ∈ Y∗ : ∥v∗∥∞ ≤ K4},

for appropriated real constants K3 > 0 and K4 > 0.
Moreover, we define also the penalized functional J∗3 : Y∗ × V → R where

J∗3 (v
∗, u) = J∗2 (v

∗, u)− K1

2

∫
Ω

(
v∗ − ∂G(u)

∂u
+ εu

)2

dx.

Finally, we remark that for ε > 0 sufficiently small and K1 > 0 sufficiently large, J∗3 is concave in
D∗ × V1 around a concerning critical point. We recall that a critical point

v∗ − ∂G(u)
∂u

+ εu = 0, in Ω.

15. A Related Restricted Problem in Phase Transition
In this section we develop a convex (in fact concave) dual variational for a model similar to those

found in phase transition problems.
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Let Ω = [0, 1] ⊂ R. Consider the functional J : V → R where

J(u) =
1
2

∫
Ω

min{(u′ + 1)2, (u′ − 1)2} dx

+
1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2

=
1
2

∫
Ω
(u′)2 dx −

∫
Ω
|u′| dx + 1/2

+
1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 . (77)

Here
V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2}.

We also denote V1 = W1,2
0 (Ω), and Y = Y∗ = L2(Ω).

Furthermore, we define the functionals G and F : V × V1 → R by

G(u′, v′) =
1
2

∫
Ω
(u′ + v′)2 dx −

∫
Ω
|u′ + v′| dx + 1/2,

and
F(u, v) =

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 .

Moreover we define J1 : V × V1 → R by

J1(u, v) = G(u′, v′) + F(u, v),

and consider the problem of minimizing J1 on the set

A = {(u, v) ∈ V × V1 : (v′)2 ≤ K2, in Ω}.

Already including the Lagrange multiplier ϕ concerning such restrictions, we define

J2(u, v, ϕ) = J1(u, v) +
1
2
⟨ϕ2, (v′)2 − K2⟩L2 .

Observe now that

J2(u, v, ϕ) = J1(u, v) +
1
2
⟨ϕ2, (v′)2 − K2⟩L2

= G(u′, v′) +
1
2
⟨ϕ2, (v′)2 − K2⟩L2

+F(u, v)

= −⟨u′, v∗1⟩L2 − ⟨v′, v∗2⟩L2 + G(u′, v′)

+
1
2
⟨ϕ2, (v′)2 − K2⟩L2

⟨u′, v∗1⟩L2 + ⟨v′, v∗2⟩L2 + F(u, v)

≥ inf
(v1,v2)∈Y×Y

{−⟨v1, v∗1⟩L2 − ⟨v2, v∗2⟩L2 + G1(v1, v2, ϕ)

+
1
2
⟨ϕ2, (v2)

2 − K2⟩L2

}
+ inf

(u,v)∈V×V1

{⟨u′, v∗1⟩L2 + ⟨v′, v∗2⟩L2 + F(u, v)}

= −G∗
1 (v

∗
1 , v∗2 , ϕ)− F̃∗(v∗1 , v∗2), ∀(u, v) ∈ V × V1, (v∗1 , v∗2 , ϕ) ∈ [Y∗]3, (78)

where
G1(u′, v′, ϕ) = G(u′, v′) +

1
2
⟨ϕ2, (v′)2 − K2⟩L2 .
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Also,

G∗
1 (v

∗
1 , v∗2 , ϕ) = sup

(v1,v2)∈Y×Y
{⟨v1, v∗1⟩L2 + ⟨v1, v∗1⟩L2 − G1(v1, v2, ϕ)}

=
1
2

∫
Ω
(v∗1)

2 dx

+
∫

Ω
|v∗1 | dx +

1
2

∫
Ω

(v∗1 − v∗2)
2

ϕ2

+
K2

2

∫
Ω

ϕ2 dx, (79)

where

F̃∗(v∗) =

{
1
2

∫
Ω((v∗1)

′ + f )2 dx − v∗1(1)u(1), if (v∗2)
′ = 0, in Ω,

+∞, otherwise.
(80)

From this we may infer that v∗2 = c, in Ω, for some c ∈ R.
Summarizing, denoting v∗ = (v∗1 , v∗2) = (v∗1 , c), and

J∗(v∗, ϕ) = −G∗
1 (v

∗, ϕ)− F̃∗(v∗)

we have got

inf
(u,v)∈A

J1(u, v) ≥ sup
(v∗ ,ϕ)∈Y∗×R×Y∗

J∗(v∗ϕ).

We have developed numerical results by maximizing the dual functional J∗ for two examples,
namely.

1. Example A: In this case, we consider f (x) = cos(πx)/2, K2 = 10−4.
For the optimal

u0 = (v∗1)
′ + f ,

please see Figure 9.
2. Example B: In this case, we consider f (x) = cos(πx)/2, K2 = 30.

For the optimal
u0 = (v∗1)

′ + f ,

please see Figure 10.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


49 of 360

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 9. Solution u0(x) for the example A.
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Figure 10. Solution u0(x) for the example B.

16. One More Dual Variational Formulation
In this section we develop one more dual variational formulation for a related model.
Let Ω = [0, 1] ⊂ R and consider the functional J : V → R defined by

J(u) =
1
2

∫
Ω
((u′)2 − 1)2 dx +

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ,

where
V = {u ∈ W1,4(Ω) : u(0) = 0 and u(1) = 1/2}.

We define also the relaxed functional J1 : V × V0 → R, already including a concerning restriction
and corresponding non-negative Lagrange multiplier Λ2, where

J1(u, v, Λ) =
1
2

∫
Ω
((u′ + v′)2 − 1)2 dx +

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 + ⟨Λ2, (v′)2 − K⟩L2 .

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


50 of 360

where
V0 = {v ∈ W1,4

0 (Ω) : (v′)2 − K ≤ 0 in Ω}.

Observe that

1
2

∫
Ω
((u′ + v′)2 − 1)2 dx +

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 + ⟨Λ2, (v′)2 − K⟩L2

= −⟨v∗0 , (u′ + v′)2 − 1⟩L2 +
1
2

∫
Ω
((u′ + v′)2 − 1)2 dx

+⟨v∗0 , (u′ + v′)2 − 1⟩L2 + ⟨Λ2, (v′)2 − K⟩L2 − ⟨u′, v∗1⟩L2 − ⟨v′, v∗2⟩L2

+⟨u′, v∗1⟩L2 + ⟨v′, v∗2⟩L2 +
1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2

≥ inf
w∈Y

{
−⟨v∗0 , w⟩L2 +

1
2

∫
Ω
(w)2 dx

}
inf

(v1,v2)∈Y×Y

{
⟨v∗0 , (v1 + v2)

2 − 1⟩L2 + ⟨Λ2, (v2)
2 − K⟩L2 − ⟨v1, v∗1⟩L2 − ⟨v2, v∗2⟩L2

}
+ inf

(u,v)∈V×V0

{
⟨u′, v∗1⟩L2 + ⟨v′, v∗2⟩L2 +

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2

}
= −1

2

∫
Ω
(v∗0)

2 dx −
∫

Ω
v∗0 dx

−1
4

∫
Ω

(v∗1)
2

v∗0
dx − 1

2

∫
Ω

(v∗1 − v∗2)
2

2Λ2 dx

−1
2

∫
Ω
((v∗1)

′ + f )2 dx − 1
2

∫
Ω

KΛ2 dx + v∗1(1)u(1). (81)

Here, we highlight v∗2 = c ∈ R in Ω, for some real constant c.
Hence, denoting

J∗1 (v
∗, Λ) = −1

2

∫
Ω
(v∗0)

2 dx −
∫

Ω
v∗0 dx

−1
4

∫
Ω

(v∗1)
2

v∗0
dx − 1

2

∫
Ω

(v∗1 − v∗2)
2

2Λ2 dx

−1
2

∫
Ω
((v∗1)

′ + f )2 dx − 1
2

∫
Ω

KΛ2 dx + v∗1(1)u(1) (82)

and
J2(u, v) =

1
2

∫
Ω
((u′ + v′)2 − 1)2 dx +

1
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ,

we have obtained
inf

(u,v)∈V×V0
J2(u, v)} ≥ sup

(v∗ ,Λ)∈A∗×[Y∗ ]×R×Y∗
J∗1 (v

∗, Λ).

Finally, for
A∗ = {v∗0 ∈ Y∗ : v∗0 ≥ ε in Ω}

we emphasize J∗1 is concave on A∗ × [Y∗]×R× Y∗.
Here ε > 0 is a small regularizing real constant.

Remark 7. The constraint (v′)2 − K ≤ 0, in Ω is included to restrict the action of v on the region where the
primal functional is non-convex, through an appropriate constant K > 0.

17. A Model in Superconductivity Through an Eigenvalue Approach
In this section we intend to model superconductivity through a two phase eigenvalue approach.
Let Ω = [0, 5] ⊂ R be a straight wire corresponding to a one-dimensional super-conducting

sample.
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Consider the functional J : V × V ×R → R where

J(u, v, E) =
γ1

2

∫
Ω
∇u · ∇u dx +

α1

2

∫
Ω
|u|4 dx

−ω2

2

∫
Ω
|u|2 dx

+
γ2

2

∫
Ω
∇v · ∇v dx +

α2

2

∫
Ω
|v|4 dx

−
ω2

1
2K2

3

∫
Ω
|v|2 dx

−E
2

(∫
Ω
(|u|2 + |v|2) dx − mT

)
. (83)

Here, in atomic units, mT is the total electronic charge, V = W1,2
0 (Ω) and we set α1 = 104

corresponding to higher self-interacting energy which is related to a normal phase. We also set
α2 = 10−1 corresponding to a lower self-interacting energy which is related to a super-conducting
phase and respective super-currents.

Moreover, we set γ1 = γ2 = 1, and initially ω = 1.8 which is gradually decreased to ω = 1.0.
Furthermore, we define

|ϕN |2 =
|u|2

|u|2 + |v|2

and

|ϕS|2 =
|v|2

|u|2 + |v|2

where ϕN corresponds to a normal phase and ϕS to a super-conducting one.
At this point we observe that the temperature T = T(x, t) is proportional the frequency ω/(2π)

of vibration for the normal phase.
We start the process with ω = 1.8 which in atomic units corresponds to a higher temperature and

gradually decreases it to the value ω = 1.0
Between ω = 1.2 and ω = 1.0 the system changes from an almost total normal phase to an almost

total super-conducting phase, as expected.
We highlight that the temperature is proportional to the vibrational kinetics energy

E1(t) =
1
2

∫
Ω
|u|2 ∂rN(x, t)

∂t
· ∂rN(x, t)

∂t
dx

so that for
rN(x, t) = eiωtw5(x)

and for a suitable vectorial function w5, we have

T ∝ E1 ∝ ω2

so that we may model the decreasing of temperature T through the decreasing of ω2.
For ω = 1.8, for the corresponding normal phase ϕN and super-conducting phase ϕS, please se

Figures 11 and 12, respectively.
For ω = 1.0, for the corresponding normal phase ϕN and super-conducting phase ϕS, please se

Figures 13 and 14, respectively.
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Figure 11. Solution ϕN(x) for the ω = 1.8.
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Figure 12. Solution ϕS(x) for the ω = 1.8.
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Figure 13. Solution ϕN(x) for the ω = 1.0.
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Figure 14. Solution ϕS(x) for the ω = 1.0.

Finally, we have set ω1/K3 ≈ 1 which for large ω1 corresponds to the super-currents.

18. A Simplified Qualitative Many Body Model for the Hydrogen Nuclear Fusion
In this section we develop a qualitative simple model for the hydrogen nuclear fusion.
Let Ω = [0, L]3 ⊂ R3 be a box in which is confined a gas comprised by an amount of ionized

deuterium and tritium isotopes of hydrogen.
Though a suitable increasing in temperature, we intend to develop the following nuclear reaction

Deuterium+ + Tritium+ → Helium++ + Neutron (energetic).

We recall that the ionized Deuterium atom comprises a proton and a neutron and the ionized
Tritium atom comprises a proton and two neutrons.

Under certain conditions and at a suitable high temperature the ionized Deuterium and Tritium
atoms react chemically resulting in an ionized Helium atom, comprised by two protons and two
neutrons and resulting also in one more single energetic neutron. We emphasize the higher kinetics
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neutron energy level has many potential practical applications, including its conversion in electric
energy.

At this point we denote by mD, mT , mHe and mN the masses of the ionized Deuterium, Tritium
and Helium atoms, and the single neutron, respectively.

Therefore, we have the following mass relation

mD + mT = mHe + mN .

To simplify our analysis, in such a chemical reaction, denoting the total masses of ionized
Deuterium, Tritium, Helium and single Neutrons by (mD)T , (mT)T , (mHe)T and (mN)T we assume
there is a real constant c > 0 such that

(mD)T = c mD, (mT)T = c mT , (mHe)T = c mHe , (mN)T = c mN .

With such statements and definitions in mind, we define the following functional J, where

J(ϕ, r) = J(ϕD, ϕT , ϕHe , ϕN , r) = G(∇ϕ) + F(ϕ) + Ec(ϕ, r),

where, in a simplified many body context,

|ϕD(x, y)|2 = |ϕD
p (y)|2 + |ϕD

N(x, y)|2|ϕD
p (y)|2

1
mp

,

|ϕT(x, y)|2 = |ϕT
p (y)|2 + (|ϕT

N1
(x, y)|2 + |ϕT

N2
(x, y)|2)|ϕT

p (y)|2
1

mp
,

|ϕHe(x, y)|2 = |ϕHe
2P (y)|

2 + (|ϕHe
N1
(x, y)|2 + |ϕHe

N2
(x, y)|2)|ϕHe

2P (y)|
2 1

2 mp
,

ϕN = ϕN(x).

Here x, y ∈ Ω ⊂ R3 refers to the particle densities.
Furthermore, we assume γD

p > 0, γT
p > 0, γD

N > 0, γT
N1

> 0, γT
N2

> 0, γHe
2p > 0, γHe

N1
> 0,

γHe
N2

> 0, γN > 0, and αD > 0, αT > 0, αHe > 0, αN > 0 , αDT > 0, αHe N > 0, so that

G(∇ϕ) =
γD

p

2

∫
Ω
(∇ϕD

p ) · (∇ϕD
p ) dy

+
γD

N
2

∫
Ω
(∇ϕD

N) · (∇ϕD
N) dx dy

γT
p

2

∫
Ω
(∇ϕT

p ) · (∇ϕT
p ) dy

+
γT

N1

2

∫
Ω
(∇ϕT

N1
) · (∇ϕT

N1
) dx dy

+
γT

N2

2

∫
Ω
(∇ϕT

N2
) · (∇ϕT

N2
) dx dy

+
γHe

2p

2

∫
Ω
(∇ϕHe

2p ) · (∇ϕHe
2p ) dy

+
γHe

N1

2

∫
Ω
(∇ϕHe

N1
) · (∇ϕHe

N1
) dx dy

+
γHe

N2

2

∫
Ω
(∇ϕHe

N2
) · (∇ϕHe

N2
) dx dy

+
γN
2

∫
Ω
(∇ϕN) · (∇ϕN) dx, (84)
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and,

F(ϕ) =
αD
2

∫
Ω

|ϕD(x − ξ1, y − ξ2)|2|ϕD(ξ1, ξ2)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2

+
αT
2

∫
Ω

|ϕT(x − ξ1, y − ξ2)|2|ϕT(ξ1, ξ2)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2

+
αDT

2

∫
Ω

|ϕD(x − ξ1, y − ξ2)|2|ϕT(ξ1, ξ2)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2

+
αHe

2

∫
Ω

|ϕHe(x − ξ1, y − ξ2)|2|ϕHe(ξ1, ξ2)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2

+
αN
2

∫ t f

0

∫
Ω

|ϕN(x − ξ)|2|ϕN(ξ)|2
|x − ξ| dx dξ

+
2

∑
j=1

αHe N

2

∫
Ω

|ϕHe(x1 − ξ1, y − ξ2)|2|ϕN(ξ j)|2

|(x, y)− (ξ1, ξ2)|
dx dy dξ1 dξ2 (85)

and the kinetics energy is expressed by

Ec(ϕ, r) =
1
2

∫
Ω
|ϕD|2

∂rD
∂t

· ∂rD
∂t

dx dy

+
1
2

∫
Ω
|ϕT |2

∂rT
∂t

· ∂rT
∂t

dx dy

+
1
2

∫
Ω
|ϕHe |2

∂rHe

∂t
· ∂rHe

∂t
dx dy

+
1
2

∫
Ω
|ϕN |2

∂rN
∂t

· ∂rN
∂t

dx dy, (86)

where we also assume
rD ≈ eiωtw5(x, y),

rT ≈ eiωtw6(x, y),

so that considering such a vibrational motion, the temperature T is proportional to ω2, that is

T ∝ ω2.

Therefore, an increasing in T corresponds to a proportional increasing in ω2.
Summarizing, we have supposed

Ec(ϕ, r) ≈ 1
2

ω2
∫

Ω
|ϕD|2 + |ϕT |2 dx C1 +

1
2

ω2
1

∫
Ω
|ϕN |2 dx C2,

so that we represent the increasing in T through an increasing in ω2.
Moreover, we denote by mN the mass of a single neutron and by mp the mass of a single proton.
Thus, denoting also by λ1, λ2 the proportion of non-reacted and reacted masses respectively, we

have the following constraints.

1. ∫
Ω
|ϕD

N(x, y)|2 dx = mN ,

2. ∫
Ω
|ϕT

N1
(x, y)|2 dx = mN ,
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3. ∫
Ω
|ϕT

N2
(x, y)|2 dx = mN ,

4. ∫
Ω
|ϕHe

N1
(x, y)|2 dx = mN ,

5. ∫
Ω
|ϕHe

N2
(x, y)|2 dx = mN ,

6. ∫
Ω
|ϕD

p (y)|2 dy = λ1 cmp,

7. ∫
Ω
|ϕT

p (y)|2 dy = λ1 cmp,

8. ∫
Ω
|ϕHe

2P (y)|
2 dy = λ2 (2c mp),

Similar constraints are valid corresponding to the charge of a single proton.
We have also the following complementing constraints,

1. ∫
Ω
|ϕD|2 dx dy = λ1(mD)T ,

2. ∫
Ω
|ϕT |2 dx dy = λ1(mT)T ,

3. ∫
Ω
|ϕHe |2 dx dy = λ2(mHe)T ,

4. ∫
Ω
|ϕN |2 dx dy = λ2(mN)T ,

5.
λ1 + λ2 = 1.

With such results and statements in mind and simplifying the interacting terms, we re-define the
functional J now denoting it by J1, here already including the Lagrange multipliers concerning the
constraints, where
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J1(ϕ, ω, E, λ) =
γD

p

2

∫
Ω
(∇ϕD

p ) · (∇ϕD
p ) dy

+
γD

N
2

∫
Ω
(∇ϕD

N) · (∇ϕD
N) dx dy

γT
p

2

∫
Ω
(∇ϕT

p ) · (∇ϕT
p ) dy

+
γT

N1

2

∫
Ω
(∇ϕT

N1
) · (∇ϕT

N1
) dx dy

+
γT

N2

2

∫
Ω
(∇ϕT

N2
) · (∇ϕT

N2
) dx dy

+
γHe

2p

2

∫
Ω
(∇ϕHe

2p ) · (∇ϕHe
2p ) dy

+
γHe

N1

2

∫
Ω
(∇ϕHe

N1
) · (∇ϕHe

N1
) dx dy

+
γHe

N2

2

∫
Ω
(∇ϕHe

N2
) · (∇ϕHe

N2
) dx dy

+
γN
2

∫
Ω
(∇ϕN) · (∇ϕN) dx

+
αD
2

∫
Ω
|ϕD|4 dx +

αT
2

∫
Ω
|ϕT |4 dx

+
αHe

2

∫
Ω
|ϕHe |4 dx +

αN
2

∫
Ω
|ϕN |4 dx

−ω2
∫

Ω
(|ϕD|2 + |ϕT |2) dx

−ω2
1

∫
Ω
|ϕN |2 dx + JAux, (87)
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where the functional JAux stands for

JAux = −
∫

Ω
(ED

N)5(y)
(∫

Ω
|ϕD

N(x, y)|2 dx − mN

)
dy

−
∫

Ω
(ET

N1
)6(y)

(∫
Ω
|ϕT

N1
(x, y)|2 dx − mN

)
dy

−
∫

Ω
(ET

N2
)7(y)

(∫
Ω
|ϕT

N2
(x, y)|2 dx − mN

)
dy

−
∫

Ω
(EHe

N1
)8(y)

(∫
Ω
|ϕHe

N1
(x, y)|2 dx − mN

)
dy

−
∫

Ω
(EHe

N2
)9(y)

(∫
Ω
|ϕHe

N2
(x, y)|2 dx − mN

)
dy

−(ED)2

(∫
Ω
|ϕD

p (y)|2 dy − λ1cmp

)
−(ET)3

(∫
Ω
|ϕT

p (y)|2 dy − λ1cmp

)
−(EHe)3

(∫
Ω
|ϕHe

2P (x, y)|2 dy − λ2 2cmp

)
−E5

(∫
Ω
|ϕD|2 dx dy − λ1(mD)T

)
−E6

(∫
Ω
|ϕT |2 dx dy − λ1(mT)T

)
−E7

(∫
Ω
|ϕHe |2 dx dy − λ2(mHe)T

)
−E8

(∫
Ω
|ϕN |2 dx dy − λ2(mN)T

)
−E9(λ1 + λ2 − 1). (88)

Remark 8. In order to obtain consistent results it is necessary to set

(αN , αHe) ≫ (αD, αT).

In such a case, a higher temperature corresponding to a large ω2, though such a nuclear reaction, will result
in a small λ1 and a higher kinetics energy for the neutron field, corresponding to a large ω2

1 and λ2 closer to 1.

19. A More Detailed Mathematical Description of the Hydrogen Nuclear Fusion
In this section we develop in more details another model for the hydrogen nuclear fusion.

Remark 9. Denoting by i ∈ C the imaginary unit, in this and in the subsequent sections, for the time-dependent
case we generically define the gradient of a scalar function u(x, t) with domain in R4, denoted by ∇u(x, t), as

∇u(x, t) = (iut(x, t), ux1(x, t), ux2(x, t), ux3(x, t)),

so that

∇u · ∇u = −u2
t +

3

∑
j=1

u2
xj

.

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Here such a set Ω stands for a control volume in which an ionized gas (plasma) flows. Such a gas
comprises ionized Deuterium and Tritium atoms intended, through a suitable higher temperature, to
chemically react resulting in atoms of Hellion and a field of single energetic Neutrons.
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Symbolically such a reaction stands for

Deuterium+ + Tritium+ → Helium++ + Neutron (energetic).

We recall that the ionized Deuterium atom is comprised by a proton and a neutron and the ionized
Tritium atom is comprised by a proton and two neutrons.

Moreover, the ionized Helium atom is comprised by two protons and two neutrons.
As previously mentioned, resulting from such a chemical reaction up surges also an energetic

neutron which the higher kinetics energy has a great variety of applications, including its conversion
in electric energy.

We highlight the model here presented includes electric and magnetic fields and the corresponding
potential ones.

Denoting by t the time on the interval [0, t f ], at this point we define the following density functions:

1. For the Deuterium field

|ϕD(x, y, t)|2 = |ϕD
p (y, t)|2 + |ϕD

N(x, y, t)|2|ϕD
p (y, t)|2 1

mp
,

2. For the Tritium field

|ϕT(x, y, t)|2 = |ϕT
p (y, t)|2 + (|ϕT

N1
(x, y, t)|2 + |ϕT

N2
(x, y, t)|2)|ϕT

p (y, t)|2 1
mp

,

3. For the Helium field

|ϕHe(x, y, t)|2 = |ϕHe
2p (y, t)|2 + (|ϕHe

N1
(x, y, t)|2 + |ϕHe

N2
(x, y, t)|2)|ϕHe

2p (y, t)|2 1
2 mp

,

4. For the Neutron field
ϕN = ϕN(x, t),

5. For the electronic field resulting from the ionization

ϕe = ϕe(x, y, t).

Furthermore, we define also the related densities

1.

ρD(y, t) =
∫

Ω
|ϕD(x, y, t)|2 dx,

2.

ρT(y, t) =
∫

Ω
|ϕT(x, y, t)|2 dx,

ρHe(y, t) =
∫

Ω
|ϕHe(x, y, t)|2 dx,

ρN(x, t) = |ϕN(x, t)|2,

ρe(y, t) =
∫

Ω
|ϕe(x, y, t)|2 dx.

For the chemical reaction in question we consider that one unit of mass of fractional proportion
αD of ionized Deuterium and αT of ionized Tritium results in one unit of mass of fractional proportion
αHe of ionized Helium and αN of neutrons.
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Symbolic, this stands for

1 = αD + αT = αHe + αN .

Concerning the control volume Ω in question and related surface control ∂Ω, we assume such
a volume has an initial (fot t = 0) amount of ionized Deuterium of (mD)0 and an initial amount of
ionized Tritium of (mT)0. The initial amount of ionized Helium and single neutrons are supposed to
be zero.

On the other hand, about the surface control ∂Ω, we assume there is a part Ω1 ⊂ ∂Ω for which is
allowed the entrance and exit of Deuterium and Tritium ionized atoms.

We assume also there is another part ∂Ω2 ⊂ ∂Ω such that ∂Ω1 ∩ ∂Ω2 = ∅ for which is allowed
only the exit of ionized Helium atoms and neutrons, but not their entrance.

In ∂Ω2 is allowed the exit only (not the entrance) of ionized Deuterium and Tritium atoms.
Indeed, we assume the following relations for the masses:

1.

(mHe ,N)T(t) = mHe ,N(t) +
∫ t

0

∫
∂Ω2

(ρHe(x, τ) + ρN(x, τ))u · n dS dτ,

2.
mHe ,N(t) = mHe(t) + mN(t),

3.

mHe(t) =
∫

Ω
ρHe(x, t) dx,

4.

mN(t) =
∫

Ω
ρN(x, t) dx,

5.

(mHe)T(t) =
∫

Ω
ρHe(x, t) dx +

∫ t

0

∫
∂Ω2

ρHe(x, τ)u · n dΓdτ,

6.

(mN)T(t) =
∫

Ω
ρN(x, t) dx +

∫ t

0

∫
∂Ω2

ρN(x, τ)u · n dΓdτ,

7.
(mN)T(t)
(mHe)T(t)

=
αN
αHe

,

so that
αNmHe)T(t) = αHe(mN)T(t),

8.

(mD)(t) = (mD)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρD(x, τ))u · n dS dτ − αD(mHe ,N)T(t),

9.

(mT)(t) = (mT)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρT(x, τ))u · n dS dτ − αT(mHe ,N)T(t),

10.

(me)T(t) = me(t) +
∫ t

0

∫
∂Ω2

(ρe(x, τ))u · n dS dτ,

11.

me(t) =
∫

Ω
ρe(x, t) dx.
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12.

me(t) =
∫

Ω
|ϕD

p (x, t)|2 dx
me

mp
+
∫

Ω
|ϕT

p (x, t)|2 dx
me

mp
+
∫

Ω
|ϕHe

2p (x, t)|2 dx
me

mp
.

Here n denotes the outward normal vectorial fields to the concerning surfaces.
Having clarified such masses relations, we define the functional

J(ϕ, ρ, r, u, E, A, B)

where

J = G(∇u) + F(ϕ) + Ec(ϕ, r) + F1 + F2 + F3,

and where we assume γD
p > 0, γT

p > 0, γD
N > 0, γT

N1
> 0, γT

N2
> 0, γHe

2p > 0, γHe
N1

> 0, γHe
N2

>

0, γN > 0, γe > 0 and αD > 0, αT > 0, αHe > 0, αN > 0 , αDT > 0, αHe N > 0, αe,e > 0, αHe ,e < 0 so
that

G(∇ϕ) =
γD

p

2

∫ t f

0

∫
Ω
(∇ϕD

p ) · (∇ϕD
p ) dy dt

+
γD

N
2

∫ t f

0

∫
Ω
(∇ϕD

N) · (∇ϕD
N) dx dy dt

γT
p

2

∫ t f

0

∫
Ω
(∇ϕT

p ) · (∇ϕT
p ) dy dt

+
γT

N1

2

∫ t f

0

∫
Ω
(∇ϕT

N1
) · (∇ϕT

N1
) dx dy dt

+
γT

N2

2

∫ t f

0

∫
Ω
(∇ϕT

N2
) · (∇ϕT

N2
) dx dy dt

+
γHe

2p

2

∫ t f

0

∫
Ω
(∇ϕHe

2p ) · (∇ϕHe
2p ) dy dt

+
γHe

N1

2

∫ t f

0

∫
Ω
(∇ϕHe

N1
) · (∇ϕHe

N1
) dx dy dt

+
γHe

N2

2

∫ t f

0

∫
Ω
(∇ϕHe

N2
) · (∇ϕHe

N2
) dx dy dt

+
γN
2

∫ t f

0

∫
Ω
(∇ϕN) · (∇ϕN) dx dt

+
γe

2

∫ t f

0

∫
Ω
(∇ϕe) · (∇ϕe) dx dy dt, (89)

and
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F(ϕ) =
αD
2

∫ t f

0

∫
Ω

|ϕD(x − ξ1, y − ξ2, t)|2|ϕD(ξ1, ξ2, t)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 dt

+
αT
2

∫ t f

0

∫
Ω

|ϕT(x − ξ1, y − ξ2, t)|2|ϕT(ξ1, ξ2, t)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 dt

+
αDT

2

∫ t f

0

∫
Ω

|ϕD(x − ξ1, y − ξ2, t)|2|ϕT(ξ1, ξ2, t)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 dt

+
αHe

2

∫ t f

0

∫
Ω

|ϕHe(x − ξ1, y − ξ2, t)|2|ϕHe(ξ1, ξ2, t)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 dt

+
αN
2

∫ t f

0

∫
Ω

|ϕN(x − ξ, t)|2|ϕN(ξ)|2
|x − ξ, t| dx dξ dt

+
2

∑
j=1

αHe N

2

∫ t f

0

∫
Ω

|ϕHe(x1 − ξ1, y − ξ2, t)|2|ϕN(ξ j, t)|2

|(x, y)− (ξ1, ξ2)|
dx dy dξ1 dξ2 dt

+
αHe , e

2

∫ t f

0

∫
Ω

|ϕHe(x − ξ1, y − ξ2, t)|2|ϕe(ξ1, ξ2, t)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 dt

+
αe,e

2

∫ t f

0

∫
Ω

|ϕe(x − ξ1, y − ξ2, t)|2|ϕe(ξ1, ξ2, t)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 dt (90)

and the internal kinetics energy is expressed by

Ec(ϕ, r) =
1
2

∫ t f

0

∫
Ω
|ϕD|2

∂rD
∂t

· ∂rD
∂t

dx dy dt

+
1
2

∫ t f

0

∫
Ω
|ϕT |2

∂rT
∂t

· ∂rT
∂t

dx dy dt

+
1
2

∫ t f

0

∫
Ω
|ϕHe |2

∂rHe

∂t
· ∂rHe

∂t
dx dy dt

+
1
2

∫ t f

0

∫
Ω
|ϕN |2

∂rN
∂t

· ∂rN
∂t

dx dy dt

+
1
2

∫ t f

0

∫
Ω
|ϕe|2

∂re

∂t
· ∂re

∂t
dx dy dt, (91)

Here it is worth highlighting we have approximated the initially discrete set of indices s of
particles as a continuous positive real variable s.

Moreover,

F1 =
1

4π

∫ t f

0
∥ curl A − B0∥2 dt,

F2 =
∫ t f

0

∫
Ω

Eind · Kp|ϕD
p |2
(

u +
∂rD
∂t

)
dx dy dt

+
∫ t f

0

∫
Ω

Eind · Kp|ϕT
p |2
(

u +
∂rT
∂t

)
dx dy dt

+
∫ t f

0

∫
Ω

Eind · Kp|ϕHe
2p |

2
(

u +
∂rHe

∂t

)
dx dy dt

+
∫ t f

0

∫
Ω

Eind · Ke|ϕe|2
(

u +
∂re

∂t

)
dx dy dt, (92)

where Kp and Ke are appropriate real constants related to the respective charges.
Here u = (u1, u2, u3) is the fluid velocity field and

rD, rT , rHe , rN , re
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are fields of displacements for the corresponding atom fields.
Also A denotes the magnetic potential, B0 an external magnetic field and B is the total magnetic

field.
Moreover, Eind is an induced electric field.
Finally,

F3 =
CD
2

∫ t f

0

∫
Ω
∇(x,y)rD · ∇(x,y)rD dx dy dt +

CT
2

∫ t f

0

∫
Ω
∇(x,y)rT · ∇(x,y)rT dx dy dt

CHe

2

∫ t f

0

∫
Ω
∇(x,y)rHe · ∇(x,y)rHe dx dy dt +

CN
2

∫ t f

0

∫
Ω
∇(x,y)rN · ∇(x,y)rN dx dy dt

Ce

2

∫ t f

0

∫
Ω
∇(x,y)re · ∇(x,y)re dx dy dt, (93)

for appropriate real positive constants CD CT , CHe , CN , Ce.
Such a functional J is subject to the following constraints:

1. The momentum conservation equation for the fluid motion

ρ

(
∂uk
∂t

+ uj
∂uk
∂xj

)
= ρ fk −

∂P
∂xk

+ τkj,j + (FE)k + (FM)k,

∀k ∈ {1, 2, 3}.
Here ρ = ρD + ρT + ρHe + ρN + ρe is the total density and P is the fluid pressure field.
Furthermore,

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

3

∑
k=1

∂uk
∂xk

)
,

∀i, j ∈ {1, 2, 3},

FE = {(FE)k} =

(
Kp(|ϕD

p |2 + |ϕT
p |2 + |ϕHe

2p |
2) + Ke

∫
Ω
|ϕe|2 dx

)
E,

and

FM = {(FM)k}

=

(
Kp

(
|ϕD

p |2
(

u +
∂rD
∂t

)
|ϕT

p |2
(

u +
∂rT
∂t

)
+|ϕHe

2p |
2
(

u +
∂rHe

∂t

))
+Ke|ϕe|2

(
u +

∂re

∂t

))
× B. (94)

2. Mass conservation equation:

∂ρ

∂t
+ div (ρu) = 0.

3. Energy equation

ρ
De
Dt

+∇x(Ê1) · u + Ê2 + P( div u) =
∂Q
∂t

− div q + τjk
∂uj

∂xk
,

where we assume the Fourier law
q = −K∇T,
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where T = T(x, t) is the scalar field of temperature and Q is a standard heat function.
Also,

e ≈ ρ

2
u · u +

ρD
2

∂rD
∂t

· ∂rD
∂t

+
ρT
2

∂rT
∂t

· ∂rT
∂t

+
ρHe

2
∂rHe

∂t
· ∂rHe

∂t

+
ρN
2

∂rN
∂t

· ∂rN
∂t

+
ρe

2
∂re

∂t
· ∂re

∂t
(95)

where the densities Ê1 and Ê2 are defined through the expressions of F(ϕ) and F2 so that

F(ϕ) =
∫ t f

0

∫
Ω

Ê1 dx dt

and

F2 =
∫ t f

0

∫
Ω

Ê2 dx dt.

Here we recall that since rD is highly oscillating in t we approximately have

u · rD ≈ 0

in a weak or measure sense. The same remark is valid for the other internal velocity fields.
Moreover,

De
Dt

=
∂e
∂t

+ uj
∂e
∂xj

.

Finally, for a calorically perfect gas we may assume

e = CvT

where
Cv =

R
γ − 1

,

for appropriate constants R > 0, γ > 1.
4.

P = F7(ρ, T),

for an appropriate scalar function F7.
5. Mass relations

(a)

mD(t) =
∫

Ω
ρD(x, t) dx,

(b)

mT(t) =
∫

Ω
ρT(x, t) dx,

(c)

mHe(t) =
∫

Ω
ρHe(x, t) dx,

(d)

mN(t) =
∫

Ω
ρN(x, t) dx,
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(e)

me(t) =
∫

Ω
ρe(x, t) dx,

(f)

(mHe)T(t) =
∫

Ω
ρHe(x, t) dx +

∫ t

0

∫
∂Ω2

ρHe(x, τ)u · n dΓdτ,

(g)

(mN)T(t) =
∫

Ω
ρN(x, t) dx +

∫ t

0

∫
∂Ω2

ρN(x, τ)u · n dΓdτ,

(h)
(mN)T(t)
(mHe)T(t)

=
αN
αHe

,

so that
αNmHe)T(t) = αHe(mN)T(t),

where,

(a)

(mHe ,N)T(t) = mHe ,N(t) +
∫ t

0

∫
∂Ω2

(ρHe(x, τ))u · n dS dτ,

(b)
mHe ,N(t) = mHe(t) + mN(t),

(c)

(mD)(t) = (mD)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρD(x, τ))u · n dS dτ − αD(mHe ,N)T(t),

(d)

(mT)(t) = (mT)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρT(x, τ))u · n dS dτ − αT(mHe ,N)T(t),

(e)

(me)T(t) = me(t) +
∫ t

0

∫
∂Ω2

(ρT(x, τ))u · n dS dτ.

(f)

me(t) =
∫

Ω
|ϕD

p (x, t)|2 dx
me

mp
+
∫

Ω
|ϕT

p (x, t)|2 dx
me

mp
+
∫

Ω
|ϕHe

2p (x, t)|2 dx
me

mp
.

6. Other mass constraints

(a) ∫
Ω
|ϕD

N(x, y, t)|2 dx = mN ,

(b) ∫
Ω
|ϕT

N1
(x, y, t)|2 dx = mN ,

(c) ∫
Ω
|ϕT

N2
(x, y, t)|2 dx = mN ,

(d) ∫
Ω
|ϕHe

N1
(x, y, t)|2 dx = mN ,
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(e) ∫
Ω
|ϕHe

N2
(x, y, t)|2 dx = mN .

7. For the induced electric field, we must have

curl Eind +
1
c

curl
(

K̂p|ϕD
p |2
(

u +
∂rD
∂t

)
+K̂p|ϕT

p |2
(

u +
∂rT
∂t

)
+K̂p|ϕHe

2p |
2
(

u +
∂rHe

∂t

)
+ K̂e

∫
Ω
|ϕe(x, y, t)|2

(
u(y, t) +

∂re(x, y, t)
∂t

dx
))

×( curl A − B0)−
1
c

∂

∂t
( curl A − B0) = 0, (96)

where K̂p and K̂e are appropriate real constants related to the respective charges.
8. A Maxwell equation:

div B = 0,

where
B = B0 − curl A.

9. Another Maxwell equation:

div E = 4π

(
Kp(|ϕD

p |2 + |ϕT
p |2 + |ϕHe

2p |
2) + Ke

∫
Ω
|ϕe(x, y, t)|2 dx

)
,

where the total electric field E stands for

E = Eind + Eρ,

and where generically denoting

F(ϕ) =
∫ t f

0

∫
Ω

f5(ϕ, x, ξ, t) dx dξ dt,

we have also

Eρ =

{∫
Ω

∂ f5(ϕ, x, ξ, t)
∂xk

dξ

}
.

At this point we generically denote

⟨h1, h2⟩L2 =
∫ t f

0

∫
Ω

h1 h2 dx dy dt.

Thus, already including the Lagrange multipliers concerning the restrictions indicated, the
extended functional J3 stands for
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J3 = J3(ϕ, u, r, P, A, B, E, Λ, E)

= G(∇ϕ) + F(ϕ) + Ec(ϕ, r) + F1 + F2 + F3

+

〈
Λk, ρ

(
∂uk
∂t

+ uj
∂uk
∂xj

)
− ρ fk +

∂P
∂xk

− τkj,j − (FE)k − (FM)k

〉
L2

+

〈
Λ4,

∂ρ

∂t
+ div (ρu)

〉
L2
+ JAux1 + JAux2 + JAux3 + JAux4 , (97)

where,

JAux1

=

〈
Λ5, ρ

De
Dt

+∇x(Ê1) · u + Ê2 ++P( div u)− ∂Q
∂t

+ div q − τjk
∂uj

∂xk

〉
L2

+⟨Λ6, P − F7(ρ, T)⟩L2 , (98)

JAux2 =

〈
Λ7, mD(t)−

∫
Ω

ρD(x, t) dx
〉

L2

+

〈
Λ8, mT(t)−

∫
Ω

ρT(x, t) dx
〉

L2〈
Λ9, mHe(t)−

∫
Ω

ρHe(x, t) dx
〉

L2〈
Λ10, mN(t)−

∫
Ω

ρN(x, t) dx
〉

L2〈
Λ11, me(t)−

∫
Ω

ρe(x, t) dx
〉

L2∫ t f

0
E12(t)(αNmHe)T(t)− αHe(mN)T(t)) dt, (99)

JAux3 = −
∫ t f

0

∫
Ω
(ED

N)5(y, t)
(∫

Ω
|ϕD

N(x, y, t)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(ET

N1
)6(y, t)

(∫
Ω
|ϕT

N1
(x, y, t)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(ET

N2
)7(y, t)

(∫
Ω
|ϕT

N2
(x, y, t)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(EHe

N1
)8(y, t)

(∫
Ω
|ϕHe

N1
(x, y, t)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(EHe

N2
)9(y, t)

(∫
Ω
|ϕHe

N2
(x, y, t)|2 dx − mN

)
dy dt, (100)
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JAux4 = ⟨Λ12, curl Eind

+
1
c

curl
(

K̂p|ϕD
p |2
(

u +
∂rD
∂t

)
+K̂p|ϕT

p |2
(

u +
∂rT
∂t

)
+K̂p|ϕHe

2p |
2
(

u +
∂rHe

∂t

)
+ K̂e

∫
Ω
|ϕe(x, y, t)|2

(
u(y, t) +

∂re(x, y, t)
∂t

dx
))

×( curl A − B0)−
1
c

∂

∂t
( curl A − B0)

〉
L2

+⟨Λ13, div B⟩L2

+

〈
Λ14, div E − 4π

(
Kp(|ϕD

p |2 + |ϕT
p |2 + |ϕHe

2p |
2) + Ke

∫
Ω
|ϕe(x, y, t)|2 dx

)〉
L2

. (101)

Here we recall the following definitions and relations:

1. For the Deuterium field

|ϕD(x, y, t)|2 = |ϕD
p (y, t)|2 + |ϕD

N(x, y, t)|2|ϕD
p (y, t)|2 1

mp
,

2. For the Tritium field

|ϕD(x, y, t)|2 = |ϕD
p (y, t)|2 + (|ϕD

N1
(x, y, t)|2 + |ϕD

N2
(x, y, t)|2)|ϕD

p (y, t)|2 1
mp

,

3. For the Helium field

|ϕHe(x, y, t)|2 = |ϕHe
2p (y, t)|2 + (|ϕHe

N1
(x, y, t)|2 + |ϕHe

N2
(x, y, t)|2)|ϕHe

2p (y, t)|2 1
2 mp

,

4. For the Neutron field
ϕN = ϕN(x, t),

5. For the electronic field resulting from the ionization

ϕe = ϕe(x, y, t).

1.

ρD(y, t) =
∫

Ω
|ϕD(x, y, t)|2 dx,

2.

ρT(y, t) =
∫

Ω
|ϕT(x, y, t)|2 dx,

ρHe(y, t) =
∫

Ω
|ϕHe(x, y, t)|2 dx,

ρN(x, t) = |ϕN(x, t)|2,

ρe(y, t) =
∫

Ω
|ϕe(x, y, t)|2 dx.
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Also,
ρ = ρD + ρT + ρHe + ρN + ρe,

1.

(mHe ,N)T(t) = mHe ,N(t) +
∫ t

0

∫
∂Ω2

(ρHe(x, τ) + ρN(x, τ))u · n dS dτ,

2.
mHe ,N(t) = mHe(t) + mN(t),

3.

mHe(t) =
∫

Ω
ρHe(x, t) dx,

4.

mN(t) =
∫

Ω
ρN(x, t) dx,

5.

(mD)(t) = (mD)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρD(x, τ))u · n dS dτ − αD(mHe ,N)T(t),

6.

(mT)(t) = (mT)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρT(x, τ))u · n dS dτ − αT(mHe ,N)T(t),

7.

(mHe)T(t) =
∫

Ω
ρHe(x, t) dx +

∫ t

0

∫
∂Ω2

ρHe(x, τ)u · n dΓdτ,

8.

(mN)T(t) =
∫

Ω
ρN(x, t) dx +

∫ t

0

∫
∂Ω2

ρN(x, τ)u · n dΓdτ,

9.
(mN)T(t)
(mHe)T(t)

=
αN
αHe

,

so that
αNmHe)T(t) = αHe(mN)T(t),

10.

(me)T(t) = me(t)−
∫ t

0

∫
∂Ω2

(ρe(x, τ))u · n dS dτ,

11.

me(t) =
∫

Ω
ρe(x, t) dx.

12.

me(t) =
∫

Ω
|ϕD

p (x, t)|2 dx
me

mp
+
∫

Ω
|ϕT

p (x, t)|2 dx
me

mp
+
∫

Ω
|ϕHe

2p (x, t)|2 dx
me

mp
.

Finally,
E = Eind + Eρ,

and where generically denoting

F(ϕ) =
∫

Ω
f5(ϕ, x, ξ) dx dξ,
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we have also

Eρ =

{∫
Ω

∂ f5(ϕ, x, ξ)

∂xk
dξ

}
.

and,

B = B0 − curl A.

20. A final mathematical description of the hydrogen nuclear fusion
In this section we develop in even more details another model for the hydrogen nuclear fusion.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Here such a set Ω stands for a control volume in which an ionized gas (plasma) flows. Such a gas

comprises ionized Deuterium and Tritium atoms intended, through a suitable higher temperature, to
chemically react resulting in atoms of Helium and a field of single energetic Neutrons.

Symbolically such a reaction stands for

Deuterium+ + Tritium+ → Helium++ + Neutron (energetic).

We recall that the ionized Deuterium atom is comprised by a proton and a neutron and the ionized
Tritium atom is comprised by a proton and two neutrons.

Moreover, the ionized Helium atom is comprised by two protons and two neutrons.
As previously mentioned, resulting from such a chemical reaction up surges also an energetic

neutron which the higher kinetics energy has a great variety of applications, including its conversion
in electric energy.

We highlight the model here presented includes electric and magnetic fields and the corresponding
potential ones.

Denoting by t the time on the interval [0, t f ], at this point we define the following density functions:

1. For a single Deuterium atom indexed by s:

|ϕD(x, y, t, s)|2 = |ϕD
p (y, t, s)|2 + |ϕD

N(x, y, t, s)|2|ϕD
p (y, t, s)|2 1

mp
,

2. For a single Tritium atom indexed by s:

|ϕT(x, y, t, s)|2 = |ϕT
p (y, t, s)|2 + (|ϕT

N1
(x, y, t, s)|2 + |ϕT

N2
(x, y, t, s)|2)|ϕT

p (y, t, s)|2 1
mp

,

3. For a single Helium atom indexed by s:

|ϕHe(x, y, t, s)|2 = |ϕHe
2p (y, t, s)|2 + (|ϕHe

N1
(x, y, t, s)|2 + |ϕHe

N2
(x, y, t, s)|2)|ϕHe

2p (y, t, s)|2 1
2 mp

,

4. For the Neutron field:
ϕN = ϕN(x, t, s),

5. For the electronic field resulting from the ionization

ϕe = ϕe(x, y, t, s).

Furthermore, we define also the related densities

1.

ρD(y, t) =
∫ ND(t)

0

∫
Ω
|ϕD(x, y, t, s)|2 dx ds,
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2.

ρT(y, t) =
∫ NT(t)

0

∫
Ω
|ϕT(x, y, t, s)|2 dx ds,

ρHe(y, t) =
∫ NHe (t)

0

∫
Ω
|ϕHe(x, y, t, s)|2 dx ds,

ρN(x, t) =
∫ NN(t)

0
|ϕN(x, t, s)|2 ds,

ρe(y, t) =
∫ Ne(t)

0

∫
Ω
|ϕe(x, y, t, s)|2 dx ds.

For the chemical reaction in question we consider that one unit of mass of fractional proportion
αD of ionized Deuterium and αT of ionized Tritium results in one unit of mass of fractional proportion
αHe of ionized Helium and αN of neutrons.

Symbolically, this stands for

1 = αD + αT = αHe + αN .

Concerning the control volume Ω in question and related surface control ∂Ω, we assume such
a volume has an initial (fot t = 0) amount of ionized Deuterium of (mD)0 and an initial amount of
ionized Tritium of (mT)0. The initial amount of ionized Helium and single neutrons are supposed to
be zero.

On the other hand, about the surface control ∂Ω, we assume there is a part Ω1 ⊂ ∂Ω for which is
allowed the entrance and exit of Deuterium and Tritium ionized atoms.

We assume also there is another part ∂Ω2 ⊂ ∂Ω such that ∂Ω1 ∩ ∂Ω2 = ∅ for which is allowed
only the exit of ionized Helium atoms and neutrons, but not their entrance.

In ∂Ω2 is allowed the exit only (not the entrance) of ionized Deuterium and Tritium atoms.
Indeed, we assume the following relations for the masses:

1.

(mHe ,N)T(t) = mHe ,N(t) +
∫ t

0

∫
∂Ω2

(ρHe(x, τ) + ρN(x, τ))u · n dS dτ,

2.
mHe ,N(t) = mHe(t) + mN(t),

3.

mHe(t) =
∫

Ω
ρHe(x, t) dx,

4.

mN(t) =
∫

Ω
ρN(x, t) dx,

5.

(mD)(t) = (mD)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρD(x, τ))u · n dS dτ − αD(mHe ,N)T(t),

6.

(mT)(t) = (mT)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρT(x, τ))u · n dS dτ − αT(mHe ,N)T(t),

7.

(mHe)T(t) =
∫

Ω
ρHe(x, t) dx +

∫ t

0

∫
∂Ω2

ρHe(x, τ)u · n dΓdτ,
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8.

(mN)T(t) =
∫

Ω
ρN(x, t) dx +

∫ t

0

∫
∂Ω2

ρN(x, τ)u · n dΓdτ,

9.
(mN)T(t)
(mHe)T(t)

=
αN
αHe

,

so that
αNmHe)T(t) = αHe(mN)T(t),

10.

(me)T(t) = me(t) +
∫ t

0

∫
∂Ω2

(ρe(x, τ))u · n dS dτ,

11.

me(t) =
∫

Ω
ρe(x, t) dx.

12.

me(t) =
∫ ND(t)

0

∫
Ω
|ϕD

p (y, t, s)|2 dy ds
me

mp
+
∫ NT(t)

0

∫
Ω
|ϕT

p (y, t, s)|2 dy ds
me

mp

+
∫ Np(t)

0

∫
Ω
|ϕHe

2p (y, t, s)|2 dy ds
me

mp
. (102)

Here n denotes the outward normal vectorial fields to the concerning surfaces.
Having clarified such masses relations, denoting by ND(t) NT(t), NHe(t), NN(t), Ne(t) the

respective indexed number of particles at time t, we define the functional

J(ϕ, ρ, r, u, E, A, B, {ND, NT , NHe , NN , Ne})

where

J = G(∇u) + F(ϕ) + Ec(ϕ, r) + F1 + F2 + F3 + F4,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


73 of 360

and where we assume γD
p > 0, γT

p > 0, γD
N > 0, γT

N1
> 0, γT

N2
> 0, γHe

2p > 0, γHe
N1

> 0, γHe
N2

>

0, γN > 0, γe > 0 and αD > 0, αT > 0, αHe > 0, αN > 0 , αDT > 0, αHe N > 0, αe,e > 0, αHe ,e < 0 so
that

G(∇ϕ) =
γD

p

2

∫ t f

0

∫ ND(t)

0

∫
Ω
(∇ϕD

p ) · (∇ϕD
p ) dy ds dt

+
γD

N
2

∫ t f

0

∫ ND(t)

0

∫
Ω
(∇ϕD

N) · (∇ϕD
N) dx dy ds dt

γT
p

2

∫ t f

0

∫ NT(t)

0

∫
Ω
(∇ϕT

p ) · (∇ϕT
p ) dy ds dt

+
γT

N1

2

∫ t f

0

∫ NT(t)

0

∫
Ω
(∇ϕT

N1
) · (∇ϕT

N1
) dx dy ds dt

+
γT

N2

2

∫ t f

0

∫ NT(t)

0

∫
Ω
(∇ϕT

N2
) · (∇ϕT

N2
) dx dy ds dt

+
γHe

2p

2

∫ t f

0

∫ NHe (t)

0

∫
Ω
(∇ϕHe

2p ) · (∇ϕHe
2p ) dy ds dt

+
γHe

N1

2

∫ t f

0

∫ NHe (t)

0

∫
Ω
(∇ϕHe

N1
) · (∇ϕHe

N1
) dx dy ds dt

+
γHe

N2

2

∫ t f

0

∫ NHe (t)

0

∫
Ω
(∇ϕHe

N2
) · (∇ϕHe

N2
) dx dy ds dt

+
γN
2

∫ t f

0

∫ NN(t)

0

∫
Ω
(∇ϕN) · (∇ϕN) dx ds dt

+
γe

2

∫ t f

0

∫ Ne(t)

0

∫
Ω
(∇ϕe) · (∇ϕe) dx dy ds dt, (103)

and

F(ϕ) =

αD
2

∫ t f

0

∫ ND(t)

0

∫ ND(t)

0

∫
Ω

|ϕD(x − ξ1, y − ξ2, t, s − s1)|2|ϕD(ξ1, ξ2, t, s1)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 ds ds1 dt

+
αT
2

∫ t f

0

∫ NT(t)

0

∫ NT(t)

0

∫
Ω

|ϕT(x − ξ1, y − ξ2, t, s − s1)|2|ϕT(ξ1, ξ2, t, s1)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 ds ds1 dt

+
αDT

2

∫ t f

0

∫ ND(t)

0

∫ NT(t)

0

∫
Ω

|ϕD(x − ξ1, y − ξ2, t, s − s1)|2|ϕT(ξ1, ξ2, t, s1)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 dt

+
αHe

2

∫ t f

0

∫ NHe (t)

0

∫ NHe (t)

0

∫
Ω

|ϕHe(x − ξ1, y − ξ2, t, s − s1)|2|ϕHe(ξ1, ξ2, t)|2
|(x, y)− (ξ1, ξ2, s1)|

dx dy dξ1 dξ2 ds ds1 dt

+
αN
2

∫ t f

0

∫ NN(t)

0

∫ NN(t)

0

∫
Ω

|ϕN(x − ξ, t, s − s1)|2|ϕN(ξ, t, s1)|2
|x − ξ| dx dξ ds ds1 dt

+
2

∑
j=1

αHe N

2

∫ t f

0

∫ NHe (t)

0

∫ ND(t)

0

∫
Ω

|ϕHe(x1 − ξ1, y − ξ2, t)|2|ϕN(ξ j, t)|2

|(x, y)− (ξ1, ξ2)|
dx dy dξ1 dξ2 ds ds1 dt

+
αHe , e

2

∫ t f

0

∫ NHe (t)

0

∫ Ne(t)

0

∫
Ω

|ϕHe(x − ξ1, y − ξ2, t, s − s1)|2|ϕe(ξ1, ξ2, t, s1)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 ds ds1 dt

+
αe,e

2

∫ t f

0

∫ Ne(t)

0

∫ Ne(t)

0

∫
Ω

|ϕe(x − ξ1, y − ξ2, t, s − s1)|2|ϕe(ξ1, ξ2, t, s1)|2
|(x, y)− (ξ1, ξ2)|

dx dy dξ1 dξ2 ds ds1 dt(104)
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and the internal kinetics energy is expressed by

Ec(ϕ, r) =
1
2

∫ t f

0

∫ ND(t)

0

∫
Ω
|ϕD|2

∂rD
∂t

· ∂rD
∂t

dx dy ds dt

+
1
2

∫ t f

0

∫ NT(t)

0

∫
Ω
|ϕT |2

∂rT
∂t

· ∂rT
∂t

dx dy ds dt

+
1
2

∫ t f

0

∫ NHe (t)

0

∫
Ω
|ϕHe |2

∂rHe

∂t
· ∂rHe

∂t
dx dy ds dt

+
1
2

∫ t f

0

∫ NN(t)

0

∫
Ω
|ϕN |2

∂rN
∂t

· ∂rN
∂t

dx dy ds dt

+
1
2

∫ t f

0

∫ Ne(t)

0

∫
Ω
|ϕe|2

∂re

∂t
· ∂re

∂t
dx dy ds dt, (105)

Moreover,

F1 =
1

4π

∫ t f

0
∥ curl A − B0∥2 dt,

F2 =
∫ t f

0

∫ ND(t)

0

∫
Ω

Eind · Kp|ϕD
p |2
(

u +
∂rD
∂t

)
dx dy ds dt

+
∫ t f

0

∫ NT(t)

0

∫
Ω

Eind · Kp|ϕT
p |2
(

u +
∂rT
∂t

)
dx dy ds dt

+
∫ t f

0

∫ NHe (t)

0

∫
Ω

Eind · Kp|ϕHe
2p |

2
(

u +
∂rHe

∂t

)
dx dy ds dt

+
∫ t f

0

∫ Ne(t)

0

∫
Ω

Eind · Ke|ϕe|2
(

u +
∂re

∂t

)
dx dy ds dt, (106)

where Kp and Ke are appropriate real constants related to the respective charges.
Here u = (u1, u2, u3) is the fluid velocity field and

rD, rT , rHe , rN , re

are fields of displacements for the corresponding particle fields.
Also A denotes the magnetic potential, B0 an external magnetic field and B is the total magnetic

field.
Moreover, Eind is an induced electric field.
Also,

F3 =
CD
2

∫ t f

0

∫ ND(t)

0

∫
Ω
∇(x,y)rD · ∇(x,y)rD dx dy ds dt

+
CT
2

∫ t f

0

∫ NT(t)

0

∫
Ω
∇(x,y)rT · ∇(x,y)rT dx dy ds dt

+
CHe

2

∫ t f

0

∫ NHe (t)

0

∫
Ω
∇(x,y)rHe · ∇(x,y)rHe dx dy ds dt

+
CN
2

∫ t f

0

∫ NN(t)

0

∫
Ω
∇(x,y)rN · ∇(x,y)rN dx dy ds dt

Ce

2

∫ t f

0

∫ Ne(t)

0

∫
Ω
∇(x,y)re · ∇(x,y)re dx dy ds dt, (107)

for appropriate real positive constants CD CT , CHe , CN , Ce.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


75 of 360

Finally,

F4 =
εD
2

∫ t f

0

(
∂ND(t)

∂t

)2

dt +
εT
2

∫ t f

0

(
∂ND(t)

∂t

)2

dt

+
εN
2

∫ t f

0

(
∂NN(t)

∂t

)2

dt +
εHe

2

∫ t f

0

(
∂NHe(t)

∂t

)2

dt

+
εe

2

∫ t f

0

(
∂Ne(t)

∂t

)2

dt, (108)

where εD, εT , εN , εHe , εe are small real positive constants.
Such a functional J is subject to the following constraints:

1. The momentum conservation equation for the fluid motion

ρ

(
∂uk
∂t

+ uj
∂uk
∂xj

)
= ρ fk −

∂P
∂xk

+ τkj,j + (FE)k + (FM)k,

∀k ∈ {1, 2, 3}.
Here ρ = ρD + ρT + ρHe + ρN + ρe is the total density and P is the fluid pressure field.
Furthermore,

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

3

∑
k=1

∂uk
∂xk

)
,

∀i, j ∈ {1, 2, 3},

FE = {(FE)k} =(
Kp

(∫ ND(t)

0
|ϕD

p |2 ds +
∫ NT(t)

0
|ϕT

p |2 ds +
∫ NHe (t)

0
|ϕHe

2p |
2 ds

)
+ Ke

∫ Ne(t)

0
|ϕe|2 ds

)
E,

and

FM = {(FM)k}

=

(
Kp

(∫ ND(t)

0
|ϕD

p |2
(

u +
∂rD
∂t

)
ds∫ NT(t)

0
|ϕT

p |2
(

u +
∂rT
∂t

)
ds

+
∫ NHe (t)

0
|ϕHe

2p |
2
(

u +
∂rHe

∂t

)
ds
)

+Ke

∫ Ne(t)

0
|ϕe|2

(
u +

∂re

∂t

)
ds
)
× B. (109)

2. Mass conservation equation:

∂ρ

∂t
+ div (ρu) = 0.

3. Energy equation

ρ
De
Dt

+∇x(Ê1) · u + Ê2 + P( div u) =
∂Q
∂t

− div q + τjk
∂uj

∂xk
,

where we assume the Fourier law
q = −K∇T,
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where T = T(x, t) is the scalar field of temperature and Q is a standard heat function.
Also,

e =
ρ

2
u · u +

ρD
2

∂rD
∂t

· ∂rD
∂t

+
ρT
2

∂rT
∂t

· ∂rT
∂t

+
ρHe

2
∂rHe

∂t
· ∂rHe

∂t

+
ρN
2

∂rN
∂t

· ∂rN
∂t

+
ρe

2
∂re

∂t
· ∂re

∂t
, (110)

where the densities Ê1 and Ê2 are defined through the expressions of F(ϕ) and F2 so that

F(ϕ) =
∫ t f

0

∫
Ω

Ê1 dx dt

and

F2 =
∫ t f

0

∫
Ω

Ê2 dx dt.

Here we recall that since rD is highly oscillating in t we approximately have

u · rD ≈ 0

in a weak or measure sense. The same remark is valid for the other internal velocity fields.
Moreover,

De
Dt

=
∂e
∂t

+ uj
∂e
∂xj

.

4.
P = F7(ρ, T),

for an appropriate scalar function F7.
5. Mass relations

(a)

mD(t) =
∫

Ω
ρD(x, t) dx,

(b)

mT(t) =
∫

Ω
ρT(x, t) dx,

(c)

mHe(t) =
∫

Ω
ρHe(x, t) dx,

(d)

mN(t) =
∫

Ω
ρN(x, t) dx,

(e)

me(t) =
∫

Ω
ρe(x, t) dx,

where,
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(a)

(mHe ,N)T(t) = mHe ,N(t) +
∫ t

0

∫
∂Ω2

(ρHe(x, τ))u · n dS dτ,

(b)
mHe ,N(t) = mHe(t) + mN(t),

(c)

(mD)(t) = (mD)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρD(x, τ))u · n dS dτ − αD(mHe ,N)T(t),

(d)

(mT)(t) = (mT)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρT(x, τ))u · n dS dτ − αT(mHe ,N)T(t),

(e)

(mHe)T(t) =
∫

Ω
ρHe(x, t) dx +

∫ t

0

∫
∂Ω2

ρHe(x, τ)u · n dΓdτ,

(f)

(mN)T(t) =
∫

Ω
ρN(x, t) dx +

∫ t

0

∫
∂Ω2

ρN(x, τ)u · n dΓdτ,

(g)
(mN)T(t)
(mHe)T(t)

=
αN
αHe

,

so that
αNmHe)T(t) = αHe(mN)T(t),

(h)

(me)T(t) = me(t) +
∫ t

0

∫
∂Ω2

(ρT(x, τ))u · n dS dτ.

(i)

me(t) =
∫ ND(t)

0

∫
Ω
|ϕD

p (y, t, s)|2 dy dy ds
me

mp
+
∫ NT(t)

0

∫
Ω
|ϕT

p (y, t, s)|2 dy ds
me

mp

+
∫ Np(t)

0

∫
Ω
|ϕHe

2p (y, t, s)|2 dy ds
me

mp
. (111)

6. Other mass constraints

(a) ∫
Ω
|ϕD

N(x, y, t, s)|2 dx = mN ,

(b) ∫
Ω
|ϕT

N1
(x, y, t, s)|2 dx = mN ,

(c) ∫
Ω
|ϕT

N2
(x, y, t, s)|2 dx = mN ,

(d) ∫
Ω
|ϕHe

N1
(x, y, t, s)|2 dx = mN ,
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(e) ∫
Ω
|ϕHe

N2
(x, y, t, s)|2 dx = mN ,

(f) ∫
Ω
|ϕD

p (x, t, s)|2 dx = mp,

(g) ∫
Ω
|ϕT

p (x, t, s)|2 dx = mp,

(h) ∫
Ω
|ϕHe

2p (x, t, s)|2 dx = 2 mp,

7.
mD(t) = mp ND(t) + mN ND(t)

mT(t) = mp NT(t) + mN NT(t),

mHe(t) = 2mp NHe(t) + 2mN NHe(t),

me(t) = me ND(t) + me NT(t) + 2 me NHe(t).

8. For the induced electric field, we must have

curl Eind +
1
c

curl
(

K̂p

∫ ND(t)

0
|ϕD

p |2
(

u +
∂rD
∂t

)
ds

+K̂p

∫ NT(t)

0
|ϕT

p |2
(

u +
∂rT
∂t

)
ds

+K̂p

∫ NHe (t)

0
|ϕHe

2p |
2
(

u +
∂rHe

∂t

)
ds

+ K̂e

∫ Ne(t)

0

∫
Ω
|ϕe(x, y, t, s)|2

(
u(y, t) +

∂re(x, y, t)
∂t

dx
)

ds
)

×( curl A − B0)−
1
c

∂

∂t
( curl A − B0) = 0, (112)

where K̂p and K̂e are appropriate real constants related to the respective charges.
9. A Maxwell equation:

div B = 0,

where
B = B0 − curl A.

10. Another Maxwell equation:

div E = 4π

(
Kp

(∫ ND(t)

0
|ϕD

p |2 ds +
∫ NT(t)

0
|ϕT

p |2 ds +
∫ NHe (t)

0
|ϕHe

2p |
2 ds

)
+Ke

∫ Ne(t)

0

∫
Ω
|ϕe(x, y, t, s)|2 dx ds

)
, (113)

where the total electric field E stands for

E = Eind + Eρ,
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and where generically denoting

F(ϕ) =
∫ t f

0

∫
Ω

f5(ϕ, x, tξ, s) dx dξ ds dt,

we have also

Eρ =

{∫
Ω

∂ f5(ϕ, x, t, ξ, s)
∂xk

dξ ds
}

.

At this point we generically denote

⟨h1, h2⟩L2 =
∫ t f

0

∫
Ω

h1 h2 dx dy dt.

Thus, already including the Lagrange multipliers concerning the restrictions indicated, the
extended functional J3 stands for

J3 = J3(ϕ, u, r, P, A, B, E, Λ, E, {ND, NT , NHe , NN , Ne})
= G(∇ϕ) + F(ϕ) + Ec(ϕ, r) + F1 + F2 + F3 + F4

+

〈
Λk, ρ

(
∂uk
∂t

+ uj
∂uk
∂xj

)
− ρ fk +

∂P
∂xk

− τkj,j − (FE)k − (FM)k

〉
L2

+

〈
Λ4,

∂ρ

∂t
+ div (ρu)

〉
L2
+ JAux1 + JAux2 + JAux3 + JAux4 + JAux5 , (114)

where,

JAux1 =

〈
Λ5, ρ

De
Dt

+∇x(Ê1) · u + P( div u)− ∂Q
∂t

+ div q − τjk
∂uj

∂xk

〉
L2

+⟨Λ6, P − F7(ρ, T)⟩L2 , (115)

JAux2 =

〈
Λ7, mD(t)−

∫
Ω

ρD(x, t) dx
〉

L2

+

〈
Λ8, mT(t)−

∫
Ω

ρT(x, t) dx
〉

L2〈
Λ9, mHe(t)−

∫
Ω

ρHe(x, t) dx
〉

L2〈
Λ10, mN(t)−

∫
Ω

ρN(x, t) dx
〉

L2〈
Λ11, me(t)−

∫
Ω

ρe(x, t) dx
〉

L2∫ t f

0
E12(t)(αNmHe)T(t)− αHe(mN)T(t)) dt, (116)
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JAux3 = −
∫ t f

0

∫
Ω
(ED

N)5(y, t, s)
(∫

Ω
|ϕD

N(x, y, t, s)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(ET

N1
)6(y, t, s)

(∫
Ω
|ϕT

N1
(x, y, t, s)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(ET

N2
)7(y, t, s)

(∫
Ω
|ϕT

N2
(x, y, t, s)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(EHe

N1
)8(y, t, s)

(∫
Ω
|ϕHe

N1
(x, y, t, s)|2 dx − mN

)
dy dt

−
∫ t f

0

∫
Ω
(EHe

N2
)9(y, t, s)

(∫
Ω
|ϕHe

N2
(x, y, t, s)|2 dx − mN

)
dy dt,

−
∫ t f

0

∫
Ω
(ED

p )(t, s)
(∫

Ω
|ϕD

p (y, t, s)|2 dy − mp

)
ds dt,

−
∫ t f

0

∫
Ω
(ET

p )(t, s)
(∫

Ω
|ϕT

p (y, t, s)|2 dy − mp

)
ds dt,

−
∫ t f

0

∫
Ω
(EHe

2p )(t, s)
(∫

Ω
|ϕHe

2p (y, t, s)|2 dy − 2mp

)
ds dt, (117)

JAux4 = ⟨Λ12, curl Eind

+
1
c

curl
(

K̂p

∫ ND(t)

0
|ϕD

p |2
(

u +
∂rD
∂t

)
ds

+K̂p

∫ NT(t)

0
|ϕT

p |2
(

u +
∂rT
∂t

)
ds

+K̂p

∫ NHe (t)

0
|ϕHe

2p |
2
(

u +
∂rHe

∂t

)
ds

+ K̂e

∫ Ne(t)

0

∫
Ω
|ϕe(x, y, t, s)|2

(
u(y, t) +

∂re(x, y, t, s)
∂t

dx
)

ds
)

×( curl A − B0)−
1
c

∂

∂t
( curl A − B0)

〉
L2

+⟨Λ13, div B⟩L2

+

〈
Λ14, div E − 4π

(
Kp

(∫ ND(t)

0
|ϕD

p |2 ds +
∫ NT(t)

0
|ϕT

p |2 ds +
∫ NHe (t)

0
|ϕHe

2p |
2 ds

)
+Ke

∫
Ω
|ϕe|2 dx ds

)〉
L2

. (118)

JAux5 = ⟨Λ15, mD(t)− (mp ND(t) + mN ND(t))⟩L2

+⟨Λ16, mT(t)− (mp NT(t) + mN NT(t))⟩L2

+⟨Λ17, mHe(t)− (2mp NHe(t) + 2mN NHe(t))⟩L2

+⟨Λ18, me(t)− (me ND(t) + me NT(t) + 2 me NHe(t))⟩L2 . (119)

Here we recall the following definitions and relations:

1. For the Deuterium field

|ϕD(x, y, t, s)|2 = |ϕD
p (y, t, s)|2 + |ϕD

N(x, y, t, s)|2|ϕD
p (y, t, s)|2 1

mp
,
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2. For the Tritium field

|ϕT(x, y, t, s)|2 = |ϕT
p (y, t, s)|2 + (|ϕT

N1
(x, y, t, s)|2 + |ϕT

N2
(x, y, t, s)|2)|ϕD

p (y, t, s)|2 1
mp

,

3. For the Helium field

|ϕHe(x, y, t, s)|2 = |ϕHe
2p (y, t, s)|2 + (|ϕHe

N1
(x, y, t, s)|2 + |ϕHe

N2
(x, y, t, s)|2)|ϕHe

2p (y, t, s)|2 1
2 mp

,

4. For the Neutron field
ϕN = ϕN(x, t, s),

5. For the electronic field resulting from the ionization

ϕe = ϕe(x, y, t, s).

1.

ρD(y, t) =
∫ ND(t)

0

∫
Ω
|ϕD(x, y, t, s)|2 dx ds,

2.

ρT(y, t) =
∫ NT(t)

0

∫
Ω
|ϕT(x, y, t, s)|2 dx ds,

ρHe(y, t) =
∫ NHe (t)

0

∫
Ω
|ϕHe(x, y, t, s)|2 dx ds,

ρN(x, t) =
∫ NN(t)

0
|ϕN(x, t, s)|2 ds,

ρe(y, t) =
∫ Ne(t)

0

∫
Ω
|ϕe(x, y, t, s)|2 dx ds.

Also,
ρ = ρD + ρT + ρHe + ρN + ρe,

1.

(mHe ,N)T(t) = mHe ,N(t) +
∫ t

0

∫
∂Ω2

(ρHe(x, τ) + ρN(x, τ))u · n dS dτ,

2.
mHe ,N(t) = mHe(t) + mN(t),

3.

mHe(t) =
∫

Ω
ρHe(x, t) dx,

4.

mN(t) =
∫

Ω
ρN(x, t) dx,

5.

(mD)(t) = (mD)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρD(x, τ))u · n dS dτ − αD(mHe ,N)T(t),

6.

(mT)(t) = (mT)0 −
∫ t

0

∫
∂Ω1∪∂Ω2

(ρT(x, τ))u · n dS dτ − αT(mHe ,N)T(t),
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7.

(mHe)T(t) =
∫

Ω
ρHe(x, t) dx +

∫ t

0

∫
∂Ω2

ρHe(x, τ)u · n dΓdτ,

8.

(mN)T(t) =
∫

Ω
ρN(x, t) dx +

∫ t

0

∫
∂Ω2

ρN(x, τ)u · n dΓdτ,

9.
(mN)T(t)
(mHe)T(t)

=
αN
αHe

,

so that
αN(mHe)T(t) = αHe(mN)T(t),

10.

(me)T(t) = me(t)−
∫ t

0

∫
∂Ω2

(ρe(x, τ))u · n dΓ dτ,

11.

me(t) =
∫

Ω
ρe(x, t) dx.

12.

me(t) =
∫ ND(t)

0

∫
Ω
|ϕD

p (y, t, s)|2 dy dy ds
me

mp
+
∫ NT(t)

0

∫
Ω
|ϕT

p (y, t, s)|2 dy ds
me

mp

+
∫ Np(t)

0

∫
Ω
|ϕHe

2p (y, t, s)|2 dy ds
me

mp
. (120)

Finally,
E = Eind + Eρ,

and where generically denoting

F(ϕ) =
∫ t f

0

∫
Ω

f5(ϕ, x, t, ξ, s) dx dξ ds,

we have also

Eρ =

{∫
Ω

∂ f5(ϕ, x, t, ξ, s)
∂xk

dξ ds
}

.

and,

B = B0 − curl A.

21. A Qualitative Modeling for a General Phase Transition Process
In this section we develop a general qualitative modeling for a phase transition process.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Such a set Ω is supposed to a be a fixed volume in which an amount of mass of a substance A

with a density function u will develop phase a transition for another phase with corresponding density
function v. The total mass mT is suppose to be kept constant throughout such a process.

We model such transition in phase through a functional J : V × V → R where
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J(u, v) =
γ1

2

∫
Ω
∇u · ∇u dx +

α1

2

∫
Ω

u4 dx

γ2

2

∫
Ω
∇v · ∇v dx +

α2

2

∫
Ω

v4 dx

−1
2

∫
Ω

ω2(u2 + v2) dx − E
2

(∫
Ω
(u2 + v2) dx − mT

)
. (121)

Here γ1 > 0, γ2 > 0, α1 > 0, α2 > 0 and V = W1,2(Ω).
The phases corresponding to u and v are connected through a Lagrange multiplier E, which

represents the chemical potential of the chemical process in question.
We assume the temperature is directly proportional to the internal kinetics EC energy where

EC =
1
2

∫
Ω

u2 ∂ru

∂t
· ∂ru

∂t
dx.

For a internal vibrational motion, we assume approximately

ru ≈ eiωtw5(x),

for an appropriate frequency ω and vectorial function w5.
Thus, the temperature T = T(x, t) is indeed proportional to ω2, that is, symbolically, we may

write
T ∝ E1 ∝ ω2.

Therefore, we start with the system with a phase corresponding to u ≈ 1 and v ≈ 0 at ω = 1.
Gradually increasing the temperature to a corresponding ω = 15, we obtain a transition to a phase
corresponding to u ≈ 0 and v ≈ 1.

At this point, we also define the index normalized corresponding densities

ϕu =
u2

u2 + v2

and

ϕv =
v2

u2 + v2 .

Finally, we have obtained some numerical results for the following parameters:
Ω = [0, 1] ⊂ R, γ1 = γ2 = 1, α = 0.1, α2 = 103.

1. We start with ω = 1 corresponding to ϕu ≈ 1 and ϕv ≈ 0 in Ω.
For the corresponding solutions ϕu and ϕv, please see Figures 15 and 16, respectively.

2. We end the process with ω = 15 corresponding to ϕu ≈ 0 and ϕv ≈ 1 in Ω.
For the corresponding solutions ϕu and ϕv, please see Figures 17 and 18, respectively.
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Figure 15. Solution ϕu(x) for ω = 1.
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Figure 16. Solution ϕv(x) for ω = 1.
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Figure 17. Solution ϕu(x) for ω = 15.
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Figure 18. Solution ϕv(x) for ω = 15.

22. A Mathematical Description of a Hydrogen Molecule in a Quantum
Mechanics Context

In this section we develop a mathematical description for a hydrogen molecule.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Observe that a single hydrogen molecule comprises two hydrogen atoms physically linked

through their electrons.
We recall that each hydrogen atom comprises one proton, one neutron and one electron.
Since the electric charge interaction effects are much higher than those related to the respective

masses, in a first analysis we neglect the single neutron densities.
Denoting (x, y, z) ∈ Ω × Ω × Ω and time t ∈ [0, t f ], generically, for a particle pjkl at the atom Akl

in the molecule Ml , we define the following general density:

|ϕ(pjkl)T
(x, y, z, t)|2 =

|ϕpjkl (x, y, z, t)|2|ϕAkl (y, z, t)|2|ϕMl (z, t)|2

mAjk mMl

.
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Here we have the particle density |ϕpjkl (x, y, z, t)|2 in the atom Akl with density |ϕAkl (y, z, t)|2, at
the molecule Ml with a global density |ϕMl (z, t)|2.

Here we have also denoted, mpjkl the particle mass, mAkl the mass of atom Akl and mMl the mass
of molecule Ml , so that we set the following constraints:

1. ∫
Ω
|ϕpjkl (x, y, z, t)|2 dx = mpjkl ,

2. ∫
Ω
|ϕAkl (y, z, t)|2 dy = mAkl ,

3. ∫
Ω
|ϕMl (z, t)|2 dz = mMl .

At this point we denote for the atoms A1 e A2 of a hydrogen molecule:

1. mej = me: mass of electron ej in the atom Aj, where j ∈ {1, 2}.

2. mpj = mp : mass of proton pj in the atom Aj, where j ∈ {1, 2}.

Therefore, considering the respective indexed densities for the particles in question, we define the
total hydrogen molecule density, denoted by |ϕH2(x, y, z, t)|2 as

|ϕH2(x, y, z, t)|2 =
|ϕp1(x, y, z, t)|2|ϕA1(y, z, t)|2|ϕM(z, t)|2

mA1 mM

+
|ϕe1(x, y, z, t)|2|ϕA1(y, z, t)|2|ϕM(z, t)|2

mA1 mM

+
|ϕp2(x, y, z, t)|2|ϕA2(y, z, t)|2|ϕM(z, t)|2

mA2 mM

+
|ϕe2(x, y, z, t)|2|ϕA2(y, z, t)|2|ϕM(z, t)|2

mA2 mM
. (122)

Such system is subject to the following constraints:

1. From the proton p1 in the atom A1:

∫
Ω
|ϕp1(x, y, z, t)|2 dx = mp,

2. For the proton p2 in the atom A2:

∫
Ω
|ϕp2(x, y, z, t)|2 dx = mp,

3. For the atom A1: ∫
Ω
|ϕA1(y, z, t)|2 dy = mA1 ,

4. For the atom A2: ∫
Ω
|ϕA2(y, z, t)|2 dy = mA2 ,

5. For the electrons e1 and e2, concerning the physical electronic link between the atoms:

∫
Ω
|ϕe1(x, y, z, t)|2 dx +

∫
Ω
|ϕe2(x, y, z, t)|2 dx = 2me.
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6. For the total molecular density:

∫
Ω
|ϕM(z, t)|2 dz = mM.

Therefore, already including the Lagrange multipliers, the corresponding variational formulation
for such a system stands for J : V → R, where

J(ϕ, E) = G(∇ϕ) + F(ϕ) + JAux(ϕ, E).

Here we denote

|(ϕpj)T |2 =
|ϕpj(x, y, z, t)|2|ϕAj(y, z, t)|2|ϕM(z, t)|2

mAj mM
,

|(ϕej)T |2 =
|ϕej(x, y, z, t)|2|ϕAj(y, z, t)|2|ϕM(z, t)|2

mAj mM
, ∀j ∈ {1, 2}

we assume γ(pj)
> 0, γej > 0, γAj > 0, γM > 0, α(pj)T

> 0, α(ej)T
> 0 α(pj ek)T

< 0, ∀j, k ∈ {1, 2},

G(∇ϕ) =
γpj

2

∫ t f

0

∫
Ω
(∇ϕpj) · (∇ϕpj) dx dy dz dt

+
γej

2

∫ t f

0

∫
Ω
(∇ϕej) · (∇ϕej) dx dy dz dt

γAj

2

∫
Ω
(∇ϕAj) · (∇ϕAj) dy dz dt

+
γM
2

∫ t f

0

∫
Ω
(∇ϕM) · (∇ϕM) dz dt (123)

and

F(ϕ) =

α(pj)T

2

∫ t f

0

∫
Ω

|ϕ(pj)T
(x − ξ1, y − ξ2, z − ξ3, t)|2|ϕ(pj)T

(ξ1, ξ2, ξ3, t)|2

|(x, y, z)− (ξ1, ξ2, ξ3)|
dx dy dz; dξ1 dξ2 dξ3 dt

+
α(ej)T

2

∫ t f

0

∫
Ω

|ϕ(ej)T
(x − ξ1, y − ξ2, z − ξ3, t)|2|ϕ(ej)T

(ξ1, ξ2, ξ3, t)|2

|(x, y, z)− (ξ1, ξ2, ξ3)|
dx dy dz dξ1 dξ2 dξ3 dt

+
α(pj ek)T

2

∫ t f

0

∫
Ω

|ϕ(pj)T
(x − ξ1, y − ξ2, z − ξ3, t)|2|ϕ(ek)T

(ξ1, ξ2, ξ3, t)|2

|(x, y, z)− (ξ1, ξ2, ξ3)|
dx dy dz dξ1 dξ2 dξ3 dt

Finally,

JAux(ϕ, E) =
∫ t f

0

∫
Ω
(Ep)j(y, z, t)

(∫
Ω
|ϕpj(x, y, z, t)|2 dx − mp

)
dy dz dt∫ t f

0

∫
Ω
(Ee)(y, z, t)

(∫
Ω
(|ϕe1(x, y, z, t)|2 + |ϕe2(x, y, z, t)|2) dx − 2me

)
dy dz dt∫ t f

0

∫
Ω
(EA)j(z, t)

(∫
Ω
|ϕAj(y, z, t)|2 dy − mAj

)
dz dt∫ t f

0
(EM)(t)

(∫
Ω
|ϕM(z, t)|2 dz − mM

)
dt. (124)

Remark 10. We highlight the two electrons which link the atoms are at same level of energy Ee. Morever, each
atom has its energy level EAj and the molecule as a whole has also its energy level EM.
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23. A Mathematical Model for the Water Hydrolysis
In this section we develop a modeling for a chemical reaction known as the water hydrolysis.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
In such a volume Ω containing a total mass mT of water initially at the temperature 25 C with

pressure 1 atm, we intend to model the following reaction

H2O ⇌ OH− + H+

which as previously mentioned is the well known water hydrolysis.
We highlight H2O stand for a water molecule which subject to an appropriate electric potential is

decomposed into a ionized OH− molecule and ionized H+ atom.
It is also well known that the water symbol H2O corresponds to a molecule with two hydrogen

(H) atoms and one oxygen (O) atom.
Moreover, the oxygen atom O has 8 protons, 8 neutrons and 8 electrons whereas the hydrogen

atom H has one proton, one neutron and one electron.

Remark 11. Here we have assumed that a unit mass of H2O reacts into a fractional mass αB of OH− and a
fractional mass αC of H+.

Symbolically, we have:
1 = αB + αC.

To clarify the notation we set the conventions:

1. H2O molecule generically corresponds to wave function ϕ1.
2. OH− molecule corresponds to wave function ϕ2.
3. H+ hydrogen atom corresponds to wave function ϕ3.

At this point we define the following densities:

1. For the H2O water density (for charges), denoted by |ϕ1|2, we have

|ϕ1(x, y, z, t)|2 = Kp

2

∑
j=1

|(ϕH
1 )pj(x, y, z, t)|2

|(ϕH
1 )Aj(y, z, t)|2|(ϕ1)M(z, t)|2

(m)H
Aj

(m1)M

+Ke

2

∑
j=1

|(ϕH
1 )ej(x, y, z, t)|2

|(ϕH
1 )Aj(y, z, t)|2|(ϕ1)M(z, t)|2

(m1)
H
Aj

(m1)M

+Kp

8

∑
j=1

|(ϕO
1 )pj(x, y, z, t)|2

|(ϕO
1 )A(y, z, t)|2|(ϕ1)M(z, t)|2

(m)O
A (m1)M

+Ke

8

∑
j=1

|(ϕO
1 )ej(x, y, z, t)|2

|(ϕO
1 )A(y, z, t)|2|(ϕ1)M(z, t)|2

(m)O
A (m1)M

(125)

where (m1)M is the mass of a single water molecule and generically |(ϕH
1 )pj(x, y, z, t)|2 refers to

the hydrogen proton pj at the hydrogen atom Aj concerning the H2O molecular density and so
on.
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2. For the OH− density, denoted by |ϕ2|2, we have

|ϕ2(x, y, z, t)|2 = Kp|(ϕH
2 )p(x, y, z, t)|2

|(ϕH
2 )A(y, z, t)|2|(ϕ2)M(z, t)|2

(m)H
A (m2)M

+Ke|(ϕH
2 )e1(x, y, z, t)|2

|(ϕH
2 )A(y, z, t)|2|(ϕ2)M(z, t)|2

(m)H
A (m2)M

+Ke|(ϕOH−
2 )e2(x, z, t)|2 |(ϕ2)M(z, t)|2

(m2)M

+Kp

8

∑
j=1

|(ϕO
2 )pj(x, y, z, t)|2

|(ϕO
2 )A(y, z, t)|2|(ϕ2)M(z, t)|2

(m)O
A (m2)M

+Ke

8

∑
j=1

|(ϕO
2 )ej(x, y, z, t)|2

|(ϕO
2 )A(y, z, t)|2|(ϕ2)M(z, t)|2

(m)O
A (m2)M

, (126)

where (m2)M is the mass of a single molecule of OH−.
3. For the ionized hydrogen atom have

|ϕ3(x, y, t)|2 = Kp|(ϕH
3 )p(x, y, t)|2

|(ϕH
3 )A(y, t)|2
(m3)A

.

where we have denoted (m3)A is the mass of a single atom of H+.
Here Kp > 0 and Ke < 0 are appropriate real constants concerning a proton and an electron

charge, respectively.
The system is subject to the following constraints:

1. ∫
Ω
|(ϕH

1 )pj(x, y, z, t)|2 dx = mp, ∀j ∈ {1, 2},

2. ∫
Ω
|(ϕH

1 )ej(x, y, z, t)|2 dx = me, ∀j ∈ {1, 2},

3. ∫
Ω
|(ϕO

1 )pj(x, y, z, t)|2 dx = mp, ∀j ∈ {1, 8},

4. ∫
Ω
|(ϕO

1 )ej(x, y, z, t)|2 dx = me, ∀j ∈ {1, 8},

5. ∫
Ω
|(ϕH

2 )p(x, y, z, t)|2 dx = mp,

6. ∫
Ω
|(ϕH

2 )e1(x, y, z, t)|2 dx = me,

7. ∫
Ω
|(ϕH

2 )e2(x, y, z, t)|2 dx = me,

8. ∫
Ω
|(ϕO

2 )pj(x, y, z, t)|2 dx = mp, ∀j ∈ {1, 8},
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9. ∫
Ω
|(ϕO

2 )ej(x, y, z, t)|2 dx = me, ∀j ∈ {1, 8},

10. ∫
Ω
|(ϕH

3 )p(x, z, t)|2 dx = mp,

11. ∫
Ω
|(ϕH

1 )Aj(y, z, t)|2 dy = mH
A , ∀j ∈ {1, 2},

12. ∫
Ω
|(ϕO

1 )A(y, z, t)|2 dy = mO
A,

13. ∫
Ω
|(ϕH

2 )A(y, z, t)|2 dy = mH
A ,

14. ∫
Ω
|(ϕO

2 )A(y, z, t)|2 dy = mO
A,

15. ∫
Ω
|(ϕH

3 )A(y, z, t)|2 dy = mH
A ,

16. ∫
Ω
(|(ϕ1)M(z, t)|2 + |(ϕ2)M(z, t)|2 + |(ϕ3)M(z, t)|2) dz = mT ,

17. ∫
Ω
(αC|(ϕ2)M(z, t)|2 − αB|(ϕ3)M(z, t)|2) dz = 0.

Already including the Lagrange multipliers for the constraints, the variational formulation for
such system. denoted by the functional J(ϕ, E) stands for

J(ϕ, E) = G(∇ϕ) + F(ϕ) + F1(ϕ)− JAux(ϕ, E),
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where

G(∇ϕ) =
γp

2

2

∑
j=1

∫ t f

0

∫
Ω
∇(ϕH

1 )pj · ∇(ϕH
1 )pj dx dy dz dt

+
γe

2

2

∑
j=1

∫ t f

0

∫
Ω
∇(ϕH

1 )ej · ∇(ϕH
1 )ej dx dy dz dt

+
γp

2

2

∑
j=8

∫ t f

0

∫
Ω
∇(ϕO

1 )pj · ∇(ϕO
1 )pj dx dy dz dt

+
γe

2

2

∑
j=1

∫ t f

0

∫
Ω
∇(ϕO

1 )ej · ∇(ϕO
1 )ej dx dy dz dt

+
γp

2

∫ t f

0

∫
Ω
∇(ϕH

2 )p · ∇(ϕH
2 )p dx dy dz dt

+
γe

2

∫ t f

0

∫
Ω
∇(ϕH

2 )e1 · ∇(ϕH
2 )e1 dx dy dz dt

+
γe

2

2

∑
j=1

∫ t f

0

∫
Ω
∇(ϕOH−

2 )e2 · ∇(ϕOH−
1 )e2 dx dz dt

+
γp

2

2

∑
j=8

∫ t f

0

∫
Ω
∇(ϕO

2 )pj · ∇(ϕO
2 )pj dx dy dz dt

+
γe

2

2

∑
j=1

∫ t f

0

∫
Ω
∇(ϕO

2 )ej · ∇(ϕO
2 )ej dx dy dz dt

+
γp

2

2

∑
j=1

∫ t f

0

∫
Ω
∇(ϕH

2 )p · ∇(ϕO
2 )p dx dy dt

+
γAH

2

2

∑
j=1

∫ t f

0

∫
Ω
∇(ϕH

1 )Aj · ∇(ϕH
1 )Aj dy dz dt

+
γAO

2

∫ t f

0

∫
Ω
∇(ϕO

1 )A · ∇(ϕO
1 )A dy dz dt

+
γAH

2

∫ t f

0

∫
Ω
∇(ϕH

2 )A · ∇(ϕH
2 )A dy dz dt

+
γAO

2

∫ t f

0

∫
Ω
∇(ϕO

2 )A · ∇(ϕO
2 )A dy dz dt

+
γM1

2

∫ t f

0

∫
Ω
∇(ϕ1)M · ∇(ϕ1)M dz dt

+
γM2

2

∫ t f

0

∫
Ω
∇(ϕ2)M · ∇(ϕ2)M dz dt

γA3

2

∫ t f

0

∫
Ω
∇(ϕ3)A · ∇(ϕ3)A dy dt.

Here γp > 0, γe > 0, γH
A > 0,, γO

A > 0, γM1 > 0, γM2 > 0, γA3 > 0.
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Moreover,

F(ϕ)

=
α1

2

∫ t f

0

∫
Ω

|ϕ1(x − ξ1, y − ξ2, z − ξ3, t)|2|ϕ1(ξ1, ξ2, ξ3, t)|2
|(x, y, z)− (ξ1, ξ2, ξ3)|

dx dy dz dx1 dx2 dx3 dt

+
α2

2

∫ t f

0

∫
Ω

|ϕ2(x − ξ1, y − ξ2, z − ξ3, t)|2|ϕ2(ξ1, ξ2, ξ3, t)|2
|(x, y, z)− (ξ1, ξ2, ξ3)|

dx dy dz dx1 dx2 dx3 dt

+
α3

2

∫ t f

0

∫
Ω

|ϕ3(x − ξ1, z − ξ3, t)|2|ϕ3(ξ1, ξ3, t)|2
|(x, y, z)− (ξ1, ξ2, ξ3)|

dx dy dz dx1 dx3 dt

+
α23

2

∫ t f

0

∫
Ω

|ϕ2(x − ξ1, y − ξ2, z − ξ3, t)|2|ϕ3(ξ1, ξ3, t)|2
|(x, y, z)− (ξ1, ξ2, ξ3)|

dx dy dz dx1 dx2 dx3 dt

where α1 > 0, α2 > 0, α3 > 0 and α23 > 0.
Furthermore,

F1(ϕ) =
∫ t f

0

∫
Ω

V(x, y, z, t)(|ϕ1|2 + |ϕ2|2 + |ϕ3|2) dx dy dz dt, (127)

where V = V(x, y, z, t) is an electric potential originated from an external electric field E applied on Ω.
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Finally,

JAux(ϕ, E)

=
2

∑
j=1

∫ t f

0

∫
Ω
(E1)

H
pj
(y, z, t)

(∫
Ω
|(ϕH

1 )pj(x, y, z, t)|2 dx − mp

)
dy dz dt

+
2

∑
j=1

∫ t f

0

∫
Ω
(E1)

H
ej
(y, z, t)

(∫
Ω
|(ϕH

1 )ej(x, y, z, t)|2 dx − me

)
dy dz dt

+
2

∑
j=8

∫ t f

0

∫
Ω
(E1)

O
pj
(y, z, t)

(∫
Ω
|(ϕO

1 )pj(x, y, z, t)|2 dx − mp

)
dy dz dt

+
2

∑
j=8

∫ t f

0

∫
Ω
(E1)

O
ej
(y, z, t)

(∫
Ω
|(ϕO

1 )ej(x, y, z, t)|2 dx − me

)
dy dz dt

+
∫ t f

0

∫
Ω
(E2)

H
p (y, z, t)

(∫
Ω
|(ϕH

2 )p(x, y, z, t)|2 dx − mp

)
dy dz dt

+
2

∑
j=8

∫ t f

0

∫
Ω
(E2)

O
pj
(y, z, t)

(∫
Ω
|(ϕO

2 )pj(x, y, z, t)|2 dx − mp

)
dy dz dt

+
2

∑
j=8

∫ t f

0

∫
Ω
(E2)

O
ej
(y, z, t)

(∫
Ω
|(ϕO

2 )ej(x, y, z, t)|2 dx − me

)
dy dz dt

+
∫ t f

0

∫
Ω
(E3)

H
p (y, t)

(∫
Ω
|(ϕH

3 )p(x, y, t)|2 dx − mp

)
dy dt

+
2

∑
j=1

∫ t f

0

∫
Ω
(E4)

H
Aj
(z, t)

(∫
Ω
(|(ϕ1)

H
Aj
(y, z, t)|2 dy − mH

Aj

)
dz dt

+
∫ t f

0

∫
Ω

∫
Ω
(E4)

O
A(z, t)

(∫
Ω
(|(ϕ1)

O
A(y, z, t)|2 dy − mO

A

)
dz dt

+
∫ t f

0

∫
Ω
(E5)

H
A (z, t)

(∫
Ω
(|(ϕ2)

H
A (y, z, t)|2 dy − mH

A

)
dz dt

+
∫ t f

0

∫
Ω
(E5)

O
A(z, t)

(∫
Ω
(|(ϕ2)

O
A(y, z, t)|2 dy − mO

A

)
dz dt∫ t f

0
(E6)

H
A (t)

(∫
Ω
(|(ϕ3)

H
A (y, t)|2 dy − mH

A

)
dt

+
∫ t f

0
(E7)(t)

(∫
Ω
(|(ϕ1)M(z, t)|2 + |(ϕ2)M(z, t)|2 + |(ϕ3)M(z, t)|2) dz − mT

)
dt

+
∫ t f

0
(E8)(t)

(∫
Ω
(αC|(ϕ2)M(z, t)|2 − αB|(ϕ3)M(z, t)|2) dz

)
dt. (128)

24. A Mathematical Model for the Austenite and Martensite Phase Transition
In this section we consider a phase transition of a solid solution of γ − Fe (γ − iron) and carbon

with a 0.75/100 proportion of carbon, known as austenite, initially at a temperature above and close
to 723 C and rapidly cooled to a temperature of about 25 C, developing a phase transition which
generates a solid solution of α − Fe (α − iron) and carbon known as martensite.

Let Ω ⊂ R3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω
which contains an amount of austenite at 723 C and which, as previously mentioned, is rapidly cooled
to a temperature 25 C on a time interval [0, t f ], resulting a phase known as martensite.

We recall the γ − Fe of austenite phase presents a multi-faced cubic crystalline structure in a
micro-structure with carbon atoms.

On the other hand, α − Fe structure of the martensite phase has a CCC cubic centralized crystalline
structure in a micro-structure with carbon atoms.

At this point, we also recall that the Fe (iron) atom has 26 protons, 26 electrons and 30 neutrons.
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On the other hand a Carbon12 atom has 6 protons and this same number of electrons and neutrons.
Here we define the density function ϕ1, representing the Austenite phase, where:

|ϕ1(x, y, z, t)|2 =
26

∑
j=1

|ϕγ−Fe
pj (x, y, z, t)|2|ϕγ−Fe

A (y, z, t)|2|ϕγ
1 (z, t)|2 1

(mγ
A)

2

+
26

∑
j=1

|ϕγ−Fe
ej (x, y, z, t)|2|ϕγ−Fe

A (y, z, t)|2|ϕγ
1 (z, t)|2 1

(mγ
A)

2

+
30

∑
j=1

|ϕγ−Fe
Nj

(x, y, z, t)|2|ϕγ−Fe
A (y, z, t)|2|ϕγ

1 (z, t)|2 1
(mγ

A)
2

+
6

∑
j=1

|(ϕC
1 )pj(x, y, z, t)|2|(ϕC

1 )A(y, z, t)|2|ϕC
1 (z, t)|2 1

(mC
A)

2

+
6

∑
j=1

|(ϕC
1 )ej(x, y, z, t)|2|(ϕC

1 )A(y, z, t)|2|ϕC
1 (z, t)|2 1

(mC
A)

2

+
6

∑
j=1

|(ϕC
1 )Nj(x, y, z, t)|2|(ϕC

1 )A(y, z, t)|2|ϕC
1 (z, t)|2 1

(mC
A)

2
. (129)

Similarly, we define the density function for the Martensite phase, which is denoted by ϕ2, where:

|ϕ2(x, y, z, t)|2 =
26

∑
j=1

|ϕα−Fe
pj

(x, y, z, t)|2|ϕγ−Fe
A (y, z, t)|2|ϕα

1 (z, t)|2 1
(mα

A)
2

+
26

∑
j=1

|ϕα−Fe
ej

(x, y, z, t)|2|ϕα−Fe
A (y, z, t)|2|ϕγ

1 (z, t)|2 1
(mα

A)
2

+
30

∑
j=1

|ϕα−Fe
Nj

(x, y, z, t)|2|ϕα−Fe
A (y, z, t)|2|ϕα

1 (z, t)|2 1
(mα

A)
2

+
6

∑
j=1

|(ϕC
1 )pj(x, y, z, t)|2|(ϕC

1 )A(y, z, t)|2|ϕC
1 (z, t)|2 1

(mC
A)

2

+
6

∑
j=1

|(ϕC
2 )ej(x, y, z, t)|2|(ϕC

2 )A(y, z, t)|2|ϕC
2 (z, t)|2 1

(mC
A)

2

+
6

∑
j=1

|(ϕC
2 )Nj(x, y, z, t)|2|(ϕC

2 )A(y, z, t)|2|ϕC
2 (z, t)|2 1

(mC
A)

2
. (130)

For the CFC γ − Fe (γ − iron) corresponding to the Austenite phase, such density functions are
subject to the following constraints:

Defining

Cγ = {(ε1, 0, 0), (0, ε2, 0), (0, 0, ε3), : ε j ∈ {+1,−1}, ∀j ∈ {1, 2, 3}},

(Cγ)1 = {(ε1, ε2, ε3), : ε j ∈ {+1,−1}, ∀j ∈ {1, 2, 3}},

and

(Cγ)2 = {(ε1, ε2, 0), (ε1, 0, ε3), (0, ε2, ε3), : ε j ∈ {+1,−1}, ∀j ∈ {1, 2, 3}},

we must have
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ϕ
γ−Fe
A (y, z1 + ε1δz, z2 + ε2δz, z3 + ε3δz, t) = ϕ

γ−Fe
A (y, z1 + ε̃1δz, z2 + ε̃2δz, z3 + ε̃3δz, t),

∀ε, ε̃ ∈ Cγ, where δz ∈ R+ is a small real parameter related to γ − Fe crystalline structure dimensions.
We must have also,

ϕ
γ−Fe
A (y, z1 + ε1δz, z2 + ε2δz, z3 + ε3δz, t) = ϕ

γ−Fe
A (y, z1 + ε̃1δz, z2 + ε̃2δz, z3 + ε̃3δz, t),

∀ε, ε̃ ∈ (Cγ)1 and,

(ϕC
1 )A(y, z1 + ε1δz, z2 + ε2δz, z3 + ε3δz, t) = (ϕC

1 )A(y, z1 + ε̃1δz, z2 + ε̃2δz, z3 + ε̃3δz, t),

∀ε, ε̃ ∈ (Cγ)2.
For the CCC α − Fe (α − iron) corresponding to the Austenite phase, such density functions are

subject to the following constraints:
Defining

Cα = {(ε1, ε2, ε3), : ε j ∈ {+1,−1}, ∀j ∈ {1, 2, 3}},

(Cα)1 = {(ε1, ε2, ε3), : ε1, ε2 ∈ {+1,−1} and ε3 = 0},

(Cα)2 = {(ε1, ε2, ε3), : ε1 = ε2 = 0 and ε3 ∈ {+1,−1}},

we must have

ϕα−Fe
A (y, z1 + ε1δ̂z, z2 + ε2δ̂z, z3 + ε3δ̂z, t) = ϕα−Fe

A (y, z1 + ε̃1δ̂z, z2 + ε̃2δ̂z, z3 + ε̃3δ̂z, t),

∀ε, ε̃ ∈ Cα, where δ̂z ∈ R+ is a small real parameter related to α − Fe crystalline structure dimensions.
We must have also,

(ϕC
2 )A(y, z1 + ε1δ̂z, z2 + ε2δ̂z, z3 + ε3δ̂z, t) = (ϕC

2 )A(y, z1 + ε̃1δ̂z, z2 + ε̃2δ̂z, z3 + ε̃3δ̂z, t),

∀ε, ε̃ ∈ (Cα)1 ∪ (Cα)2.
The other constraints for the densities are given by:

1. For the Austenite phase:

(a) ∫
Ω
|ϕγ−Fe

pj (x, y, z, t)|2 dx = mp, ∀j ∈ {1, 26},

(b) ∫
Ω
|ϕγ−Fe

ej (x, y, z, t)|2 dx = me, ∀j ∈ {1, 26},

(c) ∫
Ω
|ϕγ−Fe

Nj
(x, y, z, t)|2 dx = mN , ∀j ∈ {1, 30},

(d) ∫
Ω
|ϕγ−Fe

A (x, y, z, t)|2 dx = mγ
A,

(e) ∫
Ω
|(ϕC

1 )pj(x, y, z, t)|2 dx = mp, ∀j ∈ {1, 6},
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(f) ∫
Ω
|(ϕC

1 )ej(x, y, z, t)|2 dx = me, ∀j ∈ {1, 6},

(g) ∫
Ω
|(ϕC

1 )Nj(x, y, z, t)|2 dx = mN , ∀j ∈ {1, 6},

(h) ∫
Ω
|(ϕC

1 )A(x, y, z, t)|2 dx = mC
A,

2. For the Martensite phase:

(a) ∫
Ω
|ϕα−Fe

pj
(x, y, z, t)|2 dx = mp, ∀j ∈ {1, 26},

(b) ∫
Ω
|ϕα−Fe

ej
(x, y, z, t)|2 dx = me, ∀j ∈ {1, 26},

(c) ∫
Ω
|ϕα−Fe

Nj
(x, y, z, t)|2 dx = mN , ∀j ∈ {1, 30},

(d) ∫
Ω
|ϕα−Fe

A (x, y, z, t)|2 dx = mα
A,

(e) ∫
Ω
|(ϕC

2 )pj(x, y, z, t)|2 dx = mp, ∀j ∈ {1, 6},

(f) ∫
Ω
|(ϕC

2 )ej(x, y, z, t)|2 dx = me, ∀j ∈ {1, 6},

(g) ∫
Ω
|(ϕC

2 )Nj(x, y, z, t)|2 dx = mN , ∀j ∈ {1, 6},

(h) ∫
Ω
|(ϕC

2 )A(x, y, z, t)|2 dx = mC
A.

3. For the total Fe (iron) mass,∫
Ω
|ϕγ

1 (z, t)|2 dz +
∫

Ω
|ϕγ

2 (z, t)|2 dz = (mFe)T ,

4. For the total Carbon mass∫
Ω
|ϕC

1 (z, t)|2 dz +
∫

Ω
|ϕC

2 (z, t)|2 dz = (mC)T .

At this point we define the functional J which models such a pahse transition in question, where

J(ϕ, E) = G(∇ϕ) + F(ϕ) + F1(ϕ) + JAux(ϕ, E)

where
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G(∇ϕ) =
26

∑
j=1

γ̂
γ−Fe
p

2

∫ t f

0

∫
Ω
∇ϕ

γ−Fe
pj · ∇ϕ

γ−Fe
pj dx dy dz dt

+
26

∑
j=1

γ̂
γ−Fe
e
2

∫ t f

0

∫
Ω
∇ϕ

γ−Fe
ej · ∇ϕ

γ−Fe
ej dx dy dz dt

+
30

∑
j=1

γ̂
γ−Fe
N
2

∫ t f

0

∫
Ω
∇ϕ

γ−Fe
Nj

· ∇ϕ
γ−Fe
Nj

dx dy dz dt

+
26

∑
j=1

γ̂α−Fe
p

2

∫ t f

0

∫
Ω
∇ϕα−Fe

pj
· ∇ϕα−Fe

pj
dx dy dz dt

+
26

∑
j=1

γ̂α−Fe
e
2

∫ t f

0

∫
Ω
∇ϕα−Fe

ej
· ∇ϕ

γ−Fe
ej dx dy dz dt

+
30

∑
j=1

γ̂α−Fe
N
2

∫ t f

0

∫
Ω
∇ϕα−Fe

Nj
· ∇ϕα−Fe

Nj
dx dy dz dt

+
γ̂

γ
A

2

∫ t f

0

∫
Ω
(∇ϕ

γ−Fe
A (y, z, t) · ∇ϕ

γ−Fe
A (y, z, t)) dy dz dt

+
γ̂α

A
2

∫ t f

0

∫
Ω
(∇ϕα−Fe

A (y, z, t) · ∇ϕα−Fe
A (y, z, t)) dy dz dt

+
6

∑
j=1

γ̂C
p

2

∫ t f

0

∫
Ω
∇(ϕC

1 )pj · ∇(ϕC
1 )pj dx dy dz dt

+
6

∑
j=1

γ̂C
e

2

∫ t f

0

∫
Ω
∇(ϕC

1 )ej · ∇(ϕC
1 )ej dx dy dz dt

+
6

∑
j=1

γ̂C
N
2

∫ t f

0

∫
Ω
∇(ϕC

1 )Nj · ∇(ϕC
1 )Nj dx dy dz dt

+
6

∑
j=1

γ̂C
p

2

∫ t f

0

∫
Ω
∇(ϕC

2 )pj · ∇(ϕC
2 )pj dx dy dz dt

+
6

∑
j=1

γ̂C
e

2

∫ t f

0

∫
Ω
∇(ϕC

2 )ej · ∇(ϕC
2 )ej dx dy dz dt

+
6

∑
j=1

γ̂C
N
2

∫ t f

0

∫
Ω
∇(ϕC

2 )Nj · ∇(ϕC
2 )Nj dx dy dz dt

+
γ̂C

A
2

∫ t f

0

∫
Ω
(∇(ϕC

1 )A · ∇(ϕC
1 )A) dy dz dt +

γ̂C
A

2

∫ t f

0

∫
Ω
(∇(ϕC

2 )A · ∇(ϕC
2 )A) dy dz dt

+
γ̂

γ
T

2

∫ t f

0

∫
Ω
(∇(ϕγ

1 ) · ∇(ϕγ
1 )) dz dt +

γ̂
γ
T

2

∫ t f

0

∫
Ω
(∇(ϕα

1 ) · ∇(ϕα
1 )) dz dt

+
γ̂C

T
2

∫ t f

0

∫
Ω
(∇(ϕC

1 ) · ∇(ϕC
1 )) dz dt +

γ̂
γ
T

2

∫ t f

0

∫
Ω
(∇(ϕC

2 ) · ∇(ϕC
2 )) dz dt (131)

Also,

F(ϕ)

=
α̂1

2

∫ t f

0

∫
Ω

|ϕ1(x − ξ1, y − ξ2, z − ξ3, t)|2||ϕ1(ξ1, ξ2, ξ3, t)|2
|(x, y, z)− (ξ1, ξ2, ξ3)|

dx dy dz dξ1 dξ2 dξ3 dt

+
α̂2

2

∫ t f

0

∫
Ω

|ϕ2(x − ξ1, y − ξ2, z − ξ3, t)|2||ϕ2(ξ1, ξ2, ξ3, t)|2
|(x, y, z)− (ξ1, ξ2, ξ3)|

dx dy dz dξ1 dξ2 dξ3 dt,
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F1(ϕ) = −
∫ t f

0

∫
Ω

w2(z, t)(|ϕ1(z, t)|2 + ϕ2(z, t)|2) dz dt,

Finally, JAux = JAux1 + JAux2 + JAux3 + JAux4 + JAux5 , where

JAux1 =
26

∑
j=1

∫ t f

0

∫
Ω

Eγ−Fe
pj (y, z, t)

(∫
Ω
|ϕγ−Fe

pj (x, y, z, t)|2 dx − mp

)
dy dz dt

+
26

∑
j=1

∫ t f

0

∫
Ω

Eγ−Fe
ej (y, z, t)

(∫
Ω
|ϕγ−Fe

ej (x, y, z, t)|2 dx − me

)
dy dz dt

+
30

∑
j=1

∫ t f

0

∫
Ω

Eγ−Fe
Nj

(y, z, t)
(∫

Ω
|ϕγ−Fe

Nj
(x, y, z, t)|2 dx − mN

)
dy dz dt

26

∑
j=1

∫ t f

0

∫
Ω

Eα−Fe
pj

(y, z, t)
(∫

Ω
|ϕα−Fe

pj
(x, y, z, t)|2 dx − mp

)
dy dz dt

+
26

∑
j=1

∫ t f

0

∫
Ω

Eα−Fe
ej

(y, z, t)
(∫

Ω
|ϕα−Fe

ej
(x, y, z, t)|2 dx − me

)
dy dz dt

+
30

∑
j=1

∫ t f

0

∫
Ω

Eα−Fe
Nj

(y, z, t)
(∫

Ω
|ϕα−Fe

Nj
(x, y, z, t)|2 dx − mN

)
dy dz dt

+
∫ t f

0

∫
Ω

Eγ−Fe
A (y, t)

(∫
Ω
|ϕγ−Fe

A (y, z, t)|2 dy − mγ
A

)
dz dt

+
∫ t f

0

∫
Ω

Eα−Fe
A (y, t)

(∫
Ω
|ϕα−Fe

A (y, z, t)|2 dy − mα
A

)
dz dt (132)

JAux2 =
26

∑
j=1

∫ t f

0

∫
Ω
(EC

1 )pj(y, z, t)
(∫

Ω
|(ϕC

1 )pj(x, y, z, t)|2 dx − mp

)
dy dz dt

26

∑
j=1

∫ t f

0

∫
Ω
(EC

1 )ej(y, z, t)
(∫

Ω
|(ϕC

1 )ej(x, y, z, t)|2 dx − me

)
dy dz dt

26

∑
j=1

∫ t f

0

∫
Ω
(EC

1 )Nj(y, z, t)
(∫

Ω
|(ϕC

1 )Nj(x, y, z, t)|2 dx − mN

)
dy dz dt

26

∑
j=1

∫ t f

0

∫
Ω
(EC

2 )pj(y, z, t)
(∫

Ω
|(ϕC

2 )pj(x, y, z, t)|2 dx − mp

)
dy dz dt

26

∑
j=1

∫ t f

0

∫
Ω
(EC

2 )ej(y, z, t)
(∫

Ω
|(ϕC

2 )ej(x, y, z, t)|2 dx − me

)
dy dz dt

26

∑
j=1

∫ t f

0

∫
Ω
(EC

2 )Nj(y, z, t)
(∫

Ω
|(ϕC

2 )Nj(x, y, z, t)|2 dx − mN

)
dy dz dt

∫ t f

0

∫
Ω
(EC

1 )A(y, t)
(∫

Ω
|(ϕC

1 )A(y, z, t)|2 dy − mC
A

)
dz dt

+
∫ t f

0

∫
Ω
(EC

2 )A(y, t)
(∫

Ω
|(ϕC

2 )A(y, z, t)|2 dy − mC
A

)
dz dt (133)

and,

JAux3 =
∫ t f

0
Eγ,α

3 (t)
(∫

Ω
(|ϕγ

1 (z, t)|2 + |ϕα
2 (z, t)|2) dz − (mFe)T

)
dt

+
∫ t f

0
EC

3 (t)
(∫

Ω
(|ϕC

1 (z, t)|2 + |ϕC
2 (z, t)|2) dz − (mC)T

)
dt. (134)
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JAux4

= + ∑
ε, ε̃∈Cγ

∫ t f

0

∫
Ω

Eε, ε̃
4 (y, z, t)(ϕγ−Fe

A (y, z1 + ε1δz, z2 + ε2δz, z3 + ε3δz, t)

−ϕ
γ−Fe
A (y, z1 + ε̃1δz, z2 + ε̃2δz, z3 + ε̃3δz, t)) dy dz dt

∑
ε, ε̃∈(Cγ)1

∫ t f

0

∫
Ω

Eε, ε̃
5 (y, z, t)ϕγ−Fe

A (y, z1 + ε1δz, z2 + ε2δz, z3 + ε3δz, t)

−ϕ
γ−Fe
A (y, z1 + ε̃1δz, z2 + ε̃2δz, z3 + ε̃3δz, t)) dy dz dt

+ ∑
ε, ε̃∈(Cγ)2

∫ t f

0

∫
Ω

Eε, ε̃
6 (y, z, t)(ϕC

1 )A(y, z1 + ε1δz, z2 + ε2δz, z3 + ε3δz, t)

−(ϕC
1 )A(y, z1 + ε̃1δz, z2 + ε̃2δz, z3 + ε̃3δz, t)) dy dz dt

+ ∑
ε, ε̃∈(Cα)

∫ t f

0

∫
Ω

Eε, ε̃
7 (y, z, t)(ϕα−Fe

A (y, z1 + ε1δ̂z, z2 + ε2δ̂z, z3 + ε3δ̂z, t)

−ϕα−Fe
A (y, z1 + ε̃1δ̂z, z2 + ε̃2δ̂z, z3 + ε̃3δ̂z, t)) dy dz dt

+ ∑
ε, ε̃∈(Cα)1∪(Cα)2

∫ t f

0

∫
Ω

Eε, ε̃
8 (y, z, t)((ϕC

2 )A(y, z1 + ε1δ̂z, z2 + ε2δ̂z, z3 + ε3δ̂z, t)

−(ϕC
2 )A(y, z1 + ε̃1δ̂z, z2 + ε̃2δ̂z, z3 + ε̃3δ̂z, t)) dy dz dt. (135)

Finally, for a field of displacements u = (u1, u2, u3) resulting from the action of a external load
field f = ( f1, f2, f3) and temperature variations, we define

JAux5

=
1
2

∫ t f

0

∫
Ω

(
Λ1(x, t)H1

ijkl((eij(u)− e1
ij(w))(ekl(u)− e1

kl(w)))

+Λ2(z, t)H2
ijkl((eij(u)− e2

ij(w))(ekl(u)− e2
kl(w)))

)
dx dt

−1
2

∫ t f

0

∫
Ω

ρ(x, t)ut(x, t) · ut(x, t) dx dt

−⟨ui, fi⟩L2 , (136)

where

eij(u) =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
,

ρ1(z, t) =
∫

Ω
|ϕ1(x, y, z, t)|2 dx dy,

ρ2(z, t) =
∫

Ω
|ϕ2(x, y, z, t)|2 dx dy,

ρ(z, t) = ρ1(z, t) + ρ2(z, t),

and

Λ1(z, t) =
ρ1(z, t)

ρ1(z, t) + ρ2(z, t)
,

Λ2(z, t) =
ρ2(z, t)

ρ1(z, t) + ρ2(z, t)
.

Remark 12. The system temperature is supposed to be directly proportional to w(z, t)2, which in this model is a
known function obtained experimentally. Finally, the strain tensors {e1

ij(w)} and {e2
ij(w)} refer to austenite
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and martensite phases, respectively. Such tensors also depend on the temperature and must be also obtained
experimentally.

25. A Note on Classical Free Fields Through a Variational Perspective
This section is strongly based on the first chapter of the book [20], by N.N. Bogoliubov and D.V.

Shirkov.
Therefore, the credit for this section is of these mentioned authors. This section is a kind of review

of such a book chapter indicated. In fact, what we have done is simply to open more and clarify
some calculations, specially about the first variation of the functional L, in order to improve their
understanding.

Let Ω = Ω̂ × [0, T] ⊂ R4 where Ω̂ ⊂ R3 is a bounded, open and connected set with a regular
boundary denoted by ∂Ω̂.

Consider the Lagrangian density L : RN ×RN×n → R and an action A : V → R where

A(u) =
∫

Ω
L(u,∇u) dx,

V = W1,2
0 (Ω;RN).

We denote

∇u =

{
∂ui
∂xj

}
and

∂ui
∂xj

= (ui)xj .

Assume u ∈ V is such that
δL(u,∇u) = 0,

so that
∂L(u,∇u)

∂ui
−

n

∑
k=1

d
dxk

(
∂L(u,∇u)

∂(ui)xk

)
= 0, in Ω, ∀i ∈ {1, · · · , N}.

We define a change of variables
(x′)k = xk + δxk,

where xk = (x0, x1, x2, x3) and x0 = t (here t denotes time).
Also

gjk = 0, if j ̸= k, g00 = −1 and g11 = g22 = g33 = 1, {gjk} = {gjk}−1,

δxk =
N

∑
j=1

Xk
j ε wj,

where |ε| ≪ 1 denotes a small real parameter.
We define also

u′
i(x′) = ui(x) + δui(x),

where

δui(x) =
N

∑
j=1

ψijε wj,

and
δui = u′

i(x)− ui(x).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


101 of 360

Observe that

δui(x) = u′
i(x)− ui(x)

= u′
i(x′)− u′

i(x) + u′
i(x)− ui(x), (137)

so that

δui(x) = u′
i(x)− ui(x)

= δui(x)− (u′
i(x′)− u′

i(x))
N

∑
j=1

ψijε wj −
n

∑
k=1

∂u′
i(x̃i)

dxk
δxk

=
N

∑
j=1

ψijε wj −
n

∑
k=1

∂ui(x)
dxk

δxk +O(ε2). (138)

Summarizing, we have got

δui(x) = ε

(
N

∑
j=1

(
ψijwj −

n

∑
k=1

∂ui(x)
dxk

XK
j wj

))
+O(ε2).

Define now
Ã(u, φ1, φ2, ε) =

∫
Ω

L[u(x + εφ2(x)) + εφ1(x)] det J(x) dx.

where we have generically denoted
L[u] ≡ L(u,∇u),

L[u(x + εφ2(x)) + εφ1(x)] ≡ L(u(x + εφ2(x)) + εφ1(x),∇u(x + εφ2(x)) + ε∇φ1(x)),

and

J(x) =

{
∂x′j
∂xk

}

=

{
∂(xj + ε(φ2)j(x))

∂xk

}
=

{
δjk + ε

∂(φ2)j(x)
∂xk

}
. (139)

From such a last definition we have

det J(x) = 1 + ε
n

∑
k=1

∂(φ2)k(x)
∂xk

+O(ε2).

so that
∂ det J(x)

∂ε
|ε=0 =

n

∑
k=1

∂(φ2)k(x)
∂xk

,

At this point we define

δA(u, φ1, φ2) =
d
dε

(
Ã(u, φ1, φ2, ε)

)
|ε=0,
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so that

δA(u, φ1, φ2) =
∫

Ω

(
N

∑
i=1

(
∂L(u,∇u)

∂ui
(φ1)i

+
n

∑
k=1

(
∂L(u,∇u)

∂(ui)xk

((φ1)i)xk

)

+
n

∑
k=1

δL[u]
δui

∂ui
∂xk

(φ2)k

)
+

n

∑
k=1

L[u]
∂(φ2)k

∂xk

)
dx. (140)

From this and

∂L(u,∇u)
∂ui

− d
dxk

(
∂L(u,∇u)

∂uxk

)
= 0, in Ω, ∀i ∈ {1, · · · , N},

we obtain

δA(u, φ1, φ2) =
N

∑
i=1

n

∑
k=1

(∫
Ω

d
dxk

(
∂L[u]

∂(ui)xk

(φ1)k

))
dx

+
n

∑
k=1

∫
Ω

d(L[u](φ2)k)

dxk
dx. (141)

In particular, for

(φ2)k =
N

∑
j=1

Xk
j wj

and

(φ1)i =
N

∑
j=1

(
ψijwj −

n

∑
k=1

∂ui
∂xk

Xk
j wj

)
,

we obtain

δA(u, φ1, φ2)

=
N

∑
i=1

n

∑
k=1

∫
Ω

(
d

dxk

(
∂L[u]
∂(ui)k

(
N

∑
j=1

(
ψij −

n

∑
l=1

∂ui(x)
∂xl

Xl
jw

j

))))
dx

+
n

∑
k=1

∫
Ω

∂L[u]Xk
j wj

dxk
dx

=
N

∑
j=1

(
n

∑
k=1

(∫
Ω

d
dxk

(
N

∑
i=1

∂L[u]
∂(ui)k

(
N

∑
j=1

(
ψij −

n

∑
l=1

∂ui(x)
∂xl

Xl
jw

j

))
+L[u]Xk

j wj
)

dx
))

. (142)

Moreover, we define

θ
j
k =

N

∑
i=1

(
∂L[u]

∂(ui)xk

(
−ψij +

n

∑
l=1

∂ui
∂xl

Xl
j

))
− L(u)Xk

j

so that

δA(u, φ1, φ2) = −
∫

Ω

N

∑
j=1

n

∑
k=1

d(θk
j wj)

dxk
dx,

∀{wj} ∈ C∞
c (Ω;RN).

In particular, for
ψij = 0
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and
Xk

j = δk
j

we obtain the Energy-Momentum tensor T j
k, where

T j
k ≡ θ

j
k =

N

∑
i=1

n

∑
l=1

(
∂L[u]

∂(ui)xk

∂ui
∂xl

δl
j

)
− L[u]δk

j .

25.1. The Angular-Momentum tensor

In this subsection we define the following change of variables

x′k = xk + ∑
m ̸=k

gmmxmε wkm,

where
wkm = −wmk.

With such relations in mind, we set

δxk = x′k − xk

= ε
n

∑
l=1

∑
m<l

wml(gll xl gk
m − gmmxmgk

l ). (143)

We define also,
u′

i(x′) = ui(x) + δui(x)

where

δui(x) =
n

∑
l=1

∑
j,p<l

Aj
i(pl)uj(x)ε wpl .

Moreover, we define

ψi(mn) =
n

∑
j=1

Aj
i(mn),

where
Aj

i(pl) = gipδ
j
l − gl

i δ
j
p.

Hence,

ψi(mn) =
n

∑
j=1

Aj
i(mn)uj(x) = ginum(x)− gjmun(x).

For the general variation, we define again

Ã(u, φ1, φ2, ε) =
∫

Ω
L[u(x + εφ2(x)) + εφ1(x)] det J(x) dx.

where we have generically denoted
L[u] ≡ L(u,∇u),

L[u(x + εφ2(x)) + εφ1(x)] ≡ L(u(x + εφ2(x)) + εφ1(x),∇u(x + εφ2(x)) + ε∇φ1(x)),
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J(x) =

{
∂x′j
∂xk

}

=

{
∂(xj + ε(φ2)j(x))

∂xk

}
=

{
δjk + ε

∂(φ2)j(x)
∂xk

}
. (144)

and
δA(u, φ1, φ2) =

d
dε

(
Ã(u, φ1, φ2, ε)

)
|ε=0,

Moreover, we set
(φ2)

ml
k = wml(gll xlδ

k
m − gmmxmδk

l ),

and
δui = u′

i(x)− ui(x).

Thus,

δui(x) = u′
i(x)− ui(x)

= u′
i(x′)− u′

i(x) + u′
i(x)− ui(x), (145)

so that

δui(x) = u′
i(x)− ui(x)

= δui(x)− (u′
i(x′)− u′

i(x))

δui(x)−
n

∑
k=1

∂ui(x)
dxk

δxk +O(ε2)

= δui(x)−
n

∑
l=1

∑
m<l

n

∑
k=1

∂ui(x)
∂xk

εwml(gll xlδ
k
m − gmmxmδk

l ) +O(ε2)

= ε

(
n

∑
l=1

∑
j,k<l

Aj
i(kl)uj(x)wkl −

n

∑
l=1

∑
m<l

n

∑
k=1

∂ui(x)
∂xk

wml(gll xlδ
k
m − gmmxmδk

l )

)
+O(ε2),

With such results in mind, we define

(φ1)
ml
i = ∑

j,k<l
Aj

i(kl)uj(x)wml

−
n

∑
k=1

(
∂ui(x)

∂xk
wml(gll xlδ

k
m − gmmxmδk

l )

)
. (146)

Similarly as in the previous section, we may obtain
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δA(u, φ1, φ2)

=
dÃ(u, φ1, φ2, ε)

dε
|ε=0

=
n

∑
l=1

∑
j,m<l

n

∑
k=1

N

∑
i=1

∫
Ω

d
dxk

(
∂L[u]

∂(ui)xk

(Ai(l,m)j uj(x) +
∂ui
∂xp

gmmxmδ
p
l − ∂ui

∂xp
gll xlδ

p
m)wml

)
dx

+
n

∑
k=1

n

∑
l=1

∑
j,m<l

N

∑
i=1

∫
Ω

d
dxk

(
L[u](gll xlδ

k
m − gmmxmδk

l )w
ml
)

dx (147)

Thus,

δA(u, φ1, φ2) = −
n

∑
k=1

∑
m<l

∫
Ω

d
dxk

(
Mk

mlw
ml
)

dx,

where

Mk
ml =

N

∑
i=1

∑
j<l

∂L[u]
∂(ui)xk

(
Aj

ilmuj −
∂ui
∂xl

gmmxm +
∂ui
∂xm

gll xl

)
+L[u](gll xlδ

k
m + gmmxmδk

l ), (148)

so that

Mk
lm = (gmmxmTk

l − gll xlTk
m)

−
n

∑
i=1

∑
j<l

∂L[u]
∂(ui)xk

Aj
i(lm)

uj(x)

= Lk
ml + Sk

ml , (149)

where
Lk

ml = (gmmxmTk
l − gll xlTk

m)

and

Sk
ml = −

N

∑
i=1

∑
j<l

∂L[u]
∂(ui)xk

Aj
i(lm)

uj(x).

The tensor {Lk
ml} is said to be the Orbital angular momentum tensor and {Sk

ml} is said to be Spin
one.

25.2. A Note on the Solution of the Klein-Gordon Equation

For Ω = R4, Ω1 = R3 and denoting as usual by i ∈ C the imaginary unit, consider the Klein-
Gordon equation in distributional sense

−∂2u
∂t2 +

3

∑
j=1

∂2u
∂x2

j
− m2u = 0, in Ω,

where u ∈ V = W1,2(Ω).
Defining the Fourier transform of u, by

ϕ(p) =
1

(2π)3/2

∫
Ω

e−ip·xu(x) dx,
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in the momenta space, the last equation is equivalent to(
p2

0 −
3

∑
j=1

p2
j − m2

)
ϕ(p) = 0, in Ω,

where we have denoted p = (p0, p1, p2, p3) ∈ R4, and x = (x0, x1, x2, x3) ∈ R 4
Observe that a general solution for this last equation is given by the wave function

ϕ̂(p) = δ

(
p2

0 −
3

∑
j=1

p2
j − m2

)
ϕ(p),

where ϕ ∈ W1,2(Ω).
Indeed,(

p2
0 −

3

∑
j=1

p2
j − m2

)
ϕ̂(p) =

(
p2

0 −
3

∑
j=1

p2
j − m2

)
δ

(
p2

0 −
3

∑
j=1

p2
j − m2

)
ϕ(p)

= 0, in Ω. (150)

Here, we recall that generically for the Dirac delta function δ(t), we have

δ(t) =

{
0, if t ̸= 0,
+∞, if t = 0.

(151)

Observe that, for the scalar case in the previous section, we have

2T00 =
3

∑
j=0

(
∂u
∂xj

)2

+ m2u.

Also, from

−∂2u
∂t2 +

3

∑
j=1

∂2u
∂x2

j
− m2u = 0, in Ω,

we get ∫
Ω

(
∂u
∂t

)2
dx −

3

∑
j=1

∫
Ω

(
∂u
∂xj

)2

dx − m2
∫

Ω
u2 dx = 0,

so that ∫
Ω

(
∂u
∂t

)2
dx =

3

∑
j=1

∫
Ω

(
∂u
∂xj

)2

dx + m2
∫

Ω
u2 dx.

From such results, we may infer that

∫
Ω

T00 dx =
∫

Ω

(
∂u
∂t

)2
dx

=

∥∥∥∥∂u
∂t

∥∥∥∥2

L2

=
3

∑
j=1

∫
Ω

(
∂u
∂xj

)2

dx + m2
∫

Ω
u2 dx. (152)
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On the other hand,

3

∑
j=1

∫
Ω

(
∂u
∂xj

)2

dx

=
1

(2π)3

3

∑
j=1

∫
Ω

(∫
Ω

i pj ϕ̂(p) eip·xdp
)(∫

Ω
i p′jϕ̂(p′) eip′ ·x dp′

)
dx

=
1

(2π)3

3

∑
j=1

∫
Ω

∫
Ω

(
−pj p′j ϕ̂(p) ϕ̂(p′)

∫
Ω

ei(p+p′)·x dx
)

dp dp′

=
1

(2π)3/2

3

∑
j=1

∫
Ω

∫
Ω

(
−pj p′j ϕ̂(p) ϕ̂(p′) δ(p + p′)

)
dp dp′

=
1

(2π)3/2

3

∑
j=1

∫
Ω

(
p2

j ϕ̂(p) ϕ̂(−p)
)

dp. (153)

Thus, denoting p̂ = (p1, p2, p3), dp̂ = dp1 dp2 dp3, and

p0( p̂) =

√√√√ 3

∑
j=1

p2
j + m2,

we may infer that

∫
Ω

T00 dx =
1

(2π)3/2

∫
Ω

(
3

∑
j=1

p2
j + m2

)
ϕ̂(p) ϕ̂(−p)) dp

=
1

(2π)3/2

∫
Ω

(
3

∑
j=1

p2
j + m2

)
δ

(
p2

0 −
3

∑
j=1

p2
j − m2

)
ϕ(p) ϕ(−p)) dp

=
1

(2π)3/2

∫
Ω1

(
p0( p̂)2 ϕ(p0( p̂), p̂) ϕ(−p0( p̂),− p̂)

)
dp̂. (154)

Summarizing we have got∫
Ω

T00 dx =
1

(2π)3/2

∫
Ω1

(
p0( p̂)2 ϕ(p0( p̂), p̂) ϕ(−p0( p̂),− p̂)

)
dp̂

=

∥∥∥∥∂u
∂t

∥∥∥∥2

L2
, (155)

so that ∫
Ω

T00 dx =

∥∥∥∥∂u
∂t

∥∥∥∥2

L2

may be expressed as a kind of average expectance of p2
0 related to the function ϕ(p).

25.3. A Note on the Dirac Equation

In this subsection we denote

∆2 =
3

∑
j=0

gjjLj Lj,

where
Lj = i gjj ∂

∂xj
, ∀j ∈ {0, 1, 2, 3}.

We recall that the relativistic Klein-Gordon equation may be written as
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(∆2 − m2)u = 0, in Ω = R4.

Moreover, for 4 × 4 matrices γk indicated in the subsequent lines, we may obtain

{Dij}u =

[
−i

(
3

∑
j=0

γj ∂

∂xj

)
− m

][
−i

(
3

∑
j=0

γj ∂

∂xj

)
+ m

]
u,

where
Dii = ∆2 − m2

and
Dij = 0, if i ̸= j, ∀i, j ∈ {0, 1, 2, 3}.

Here
u = (u0, u1, u2, u3)

T ∈ V = W1,2(Ω;C4).

In such a case the fundamental Dirac equation stands for[
i

(
3

∑
j=0

γj ∂

∂xj

)
− m

]
u = 0 ∈ R4, in Ω.

Summarizing, if (u0, u1, u2, u3)
T ∈ V is a solution of this last Dirac equation, then u0, u1, u2, u3

are four solutions of the Klein-Gordon equation.
In the momentum configuration space, through the Fourier transform proprieties, the Dirac

equation stands for
( p̂ + m)û(p) = 0, in R4,

where

p̂ =
3

∑
j=0

gjj pjγ
j.

Observe that
ũ(p) = δ( p̂ + m)u(p)

corresponds to a general solution of the Dirac equation.
Indeed,

( p̂ + m)ũ(p) = ( p̂ + m)δ( p̂ + m)u(p) = 0 ∈ R4, in Ω.

On the other hand

û(p) = δ

(
p2

0 −
3

∑
j=1

p2
j − m2

)
u(p)

correspond to four solutions of the Klein-Gordon equation.
At this point, we assume such a û(p) corresponds to a solution of the Dirac equation as well.
Furthermore, here we recall that (please see the first chapter of the book [20], by N.N. Bogoliubov

and D.V. Shirkov for details):

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

, (156)

γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

, (157)
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γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

, (158)

γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 (159)

and

γ5 =


0 0 −i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0

 (160)

where we also denote
αj = γ0γj, ∀j ∈ {1, 2, 3},

σj = iγ5γ0γj, ∀j ∈ {1, 2, 3},

and
β = γ0.

On the other hand, a variational formulation for the Dirac equation corresponds to the functional
A : V → R where

A(u) =
1
2

∫
Ω

L(u,∇u) dx,

where

L(u,∇u) = i
3

∑
j=0

(
u∗γj ∂u

∂xj
− ∂u∗

∂xj
γju

)
− m2u∗u,

where here
u = (u0, u1, u2, u3)

T ∈ W1,2(Ω;C4).

From such statements and definitions, similarly as in the previous sections (please see [20] for
details), we may obtain

Tkl =
i
2

gll
(

u∗γk ∂u
∂xl

− ∂u∗

∂xl
γku

)
,

and

Sk,lm = −
(

∂L(u,∇u)
∂uxk

Au,lmu − u∗Au∗ ,lm ∂L(u,∇u)
∂uxk

)
,

where
Au,lm =

i
2

σml ,

Au∗ ,lm =
i
2

σlm,

and where

σlm =
γlγk − γkγl

2
,

so that
Sk,lm =

1
4

u∗
(

γkσlm − σlmγk
)

u.
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Thus, ∫
Ω

Sk,lm dx

=
1
4

∫
Ω

(
u∗
(

γkσlm − σlmγk
)

u
)

dx

=
1
4

1
(2π)3

∫
Ω

(∫
Ω

∫
Ω

(
û(p)eip·x(γkσlm − σlmγk)û(p′)eip′ ·x

)
dp dp′

)
dx

=
1
4

1
(2π)3/2

∫
Ω

∫
Ω

(
û(p)(γkσlm − σlmγk)δ(p + p′)û(p′)

)
dp dp′

=
1
4

1
(2π)3/2

∫
Ω

(
û(p)(γkσlm − σlmγk)û(−p)

)
dp

=
1
4

1
(2π)3/2

∫
Ω

(
u(p)(γkσlm − σlmγk)δ

(
p2

0 −
3

∑
j=1

p2
j − m2

)
u(−p)

)
dp

=
1
4

1
(2π)3/2

∫
Ω1

(
u(p0( p̂), p̂)(γkσlm − σlmγk)u(−p0( p̂),− p̂)

)
dp̂, (161)

where

p0( p̂) =

√√√√ 3

∑
j=1

p2
j + m2.

Summarizing, we have got∫
Ω

Sk,lm dx =
1

4(2π)3/2

∫
Ω1

(
u(p0( p̂), p̂)(γkσlm − σlmγk)u(−p0( p̂),− p̂)

)
dp̂,

where Ω1 = R3, p̂ = (p1, p2, p3) and dp̂ = dp1 dp2 dp3.

26. A Note on Quantum Field Operators
This section is strongly based on the chapter 3, page 53 of the book [21], by G.B. Folland.
Therefore, here we have done a kind of review of these pages of such a book chapter indicated.

In fact, we have simply opened more and clarified some calculations, in order to improve their
understanding.

Let Ω = Ω̂ × [0, T] ⊂ R4 where Ω̂ ⊂ R3 is a open, bounded and connected set with a regular
boundary denoted ∂Ω̂.

Define V = W1,2(Ω) and
V0 = W1,2

0 (Ω).

Consider an operator H : V1 = V0 ∩ W2,2(Ω) → Y where in a distributional sense,

H(u) = −∂2u
∂t2 +∇2u − m2u,

and where
Y = Y∗ = L2(Ω).

Suppose there exists operators B1 : Y → Y and B2 : Y → Y such that

B1B2(u) = H(u) +
1
2

u

and
B2B1(u) = H(u)− 1

2
u, ∀u ∈ V1.
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Assume also ϕ0 ∈ V1 is such that
∥ϕ0∥L2 = 1,

and B1ϕ0 = 0.
Now define

ϕk =
Bk

2(ϕ0)√
k!

, ∀k ∈ N.

Observe that
[B1B2] = B1B2 − B2B1 = Id.

We shall prove by induction that

[B1, Bk
2] = kBk−1

2 , ∀k ∈ N. (162)

Indeed, for k = 1
[B1, B2] = Id = 1B0

2,

so that (162) holds for k = 1.
Suppose now (162) holds for k ∈ N, so that

[B1, Bk
2] = kBk−1

2 .

In order to complete the induction, it suffices to prove that (162) holds for k + 1.
Observe that

[B1, Bk+1
2 ] = (B1Bk+1

2 − Bk+1
2 B1)

= (B1Bk
2)B2 − Bk+1

2 B1

= (Bk
2B1 + kBk−1

2 )B2 − Bk+1
2 B1

= Bk
2(B1B2) + kBk

2 − Bk+1
2 B1

= Bk
2(B2B1 + Id) + kB2 − Bk+1

2 B1

= Bk+1
2 B1 + Bk

2 + kBk
2 − Bk+1

2 B1

= (k + 1)Bk
2. (163)

Thus, the induction is complete, so that

[B1, Bk
2] = kBk−1

2 , ∀k ∈ N.

Moreover, we recall that
B1ϕ0 = 0,

so that

B1ϕk = B1

(
Bk

2ϕ0√
k!

)

=
(Bk

2B1 + kBk−1
2 )ϕ0√

k!

=
kϕk−1

√
(k − 1)!√
k!

=
kϕk−1√

k
=

√
kϕk−1, ∀k ∈ N. (164)
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Summarizing, we have got
B1ϕk =

√
kϕk−1, ∀k ∈ N.

Now, we shall prove that
B2ϕk =

√
k + 1ϕk+1, ∀k ∈ N.

Observe that

Bk+1
2 ϕ0 = ϕk+1(

√
(k + 1)!

= B2(Bk
2ϕ0)

= (B2ϕk)
√

k!. (165)

Summarizing, we have got

(B2ϕk)
√

k! = ϕk+1(
√
(k + 1)!,

so that

(B2ϕk) =
√

k + 1ϕk+1, ∀k ∈ N.

Finally, from such results, we may infer that

B1B2ϕk = B1(
√

k + 1ϕk+1)

=
√

k + 1B1ϕk+1

=
√

k + 1
√

k + 1ϕk

= (k + 1)ϕk, ∀k ∈ N. (166)

Similarly,

B2B1ϕk = B2(
√

kϕk−1)

=
√

kB2ϕk−1

=
√

k
√

kϕk

= kϕk. (167)

Therefore we have got

H ϕk = B1B2ϕk −
1
2

ϕk = (k + 1)ϕk −
1
2

ϕk =

(
k +

1
2

)
ϕk,

that is

Hϕk =

(
k +

1
2

)
ϕk, ∀k ∈ N.

Thus, for each k ∈ N, k + 1
2 is an eigenvalue of H with corresponding eigenvector ϕk.

26.1. An Application Concerning the Harmonic Oscillator Operator in Quantum Mechanics

In this section we have the aim of representing the relativistic Klein-Gordon equation through the
creation and annihilation operations related to the harmonic oscillator in quantum mechanics.

Consider first the one-dimensional Hamiltonian, corresponding to the harmonic oscillator, namely

H = − h̄
2m

d2

dx2 + K
x2

2
,
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which through an appropriate re-scale results into the following related Hamiltonian H0, where

H0 =
1
2

(
− d2

dx2 + x2
)

.

Define now the operators

B1 = A =
1√
2

(
x +

d
dx

)
,

and

B2 = A∗ =
1√
2

(
x − d

dx

)
.

Clearly,

H0 = B1B2 −
Id
2

= B2B1 +
Id
2

,

so that
[A, A∗] = [B1, B2] = B1B2 − B2B1 = Id.

Similarly, as in the previous sections, by induction, we may obtain

[B1, Bk
2] = kBk−1

2 , ∀k ∈ N.

For
ϕ0 = π−1/4e−

x2
2 ,

we define
ϕk =

1√
k

Bk
2ϕ0, ∀k ∈ N.

Also from the previous section, we may obtain

B2ϕk = A∗ϕk =
√

k + 1ϕk+1,

B1ϕk = Aϕk =
√

kϕk−1, ∀k ∈ N.

B2B1 = A∗Aϕk = kϕk,

and
B1B2ϕk = AA∗ϕk = (k + 1)ϕk, ∀k ∈ N∪ {0}.

so that
H0ϕk = (k + 1/2)ϕk, ∀k ∈ N.

Here we recall that
B1ϕ0 = Aϕ0 = 0,

and
∥ϕ0∥L2 = 1.

In reference [21], page 54 it is proven that such a sequence {ϕk} is an ortho-normal basis for
L2(R).

Finally, observe that for R4 we may define

(B1)j = Aj =
1√
2

(
∂

∂xj
+ xj

)
,
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and

(B2)j = A∗
j =

1√
2

(
− ∂

∂xj
+ xj

)
, ∀j ∈ {0, 1, 2, 3}.

Here generically,
x = (x0, x1, x2, x3) ∈ R4.

Observe that clearly
∂

∂xj
=

√
2

2
(Aj − A∗

j ),

and

xj Id =

√
2

2
(Aj + A∗

j ), ∀j ∈ {0, 1, 2, 3}.

Denoting x0 = t where t stands for time, consider the relativistic Klein-Gordon equation,

−∂2ϕ

∂t2 +
3

∑
j=1

∂2ϕ

∂x2
j
− m2ϕ = 0.

From the previous results, we may represent such an equation by(
−1

2
(A0 − A∗

0)
2 +

3

∑
j=1

1
2
(Aj − A∗

j )
2 − m2 Id

)
ϕ = 0.

We highlight from the previous results we know the action of Aj and A∗
j on an appropriate basis

of L2(R4) obtained though an appropriate tensorial product of the bases

{{ϕk(xj)}, for j ∈ {0, 1, 2, 3}}.

We shall call the operators A∗
j and Aj as the creation and annihilation operators concerning the

original harmonic operator in quantum mechanics.
To justify such a nomenclature, we recall that A∗

j ϕ0(xj) = ϕ1(xj) and Ajϕ0(xj) = 0, ∀j ∈
{0, 1, 2, 3}.

27. A Dual Variational Formulation for a Related Model
In this section we develop a concave dual variational formulation for a Ginzburg-Landau type

equation.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider a functional J : V → R defined by

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 , (168)

where γ > 0, α > 0, β > 0, f ∈ L2(Ω), and

V = W1,2
0 (Ω).

We also denote Y = Y∗ = L2(Ω).
Define now

V1 = {u ∈ V : ∥u∥∞ ≤ K3},
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for some appropriate K3 > 0 and, J1 : V × Y → R by

J1(u, v∗0) = J(u) +
K1

2

∫
Ω
(−γ∇2u + 2v∗0u − f )2 dx,

where
K1 =

1
4 αK2

3 + ε

for some small parameter 0 < ε ≪ 1.
Observe that

J(u, v∗0) =
γ

2

∫
Ω
∇u · ∇u dx + ⟨u2, v∗0⟩L2

+
K1

2

∫
Ω
(−γ∇2u + 2v∗0u − f )2 dx − ⟨u, f ⟩L2

−⟨u2, v∗0⟩L2 +
α

2

∫
Ω
(u2 − β)2 dx

≥ inf
u∈V1

{
γ

2

∫
Ω
∇u · ∇u dx + ⟨u2, v∗0⟩L2

+
K1

2

∫
Ω
(−γ∇2u + 2v∗0u − f )2 dx − ⟨u, f ⟩L2

}
+ inf

v∈Y

{
−⟨v, v∗0⟩L2 +

α

2

∫
Ω
(v − β)2 dx

}
= −F∗(v∗0)− G∗(v∗0)

≡ J∗(v∗0), ∀u ∈ V1, v∗0 ∈ Y∗, (169)

where we have denoted
F∗(v∗0) = sup

u∈V1

{−⟨u2, v∗0⟩L2 − F(u, v∗0)},

F(u, v∗0) =
γ

2

∫
Ω
∇u · ∇u dx +

K1

2

∫
Ω
(−γ∇2u + 2v∗0u − f )2 dx − ⟨u, f ⟩L2 ,

and
G(v) =

α

2

∫
Ω
(v − β)2 dx,

G∗(v∗0) = sup
v∈Y

{⟨v, v∗0⟩L2 − G(v)}

=
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx. (170)

Observe that
∂F(u, v∗0)

∂u2 = −γ∇2 + 2v∗0 + K1(−∇2 + 2v∗0)
2,

so that we define
B∗ = {v∗0 ∈ Y∗ : −γ∇2 + 2v∗0 + K1(−∇2 + 2v∗0)

2 > 0}.

With such assumptions and definitions in mind, we may prove the following theorem:

Theorem 4. For J∗(v∗0) = −F∗(v∗0)− G∗(v∗0), suppose v̂∗0 ∈ B∗ is such that

δJ∗(v̂∗0) = 0.

Let u0 ∈ Y be such that
∂H(u0, v̂∗0)

∂u
= 0,
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where
H(u, v∗0) = F(u, v∗0) + ⟨u2, v∗0⟩L2 .

Suppose
u0 ∈ V1.

Under such hypotheses,
F∗(v̂∗0) = H(u0, v̂∗0),

δJ(u0) = 0,

and

J(u0) = J1(u0, v̂∗0)

= inf
u∈V1

J1(u, v̂∗0)

= sup
v∗0∈Y∗

J∗(v∗0)

= J∗(v̂∗0). (171)

Proof. The proof that
F∗(v̂∗0) = H(u0, v̂∗0),

is immediate from v̂0 ∈ B∗.
Moreover, the proof that

δJ(u0) = 0,

and
J(u0) = J1(u0, v̂∗0) = J∗(v̂∗0)

may be done similarly as in the previous sections.
Observe that

J∗(v∗0) = −F∗(v∗0)− G∗(v∗0) = inf
u∈V1

{H(u, v∗0)− G∗(v∗0)},

so that J∗ is concave in v∗0 as the infimum of a family of concave functionals in v∗0 .
From this and δJ∗(v̂∗0) = 0 we get

J∗(v̂∗0) = sup
v∗0∈Y∗

J∗(v∗0).

Furthermore observe that

J(u0) = J1(u0, v̂∗0)

≤ J1(u, v∗0)

= F(u, v̂∗0) + ⟨u2, v̂∗0⟩L2 − G∗(v̂∗0)

≤ F(u, v̂∗0) + sup
v∗0∈Y∗

{
⟨u2, v̂∗0⟩L2 − G∗(v̂∗0)

}
= F(u, v̂∗0) + G(u2)

= J1(u, v̂∗0), ∀u ∈ V1. (172)

Hence
J(u0) = J1(u0, v̂∗0) = inf

u∈V1
J1(u, v̂∗0).
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Joining the pieces, we have got

J(u0) = J1(u0, v̂∗0)

= inf
u∈V1

J1(u, v̂∗0)

= sup
v∗0∈Y∗

J∗(v∗0)

= J∗(v̂∗0). (173)

The proof is complete.

28. The Generalized Method of Lines Applied to Fourth Order Differential
Equations

In this sections we develop an application of the generalized method of lines to a fourth order
equation.

We start by addressing the following ordinary differential equation (ode):

ε
d4u(x)

dx4 − f = 0, in [0, 1],

with the boundary conditions
u(0) = u′(0) = 0

and
u(1) = u′(1) = 0.

In terms of linear elasticity, such a boundary conditions corresponds to a bi-clamped beam.
In a finite difference context, this last equation corresponds to

ε

(
un+2 − 4un+1 + 6un − 4un−1 + un−2

d4

)
− fn = 0, ∀n ∈ {1, · · · N − 2},

where N is the number of nodes and d = 1/N.
Considering that, from the boundary conditions, u−1 = u0 = 0, for n = 1 we get

6u1 − 4u2 + u3 =
f1d4

ε
,

so that
u1 = a1u2 + b1u3 + c1,

where

a1 = 2/3, b1 − 1/6 and c1 =
f1d4

6ε
.

Similarly, for n = 2, we obtain

−4u1 + 6u2 − 4u3 + u4 =
f2d4

ε
.

Hence, replacing the value of u1 previously obtained in this last equation, we have

−4(a1u2 + b1u3 + c1) + 6u2 − 4u3 + u4 =
f2d4

ε
,

so that
u2 = a2u3 + b2u4 + c2,
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where defining m12 = (6 − 4a1), we have also

a2 =
4b1 + 4

m12
,

b2 = − 1
m12

,

c2 =
1

m12

(
f2d4

ε
+ 4c1

)
.

Now reasoning inductively, for n, having

un−1 = an−1un + bn−1un+1 + cn−1,

and
un−2 = an−2un−1 + bn−2un + cn−2

we obtain
un−2 = an−2(an−1un + bn−1un+1 + cn−1) + bn−2un + cn−2,

so that from this and

un+2 − 4un+1 + 6un − 4un−1 + un−2 =
fnd4

ε
,

we obtain

an−2(an−1un + bn−1un+1 + cn−1) + bn−2un + cn−2

−4(an−1un + bn−1un+1 + cn−1) + 6un − 4un+1 + un+2 =
fnd4

ε
, (174)

so that
un = anun+1 + bnun+1 + cn

where defining
m12 = (an−2(an−1) + bn−2 − 4an−1 + 6)

we obtain
an = − 1

m12
(an−2bn−1 − 4bn−1 − 4)

bn = − 1
m12

,

and

cn =
1

m12

(
an−2cn−1 + cn−2 − 4cn−1 −

fnd4

ε

)
.

Summarizing, we have got

un = anun+1 + bnun+2 + cn, ∀n ∈ {1, ·N − 2}.

Observe now that from the boundary conditions,

uN−1 = uN = 0.

From these last two equations, we may obtain

uN−2 = cN2 ,
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and
uN−3 = aN−3uN−2 + bN−3uN−1 + cN−3,

and so on up to obtaining
u1 = a1u2 + b1u3 + c1.

The problem is then solved.

28.1. A Numerical Example

We develop a numerical example considering

ε = 1,

and
f ≡ 1, in [0, 1].

Thus, we have solved the equation

ε
d4u(x)

dx4 − f = 0, in [0, 1],

with the boundary conditions
u(0) = u′(0) = 0

and
u(1) = u′(1) = 0.

In a finite differences context, we have used N = 100 nodes and d = 1/N.
For a solution u(x), please see Figure 19.
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Figure 19. Solution u(x) for the example B.

In the next lines, we present the concerning software in MAT-LAB
***************

1. clear all
m8=100;
d=1/m8;
e1=1.0;
for i=1:m8
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f(i,1)=1.0;
end;
a(1)=2/3;
b(1)=-1/6;
c(1)=f(1,1)*d4/(6e1);
m12=(6-4*a(1));
a(2)=(4*b(1)+4)/m12;
b(2)=-1/m12;
c(2)=1/m12*(4*c(1)+f(2,1)*d4/e1);
for i=3:m8-2
m12=(a(i-2)*a(i-1)+b(i-2)-4*a(i-1)+6);
a(i)=-1/m12*(a(i-2)*b(i-1)-4*b(i-1)-4);
b(i)=-1/m12;
c(i)=1/m12*(f(i,1)*d4/e1-c(i-2)-a(i-2)*c(i-1)+4*c(i-1));
end;
u(m8,1)=0;
u(m8-1,1)=0;
for i=2:m8-1;
u(m8-i,1)=a(m8-i)*u(m8-i+1,1)+b(m8-i)*u(m8-i+2,1)+c(m8-i);
end;
for i=1:m8
x(i)=i*d;
end;
plot(x,u)
*******************

29. A Note on Hyper-Finite Differences for the Generalized Method of Lines
In this section we develop an application of the hyper finite differences method through an

approximation of the generalized method of lines.
Consider the equation{

−εu′′(x) + αu3 − βu − f = 0, in Ω = [0, 1],
u(0) = 0, u(1) = 0

(175)

As ε > 0 is small, in order to decrease the error concerning the approximations used we propose
to divide the domain Ω = [0, 1] into N1 sub-intervals of same measure. Thus we define

xk =
k

N1
, ∀k ∈ {0, 1, · · · , N1}.

For each sub-interval Ik = [xk−1, xk] we are going to obtain an approximate solution of the
equation in question with the general boundary conditions

u((k − 1)/N1) = U[k − 1],

and
u(k/N1) = U[k].

Denoting such a solution by
{u[i, k]}

where
xi =

k − 1
N1

+ i d,
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and
d =

1
m8 N1

,

where m8 is the fixed number of nodes in each interval Ik.
Observe that in a finite differences context, linearizing it about a initial solution {u0[i, k]}, the

equation in question stands for:

−ε
(u[i + 1, k]− 2u[i, k] + u[i − 1, k])

d2 + 3αu0[i, k]2u[i, k]− 2αu0[i, k]3

−βu[i, k]− f [i, k] = 0, ∀i ∈ {1, · · · , m8 − 1}. (176)

In particular, for i = 1, we obtain

−ε
(u[2, k]− 2u[1, k] + u[0, k])

d2 + 3αu0[1, k]2u[1, k]− 2αu0[1, k]3

−βu[1, k]− f [1, k] = 0, (177)

so that

u[1, k] = a[1, k]u[2, k] + b[1, k]u[0, k] + c[1, k]T[1, k]

+e[1, k] + Er[1, k], (178)

where
a[1, k] = 1/2,

b[1, k] = 1/2,

c[1, k] = 1/2,

e[1, k] = f [1, k]
d2

2ε
,

T[1, k] = (−3αu0[1, k]2u[i, k] + 2αu0[1, k]3 − βu[1, k])
d2

ε
,

and
Er[1, k] = 0.

Now reasoning inductively, having

u[i − 1, k] = a[i − 1, k]u[i, k] + b[i − 1, k]u[0, k] + c[i − 1, k]T[i − 1, k]

+e[i − 1, k] + Er[i − 1, k], (179)

and

−ε
(u[i + 1, k]− 2u[i, k] + u[i − 1, k])

d2 + 3αu0[i, k]2u[i, k]− 2αu0[i, k]3

−βu[i, k]− f [i, k] = 0, (180)

so that

(u[i + 1, k]− 2u[i, k] + u[i − 1, k]) + T[i, k] + f [i, k]
d2

ε
= 0,

where,

T[i, k] = (−3αu0[i, k]2u[i, k] + 2αu0[i, k]3 + βu[i, k])
d2

ε
,
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we obtain

u[i, k] = a[i, k]u[i, k] + b[i, k]u[0, k] + c[i, k]T[i, k]

+e[i, k] + Er[i, k], (181)

where,
a[i, k] = (2 − a[i − 1, k])−1,

b[i, k] = a[i, k]b[i − 1, k],

c[i, k] = a[i, k](c[i − 1, k] + 1),

e[i, k] = a[i, k]
(

e[i − 1, k] +
f [i, k]d2

ε

)
,

and
Er[i, k] = a[i, k](Er[i − 1, k]) + c[i, k](T[i − 1, k]− T[i, k]).

Observe that in particular for i = m8 − 1, we have u[m8, k] = U[k] and u[0, k] = U[k − 1], so that
from above, neglecting Er[1, k], we also obtain

u[m8 − 1, k] ≈ a[m8 − 1]u[m8, k] + b[m8 − 1, k]u[0, k]

+c[m8 − 1, k]T[m8 − 1, k](u[m8, k], u[0, k]) + e[m8 − 1, k]

= Hm8−1(U[k], U[k − 1]). (182)

Similarly, for i = m8 − 2 we may obtain

u[m8 − 2, k] ≈ a[m8 − 2]u[m8 − 1, k] + b[m8 − 2, k]u[0, k]

+c[m8 − 2, k]T[m8 − 2, k](u[m8 − 1, k], u[0, k]) + e[m8 − 2, k]

= Hm8−2(U[k], U[k − 1]), (183)

and so on, up to finding

u[1, k] = H1(U[k], U[k − 1]), ∀k ∈ {1, · · · , N1}.

At this point we connect the sub-intervals by setting

U[0] = U[N1] = 0

and obtaining {U[1], · · · , U[N1 − 1]}, by solving the equations

−ε
(u[m8 − 1, k]− 2U[k] + u[1, k + 1])

d2 + 3αu0[m8, k]2U[k]− 2αu0[m8, k]3

−βU[k]− f [m8, k] = 0, ∀k ∈ {1, · · · , N1 − 1}. (184)

Having obtained {U[k], ∀k ∈ {1, · · · , N1 − 1}} we may obtain the solution {u[i, k]} where
i ∈ {0, · · · , m8} and k ∈ {1, · · · , N1}.

The next step is to replace {u0[i, k]} by {u[i, k]} and then to repeat the process until an appropriate
convergence criterion is satisfied.

The problem is then approximately solved.
We have obtained numerical results for ε = 0.001, f ≡ 1, on Ω, N1 = 10, m8 = 100 and α = β = 1.
For the related software in MATHEMATICA we have obtained U[1], · · · , U[9],
Here the software and results:
**************************
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1. Clear[u, U, z, N1];
m8 = 100;
N1 = 10;
d = 1/m8/N1;
e1 = 0.001;
For[k = 1, k < N1 + 1, k++,
For[i = 0, i < m8 + 1, i++,
uo[i, k] = 1.01]];
A = 1.0;
B = 1.0;
a[1] = 1.0/2;
b[1] = 1.0/2;
c[1] = 1/2.0;
e[1] = d2/e1/2.0;
For[i = 2, i < m8, i++,
a[i] = 1/(2.0 - a[i - 1]);
b[i] = b[i - 1]*a[i];
c[i] = a[i]*(c[i - 1] + 1.0);
e[i] = a[i] ∗ (e[i − 1] + d2/e1);
];
For[k1 = 1, k1 < 10, k1++,
Print[k1];
Clear[U, z];
For[k = 1, k < N1 + 1, k++,
u[0, k] = U[k - 1];
u[m8, k] = U[k];
For[i = 1, i < m8, i++,
z = a[m8 - i]*u[m8 - i + 1, k] + b[m8 - i]*u[0, k] +
c[m8 - i]*(-3*A*uo[m8 - i + 1, k]2*u[m8 - i + 1, k] +
2*A*uo[m8 - i + 1, k]3 + B*u[m8 - i + 1, k])*d2/e1 +
e[m8 - i];
u[m8 - i, k] = Expand[z]]];
U[0] = 0.0;
U[N1] = 0.0;
S = 0;
For[k = 1, k < N1, k++,
S = S + (e1*(-u[m8 - 1, k] + 2*U[k] - u[1, k + 1])/d2 +
3*A*U[k]*uo[m8, k]2 - 2*A*uo[m8, k]3 - B*U[k] - 1)2];
Sol = NMinimize[S, U[1], U[2], U[3], U[4], U[5], U[6], U[7], U[8], U[9]];
For[k = 1, k < N1, k++,
w4[k] = U[k] Ṡol[[2, k]]];
For[k = 1, k < N1, k++,
U[k] = w4[k]];
For[k = 1, k < N1 + 1, k++,
For[i = 0, i < m8 + 1, i++,
uo[i, k] = u[i, k]]];
Print[U[5]]];
For[k = 0, k < N1 + 1, k++,
Print["U[", k, "]=", U[k]]]
U[0]=0.
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U[1]=1.27567
U[2]=1.32297
U[3]=1.32466
U[4]=1.32472
U[5]=1.32472
U[6]=1.32472
U[7]=1.32472
U[8]=1.32472
U[9]=1.32471
U[10]=0.
**********************

Remark 13. Observe that along the domain we have obtained approximately the constant value u = 1.32472.
This is expected since ε = 0.001 is small and such a value u is approximately the solution of equation

αu3 − βu − 1 = 0.

30. Applications to the Optimal Shape Design for a Beam Model
In this section, we present a numerical procedure for the shape optimization concerning the

Bernoulli beam model.
Let Ω = [0, 1] ⊂ R corresponds to the horizontal axis of a straight beam with rectangular cross

section b × h(x), that is, the beam has a variable thickness h(x) distributed along such a horizontal
axis x, where x ∈ [0, 1].

Define now
V = {w ∈ W2,2(Ω) : w(0) = w(1) = 0},

which corresponds to a simply supported beam.
Consider the problem of minimizing in V × B the functional

J(w, h) =
1
2

∫
Ω

H(x)wxx(x)2 dx

subject to
(H(x)wxx(x))xx − P(x) = 0, in Ω,

where

H(x) =
h(x)3b

12
E,

h(x) is variable beam thickness, A(x) = bh(x) corresponds to a rectangular cross section perpendicular
to the x axis, and E is the young elasticity model.

Also, we define

B =

{
h : [0, 1] → R measurable : hmin ≤ h(x) ≤ hmax and

∫ 1

0
h(x) ≤ c0hmax

}
,

where 0 < c0 < 1 and

C∗ = {w ∈ V : (H(x)wxx(x))xx − P(x) = 0, in Ω}.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


125 of 360

Observe that

inf
(w,h)∈C∗×B

J(w, h)

= inf
h∈B

{
inf

w∈C∗
J(w, h)

}
= inf

h∈B

{
sup
ŵ∈V

{
inf

w∈V

{
1
2

∫
Ω

H(x)wxx(x)2 dx − ⟨ŵ, (H(x)wxx(x))xx − P(x)⟩L2

}}}

= inf
h∈B

{
sup
ŵ∈V

{
−1

2

∫
Ω

H(x)ŵ2
xx dx + ⟨ŵ, P⟩L2

}}

= inf
h∈B

{
inf

M∈D∗

{
1
2

∫
Ω

M2

H(x)
dx
}}

. (185)

where
D∗ = {M ∈ Y∗ : Mxx − P = 0, in Ω, and M(0) = M(1) = 0}.

Summarizing, we have got

inf
(w,h)∈C∗×B

J(w, h) = inf
(M,h)∈D∗×B

{
1
2

∫
Ω

M2

H(x)
dx
}

.

In order to obtain numerical results, we suggest the following primal dual procedure:

1. Set n = 1 and
hn(x) = c0hmax.

2. Calculate wn ∈ V solution of equation

(Hn(x)(wn)xx)xx = P(x),

where

Hn(x) =
Ebhn(x)3

12
.

3. Calculate hn+1(x) ∈ B such that

J∗(Mn, hn+1) = inf
h∈B

J∗(Mn, h),

where
Mn = Hn(wn)xx,

J∗(M, h) =
1
2

∫
Ω

M2

H(x)
dx.

4. Set n := n + 1 and go to step 2 until an appropriate convergence criterion is satisfied.

We have developed numerical results for c0 = 0.65, E = 210 107, b = 0.1 m, P(x) = 36 102 N,
hmin = 0.072 m and hmax = 0.18 m.

We have also defined
h(x) = t(x)hmax,

where
0.4 ≤ t(x) ≤ 1, a.e. in Ω.

For the optimal solution w = w(x), please see Figure 20.
For a corresponding optimal solution t = t(x), please see Figure 21.
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Figure 20. Optimal solution w(x) for a simply supported beam.
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Figure 21. Optimal shape solution t(x) for a simply supported beam.

Remark 14. For such a simply-supported beam model, for the numerical solution of equation

(H(x)wxx)xx = P,

with the boundary conditions
w(0) = w(1) = w′′(0) = w′′(1) = 0

firstly we have solved the equation
vxx − P = 0

with the boundary conditions
v(0) = v(1) = 0.

Subsequently, we have solved the equation

H(x)wxx = v
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with the boundary conditions
w(0) = w(1) = 0.

Here we present the software developed in MAT-LAB.

******************

1. clear all
global m8 d d2wo H e1 ho h1 xo b5
m8=100;
d=1.0/m8;
b5=0.1;
e1=210*107;
ho=0.18;
A=zeros(m8-1,m8-1);
for i=1:m8-1
A(1,i)=1.0;
xo(i,1)=0.55;
x3(i,1)=0.55;
end;
lb=0.4*ones(m8-1,1);
ub=ones(m8-1,1);
b=zeros(m8-1,1);
b(1,1)=0.65*(m8-1);
for i=1:m8
f(i,1)=1.0;
L(i,1)=1/2;
P(i,1)=36.0*102;
end;
i=1;
m12=2;
m50(i)=1/m12;
z(i)=1/m50(i)*(-P(i,1)*d2);
for i=2:m8-1
m12=2-m50(i-1);
m50(i)=1/m12;
z(i)=m50(i)*(-P(i,1)*d2+z(i-1));
end;
v(m8,1)=0;
for i=1:m8-1
v(m8-i,1)=m50(m8-i)*v(m8-i+1,1)+z(m8-i);
end;
k=1;
b12=1.0;
while (b12 > 10−4) and (k < 10)
k
k=k+1;
for i=1:m8-1
H(i,1)=b5*L(i, 1)3 ∗ ho3/12*e1;
f1(i,1)=v(i,1)/H(i,1);
end;
i=1;
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m12=2;
m70(i)=1/m12;
z1(i)=m70(i)*(-f1(i,1)*d2);
for i=2:m8-1
m12=2-m70(i-1);
m70(i)=1/m12;
z1(i)=m70(i)*(-f1(i,1)*d2+z1(i-1));
end;
w(m8,1)=0;
for i=1:m8-1
w(m8-i,1)=m70(m8-i)*w(m8-i+1,1)+z1(m8-i);
end;
d2wo(1,1)=(-2*w(1,1)+w(2,1))/d2;
for i=2:m8-1
d2wo(i,1)=(w(i+1,1)-2*w(i,1)+w(i-1,1))/d2;
end;
k9=1;
b14=1.0;
while (b14 > 10−4) and (k9 < 120)
k9
k9=k9+1;
X=fmincon(’beamNov2023’,xo,A,b,[ ], [ ],lb,ub);
b14=max(abs(xo-X))
xo=X;
end;
b12=max(abs(xo-x3))
x3=xo;
for i=1:m8-1
L(i,1)=xo(i,1);
end;
end;
***************

With the auxiliary function "beamNov2023":

*********************

1. function S=beamNov2023(x)
global m8 d d2wo H e1 ho h1 xo b5
S=0;
for i=1:m8-1
S=S+1/(x(i, 1)3)/ho3/b5/e1*(H(i,1)*d2wo(i, 1))2*12;
end;
*****************************

We develop numerical results also for

V = W2,2
0 (Ω) = {w ∈ W2,2(Ω) such that w(0) = w(1) = w′(0) = w′(1) = 0}.

Such boundary conditions corresponds to bi-clamped beam. The remaining data is equal to the
previous example

For the optimal solution w = w(x), please see Figure 22.
For a corresponding optimal solution t = t(x), please see Figure 23.
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Figure 22. Optimal solution w(x) for a bi-clamped beam.
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Figure 23. Optimal shape solution t(x) for a bi-clamped beam.

Remark 15. For such a bi-clamped beam model, for the numerical solution of equation

(H(x)wxx)xx = P,

with the boundary conditions
w(0) = w(1) = w′(0) = w′(1) = 0,

firstly we have solved the equation
vxx − P = 0

with the boundary conditions
v(0) = v(1) = 0.

Subsequently, we solved the equation

H(x)wxx = v + ax + b
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with the boundary conditions
w(0) = w(1) = 0,

obtaining a, b ∈ R such that the boundary conditions

w′(0) = w′(1) = 0

are also satisfied.
Here we present the software developed in MAT-LAB.

*************************

1. clear all
global m8 d d2wo H e1 ho h1 xo b5
m8=100;
d=1.0/m8;
b5=0.1;
e1=210*107;
ho=0.18;
A=zeros(m8-1,m8-1);
for i=1:m8-1
A(1,i)=1.0;
xo(i,1)=0.55;
x3(i,1)=0.55;
end;
lb=0.4*ones(m8-1,1);
ub=ones(m8-1,1);
b=zeros(m8-1,1);
b(1,1)=0.65*(m8-1);
for i=1:m8
f(i,1)=1.0;
L(i,1)=1/2;
P(i,1)=36.0*102;
end;
i=1;
m12=2;
m50(i)=1/m12;
z(i)=1/m50(i)*(-P(i,1)*d2);
for i=2:m8-1
m12=2-m50(i-1);
m50(i)=1/m12;
z(i)=m50(i)*(-P(i,1)*d2+z(i-1));
end;
v(m8,1)=0;
for i=1:m8-1
v(m8-i,1)=m50(m8-i)*v(m8-i+1,1)+z(m8-i);
end;
k=1;
b12=1.0;
while (b12 > 10−4) and (k < 10)
k
k=k+1;
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for i=1:m8-1
H(i,1)=b5*L(i, 1)3 ∗ ho3/12*e1;
f1(i,1)=v(i,1)/H(i,1);
f2(i,1)=i*d/H(i,1);
f3(i,1)=1/H(i,1);
end;
i=1;
m12=2;
m70(i)=1/m12;
z1(i)=m70(i)*(-f1(i,1)*d2);
z2(i)=m70(i)*(-f2(i,1)*d2);
z3(i)=m70(i)*(-f3(i,1)*d2);
for i=2:m8-1
m12=2-m70(i-1);
m70(i)=1/m12;
z1(i)=m70(i)*(-f1(i,1)*d2+z1(i-1));
z2(i)=m70(i)*(-f2(i,1)*d2+z2(i-1));
z3(i)=m70(i)*(-f3(i,1)*d2+z3(i-1));
end;
w1(m8,1)=0;
w2(m8,1)=0;
w3(m8,1)=0;
for i=1:m8-1
w1(m8-i,1)=m70(m8-i)*w1(m8-i+1,1)+z1(m8-i);
w2(m8-i,1)=m70(m8-i)*w2(m8-i+1,1)+z2(m8-i);
w3(m8-i,1)=m70(m8-i)*w3(m8-i+1,1)+z3(m8-i);
end;
m3(1,1)=w2(1,1);
m3(1,2)=w3(1,1);
m3(2,1)=w2(m8-1,1);
m3(2,2)=w3(m8-1,1);
h3(1,1)=-w1(1,1);
h3(2,1)=-w1(m8-1,1);
h5(:,1)=inv(m3)*h3;
for i=1:m8
wo(i,1)=w1(i,1)+h5(1,1)*w2(i,1)+h5(2,1)*w3(i,1);
end;
d2wo(1,1)=(-2*wo(1,1)+wo(2,1))/d2;
for i=2:m8-1
d2wo(i,1)=(wo(i+1,1)-2*wo(i,1)+wo(i-1,1))/d2;
end;
k9=1;
b14=1.0;
while (b14 > 10−4) and (k9 < 120)
k9
k9=k9+1;
X=fmincon(’beamNov2023’,xo,A,b,[ ], [ ],lb,ub);
b14=max(abs(xo-X))
xo=X;
end;
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b12=max(abs(xo-x3))
x3=xo;
for i=1:m8-1
L(i,1)=xo(i,1);
end;
end;
*****************************

Remark 16. About the numerical results obtained for these two beam models, a final word of caution is
necessary.

Indeed, the full convergence in such cases is hard to obtain so that we have obtained just approximations of
critical points with the functionals close to their optimal values. It is also worth emphasizing we have fixed the
number of iterations so that the solutions and shapes obtained are just approximate ones.

31. Applications to the Optimal Shape Design for a Plate Model
In this section, we present a numerical procedure for the shape optimization concerning a thin

plate model.
Let Ω = [0, 1]× [0, 1] ⊂ R2 corresponds to the middle surface of a thin plate with a variable

thickness h(x, y).
Define now

V = {w ∈ W2,2(Ω) : w = 0 on ∂Ω},

which corresponds to a simply supported plate.
Consider the problem of minimizing in V × B the functional

J(w, h) =
1
2

∫
Ω

H(x, y)(∇2w(x, y))2 dx

subject to
∇2[(H(x, y)∇2w(x, y))]− P(x, y) = 0, in Ω,

where

H(x, y) =
h(x, y)3

12
E/(1 − w2

5),

h = h(x, y) is variable plate thickness, E is the young elasticity model and w5 = 0.3.
Also, we define

B =

{
h : Ω → R measurable : hmin ≤ h(x, y) ≤ hmax and

∫
Ω

h(x, y) ≤ c0hmax

}
,

where 0 < c0 < 1 and

C∗ = {w ∈ V : ∇2[H(x, y)∇2w(x, y))]− P(x, y) = 0, in Ω}.
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Observe that

inf
(w,h)∈C∗×B

J(w, h)

= inf
h∈B

{
inf

w∈C∗
J(w, h)

}
= inf

h∈B

{
sup
ŵ∈V

{
inf

w∈V

{
1
2

∫
Ω

H(x, y)[∇2 w(x, y)]2 dx − ⟨ŵ,∇2[H(x, y)∇2w(x, y)]− P(x, y)⟩L2

}}}

= inf
h∈B

{
sup
ŵ∈V

{
−1

2

∫
Ω

H(x, y)[∇2ŵ(x, y)]2 dx + ⟨ŵ, P⟩L2

}}

= inf
h∈B

{
inf

M̃∈D∗

{
1
2

∫
Ω

M̃2

H(x, y)
dx
}}

. (186)

where
D∗ = {M̃ ∈ Y∗ ∇2M̃ − P = 0, in Ω, and M̃ = 0, on Ω}.

Summarizing, we have got

inf
(w,h)∈C∗×B

J(w, h) = inf
(M̃,h)∈D∗×B

{
1
2

∫
Ω

M̃2

H(x, y)
dx
}

.

In order to obtain numerical results, we suggest the following primal dual procedure:

1. Set n = 1 and
hn(x) = c0hmax.

2. Calculate wn ∈ V solution of equation

∇2(Hn(x, y)∇2wn(x, y)) = P(x, y),

where

Hn(x, y) =
Ehn(x)3

12(1 − w2
5)

.

3. Calculate hn+1 ∈ B such that

J∗(M̃n, hn+1) = inf
h∈B

J∗(M̃n, h),

where
M̃n = Hn(x, y)∇2 wn,

J∗(M̃, h) =
1
2

∫
Ω

M̃2

H(x, y)
dx.

4. Set n := n + 1 and go to step 2 until an appropriate convergence criterion is satisfied.

We have developed numerical results for c0 = 0.75, E = 200 105, P(x, y) = 2 102 N, hmin =

0.45 ∗ (0.12) m and hmax = 0.12 m.
We have also defined

h(x, y) = t(x, y)hmax,

where
0.45 ≤ t(x, y) ≤ 1, a.e. in Ω.

For the optimal solution w = w(x, y), please see Figure 24.
For a corresponding optimal solution t = t(x, y), please see Figure 25.
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Figure 24. Optimal solution w(x, y) for a simply supported plate.

Figure 25. Optimal shape solution t(x, y) for a simply supported plate.

Remark 17. For such a simply-supported plate model, for the numerical solution of equation

∇2[H(x, y)∇2 w(x, y)] = P,

with the boundary conditions
w = 0 on ∂Ω,

firstly we have solved the equation
∇2v − P = 0

with the boundary conditions
v = 0 on ∂Ω.

Subsequently, we have solved the equation

H(x, y)∇2w(x, y) = v(x, y)
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with the boundary conditions
w = 0 on ∂Ω.

Here we present the software developed in MAT-LAB.

*********************

1. clear all
global m8 d d2xwo d2ywo H e1 ho xo b5
m8=40;
d=1.0/m8;
w5=0.3;
e1=200*105/(1 − w52);
ho=0.12;
A=zeros((m8 − 1)2, (m8 − 1)2);
for i=1:(m8 − 1)2

A(1,i)=1.0;
xo(i,1)=0.55;
x3(i,1)=0.55;
end;
lb=0.45*ones((m8 − 1)2,1);
ub=ones((m8 − 1)2,1);
b=zeros((m8 − 1)2,1);
b(1,1)=0.75*(m8 − 1)2;
for i=1:(m8-1)
for j=1:m8-1
f(i,j,1)=1.0;
L(i,j,1)=1/2;
P(i,j,1)=2*102; end;
end;
for i=1:m8
wo(:,i)=0.001*ones(m8-1,1);
end;
m2=zeros(m8-1,m8-1);
for i=2:m8-2
m2(i,i)=-2.0;
m2(i,i-1)=1.0;
m2(i,i+1)=1.0;
end;
m2(1,1)=-2.0;
m2(1,2)=1.0;
m2(m8-1,m8-1)=-2.0;
m2(m8-1,m8-2)=1.0;
Id=eye(m8-1);
i=1;
m12=2*Id-m2*d2/d2; m50(:,:,i)=inv(m12);
z(:,i)=m50(:,:,i)*(-P(:,i,1)*d2);
for i=2:m8-1
m12=2*Id-m2*d2/d2-m50(:,:,i-1);
m50(:,:,i)=inv(m12);
z(:,i)=m50(:,:,i)*(-P(:,i,1)*d2+z(:,i-1));
end; v(:,m8)=zeros(m8-1,1);
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for i=1:m8-1
v(:,m8-i)=m50(:,:,m8-i)*v(:,m8-i+1)+z(:,m8-i);
end;
k=1;
b12=1.0;
while (b12 > 10−4) and (k < 12)
k
k=k+1;
for i=1:m8-1
for j=1:m8-1
H(j,i,1)=L(j, i, 1)3 ∗ ho3/12*e1;
f1(j,i,1)=v(j,i)/H(j,i,1);
end;
end;
i=1;
m12=2*Id-m2*d2/d2;
m70(:,:,i)=inv(m12);
z1(:,i)=m70(:,:,i)*(-f1(:,i,1)*d2);
for i=2:m8-1
m12=2*Id-m2*d2/d2-m70(:,:,i-1);
m70(:,:,i)=inv(m12);
z1(:,i)=m70(:,:,i)*(-f1(:,i,1)*d2+z1(:,i-1));
end;
w(:,m8)=zeros(m8-1,1);
for i=1:m8-1
w(:,m8-i)=m70(:,:,m8-i)*w(:,m8-i+1)+z1(:,m8-i);
end;
d2xwo(:,1)=(-2*w(:,1)+w(:,2))/d2;
for i=2:m8-1
d2xwo(:,i)=(w(:,i+1)-2*w(:,i)+w(:,i-1))/d2;
end;
for i=1:m8-1
d2ywo(:,i)=m2*w(:,i)/d2;
end;
k9=1; b14=1.0;
while (b14 > 10−4) and (k9 < 30)
k9
k9=k9+1;
X=fmincon(’beamNov2023A3’,xo,A,b,[ ], [ ],lb,ub);
b14=max(abs(xo-X))
xo=X;
end;
b12=max(max(abs(w-wo)))
wo=w;
x3=xo;
for i=1:m8-1
for j=1:m8-1
L(j,i,1)=xo((i-1)*(m8-1)+j,1);
end;
end;
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end;
for i=1:m8-1
x8(i,1)=i*d;
end;
mesh(x8,x8,L);
*********************

With the auxiliary function "beamNov2023A3’, where

*****************************

1. function S=beamNov2023A3(x)
global m8 d d2xwo d2ywo H e1 ho xo b5
S=0;
for i=1:m8-1
for j=1:m8-1
x1(j,i)=x((m8-1)*(i-1)+j,1);
end;
end;
for i=1:m8-1
for j=1:m8-1
S=S+1/((x1(j, i))3)/ho3/e1 ∗ (H(j, i, 1))2 ∗ (d2xwo(j, i) + d2ywo(j, i))2 ∗ 12;
end;
end;
********************************

Remark 18. About the numerical results obtained for this plate model, a final word of caution is necessary.
Indeed, the full convergence in such a case is hard to obtain so that we have obtained just approximations

of critical points with the functional close to its optimal value. It is also worth emphasizing we have fixed the
number of iterations so that the solution and shape obtained are just approximate ones.

32. A Note on the First Maxwell Equation of Electromagnetism
Let Ω1 ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω1.
Suppose E : Ω1 → R3 is an electric field of resulting from a punctual charge q localized at

(0, 0, 0) ∈ Ω1.
Let Ω ⊂ Ω1 be also an open, bounded and connected set with a regular (C1 class) boundary

denoted by S = ∂Ω, where, in polar coordinates (r, θ, ϕ) ∈ R3, we have

S = {r(θ, ϕ) : 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π},

and where,
r(θ, ϕ) = X(θ, ϕ)i + Y(θ, ϕ)j + Z(θ, ϕ)k.

and
i = (1.0, 0), j = (0, 1, 0), k = (0, 0, 1) ∈ R3.

Observe that denoting
er = sin(θ) cos(ϕ)i + sin(θ) sin(ϕ)j + cos(θ)k,

we have

E = K̂q
1
r2 er,
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for an appropriate real constant K̂.
We highlight the integral

In =
∫

S
E · n dS = c5

where such a real constant c5 does not depend on the C1 class function

r : [0, π]× [0, 2π] → R3.

Here n denotes the normal outward field to S.
In this section, we develop such an integral In, in details.
Denoting

R(θ, ϕ) = ∥r(θ, ϕ)∥R3 ,

we have
r(θ, ϕ) = R(θ, ϕ)er.

Moreover, we recall that
dS = ∥rθ × rϕ∥R3 dθdϕ,

where
N = rθ × rϕ

is such that
n =

N
∥N∥R3

.

Thus ∫
S

E · n dS = K̂q
∫ ϕ=2π

ϕ=0

∫ θ=π

θ=0

1
R(θ, ϕ)2 er ·

N
∥N∥R3

∥N∥R3 dθdϕ.

In summary, ∫
S

E · n dS = K̂q
∫ ϕ=2π

ϕ=0

∫ θ=π

θ=0

1
R(θ, ϕ)2 er · N dθ dϕ.

Observe that

N = (R(θ, ϕ)er)θ × (R(θ, ϕ)er)ϕ

= (Rθer + R(er)θ)× (Rϕer + R(er)ϕ)

= Rθ Rϕer × er + Rθer × R(er)ϕ)

+R(er)θ × (Rϕer) + R2(er)θ × eϕ. (187)

Consequently, from such results, we obtain

er · N = R2.

Thus, we have got

∫
S

E · n dS = K̂q
∫ ϕ=2π

ϕ=0

∫ θ=π

θ=0

1
R(θ, ϕ)2 er · N dθ dϕ

= K̂q
∫ ϕ=2π

ϕ=0

∫ θ=π

θ=0

1
R(θ, ϕ)2 R(θ, ϕ)2er · (er)θ × eϕ dθ dϕ

= K̂q 4π

≡ c5. (188)

Summarizing, we have got ∫
S

E · n dS = c5.
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where such a real constant does not depend on function r : [0, π]× [0, 2π] → R3.
Consider now a charge q0 localized at the center of a sphere Ω2 of radius R > 0 and boundary

S2 = ∂Ω2.
The electric field on the sphere surface generated by q0 is given by

E2 =
1

4πε0

q0

R2 n2,

where n2 is the normal outward field to S2.
Clearly ∫

S2

E2 · n2 dS2 =
1

4πε0

q0

R2 (4πR2) =
q0

ε0
.

Consider again the set Ω but now with a charge q0 localized at a point x inside the interior of Ω,
which is denoted by Ω0.

At first the electric field E generated by q0 is not of C1 class on Ω.
However, there exists R > 0 such that

BR(x) ⊂ Ω = Ω0.

Define Ω3 = Ω \ BR(x).
Therefore, E is of C1 class on Ω3.
Denoting the boundary of Ω3 by S3 = ∂Ω ∪ ∂BR, from the previous results and denoting again

S = ∂Ω, we may infer that∫
S3

E · n dS3 =
∫

S
E · n dS −

∫
∂BR

E · n dS2 = c5 − c5 = 0,

for a not relabeled real constant c5, so that

∫
S3

E · n dS3 =
∫

S
E · n dS −

∫
∂BR(x)

E · n dS2

=
∫

S
E · n dS − q0

ε0
= 0. (189)

Therefore, we have got ∫
S

E · n dS =
q0

ε0
.

Assume now on Ω we have a density of charges ρ(x).
For a small volume ∆Ṽ consider a punctual charge q0 localized in x ∈ Ω such that

q0 ≈ ρ(x)∆Ṽ.

Denoting by ∆E the electric field generated by q0, from the previous results we may infer that

∫
S

∆E · n dS =
q0

ε0
≈ ρ(x)∆Ṽ

ε0
.

Such an equation in its differential form, stands for:

∫
S

dE · n dS =
ρ(x) dṼ

ε0
.

Integrating in Ω we may obtain
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∫
S

E · n dS =
∫

S

∫
Ω

dE · n dS

=
∫

Ω

ρ(x)
ε0

dṼ, (190)

so that

∫
S

E · n dS =
∫

Ω

ρ(x)
ε0

dṼ.

From this and the Divergence Theorem, we have

∫
S

E · n dS =
∫

Ω
div E dṼ =

∫
Ω

ρ(x)
ε0

dṼ.

Summarizing, we have got ∫
Ω

div E dṼ =
∫

Ω

ρ(x)
ε0

dṼ.

This is the integral form of the first Maxwell equation of electromagnetism.
For this last equation, the set Ω ⊂ Ω1 is rather arbitrary so that for Ω as a ball of small radius

r > 0 with center at a point x ∈ Ω1, from the Mean Value Theorem fot integrals and letting r → 0+, we
obtain

div E =
ρ

ε0
, in Ω1.

This last equation stands for the differential form of the first Maxwell equation of electromag-
netism.

Remark 19. Summarizing, in this section we have formally obtained a mathematical deduction of the first
Maxwell equation of electromagnetism.

33. A Note on Relaxation for a General Model in the Vectorial Calculus of
Variations

Let Ω ⊂ Rn be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider a function g : RN×n → R twice differentiable and such that

g(y) → +∞, as |y| → +∞.

Define a functional G : V → R by

G(∇u) =
1
2

∫
Ω

g(∇u) dx,

where
V = {W1,2(Ω;RN) : u = u0 on ∂Ω}.

Moreover, for f ∈ L2(Ω;RN), define also

J(u) = G(∇u)− ⟨u, f ⟩L2 .

We assume there exists α ∈ R such that

α = inf
u∈V

J(u).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


141 of 360

Observe that from the convex analysis basic theory, we have that

α = inf
u∈V

J(u)

= inf
u∈V

J∗∗(u)

= inf
u∈V

{(G ◦ ∇)∗∗(u)− ⟨u, f ⟩L2}. (191)

On the other hand

(G ◦ ∇)∗∗(u) ≤ H(u)

≡ inf
(λ,(v,w))∈[0,1]×B(u,λ)

{λG(∇w) + (1 − λ)G(∇v)}

≤ G(∇u), (192)

where
B(u, λ) = {(v, w) ∈ V : λw + (1 − λ)v = u}.

From such results, we may infer that

inf
u∈V

J∗∗(u) = inf
u∈V

{H(u)− ⟨u, f ⟩L2} = inf
u∈V

J(u).

Furthermore, observe that
λ∇w + (1 − λ)∇v = ∇u,

so that

∇v = ∇u + λ(∇v −∇w)

= ∇u + λ∇ϕ, (193)

where ϕ = v − w ∈ W1,2
0 (Ω;RN) so that

∇ϕ = ∇v −∇w,

and
∇w = ∇v −∇ϕ.

Therefore,
∇w = ∇v −∇ϕ = ∇u + λ∇ϕ −∇ϕ = ∇u − (1 − λ)∇ϕ.

Replacing such results into the expression of H, we have

H(u) = inf
(λ,ϕ)∈[0,1]×V0

{λG(∇u − (1 − λ)∇ϕ) + (1 − λ)G(∇u + λ∇ϕ)},

where
V0 = W1,2

0 (Ω;RN).

Joining the pieces, we have got

inf
u∈V

J(u) = inf
u∈V

J∗∗(u)

= inf
u∈V

{H(u)− ⟨u, f ⟩L2}

= inf
(λ,ϕ,u)∈[0,1]×V0×V

{λG(∇u − (1 − λ)∇ϕ) + (1 − λ)G(∇u + λ∇ϕ)− ⟨u, f ⟩L2}.

This last functional corresponds to a relaxation for the original non-convex functional.
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The note is complete.

33.1. Some Related Numerical Results

In this subsection we present numerical results for an one-dimensional model and related relaxed
formulation.

For Ω = [0, 1] ⊂ R, consider the functional J : V → R where

J(u) =
1
2

∫
Ω
((u′)2 − 1)2 dx +

1
2

∫
Ω
(u − f )2 dx,

V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2},

f ∈ Y = Y∗ = L2(Ω).
Based on the results of the previous section, denoting V0 = W1,2

0 (Ω), we define the following
relaxed functional J1 : [0, 1]× V × V0 → R, where

J1(λ, u, ϕ) =
λ

2

∫
Ω
((u′ − (1 − λ)ϕ′)2 − 1)2 dx +

1 − λ

2

∫
Ω
((u′ + λϕ′)2 − 1)2 dx +

1
2

∫
Ω
(u − f )2 dx.

Indeed, we have developed an algorithm for minimizing the following regularized functional
J2 : [0, 1]× V × V0 → R, where

J2(λ, u, ϕ) = J1(λ, u, ϕ) +
ε3

2

∫
Ω
(u′′)2 dx,

for a small parameter ε3 > 0.
For the case in which f (x) = sin(πx)/2, for the optimal solution u, please see Figure 26.
For the case in which f (x) = cos(πx)/2, for the optimal solution u, please see Figure 27.
For the case in which f (x) = 0, for the optimal solution u, please see Figure 28.
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Figure 26. Optimal solution u(x) for the case f (x) = sin(πx)/2.
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Figure 27. Optimal solution u(x) for the case f (x) = cos(πx)/2.
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Figure 28. Optimal solution u(x) for the case f (x) = 0.

We highlight to obtain the solution for this last case which f = 0 is harder. A good solution was
possible only using

x0 = 0

as the initial solution concerning the iterative process.
Here we present the software in MAT-LAB developed.
*****************

1. clear all
global m8 d u e3
m8=100;
d=1/m8;
e3=0.0005;
for i=1:2*m8+1
xo(i,1)=0.36;
end;
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b12=1.0;
k=1;
while (b12 > 10−7) and (k < 60)
k
k=k+1;
X=fminunc(’funDecember2023’,xo);
b12=max(abs(xo-X))
xo=X;
u(m8/2)
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);
***********************

With the main function "funDecember2023"
*********************

1. function S=funDecember2023(x)
global m8 d u e3
for i=1:m8
u(i,1)=x(i,1);
v(i,1)=x(i+m8,1);
yo(i,1)=sin(pi*i*d)/2;
end;
L=(1+sin(x(2*m8+1,1)))/2;
u(m8,1)=1/2;
v(m8,1)=0.0;
du(1,1)=u(1,1)/d;
dv(1,1)=v(1,1)/d;
for i=2:m8
du(i,1)=(u(i,1)-u(i-1,1))/d;
dv(i,1)=(v(i,1)-v(i-1,1))/d;
end;
d2u(1,1)=(-2*u(1,1)+u(2,1))/d2;
for i=2:m8-1
d2u(i,1)=(u(i-1,1)-2*u(i,1)+u(i+1,1))/d2;
end;
S=0;
for i=1:m8
S=S+1/2 ∗ L ∗ ((du(i, 1)− (1 − L) ∗ dv(i, 1))2 − 1)2;
S=S+1/2 ∗ (1 − L) ∗ ((du(i, 1) + L ∗ dv(i, 1))2 − 1)2;
S=S+(u(i, 1)− yo(i, 1))2;
end;
for i=1:m8-1
S=S+e3*d2u(i, 1)2;
end;
*******************
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33.2. A Related Duality Principle and Concerning Convex Dual Formulation

With the notation and statements of the previous sections in mind, consider the functionals
J : V → R and J3 : [0, 1]× V × V0 → R where

J(u) = G(∇u) +
1
2

∫
Ω

u · u dx − ⟨u, f ⟩L2 ,

and

J3(λ, u, ϕ) = λG(∇u − (1 − λ)∇ϕ) + (1 − λ)G(∇u + λ∇ϕ)

+
λ

2

∫
Ω
(u − (1 − λ)ϕ) · (u − (1 − λ)ϕ) dx

+
(1 − λ)

2

∫
Ω
(u + λϕ) · (u + λϕ) dx

−λ⟨u − (1 − λ)ϕ, f ⟩L2 − (1 − λ)⟨u + λϕ, f ⟩L2 . (194)

Here we have denoted

V = {u ∈ W1,2(Ω;RN) : u = u0 on ∂Ω = S},

V0 = W1,2
0 (Ω;RN),

Y = Y∗ = L2(Ω;RN×n)

and
Y1 = Y∗

1 = L2(Ω;RN).

Observe that
J∗∗(u) ≤ min

(λ,ϕ)∈[0,1]×V0
J3(λ, u, ϕ).

Moreover,

J3(λ, u, ϕ) = −⟨∇u − (1 − λ)∇ϕ, v∗1⟩L2 + λG(∇u − (1 − λ)∇ϕ)

−⟨∇u − (1 − λ)∇ϕ, v∗2⟩L2 + (1 − λ)G(∇u + λ∇ϕ)

−⟨u − (1 − λ)ϕ, v∗3⟩L2 +
λ

2

∫
Ω
(u − (1 − λ)ϕ) · (u − (1 − λ)ϕ) dx

−⟨u + λϕ, v∗4⟩L2 +
(1 − λ)

2

∫
Ω
(u + λϕ) · (u + λϕ) dx

+⟨∇u − (1 − λ)∇ϕ, v∗1⟩L2 + ⟨∇u − (1 − λ)∇ϕ, v∗1⟩L2

+⟨u − (1 − λ)ϕ, v∗3⟩L2 + ⟨u + λϕ, v∗4⟩L2

−λ⟨u − (1 − λ)ϕ, f ⟩L2 − (1 − λ)⟨u + λϕ, f ⟩L2 . (195)
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Therefore,

J3(λ, u, ϕ) ≥ inf
v1∈Y

{−⟨v1, v∗1⟩L2 + λG(v1)}

+ inf
v2∈Y

{−⟨v2, v∗2⟩L2 + (1 − λ)G(v2)}

+ inf
v3∈Y1

{
−⟨v3, v∗3⟩L2 +

λ

2

∫
Ω
(v3) · (v3) dx

}
+ inf

v4∈Y1

{
−⟨v4, v∗4⟩L2 +

(1 − λ)

2

∫
Ω
(v4) · (v4) dx

}
+ inf

(u,ϕ)∈V×V0
{⟨∇u − (1 − λ)∇ϕ, v∗1⟩L2 + ⟨∇u − (1 − λ)∇ϕ, v∗1⟩L2

+⟨u − (1 − λ)ϕ, v∗3⟩L2 + ⟨u + λϕ, v∗4⟩L2

−λ⟨u − (1 − λ)ϕ, f ⟩L2 − (1 − λ)⟨u + λϕ, f ⟩L2}

= −λG∗
(

v∗1
λ

)
− (1 − λ)G∗

(
v∗2

(1 − λ)

)
−F∗

3 (v
∗
3 , λ)− F∗

4 (v
∗
4 , λ)

+
∫

S
(v∗1)ijnj(u0)i dS +

∫
S
(v∗2)ijnj(u0)i dS,

∀λ ∈ (0, 1), u ∈ V, ϕ ∈ V0, v∗ ∈ A∗, (196)

where
G∗(v∗) = sup

v∈Y
{⟨v, v∗⟩L2 − G(v)},

F∗
3 (v

∗
3 , λ) = sup

v3∈Y1

{
⟨v3, v∗3⟩L2 −

λ

2

∫
Ω

v3 · v3 dx
}

=
1

2λ

∫
Ω

v∗3 · v∗3 dx, (197)

F∗
4 (v

∗
4 , λ) = sup

v4∈Y1

{
⟨v4, v∗4⟩L2 −

(1 − λ)

2

∫
Ω

v4 · v4 dx
}

=
1

2(1 − λ)

∫
Ω

v∗4 · v∗4 dx. (198)

Furthermore, A∗ = A∗
1 ∩ A∗

2 where

A∗
1 = {v∗ = (v∗1 , v∗2 , v∗3 , v∗4) ∈ [Y∗]2 × [Y∗

1 ]
2 : − div (v∗1)i − div (v∗2)i + (v∗3)i + (v∗4)i − fi = 0, in Ω},

and

A∗
2 = {v∗ = (v∗1 , v∗2 , v∗3 , v∗4) ∈ [Y∗]2 × [Y∗

1 ]
2 :

−(−1 + λ) div (v∗1)i − λ div (v∗2)i + (−1 + λ)(v∗3)i + λ(v∗4)i = 0, in Ω}. (199)

Summarizing, we have got

inf
(λ,uϕ)∈(0,1)×V×V0

J3(λ, u, ϕ)

≥ sup
v∗∈A∗

{
inf

λ∈(0,1)

{
−λG∗

(
v∗1
λ

)
− (1 − λ)G∗

(
v∗2

(1 − λ)

)
−F∗

3 (v
∗
3 , λ)− F∗

4 (v
∗
4 , λ) +

∫
∂Ω

(v∗1)ijnj(u0)i dS +
∫

∂Ω
(v∗2)ijnj(u0)i dS

}}
. (200)
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Remark 20. We highlight this last dual function in v∗ is convex (in fact concave) on the convex set A∗.

33.3. A Numerical Example

For Ω = [0, 1] ⊂ R consider a functional J : V → R where

J(u) =
1
2

∫
Ω

min{(u′(x)− 1)2, (u′(x) + 1)2} dx +
1
2

∫
Ω
(u − f )2 dx

=
1
2

∫
Ω
(u′)2 dx −

∫
Ω
|u′| dx +

1
2

∫
Ω
(u − f )2 dx, (201)

where
V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2},

Y = Y∗ = L2(Ω) and f ∈ Y.
Define G : Y → R and F : V → R by

G(u′) =
1
2

∫
Ω
(u′)2 dx −

∫
Ω
|u′| dx,

and
F(u) =

1
2

∫
Ω

u2 dx,

respectively.
Denoting V0 = W1,2

0 (Ω), define also J1 : V × V0 × (0, 1) → R by

J1(u, ϕ, λ) = λG(u′ − (1 − λ)ϕ′) + (1 − λ)G(u′ + λϕ′)

+λF(u − (1 − λ)ϕ) + (1 − λ)F(u + λϕ)

−⟨u, f ⟩L2 . (202)

Observe that

(λG)∗(v∗1) = sup
v1∈Y

{⟨v1, v∗1⟩L2 − λG(v1)}

= λG∗
(

v∗1
λ

)
=

1
2λ

∫
Ω
(v∗1)

2 dx +
∫

Ω
|v∗1 | dx, (203)

((1 − λ)G)∗(v∗2) = sup
v2∈Y

{⟨v2, v∗2⟩L2 − (1 − λ)G(v2)}

= (1 − λ)G∗
(

v∗2
(1 − λ)

)
=

1
2(1 − λ)

∫
Ω
(v∗2)

2 dx +
∫

Ω
|v∗2 | dx, (204)

(λF)∗(v∗3) = sup
v3∈Y

{⟨v3, v∗3⟩L2 − λF(v3)}

= λF∗
(

v∗3
λ

)
=

1
2λ

∫
Ω
(v∗3)

2 dx, (205)
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and

((1 − λ)F)∗(v∗4) = sup
v4∈Y

{⟨v4, v∗4⟩L2 − (1 − λ)F(v4)}

= (1 − λ)F∗
(

v∗4
(1 − λ)

)
=

1
2(1 − λ)

∫
Ω
(v∗4)

2 dx. (206)

Denoting v∗ = (v∗1 , · · · , v∗4) ∈ [Y∗]4, define J∗ : [Y∗]4 × (0, 1) → R by

J∗1 (v
∗, λ) = −λG∗

(
v∗1
λ

)
− (1 − λ)G∗

(
v∗2

(1 − λ)

)
−λF∗

(
v∗3
λ

)
− (1 − λ)F∗

(
v∗4

(1 − λ)

)
+v∗1(1)u(1) + v∗2(1)u(1). (207)

Similarly as in the previous section, we may obtain

inf
u∈V

J(u) ≥ inf
λ∈(0,1)

{
sup

v∗∈A∗
J∗(v∗, λ)

}
,

where A∗ = A∗
1 ∩ A∗

2 ,

A∗
1 = {v∗ ∈ Y∗ : (v∗1)

′ + (v∗2)
′ − v∗3 − v∗4 + f = 0, in Ω},

and

A∗
2 = {(v∗, λ) ∈ [Y∗]4 × (0, 1) : −(1 − λ)(v∗1)

′ + λ(v∗2)
′ + (1 − λ)v∗3 − λv∗4 = 0, in Ω}.

From such expressions of A∗
1 and A∗

2 we may obtain

v∗3 = (v∗1)
′ + λ f ,

and
v∗4 = (v∗2)

′ + (1 − λ) f .

Replacing such expressions for v∗3 and v∗4 into the expression of J∗, and from now and on denoting
v∗ = (v∗1 , v∗2) ∈ [Y∗]2, we may obtain J∗1 : [Y∗]2 × (0, 1] → R where

J∗1 (v
∗, λ) = − 1

2λ

∫
Ω
(v∗1)

2 dx −
∫

Ω
|v∗1 | dx

− 1
2(1 − λ)

∫
Ω
(v∗2)

2 dx −
∫

Ω
|v∗2 | dx

− 1
2λ

∫
Ω
((v∗1)

′ + λ f )2 dx

− 1
2(1λ)

∫
Ω
((v∗2)

′ + (1 − λ) f )2 dx

+v∗1(1)u(1) + v∗2(1)u(1). (208)

Consequently, we have got

inf
u∈V

J(u) ≥ sup
v∗∈[Y∗ ]2

{
inf

λ∈(0,1)
J∗1 (v

∗, λ)

}
.
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In order to obtain numerical results we have designed the following algorithm:

1. Set n = 1 and λn = 1/2.
2. Calculate (v∗)n ∈ [Y∗]2 such that

J∗1 ((v
∗)n, λn) = sup

v∗∈[Y∗ ]2
J∗1 (v

∗, λn).

3. Calculate λn+1 ∈ (0, 1) such that

J∗1 ((v
∗)n, λn+1) = inf

λ∈(0,1)
J∗1 ((v

∗)n, λ).

4. Set n := n + 1 and go to item (2) until the satisfaction of an appropriate convergence criterion.

We have developed numerical results for the following cases

1.
f (x) = sin(πx)/2,

2.
f (x) = cos(πx)/2,

3.
f (x) = 0.

Observe that for the optimal point we have

v∗3 = u − (1 − λ)ϕ,

and
v∗4 = u + λϕ,

so that

u = λv∗3 + (1 − λ)v∗4 .

For the optimal solution u0(x) found for the cases (1), (2) and (3), please see the Figures 29, 30
and 31, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 29. Optimal solution u0(x) for the case f (x) = sin(πx)/2.
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Figure 30. Optimal solution u0(x) for the case f (x) = cos(πx)/2.
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Figure 31. Optimal solution u0(x) for the case f (x) = 0.

Here we present the concerning software in MAT-LAB.
*************************

1. clear all
global m8 d L v1 v2 v3 v4 yo dv1 dv2 e1
m8=140;
d=1/m8;
e1=0.0001;
L=1/2;
for i=1:2*m8
xo(i,1)=0.01;
end;
for i=1:m8
yo(i,1)=sin(pi*i*d)/2;
end;
x1=1/2;
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k=1;
b12=1;
while (b12 > 10−4) and (k < 100)
k
k=k+1;
X1=fminunc(’funFeb24’,xo);
b12=max(abs(X1-xo))
xo=X1;
X2=fminunc(’funFeb24A’,x1);
x1=X2;
L=(sin(x1)+1)/2;
L
end;
u(m8,1)=1/2;
for i=1:m8-1
u(i,1)=L*v3(i,1)+(1-L)*v4(i,1);
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);

***********************************
Here the auxiliary function "funFeb24"

*********************************

1. function S=funFeb24(x)
global m8 d L v1 v2 v3 v4 yo dv1 dv2 e1
for i=1:m8
v1(i,1)=x(i,1);
v2(i,1)=x(m8+i,1);
end;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8
S=S+1/2/sqrt(L2 + e1) ∗ v1(i, 1)2 + sqrt(v1(i, 1)2 + e1);
S=S+1/2/sqrt((1 − L)2 + e1) ∗ v2(i, 1)2 + sqrt(v2(i, 1)2 + e1);
end;
for i=1:m8-1
v3(i,1)=dv1(i,1)+L*yo(i,1);
v4(i,1)=dv2(i,1)-(L-1)*yo(i,1);
S=S+1/2/sqrt(L2 + e1) ∗ v3(i, 1)2 + 1/2/sqrt((1 − L)2 + e1) ∗ v4(i, 1)2;
end;
S=S-(v1(m8,1)+v2(m8,1))/d/2;

*********************************
Finally, the auxiliary function "funFeb24A"
**********************************************

1. function S1=funFeb24A(y)
global m8 d L v1 v2 v3 v4 yo e1
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L=(sin(y)+1)/2;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8
S=S+1/2/sqrt(L2 + e1) ∗ v1(i, 1)2 + sqrt(v1(i, 1)2 + e1);
S=S+1/2/sqrt((1 − L)2 + e1) ∗ v2(i, 1)2 + sqrt(v2(i, 1)2 + e1);
end;
for i=1:m8-1
v3(i,1)=dv1(i,1)+L*yo(i,1);
v4(i,1)=dv2(i,1)-(L-1)*yo(i,1);
S=S+1/2/sqrt(L2 + e1) ∗ v3(i, 1)2 + 1/2/sqrt((1 − L)2 + e1) ∗ v4(i, 1)2;
end;
S=S-(v1(m8,1)+v2(m8,1))/d/2;
S1=-S;

*************************

34. One More Note on Relaxation for a General Model in the Vectorial Calculus of
Variations

Let Ω ⊂ Rn be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider a function g : RN×n → R twice differentiable and such that

g(y) → +∞, as |y| → +∞.

Define a functional G : V → R by

G(∇u) =
1
2

∫
Ω

g(∇u) dx,

where
V = {W1,2(Ω;RN) : u = u0 on ∂Ω}.

Moreover, for f ∈ L2(Ω;RN), define also

J(u) = G(∇u)− ⟨u, f ⟩L2 .

We assume there exists α ∈ R such that

α = inf
u∈V

J(u).

Observe that from the convex analysis basic theory, we have that

α = inf
u∈V

J(u)

= inf
u∈V

J∗∗(u)

= inf
u∈V

{(G ◦ ∇)∗∗(u)− ⟨u, f ⟩L2}. (209)
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On the other hand

(G ◦ ∇)∗∗(u) ≤ H(u)

≡ inf
(λ,(v1,··· ,vm))∈B×B1(u,λ)

{
m

∑
j=1

λjG(∇vj)

}
≤ G(∇u), (210)

where

B =

{
λ = (λ1, · · · , λm) ∈ Rm : λj ≥ 0, ∀j ∈ {1, · · · , m}, and

m

∑
j=1

λj = 1

}
,

and

B1(u, λ) =

{
v = (v1, · · · , vm) ∈ [V]m :

m

∑
j=1

λjvj = u

}
.

From such results, we may infer that

inf
u∈V

J∗∗(u) = inf
u∈V

{H(u)− ⟨u, f ⟩L2} = inf
u∈V

J(u).

Furthermore, observe that
m

∑
j=1

λj∇vj = ∇u,

and

λm = 1 −
m−1

∑
j=1

λj,

so that

∇vm = ∇u −
m−1

∑
j=1

λj(∇vj −∇vm)

= ∇u +
m−1

∑
j=1

λj∇ϕj, (211)

where ϕj = −vj + vm ∈ W1,2
0 (Ω;RN) so that

∇ϕj = −∇vj +∇vm,

and
∇vm = ∇vj +∇ϕj, ∀j ∈ {1, · · · , m}.

Therefore,

∇vj = ∇vm −∇ϕj = ∇u +
m−1

∑
k=1

λk∇ϕk −∇ϕj.

Replacing such results into the expression of H, we have

H(u) = inf
(λ,ϕ)∈B×(V0)m−1

{
m−1

∑
j=1

λjG

(
∇u +

m−1

∑
k=1

∇ϕk −∇ϕj

)
+ λmG

(
∇u +

m−1

∑
k=1

λk∇ϕk

)}
,

where we recall that
V0 = W1,2

0 (Ω;RN).
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Joining the pieces, we have got

inf
u∈V

J(u) = inf
u∈V

J∗∗(u)

= inf
u∈V

{H(u)− ⟨u, f ⟩L2}

= inf
(u,λ,ϕ)∈V×B×(V0)m−1

{
m−1

∑
j=1

λjG

(
∇u +

m−1

∑
k=1

λk∇ϕk −∇ϕj

)

+λmG

(
∇u +

m

∑
k=1

λk∇ϕk

)
−⟨u, f ⟩L2}.

This last functional corresponds to a relaxation for the original non-convex functional.
The note is complete.

34.1. A Related Duality Principle and Concerning Convex Dual Formulation

With the notation and statements of the previous sections in mind, consider the functionals
J : V → R and J3 : B × V × [V0]

m → R where

J(u) = G(∇u) +
1
2

∫
Ω

u · u dx − ⟨u, f ⟩L2 ,

and

J3(λ, u, ϕ) =
m

∑
j=1

λG

(
∇u +

m−1

∑
k=1

λkϕk −∇ϕj

)

+λmG

(
∇u +

m−1

∑
k=1

λk∇ϕk

)

+
m−1

∑
j=1

λj

2

∫
Ω

(
u +

m−1

∑
k=1

λkϕk −∇ϕj

)
·
(

u +
m−1

∑
k=1

λkϕk −∇ϕj

)
dx

+
(λm)

2

∫
Ω

(
u +

m−1

∑
k=1

λkϕk

)
·
(

u +
m−1

∑
k=1

λkϕk

)
dx

−
m−1

∑
j=1

λj

〈
u +

m−1

∑
k=1

λkϕk − ϕj, f

〉
L2

−(λm)

〈
u +

m−1

∑
k=1

λkϕk, f

〉
L2

. (212)

Here we have denoted

V = {u ∈ W1,2(Ω;RN) : u = u0 on ∂Ω = S},

V0 = W1,2
0 (Ω;RN),

Y = Y∗ = L2(Ω;RN×n)

and
Y1 = Y∗

1 = L2(Ω;RN).

Observe that
J∗∗(u) ≤ min

(λ,ϕ)∈B×(V0)m−1
J3(λ, u, ϕ).
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Moreover,

J3(λ, u, ϕ) = −
m−1

∑
j=1

〈
∇u +

m−1

∑
k=1

λk∇ϕk −∇ϕj, (v∗1)j

〉
L2

+
m−1

∑
j=1

λjG

(
∇u +

m−1

∑
k=1

λk∇ϕk −∇ϕj

)

−
〈
∇u +

m−1

∑
k=1

λk∇ϕk, (v∗1)m

〉
L2

+ λmG

(
∇u +

m−1

∑
k=1

λk∇ϕk

)

−
m−1

∑
j=1

〈
u +

m−1

∑
k=1

λkϕk − ϕj, (v∗3)j

〉
L2

+
m−1

∑
j=1

λj

2

∫
Ω

(
u +

m−1

∑
k=1

λkϕk − ϕj

)
·
(

u +
m−1

∑
k=1

λkϕk − ϕj

)
dx

−
〈

u +
m−1

∑
k=1

λkϕk, (v∗3)m

〉
L2

+
λm

2

∫
Ω

(
u +

m−1

∑
k=1

λkϕk

)
·
(

u +
m−1

∑
k=1

λkϕk

)
dx

+
m−1

∑
j=1

〈
∇u +

m−1

∑
k=1

λk∇ϕk −∇ϕj, (v∗1)j

〉
L2

+

〈
∇u +

m−1

∑
k=1

λk∇ϕk, (v∗1)m

〉
L2

+
m−1

∑
j=1

〈
u +

m−1

∑
k=1

λkϕk − ϕj, (v∗3)j

〉
L2

+

〈
u +

m−1

∑
k=1

λkϕk, (v∗3)m

〉
L2

− ⟨u, f ⟩L2 (213)
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Therefore,

J3(λ, u, ϕ) ≥ inf
v1∈[Y]m−1

{
m−1

∑
j=1

(
−⟨(v1)j, (v∗1)j⟩L2 + λjG((v1)j)

)}
+ inf

(v1)m∈Y
{−⟨(v1)m, (v∗1)m⟩L2 + λmG((v1)m)}

+ inf
v3∈[Y1]m−1

{
m−1

∑
j=1

(
−⟨(v3)j, (v∗3)j⟩L2 +

λj

2

∫
Ω
(v3)j · (v3)j dx

)}

+ inf
(v3)m∈Y1

{
−⟨(v3)m, (v∗3)m⟩L2 +

λm

2

∫
Ω
(v3)j · (v3)j dx

}
+ inf

(u,ϕ)∈V×(V0)m−1

{
m−1

∑
j=1

〈
∇u +

m−1

∑
k=1

λk∇ϕk − ϕj, (v∗1)j

〉
L2

+

〈
∇u +

m−1

∑
k=1

λk∇ϕk, (v∗1)m

〉
L2

+
m−1

∑
j=1

〈
u +

m−1

∑
k=1

∇ϕk − ϕj, v∗3

〉
L2

+

〈
u +

m−1

∑
k=1

λkϕk, (v∗3)m

〉
L2

− ⟨u, f ⟩L2

}

= −
m−1

∑
j=1

λjG∗
(
(v∗1)j

λj

)
− λmG∗

(
(v∗1)m

λm

)

−
m−1

∑
j=1

(F3)
∗
j ((v

∗
3)j, λj)− (F3)

∗
m((v

∗
3)m, λm)

+
m

∑
k=1

∫
S
((v∗1)k)ijnj(u0)i dS,

∀λ ∈ B, u ∈ V, ϕ ∈ (V0)
m−1, v∗ ∈ A∗, (214)

where
G∗(v∗) = sup

v∈Y
{⟨v, v∗⟩L2 − G(v)},

(F3)
∗
j ((v

∗
3)j, λj) = sup

v3∈Y1

{
⟨(v3)j, (v∗3)j⟩L2 −

λj

2

∫
Ω
(v3)j · (v3)j dx

}
=

1
2λj

∫
Ω
(v3)

∗
j · (v3)

∗
j dx, ∀j ∈ {1, · · · , m}. (215)

Furthermore, A∗ = A∗
1 ∩ A∗

2(λ) where

A∗
1 =

{
v∗ = (v∗1 , v∗3) ∈ [Y∗]m × [Y∗

1 ]
m : −

m

∑
j=1

(
div ((v∗1)j)i + ((v∗3)j)i

)
− fi = 0, in Ω

}
,

and

A∗
2(λ) = {v∗ = (v∗1 , v∗3) ∈ [Y∗]m × [Y∗

1 ]
m :

λk

m

∑
j=1

div ((v∗1)j)i − div ((v∗1)k)i − λk

m

∑
j=1

((v∗3)j)i + ((v∗3)k)i = 0,

in Ω, ∀k ∈ {1, · · · , m − 1}, ∀i ∈ {1, · · · , N}}. (216)
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Summarizing, we have got

inf
(λ,uϕ)∈B×V×(V0)m−1

J3(λ, u, ϕ)

≥ inf
λ∈B

{
sup

v∗∈A∗

{
−

m

∑
j=1

λjG∗
(
(v∗1)j

λj

)

−
m

∑
j=1

(F∗
3 )j((v∗3)j, λj) +

m

∑
k=1

∫
∂Ω

((v∗1)k)ijnj(u0)i dS

}}
. (217)

Remark 21. We highlight this last dual function in v∗ is convex (in fact concave) on the convex set A∗.

35. A General Convex Primal Dual Formulation with a Restriction for an
Originally Non-Convex Primal One

Let Ω ⊂ R3 be an open bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider the functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx

−⟨u, f ⟩L2 , (218)

where α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and Y = Y∗ = L2(Ω).

Define F1 : V → R and F2 : V × Y∗ → R by

F1(u) =
γ

2

∫
Ω
∇u · ∇u dx +

K
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ,

and

F2(u, v∗0) = −⟨u2, v∗0⟩L2 +
K
2

∫
Ω

u2 dx

+
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx. (219)

Define also F∗
1 : Y∗ → R and F∗

2 : Y∗ × Y∗ → R by

F∗(v∗1) = sup
u∈V

{⟨u, v∗1⟩L2 − F1(u)}

=
1
2

∫
Ω

(v∗1 + f )2

−γ∇2 + K
dx, (220)

and

F∗
2 (v

∗
1 , v∗0) = sup

u∈V
{−⟨u, v∗1⟩L2 − F2(u, v∗0)}

= −1
2

∫
Ω

(v∗1)
2

2v∗0 − K
dx

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx. (221)

if v∗0 ∈ B∗, where
B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K/2},

for some appropriate K > 0 to be specified.
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At this point we define
V2 = {u ∈ V : ∥u∥∞ ≤ K3},

A+ = {u ∈ V : u f ≥ 0, in Ω},

V1 = V2 ∩ A+,

D∗ = {v∗1 ∈ Y∗ : ∥v∗1∥∞ ≤ 5/4K},

for appropriate K3 > 0 to be specified, and J∗1 : D∗ × B∗ → R by

J∗1 (v
∗
1 , v∗0) = −F∗

1 (v
∗
1) + F∗

2 (v
∗
1 , v∗0).

Moreover, we define J∗2 : V1 × D∗ × B∗ → R by

J∗2 (u, v∗1 , v∗0) = J∗1 (v
∗
1 , v∗0) +

K1

2
∥v∗1 − (−γ∇2 + K)u∥2

2

+
1

10αK2
3
∥v∗1 − (−2v∗0 + K)u∥2

2 (222)

Observe that
∂2 J∗2 (u, v∗1 , v∗0)

∂(v∗1)
2 = − 1

−γ∇2 + K
− 1

2v∗0 − K
+ K1 +

1
5αK2

3
,

∂2 J∗2 (u, v∗1 , v∗0)
∂u2 = K1(−γ∇2 + K)2 +

1
5αK2

3
(−2v∗0 + K)2,

and
∂2 J∗2 (u, v∗1 , v∗0)

∂u∂v∗1
= −K1(−γ∇2 + K)− 1

5αK2
3
(−2v∗0 + K).

Now we set K1, K, K3 such that

K1 ≫ max{K, K3, 1, α, β, γ, 1/α, 1/γ, 1/β},

K ≫ max{K3, 1, α, β, γ, 1/α, 1/γ, 1/β},

and K3 ≈ 3.
From such results and constant choices, we may obtain

det{δ2
u,v∗1

J∗2 (u, v∗1 , v∗0)} =
∂2 J∗2 (u, v∗1 , v∗0)

∂(v∗1)
2

∂2 J∗2 (u, v∗1 , v∗0)
∂u2 −

(
∂2 J∗2 (u, v∗1 , v∗0)

∂u∂v∗1

)2

= O
(

K1(−γ∇2 + 2v∗0)
2

5αK2
3

+ 2K1(−γ∇2 + 2v∗0)

)
+O

(
K1

K

)
,

in V1 × D∗ × B∗. (223)

Define now

C∗ =

{
v∗0 ∈ Y∗ :

(−γ∇2 + 2v∗0)
2

5αK2
3

+ 2(−γ∇2 + 2v∗0) >
c0

K
Id

}
,

where we assume that c0 > 0 is such that if v∗0 ∈ C∗, then

det{δ2
u,v∗1

J∗2 (u, v∗1 , v∗0)} > 0, in B∗ ∩ C∗.

Finally, we also suppose the concerning constants are such that B∗ ∩ C∗ is convex.
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With such statements, definitions and results in mind, we may prove the following theorem.

Theorem 5. Let (u0, v̂∗1 , v̂∗0) ∈ V1 × D∗ × (B∗ ∩ C∗) be such that

δJ∗2 (u0, v̂∗1 , v̂∗0) = 0.

Under such hypotheses,

δJ(u0) = 0,

and

J(u0) = J(u0) +
K1

2
∥ − γ∇2u0 + 2v̂∗0u0 − f ∥2

2

= inf
u∈V1

{
J(u) +

K1

2
∥ − γ∇2u + 2v̂∗0u − f ∥2

2

}
= sup

v∗0∈B∗

{
inf

(u,v∗1)∈V1×D∗
J∗2 (u, v∗1 , v∗0)

}
= J∗2 (u0, v̂∗1 , v̂∗0). (224)

Proof. The proof that
δJ(u0) = −γ∇2u0 + 2v̂∗0u0 − f = 0

and
J(u0) = J∗2 (u0, v̂∗1 , v̂∗0),

may be done similarly as in the previous sections and will not be repeated.
Furthermore, since

δJ∗2 (u0, v̂∗1 , v̂∗0) = 0,

v∗0 ∈ B∗ × C∗ and J∗2 is concave in v∗0 on V1 × D∗ × B∗, we have

J∗2 (u0, v̂∗1 , v̂∗0) = inf
(u,v∗1)∈V1×D∗

J∗2 (u, v∗1 , v̂∗0),

and
J∗2 (u0, v̂∗1 , v̂∗0) = sup

v∗0∈B∗
J∗2 (u0, v̂∗1 , v∗0).

From such results and the Saddle Point Theorem we may infer that

J(u0) = J(u0) +
K1

2
∥ − γ∇2u0 + 2v̂∗0u0 − f ∥2

2

= sup
v∗0∈B∗

{
inf

(u,v∗1)∈V1×D∗
J∗2 (u, v∗1 , v∗0)

}
= J∗2 (u0, v̂∗1 , v̂∗0). (225)

Finally, from evident convexity,

J(u0) = J(u0) +
K1

2
∥ − γ∇2u0 + 2v̂∗0u0 − f ∥2

2

= inf
u∈V1

{
J(u) +

K1

2
∥ − γ∇2u + 2v̂∗0u − f ∥2

2

}
. (226)

Joining the pieces, we have got
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J(u0) = J(u0) +
K1

2
∥ − γ∇2u0 + 2v̂∗0u0 − f ∥2

2

= inf
u∈V1

{
J(u) +

K1

2
∥ − γ∇2u + 2v̂∗0u − f ∥2

2

}
= sup

v∗0∈B∗

{
inf

(u,v∗1)∈V1×D∗
J∗2 (u, v∗1 , v∗0)

}
= J∗2 (u0, v̂∗1 , v̂∗0). (227)

The proof is complete.

36. A general convex dual formulation for an originally non-convex primal one
In this section we develop a convex dual formulation for an originally non-convex primal formu-

lation.
Let Ω ⊂ R3 be an open bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider the functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx

−⟨u, f ⟩L2 , (228)

where α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and Y = Y∗ = L2(Ω).

At the moment, fix a matrix K1 > 0 and K > 0 to be specified.
Define F1 : V → R, F2 : V → R and F3 : V × Y∗ → R, by

F1(u) =
γ

4

∫
Ω
∇u · ∇u dx +

K
2

∫
Ω

u2 dx

−⟨u, f ⟩L2 , (229)

F2(u) =
γ

4

∫
Ω
∇u · ∇u dx +

K
2

∫
Ω

u2 dx, (230)

F3(u, v∗0) = −⟨u2, v∗0⟩L2 + K
∫

Ω
u2 dx +

1
2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx + ⟨u, f ⟩L2 .

Define also F∗
1 : Y∗ → R and F∗

2 : Y∗ → R,

F∗
1 (v

∗
1) = sup

u∈V
{⟨u, v∗1⟩L2 − F1(u)}

=
1
2

∫
Ω

(v∗1)
2

− γ
2 ∇2 + K

dx, (231)

F∗
2 (v

∗
2) = sup

u∈V
{⟨u, v∗2⟩L2 − F2(u)}

=
1
2

∫
Ω

(v∗2)
2

− γ
2 ∇2 + K

dx, (232)

At this point we also define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K/2},
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V2 = {u ∈ V : ∥u∥∞ ≤ K3},

A+ = {u ∈ V : u f ≥ 0, in Ω},

V1 = V2 ∩ A+,

D∗ = {v∗ ∈ Y∗ : ∥v∗∥∞ ≤ 5/4K},

for an appropriate K3 > 0 to be specified.
Furthermore, we define F∗

3 : D∗ × D∗ × B∗ → R by

F∗
3 (v

∗
1 , v∗2 , v∗0) = sup

u∈V
{−⟨u, v∗1 + v∗2⟩L2 − F3(u, v∗0)}

= −1
2

∫
Ω

(v∗1 + v∗2 − f )2

2v∗0 − 2K
dx

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx. (233)

Moreover, we define J∗1 : D∗ × D∗ × B∗ → R by

J∗1 (u, v∗1 , v∗0) = −F∗
1 (v

∗
1)− F2(v∗2) + F∗

3 (v
∗
1 , v∗2 , v∗0)

and J∗2 : D∗ × D∗ × B∗ → R by

J∗2 (v
∗
1 , v∗2 , v∗0) = J∗1 (v

∗
1 , v∗2 , v∗0)

+
K1

2

∫
Ω
(v∗1 − v∗2)

2 dx

+
K2

2

∫
Ω

(
v∗1

− γ
2 ∇2 + K

−
v∗1 + v∗2 − f
−2v∗0 + 2K

)2

dx. (234)

Now observe that

∂2 J∗2 (v
∗
1 , v∗2 , v∗0)

∂(v∗1)
2 = − 1

− γ
2 ∇2 + K

+ K1 + K2

(
1

− γ
2 ∇2 + K

− 1
2K − 2v∗0

)2

− 1
−2K + 2v∗0

,

and
∂2 J∗2 (v

∗
1 , v∗2 , v∗0)

∂(v∗2)
2 = − 1

− γ
2 ∇2 + K

+ K1 +
K2

(−2K + 2v∗0)
2 − 1

−2K + 2v∗0
,

and

∂2 J∗2 (v
∗
1 , v∗2 , v∗0)

∂v∗1 ∂v∗2
= −K1 − K2

(
1

− γ
2 ∇2+K − 1

2K−2v∗0

)2

2K − 2v∗0
− 1

−2K + 2v∗0
.

We set K1 ≫ K,
K ≫ K3,

and K3 ≈
√

3. Moreover, after a re-scale if necessary, we assume α ≈ 0.15.
From such results and constant choices, with the help of the software MATHEMATICA, we may

obtain

det{δ2
v∗1 ,v∗2

J∗2 (v
∗
1 , v∗2 , v∗0)} =

∂2 J∗2 (v
∗
1 , v∗2 , v∗0)

∂(v∗1)
2

∂2 J∗2 (v
∗
1 , v∗2 , v∗0)

∂u2 −
(

∂2 J∗2 (v
∗
1 , v∗2 , v∗0)

∂u∂v∗1

)2

= O
(

2K1((−γ∇2 + 2v∗0)
2 + 4(−γ∇2 + 2v∗0))

)
. (235)
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Define now
H(v∗0) ≡ 2((−γ∇2 + 2v∗0)

2 + 4(−γ∇2 + 2v∗0)),

Observe that we may obtain c0 > 0 such that if v∗0 ∈ (C∗ × B∗), then

det{δ2
v∗1 ,v∗2

J∗2 (v
∗
1 , v∗2 , v∗0)} > 0,

where
C∗ = {v∗0 ∈ Y∗ : H(v∗0) ≥ c0 Id}.

Furthermore, we assume K > 0 and c0 > 0 are such that C∗ ∩ B∗ is convex.
With such statements, definitions and results in mind, we may prove the following theorem.

Theorem 6. Let (v̂∗1 , v̂∗2 , v̂∗0) ∈ D∗ × D∗ × (B∗ ∩ C∗) be such that

δJ∗2 (v̂
∗
1 , v̂∗2 , v̂∗0) = 0.

Under such hypotheses,

δJ(u0) = 0,

and

J(u0)

= sup
v∗0∈B∗

{
inf

(v∗1 ,v∗2)∈D∗×D∗
J∗2 (v

∗
1 , v∗2 , v∗0)

}
= J∗2 (v̂

∗
1 , v̂∗2 , v̂∗0). (236)

Proof. The proof that
J(u0) = 0,

−γ∇2u0 + 2v̂∗0u0 − f = 0,

and
J(u0) = J∗2 (v̂

∗
1 , v̂∗2 , v̂∗0),

may be done similarly as in the previous sections and will not be repeated.
Furthermore, since

δJ∗2 (v̂
∗
1 , v̂∗2 , v̂∗0) = 0,

v∗0 ∈ B∗ ∩ C∗ and J∗2 is concave in v∗0 on D × D∗ × B∗, we have

J∗2 (v̂
∗
1 , v̂∗2 v̂∗0) = inf

(v∗1 ,v∗2)∈D∗×D∗
J∗2 (v

∗
1 , v∗2 , v̂∗0),

and
J∗2 (v̂

∗
1 , v̂∗2 , v̂∗0) = sup

v∗0∈B∗
J∗2 (v̂

∗
1 , v̂∗2 , v∗0).

From such results and the Saddle Point Theorem we may infer that

J(u0) = J∗2 (v̂
∗
1 , v̂∗2 , v̂∗0)

= sup
v∗0∈B∗

{
inf

(v∗1 ,v∗2)∈D∗×D∗
J∗2 (v

∗
1 , v∗2 , v∗0)

}
= J∗2 v̂∗1 , v̂∗2 , v̂∗0). (237)
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The proof is complete.

37. A Note on the Special Relativistic Physics
Consider in R3 two observers O and O′ and related referential Cartesian frames O(x, y, z) and

O′(x′, y′, z′) respectively.
Suppose a particle moves from a point (x0, y0, z0) to a point (x0 + ∆x, y0 + ∆y, z0 + ∆z) related to

O(x, y, z) on a time interval ∆t.
Denote

I1 = ∆x2 + ∆y2 + ∆z2,

and I2 = ∆t.
In a Newtonian physics context, we have

I1 = ∆x2 + ∆y2 + ∆z2 = ∆x′2 + ∆y′2 + ∆z′2,

and
I2 = ∆t = ∆t′,

that is, I1 and I2 remain invariant.
However, through experiments in higher energy physics, it was discovered that in fact is I3 which

remains invariant (this had been previously proposed in the Einstein special relativity theory in 1905),
where

I3 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2,

so that

−c2∆t2 + ∆x2 + ∆y2 + ∆z2 = −c2∆t′2 + ∆x′2 + ∆y′2 + ∆z′2 = I3,

for any pair of observers O and O′. Here c denotes the speed of light, and in the case in which v, v′ ≪ c
we have the Newtonian approximation

∆t′ ≈ ∆t.

From the expression of I3 we obtain

−c2 ∆t′2

∆t2 +
∆x′2

∆t2 +
∆y′2

∆t2 +
∆z′2

∆t2

= −c2 ∆t2

∆t2 +
∆x2

∆t2 +
∆y2

∆t2 +
∆z2

∆t2 . (238)

Thus,

−c2 ∆t′2

∆t2 +

(
∆x′2

∆t′2
+

∆y′2

∆t′2
+

∆z′2

∆t′2

)
∆t′2

∆t2

= −c2 +
∆x2

∆t2 +
∆y2

∆t2 +
∆z2

∆t2 (239)

so that

(
∆t′

∆t

)2

=
c2 −

(
∆x2

∆t2 + ∆y2

∆2
t
+ ∆z2

∆t2

)
c2 −

(
∆x′2

∆t′2
+ ∆y′2

∆t′2
+ ∆z′2

∆t′2

) .
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Letting ∆t, ∆t′ → 0, we obtain (
∂t′

∂t

)2

=
1 − v2

c2

1 − (v′)2

c2

.

In particular for constant v and v′ = 0 we have(
∆t′

∆t

)2

= 1 − v2

c2 ,

so that

∆t′ =

√
1 − v2

c2 ∆t.

Consider now that O is at rest and O′ has a constant velocity

v e1

where {e1, e2, e3} is the canonical basis for R3 related to O.
Consider O(x, y, z) and O′(x, y, z) such that the axis x′ coincide with the axis x, axis y′ is parallel

to axis y and axis z′ is parallel to z.
Since v is constant, we have

v =
∆x
∆t

,

and
v′ = 0.

Assuming x(0) = 0, and the initial time t = 0, we have ∆x = x, and ∆t = t so that

t′ =

√
1 − v2

c2 t,

so that

t′ =
1 − v2

c2√
1 − v2

c2

t =

(
t − vvt

c2

)
√

1 − v2

c2

,

and thus

t′ =

(
t − vx

c2

)
√

1 − v2

c2

.

On the other hand we have v′ = 0.
We may easily check that the solution

x′ =
x − vt√
1 − v2

c2

,

lead us to v′ = 0.
Indeed,

∆x′
√

1 − v2

c2

∆t′
=

∆x′

∆t
,

so that, considering that v is constant, we obtain

dx′

dt
=

d(x−vt)
dt√

1 − v2

c2

=
dx
dt − v√
1 − v2

c2

=
v − v√
1 − v2

c2

= 0,
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that is,
dx′

dt
= 0.

Thus,

d
(

x′
√

1 − v2

c2

)
dt′

= 0,

so that

x′
√

1 − v2

c2 = c1

for some constant c1 ∈ R so that
x′ = c2,

for some c2 ∈ R.
Therefore

v′ =
dx′

dt′
= 0.

Summarizing, for the Newton mechanics we have

t′ = t

,
x′ = x − vt,

y′ = y,

and
z′ = z.

On the other hand, for the special relativity context, we have the following Lorentz relations

t′ =

(
t − vx

c2

)
√

1 − v2

c2

.

x′ =
x − vt√
1 − v2

c2

,

y′ = y,

and
z′ = z.

37.1. The Kinetics Energy for the Special Relativity Context

Consider the motion of a particle system described by the position field

r : Ω × [0, T] → R4,

where Ω ⊂ R3, [0, T] is a time interval and

r(x, y, z, t) = (ct, X1(x, y, z, t), X2(x, y, z, t), X3(x, y, z, t)).

In my understanding, this is the special relativity theory context.
The related density field is denoted by

ρ : Ω × [0, T] → R+,
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where
ρ(x, y, z, t) = m0|ϕ(x, y, z, t)|2,

m0 is total system mass at rest, and ϕ : Ω × [0, T] → C is a wave function such that∫
Ω
|ϕ(x, y, z, t)|2 dx = 1, ∀t ∈ [0, T].

The Kinetics energy differential is given by

dEc = −dm
∂r
∂t

· ∂r
∂t

,

where

∂r
∂t

· ∂r
∂t

=

(
c,

∂X1

∂t
,

∂X2

∂t
,

∂X3

∂t

)
·
(

c,
∂X1

∂t
,

∂X2

∂t
,

∂X3

∂t

)
= −c2 +

(
∂X1

∂t

)2
+

(
∂X2

∂t

)2
+

(
∂X3

∂t

)2

= −c2 + v2, (240)

where

v2 =

(
∂X1

∂t

)2
+

(
∂X2

∂t

)2
+

(
∂X3

∂t

)2
.

Moreover,
dm =

m0√
1 − v2

c2

|ϕ(x, y, z, t)|2 dxdydz,

so that

dEc =
m0√
1 − v2

c2

(c2 − v2)|ϕ(x, y, z, t)|2 dxdydz

= m0c
√

c2 − v2|ϕ|2 dxdydz. (241)

Thus,
Ec(t) =

∫
Ω

dEc =
∫

Ω
m0c

√
c2 − v2|ϕ|2 dxdydz.

In particular for a constant v (not varying in (x, y, z, t)), we obtain

Ec(t) = m0c
√

c2 − v2.

Hence if v ≪ c, we have
Ec(t) ≈ m0 c2.

This is the most famous Einstein equation previously published in his article of 1905.

37.2. The Kinetics Energy for the General Relativity Context

In a general relativity theory context, the motion of a particle system will be specified by a field

(r ◦ û) : Ω × [0, T] → R4

where
(r ◦ û)(x, t) = (ct, X1(û(x, t)), X2(û(x, t)), X3(û(x, t))),
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where
û(x, t) = (u0(t), u1(x, t), u2(x, t), u3(x, t)),

u0(t) = t,

x = (x1, x2, x3) ∈ Ω ⊂ R3,

and t ∈ [0, T], where [0, T] is a time interval.
The corresponding density is represented by

(ρ ◦ û) : Ω × [0, T] → R+,

where
(ρ ◦ û)(x, t) = m0|ϕ(û(x, t))|2,

m0 is total system mass at rest and ϕ : Ω × [0, T] → C is a complex wave function such that∫
Ω
|ϕ(û(x, t))|2

√
−g|det{û′(x, t)}| dx = 1, ∀t ∈ [0, T]

where
dx = dx1 dx2 dx3,

gj =
∂r
∂uj

gjk = gj · gk, ∀j, k ∈ {0, 1, 2, 3}.

and g = det{gjk}.
Now observe that

∂r
∂t

· ∂r
∂t

=
∂r
∂uj

∂uj

∂t
· ∂r

∂uk

∂uk
∂t

=
∂r
∂uj

· ∂r
∂uk

∂uj

∂t
∂uk
∂t

= gjk
∂uj

∂t
∂uk
∂t

. (242)

Observe that
∂r
∂t

· ∂r
∂t

= gjk
∂uj

∂t
∂uk
∂t

= −c2 + v2.

Moreover, the Kinetics energy differential is given by

dEc = −dm
∂r
∂t

· ∂r
∂t

,

where
dm =

m0√
1 − v2

c2

|ϕ(û(x, t))|2
√
−g|det{û′(x, t)}| dx,

so that the total Kinetics energy is expressed by

Ec =
∫ T

0

∫
Ω

dEc dt,
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that is,

Ec =
∫ T

0

∫
Ω

m0√
1 − v2

c2

(c2 − v2)|ϕ(û(x, t)|2
√
−g|det{û′(x, t)}| dxdt

=
∫ T

0

∫
Ω

m0c
√

c2 − v2|ϕ(û(x, t))|2
√
−g|det{û′(x, t)}| dxdt

=
∫ T

0

∫
Ω

m0c

√
−gjk

∂uj

∂t
∂uk
∂t

|ϕ(û(x, t))|2
√
−g|det{û′(x, t)}| dxdt. (243)

Summarizing, for the general relativity theory context

Ec =
∫ T

0

∫
Ω

m0c

√
−gjk

∂uj

∂t
∂uk
∂t

|ϕ(û(x, t))|2
√
−g|det{û′(x, t)}| dxdt.

38. About an Energy Term Related to the Manifold Curvature Variation
In this section we consider a particle system motion represented by a field

r : Ω → R4

of C2 class where here Ω = Ω̂ × [0, T], Ω̂ ⊂ R3 is an open, bounded and connected set, and [0, T] is a
time interval.

More specifically, point-wise we denote

r(u) = (c t, X1(u), X2(u), X3(u)),

where u0 = t, and u = (u0, u1, u2, u3) ∈ Ω.
Now, define

gj =
∂r(u)

∂uj
,

and
gjk = gj · gk, ∀j, k ∈ {0, 1, 2, 3}.

Moreover
{gjk} = {gjk}−1,

and
g = det{gjk}.

We assume {
∂r(u)

∂uj
, for j ∈ {0, 1, 2, 3}

}
is a basis for R4, ∀u ∈ Ω.

At this point we define the Christofel symbols, denoted by Γl
jk, by

Γl
jk =

1
2

glp

{
∂gkp

∂uj
+

∂gjp

∂uk
−

∂gjk

∂up

}
, ∀j, k, l ∈ {0, 1, 2, 3}.

Theorem 7. Considering these last previous statements and definitions, we have that

∂2r(u)
∂uj∂uk

= Γl
jk

∂r(u)
∂ul

, ∀j, k ∈ {0, 1, 2, 3}, ∀u ∈ Ω.

Proof. Fix u ∈ Ω and j, k, m ∈ {0, 1, 2, 3}.
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Observe that

Γl
jkglm =

1
2

gml glp

{
∂gkp

∂uj
+

∂gjp

∂uk
−

∂gjk

∂up

}

=
1
2

δ
p
m

{
∂gkp

∂uj
+

∂gjp

∂uk
−

∂gjk

∂up

}

=
1
2

{
∂gkm
∂uj

+
∂gjm

∂uk
−

∂gjk

∂um

}

=
1
2

{
∂

∂uj

(
∂r(u)
∂uk

· ∂r(u)
∂um

)
+

∂

∂uk

(
∂r(u)

∂uj
· ∂r(u)

∂um

)
− ∂

∂um

(
∂r(u)

∂uj
· ∂r(u)

∂uk

)}

=
1
2

{
∂2r(u)
∂uk∂uj

· ∂r(u)
∂um

+
∂2r(u)
∂um∂uj

· ∂r(u)
∂uk

+
∂2r(u)
∂uj∂uk

· ∂r(u)
∂um

+
∂2r(u)
∂um∂uk

· ∂r(u)
∂uj

− ∂2r(u)
∂um∂uj

· ∂r(u)
∂uk

− ∂2r(u)
∂um∂uk

· ∂r(u)
∂uj

}

=
1
2

{
∂2r(u)
∂uj∂uk

· ∂r(u)
∂um

+
∂2r(u)
∂uj∂uk

· ∂r(u)
∂um

}

=
∂2r(u)
∂uj∂uk

· ∂r(u)
∂um

. (244)

Summarizing, we have got

Γl
jk

∂r(u)
∂ul

· ∂r(u)
∂um

= Γl
jkglm =

∂2r(u)
∂uj∂uk

· ∂r(u)
∂um

.

Since {
∂r(u)

∂uj
, for j ∈ {0, 1, 2, 3}

}
,

is a basis for R4, we may infer that

∂2r(u)
∂uj∂uk

= Γl
jk

∂r(u)
∂ul

, ∀j, k ∈ {0, 1, 2, 3}, ∀u ∈ Ω.

The proof is complete.

38.1. The Energy Term Related to Curvature Variation

We define such an energy term, denoted by Eq, as

Eq(ϕ, r) =
1
2

∫
Ω

gjkglp ∂

∂uj

(
ϕ

∂r(u)
∂uk

)
· ∂

∂ul

(
ϕ∗ ∂r(u)

∂up

) √
−g du,

where du = du1du2du3du0.
Here ϕ : Ω → C is a complex wave function representing the scalar density field.
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Now observe that

∂

∂uj

(
ϕ

∂r(u)
∂uk

)
· ∂

∂ul

(
ϕ∗ ∂r(u)

∂up

)
=

(
∂ϕ

∂uj

∂r(u)
∂uk

+ ϕ
∂2r(u)
∂uj∂uk

)
·
(

∂ϕ∗

∂ul

∂r(u)
∂up

+ ϕ∗ ∂2r(u)
∂ul∂up

)
=

∂ϕ

∂uj

∂ϕ∗

∂uj
gkp + |ϕ|2 ∂2r(u)

∂uj∂uk
· ∂2r(u)

∂ul∂up

+ϕ
∂ϕ∗

∂ul

∂2r(u)
∂uj∂uk

· ∂r(u)
∂up

+ϕ∗ ∂ϕ

∂uj

∂2r(u)
∂ul∂up

· ∂r(u)
∂uk

=
∂ϕ

∂uj

∂ϕ∗

∂uj
gkp + |ϕ|2Γm

jkΓo
lp gmo

+ϕ
∂ϕ∗

∂ul
Γs

jk gsp + ϕ∗ ∂ϕ

∂uj
Γr

lp grk. (245)

From such results, we may infer that

Eq(ϕ, r) =
1
2

∫
Ω

gjk ∂ϕ

∂uj

∂ϕ∗

∂uk

√
−g du

+
1
2

∫
Ω

gjk glp Γr
jk Γs

lp grs |ϕ|2
√
−g du

+
1
2

∫
Ω

gjkΓl
jk

(
ϕ

∂ϕ∗

∂ul
+ ϕ∗ ∂ϕ

∂ul

) √
−g du. (246)

39. A Note on the Definition of Temperature
The main results in this section may be found in similar form in the book [16], page 261.
Consider a system with N = ∑N0

j=1 Nj and suppose each set of Nj particles has a set of Cj possible
states.

Therefore, the number of states of such Nj particles is given by

∆Γj =
(Cj)

Nj

Nj!
,

where we have considered simple permutations as equivalent states.
Define

Sj = ln(∆Γj),

and define the system entropy, denoted by S, as

S = A

(
N0

∑
j=1

Sj

)
,

where A > 0 is a normalizing constant.
Thus,

S = A
N0

∑
j=1

ln

(
(Cj)

Nj

Nj!

)
,

so that

S = A

(
N0

∑
j=1

(
Nj ln(Cj)− ln(Nj!)

))
.
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If Nj is large enough, we have the following approximation

ln(Nj!) ≈ Nj ln(Nj).

In particular for Cj = 1, ∀j ∈ {1, · · · , N0} we obtain

S = A

(
N0

∑
j=1

Sj

)
≈ −A

(
N0

∑
j=1

Nj ln(Nj)

)
,

At this point we define the following local density N̂j where

N̂j(x, t) =
|ϕj(x, t)|2

|ϕ(x, t)|2 N,

where

|ϕ(x, t)|2 =
N0

∑
j=1

|ϕj(x, t)|2.

Here, ϕj : Ω → C denotes the wave function of the particles corresponding to the system part Nj.
The final definition of Entropy is given by

S(x, t) = A

(
N0

∑
j=1

Sj(x, t)

)

where

Sj(x, t) = −N̂j(x, t) ln(N̂j(x, t))

= −
|ϕj(x, t)|2

ϕ(x, t)|2 N ln

(
|ϕj(x, t)|2

ϕ(x, t)|2 N

)
. (247)

Here we highlight the position field for each particle system part Nj is given by

r̂j(x, t) = x + rj(x, t),

where rj is related to the internal energy, that is, related to the atomic/electronic vibrational motion
linked with the concept of temperature, as specified in the next lines.

The total kinetics energy is given by

E(x, t) = −1
2

N0

∑
j=1

mpj |ϕj(x, t)|2
∂rj(x, t)

∂t
·

∂rj(x, t)
∂t

.

At this point, we define the scalar field of temperature, denoted by T(x, t), such as symbolically

∂S
∂E

=
1

T(x, t)
.

More specifically, we define

T(x, t) =
N0

∑
j=1

∂E
∂ϕj

∂S
∂ϕj

,

so that

T(x, t) =
− 1

2 ∑N0
j=1 mpj ϕj(x, t)

∂rj(x,t)
∂t · ∂rj(x,t)

∂t

−A
ϕj N
|ϕ|2 ln

(
|ϕj |2 N
|ϕ|2 + 1

) .

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


172 of 360

39.1. A Note on Basic Thermodynamics

Consider a solid Ω ⊂ R3 where such a Ω is an open, bounded and connected set with a regular
(Lipschitzian) boundary denoted by ∂Ω.

Denoting by [0, T] a time interval, consider a particle system where the field of displacements is
given by

rj(x, t) = r(x, t) + u(x, t) + (r3)j(x, t),

where r : Ω × [0, T] → R is a macroscopic displacement field, u : Ω × [0, T] → R is the elastic
displacement field and (r3)j : Ω × [0, T] → R denotes the displacement field related to the atomic and
electronic vibration motion concerning the concept of temperature, as specified in the previous section.

In particular for the case in which
r(x, t) = x,

we define the heat functional, denoted by W, as

W =
1
2

∫ T

0

∫
Ω

ρ(x, t)
∂u(x, t)

∂t
· ∂u(x, t)

∂t
dx dt

−
∫ T

0

∫
Ω

F · u dx dt

+
1
2

∫ T

0

∫
Ω

Hijkleij(u)ekl(u) dx dt

+
1
2

N0

∑
j=1

∫ T

0

∫
Ω

mpj |ϕj(x, t)|2
∂(r3)j(x, t)

∂t
·

∂(r3)j(x, t)
∂t

dx dt, (248)

where

ρ(x, t) =
N0

∑
j=1

mpj |ϕj(x, t)|2

is the point wise total density,
1
2

∫ T

0

∫
Ω

Hijkleij(u)ekl(u) dx dt

is a standard elastic inner energy for small displacements u, F(x, t) is the resulting field of external
forces acting point wise on Ω, and for the term

1
2

N0

∑
j=1

∫ T

0

∫
Ω

mpj |ϕj(x, t)|2
∂(r3)j(x, t)

∂t
·

∂(r3)j(x, t)
∂t

dx dt

we are refereing to the definitions and notations of the previous section.
At this point we denote

Ein =
1
2

N0

∑
j=1

∫ T

0

∫
Ω

mpj |ϕj(x, t)|2
∂(r3)j(x, t)

∂t
·

∂(r3)j(x, t)
∂t

dx dt,

and

ET =
1
2

∫ T

0

∫
Ω

ρ(x, t)
∂u(x, t)

∂t
· ∂u(x, t)

∂t
dx dt

−
∫ T

0

∫
Ω

F · u dx dt

+
1
2

∫ T

0

∫
Ω

Hijkleij(u)ekl(u) dx dt. (249)
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Hence W = ET + Ein and from the previous section we may generically denote

δ Ein = T δS,

Therefore
δW = δET + δEin = δET + T δS.

For a standard reversible process we must have δ ET = 0.
so that

δ W = T δS.

For a general case in which other types of internal energy (such as Eq indicated in the previous
sections and even Ein) are partially and irreversibly converted into a ET type of energy, in which

δ ET ̸= 0,

we may have
δ W < T δS.

Remark 22. Indeed, in general the vibrational motion related to Ein is of relativistic nature so that in fact we
would need to consider

Ein =
1
2

N0

∑
j=1

∫ T

0

∫
Ω

mpj c |ϕj(x, t)|2
√

c2 −
∂(r3)j(x, t)

∂t
·

∂(r3)j(x, t)
∂t

√
−gj dx dt.

40. A Formal Proof of Castigliano Theorem
In this section we present the mathematical formalism of a result in elasticity theory known as the

Castigliano’s Theorem.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipischitzian) boundary

denoted by ∂Ω.
In a context of linear elasticity, consider the functional J : V → R where

J(u) = Ein − ⟨ui, fi⟩L2 −
N

∑
j=1

ui(xj)Pij,

u = (u1, u2, u3) ∈ W1,2
0 (Ω;R3) ≡ V, f = ( f1, f2, f3) ∈ L2(Ω;R3), Y = Y∗ = L2(Ω;R3), and

Pij ∈ R, ∀i ∈ {1, 2, 3}, j ∈ {1, · · · , N}

for some N ∈ N.
Here we have denoted

Ein =
1
2

∫
Ω

Hijkleij(u)ekl(u) dx,

eij(u) =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
.

Moreover Hijkl is a fourth order positive definite and constant tensor.
Observe that the variation of J in ui give us the following Euler-Lagrange equation

−(Hijklekl(u)),j − fi −
N

∑
j=1

Pijδ(xj) = 0, in Ω. (250)
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Symbolically such a system stands for

∂J(u)
∂ui

= 0, ∀i ∈ {1, 2, 3},

so that
∂(Ein − ⟨ui, fi⟩L2 − ∑N

j=1 ui(xj)Pij)

∂ui
= 0, ∀i ∈ {1, 2, 3}. (251)

We denote u ∈ V solution of (250) by u = u( f , P), so that multiplying the concerning extremal
equation by ui and integrating by parts, we get

H1(u( f , P), f , P) = 2Ein(u( f , P))− ⟨ui( f , P), fi⟩L2 −
N

∑
j=1

ui(xj, f , P)Pij

= 0, ∀ f ∈ Y∗, P ∈ R3N . (252)

Therefore
d

dPij
(H1(u( f , P), f , P)) = 0,

so that

2
dEin
dPij

− d
dPij

(
⟨ui( f , P), fi⟩L2 +

N

∑
j=1

ui(xj, f , p)Pij⟩L2

)
= 0,

that is

dEin
dPij

+

〈
∂(Ein − ⟨ui, fi⟩L2 − ∑N

j=1 ui(xj)Pij)

∂uk
,

∂uk
∂Pij

〉
L2

− ∂

∂Pij

(
⟨ui, fi⟩L2 +

N

∑
j=1

ui(xj)Pij

)
= 0. (253)

From this and (250) we obtain

dEin
dPij

− ui(xj) = 0,

so that

ui(xj) =
dEin
dPij

=
d

dPij

(
1
2

∫
Ω

Hijkleij(u( f , P))ekl(u( f , P)) dx
)

,

∀i ∈ {1, 2, 3}, ∀j ∈ {1, · · · , N}.
With such results in mind, we have proven the following theorem.

Theorem 8 (Castigliano). Considering the notations and definitions in this section, we have

ui(xj) =
dEin
dPij

=
d

dPij

(
1
2

∫
Ω

Hijkleij(u( f , P))ekl(u( f , P)) dx
)

,

∀i ∈ {1, 2, 3}, ∀j ∈ {1, · · · , N}.

40.1. A Generalization of Castigliano Theorem

In this subsection we present a more general version of the Castigliano theorem.
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Considering the context of last section, we recall that

H1(u( f , P), f , P) = 2Ein(u( f , P))− ⟨ui( f , P), fi⟩L2 −
N

∑
j=1

ui(xj, f , P)Pij

= 0, ∀ f ∈ Y∗, P ∈ R3N . (254)

Therefore, for xk ∈ Ω such that

xk ̸= xj, ∀j ∈ {1, · · · , N},

we have 〈
d

d fi
(H1(u( f , P), f , P)), δ(xk)

〉
L2

= 0,

so that

2
〈

d
d fi

(Ein(u( f , P))), δ(xk)

〉
L2

−
〈

d
d fi

(
⟨ui( f , P), fi⟩L2 +

N

∑
j=1

ui(xj, f , p)Pij⟩L2

)
, δ(xk)

〉
L2

= 0, (255)

that is 〈
d

d fi
(Ein(u( f , P))), δ(xk)

〉
L2

+

〈
d

duk

(
Ein(u( f , P))− ⟨ui( f , P), fi⟩L2 −

N

∑
j=1

ui(xj, f , p)Pij

)
duk
d fi

, δ(xk)

〉
L2

−
〈

∂

∂ fi

(
⟨ui( f , P), fi⟩L2 −

N

∑
j=1

ui(xj, f , p)Pij

)
, δx(xk)

〉
L2

= 0. (256)

From such results, we may obtain〈
d

d fi
(Ein(u( f , P))), δ(xk)

〉
L2
− ⟨ui(x), δ(xk)⟩L2 = 0,

so that 〈
d

d fi
(Ein(u( f , P))), δ(xk)

〉
L2
− ui(xk) = 0,

that is

ui(xk) =

〈
d

d fi
(Ein(u( f , P))), δ(xk)

〉
L2

,

∀i ∈ {1, 2, 3}, ∀xk ∈ Ω such that xk ̸= xj, ∀j ∈ {1, · · · , N}.
With such results in mind, we have proven the following theorem.

Theorem 9 (The Generalized Castigliano Theorem). Considering the notations and definitions in this
section, we have

ui(xk) =

〈
d

d fi
(Ein(u( f , P))), δ(xk)

〉
L2

,

∀i ∈ {1, 2, 3}, ∀xk ∈ Ω such that xk ̸= xj, ∀j ∈ {1, · · · , N}.
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40.2. The Virtual Work Principle

Considering the definitions, results and statements of the previous section and subsection, we
may easily prove the following theorem.

Theorem 10 (The virtual work principle). Let xl ∈ Ω such that xl ̸= xj, ∀j ∈ {1, · · · , N}.
For a virtual constant load Plk ∈ R on xl at the direction of uk(xl), define now J : V → R where

J(u) = Ein − ⟨ui, fi⟩L2 −
N

∑
j=1

ui(xj)Pij − Plkuk(xl).

Under such hypotheses,

uk(xl) =

(
d Ein(u( f , P, Plk))

dPlk

)
Plk=0

,

∀k ∈ {1, 2, 3}, ∀xl ∈ Ω such that xl ̸= xj, ∀j ∈ {1, · · · , N}.

Proof. The proof is exactly the same as in the Castigliano Theorem in the previous section except by
setting the virtual load Plk = 0 in the end of this calculation and will not be repeated.

41. Duality for a General Relaxed Primal Variational Formulation
Let Ω ⊂ R3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.
Consider a functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 ,

where V = W1,2
0 (Ω), γ > 0, α > 0, β > 0, Y = Y∗ = L2(Ω), Y1 = Y∗

1 = L2(Ω;R3), and f ∈ L2(Ω).
We define the associated relaxed functional J1 : V × V × (0, 1), by

J1(u, ϕ, λ) =
λγ

2

∫
Ω
(∇u − (1 − λ)∇ϕ) · (∇u − (1 − λ)∇ϕ) dx

+
(1 − λ)γ

2

∫
Ω
(∇u + λ∇ϕ) · (∇u + λ∇ϕ) dx

+
λα

2

∫
Ω
((u − (1 − λ)ϕ)2 − β)2 dx +

(1 − λ)α

2

∫
Ω
((u + λϕ)2 − β)2 dx

−λ⟨u − (1 − λ)ϕ, f ⟩L2 − (1 − λ)⟨u + λϕ, f ⟩L2 . (257)

Moreover, we define, F1 : V × V × (0, 1) → R, F2 : V × V × (0, 1) → R, F3 : V × V × (0, 1) → R,
F4 : V × V × (0, 1) → R, F5 : V × V × (0, 1) → R, and F6 : V × V × (0, 1) → R, by

F1(u, ϕ, λ) =
λγ

2

∫
Ω
(∇u − (1 − λ)∇ϕ) · (∇u − (1 − λ)∇ϕ) dx,

F2(u, ϕ, λ) =
(1 − λ)γ

2

∫
Ω
(∇u + λ∇ϕ) · (∇u + λ∇ϕ) dx,

F3(u, ϕ, λ) =
λα

2

∫
Ω
((u − (1 − λ)ϕ)2 − β)2 dx,

F4(u, ϕ, λ) =
(1 − λ)α

2

∫
Ω
((u + λϕ)2 − β)2 dx,

F5(u, ϕ, λ) = −λ⟨u − (1 − λ)ϕ, f ⟩L2 ,

F6(u, ϕ, λ) = −(1 − λ)⟨u + λϕ, f ⟩L2 ,

respectively.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


177 of 360

Observe that

J1(u, ϕ, u) = F1(u, ϕ, λ) + F2(u, ϕ, λ)

F3(u, ϕ, λ) + F4(u, ϕ, λ)

F5(u, ϕ, λ) + F6(u, ϕ, λ), (258)

Thus,

J1(u, ϕ, u) ≥ F1(u, ϕ, λ) + F2(u, ϕ, λ)

+⟨(u − (1 − λ)ϕ)2 − β, v∗3⟩L2

+⟨(u + λϕ)2 − β, v∗4⟩L2

F5(u, ϕ, λ) + F6(u, ϕ, λ)

F3(u, ϕ, λ) + F4(u, ϕ, λ)

+ inf
v3∈Y

{−⟨v3, v∗3⟩L2 + F̃3(v3, λ)}

+ inf
v4∈Y

{−⟨v4, v∗4⟩L2 + F̃4(v4, λ)} (259)

where
F̃3(v3, λ) =

λα

2

∫
Ω

v2
3 dx,

F̃4(v4, λ) =
(1 − λ)α

2

∫
Ω

v2
4 dx,

Therefore, defining F̃∗
3 : Y∗ × (0, 1) → R and F̃∗

4 : Y∗ × (0, 1) → R by

F̃∗
3 (v

∗
3 , λ) = sup

v3∈Y
{⟨v3.v∗3⟩L2 − F3(v3, λ)

=
1

2αλ

∫
Ω
(v∗3)

2 dx, (260)

and

F̃∗
4 (v

∗
4 , λ) = sup

v4∈Y
{⟨v4.v∗4⟩L2 − F4(v4, λ)

=
1

2α(1 − λ)

∫
Ω
(v∗4)

2 dx, (261)

we may also infer that

J1(u, ϕ, λ) ≥ inf
v1∈Y1

{⟨v1, v∗1⟩L2 + F̃1(v1, λ)}

+ inf
v2∈Y1

{⟨v2, v∗2⟩L2 + F̃2(v2, λ)}

+ inf
v5∈Y

{
−⟨v5, div v∗1⟩L2 +

∫
Ω
(v2

5 − β)v∗3 dx − λ⟨v5, f ⟩L2

}
+ inf

v6∈Y

{
−⟨v6, div v∗2⟩L2 +

∫
Ω
(v2

6 − β)v∗4 dx − (1 − λ)⟨v6, f ⟩L2

}
−F̃∗

3 (v
∗
3 , λ)− F̃∗

4 (v
∗
4 , λ)

= −F̃∗
1 (v

∗
1 , λ)− F̃∗

2 (v
∗
2 , λ)

−F∗
5 (v

∗
1 , v∗3 , λ)− F∗

6 (v
∗
2 , v∗4 , λ)

−F̃∗
3 (v

∗
3 , λ)− F̃∗

4 (v
∗
4 , λ), (262)
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if v∗ = (v∗1 , · · · , v∗4) ∈ A∗ where,

A∗ = {v∗ ∈ [Y∗
1 ]

2 × [Y∗]2 : v∗3 > 0 and v∗4 > 0, in Ω},

F̃1(v1, λ) =
λγ

2

∫
Ω

v1 · v1 dx,

F̃2(v2, λ) =
λγ

2

∫
Ω

v2 · v2 dx,

F̃5(v5, v∗3 , λ) =
∫

Ω
(v2

5 − β)v∗3 dx − λ⟨v5, f ⟩L2 ,

F̃6(v6, v∗4 , λ) =
∫

Ω
(v2

6 − β)v∗4 dx − (1 − λ)⟨v6, f ⟩L2 ,

and

F̃∗
1 (v

∗
1 , λ) = sup

v1∈Y1

{⟨v1, v∗1⟩L2 − F̃1(v1, λ)}

=
1

2γλ

∫
Ω

v∗1 · v∗1 dx, (263)

F̃∗
2 (v

∗
2 , λ) = sup

v2∈Y1

{⟨v2, v∗2⟩L2 − F̃2(v2, λ)}

=
1

2γ(1 − λ)

∫
Ω

v∗2 · v∗2 dx, (264)

F̃∗
5 (v

∗
1 , v∗3 , λ) = sup

v5∈Y
{⟨v5, v∗1⟩L2 − F̃5(v5, v∗3 , λ)}

=
1
2

∫
Ω

( div v∗1 + λ f )2

4v∗3
dx + β

∫
Ω

v∗3 dx, (265)

and

F̃∗
6 (v

∗
2 , v∗4 , λ) = sup

v6∈Y
{⟨v6, v∗1⟩L2 − F̃6(v6, v∗4 , λ)}

=
1
2

∫
Ω

( div v∗2 + (1 − λ) f )2

4v∗4
dx + β

∫
Ω

v∗4 dx. (266)

Denoting, as above indicated, v∗ = (v∗1 , v∗2 , v∗3 , v∗4) ∈ [Y∗
1 ]

2 × [Y∗]2, we define J∗ : [Y∗
1 ]

2 × [Y∗]2 ×
(0, 1) → R by

J∗(v∗, λ) = −F̃∗
1 (v

∗
1 , λ)− F̃∗

2 (v
∗
2 , λ)

−F∗
5 (v

∗
1 , v∗3 , λ)− F∗

6 (v
∗
2 , v∗4 , λ)

−F̃∗
3 (v

∗
3 , λ)− F̃∗

4 (v
∗
4 , λ), (267)

Observe that we have got

inf
u∈V

J(u) ≥ inf
(u,ϕ,λ)∈V×V×[0,1]

J1(u, ϕ, λ)

≥ inf
λ∈(0,1)

{
sup

v∗∈A∗
J∗(v∗, λ)

}
. (268)
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41.1. A Numerical Example

We have obtained numerical results for γ = 0.1, α = 3.0, β = 5.0 and f ≡ 10, in Ω, for the special
case in which Ω = [0, 1] ⊂ R.

Such results have been performed through the following algorithm:

1. Set n = 1 and λn = 1/2.
2. Calculate v∗n ∈ A∗ such that

J∗(v∗n, λn) = sup
v∗∈A∗

J∗(v∗, λn),

3. Calculate λn+1 ∈ (0, 1) such that

J∗(v∗n, λn+1) = inf
λ∈(0,1)

J∗(v∗n, λ),

4. Set n := n + 1 and go to step 2 until the satisfaction of an appropriate convergence criterion.

Here, we recall that for the optimal points

div v∗1 + λ f
2v∗3

= u − (1 − λ)ϕ,

and
div v∗2 + (1 − λ) f

2v∗4
= u + λϕ,

so that

u = λ

(
div v∗1 + λ f

2v∗3

)
+ (1 − λ)

(
div v∗2 + (1 − λ) f

2v∗4

)
.

For such a corresponding optimal u0 please see Figure 32.
For the solution u1 of the primal problem obtained through the generalized method of lines,

please see Figure 33.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

Figure 32. Optimal solution u0(x) through the concerning dual formulation.
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Figure 33. Optimal solution u1(x) through the concerning primal formulation.

We may observe the solutions u0 and u1 are qualitatively similar, as expected.
Here we present the software developed to perform such numerical results.

************************

1. clear all
global m8 d L A3 A B yo u v e1 dv1 dv2 dv3 v5 v6 v3 v4 v1 v2 K5 e5 L1 L2 L3
m8=100;
d=1/m8;
e1=0.00001;
e5=0.001;
K5=10000.0;
A3=0.1;
A=3.0;
B=5.0;
for i=1:m8
uo(i,1)=5;
yo(i,1)=10.0;
end;
L=1/2;
for k=1:50
k
i=1;
m12=2 + 6 ∗ A ∗ uo(i, 1)2 ∗ d2/A3 − 2 ∗ A ∗ B/A3 ∗ d2;
m50(i)=1/m12;
z(i)=m50(i) ∗ (yo(i, 1) ∗ d2/A3 + 4 ∗ A ∗ uo(i, 1)3 ∗ d2/A3);
for i=2:m8-1
m12=2 + 6 ∗ A ∗ uo(i, 1)2 ∗ d2/A3 − 2 ∗ A ∗ B/A3 ∗ d2 − m50(i − 1);
m50(i)=1/m12;
z(i)=m50(i) ∗ (yo(i, 1) ∗ d2/A3 + 4 ∗ A ∗ uo(i, 1)3 ∗ d2/A3 + z(i − 1));
end;
w(m8,1)=0;
for i=1:m8-1
w(m8-i,1)=m50(m8-i)*w(m8-i+1)+z(m8-i);
end;
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uo=w;
uo(m8/2,1)
end;
for i=1:4*m8
xo(i,1)=3.0;
end;
for i=1:1
x1(i,1)=1/2;
end;
for k1=1:10
k1
k=1;
b12=1.0;
while (b12 > 10−4) && (k < 50)
k
k=k+1;
X=fminunc(’funFeb30LG’,xo);
b12=max(abs(xo-X))
xo=X;
end;
X1=fminunc(’funFeb31LG’,x1);
x1=X1;
end;
u(m8,1)=0;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);

*******************************
With the auxiliary function "funFeb30LG", where
*******************************

1. function S=funFeb30LG(x)
global m8 d L A3 A B yo u v e1 dv2 dv1 dv3 v3 v4 v5 v6 v1 v2 K5 e5 L1 L2 L3
for i=1:m8
v1(i,1)=x(i,1);
v2(i,1)=x(m8+i,1);
v3(i,1)=x(2*m8+i,1);
v4(i,1)=x(3*m8+i,1);
end; for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+(yo(i, 1)2 ∗ L2 + 2 ∗ yo(i, 1) ∗ L ∗ dv1(i, 1) + dv1(i, 1)2 + 4 ∗ B ∗ v3(i, 1)4)/(4 ∗ v3(i, 1)2);
S=S+(yo(i, 1)2 ∗ (1 − L)2 + 2 ∗ yo(i, 1) ∗ (1 − L) ∗ dv2(i, 1) + dv2(i, 1)2 + 4 ∗ B ∗ v4(i, 1)4)/(4 ∗
v4(i, 1)2);
S=S+v1(i, 1)2/sqrt(L2 + e1)/2/A3 + v2(i, 1)2/sqrt((1 − L)2 + e1)/2/A3;
S=S+v3(i, 1)4/2/sqrt(L2 + e1)/A + v4(i, 1)4/2/sqrt((1 − L)2 + e1)/A;
end;
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for i=1:m8-1
u(i,1)=L ∗ (yo(i, 1) ∗ L + dv1(i, 1))/(v3(i, 1)2)/2;
u(i,1)=u(i,1)+(1 − L) ∗ ((1 − L) ∗ yo(i, 1) + dv2(i, 1))/2/(v4(i, 1)2);
end;

*******************
Finally, we present the auxiliary function "funFeb31LG"
*********************************************

1. function S1=funFeb31LG(x)
global m8 d L L1 L2 L3 A3 A B yo u v e1 dv2 dv1 dv3 v5 v6 v3 v4 v1 v2 K5 e5
L=(sin(x(1,1))+1)/2;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+(yo(i, 1)2 ∗ L2 + 2 ∗ yo(i, 1) ∗ L ∗ dv1(i, 1) + dv1(i, 1)2 + 4 ∗ B ∗ v3(i, 1)4)/(4 ∗ v3(i, 1)2);
S=S+(yo(i, 1)2 ∗ (1 − L)2 + 2 ∗ yo(i, 1) ∗ (1 − L) ∗ dv2(i, 1) + dv2(i, 1)2 + 4 ∗ B ∗ v4(i, 1)4)/(4 ∗
v4(i, 1)2);
S=S+v1(i, 1)2/sqrt(L2 + e1)/2/A3 + v2(i, 1)2/sqrt((1 − L)2 + e1)/2/A3;
S=S+v3(i, 1)4/2/sqrt(L2 + e1)/A + v4(i, 1)4/2/sqrt((1 − L)2 + e1)/A;
end;
S1=-S;

**************************************

Remark 23. Observe that the functional J∗ is convex in A∗ however, the restrictions v∗3 > 0 and v∗4 > 0 in
Ω may cause a difference between the solution obtained through J∗ and the solution got through the primal
formulation J, a so-called duality gap.

Anyway, through such a relaxation process, utilizing the dual functional J∗ we may still obtain a good
qualitative approximation of the global optimal point for the primal formulation J.

Indeed, such a global solution obtained through the dual functional J∗ may be an excellent initial solution
for obtaining a more accurate one through the standard Newton Method, for example.

42. A Global Existence Result for a Model in Non-Linear Elasticity
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω = S.
Define a functional J : V → R by

J(u) =
1
2

∫
Ω

Hijklγij(u)γkl(u) dx − ⟨ui, fi⟩L2 ,

where
γij(u) =

ui,j + uj,i

2
+

1
2

um,ium,j,

V = {u ∈ W1,2(Ω;R3) : u = v̂0 on S1 ⊂ ∂Ω}.

We also denote Y = Y∗ = L2(Ω;R3), so that f = ( f1, f2, f3) ∈ Y.
Here {Hijkl} is a fourth order constant, positive definite and symmetric tensor.
With such assumptions and statements in mind, we may prove the following theorem.
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Theorem 11. Assume {Hijkl} is such that

lim
∥u∥V→∞

J(u) = +∞.

Under such hypothesis, there exists u0 ∈ V such that

J(u0) = min
u∈V

J(u).

Proof. From the hypotheses, there exists α ∈ R such that

α = inf
u∈V

J(u).

Let {un} ⊂ V be a sequence such that

α ≤ J(un) < α +
1
n

, ∀n ∈ N.

Suppose, to obtain contradiction, there exists a subsequence {nk} ⊂ N, such that

∥unk∥V → ∞.

From the hypotheses, we have

J(unk ) → +∞, as k → ∞.

This contradicts
lim
k→∞

J(unk ) = α ∈ R.

From such results we may infer that there exists K > 0 such that

∥un∥V ≤ K, ∀n ∈ N.

Consequently, from this, the Sobolev Embedding and Rellich Kondrashov theorems, there exists
u0 ∈ V ∩ L∞(Ω;R3) for which, up to a not relabelled subsequence, we have

un ⇀ u0, weakly in W1,4(Ω;R3),

un → u0, strongly in L4(Ω),

un → u0, strongly in L∞(Ω;R3).

Let φ ∈ C∞
c (Ω).

Thus, ∣∣∣∣∣
〈

∂(un)i
∂xj

− ∂(u0)i
∂xj

, φ

〉
L2

∣∣∣∣∣
=

∣∣∣∣∣
〈
(un)i − (u0)i,

∂φ

∂xj

〉
L2

∣∣∣∣∣
≤ ∥(un)i − (u0)i∥∞

∥∥∥∥∥ ∂φ

∂xj

∥∥∥∥∥
1

→ 0, as n → ∞. (269)
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Since φ ∈ C∞
c (Ω) is arbitrary and C∞

c (Ω) is dense in L4(Ω) we may infer that

∂(un)i
∂xj

⇀
∂(u0)i

∂xj
, weakly in L4(Ω),

∀i, j ∈ {1, 2, 3}.
Define W = L4(Ω) with the norm

∥v∥W = sup{⟨v, φ⟩L2 , φ ∈ C∞
c (Ω), ∥φ∥1,2 ≤ 1}.

We may easily verify that

∂(un)i
∂xj

→ ∂(u0)i
∂xj

, strongly in W,

∀i, j ∈ {1, 2, 3}.
Thus, {

∂(un)i
∂xj

}
is a Cauchy sequence in W.

Hence, for each n ∈ N there exists nk ∈ N such that m, l ≥ nk, then∥∥∥∥∥∂(um)i
∂xj

− ∂(ul)i
∂xj

∥∥∥∥∥
W

<
1
k2 .

where nk may be taken as an increasing subsequence in N.
In particular, we have got ∥∥∥∥∥∂(unk+1)i

∂xj
−

∂(unk )i

∂xj

∥∥∥∥∥
W

<
1
k2 .

Define now

gl =

∣∣∣∣∣∂(un1)i

∂xj

∣∣∣∣∣+ l−1

∑
k=1

∣∣∣∣∣∂(unk+1)i

∂xj
−

∂(unk )i

∂xj

∣∣∣∣∣,
and

g =

∣∣∣∣∣∂(un1)i

∂xj

∣∣∣∣∣+ ∞

∑
k=1

∣∣∣∣∣∂(unk+1)i

∂xj
−

∂(unk )i

∂xj

∣∣∣∣∣.
Observe that

∥g∥W ≤
∥∥∥∥∥∂(un1)i

∂xj

∥∥∥∥∥
W

+
∞

∑
k=1

∥∥∥∥∥∂(unk+1)i

∂xj
−

∂(unk )i

∂xj

∥∥∥∥∥
W

≤
∥∥∥∥∥∂(un1)i

∂xj

∥∥∥∥∥
W

+
∞

∑
k=1

1
k2

< +∞. (270)

From such results we may infer that g(x) ∈ R, a.e. in Ω.
Moreover, since an absolutely convergent series is also convergent, we may infer that

∂(unl )i

∂xj
=

∂(un1)i

∂xj
+

l−1

∑
k=1

(
∂(unk+1)i

∂xj
−

∂(unk )i

∂xj

)
→ hij, a.e. in Ω,

for some hij ∈ L4(Ω), ∀i, j ∈ {1, 2, 3}.
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From such results, we have
∂(unl )i

∂xj
→ hij, a.e. in Ω

and
∂(unl )i

∂xj
⇀

∂(u0)i
∂xj

, weakly in L4(Ω),

so that
∂(u0)i

∂xj
= hij, a.e. in Ω.

Consequently, we have got

∂(unl )i

∂xj
→ ∂(u0)i

∂xj
, a.e. in Ω.

Now fix i, j, m ∈ {1, 2, 3}.
Observe that from the Cauchy-Schwarz inequality, we have

∫
Ω

(
∂(unl )m

∂xj

∂(unl )m

∂xj

)2

dx

≤
∥∥∥∥∂(unl )m

∂xi

∥∥∥∥2

4

∥∥∥∥∥∂(unl )m

∂xj

∥∥∥∥∥
2

4
≤ K1, ∀l ∈ N (271)

for some appropriate real constant K1 > 0.
Therefore, up to a not relabeled subsequence there exists v0 ∈ L2(Ω) such that

∂(unl )m

∂xi

∂(unl )m

∂xj
⇀ v0, weakly in L2(Ω),

Since
∂(unl )m

∂xi

∂(unl )m

∂xj
→ ∂(u0)m

∂xi

∂(u0)m

∂xj
, a.e. in Ω,

we obtain

v0 =
∂(u0)m

∂xi

∂(u0)m

∂xj
, a.e. in Ω,

so that
∂(unl )m

∂xi

∂(unl )m

∂xj
⇀

∂(u0)m

∂xi

∂(u0)m

∂xj
, weakly in L2(Ω),

∀i, j, m ∈ {1, 2, 3}.
Therefore, from such results we may infer that

γij(unl ) ⇀ γij(u0), weakly in L2(Ω), ∀i, j ∈ {1, 2, 3}.

Moreover, since J is convex in {γij} we finally obtain

α = lim inf
l→∞

J(unl ) ≥ J(u0),

so that
J(u0) = min

u∈V
J(u).

The proof is complete.
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43. A Note on a General Relaxation Procedure for the Vectorial Case in the
Calculus of Variation

Let Ω ⊂ Rn be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω. Consider a continuous and bounded below functional F : V → R where

V = {u ∈ W1,2(Ω;RN) : u = u0 on ∂Ω}.

Define H1 : V → R by

H1(u) = inf{λ1F(v1) + (1 − λ1)F(w1) ; 0 ≤ λ1 ≤ 1, v1, w1 ∈ V, λ1v1 + (1 − λ1)w1 = u}.

Observe that as it has been shown in a previous section, we have

F∗∗(u) ≤ H1(u) ≤ F(u), ∀u ∈ V.

Moreover, also as indicated in a previous section, we may obtain

H1(u) = inf
(ϕ1,λ1)∈V0×[0,1]

{λ1F(u − (1 − λ1)ϕ1) + (1 − λ1)F(u + λ1ϕ1)},

where V0 = W1,2
0 (Ω;RN).

Reasoning inductively, having Hk : V → R, define Hk+1 : V → R by

Hk+1(u) = inf{λk+1Hk(vk+1) + (1 − λk+1)Hk(wk+1) ;

0 ≤ λk+1 ≤ 1, vk+1, wk+1 ∈ V, λk+1vk+1 + (1 − λk+1)wk+1 = u}. (272)

Thus

Hk+1(u) = inf
(ϕk+1,λk+1)∈V0×[0,1]

{λk+1Hk(u − (1 − λk+1)ϕk+1) + (1 − λk+1)Hk(u + λk+1ϕk+1)}.

Observe that
F∗∗(u) ≤ Hk+1(u) ≤ Hk(u) ≤ F(u), ∀k ∈ N.

Define H0 : V → R by

H0(u) = lim
k→+∞

Hk(u) = inf
k∈N

Hk(u), ∀u ∈ V.

Suppose, to obtain contradiction, that H0 is not convex.
Hence, there exists û ∈ V such that

(H0)1(û) < H0(û),

where

(H0)1(u) = inf{λ1H0(v1) + (1 − λ1)H0(w1) ; 0 ≤ λ1 ≤ 1, v1, w1 ∈ V, λ1v1 + (1 − λ1)w1 = u}.

This contradicts
H0(u) = lim

k→+∞
Hk(u) = inf

k∈N
Hk(u), ∀u ∈ V.

Therefore H0 is convex on V so that from this and

F∗∗(u) ≤ H0(u) ≤ F(u), ∀u ∈ V
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we may infer that
H0(u) = F∗∗(u), ∀u ∈ V.

44. A Note on Another General Relaxation Procedure for the Vectorial Case in the
Calculus of Variation

Let Ω ⊂ Rn be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω. Consider a continuous and bounded below functional F : V → R where

V = {u ∈ W1,2(Ω;RN) : u = u0 on ∂Ω}.

Fix k ∈ N.
Define (H1)k : V → R by

(H1)k(u) = inf

{
k

∑
j=1

λjF(vj) : 0 ≤ λj ≤ 1 and vj ∈ V, ∀j ∈ {1, · · · , k},

k

∑
j=1

λj = 1 and
k

∑
j=1

λjvj = u

}
. (273)

Observe that
F∗∗(u) ≤ (H1)k+1(u) ≤ (H1)k(u) ≤ F(u), ∀u ∈ V.

Define H2 : V → R by

H2(u) = lim
k→∞

(H1)k(u) = inf
k∈N

{(H1)k(u)}, ∀u ∈ V.

Reasoning inductively, having Hm : V → R, we may obtain (Hm)k : V → R by

(Hm)k(u) = inf

{
k

∑
j=1

λj Hm(vj) : 0 ≤ λj ≤ 1 and vj ∈ V, ∀j ∈ {1, · · · , k},

k

∑
j=1

λj = 1 and
k

∑
j=1

λjvj = u

}
. (274)

Observe that
F∗∗(u) ≤ (Hm)k+1(u) ≤ (Hm)k(u) ≤ F(u), ∀u ∈ V.

Now we define

Hm+1(u) = lim
k→∞

(Hm)k(u) = inf
k∈N

{(Hm)k(u)}, ∀u ∈ V,

∀m ∈ N.
Therefore, we have obtained a sequence {Hm : V → R} such that

F∗∗(u) ≤ Hm+1(u) ≤ Hm(u) ≤ F(u), ∀u ∈ V.

Thus, we may define H0 : V → R by

H0(u) = lim
m→∞

Hm(u) = inf
m∈N

{Hm(u)}, ∀u ∈ V.

Suppose, to obtain contradiction, that H0 : V → R is not convex on V.
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Hence, there exists û ∈ V such that

(H0)1(û) < H0(û),

where

(H0)1(u) = inf{λ1H0(v1) + (1 − λ1)H0(w1) : 0 ≤ λ1 ≤ 1, v1, w1 ∈ V, λ1v1 + (1 − λ1)w1 = u},

∀u ∈ V.
This contradicts

H0(u) = lim
m→∞

Hm(u) = inf
m∈N

{Hm(u)}, ∀u ∈ V.

Therefore, H0 is convex on V so that from this and

F∗∗(u) ≤ H0(u) ≤ F(u), ∀u ∈ V,

we may infer that
H0(u) = F∗∗(u), ∀u ∈ V.

45. A Proximal Relaxed General Approach Also Suitable for the Vectorial Case in
the Calculus of Variations

Let Ω = [0, 1] ⊂ R and consider a proximal relaxed functional J1 : V × V0 × [0, 1]× Y∗ → R
where

J1(u, ϕ, λ, z∗) =
λ

2

∫
Ω
((u′ − (1 − λ)ϕ′)2 − 1)2 dx

(1 − λ)

2

∫
Ω
((u′ + λϕ′)2 − 1)2 dx

+
1
2

∫
Ω
(u − f )2 dx +

K
2

∫
Ω
(u − f )2 dx

−
∫

Ω
z∗(u − f ) dx +

1
2K

∫
Ω
(z∗)2 dx, (275)

where
V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2},

V0 = W1,2
0 (Ω), and Y = Y∗ = L2(Ω).

In order to obtain a critical point of such a proximal relaxed primal formulation, we propose the
following algorithm:

1. Set n = 1, ε = 10−4 and z∗n ≡ 0.
2. Calculate (un, ϕn, λn) ∈ V × V0 × [0, 1] such that

J1(un, ϕn, λn, z∗n) = inf
(u,ϕ,λ)∈V×V0×[0,1]

J1(u, ϕ, λ, z∗n).

3. Calculate z∗n+1 ∈ Y∗ such that

J1(un, ϕn, λn, z∗n+1) = inf
z∗∈Y∗

J1(un, ϕn, λn, z∗),

so that indeed,
z∗n+1 = K(un − f ).

4. If ∥z∗n+1 − z∗n∥∞ < ε, then stop. Otherwise set n := n + 1 and go to item 2.
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We have obtained numerical results for K = 100 and

f (x) = sin(πx)/2.

For the optimal solution u(x) obtained, please see Figure 34.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 34. Optimal solution u(x) for the case f (x) = sin(πx)/2.

At this point we present the software in MAT-LAB we have developed to obtain such numerical
results.

*****************************************

1. clear all
global m8 d u v yo e1 K z
m8=100;
d=1/m8;
e1=0.0005;
K=100.0;
for i=1:m8
yo(i,1)=sin(pi*i*d)/2;
z(i,1)=0;
end;
for i=1:2*m8+1
xo(i,1)=0.3;
x1(i,1)=0.3;
end;
k1=1;
b14=1.0;
while (b14 > 10−4) && (k1 < 11)
k1
k1=k1+1;
k=1;
b12=1.0;
while (b12 > 10−4) && (k < 16)
k
k=k+1;
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X=fminunc(’funMarch24PhaseT’,xo);
b12=max(abs(X-xo))
xo=X;
u(m8/2,1)
end;
b14=max(abs(x1-xo));
z=K*(u-yo);
x1=xo;
u(m8/2,1)
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u)

*********************************
Here the auxiliary function "funMarch24PhaseT"
*****************************

1. function S=funMarch24PhaseT(x)
global m8 d u v L yo e1 K z
for i=1:m8
u(i,1)=x(i,1);
v(i,1)=x(i+m8,1);
end;
L=(sin(x(2*m8+1,1))+1)/2;
u(m8,1)=1/2;
v(m8,1)=0.0;
du(1,1)=u(1,1)/d;
dv(1,1)=v(1,1)/d;
for i=2:m8
du(i,1)=(u(i,1)-u(i-1,1))/d;
dv(i,1)=(v(i,1)-v(i-1,1))/d;
end;
d2u(1,1)=(−2 ∗ u(1, 1) + u(2, 1))/d2;
for i=2:m8-1
d2u(i,1)=(u(i + 1, 1)− 2 ∗ u(i, 1) + u(i − 1, 1))/d2;
end;
S=0;
for i=1:m8
S=S+L ∗ ((du(i, 1)− (1 − L) ∗ dv(i, 1))2 − 1)2/2;
S=S+(1 − L) ∗ ((du(i, 1) + L ∗ dv(i, 1))2 − 1)2/2;
S=S+(u(i, 1)− yo(i, 1))2/2;
S=S+K ∗ (u(i, 1)− yo(i, 1))2/2 − z(i, 1) ∗ (u(i, 1)− yo(i, 1));
end;
for i=1:m8-1
S=S+e1 ∗ d2u(i, 1)2;
end;

***************************
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46. Another Proximal Relaxed General Approach also Suitable for the Vectorial
Case in the Calculus of Variations

Let Ω = [0, 1] ⊂ R and consider a proximal relaxed functional J1 : V × [V0]
3 × B ×Y∗ → R where

J1(u, ϕ, λ, z∗) =
λ1

2

∫
Ω
((u′ + λ1ϕ′

1 + λ2ϕ′
2 + λ3ϕ′

3 − ϕ′
1)

2 − 1)2 dx

+
λ2

2

∫
Ω
((u′ + λ1ϕ′

1 + λ2ϕ′
2 + λ3ϕ′

3 − ϕ′
2)

2 − 1)2 dx

+
λ3

2

∫
Ω
((u′ + λ1ϕ′

1 + λ2ϕ′
2 + λ3ϕ′

3 − ϕ′
3)

2 − 1)2 dx

+
λ4

2

∫
Ω
((u′ + λ1ϕ′

1 + λ2ϕ′
2 + λ3ϕ′

3)
2 − 1)2 dx

+
1
2

∫
Ω
(u − f )2 dx +

K
2

∫
Ω
(u − f )2 dx

−
∫

Ω
z∗(u − f ) dx +

1
2K

∫
Ω
(z∗)2 dx, (276)

where
V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2},

V0 = W1,2
0 (Ω), Y = Y∗ = L2(Ω), f ∈ L2(Ω) and

B =

{
λ = (λ1, · · · , λ4) ∈ R4 : λj ≥ 0, ∀j ∈ {1, · · · , 4} and

4

∑
j=1

λj = 1

}
.

In order to obtain a critical point of such a proximal relaxed primal formulation, we propose the
following algorithm:

1. Set n = 1, ε = 10−4 and z∗n ≡ 0.
2. Calculate (un, ϕn, λn) ∈ V × [V0]

3 × B such that

J1(un, ϕn, λn, z∗n) = inf
(u,ϕ,λ)∈V×[V0]3×B

J1(u, ϕ, λ, z∗n).

3. Calculate z∗n+1 ∈ Y∗ such that

J1(un, ϕn, λn, z∗n+1) = inf
z∗∈Y∗

J1(un, ϕn, λn, z∗),

so that indeed,
z∗n+1 = K(un − f ).

4. If ∥z∗n+1 − z∗n∥∞ < ε, then stop. Otherwise set n := n + 1 and go to item 2.

We have obtained numerical results for K = 100 and

f (x) = 0.0.

For the optimal solution u(x) obtained, please see Figure 35.
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Figure 35. Optimal solution u(x) for the case f (x) = 0.

At this point we present the software in MAT-LAB we have developed to obtain such numerical
results.

************************

1. clear all
global m8 d u v yo e1 K z
m8=100;
d=1/m8;
e1=0.0007;
K=100.0;
for i=1:m8
yo(i,1)=0.0*sin(pi*i*d)/2;
z(i,1)=0;
end;
for i=1:4*m8+3
xo(i,1)=0.3;
x1(i,1)=0.3;
end;
k1=1;
b14=1.0;
while (b14 > 10−4) && (k1 < 11)
k1
k1=k1+1;
k=1;
b12=1.0;
while (b12 > 10−4) && (k < 16)
k
k=k+1;
X=fminunc(’funMarch24PhaseTC’,xo);
b12=max(abs(X-xo))
xo=X;
u(m8/2,1)
end;
b14=max(abs(x1-xo));

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


193 of 360

z=K*(u-yo);
x1=xo;
u(m8/2,1)
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u)

*****************************************
With the auxiliary function "funMarch24PhaseTC"
************************

1. function S=funMarch24PhaseTC(x)
global m8 d u v L yo e1 K z
for i=1:m8
u(i,1)=x(i,1);
v(i,1)=x(i+m8,1);
v1(i,1)=x(i+2*m8,1);
v2(i,1)=x(i+3*m8,1);
end;
L1=(sin(x(4*m8+1,1))+1)/2;
L2=min((sin(x(4*m8+2,1))+1)/2,1-L1);
L3=min((sin(x(4*m8+3,1))+1)/2,1-L1-L2);
L4=1-L1-L2-L3;
u(m8,1)=1/2;
v(m8,1)=0.0;
v1(m8,1)=0.0;
v2(m8,1)=0.0;
du(1,1)=u(1,1)/d;
dv(1,1)=v(1,1)/d;
dv1(1,1)=v1(1,1)/d;
dv2(1,1)=v2(1,1)/d;
for i=2:m8
du(i,1)=(u(i,1)-u(i-1,1))/d;
dv(i,1)=(v(i,1)-v(i-1,1))/d;
dv1(i,1)=(v1(i,1)-v1(i-1,1))/d;
dv2(i,1)=(v2(i,1)-v2(i-1,1))/d;
end;
d2u(1,1)=(−2 ∗ u(1, 1) + u(2, 1))/d2;
for i=2:m8-1
d2u(i,1)=(u(i + 1, 1)− 2 ∗ u(i, 1) + u(i − 1, 1))/d2;
end;
S=0;
for i=1:m8
S=S+L1 ∗ ((du(i, 1) + L1 ∗ dv(i, 1) + L2 ∗ dv1(i, 1) + L3 ∗ dv2(i, 1)− dv(i, 1))2 − 1)2/2;
S=S+L2 ∗ ((du(i, 1) + L1 ∗ dv(i, 1) + L2 ∗ dv1(i, 1) + L3 ∗ dv2(i, 1)− dv1(i, 1))2 − 1)2/2;
S=S+L3 ∗ ((du(i, 1) + L1 ∗ dv(i, 1) + L2 ∗ dv1(i, 1) + L3 ∗ dv2(i, 1)− dv2(i, 1))2 − 1)2/2;
S=S+L4 ∗ ((du(i, 1) + L1 ∗ dv(i, 1) + L2 ∗ dv1(i, 1) + L3 ∗ dv2(i, 1))2 − 1)2/2;
S=S+(u(i, 1)− yo(i, 1))2/2;
S=S+K ∗ (u(i, 1)− yo(i, 1))2/2 − z(i, 1) ∗ (u(i, 1)− yo(i, 1));
end;
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for i=1:m8-1
S=S+e1 ∗ d2u(i, 1)2;
end;

******************************

47. A Dual Variational Formulation for a Non-Convex Primal One
Let Ω ⊂ R3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.
Consider the functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 . (277)

Here V = W1,2
0 (Ω), α > 0, β > 0, γ > 0, and f ∈ L2(Ω) ≡ Y = Y∗.

Denoting Y1 = Y∗
1 = L2(Ω;R3), define F1 : Y1 → R, F2 : V × Y → R and F3 : Y → R by

F1(∇u) =
γ

2

∫
Ω
∇u · ∇u dx,

F2(u, v) =
α

2

∫
Ω
(u2 − β)2 dx +

K
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ,

and
F3(u) =

K
2

∫
Ω

u2 dx.

Define also, F1 : Y∗
1 → R, F̃2 : Y∗

1 × Y∗ × Y∗ → R and F3 : Y∗ → R, by

F∗
1 (v

∗
1) = sup

v1∈Y1

{⟨v1, v∗1⟩L2 − F1(v1)}

=
1

2γ

∫
Ω
|v∗1 |2 dx, (278)

F̃∗
2 (v

∗
1 , v∗0 , z∗) = sup

(u,v)∈V×Y
{−⟨∇u, v∗1⟩L2 + ⟨u, z∗⟩L2

+⟨v, v∗0⟩L2 − F2(u, v)}

=
1
2

∫
Ω

( div v∗1 + z∗ + f )2

2v∗0 + K
dx +

1
2α

∫
Ω
(v∗0)

2 dx

+β
∫

Ω
v∗0 dx, (279)

if v∗0 ∈ B∗, where
B∗ = {v∗0 ∈ Y∗ : ∥2v∗0∥∞ ≤ K/2}.

Moreover,

F∗
3 (z

∗) = sup
u∈V

{⟨u, z∗⟩L2 − F3(u)}

=
1

2K

∫
Ω
(z∗)2 dx. (280)

At this point we define J∗ : Y∗
1 × B∗ × Y∗ → R by

J∗1 (v
∗
1 , v∗0 , z∗) = −F∗

1 (v
∗
1)− F̃∗

2 (v
∗
1 , v∗0 , z∗) + F∗

3 (z
∗).
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Assume (v̂∗1 , v̂∗0 , ẑ∗) ∈ Y∗
1 × B∗ × Y∗ is such that

δJ∗(v̂∗1 , v̂∗0 , ẑ∗) = 0.

Observe that

J∗(v̂∗1 , v̂∗0 , ẑ∗) = −F∗
1 (v

∗
1)− F̃∗

2 (v
∗
1 , v∗0 , z∗) + F∗

3 (z
∗)

≤ −⟨∇u, v̂∗1⟩L2 + F1(∇u)

+⟨∇u, v̂∗1⟩L2 + ⟨u2, v̂∗0⟩L2 +
K
2

∫
Ω

u2 dx

− 1
2α

∫
Ω

v̂∗0 dx − β
∫

Ω
v̂∗0 dx

−⟨u, f ⟩L2 − ⟨u, ẑ∗⟩L2 +
1

2K

∫
Ω
(ẑ∗)2 dx

≤ F1(∇u) + sup
v∗0∈Y∗

{
⟨u2, v∗0⟩L2 −

1
2α

∫
Ω

v∗0 dx − β
∫

Ω
v∗0 dx

}
−⟨u, f ⟩L2 +

K
2

∫
Ω

u2 dx − ⟨u, ẑ∗⟩L2 +
1

2K

∫
Ω
(ẑ∗)2 dx

= F1(∇u) +
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2

+
K
2

∫
Ω

(
u − ẑ∗

K

)2
dx

= J(u) +
K
2

∫
Ω

(
u − ẑ∗

K

)2
dx, ∀u ∈ V. (281)

Define now u0 ∈ V by

u0 =
ẑ∗

K
.

From this and (281) we have

J∗(v̂∗1 , v̂∗0 , ẑ∗) ≤ inf
u∈V

{
J(u) +

K
2

∫
Ω
(u − u0)

2 dx
}

.

Furthermore, from the variation of J∗ in v∗1 we obtain

−
v̂∗1
γ

+∇
(

div v̂∗1 + ẑ∗ + f
2v̂∗0 + K

)
= 0,

so that

v̂∗1 = γ∇
(

div v̂∗1 + ẑ∗ + f
2v̂∗0 + K

)
.

From the variation of J∗ in z∗, we get

ẑ∗

K
−
(

div v̂∗1 + ẑ∗ + f
2v̂∗0 + K

)
= 0

so that

u0 =
ẑ∗

K
=

(
div v̂∗1 + ẑ∗ + f

2v̂∗0 + K

)
.

From the variation of J∗ in v∗0 , we obtain

v̂∗0
α

−
(

div v̂∗1 + ẑ∗ + f
2v̂∗0 + K

)2
+ β = 0
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so that
v̂∗0 = α(u2

0 − β).

Joining the pieces, we have also
v̂1 = γ∇u0,

ẑ = Ku0,

so that from this and
div v̂∗1 + ẑ∗ + f = (2v̂∗0 + K)u0,

we obtain
γ∇2u0 + Ku0 + f = α(u2

0 − β)2u0 + Ku0,

so that
−γ∇2u0 + α(u2

0 − β)2u0 − f = 0,

that is,
δJ(u0) = 0.

Finally, from the Legendre transform proprieties, we also obtain

F∗
1 (v̂

∗
1) = ⟨∇u0, v̂∗1⟩L2 − F1(∇u0),

F̃2(v̂1, v̂∗0 , ẑ∗) = −⟨∇u0, v̂∗1⟩L2 + ⟨u0, ẑ∗⟩L2

+⟨0, v̂∗0⟩L2 − F2(u0, 0) (282)

and
F∗

3 (z
∗) = ⟨u0, ẑ∗⟩L2 − F3(u0).

Therefore

J∗(v̂∗1 , v̂∗0 , ẑ∗) = −F∗
1 (v̂

∗
1)− F̃∗

2 (v̂
∗
1 , v̂∗0 , ẑ∗) + F∗

3 (ẑ
∗)

= F1(∇u0) + F2(u0, 0)− F3(u0)

= J(u0). (283)

Observe now that from δJ(u0) = 0, for K > 0 sufficiently large, we have

J(u0) = inf
u∈V

{
J(u) +

K
2

∫
Ω
(u − u0)

2 dx
}

.

Joining the pieces we have got

J(u0) = inf
u∈V

{
J(u) +

K
2

∫
Ω
(u − u0)

2 dx
}

= J∗(v̂∗1 , v̂∗0 , ẑ∗). (284)

We have obtained numerical results for the case A, where γ = 0.1, α = 3.0, β = 5.0, f (x) = 10.0
and K = 120.

For the optimal solution u(x), where

u(x) =
(v1∗)′ + z∗ + f

2 v∗0 + K
,

please see Figure 36.
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Figure 36. Optimal solution u(x) for the case A.

Here we present the software in MATLAB through which we have obtained such results.
*************************************

1. clear all
global m8 d yo z1 K e1 dv1 dv2 v3 v4 v1 v2 A A3 B L u
m8=100;
d=1/m8;
A3=0.1;
A=3.0;
B=5.0;
K=120;
e1=0.0007;
for i=1:m8
yo(i,1)=10.0;
z1(i,1)=0.0;
end;
L=1/2;
for i=1:2*m8
xo(i,1)=3.0;
end;
for k1=1:30
k1
k=1;
b12=1.0;
while (b12 > 10−4) && (k < 15)
k
k=k+1;
X=fminunc(’funMarch24LGA7’,xo);
b12=max(abs(X-xo))
xo=X;
u(m8/2,1)
end;
for i=1:m8-1
z1(i,1)=K*(dv1(i,1)+z1(i,1)+yo(i,1))/(2*v2(i,1)+K);
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end;
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);

*****************************
With the auxiliary function "funMarch24LGA7"
**********************************

1. function S=funMarch24LGA7(x)
global m8 d yo z1 z2 K e1 dv1 dv2 v3 v4 v1 v2 A A3 B L u
for i=1:m8
v1(i,1)=x(i,1);
v2(i,1)=x(i+m8,1);
end;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+v1(i, 1)2/2/A3 + 1/2 ∗ (dv1(i, 1) + z1(i, 1) + yo(i, 1))2/(2 ∗ v2(i, 1) + K);
S=S+v2(i, 1) ∗ B + v2(i, 1)2/2/A;
end;
for i=1:m8-1
u(i,1)=(dv1(i,1)+z1(i,1)+yo(i,1))/(2*v2(i,1)+K);
end;
u(m8,1)=0;

***********************************

48. A Convex Dual Variational Formulation for a Relaxed Non-Convex Primal One
Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1
2

∫
Ω
((u′)2 − 1)2 dx +

1
2

∫
Ω
(u − f )2 dx,

where
V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2}.

Denoting V0 = W1,2
0 (Ω), we define J1 : V × V0 × [0, 1] → R where

J1(u, ϕ, λ) =
λ

2

∫
Ω
((u′ − (1 − λ)ϕ′)2 − 1)2 dx

+
(1 − λ)

2

∫
Ω
((u′ + λϕ′)2 − 1)2 dx +

1
2

∫
Ω
(u − f )2 dx. (285)
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Observe that

J1(u, ϕ, λ) = −⟨(u′ − (1 − λ)ϕ′)2 − 1, v∗3⟩L2 +
λ

2

∫
Ω
((u′ − (1 − λ)ϕ′)2 − 1)2 dx

−⟨(u′ + λϕ′)2 − 1, v∗4⟩L2 +
(1 − λ)

2

∫
Ω
((u′ + λϕ′)2 − 1)2 dx

+⟨(u′ − (1 − λ)ϕ′)2 − 1, v∗3⟩L2 − ⟨u′ − (1 − λ)ϕ′, v∗1⟩L2

+⟨(u′ + λϕ′)2 − 1, v∗4⟩L2 − ⟨u′ + λϕ′, v∗2⟩L2

+⟨u′ − (1 − λ)ϕ′, v∗1⟩L2 + ⟨u′ + λϕ′, v∗2⟩L2

+
1
2

∫
Ω
(u − f )2 dx. (286)

Therefore

J1(u, ϕ, λ) ≥ inf
v3∈Y

{
−⟨v3, v∗3⟩L2 +

λ

2

∫
Ω
(v3)

2 dx
}

+ inf
v4∈Y

{
−⟨v4, v∗4⟩L2 +

(1 − λ)

2

∫
Ω
(v4)

2 dx
}

+ inf
ṽ3∈Y

{−⟨ṽ3, v∗1⟩L2 + ⟨ṽ2
3 − 1, v∗3⟩L2

+ inf
ṽ4∈Y

{−⟨ṽ4, v∗1⟩L2 + ⟨ṽ2
4 − 1, v∗3⟩L2

+ inf
(u,ϕ)∈V×V0

{
−⟨u − (1 − λ)ϕ, (v∗1)

′⟩L2 − ⟨u + λϕ, (v∗2)
′⟩L2

+
1
2

∫
Ω
(u − f )2 dx + v∗1(1)u(1) + v∗2(1)u(1)

}
= − 1

2λ

∫
Ω
(v∗3)

2 dx − 1
2(1 − λ)

∫
Ω
(v∗4)

2 dx

−
∫

Ω
v∗3 dx −

∫
Ω

v∗4 dx

−
∫

Ω

(v∗1)
2

4v∗3
dx −

∫
Ω

(v∗2)
2

4v∗4
dx

−1
2

∫
Ω
((v∗1)

′ + λ f )2 dx − 1
2

∫
Ω
((v∗2)

′ + (1 − λ) f )2 dx

≡ J∗(v∗1 , v∗2 , v∗3 , v∗4 , λ), (287)

∀(u, ϕ, λ) ∈ V × V0 × [0, 1], ∀(v∗1 , v∗2 , v∗3 , v∗4) ∈ [Y∗]2 × B∗, where

B∗ = {(v∗3 , v∗4) ∈ Y∗ × Y∗ : v∗3 > 0 and v∗4 > 0, in Ω},

and

J∗(v∗1 , v∗2 , v∗3 , v∗4 , λ) = − 1
2λ

∫
Ω
(v∗3)

2 dx − 1
2(1 − λ)

∫
Ω
(v∗4)

2 dx

−
∫

Ω
v∗3 dx −

∫
Ω

v∗4 dx

−
∫

Ω

(v∗1)
2

4v∗3
dx −

∫
Ω

(v∗2)
2

4v∗4
dx

−1
2

∫
Ω
((v∗1)

′ + λ f )2 dx − 1
2

∫
Ω
((v∗2)

′ + (1 − λ) f )2 dx. (288)

From such results, we may infer that

inf
(u,ϕ,λ)∈V×V0×[0,1]

J1(u, ϕ, λ) ≥ inf
λ∈[0,1]

 sup
(v∗1 ,v∗2 ,v∗3 ,v∗4)∈[Y∗ ]×B∗

J∗(v∗1 , v∗2 , v∗3 , v∗4 , λ)

.
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We have developed numerical results for the cases f (x) = sin(πx)/2 and f (x) = 0
For the corresponding optimal solution u(x) for the case f (x) = sin(πx)/2, please see Figure 37.
For the corresponding optimal solution u(x) for the case f (x) = 0, please see Figure 38.
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Figure 37. Optimal solution u(x) for the case f (x) = sin(πx)/2.
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Figure 38. Optimal solution u(x) for the case f (x) = 0.

Here we present the software in MATLAB through which we have obtained such numerical
results.

**************************

1. clear all
global m8 d yo u L v1 v2 v3 v4 dv1 dv2 K dz1 z1 e1
m8=100;
d=1/m8;
K=1.0;
e1=0.0007;
L=1/2;
for i=1:m8
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yo(i,1)=0.0*sin(pi*i*d)/2;
end;
for i=1:4*m8
xo(i,1)=0.8;
end;
x1(1,1)=1/2;
for k1=1:12
k1
k=1;
b12=1.0;
while (b12 > 10−4) && (k < 15)
k
k=k+1;
X=fminunc(’funMarch24A18’,xo);
b12=max(abs(X-xo))
u(m8/2,1)
xo=X;
end;
X1=fminunc(’funMarch24A19’,x1);
x1=X1;
u(m8/2,1)
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);

************************
With the auxiliary functions "funMarch24A18" and "funMarch24A19":
*************************

1. function S=funMarch24A18(x)
global m8 d yo u e1 v1 v2 v3 v4 dv1 dv2 L
for i=1:m8
v1(i,1)=x(i,1);
v2(i,1)=x(i+m8,1);
v3(i,1)=x(i+2*m8,1);
v4(i,1)=x(i+3*m8,1);
end;
for i=1:m8-1
dv1(i,1)=(v1(i+1,1)-v1(i,1))/d;
dv2(i,1)=(v2(i+1,1)-v2(i,1))/d;
end;
S=0;
for i=1:m8-1
S=S+(v1(i, 1))2/(2 ∗ v3(i, 1)2)/2+ v3(i, 1)4/2/(L+ e1)+ v3(i, 1)2 +(dv1(i, 1)+ L ∗ yo(i, 1))2/2+
v1(i, 1)2/2/(L + e1);
S=S+(v2(i, 1))2/(2 ∗ v4(i, 1)2)/2 + v4(i, 1)4/2/((1 − L) + e1) + v4(i, 1)2;
S=S+(dv2(i, 1) + (1 − L) ∗ yo(i, 1))2/2 + v2(i, 1)2/2/((1 − L) + e1);
end;
S=S-v1(m8,1)/2/d-v2(m8,1)/2/d;
for i=1:m8-1
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u(i,1)=L*(dv1(i,1)+L*yo(i,1))+(1-L)*(dv2(i,1)+(1-L)*yo(i,1));
end;
u(m8,1)=1/2;

****************************
*******************************

1. function S1=funMarch24A19(x)
global m8 d yo e1 v1 v2 v3 v4 dv1 dv2 L u
L=(sin(x(1,1))+1)/2;
S=0;
for i=1:m8-1
S=S+(v1(i, 1))2/(2 ∗ v3(i, 1)2)/2+ v3(i, 1)4/2/(L+ e1)+ v3(i, 1)2 +(dv1(i, 1)+ L ∗ yo(i, 1))2/2+
v1(i, 1)2/2/(L + e1);
S=S+(v2(i, 1))2/(2 ∗ v4(i, 1)2)/2 + v4(i, 1)4/2/((1 − L) + e1) + v4(i, 1)2

S=S+ (dv2(i, 1) + (1 − L) ∗ yo(i, 1))2/2 + v2(i, 1)2/2/((1 − L) + e1);
end;
S=S-v1(m8,1)/2/d-v2(m8,1)/2/d;
S1=-S;

***************************

49. A Dual Variational Formulation for the Shape Optimization of a Beam Model
Let Ω ⊂ [0, 1] ⊂ R be the horizontal axis of a straight beam with a variable thickness H(x).
Consider the problem of minimizing a relaxed functional J : V × [0, 1]× B → R, where

J(w, λ, L1, L2) =
λE0

2

∫
Ω

b
12

(H(L1)− (1 − λ)H1(L2))
3w2

xx dx

+
(1 − λ)E0

2

∫
Ω

b
12

(H(L1) + λH1(L2))
3w2

xx dx, (289)

subject to (
λE0

b
12

(H(L1)− (1 − λ)H1(L2))
3wxx

)
xx

+

(
(1 − λ)E0

b
12

(H(L1) + λH1(L2))
3wxx

)
xx

− P

= 0, in Ω. (290)

Here
H(x) = L1(x)h0,

H1(x) = L2(x)h0,

h0 = 0.2m, b = 0.15m, E0 = 107 Pa, P = 400N.
Also, for a simply supported beam,

V = {w ∈ W2,2(Ω) : w(0) = wxx(0) = w(1) = wxx(1) = 0},

B =
{
(L1, L2) : Ω → R2 measurable : 0.3 ≤ L1 ≤ 1,

−0.7 ≤ L2 ≤ 0.7, in Ω,
∫

Ω
L1(x) dx = 0.61 and

∫
Ω

L2(x) dx = 0
}

. (291)
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Moreover, we define Y = Y∗ = L2(Ω), and

A = {(w, λ, L1, L2) ∈ V × [0, 1]× B :(
λE0

b
12

(H(L1)− (1 − λ)H1(L2))
3wxx

)
xx

+

(
(1 − λ)E0

b
12

(H(L1) + λH1(L2))
3wxx

)
xx

− P

= 0, in Ω}. (292)

Observe that

inf
(w,λ,L1,L2)∈A

J(w, λ, L1, L2)

= inf
(λ,L1,L2)∈[0,1]×B

{
sup
ŵ∈V

{
inf

w∈V
{J(w, λ, L1, L2)

−
〈

ŵ,
(

λE0
b

12
(H(L1)− (1 − λ)H1(L2))

3wxx

)
xx

+

(
(1 − λ)E0

b
12

(H(L1) + λH1(L2))
3wxx

)
xx

− P
〉

L2

}}}
= inf

(λ,L1,L2)∈[0,1]×B

{
sup
ŵ∈V

{
inf

w∈V

{
λE0

2

∫
Ω

b
12

(H(L1)− (1 − λ)H1(L2))
3w2

xx dx

+
(1 − λ)E0

2

∫
Ω

b
12

(H(L1) + λH1(L2))
3w2

xx dx

−
〈

ŵ,
(

λE0
b

12
(H(L1)− (1 − λ)H1(L2))

3wxx

)
xx

+

(
(1 − λ)E0

b
12

(H(L1) + λH1(L2))
3wxx

)
xx

− P
〉

L2

}}}
= inf

(λ,L1,L2)∈[0,1]×B

{
sup
ŵ∈V

{
−λE0

2

∫
Ω

b
12

(H(L1)− (1 − λ)H1(L2))
3ŵ2

xx dx

− (1 − λ)E0

2

∫
Ω

b
12

(H(L1) + λH1(L2))
3ŵ2

xx dx + ⟨ŵ, P⟩L2

}}
= inf

(λ,L1,L2)∈[0,1]×B

{
inf

(M1,M2)∈C∗

{
1

2λE0b/12

∫
Ω

(M1)
2

(H(L1)− (1 − λ)H1(L2))3 dx

+
1

2(1 − λ)E0b/12

∫
Ω

(M1)
2

(H(L1) + λH1(L2))3 dx
}}

, (293)

where
C∗ = {(M1, M2) ∈ Y∗ × Y∗ : (M1)xx + (M2)xx + P = 0, in Ω}.

We have obtained numerical results through the following algorithm. It is worth highlighting the
convergence criterion in this software slightly differs from the one in the algorithm.

1. Set n = 1, ε = 10−4 and (L1)n ≡ 1/2, (L2)n ≡ 0.1, λn = 1/2.
2. Calculate wn ∈ V such that

(
λnE0

b
12

(H((L1)n)− (1 − λ)H1((L2)n))
3(wn)xx

)
xx

+

(
(1 − λn)E0

b
12

(H((L1)n) + λH1((L2)n))
3(wn)xx

)
xx

− P

= 0, in Ω, (294)
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3. Calculate λn+1 ∈ [0, 1] such that

J(wn, λn+1, (L1)n, (L2)n) = inf
λ∈[0,1]

J((wn, λ, (L1)n, (L2)n).

4. Calculate ((L1)n+1, (L2)n+1) ∈ B such that

J∗((M1)n, (M2)n, λn+1, (L1)n+1, (L2)n+1) = inf
(L1,L2)∈B

J∗((M1)n, (M2)n, λn+1, L1, L2),

where
(M1)n = −λn+1E0

b
12

(H((L1)n)− (1 − λn+1)(L2)n)
3(wn)xx,

(M2)n = −(1 − λn+1)E0
b

12
(H((L1)n) + λn+1(L2)n)

3(wn)xx,

and

J∗(M1, M2) =
1

2λE0b/12

∫
Ω

(M1)
2

(H(L1)− (1 − λ)H1(L2))3 dx

+
1

2(1 − λ)E0b/12

∫
Ω

(M2)
2

(H(L1) + λH1(L2))3 dx. (295)

5. If
∥((L1)n+1, (L2)n+1)− ((L1)n, (L2)n∥∞ < ε,

then stop, otherwise n := n + 1 and go to item 2.

We have obtained numerical results for a case A with the constant values above specified.
For the optimal solution L1(x), please see Figure 39.
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Figure 39. Optimal solution L1(x) for the case A.

Here we present the software in MATLAB through which we have obtained such results.

*********************************

1. clear all
global m8 d yo u L1 L2 ho Eo B L H H1 Ho Ho1
m8=100;
d=1/m8;
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P=400;
Eo=107;
for i=1:m8 yo(i,1)=P; end;
ho=0.20;
B=0.15;
for i=1:m8
L1(i,1)=1/2;
L2(i,1)=0.3;
uo(i,1)=0.1;
Ho(i,1)=L1(i,1)*ho;
Ho1(i,1)=0.1*L2(i,1)*ho;
end;
L=1/2;
for i=1:m8
H(i,1)=L1(i,1)*ho;
H1(i,1)=L2(i,1)*ho;
end;
for i=1:2*m8
xo(i,1)=0.3;
end;
x1(1,1)=1/2;
A=zeros(2*m8,2*m8);
for i=1:m8
A(1,i)=1.0;
A(2,i+m8)=1.0;
end;
b=zeros(2*m8,1);
b(1,1)=m8*0.61;
for i=1:m8
lb(i,1)=0.3;
lb(i+m8,1)=-0.7;
end;
for i=1:m8
ub(i,1)=1;
ub(i+m8,1)=0.7;
end;
i=1;
m12=2;
m50(i)=1/m12;
z(i)=m50(i) ∗ (−yo(i, 1) ∗ d2);
for i=2:m8-1
m12=2-m50(i-1);
m50(i)=1/m12;
z(i)=m50(i) ∗ (−yo(i, 1) ∗ d2 + z(i − 1));
end;
v(m8,1)=0;
for i=1:m8-1
v(m8-i,1)=m50(m8-i)*v(m8-i+1,1)+z(m8-i);
end;
k1=1;
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b14=1.0;
while (b14 > 10−4) && (k1 < 15)
k1
k1=k1+1;
for i=1:m8
y1(i,1)=v(i, 1)/(Eo ∗ L ∗ B/12 ∗ (H(i, 1)− (1 − L) ∗ H1(i, 1))3 + Eo ∗ (1 − L) ∗ B/12 ∗ (H(i, 1) +
L ∗ H1(i, 1))3);
end;
i=1;
m12=2;
m60(i)=1/m12;
z1(i)=m60(i) ∗ (−y1(i, 1) ∗ d2);
for i=2:m8-1
m12=2-m60(i-1);
m60(i)=1/m12;
z1(i)=m60(i) ∗ (−y1(i, 1) ∗ d2 + z1(i − 1));
end;
u(m8,1)=0;
for i=1:m8-1
u(m8-i,1)=m60(m8-i)*u(m8-i+1)+z1(m8-i);
end;
k=1;
b12=1.0;
while (b12 > 10−4) && (k < 100)
k
k=k+1;
X=fmincon(’funMarch2024Beam1’,xo,[ ],[ ],A,b,lb,ub);
b12=abs(max(xo-X))
xo=X;
L1(m8/2,1)
end;
Ho=H;
Ho1=H1;
X1=fminunc(’funMarch2024Beam2’,x1);
x1=X1;
b14=max(abs(u-uo))
uo=u;
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,L1);
*********************

With the auxiliary function "funMarch2024Beam1"
****************************************

1. function S1=funMarch2024Beam1(x)
global m8 d yo u L1 L2 ho Eo B L Ho Ho1
for i=1:m8
L1(i,1)=x(i,1);
L2(i,1)=x(i+m8,1);

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


207 of 360

end;
d2u(1,1)=(−2 ∗ u(1, 1) + u(2, 1))/d2;
for i=2:m8-1
d2u(i,1)=(u(i + 1, 1)− 2 ∗ u(i, 1) + u(i − 1, 1))/d2;
end;
for i=1:m8
H(i,1)=L1(i,1)*ho;
H1(i,1)=L2(i,1)*ho;
end;
S=0;
for i=1:m8-1
S=S+L ∗ (Eo ∗ B/12 ∗ (Ho(i, 1)− (1 − L) ∗ Ho1(i, 1))3 ∗ d2u(i, 1))2/(Eo ∗ B/12 ∗ (H(i, 1)− (1 −
L) ∗ H1(i, 1))3);
S=S+(1 − L) ∗ (Eo ∗ B/12 ∗ (Ho(i, 1) + L ∗ Ho1(i, 1))3 ∗ d2u(i, 1))2/(Eo ∗ B/12 ∗ (H(i, 1) + L ∗
H1(i, 1))3);
end;
S1=S;
********************************

And the auxiliary function "funMarch2024Beam2"
****************************************

1. function S=funMarch2024Beam2(x)
global m8 d yo u L1 L2 ho Eo B L Ho Ho1
L=(sin(x(1,1))+1)/2;
d2u(1,1)=(−2 ∗ u(1, 1) + u(2, 1))/d2;
for i=2:m8-1
d2u(i,1)=(u(i + 1, 1)− 2 ∗ u(i, 1) + u(i − 1, 1))/d2;
end; for i=1:m8
H(i,1)=L1(i,1)*ho;
H1(i,1)=L2(i,1)*ho;
end;
S=0;
for i=1:m8-1
S=S+L ∗ Eo ∗ B/12 ∗ (H(i, 1)− (1 − L) ∗ H1(i, 1))3 ∗ d2u(i, 1)2;
S=S +(1 − L) ∗ Eo ∗ B/12 ∗ (H(i, 1) + L ∗ H1(i, 1))3 ∗ d2u(i, 1)2;
end;
****************************

50. A Dual Variational Formulation for a Relaxed Primal Formulation Related to a
Shape Optimization Model in Elasticity

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider the problem of minimizing a relaxed functional J : V × [0, 1]× B → R where

J(u, λ, λ1, λ2) =
1
2

∫
Ω

Hijkl(λ, λ1(x), λ2(x))eij(u)ekl(u) dx,

subject to
(Hijkl(λ, λ1(x), λ2(x))ekl(u)),j + fi = 0, in Ω, ∀i{1, 2, 3}.

Here for simplicity V = W1,2
0 (Ω;R3), Y = Y∗ = L2(Ω;R3), Y1 = Y∗

1 = L2(Ω;R3×3), and
f ∈ L2(Ω;R3).
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Also, u = (u1, u2, u3) ∈ V denotes the field of displacements resulting from the action of f ,

{eij(u)} =

{
1
2
(ui,j + uj,i)

}
, ∀i, j ∈ {1, 2, 3},

and Eb ≤ E(λ, λ1, λ2) ≤ Ea, Ea ≫ Eb > 0, where λ1(x) = 1 corresponds to the presence of a stronger
material with Young modulus Ea at the point x ∈ Ω. Moreover, λ1(x) = 0 corresponds to the presence
of a much weaker material with elasticity model Eb, simulating a void space at the point x ∈ Ω. On
the other hand, λ and λ2(x) are a real parameter and a function related to the relaxation process for
the minimization of J in λ1.

Furthermore,

E(λ, λ1(x), λ2(x)) = λ[(λ1(x)− (1 − λ)λ2(x))3Ea + (1 − (λ1(x)− (1 − λ)λ2(x)))3Eb]

+(1 − λ)[(λ1(x) + λλ2(x))3Ea + (1 − (λ1(x) + λλ2(x)))3Eb], (296)

Hijkl(λ, λ1(x), λ2(x)) = E(λ, λ1(x), λ2(x))Aijkl ,

where
Aijkl = λ̃δijδkl + µ̃(δikδjl + δilδjk),

∀i, j, k, l ∈ {1, 2, 3}.
Here {δij} is the Kronecker delta and λ̃ > 0, µ̃ > 0 are appropriate real constants.
At this point we define

B =
{
(λ1, λ2) : Ω → R2 measurable : 0 ≤ λ1(x) ≤ 1,

−0.8 ≤ λ2(x) ≤ 0.8, in Ω,
∫

Ω
λ1(x) dx = c0Vol(Ω),

∫
Ω

λ2(x) dx = 0
}

, (297)

and

A = {(u, λ, λ1, λ2) ∈ V × [0, 1]× B :

(Hijkl(λ, λ1, λ2)ekl(u)),j + fi = 0, in Ω, ∀i ∈ {1, 2, 3}}. (298)

Observe that

inf
(u,λ,λ1,λ2)∈A

J(u, λ, λ1, λ2)

= inf
(λ,λ1,λ2)∈[0,1]×B

{
sup
û∈V

{
inf
u∈V

{
J(u, λ, λ1, λ2) + ⟨ûi, (Hijkl(λ, λ1, λ2)ekl(u))j + fi⟩L2

}}}

= inf
(λ,λ1,λ2)∈[0,1]×B

{
sup
û∈V

{
inf
u∈V

{
1
2

∫
Ω

Hijkl(λ, λ1, λ2)eij(u)ekl(u) dx

+⟨ûi, (Hijkl(λ, λ1, λ2)ekl(u))j + fi⟩L2

}}}
= inf

(λ,λ1,λ2)∈[0,1]×B

{
sup
û∈V

{
−1

2

∫
Ω

Hijkl(λ, λ1, λ2)eij(û)ekl(û) dx + ⟨ûi, fi⟩L2

}}

= inf
(λ,λ1,λ2)∈[0,1]×B

{
inf

σ∈C∗

{
1
2

∫
Ω

Hijkl(λ, λ1, λ2)σijσkl dx
}}

, (299)

where
{Hijkl(λ, λ1, λ2)} = {Hijkl(λ, λ1, λ2)}−1
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in an appropriate tensor sense and

C∗ = {σ = {σij} ∈ Y∗
1 : σij,j + fi = 0, in Ω, ∀i ∈ {1, 2, 3}}.

We have obtained numerical results concerning the optimal shape of a two-dimensional beam
though the following algorithm:

1. Set n = 1, ε = 10−4, λn = 1/2, (λ1)n(x) ≡ 1/2, (λ2)n(x) ≡ 0.
2. Calculate un ∈ V such that

(Hijkl(λn, (λ1)n, (λ2)n)ekl(un)),j + fi = 0, in Ω, ∀i ∈ {1, 2, 3}.

3. Calculate λn+1 ∈ [0, 1] such that

J(un, λn+1, (λ1)n, 0) = inf
λ∈[0,1]

{J(un, λ, (λ1)n, 0)}.

4. Calculate ((λ1)n+1, (λ2)n+1) ∈ B such that

−J(un, λn+1, (λ1)n+1, (λ2)n+2) = inf
(λ1,λ2)∈B

{−J(un, λn+1, λ1, λ2)}.

5. Set (λ2)n+1 ≡ 0.
6. If ∥(λ1)n+1 − (λ1)n∥∞ ≤ ε, then stop. Otherwise n := n + 1 and go to item 2.

We developed numerical results for a two-dimensional beam, in a two-dimensional elasticity
context for two cases, namely, case A and case B.

For the case A we consider a two-dimensional beam of dimensions 1m × 0.5m, clamped at x = 0
and with a vertical load of P = −42000000 (4) 500j applied to the point (x0, y0) = (1, 0.25).

For the case B, we consider a a two-dimensional beam of dimensions 1m× 0.5m, simply supported
at (x, y) = (0, 0) and (x, y) = (1, 0), with a vertical load P = −42000000 500j applied to the point
(x0, y0) = (1/3, 0.5).

Denoting u = (u, v), for both cases we define the strain tensor as

e(u) = (ex(u), ey(u), exy(u))T ,

where ex(u) = ux, ey(u) = vy, and

exy(u) =
1
2
(uy + vx).

We also set Ea = 205 109 Pa and Eb = 300 Pa, ν = 0.33 and c0 = 0.6091 for both the cases.
Moreover the stress tensor σ is given by

σ = H(e(u)),

where

H =
E(λ, λ1(x), λ2(x))

1 − ν2


1 ν 0
ν 1 0
0 0 1

2 (1 − ν)

. (300)

For the optimal shape obtained through λ1 for the case A, please see Figure 40.
For the optimal shape obtained through λ1 for the case B, please see Figure 41.
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Figure 40. Optimal shape λ1(x, y) for the beam of case A.

Figure 41. Optimal shape λ1(x, y) for the beam of case B.

Here we present the software through which we have obtained such results, in a finite differences
context for the case B.

We highlight the convergence criterion in the software is a little different from the one in the
algorithm above described.

***************************

1. clear all
global P m8 d w Ea Eb Lo d1 z1 m9 du1 du2 dv1 dv2 c3 Lo1 L u v
m8=24;
m9=22;
c3=0.95;
d=1.0/m8;
d1=0.50/m9;
Ea=410 ∗ 106 ∗ 500;
Eb=300;
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w=0.30;
P=-42000000*500;
z1=(m8-1)*(m9-1);
A3=zeros(2*z1,2*z1);
for i=1:z1
A3(1,i)=1.0;
A3(2,i+z1)=1.0;
end;
L=1/2;
b=zeros(2*z1,1);
b(1,1)=c3*z1;
for i=1:z1
uo(i,1)=0.0;
uo(i+z1,1)=-0.80;
end;
for i=1:z1
u1(i,1)=1.0;
u1(i+z1,1)=0.80;
end;
for i=1:m9-1
for j=1:m8-1
Lo(i,j)=c3;
Lo1(i,j)=0.1*c3;
end;
end;
for i=1:z1*2
x1(i,1)=c3*z1;
end;
x3(1,1)=1/2;
for i=1:4*m8*m9
xo(i,1)=0.000;
end;
xw=xo;
xv=Lo;
for k2=1:22
c3=0.98*c3;
b(1,1)=c3*z1;
k2
b14=1.0;
k3=0;
while (b14 > 10−3.5) && (k3 < 5)
k3=k3+1;
b12=1.0;
k=0;
while (b12 > 10−4.0) && (k < 120)
k=k+1;
k2
k3
k
X=fminunc(’funbeamMarch24’,xo); xo=X;
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b12=max(abs(xw-xo))
xw=X;
end;
X1=fminunc(’funbeamMarch24A1’,x3);
x3=X1;
for i=1:m9-1
for j=1:m8-1
E1=3 ∗ L ∗ ((Lo(i, j)− (1 − L) ∗ Lo1(i, j))2 ∗ Ea − (1 − (Lo(i, j)− (1 − L) ∗ Lo1(i, j)))2 ∗ Eb);
E1=E1+3 ∗ (1 − L) ∗ ((Lo(i, j) + L ∗ Lo1(i, j))2 ∗ Ea − (1 − (Lo(i, j) + L ∗ Lo1(i, j)))2 ∗ Eb);
E2=3 ∗ L ∗ (Lo(i, j)− (1− L) ∗ Lo1(i, j))2 ∗ Ea ∗ (−(1− L))− (1− (Lo(i, j)− (1− L) ∗ Lo1(i, j)))2 ∗
Eb ∗ (−(1 − L));
E2=E2+3 ∗ (1 − L) ∗ ((Lo(i, j) + L ∗ Lo1(i, j))2 ∗ Ea ∗ L − (1 − (Lo(i, j) + L ∗ Lo1(i, j)))2 ∗ Eb ∗ L);
ex=du1(i,j);
ey=dv2(i,j);
exy=1/2*(dv1(i,j)+du2(i,j));
Sx1=E1 ∗ (ex + w ∗ ey)/(1 − w2);
Sy1=E1 ∗ (w ∗ ex + ey)/(1 − w2);
Sxy1=E1/(2 ∗ (1 + w)) ∗ exy;
Sx2=E2 ∗ (ex + w ∗ ey)/(1 − w2);
Sy2=E2 ∗ (w ∗ ex + ey)/(1 − w2);
Sxy2=E2/(2 ∗ (1 + w)) ∗ exy;
dc31(i,j)=-(Sx1*ex+Sy1*ey+2*Sxy1*exy);
dc32(i,j)=-(Sx2*ex+Sy2*ey+2*Sxy2*exy);
end;
end;
for i=1:m9-1
for j=1:m8-1
f(j+(i-1)*(m8-1))=dc31(i,j);
f((m9-1)*(m8-1)+j+(i-1)*(m8-1))=dc32(i,j);
end;
end;
for k1=1:1
k1
X1=linprog(f,[ ],[ ],A3,b,uo,u1,x1);
x1=X1;
end;
for i=1:z1
x1(i+z1,1)=0;
end;
for i=1:m9-1
for j=1:m8-1
Lo(i,j)=X1(j+(m8-1)*(i-1));
Lo1(i,j)=X1((m8-1)*(m9-1)+j+(m8-1)*(i-1))*0.0;
end;
end;
b14=max(max(abs(Lo-xv)))
xv=Lo;
colormap(gray); imagesc(-Lo); axis equal; axis tight; axis off;pause(1e-6)
end;
end;
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*******************************
With the auxiliary function "funbeamMarch24"
*********************************

1. function S=funbeamMarch24(x)
global P m8 d w u v Ea Eb Lo d1 m9 du1 du2 dv1 dv2 Lo1 L
for i=1:m9
for j=1:m8
u(i,j)=x(j+(m8)*(i-1));
v(i,j)=x(m8*m9+(i-1)*m8+j);
end;
end;
u(m9-1,1)=0; v(m9-1,1)=0; u(m9-1,m8-1)=0; v(m9-1,m8-1)=0;
for i=1:m9-1
for j=1:m8-1
du1(i,j)=(u(i,j+1)-u(i,j))/d;
du2(i,j)=(u(i+1,j)-u(i,j))/d1;
dv1(i,j)=(v(i,j+1)-v(i,j))/d;
dv2(i,j)=(v(i+1,j)-v(i,j))/d1;
end;
end;
S=0;
for i=1:m9-1
for j=1:m8-1
E1=L ∗ ((Lo(i, j)− (1 − L) ∗ Lo1(i, j))3 ∗ Ea + (1 − (Lo(i, j)− (1 − L) ∗ Lo1(i, j)))3 ∗ Eb);
E2=(1 − L) ∗ ((Lo(i, j) + L ∗ Lo1(i, j))3 ∗ Ea + (1 − (Lo(i, j) + L ∗ Lo1(i, j)))3 ∗ Eb);
ex=du1(i,j);
ey=dv2(i,j);
exy=1/2*(dv1(i,j)+du2(i,j));
Sx=(E1 + E2) ∗ (ex + w ∗ ey)/(1 − w2);
Sy=(E1 + E2) ∗ (w ∗ ex + ey)/(1 − w2);
Sxy=(E1 + E2)/(2 ∗ (1 + w)) ∗ exy;
S=S+1/2*(Sx*ex+Sy*ey+2*Sxy*exy);
end;
end;
S=S*d*d1-P*v(2,(m8)/3)*d*d1;

*******************************
And the auxiliary function "funbeamMarch24A1"

**********************************

1. function S1=funbeamMarch24A1(x)
global P m8 d w u v Ea Eb Lo d1 m9 du1 du2 dv1 dv2 L Lo1
L=(sin(x(1,1))+1)/2;
for i=1:m9-1
for j=1:m8-1
du1(i,j)=(u(i,j+1)-u(i,j))/d;
du2(i,j)=(u(i+1,j)-u(i,j))/d1;
dv1(i,j)=(v(i,j+1)-v(i,j))/d;
dv2(i,j)=(v(i+1,j)-v(i,j))/d1;
end;
end;
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S=0;
for i=1:m9-1
for j=1:m8-1
E1=L ∗ ((Lo(i, j)− (1 − L) ∗ Lo1(i, j))3 ∗ Ea + (1 − (Lo(i, j)− (1 − L) ∗ Lo1(i, j)))3 ∗ Eb);
E2=(1 − L) ∗ ((Lo(i, j) + L ∗ Lo1(i, j))3 ∗ Ea + (1 − (Lo(i, j) + L ∗ Lo1(i, j)))3 ∗ Eb);
ex=du1(i,j);
ey=dv2(i,j);
exy=1/2*(dv1(i,j)+du2(i,j));
Sx=(E1 + E2) ∗ (ex + w ∗ ey)/(1 − w2);
Sy=(E1 + E2) ∗ (w ∗ ex + ey)/(1 − w2);
Sxy=(E1 + E2)/(2 ∗ (1 + w)) ∗ exy;
S=S+1/2*(Sx*ex+Sy*ey+2*Sxy*exy);
end;
end;
S1=S;

*********************************

51. An Existence Result for a General Parabolic Non-Linear Equation
Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider the parabolic non-linear equation

∂u
∂t = ε∇2u + g(u) + ∑m

j=1 gj(u) ∂u
∂xj

+ f , in Ω × (0, T),

u(x, 0) = û0, in Ω,
u = 0, on ∂Ω × [0, T].

(301)

Here ε > 0, f ∈ L2([0, T], W1,2(Ω)) ∩ L∞(Ω × [0, T]), û0 ∈ H1
0(Ω) ∩ L∞(Ω), where t denotes time

and [0, T] is a time interval.
Also g : R → R and gj : R → R are continuous functions neither necessarily linear nor

convex, ∀j ∈ {1, · · · , m}.
We assume there exist K33 > 0 and K1 > 0 such that

∥g∥∞ ≤ K33

m(Ω)1/2 ,

∥gj∥∞ ≤ K1

m
,

∀j ∈ {1, · · · , n}.
At this point, we recall that fixing γ > 0,

(Id − γ∇2)−1 : L2(Ω) → H1
0(Ω)

is a bounded and linear operator, so that for each h ∈ L2(Ω) there exists a unique u ∈ H1
0(Ω) such that

(Id − γ∇2)u = h.

In such a case we denote
u = (Id − γ∇2)−1h,

so that
∥u∥1,2,Ω ≤ ∥(Id − γ∇2)−1∥∥h∥0,2,Ω.
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Moreover, fixing N ∈ N and defining

∆tN =
T
N

,

in a partial finite differences context, discretizing in t consider the approximate equation system

un+1 − un

∆tN
= ε∇2un+1 + g(un) +

m

∑
j=1

gj(un)(un)xj + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
From such a system, for n = 0, we obtain

u1 − û0 = ε∇2(u1)∆tN + g(û0)∆tN +
m

∑
j=1

gj(û0)(û0)xj ∆tN + f0∆tN .

Hence

u1 = (Id − ε(∇2)∆tN)
−1

(
û0 + g(û0)∆tN +

m

∑
j=1

gj(û0)(û0)xj ∆tN + f0∆tN

)
,

so that

∥u1∥1,2,Ω

≤ ∥(Id − ε(∇2)∆tN)
−1∥

×
(
∥û0∥0,2,Ω + ∥g(û0)∥0,2,Ω∆tN +

m

∑
j=1

∥gj(û0)(û0)xj∥0,2,Ω ∆tN + ∥ f0∥0,2,Ω∆tN

)
. (302)

Observe that there exists K2 > 0 such that ∥ f ∥∞,Ω×[0,T] ≤ K2 so that

∥ fn∥1,2,Ω ≤ K36, ∀n ∈ {0, 1, · · · , N − 1},

for some appropriate K36 > 0.
From such results and the hypotheses, we may infer that

∥u1∥1,2,Ω ≤ ∥(Id − ε(∇2)∆tN)
−1∥(∥û0∥1,2,Ω + K33∆tN + K1∥û0∥1,2,Ω∆tN + K36∆tN)

≤ ∥(Id − ε(∇2)∆tN)
−1∥(∥û0∥1,2,Ω + K1∥û0∥1,2,Ω∆tN + K3∆tN), (303)

where
K3 = K33 + K36,

so that
∥u1∥1,2,Ω ≤ α1∥û0∥1,2,Ω + α2,

where
α1 = ∥(Id − ε(∇2)∆tN)

−1∥(1 + K1∆tN),

and
α2 = ∥(Id − ε(∇2)∆tN)

−1∥K3∆tN .

In fact, generically we may similarly obtain

∥un+1∥1,2,Ω ≤ α1∥un∥1,2,Ω + α2,

∀n ∈ {0, 1, · · · , N − 1}.
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From such a result, inductively we may obtain

∥uj∥1,2,Ω ≤ (α1)
j∥û0∥1,2,Ω +

j−1

∑
k=0

αk
1α2.

In particular for j = N, we get

∥uN∥1,2,Ω

≤ (α1)
N∥û0∥1,2,Ω +

N−1

∑
k=0

αk
1α2

= (α1)
N∥û0∥1,2,Ω +

1 − αN
1

1 − α1
α2

=

∥∥∥∥∥
(

Id − ε(∇2)
T
N

)−1
∥∥∥∥∥

N(
1 + K1

T
N

)N
∥û0∥1,2,Ω

+
1 − αN

1
1 − α1

α2. (304)

Observe that ∥∥∥∥∥
(

Id − ε(∇2)
T
N

)−1
∥∥∥∥∥

N(
1 + K1

T
N

)N

≤
(

1 + K1
T
N

)N

→ eK1T , as N → ∞. (305)

Also,
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∣∣∣∣ α2

1 − α1

∣∣∣∣
=

∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥K3

T
N

|1 − α1|

≤
K3

T
N

|1 − α1|

=
K3

T
N∣∣∣∣1 − ∥∥∥∥(Id − ε(∇2) T

N

)−1
∥∥∥∥(1 + K1

T
N

)∣∣∣∣
=

K3

N
T

∣∣∣∣1 − ∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥(1 + K1

T
N

)∣∣∣∣
=

K3∣∣∣∣N
T −

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1 + 1

)(
N
T + K1

)∣∣∣∣
=

K3∣∣∣∣N
T −

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)(
N
T + K1

)
− N

T − K1

∣∣∣∣
=

=
K3∣∣∣∣−(∥∥∥∥(Id − ε(∇2) T

N

)−1
∥∥∥∥− 1

)(
N
T

)
− K1 −

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)
K1

∣∣∣∣
=

=
K3∣∣∣∣−(∥∥∥∥Id + ∑∞

j=1

(
ε(∇2) T

N

)j
∥∥∥∥− 1

)(
N
T

)
− K1 −

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)
K1

∣∣∣∣
=

K3∣∣∣∣K1 +

(∥∥∥∥Id + ∑∞
j=1

(
ε(∇2) T

N

)j
∥∥∥∥− 1

)(
N
T

)
+

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)
K1

∣∣∣∣
≤ K3∣∣∣∣K1 +

(
∥Id∥ −

∥∥∥∥∑∞
j=1

(
ε(∇2) T

N

)j
∥∥∥∥− 1

)(
N
T

)
+

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)
K1

∣∣∣∣
≤ K3∣∣∣∣K1 +

(
∥Id∥ − ∑∞

j=1

∥∥∥ε(∇2) T
N

∥∥∥j
− 1
)(

N
T

)
+

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)
K1

∣∣∣∣
≤ K3∣∣∣∣K1 −

(
∑∞

j=1

∥∥∥ε(∇2) T
N

∥∥∥j
)(

N
T

)
+

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)
K1

∣∣∣∣
≤ K3∣∣∣∣K1 − ∥ε(∇2)∥

1−∥ε∇2∥ T
N
+

(∥∥∥∥(Id − ε(∇2) T
N

)−1
∥∥∥∥− 1

)
K1

∣∣∣∣
→ K3

|K1 − ∥ε(∇2)∥| , as N → ∞. (306)

From such results we may infer that∣∣∣∣∣ (1 − αN
1 )α2

1 − α1

∣∣∣∣∣ ≤ (1 + αN
1 )

∣∣∣∣ α2

1 − α1

∣∣∣∣,
so that
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lim sup
N→∞

∣∣∣∣∣ (1 − αN
1 )α2

1 − α1

∣∣∣∣∣ ≤ (1 + eK1T)K3

|K1 − ∥ε∇2∥| .

From these results, denoting now more generically un ≡ uN
n joining the pieces, we have got

lim sup
N→∞

∥uN
N∥1,2,Ω ≤ eK1T∥û0∥1,2,Ω +

(1 + eK1T)K3

|K1 − ∥ε∇2∥| .

Consequently, we may infer that there exists K4 > 0 such that

∥uN
j ∥1,2,Ω ≤ K4, ∀j ∈ {0, 1, · · · , N}, ∀N ∈ N.

Define now

uN
0 (x, t) = uN

n (x)
(

n + 1 − t
∆tN

)
+ uN

n+1(x)
(

t
∆tN

− n
)

,

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that

uN
0 (x, t) = uN

n (x), if t = n∆tN , ∀n ∈ {0, 1, · · · , N},

and

∂uN
0 (x, t)
∂t

=
uN

n+1 − uN
n

∆tN

= ε∇2uN
n+1 + g(uN

n ) +
m

∑
j=1

gj(uN
n )(uN

n )xj + fn, (307)

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Fix φ ∈ C∞

c (Ω).
Thus, fixing t ∈ [n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣

〈
∂uN

0
∂t

, φ

〉
L2

∣∣∣∣∣ ≤ ε|⟨∇uN
n+1,∇φ⟩L2 |+ |⟨g(uN

n ), φ⟩L2 |

+
∫

Ω

∣∣∣∣∣ m

∑
j=1

gj(uN
n )(uN

n )xj φ

∣∣∣∣∣ dx + |⟨φ, fn⟩L2 |

≤ ε∥uN
n+1∥1,2,Ω∥φ∥1,2,Ω + K1∥uN

n ∥1,2,Ω∥φ∥1,2,Ω + K3∥φ∥1,2,Ω

≤ K5∥φ∥1,2,Ω, ∀φ ∈ C∞
c (Ω), (308)

for some appropriate K5 > 0.
Since φ ∈ C∞

c (Ω) is arbitrary, we may conclude that∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω)

≤ K6, ∀N ∈ N,

uniformly in t on [0, T], for some appropriate constant K6 > 0.
Also, from the definition of uN

0 we have that there exists K7 > 0 such that

∥uN
0 ∥1,2,Ω ≤ K7, ∀N ∈ N

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω)) and v0 ∈ L2([0, T]; H−1(Ω)) such that

uN
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω)),
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and
∂uN

0
∂t

⇀ v0, weakly-star in L2([0, T], H−1(Ω)),

so that we may easily obtain

v0 =
∂u0

∂t
in a distributional sense.

At this point, we provide more details about this last result.
Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , N − 1} such that t ∈ [n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T)).
From this, we may infer that

∫
Ω

∂uN
0

∂t
φ(x, t) dx

=
∫

Ω

uN
n+1 − uN

n

∆tN
φ(x, t) dx

≤ ε
∫

Ω
|∇uN

n+1 · ∇φ| dx

+
∫

Ω
|g(uN

n ) φ(x, t)| dx +
∫

Ω

∣∣∣∣∣ m

∑
j=1

gj(uN
n )(uN

n )xj φ

∣∣∣∣∣ dx

+
∫

Ω
| fn φ| dx

≤ (K8∥uN
n ∥1,2,Ω + K20)∥φ∥1,2,Ω

≤ K9∥φ∥1,2,Ω, (309)

for some appropriate constants K8 > 0, K9 > 0, K20 > 0.
Hence,

∫ T

0

∫
Ω

∂uN
0

∂t
φ(x, t) dx dx

≤ K9

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (310)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T)) is arbitrary, we may infer that∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω×(0,T))

≤ K15,

for N ∈ N, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T))

such that, up to a not relabeled subsequence

∂uN
0

∂t
⇀ v0, weakly-star in H−1(Ω × (0, T)).

Therefore, ∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt →

∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T)).

On the other hand
∥uN

0 ∥0,2,Ω×(0,T) ≤ K16,
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∀N ∈ N, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T)) such that, up to a not

relabeled subsequence,
uN

0 ⇀ u0, weakly in L2(Ω × (0, T)).

Now fix again φ ∈ C∞
c (Ω × (0, T)).

Observe that ∫ T

0

∫
Ω

u0 φt dx dt = lim
N→∞

∫ T

0

∫
Ω

uN
0 φt dx dt

= − lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= −
∫ T

0

∫
Ω

v0 φ dx dt, (311)

Since such a φ ∈ C∞
c (Ω × (0, T)) is arbitrary, we may infer that

v0 =
∂u0

∂t

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
N→∞

∫
Ω

∂uN
0

∂t
φ dx =

∫
Ω

∂u0

∂t
φ dx,

∀φ ∈ H1
0(Ω).

Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uNk(t)
0 → u0(x, t), strongly in L2(Ω), for almost all t ∈ [0, T].

so that, up to subsequences,

uNk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Here we emphasise the sequence {Nk(t)} ⊂ N may depends on t.
Since g is continuous we have that

g(uNk(t)
0 (x, t)) → g(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|g(uNk(t)
0 (x, t))− g(u0(x, t))| ≤ ε, for almost all x ∈ F.
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Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω
(g(uNk(t)

0 (x, t))− g(u0(x, t)))φ dx
∣∣∣∣

≤
∫

Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

=
∫

F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx +
∫

Ω\F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx +

∫
Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥g(uNk(t)
0 )∥0,2,Ω + ∥g(u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (312)

for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
g(uNk(t)

0 )φ dx →
∫

Ω
g(u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω).

Similarly, fixing j ∈ {1, · · · , n}, since gj is continuous we have that

gj(u
Nk(t)
0 (x, t)) → gj(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix again t ∈ (0, T)
Let ε > 0 (a new value). From the Egorov Theorem, there exists a closed set F1 such that

m(Ω \ F1) ≤ ε and k0 ∈ N such that if k > k0, then

|gj(u
Nk(t)
0 (x, t))− gj(u0(x, t))| ≤ ε, for almost all x ∈ F1.

Observe now that∫
Ω
|gj(u

Nk(t)
0 (x, t))− gj(u0(x, t))|2 dx

≤
∫

F1

|gj(u
Nk(t)
0 (x, t))− gj(u0(x, t))|2 dx +

∫
Ω\F1

|gj(u
Nk(t)
0 (x, t))− gj(u0(x, t))|2 dx

≤
∫

F1

ε2 dx +
∫

Ω
|gj(u

Nk(t)
0 (x, t))− gj(u0(x, t))|2χΩ\F1

dx

≤ ε2m(Ω) + 2K2
1

∫
Ω

χΩ\F1
dx

≤ ε2m(Ω) + 2K2
1ε, ∀k > k0. (313)

Since such a ε > 0 is arbitrary, we may infer that∫
Ω
|gj(u

Nk(t)
0 )− gj(u0)|2 dx → 0, as k → ∞,

∀j ∈ {1, · · · , n}.
Select again φ ∈ C∞

c (Ω). Since

∥gj(u
Nk(t)
0 )− gj(u0)∥0,2,Ω → 0, as k → ∞

and
∇uNk(t)

0 ⇀ ∇u0, weakly in L2(Ω;Rm),
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we obtain,

∣∣∣∣∫Ω
gj(u

Nk(t)
0 )(uNk(t)

0 )xj φ dx −
∫

Ω
gj(u0)(u0)xj φ dx

∣∣∣∣
≤

∣∣∣∣∫Ω
gj(u

Nk(t)
0 )(uNk(t)

0 )xj φ dx −
∫

Ω
gj(u0)(u

Nk(t)
0 )xj φ dx

∣∣∣∣
+

∣∣∣∣∫Ω
gj(u0)(u

Nk(t)
0 )xj φ dx −

∫
Ω

gj(u0)(u0)xj φ dx
∣∣∣∣

≤ ∥gj(u
Nk(t)
0 )− gj(u0)∥0,2,ΩK7∥φ∥∞

+

∣∣∣∣∫Ω
gj(u0)(u

Nk(t)
0 )xj φ dx −

∫
Ω

gj(u0)(u0)xj φ dx
∣∣∣∣

→ 0, as k → ∞, (314)

∀j ∈ {1, · · · , n}.
From such results, we have

0 = lim
k→∞

(∫
Ω

∂uNk(t)
0
∂t

φ dx + ε
∫

Ω
∇uNk(t)

0 · ∇φ dx

−
∫

Ω
g(uNk(t)

0 )φ dx −
m

∑
j=1

∫
Ω

gj(u
Nk(t)
0 )(uNk(t)

0 )xj φ dx

−
∫

Ω
f Nk(t)φ dx

)
=

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

m

∑
j=1

∫
Ω

gj(u0)(u0)xj φ dx

−
∫

Ω
f φ dx. (315)

so that, from this and by the density of C∞
c (Ω) in H1

0(Ω), we have got

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

m

∑
j=1

∫
Ω

gj(u0)(u0)xj φ dx

−
∫

Ω
f φ dx = 0, ∀φ ∈ H1

0(Ω), (316)

a.e. on [0, T].
Observe now that

∂(Ω × (0, T)) = (∂Ω × [0, T]) ∪
(
∂[0, T]× Ω

)
.

Let φ ∈ C∞
c (Ω × (0, T)).

Hence

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt.

From this, since C∞
c (Ω × (0, T)) is dense L2(Ω × (0, T)) we may infer that

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt,
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∀φ ∈ L2(Ω × (0, T)).
Let φ ∈ C∞(Ω × [0, T]) such that

φ(x, T) = 0, in Ω.

From such results, we may obtain

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= lim
N→∞

(
−
∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt −

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

)
= −

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt −

∫
Ω

u0(x, 0)φ(x, 0) dx. (317)

However, since uN
0 ⇀ u0, weakly in L2(Ω × (0, T)), we obtain

lim
N→∞

∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt =

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt.

From these last results, we may infer that∫
Ω

û0 φ(x, 0) dx = lim
N→∞

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

=
∫

Ω
u0(x, 0) φ(x, 0) dx, (318)

so that ∫
Ω

û0(x)φ(x, 0) dx =
∫

Ω
u0(x, 0)φ(x, 0) dx,

∀φ ∈ C∞(Ω × [0, T]) such that φ(x, T) = 0, in Ω.
Therefore, we may infer that u0(x, 0) = û0(x) in this specified weak sense.
Similarly, it may be proven that

u0 = 0, on ∂Ω × [0, T],

in an appropriate weak sense.
Hence, we have obtained that u0 is a solution, in a weak sense, of the parabolic non-linear equation

in question.

52. An Existence Result for a General Non-Linear Parabolic Equation, a Simpler
Case

Through a discussion with my colleague Prof. Maycon Araújo, we realized the geometric series
in Laplace operators to express the inverse operator

(Id − ε∆tN∇2)−1

in the previous section may be not well established from a theoretical point of view in the concerning
infinite dimensional function space. We will deal in more details with such an issue in a near future
research.

Anyway, the present section comprises a new version including some improvements and correc-
tions cocerning the previous one.

We thank the colleague Maycon Araújo for his valuable comments and suggestions.
About the references, the main one is [22]. Other related results may be found in [7,8].
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Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider the parabolic non-linear equation
∂u
∂t = ε∇2u + g(u) + f , in Ω × (0, T),
u(x, 0) = û0, in Ω,
u = 0, on ∂Ω × [0, T].

(319)

Here ε > 0, f ∈ L1,∞(Ω × [0, T]), û0 ∈ H1
0(Ω) ∩ L∞(Ω), where t denotes time and [0, T] is a time

interval.
Also g : R → R is a C1 class function neither necessarily linear nor convex.
We assume there exists K33 > 0 such that

∥g∥1,∞ ≤ K33

m(Ω)1/2 .

52.1. The Main Theoretical Result

At this point, we recall that fixing γ > 0,

(Id − γ∇2)−1 : L2(Ω) → H1
0(Ω)

is a bounded and linear operator, so that for each h ∈ L2(Ω) there exists a unique u ∈ H1
0(Ω) such that

(Id − γ∇2)u = h.

In such a case we denote
u = (Id − γ∇2)−1h,

so that
∥u∥1,2,Ω ≤ ∥(Id − γ∇2)−1∥∥h∥0,2,Ω.

In our discussions, we also realized that not necessarily we have

∥(Id − γ∇2)−1∥ ≤ 1.

Indeed, for ∆tN small, depending on the domain geometry, such a norm may be larger than 1.
In order to deal with such an issue, we propose the following new development.
Let N ∈ N and define

∆tN =
T
N

.

Let f ∈ W1,2(Ω).
For u ∈ H1

0(Ω) such that
(Id − ε∆tN∇2)u = f ,

there exists a real constant K7 > 0 = K7(∆tN), such that

∥u∥1,2 ≤ K7∥ f ∥0,2.
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Observe that

∥ f ∥2
1,2 = ∥u − ε∆tN∇2u∥2

1,2

= ⟨u − ε∆tN∇2u, u − ε∆tN∇2u⟩L2

+⟨∇(u − ε∆tN∇2u),∇(u − ε∆tN∇2u)⟩L2

= ⟨u, u⟩L2 − 2ε∆tN⟨u,∇2u⟩L2 + ε2(∆tN)
2⟨∇2u,∇2u⟩L2

+⟨∇(u − ε∆tN∇2u),∇(u − ε∆tN∇2u)⟩L2

= ⟨u, u⟩L2 + 2ε∆tN⟨∇u,∇u⟩L2 + ε2(∆tN)
2⟨∇2u,∇2u⟩L2

+⟨∇(u − ε∆tN∇2u),∇(u − ε∆tN∇2u)⟩L2

≥ ∥u∥2
0,2

+⟨∇(u − ε∆tN∇2u),∇(u − ε∆tN∇2u)⟩L2 . (320)

On the other hand

∥∇(u − ε∆tN∇2u)∥0,2

≥ sup{⟨∇(u − ε∆tN∇2u),∇ϕ⟩L2 : ϕ ∈ C∞(Ω), ∥∇ϕ∥0,2 ≤ 1, ∇ϕ · n = 0, on ∂Ω} (321)

Let ϕ1 ∈ W1,2 be such that ∥∇ϕ1∥0,2 ̸= 0 and

∇2ϕ1 = ∥∇ϕ1∥0,2
∇2u

∥∇u∥0,2
,

and
∇ϕ1 · n = 0, on ∂Ω.

From this and (321), we obtain

∥∇(u − ε∆tN∇2u)∥0,2

≥ sup{⟨∇(u − ε∆tN⟨∇2u),∇ϕ⟩L2 : ϕ ∈ C∞(Ω), ∥∇ϕ∥0,2 ≤ 1, ∇ϕ · n = 0, on ∂Ω}

≥ ⟨∇(u − ε∆tN⟨∇2u),∇ϕ1⟩L2
1

∥∇ϕ1∥0,2

= ⟨(u − ε∆tN⟨∇2u),−∇2ϕ1⟩L2
1

∥∇ϕ1∥0,2

= ⟨(u − ε∆tN⟨∇2u),−∇2u⟩L2
1

∥∇u∥0,2

= ⟨∇u,∇u⟩L2
1

∥∇u∥0,2
+ ε∆tN⟨∇2u,∇2u⟩L2

1
∥∇u∥0,2

= ∥∇u∥0,2 + ε∆tN⟨∇2u,∇2u⟩L2
1

∥∇u∥0,2

≥ ∥∇u∥0,2. (322)

From such results, we may obtain

∥ f ∥2
1,2 ≥ ∥u∥2

0,2 + ∥∇u∥2
0,2

= ∥u∥2
1,2, (323)

so that
∥u∥1,2 ≤ ∥ f ∥1,2.

Remark 24. There is a simpler path to prove this last result.
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Define
B = (Id − ε∆tN∇2)−1 : L2(Ω) → H1

0(Ω) ⊂ L2(Ω).

Let ε1 > 0. Denoting

Ĥ1
0 = {h ∈ W1,2(Ω) : ∇h · n = 0, on ∂Ω},

observe that by density there exists f̂ ∈ Ĥ1
0 such that

∥ f − f̂ ∥1,2 < ε1.

Thus
∥u − û∥1,2 ≤ K7 ε1.

Observe also that B = B∗ ≤ Id in L2(Ω) and −∇2 is positive in Ĥ1
0(Ω) and H1

0(Ω).
Thus

B∗(−∇2)B ≤ −∇2, in Ĥ1
0 .

Therefore,

⟨∇u,∇u⟩L2 ≤ ⟨∇û,∇û⟩L2 + (K7ε1)
2

= ⟨∇[(Id − ε∆tN∇2)−1 f̂ ],∇[(Id − ε∆tN∇2)−1 f̂ ]⟩L2 + (K7ε1)
2

= ⟨∇[B f̂ ],∇[B f̂ ]⟩L2 + (K7ε1)
2

= ⟨(−∇2)[B f̂ ], [B f̂ ]⟩L2 + (K7ε1)
2

= ⟨B∗(−∇2)[B f̂ ], f̂ ⟩L2 + (K7ε1)
2

≤ ⟨(−∇2) f̂ , f̂ ⟩L2 + (K7ε1)
2

≤ ⟨∇ f̂ ,∇ f̂ ⟩L2 + (K7ε1)
2

≤ ⟨∇ f ,∇ f ⟩L2 + (K2
7 + 1)ε2

1. (324)

Thus,

∥u∥2
0,2 + ∥∇u∥2

0,2 ≤ ∥B f ∥2
0,2 + ∥∇ f ∥2

0,2 + (K2
7 + 1)ε2

1

≤ ∥ f ∥0,2 + ∥∇ f ∥2
0,2 + (K2

7 + 1)ε2
1. (325)

Since such an ε1 > 0 is arbitrary, we may infer that

∥u∥2
0,2 + ∥∇u∥2

0,2 ≤ ∥ f ∥2
0,2 + ∥∇ f ∥2

0,2,

so that
∥u∥1,2 ≤ ∥ f ∥1,2.

Now we define the norm
∥(Id − ε∆tN∇2)−1∥∗

by

∥(Id − ε∆tN∇2)−1∥∗ = sup{∥(Id − ε∆tN∇2)−1 f ∥1,2 : f ∈ W1,2(Ω) and ∥ f ∥1,2 ≤ 1}.

From the last results

∥u∥1,2 = ∥(Id − ε∆tN∇2)−1 f ∥1,2 ≤ ∥ f ∥1,2, ∀ f ∈ W1,2(Ω),
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so that
∥(Id − ε∆tN∇2)−1∥∗ ≤ 1.

Now, fixing again N ∈ N and defining again

∆tN =
T
N

,

in a partial finite differences context, discretizing in t consider the approximate equation system

un+1 − un

∆tN
= ε∇2un+1 + g(un) + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
From such a system, for n = 0, we obtain

u1 − û0 = ε∇2(u1)∆tN + g(û0)∆tN + f0∆tN .

Hence
u1 = (Id − ε(∇2)∆tN)

−1(û0 + g(û0)∆tN + f0∆tN),

so that

∥u1∥1,2,Ω

≤ ∥(Id − ε(∇2)∆tN)
−1∥∗

×(∥û0∥1,2,Ω + ∥g(û0)∥1,2,Ω∆tN + ∥ f0∥1,2,Ω∆tN). (326)

Observe that there exists K2 > 0 such that ∥ f ∥1,∞,Ω×[0,T] ≤ K2 so that

∥ fn∥1,2,Ω ≤ K36, ∀n ∈ {0, 1, · · · , N − 1},

for some appropriate K36 > 0.
From such results and the hypotheses, we may infer that

∥u1∥1,2,Ω ≤ ∥(Id − ε(∇2)∆tN)
−1∥∗(∥û0∥1,2,Ω + K33∆tN + K33∥û0∥1,2,Ω∆tN + K36∆tN)

≤ ∥(Id − ε(∇2)∆tN)
−1∥∗(∥û0∥1,2,Ω + K1∥û0∥1,2,Ω∆tN + K3∆tN), (327)

where
K3 = K33 + K36,

and K1 = K33, so that
∥u1∥1,2,Ω ≤ α1∥û0∥1,2,Ω + α2,

where
α1 = ∥(Id − ε(∇2)∆tN)

−1∥∗(1 + K1∆tN),

and
α2 = ∥(Id − ε(∇2)∆tN)

−1∥∗K3∆tN .

In fact, generically we may similarly obtain

∥un+1∥1,2,Ω ≤ α1∥un∥1,2,Ω + α2,

∀n ∈ {0, 1, · · · , N − 1}.
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From such a result, inductively we may obtain

∥uj∥1,2,Ω ≤ (α1)
j∥û0∥1,2,Ω +

j−1

∑
k=0

αk
1α2.

In particular for j = N, we get

∥uN∥1,2,Ω

≤ (α1)
N∥û0∥1,2,Ω +

N−1

∑
k=0

αk
1α2

= (α1)
N∥û0∥1,2,Ω +

1 − αN
1

1 − α1
α2

=

∥∥∥∥∥
(

Id − ε(∇2)
T
N

)−1
∥∥∥∥∥

N

∗

(
1 + K1

T
N

)N
∥û0∥1,2,Ω

+
1 − αN

1
1 − α1

α2. (328)

Observe that

α1 = ∥(Id − ε(∇2)∆tN)
−1∥∗(1 + K1∆tN).

Define now
γ(∆tN) =

∆tN
|1 − α1|

.

Observe that

|1 − α1| = |1 − ∥(Id − ε(∇2)∆tN)
−1∥∗(1 + K1∆tN)|

= |1 − ∥(Id − ε(∇2)∆tN)
−1∥∗ − K1∥(Id − ε(∇2)∆tN)

−1∥∗∆tN |, (329)

so that

γ(∆tN) =
∆tN

|1 − α1|

=
∆tN

||1 − ∥(Id − ε(∇2)∆tN)−1∥∗ − K1∥(Id − ε(∇2)∆tN)−1∥∗∆tN |

=
∆tN∣∣∣ 1−∥(Id−ε(∇2)∆tN)−1∥∗

∆tN
− K1∥(Id − ε(∇2)∆tN)−1∥∗

∣∣∣∆tN

=
1∣∣∣ 1−∥(Id−ε(∇2)∆tN)−1∥∗

∆tN
− K1∥(Id − ε(∇2)∆tN)−1∥∗

∣∣∣ , (330)

Define

L = lim sup
N→∞

∣∣∣∣1 − ∥(Id − ε(∇2)∆tN)
−1∥∗

∆tN

∣∣∣∣.
We have two possibilities:
Either

L = +∞,

or
L = K8 ∈ R
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for some
K8 ≥ 0.

Observe that, up to a not relabeled subsequence, {N} = {Nk}, we have

L = lim
N→∞

∣∣∣∣1 − ∥(Id − ε(∇2)∆tN)
−1∥∗

∆tN

∣∣∣∣.
If L = +∞, then we may obtain

lim
N→∞

γ(∆N) = 0.

On the other hand, if L = K8, redefining a larger K1 > 0 if necessary, such that K1 > 2K8, we may
obtain, again up to a not relabeled subsequence,

lim
N→∞

γ(∆N) ≤
1

|K1 − K8|
∈ R.

Therefore, in any case, there exists a real constant C > 0 such that

lim
N→∞

γ(∆N) ≤ C.

Consequently, from such results we may infer that, up to a not relabeled subsequence,

lim
N→∞

∣∣∣∣∣ (1 − αN
1 )α2

1 − α1

∣∣∣∣∣ ≤ (1 + eK1T)K3 C.

From these results, denoting now more generically un ≡ uN
n joining the pieces, up to a not

relabeled subsequence, we have got

lim sup
N→∞

∥uN
N∥1,2,Ω ≤ eK1T∥û0∥1,2,Ω + (1 + eK1T)K3C.

Thus, for a not relabeled subsequence {N} = {Nk}, we may infer that there exists K4 > 0 such
that

∥uN
j ∥1,2,Ω ≤ K4, ∀j ∈ {0, 1, · · · , N}, ∀N ∈ N.

Define now

uN
0 (x, t) = uN

n (x)
(

n + 1 − t
∆tN

)
+ uN

n+1(x)
(

t
∆tN

− n
)

,

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that

uN
0 (x, t) = uN

n (x), if t = n∆tN , ∀n ∈ {0, 1, · · · , N},

and

∂uN
0 (x, t)
∂t

=
uN

n+1 − uN
n

∆tN

= ε∇2uN
n+1 + g(uN

n ) + fn, (331)

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Fix φ ∈ C∞

c (Ω).
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Thus, fixing t ∈ [n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣
〈

∂uN
0

∂t
, φ

〉
L2

∣∣∣∣∣ ≤ ε|⟨∇uN
n+1,∇φ⟩L2 |+ |⟨g(uN

n ), φ⟩L2 |+ |⟨φ, fn⟩L2 |

≤ ε∥uN
n+1∥1,2,Ω∥φ∥1,2,Ω + K1∥uN

n ∥1,2,Ω∥φ∥1,2,Ω + K3∥φ∥1,2,Ω

≤ K5∥φ∥1,2,Ω, ∀φ ∈ C∞
c (Ω), (332)

for some appropriate K5 > 0.
Since φ ∈ C∞

c (Ω) is arbitrary, we may conclude that∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω)

≤ K6, ∀N ∈ N,

uniformly in t on [0, T], for some appropriate constant K6 > 0.
Also, from the definition of uN

0 we have that there exists K7 > 0 such that

∥uN
0 ∥1,2,Ω ≤ K7, ∀N ∈ N

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω)) and v0 ∈ L2([0, T]; H−1(Ω)) such that

uN
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω)),

and
∂uN

0
∂t

⇀ v0, weakly-star in L2([0, T], H−1(Ω)),

so that we may easily obtain

v0 =
∂u0

∂t
in a distributional sense.

At this point, we provide more details about this last result.
Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , N − 1} such that t ∈ [n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T)).
From this, we may infer that

∫
Ω

∂uN
0

∂t
φ(x, t) dx

=
∫

Ω

uN
n+1 − uN

n

∆tN
φ(x, t) dx

≤ ε
∫

Ω
|∇uN

n+1 · ∇φ| dx +
∫

Ω
|g(uN

n ) φ(x, t)| dx

+
∫

Ω
| fn φ| dx

≤ (K8∥uN
n ∥1,2,Ω + K20)∥φ∥1,2,Ω

≤ K29∥φ∥1,2,Ω, (333)

for some appropriate constants K8 > 0, K29 > 0, K20 > 0.
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Hence,

∫ T

0

∫
Ω

∂uN
0

∂t
φ(x, t) dx dx

≤ K29

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (334)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T)) is arbitrary, we may infer that∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω×(0,T))

≤ K15,

for N ∈ N, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T))

such that, up to a not relabeled subsequence

∂uN
0

∂t
⇀ v0, weakly-star in H−1(Ω × (0, T)).

Therefore, ∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt →

∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T)).

On the other hand
∥uN

0 ∥0,2,Ω×(0,T) ≤ K16,

∀N ∈ N, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T)) such that, up to a not

relabeled subsequence,
uN

0 ⇀ u0, weakly in L2(Ω × (0, T)).

Now fix again φ ∈ C∞
c (Ω × (0, T)).

Observe that ∫ T

0

∫
Ω

u0 φt dx dt = lim
N→∞

∫ T

0

∫
Ω

uN
0 φt dx dt

= − lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= −
∫ T

0

∫
Ω

v0 φ dx dt, (335)

Since such a φ ∈ C∞
c (Ω × (0, T)) is arbitrary, we may infer that

v0 =
∂u0

∂t

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
N→∞

∫
Ω

∂uN
0

∂t
φ dx =

∫
Ω

∂u0

∂t
φ dx,

∀φ ∈ H1
0(Ω).
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Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uNk(t)
0 → u0(x, t), strongly in L2(Ω), for almost all t ∈ [0, T].

so that, up to subsequences,

uNk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Here we emphasise the sequence {Nk(t)} ⊂ N may depends on t.
Since g is continuous we have that

g(uNk(t)
0 (x, t)) → g(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|g(uNk(t)
0 (x, t))− g(u0(x, t))| ≤ ε, for almost all x ∈ F.

Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω
(g(uNk(t)

0 (x, t))− g(u0(x, t)))φ dx
∣∣∣∣

≤
∫

Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

=
∫

F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx +
∫

Ω\F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx +

∫
Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥g(uNk(t)
0 )∥0,2,Ω + ∥g(u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (336)

for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
g(uNk(t)

0 )φ dx →
∫

Ω
g(u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω).

From such results, we have

0 = lim
k→∞

(∫
Ω

∂uNk(t)
0
∂t

φ dx + ε
∫

Ω
∇uNk(t)

0 · ∇φ dx

−
∫

Ω
g(uNk(t)

0 )φ dx−
∫

Ω
f Nk(t)φ dx

)
=

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

∫
Ω

f φ dx. (337)
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so that, from this and by the density of C∞
c (Ω) in H1

0(Ω), we have got

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

∫
Ω

f φ dx = 0, ∀φ ∈ H1
0(Ω), (338)

a.e. on [0, T].
Observe now that

∂(Ω × (0, T)) = (∂Ω × [0, T]) ∪
(
∂[0, T]× Ω

)
.

Let φ ∈ C∞
c (Ω × (0, T)).

Hence

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt.

From this, since C∞
c (Ω × (0, T)) is dense L2(Ω × (0, T)) we may infer that

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt,

∀φ ∈ L2(Ω × (0, T)).
Let φ ∈ C∞(Ω × [0, T]) such that

φ(x, T) = 0, in Ω.

From such results, we may obtain

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= lim
N→∞

(
−
∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt −

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

)
= −

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt −

∫
Ω

u0(x, 0)φ(x, 0) dx. (339)

However, since uN
0 ⇀ u0, weakly in L2(Ω × (0, T)), we obtain

lim
N→∞

∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt =

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt.

From these last results, we may infer that∫
Ω

û0 φ(x, 0) dx = lim
N→∞

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

=
∫

Ω
u0(x, 0) φ(x, 0) dx, (340)

so that ∫
Ω

û0(x)φ(x, 0) dx =
∫

Ω
u0(x, 0)φ(x, 0) dx,

∀φ ∈ C∞(Ω × [0, T]) such that φ(x, T) = 0, in Ω.
Therefore, we may infer that u0(x, 0) = û0(x) in this specified weak sense.
Similarly, it may be proven that

u0 = 0, on ∂Ω × [0, T],

in an appropriate weak sense.
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Hence, we have obtained that u0 is a solution, in a weak sense, of the parabolic non-linear equation
in question.

The objective of this section is complete.

53. An Existence Result for a General Hyperbolic Non-Linear Equation
Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider the hyperbolic non-linear equation

∂2u
∂t2 = ε∇2u + g(u) + f , in Ω × (0, T),
u(x, 0) = û0, in Ω,
u(x, T) = u f , in Ω,
u = 0, on ∂Ω × [0, T].

(341)

Here ε > 0, f ∈ L2([0, T], W1,2(Ω)) ∩ L∞(Ω × [0, T]), û0, u f ∈ H1
0(Ω) ∩ L∞(Ω), where t denotes

time and [0, T] is a time interval.
Also g : R → R is a continuous function neither necessarily linear nor convex.
We assume there exists K33 > 0 such that

∥g∥∞ ≤ K33

m(Ω)1/2 ,

Fixing N ∈ N and defining

∆tN =
T
N

,

in a partial finite differences context, discretizing in t consider the approximate equation system

un+1 − 2un + un−1

∆t2
N

= ε∇2un + g(un) + fn, in Ω,

∀n ∈ {1, · · · , N − 1}.
From such a system, for n = 1, we obtain

u2 − 2u1 + û0 = ε∇2(u1)∆t2
N + g(u1)∆t2

N + f1∆t2
N .

Hence
(2Idu + ε∇2∆t2

N)u1 =
(

u2 + û0 − g(u1)∆t2
N − f1∆t2

N

)
,

so that

∥u1∥1,2,Ω

≤ ∥(2Id + ε(∇2)∆t2
N)

−1∥

×
(
∥u2∥0,2,Ω + ∥û0∥0,2,Ω + ∥g(u1)∥0,2,Ω∆t2

N + ∥ f1∥0,2,Ω∆t2
N

)
. (342)

Observe that there exists K2 > 0 such that ∥ f ∥∞,Ω×[0,T] ≤ K2 so that

∥ fn∥1,2,Ω ≤ K3, ∀n ∈ {0, 1, · · · , N − 1},

for some appropriate K3 > 0.
From such results and the hypotheses, we may infer that

∥u1∥1,2,Ω ≤ ∥(2Id + ε(∇2)∆t2
N)

−1∥(∥u2∥1,2,Ω + K33∆t2
N + ∥û0∥1,2,Ω + K3∆t2

N)

≤ ∥(2Id + ε(∇2)∆t2
N)

−1∥(∥u2∥1,2,Ω + ∥û0∥1,2,Ω + K85∆t2
N), (343)
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where K85 = K33 + K3.
On the other hand, through a symbolic auxiliary notation, we have

(2Id + ε(∇2)∆tN)
−1 =

1
(2Id + ε(∇2)∆t2

N)

=
1

2(Id + ε(∇2)∆t2
N/2)

=
1
2

(
Id −

ε(∇2)∆t2
N/2

Id + ε(∇2)∆t2
N/2

)
, (344)

so that

∥(2Id + ε(∇2)∆tN)
−1∥ ≤ 1

2
+

∥∥∥∥∥ ε(∇2)∆t2
N/4

(Id + ε(∇2)∆t2
N/2)

∥∥∥∥∥.

Now denote

θN =

∥∥∥∥∥ ε(∇2)

(Id + ε(∇2)∆t2
N/2)

∥∥∥∥∥.

Thus,

∥(2Id + ε(∇2)∆tN)
−1∥ ≤ 1

2
+

θN∆t2
N

4
,

so that

∥u1∥1,2,Ω ≤
(

1
2
+

θN∆t2
N

4

)
(∥u2∥1,2,Ω + ∥û0∥1,2,Ω + K85∆t2

N).

Consequently, from such results, we may infer that(
1
2
+

θN∆t2
N

4

)−1

∥u1∥1,2,Ω ≤ (∥u2∥1,2,Ω + ∥û0∥1,2,Ω + K85∆t2
N),

so that

2

(
1 −

θN∆t2
N/2

(1 + θN∆t2
N/2)

)
∥u1∥1,2,Ω ≤ (∥u2∥1,2,Ω + ∥û0∥1,2,Ω + K85∆t2

N).

Therefore, (
2 −

θN∆t2
N

(1 + θN∆t2
N/2)

)
∥u1∥1,2,Ω ≤ (∥u2∥1,2,Ω + ∥û0∥1,2,Ω + K85∆t2

N).

Let ε1 ∈ R be such that
0 < ε1 ≪ max{ε, 1}.

Define α̂ = ε∥∇2∥ and observe that

θN

(1 + θN∆t2
N/2)

→ α̂, as N → ∞.

Hence, there exists N0 ∈ N such that if N > N0, then∣∣∣∣∣ θN

(1 + θN∆t2
N/2)

− α̂

∣∣∣∣∣ < ε1.

From these results, if N > N0, we have(
2 −

θN∆t2
N

(1 + θN∆t2
N/2)

)
≥ (2 − (α̂ + ε1)∆t2

N) > 0.
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Therefore, defining α = α̂ + ε1, we have got,(
2 − α∆t2

N

)
∥u1∥1,2,Ω ≤ (∥u2∥1,2,Ω + ∥û0∥1,2,Ω + K85∆t2

N).

so that
∥u1∥1,2,Ω ≤ α1∥u2∥1,2,Ω + β1∥û0∥1,2,Ω + γ1,

where
α1 = (2 − α∆t2

N)
−1,

β1 = α1

and γ1 = α1K85∆t2
N .

Reasoning inductively, for n ≥ 2 having

∥un−1∥1,2,Ω ≤ αn−1∥un∥1,2,Ω + βn−1∥û0∥1,2,Ω + γn−1,

we are going to obtain αn, βn and γn.
Similarly as above, we may obtain

(2 − α∆t2
N)∥un∥1,2,Ω

≤ ∥un+1∥1,2,Ω + ∥un−1∥1,2,Ω + K85∆t2
n,

≤ ∥un+1∥1,2,Ω + αn−1∥un∥1,2,Ω + βn−1∥û0∥1,2,Ω + γn−1 + K85∆t2
n. (345)

Thus,

(2 − α∆t2
N − αn−1)∥un∥1,2,Ω

≤ ∥un+1∥1,2,Ω + βn−1∥û0∥1,2,Ω + γn−1 + K85∆t2
N . (346)

Consequently,
∥un∥1,2,Ω ≤ αn∥un+1∥1,2,Ω + βn∥û0∥1,2,Ω + γn,

where
αn =

1
2 − α∆t2

N − αn−1
,

βn = αnβn−1,

and
γn = αn(γn−1 + K85∆t2

N).

We recall that α = ε∥∇2∥+ ε1. Here we assume T ≥ 1 and

αT2 ≤ 1
2

.

Consider the sequence {bn} ⊂ R such that

b1 = 1/2,

and
bn+1 =

1
2 − bn

, ∀n ∈ N.

We may easily obtain by induction that

bn =
n

n + 1
.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


237 of 360

Define
an = bn−1 =

n − 1
n

, ∀n ≥ 2.

Observe that

an +
2αT2

N
≤ N − 1

N
+

2αT2

N

≤ N − 1
N

+
1
N

= 1, ∀n ∈ {1, · · · , N − 1}. (347)

Observe that

α1 ≤ 1

2 − α T2

N2

=
1
2
+

(
1

2 − α T2

N2

− 1
2

)

≤ 1
2
+

αT2

N2

≤ a1 +
αT
N

+
αT2

N2 . (348)

At this point we shall prove by induction that

αn ≤ an +
αT
N

+ n
αT2

N2 , ∀n ∈ {1, · · · , N − 1}.

For n = 1 we have already proved it above.
Suppose now that for n ≥ 1, we have

αn ≤ an +
αT
N

+ n
αT2

N2 .

Observe that

αn+1 =
1

2 − α T2

N2 − αn−1

=
1

2 − an
+

(
1

2 − α T2

N2 − αn−1
− 1

2 − an

)

= an+1 +

(
1

2 − α T2

N2 − αn
− 1

2 − an

)

≤ an+1 +

(
−an + αn + α

T2

N2

)
≤ an+1 +

αT
N

+ n
αT2

N2 + α
T2

N2

= an+1 +
αT
N

+ (n + 1)
αT2

N2 . (349)

The induction is complete, indeed we have proven that

αn ≤ an +
αT
N

+ n
αT2

N2 , ∀n ∈ {1, · · · , N − 1}.
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Thus, we have obtained

αn ≤ an +
αT
N

+ n
αT2

N2

≤ an +
αT2

N
+

αT2

N

≤ an +
2αT2

N
≤ 1, ∀n ∈ {1, · · · N − 1}. (350)

Summarizing,
0 ≤ αn ≤ 1, ∀n ∈ {1, · · · , N − 1}.

Now denoting more generically αN
n = αn we may infer that

0 ≤ αN
n ≤ 1, ∀n ∈ {1, · · · , N − 1}, ∀N > N0.

From such results we may also obtain that there exist K15 > 0 and K16 > 0 such that

|βN
n | ≤ K15,

and
|γN

n | ≤ K16,

∀n ∈ {1, · · · N − 1}, ∀N > N0.
We recall that

uN
N = u f ,

so that since
∥uN

N−1∥1,2,Ω ≤ αN
N−1∥uN∥1,2,Ω + βN

N−1∥û0∥1,2,Ω + γN
N−1,

from this and these last results we may infer that

∥uN
n ∥1,2,Ω ≤ K18,

∀n ∈ {0, · · · , N − 1}, ∀N > N0, for some appropriate real constant K18 > 0.
Define now

WN(x, t) =
uN

n+1 − 2uN
n + uN

n−1

∆t2
N

,

if (x, t) ∈ Ω × (n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T], and

uN
0 (x, t) = û0(x) + (uN

1 )′(x) t +
∫ t

0

∫ τ

0
WN(x, τ1) dτ1 dτ,

where (uN
1 )′(x) is such that

uN
0 (x, T) = u f (x).

Here we highlight that

∂2uN
0 (x, t)
∂t2 = WN(x, t)

=
uN

n+1 − 2uN
n + uN

n−1

∆t2
N

, (351)

if (x, t) ∈ Ω × (n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that
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∂2uN
0 (x, t)
∂t2 =

uN
n+1 − 2uN

n + uN
n−1

∆t2
N

= ε∇2uN
n + g(uN

n ) + fn, (352)

if t ∈ (n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Fix φ ∈ C∞

c (Ω).
Thus, fixing t ∈ (n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣

〈
∂2uN

0
∂t2 , φ

〉
L2

∣∣∣∣∣ ≤ ε|⟨∇uN
n ,∇φ⟩L2 |+ |⟨g(uN

n ), φ⟩L2 |

+|⟨φ, fn⟩L2 |
≤ ε∥uN

n ∥1,2,Ω∥φ∥1,2,Ω + K19∥uN
n ∥1,2,Ω∥φ∥1,2,Ω

+K25∥φ∥1,2,Ω

≤ K26∥φ∥1,2,Ω, ∀φ ∈ C∞
c (Ω), (353)

for some appropriate K26 > 0.
Since φ ∈ C∞

c (Ω) is arbitrary, we may conclude that∥∥∥∥∥∂2uN
0

∂t2

∥∥∥∥∥
H−1(Ω)

≤ K6, ∀N > N0,

uniformly in t on [0, T], for some appropriate constant K6 > 0.
Also, from the definition of uN

0 we have that there exists K7 > 0 such that

∥uN
0 ∥1,2,Ω ≤ K7, ∀N > N0

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω)) and v0 ∈ L2([0, T]; H−1(Ω)) such that

uN
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω)),

and
∂2uN

0
∂t2 ⇀ v0, weakly-star in L2([0, T], H−1(Ω)),

so that we may easily obtain

v0 =
∂2u0

∂t2

in a distributional sense.
At this point, we provide more details about this last result.
Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , N − 1} such that t ∈ (n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T)).
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From this, we may infer that

∫
Ω

∂2uN
0

∂t2 φ(x, t) dx

=
∫

Ω

(
uN

n+1 − 2uN
n + uN

n−1

∆t2
N

)
φ(x, t) dx

≤ ε
∫

Ω
|∇uN

n · ∇φ| dx

+
∫

Ω
|g(uN

n ) φ(x, t)| dx

+
∫

Ω
| fn φ| dx

≤ (K8(∥uN
n ∥1,2,Ω + K20)∥φ∥1,2,Ω

≤ K9∥φ∥1,2,Ω, (354)

for some appropriate constants K8 > 0, K9 > 0, K20 > 0.
Hence,

∫ T

0

∫
Ω

∂2uN
0

∂t2 φ(x, t) dx dx

≤ K9

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (355)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T)) is arbitrary, we may infer that∥∥∥∥∥∂2uN
0

∂t2

∥∥∥∥∥
H−1(Ω×(0,T))

≤ K15,

for N > N0, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T))

such that, up to a not relabeled subsequence

∂2uN
0

∂t2 ⇀ v0, weakly-star in H−1(Ω × (0, T)).

Therefore, ∫ T

0

∫
Ω

∂2uN
0

∂t2 φ dx dt →
∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T)).

On the other hand
∥uN

0 ∥0,2,Ω×(0,T) ≤ K16,

∀N > N0, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T)) such that, up to a not

relabeled subsequence,
uN

0 ⇀ u0, weakly in L2(Ω × (0, T)).

Now fix again φ ∈ C∞
c (Ω × (0, T)).
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Observe that ∫ T

0

∫
Ω

u0 φtt dx dt = lim
N→∞

∫ T

0

∫
Ω

uN
0 φtt dx dt

= lim
N→∞

∫ T

0

∫
Ω

∂2uN
0

∂t2 φ dx dt

=
∫ T

0

∫
Ω

v0 φ dx dt, (356)

Since such a φ ∈ C∞
c (Ω × (0, T)) is arbitrary, we may infer that

v0 =
∂2u0

∂t2

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
N→∞

∫
Ω

∂2uN
0

∂t2 φ dx =
∫

Ω

∂2u0

∂t2 φ dx,

∀φ ∈ H1
0(Ω).

Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uNk(t)
0 → u0(x, t), strongly in L2(Ω), for almost all t ∈ [0, T].

so that, up to subsequences,

uNk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Here we emphasise the sequence {Nk(t)} ⊂ N may depends on t.
Since g is continuous we have that

g(uNk(t)
0 (x, t)) → g(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|g(uNk(t)
0 (x, t))− g(u0(x, t))| ≤ ε, for almost all x ∈ F.

Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω
(g(uNk(t)

0 (x, t))− g(u0(x, t)))φ dx
∣∣∣∣

≤
∫

Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

=
∫

F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx +
∫

Ω\F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx +

∫
Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥g(uNk(t)
0 )∥0,2,Ω + ∥g(u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (357)
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for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
g(uNk(t)

0 )φ dx →
∫

Ω
g(u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω). From such results, we have

0 = lim
k→∞

(∫
Ω

∂2uNk(t)
0

∂t2 φ dx + ε
∫

Ω
∇uNk(t)

0 · ∇φ dx

−
∫

Ω
g(uNk(t)

0 )φ dx

−
∫

Ω
f Nk(t)φ dx

)
=

∫
Ω

∂2u0

∂t2 φ dx + ε
∫

Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx

−
∫

Ω
f φ dx. (358)

so that, from this and by the density of C∞
c (Ω) in H1

0(Ω), we have got

∫
Ω

∂2u0

∂t2 φ dx + ε
∫

Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx

−
∫

Ω
f φ dx = 0, ∀φ ∈ H1

0(Ω), (359)

a.e. on [0, T].
Hence, we have obtained that u0 is a solution, in a weak sense, of the hyperbolic non-linear

equation in question.

54. A Numerical Procedure Combining the Euler Method and the Hyper-Finite
Differences Approach

Let Ω = [0, 1] ⊂ R and consider the equation{
εu′′(x)− Au3(x) + Bu(x) + 1 = 0, in Ω,
u(0) = 0, u(1) = 0.

(360)

Here A > 0, B > 0 and u ∈ W1,2
0 (Ω).

We may represent such an equation, as a first order system
v′ − Au3/ε + Bu)/ε + 1/ε = 0, in Ω,
u′ = v, in Ω,
u(0) = 0, u(1) = 0.

(361)

Consider now such a system with generical unknown boundary conditions û0 and v̂0, that is,
v′ − Au3/ε + Bu/ε + 1/ε = 0, in Ω,
u′ = v, in Ω,
u(0) = û0, v(0) = v̂0.

(362)
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Defining d = 1/m8, where m8 is total number of nodes, in finite differences we have
vn−vn−1

d − Au3
n−1/ε + Bun−1/ε + 1/ε = 0,

un−un−1
d = vn−1

u0 = û0, v0 = v̂0.
(363)

This is simply the explicit Euler method. We may symbolically obtain {un} and {vn} as functions
of û0 and v̂0 (by using the MATHEMATICA or MAPLE software and by truncating the concerning
polynomial solutions), through the iterations

vn = vn−1 + Au3
n−1

d
ε − Bun−1

d
ε −

d
ε ,

un = un−1 + vn−1d
u0 = û0, v0 = v̂0.

(364)

However, it is well known the error in this process could be big. In order to minimize such an error,
we use the hyper-finite differences approach for the one-dimensional analogous of the generalized
method of lines. More specifically, we will subdivide the interval [0.1] into N1 sub-interval of same
measure, and redefine a not relabeled d as

d =
1

m8N1
.

Hence, on each sub-interval
[

k−1
N1

, k
N1

]
, using the MATHEMATICA or MAPLE software we may

obtain an approximate solution
{ui,k, vi,k}

as functions of the initial conditions
{u0,k, v0,k}

where i ∈ {0, · · · , m8}, ∀k ∈ {1 · · · , N1}.
In order to obtain such a solution,

{ui,k, vi,k}

we use following interactions
vn,k = vn−1,k + Au3

n−1,k
d
ε − Bun−1,k

d
ε −

d
ε ,

un,k = un−1,k + vn−1,kd
u0,k = û0,k, v0,k = v̂0,k.

(365)

Observe that for obtaining an approximate solution for the original equation in question, we must
calculate {û0,k, v̂0,k} though the solution of the system:

For the boundary conditions:
u0,1 = 0, um8,N1 = 0.

For the solution and its derivative continuity on the nodes related to the N1 sub-intervals,

um8,k = u0,k+1, vm8,k = v0,k+1, ∀k ∈ {1, · · · N1}.

Having obtained {û0,k, v̂0,k}, ∀k ∈ {1, · · · , N1} we may obtain

{un,k, vn,k} ∀n ∈ {0, · · · , m8}, ∀k ∈ {1, · · · , N1}.

Here we present the software in Mathematica through which we have obtained the numerical
results, for the case ε = 0.01, A = B = 1 and N1 = 16 subintervals.

**********************
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1. m8 = 100;
N1 = 16;
d = 1.0/m8/N1;
e1 = 0.01;
A = 1.0;
B = 1.0;
For[k = 1, k < N1 + 1, k++,
Print[k];
u[0, k] = uo[k];
v[0, k] = vo[k];
For[i = 1, i < m8 + 1, i++,
z1 = (v[i − 1, k] + A ∗ d/e1 ∗ u[i − 1, k]3 − B ∗ u[i − 1, k] ∗ d/e1 − 1.0 ∗ d/e1);
z2 = u[i - 1, k] + v[i - 1, k]*d;
z1 = Series[z1, { uo[k], 0, 8}, { vo[k], 0, 8 }];
z2 = Series[z2, { uo[k], 0, 8 }, {vo[k], 0, 8 }];
z1 = Normal[z1];
z2 = Normal[z2];
v[i, k] = Expand[z1];
u[i, k] = Expand[z2]]];
S = u[0, 1]2 + u[m8, N1]2;
For[k = 1, k < N1, k++,
S = S + (u[m8, k]− u[0, k + 1])2;
S = S + (v[m8, k]− v[0, k + 1])2];
sol = FindMinimum[
S, {uo[1], uo[2], uo[3], uo[4], uo[5], uo[6], uo[7], uo[8], uo[9],
uo[10], uo[11], uo[12], uo[13], uo[14], uo[15], uo[16], vo[1],
vo[2], vo[3], vo[4], vo[5], vo[6], vo[7], vo[8], vo[9], vo[10],
vo[11], vo[12], vo[13], vo[14], vo[15], vo[16]}]
Clear[U];
For [k = 1, k < N1 + 1, k++,
w[k] = uo[k] /. sol[[2, k]]]
For[i = 1, i < N1 + 1, i++,
U[i - 1] = w[i]]
U[N1] = u[m8,N1];
For[i = 0, i < N1 + 1, i++,
Print["uo[", i + 1, "]=", U[i]]]
uo[1]=1.14453*10−25, in fact u(0) = 0
uo[2]=0.817448
uo[3]=1.17018
uo[4]=1.28552
uo[5]=1.32107
uo[6]=1.33205
uo[7]=1.33546
uo[8]=1.3365
uo[9]=1.33677
uo[10]=1.33667
uo[11]=1.33596
uo[12]=1.33331
uo[13]=1.32382
uo[14]=1.2902
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uo[15]=1.175
uo[16]=0.820243
uo[17]=0, in fact u(1) = 0.

*******************************

Remark 25. Observe that along the domain the solution is approximately 1.33 which is close to 1.3247, which is
an approximate solution of equation u3 − u − 1 = 0. This is expected since ε = 0.01 is a relatively small value.

55. A Proximal Numerical Procedure Combined with the Euler Method
Let Ω = [0, 1] ⊂ R and consider the Ginzburg-Landau type equation{

εu′′(x)− Au3(x) + Bu(x) + 1 = 0, in Ω,
u(0) = 0, u(1) = 0.

(366)

Here A > 0, B > 0 and u ∈ W1,2
0 (Ω).

We may represent such an equation, as a first order system
v′ − Au3/ε + Bu/ε + 1/ε = 0, in Ω,
u′ = v, in Ω,
u(0) = 0, u(1) = 0.

(367)

Consider now such a system with generical unknown boundary conditions û0 and v̂0, that is,
v′ − Au3/ε + Bu/ε + 1/ε = 0, in Ω,
u′ = v, in Ω,
u(0) = û0, v(0) = v̂0.

(368)

Defining d = 1/m8, where m8 is total number of nodes, in finite differences we have
vn−vn−1

d − Au3
n−1/ε + Bun−1/ε + 1/ε = 0,

un−un−1
d = vn−1

u0 = û0, v0 = v̂0.
(369)

This is simply the explicit Euler method. Setting u0 = 0, we may symbolically obtain {un} and
{vn} as functions of v0 = v̂0 (by using the MATHEMATICA or MAPLE software and by truncating the
concerning polynomial solutions), through the following iterations, which already include a proximal
formulation about an initial fixed solution {(U0)n}.

vn = vn−1 + Au3
n−1

d
ε − Bun−1

d
ε −

d
ε ,

un = un−1 + vn−1d − K
ε (un − (U0)n)d

u0 = 0, v0 = v̂0.
(370)

∀n ∈ {1, · · · , m8}.
Indeed, in such a case we have

vn = vn−1 + Au3
n−1

d
ε − Bun−1

d
ε −

d
ε ,

un =
(

un−1 + vn−1d + Kd
ε (U0)n

)
/
(

1 + K d
ε

)
u0 = 0, v0 = v̂0.

(371)

∀n ∈ {1, · · · , m8}.
We emphasize such a procedure may make the error in the explicit Euler method very small, in

fact proportional to ε
K .
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Thus, having obtained un = un(v0), we may obtain v0 through the boundary condition u(1) = 0,
that is, through a solution of equation um8(v0) = 0.

With such an v0 calculated, we may obtain explicitly un = un(v0), ∀n ∈ {1, · · ·m8}. The next step
is to replace {(U0)n} by {un} and then to repeat the process until an appropriate convergence criterion
is satisfied.

We have obtained numerical results for ε = 0.01, A = B = 1, m8 = 100 and K = 10.
Here we present the software through which we have obtained such results.
We highlight in this software we have fixed a total number of 800 iterations.

**************************

1. m8 = 100;
Clear[z1, z2, u, v, vo];
d = 1.0/m8;
e1 = 0.01;
A = 1.0;
B = 1.0;
K = 10.0;
For[i = 0, i < m8 + 1, i++,
uo[i] = 0.01];
For[k = 1, k < 800, k++, (here we have fixed the number of iterations)
Print[k];
Clear[vo];
u[0] = 0.0;
v[0] = vo;
For[i = 1, i < m8 + 1, i++,
z1 = (v[i - 1] + A*d/e1*u[i − 1]3 - B*u[i - 1]*d/e1 - 1.0*d/e1);
z2 = (u[i - 1] + v[i - 1]*d + K*uo[i]*d/e1)/(K*d/e1 + 1.0);
z1 = Series[z1, {vo, 0, 9}];
z2 = Series[z2, {vo, 0, 9}];
z1 = Normal[z1];
z2 = Normal[z2];
v[i] = Expand[z1];
u[i] = Expand[z2]];
S = (u[m8])2;
sol = FindMinimum[S, vo];
w = vo /. sol[[2, 1]];
vo = w;
For[i = 0, i < m8 + 1, i++,
uo[i] = u[i]];
Print[u[m8/2]]];
For[i = 0, i < m8/10 + 1, i++,
Print["u[", 10*i, "]=", u[10*i]]]

u[0]=0.
u[10]=1.09119
u[20]=1.29955
u[30]=1.32239
u[40]=1.32427
u[50]=1.3245
u[60]=1.32386
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u[70]=1.31754
u[80]=1.27924
u[90]=1.04636
u[100]=7.31252 ∗ 10−18

****************************

Remark 26. Observe that along the domain the solution is close to 1.3247, which is an approximate solution of
equation u3 − u − 1 = 0. This is expected since ε = 0.01 is a relatively small value.

56. A Proximal Numerical Procedure Combined with the Euler Method for
Solving Partial Differential Equations

Let Ω = [0, 1]× [0, 1] ⊂ R and consider the Ginzburg-Landau type equation{
ε∇2u − Au3 + Bu + f = 0, in Ω,
u = 0, on ∂Ω.

(372)

Here A > 0, B > 0, f ∈ L2(Ω) and u ∈ W1,2
0 (Ω).

We may represent such an equation, as a partially first order system
vx + uyy − Au3/ε + Bu/ε + f /ε = 0, in Ω,
ux = v, in Ω,
u = 0, on ∂Ω

(373)

Defining d = 1/m8, d1 = 1/m9 and denoting

m2 =



−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

...
. . .

...
0 0 · · · 1 −2 1
0 0 · · · · · · 1 −2


, (374)

where m8 is total number of nodes in x, and m9 is the number of nodes in y, in a finite differences
context, we may have

vn−vn−1
d + m2

d2
1

un−1 − Au3
n−1/ε + Bun−1/ε + fn/ε = 0,

un−un−1
d = vn−1

u0 = 0, v0 = v̂0.

(375)

This is simply an adaptation of the explicit Euler method. Observe that we may obtain {un}
and {vn} as functions of v0 = v̂0 through the following iterations, which already include a proximal
formulation about an initial fixed solution {(U0)n}.

vn = vn−1 − m2
d2

1
un−1d + Au3

n−1
d
ε − Bun−1

d
ε −

fnd
ε ,

un = un−1 + vn−1d − K
ε (un − (U0)n)d

u0 = 0, v0 = v̂0.

(376)

∀n ∈ {1, · · · , m8}.
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Indeed, in such a case we have, through a concerning linearization,
vn = vn−1 − m2

d2
1

un−1 + 3 A (u0)
2
n−1un−1

d
ε − 2 A (u0)

3
n−1

d
ε − Bun−1

d
ε −

fn d
ε ,

un =
(

un−1 + vn−1d + Kd
ε (U0)n

)
/
(

1 + K d
ε

)
u0 = 0, v0 = v̂0.

(377)

∀n ∈ {1, · · · , m8}.
We emphasize such a procedure may make the error in the explicit Euler method very small, in

fact proportional to ε
K .

Observe now that in particular for n = 1, we have

v1 = v0 − f1
d
ε

≡ (M1)1v0 + (y1)1, (378)

where
(M1)1 = Id identity matrix (m9 − 1)× (m9 − 1),

and
(y1)1 = − f1

d
ε

.

Also,

u1 =

(
v0 d + K(u0)1

d
ε

)
/
(

1 + K
d
ε

)
≡ (M2)1v0 + (y2)1, (379)

where
(M2)1 =

Id d(
1 + K d

ε

) ,

and

(y2)1 =

(
K(u0)1 d

ε

)
/
(

1 + K
d
ε

)
.

Reasoning inductively, having

vn−1 = (M1)n−1v0 + (y1)n−1,

and
un−1 = (M2)n−1v0 + (y2)n−1,

and replacing such relations into the concerning system (387), we obtain

vn = (M1)n−1 + (y1)n−1 −
m2

d2
1
((M2)n−1 + (y2)n−1)d

+3 A(u0)
2
n−1((M2)n−1 + (y2)n−1)

d
ε
− 2A(u0)

3
n−1

d
ε

−B((M2)n−1 + (y2)n−1)
d
ε
− fn

d
ε

= (M1)n + (y1)n, (380)

where

(M1)n = (M1)n−1 −
m2

d2
1
((M2)n−1)d + 3 A(u0)

2
n−1((M2)n−1)

d
ε
− B((M2)n−1)

d
ε

,
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and

(y1)n = (y1)n−1 −
m2

d2
1
((y2)n−1)d + 3 A(u0)

2
n−1((y2)n−1)

d
ε

−2A(u0)
3
n−1

d
ε
− B((y2)n−1)

d
ε
− fn

d
ε

. (381)

Moreover,

un =

(
(M2)n−1v0 + (y2)n−1 + (M1)n−1v0d + (y1)n−1d + K(u0)n−1

d
ε

)
/
(

1 + K
d
ε

)
= (M2)nv0 + (y2)n, (382)

where

(M2)n =
(M2)n−1 + (M1)n−1d(

1 + K d
ε

) ,

and

(y2)n =

(
(y2)n−1 + (y1)n−1d + K(u0)n−1

d
ε

)
/
(

1 + K
d
ε

)
.

Summarizing, we have obtained

vn = (M1)nv0 + (y1)n,

and
un = (M2)nv0 + (y2)n,

∀n ∈ {1, · · · , m8}.
Consequently, from this and the boundary condition um8 = 0, we may have

um8 = 0 = (M2)m8 v0 + (y2)m8

so that
v0 = −[(M2)m8 ]

−1 (y2)m8 .

From such results we have obtained {un} and {vn}, ∀n ∈ {1, · · · , m8}.
The next step is to replace {(u0)n} by {un} and then to repeat the process until an appropriate

convergence criterion is satisfied.
We have obtained numerical results for ε = 0.01, A = B = 1, f ≡ 1, in Ω, m8 = 100 and K = 100.
For the solution u = u(x, y) obtained, please see Figure 42.
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Figure 42. Solution u(x, y) for ε = 0.01

Here we present the software in MAT-LAB through which we have obtained such results.
******************************

1. clear all
m8=100;
m9=100;
d=1/m8;
d1=1/m9;
e1=0.01;
A=1;
B=1;
K=100;
f=ones(m9-1,1);
for i=1:m8
uo(:,i)=1.4*ones(m9-1,1);
Yo(:,i)=f;
end;
m2=zeros(m9-1,m9-1);
for i=2:m9-2
m2(i,i)=-2.0;
m2(i,i+1)=1.0;
m2(i,i-1)=1.0;
end;
m2(1,1)=-2.0;
m2(1,2)=1.0;
m2(m9-1,m9-1)=-2.0;
m2(m9-1,m9-2)=1.0;
Id=eye(m9-1);
b12=1.0;
k=1;
while (b12 > 10−10) && (k < 9010)
k
k=k+1;
M1(:,:,1)=Id;
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y1(:,1)=-Yo(:,1)*d/e1;
M2(:,:,1)=Id*d/(K*d/e1+1);
y2(:,1)=K*uo(:,1)*(d/e1)/(K*d/e1+1);
for i=2:m8
M1(:,:,i)=M1(:,:,i-1)-m2/d12*d*M2(:,:,i-1)+3*A*diag(uo(:,i-1).*uo(:,i-1))*M2(:,:,i-1)*d/e1;
M1(:,:,i)=M1(:,:,i)-B*M2(:,:,i-1)*d/e1;
y1(:,i)=y1(:,i-1)-m2/d12*d*y2(:,i-1)+3*A*(uo(:,i-1).*uo(:,i-1)).*y2(:,i-1)*d/e1;
y1(:,i)=y1(:,i)-2*A*(uo(:,i-1).*uo(:,i-1).*uo(:,i-1))*d/e1-B*y2(:,i-1)*d/e1-Yo(:,i-1)*d/e1;
M2(:,:,i)=(M2(:,:,i-1)+d*M1(:,:,i-1))/(K*d/e1+1);
y2(:,i)=(y2(:,i-1)+d*y1(:,i-1)+K*uo(:,i)*d/e1)/(K*d/e1+1);
end;
vo(:,1)=-inv(M2(:,:,m8))*y2(:,m8);
for i=1:m8
u(:,i)=M2(:,:,i)*vo(:,1)+y2(:,i);
end;
u(m9/2,m8/2)
b12=max(max(abs(u-uo)));
uo=u;
end;
for i=1:m8
x1(i,1)=i*d;
end;
for j=1:m9-1
y3(j,1)=j*d1;
end;
mesh(x1,y3,u)
*******************************

Remark 27. Observe that along the domain the solution is close to 1.3247, which is an approximate solution of
equation u3 − u − 1 = 0. This is expected since ε = 0.01 is a relatively small value.

57. A Proximal Numerical Procedure Combined with the Euler Method for First
Order Systems Applied to a Flight Mechanics Model

Let Ω = [0, t f ] be a time interval.
Consider the first order system of ordinary differential equations given by{

duj
dt = f j({ul}), on [0, t f ], ∀j ∈ {1, · · · , 4},

u1(0) = 0, u2(0) = 0.12, u4(0) = 0, u1(t f ) = 11000.
(383)

Here f j : Dj ⊂ R4 → R is a smooth function on its domain Dj, ∀j ∈ {1, · · · , 4}.
In finite differences, such a system stands for{

(uj)n−(uj)n−1
d = f j({un−1}), ∀j ∈ {1, · · · , 4},

(u1)0 = 0, (u2)0 = 0.12, (u4)0 = 0, (u1)m8 = 11000.
(384)

∀n ∈ {1, · · · , m8}, where m8 is number of nodes and d = t f /m8. This is just the explicit Euler method.
It is well known, at first the error in this procedure may be big.

However, such an error may be made very small by introducing a proximal formulation and
related linearization about a fixed initial solution {(u0)n}, in a Newton type approach context.
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In such a case the approximate system stands for

(u1)n−(u1)n−1
d = f1({(u0)n−1})

+∑4
k=1

∂ f1({(u0)n−1})
∂uk

((uk)n−1 − (u0k )n−1)− K5((u1)n − ((u01)n),

(uj)n−(uj)n−1
d = f j({(u0)n−1}) + ∑4

k=1
∂ f j({(u0)n−1})

∂uk
((uk)n−1 − (u0k )n−1),

∀j ∈ {2, 3, 4},

(u1)0 = 0, (u2)0 = 0.12, (u4)0 = 0, (u1)m8 = 11000.

(385)

Indeed, setting the boundary conditions

(u1)0 = 0, (u2)0 = 0.12, (u3)0 = v0, (u4)0 = 0

we will calculate
{(uj)n(v0)}

through the following iterations



(u1)n = ((u1)n−1 + f1({(u0)n−1})d+
∑4

k=1
∂ f1({(u0)n−1})

∂uk
((uk)n−1 − (u0k )n−1)d + K5 d ((u01)n)

)
/(1 + K5 d),

(uj)n = (uj)n−1 + f j({(u0)n−1})d + ∑4
k=1

∂ f j({(u0)n−1})
∂uk

((uk)n−1 − (u0k )n−1)d,
∀j ∈ {2, 3, 4},

(u1)0 = 0, (u2)0 = 0.12, (u3)0 = v0, (u4)0 = 0.

(386)

Observe that the boundary condition u1(t f ) = 11000 corresponds to (u1)m8(v0) = 11000 so
that, through this last equation we may obtain v0. Having obtained v0, we may obtain {(uj)n} =

{(uj)n(v0)}, ∀n ∈ {1, · · · , m8}, ∀j ∈ {1, · · · , 4}.
The next step is to replace {(u0j)n}) by {(uj)n} and then to repeat the process until an appropriate

convergence criterion is satisfied.
We have obtained numerical results for a model in flight mechanics.
More specifically, we model an in-plan climbing motion of an airplane AIR BUS 320, through the

variables h, γ, V, x where h denotes the airplane altitude, γ is the angle between its velocity and the
axis x, V is the airplane speed and x corresponds to its horizontal coordinate.

The concerning system of equations is given by

ḣ = V sin(γ)

γ̇ = 1
m f V (F sin(a + aF) + L)− g

V cos(γ)

V̇ = 1
m f

(F cos(a + aF)− D)− g sin(γ)

ẋ = V cos(γ), on [0, t f ],

h(0) = 0, γ(0) = 0.12, x(0) = 0, h(t f ) = 11000.

(387)
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Here t f = 515s, F = 240000N, m f = 120000Kg, S f = 260 m2, a = 0.138, g = 9.8m/s2,

ρ(h) = 1.225
(

1 − 0.0065 h
288.15

)4.225
Kg/m3,

aF = 0.0175, (CL)0 = 0, (CL)a = 5.0, (CD)0 = 0.0175, K1 = 0, K2 = 0.06,

CL = (CL)0 + (CL)a a,

CD = (CD)0 + K1CL + K2C2
L,

L =
1
2

ρ(h)V2CLS f ,

D =
1
2

ρ(h)V2CDS f .

For numerical purposes, we define

u1 = h, u2 = γ(= b), u3 = V, u4 = x.

Here we present the software in MATHEMATICA through which we have obtained the numerical
results.

****************************

1. m8 = 20000;
tf = 515.0;
d = tf/m8;
K5 = 10.0/d;
h1 = 11000.0;
Clear[h, b, V, x, u, a, c];
h = u[1];
b = u[2];
V = u[3];
x = u[4];
mf = 120000.0;
g = 9.8;
Sf = 260.0;
a = 0.138;
af = 0.0175;
CLo = 0.0;
CLa = 5.0;
CDo = 0.0175;
K1 = 0.0;
K2 = 0.06;
CL = CLo + CLa*a;
CD = CDo + K1*CL + K2*CL2;
F = 240000.0;
r = 1.225 ∗ (1.0 − 0.0065 ∗ h/288.15)4.225;
L = 1/2 ∗ r ∗ V2 ∗ CL ∗ S f ;
D1 = 1/2 ∗ r ∗ V2 ∗ CD ∗ S f ;
f[1] = V*Sin[b];
f[2] = 1/mf/V*(F*Sin[a + af] + L) - g/V*Cos[b];
f[3] = 1/mf*(F*Cos[a + af] - D1) - g*Sin[b];
f[4] = V*Cos[b];
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For[i = 0, i < m8 + 1, i++,
uo[i, 1] = 11000*i/m8;
uo[i, 2] = 0.15;
uo[i, 3] = 120;
uo[i, 4] = 50000*i/m8];
Clear[u];
For[i = 1, i < 5, i++,
For[j = 1, j < 5, j++,
c[i, j] = D[f[i], u[j]]]];
uo[0, 1] = 0.0;
uo[0, 2] = 0.12;
uo[0, 3] = 120;
uo[0, 4] = 0.0;
For[k3 = 1, k3 < 30, k3++, (Here we have fixed a total of 30 iterations)
Print[k3];
Clear[vo, U];
U[0, 1] = 0.0;
U[0, 2] = 0.12;
U[0, 3] = vo;
U[0, 4] = 0.0;
For[i = 1, i < m8 + 1, i++,
Clear[u];
u[1] = uo[i - 1, 1];
u[2] = uo[i - 1, 2];
u[3] = uo[i - 1, 3];
u[4] = uo[i - 1, 4];
z1 = Expand[U[i - 1, 1] + K5*(uo[i, 1])*d + f[1]*d];
z2 = Expand[U[i - 1, 2] + 0.0*K5*(uo[i, 2])*d + f[2]*d];
z3 = Expand[U[i - 1, 3] + 0.0*K5*(uo[i, 3])*d + f[3]*d];
z4 = Expand[U[i - 1, 4] + 0.0*K5*(uo[i, 4])*d + f[4]*d];
For[k = 1, k < 5, k++,
z1 = z1 + c[1, k]*(U[i - 1, k] - uo[i - 1, k])*d;
z2 = z2 + c[2, k]*(U[i - 1, k] - uo[i - 1, k])*d;
z3 = z3 + c[3, k]*(U[i - 1, k] - uo[i - 1, k])*d;
z4 = z4 + c[4, k]*(U[i - 1, k] - uo[i - 1, k])*d;];
U[i, 1] = Expand[z1/(1.0 + K5*d)];
U[i, 2] = Expand[z2/(1.0 + 0.0*K5*d)];
U[i, 3] = Expand[z3/(1.0 + 0.0*K5*d)];
U[i, 4] = Expand[z4/(1.0 + 0.0*K5*d)]];
Print[U[m8, 1]];
S = (U[m8, 1] - h1);
sol = NSolve[S == 0, vo];
vo = vo /. sol[[1, 1]];
Print[vo];
Print[U[m8, 2]];
Print[U[m8, 3]];
Print[U[m8, 4]];
For[i = 0, i < m8 + 1, i++,
For[k = 1, k < 5, k++,
uo[i, k] = U[i, k]]];
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Print[U[m8/2, 1]]];

****************************

1. For[i = 1, i < 11, i++,
Print["h(", 2000*i*d, "s)=U[", 2000*i, ",1]=", U[2000*i, 1]]]

h(51.5s)=U[2000,1]=1099.37
h(103.s)=U[4000,1]=2199.41
h(154.5s)=U[6000,1]=3299.45
h(206.s)=U[8000,1]=4399.5
h(257.5s)=U[10000,1]=5499.6
h(309.s)=U[12000,1]=6599.74
h(360.5s)=U[14000,1]=7699.8
h(412.s)=U[16000,1]=8799.76
h(463.5s)=U[18000,1]=9899.89
h(515.s)=U[20000,1]=11000.

2. For[i = 1, i < 11, i++,
Print["gamma(", 2000*i*d, "s)=U[", 2000*i, ",2]=", U[2000*i, 2]]]

gamma(51.5s)=U[2000,2]=0.120754
gamma(103.s)=U[4000,2]=0.120085
gamma(154.5s)=U[6000,2]=0.117905
gamma(206.s)=U[8000,2]=0.116329
gamma(257.5s)=U[10000,2]=0.119054
gamma(309.s)=U[12000,2]=0.125181
gamma(360.5s)=U[14000,2]=0.122861
gamma(412.s)=U[16000,2]=0.111435
gamma(463.5s)=U[18000,2]=0.115118
gamma(515.s)=U[20000,2]=0.115257

3. For[i = 1, i < 11, i++,
Print["V(", 2000*i*d, "s)=U[", 2000*i, ",3]=", U[2000*i, 3]]]

V(51.5s)=U[2000,3]=107.325
V(103.s)=U[4000,3]=113.338
V(154.5s)=U[6000,3]=119.7
V(206.s)=U[8000,3]=126.381
V(257.5s)=U[10000,3]=133.568
V(309.s)=U[12000,3]=142.044
V(360.5s)=U[14000,3]=152.19
V(412.s)=U[16000,3]=162.209
V(463.5s)=U[18000,3]=172.269
V(515.s)=U[20000,3]=185.79

4. For[i = 1, i < 11, i++,
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Print["x(", 2000*i*d, "s)=U[", 2000*i, ",4]=", U[2000*i, 4]]]

x(51.5s)=U[2000,4]=5318.63
x(103.s)=U[4000,4]=10930.8
x(154.5s)=U[6000,4]=16860.9
x(206.s)=U[8000,4]=23137.6
x(257.5s)=U[10000,4]=29795.8
x(309.s)=U[12000,4]=36872.5
x(360.5s)=U[14000,4]=44395.
x(412.s)=U[16000,4]=52396.6
x(463.5s)=U[18000,4]=60960.3
x(515.s)=U[20000,4]=70129.5

*************************

58. A Review of the Convergence of Newton’s Method Combined with a Proximal
Approach

Firstly we highlight similar results to those presented in this section have been presented in my
book entitled "Functional Analysis, Calculus of Variations and Numerical Methods for Models in
Physics and Engineering", reference [8], in Chapter 25, page 488.

Let f : Rn → R be a C2 class function and consider the problem of finding a critical point of f ,
there is, to find a point x̂0 ∈ Rn such that

f ′(x̂0) = 0.

Fix k ∈ N and let xk ∈ Rn.
Define F : Rn ×Rn → R by

F(x, xk) = f (xk) + f ′(xk) · (x − xk) +
1
2
[ f ′′(xk)(x − xk)] · (x − xk)

+
K
2
∥x − xk∥2, (388)

for some K > 0 to be specified.
Let xk+1 ∈ Rn be such that [

∂F(x, xk)

∂x

]
x=xk+1

= 0,

so that
f ′(xk) + f ′′(xk)(xk+1 − xk) + K(xk+1 − xk) = 0,

that is
xk+1 = xk − ( f ′′(xk) + KId)

−1 f ′(xk).

Now, assume x0 ∈ Rn is such that

∥ f ′′(x)∥ ≤ K̂1, ∀x ∈ Br(x0)

for some r > 0.
Assume K̂1 > 0 is such that

K − K̂1 > 0.

Suppose also 0 < α1 < 1 is such that

f ′′(x) ≥ α1(K̂1 + K)Id
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and (
1 − α1

4

)
Id ≤ ( f ′′(x) + KId)

−1( f ′′(y) + KId) ≡ H(x, y) ≤
(

1 +
α1

4

)
Id,

∀x, y ∈ Br(x0).
We recall that

∥ f ′′(x)∥ ≤ K̂1,

so that
(K − K̂1)Id ≤ KId + f ′′(x),

and therefore
( f ′′(x) + KId)

−1 ≤ Id

K − k̂1
,

∀x ∈ Br(x0).
Suppose also

f ′(x)− f ′(y) = H5(x, y) · (x − y),

where H5(x, y) is a symmetric matrix such that

0 ≤ H5(x, y)
K − K̂1

≤
(

1 − α1

2

)
Id,

and
H5(x, y) ≥ α1(K + K̂1)Id,

∀x, y ∈ Br(x0).
Assume also K > 0 is such that

x1 ∈ Br(1−α0)
(x0),

where

α0 =

(
1 − 3

4
α1

)
.

Reasoning inductively, suppose

x0, x1, · · · , xk+1 ∈ Br(x0).

Observe that
xk+2 − xk+1 = −( f ′′(xk+1) + KId)

−1 f ′(xk+1),

and
xk+1 − xk = −( f ′′(xk) + KId)

−1 f ′(xk),

so that
( f ′′(xk+1) + KId)(xk+2 − xk+1) = − f ′(xk+1),

and
( f ′′(xk) + KId)(xk+1 − xk) = − f ′(xk).

Hence,

( f ′′(xk+1) + KId)(xk+2 − xk+1) = ( f ′′(xk+1) + KId)(xk+1 − xk)− f ′(xk+1) + f ′(xk),
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so that

(xk+2 − xk+1) = ( f ′′(xk+1) + KId)
−1[( f ′′(xk+1) + KId)(xk+1 − xk)− f ′(xk+1) + f ′(xk)]

= ( f ′′(xk+1) + KId)
−1[( f ′′(xk+1) + KId)(xk+1 − xk)

−H5(xk+1, xk)(xk+1 − xk)]

= ( f ′′(xk+1) + KId)
−1[( f ′′(xk+1) + KId)(xk+1 − xk)]

−( f ′′(xk+1) + KId)
−1H5(xk+1, xk)(xk+1 − xk)

= [H(xk+1, xk)− ( f ′′(xk+1) + KId)
−1H5(xk+1, xk)](xk+1 − xk). (389)

Observe that

H5(xk+1, xk) ≥ α1(K̂1 + K)Id

≥ α1( f ′′(xk+1) + KId), (390)

so that
( f ′′(xk+1) + KId)

−1H5(xk+1, xk) ≥ α1 Id.

Consequently, from such results we may infer that

Id

(
1 − 3

4
α1

)
= Id

(
1 +

α1

4

)
− α1 Id

≥ H(xk+1, xk)− ( f ′′(xk+1) + KId)
−1H5(xk+1, xk)

≥ Id

(
1 − α1

4

)
− (K − K̂1)

−1 Id H5(xk+1, xk)

≥ Id

(
1 − α1

4

)
− Id

(
1 − α1

2

)
=

Idα1

4
≥ 0. (391)

from such results we may infer that

∥H(xk+1, xk)− ( f ′′(xk+1) + KId)
−1H5(xk+1, xk)∥ ≤

(
1 − 3α1

4

)
.

Defining

α0 =

(
1 − 3α1

4

)
we have got

∥xj+2 − xj+1∥ ≤ α0∥xj+1 − xj∥, ∀j ∈ {1, · · · , k}.

Therefore

∥xj+2 − xj+1∥ ≤ α0∥xj+1 − xj∥
≤ α2

0∥xj − xj−1∥
...

≤ α
j+1
0 ∥x1 − x0∥. (392)
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Thus,

∥xk+2 − x1∥ = ∥xk+2 − xk+1 + xk+1 − · · · − x2 + x2 − x1∥
≤ ∥xk+2 − xk+1∥+ ∥xk+1 − xk∥+ · · ·+ ∥x2 − x1∥

≤
k+1

∑
j=1

α
j
0∥x1 − x0∥

≤
∞

∑
j=1

α
j
0∥x1 − x0∥

=
α0

1 − α0
∥x1 − x0∥. (393)

Therefore

∥xk+2 − x0∥ ≤ ∥xk+2 − x1 + x1 − x0∥
≤ ∥xk+2 − x1∥+ ∥x1 − x0∥

≤ α0

1 − α0
∥x1 − x0∥+ ∥x1 − x0∥

=
1

1 − α0
∥x1 − x0∥

≤ 1
1 − α0

(1 − α0)r

= r. (394)

Summarizing,
∥xk+2 − x0∥ < r,

so that
xk+2 ∈ Br(x0).

The induction is complete, so that

xk ∈ Br(x0), ∀k ∈ N.

From such results we have also obtained

∥xk+2 − xk+1∥ ≤ α0∥xk+1 − xk∥, ∀k ∈ N.

Thus, from these results and the Banach fixed point theorem, there exists x̂0 ∈ Br(x0) such that

lim
k→∞

xk = x̂0.

Hence,

0 = lim
k→∞

xk+1 − xk

= lim
k→∞

(− f ′′(xk) + KId)
−1 f ′(xk)

= −( f ′′(x̂0) + KId)
−1 f ′(x̂0). (395)

Since det( f ′′(x̂0) + KId)
−1 ̸= 0, from this last equation we obtain

f ′(x̂0) = 0.
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The objective of this section is complete.

58.1. Applications to a Ginzburg-Landau Type Equation

Let Ω = [0, 1]2 ⊂ R3 and consider a functional F : V → R where

F(u) =
γ

2

∫
Ω
∇u · ∇u dx +

α

4

∫
Ω

u4 dx

− β

2

∫
Ω

u2 dx − ⟨u, f ⟩L2 , (396)

where V = H1
0(Ω), f ∈ L2(Ω), α > 0, β > 0 and γ > 0.

Let u ∈ H1
0(Ω) and φ ∈ H1

0(Ω).
Observe that

δF(u; φ) = γ
∫

Ω
∇u · ∇φ dx

α
∫

Ω
u3 φ dx − β

∫
Ω

u φ dx

−⟨φ, f ⟩L2 . (397)

Consider the problem of finding u0 ∈ H1
0(Ω) such that

δF(u0; φ) = 0, ∀φ ∈ H1
0(Ω).

Fixing N ∈ N, consider now a mesh in finite differences for Ω, where we define d = 1/N and the
related grid

ΩN = {(j/N, k/N) ∀j, k ∈ {0, 1, · · · , N}.

Denoting by VN the finite-dimensional space in a finite diferences context corresponding to V
and considering the functional F, we assume there exist u0 ∈ V, the corresponding uN

0 ∈ VN and r > 0
such that the hypotheses indicated in the last section also for the corresponding function FN : VN → R
are satisfied so that, as developed in such a previous section, we may obtain a solution uN : Ω → R
such that

F′
N(uN) = 0

that is,
−γ∇2

NuN + αu3
N − βuN − fN = 0,

where ∇2
N is the finite dimensional operator corresponding to the Laplace operator ∇2.

Also,
F′′

N(u) = −γ∇2
N + 3α diag (u2)− βId,

so that

F′
N(u1)− F′

N(u2) = −γ∇2
Nu1 + αu3

1 − βu1 − fN

−
(
−γ∇2

Nu2 + αu3
2 − βu2 − fN

)
= −γ∇2

N(u1 − u2) + α(u3
1 − u3

2)− β(u1 − u2)

= −γ∇2
N(u1 − u2) + 3α (ũ2) (u2 − u1)− β(u1 − u2)

=
(
−γ∇2

N + 3α diag ũ2 − βId

)
(u2 − u1)

= F′′
N(ũ)(u2 − u1) (398)

where (u1)j ≤ ũj ≤ (u2)j, ∀u1, u2 ∈ Br(u0).
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From such results, concerning the notation of the last section, we may infer that

H5(u1, u2) = F′′
N(ũ(u1, u2))

= −γ∇2
N + 3α diag {[(ũ)(u1, u2)]

2} − βId. (399)

Now fix M, N ∈ N.
Observe that

−γ∇2
NuN + αu3

N − βuN − fN = 0,

and
−γ∇2

MuM + αu3
M − βuM − fM = 0.

At this point, denoting uN = {uN
j,k}, we define

ũN
0 (x, y) =

{
uN

j,k, if (x, y) ∈ ((j − 1) d, j d]× ((k − 1) d, k d],
∀j, k ∈ {1, · · · , N}.

(400)

We also denote for a not relabeled operator ∇2
N ,

∇2
N(ũ

N
0 (x, y)) =


uN

j+1,k−2uN
j,k+uN

j−1,k
d2 +

uN
j,k+1−2uN

j,k+uN
j,k−1

d2 ,
if (x, y) ∈ ((j − 1) d, j d]× ((k − 1) d, k d],
∀j, k ∈ {1, · · · , N}.

(401)

and
∇2

N(ũ
N
0 (x, y)) = [∇2ũN

0 ](x − d, y − d), if x ∈ (1 − d, 1] or y ∈ (1 − d, 1].

Moreover, we define

uN
0 (x, y) = (∇2)−1(∇2

N(ũ
N
0 (x, y))), in Ω.

Observe that

−γ∇2uN
0 = −γ∇2

N ũN
0

= −α(ũN
0 )3 + βũN

0 + fN

= −α(uN
0 )3 + βuN

0 + fN

−α[(ũN
0 )3 − (uN

0 )3] + β(ũN
0 − uN

0 ), (402)

Similarly, we may obtain

−γ∇2uM
0 = −γ∇2

MũN
0

= −α(uM
0 )3 + βuM

0 + fM

−α[(ũM
0 )3 − (uM

0 )3] + β(ũM
0 − uM

0 ). (403)

Consequently, from such results, we have

uN
0 − uM

0

= (−γ∇2 + 3α(ûN,M)2 − βId)
−1

×
[

fN − fM − 3α(ûN)2(uN
0 − ũN

0 ) + 3α(ûM)2(uM
0 − ũM

0 )

+β(uN
0 − ũN

0 )− β(uM
0 − ũM

0 )
]

(404)
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where ûN is on the line connecting uN
0 , ũN

0 and ûM is on the line connecting uM
0 and ũM

0 and ûN,M is on
the line connecting uN

0 and uM
0 .

From these results, we obtain

∥uN
0 − uM

0 ∥1,2,Ω

= ∥(−γ∇2 + 3α(ûN,M)2 − βId)
−1∥

×
[
∥ fN − fM∥0,2,Ω + 3α∥(ûN)∥2

0,4,Ω∥(uN
0 − ũN

0 )∥0,2,Ω + 3α∥(ûM)∥2
0,4,Ω∥(uM

0 − ũM
0 )∥0,2,Ω

+β∥(uN
0 − ũN

0 )∥0,2,Ω + β∥(uM
0 − ũM

0 )∥0,2,Ω

]
≤

[
K8∥ fN − fM∥0,2,Ω + K9∥(uN

0 − ũN
0 )∥0,2,Ω + K9∥(uM

0 − ũM
0 )∥0,2,Ω

]
(405)

for some appropriate constants K8 > 0, K9 > 0.
Let ε > 0.
Observe that there exists N0 ∈ N such that if M, N > N0, then

∥ fN − fM∥0,2,Ω <
ε

3K8
,

∥(uN
0 − ũN

0 )∥0,2,Ω ≤ ε

3K9
,

and
∥(uM

0 − ũM
0 )∥0,2,Ω ≤ ε

3K9
,

so that,
∥uN

0 − uM
0 ∥1,2,Ω < ε.

Therefore, {uN
0 } is a Cauchy sequence in H1

0(Ω) so that there exists û0 ∈ H1
0(Ω) such that

uN
0 → û0, strongly in H1

0(Ω).

Let φ ∈ H1
0(Ω).

From such results and from the Sobolev Imbedding theorem, we may infer that

0 = lim
N→∞

(
γ⟨∇uN

0 ,∇φ⟩L2

+α⟨(uN
0 )3, φ⟩L2 − β⟨uN

0 , φ⟩L2

−⟨ fN , φ⟩L2)

= (γ⟨∇û0,∇φ⟩L2

+α⟨û3
0, φ⟩L2 − β⟨û0, φ⟩L2

−⟨ f , φ⟩L2). (406)

Thus,
γ⟨∇û0,∇φ⟩L2 + α⟨û3

0, φ⟩L2 − β⟨û0, φ⟩L2 − ⟨ f , φ⟩L2 = 0,

∀φ ∈ H1
0(Ω).

From this result we may infer that û0 is a weak solution of equation F′(û0) = 0.

59. On the Convergence of the Newton’s Method Combined with a Proximal
Formulation for a General Parabolic Equation

Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.
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Consider the parabolic non-linear equation
∂u
∂t = ε∇2u + g(u) + f , in Ω × (0, T),
u(x, 0) = û0, in Ω,
u = 0, on ∂Ω × [0, T].

(407)

Here ε > 0, f ∈ L2([0, T], W1,2(Ω)) ∩ L∞(Ω × [0, T]), û0 ∈ H1
0(Ω) ∩ L∞(Ω), where t denotes time

and [0, T] is a time interval.
Also g : R → R is a continuous function neither necessarily linear nor convex.
We assume there exists r > 0 such that

∥g′(u)∥∞ ≤ K2,

and
∥g(u)∥∞ ≤ K̂7

∀u ∈ Br(û0), for some K2 > 0 and K̂7 > 0.
Here

Br(û0) = {u ∈ H1
0(Ω) : ∥u − û0∥1,2,Ω < r}.

Moreover, fixing N ∈ N and defining

∆tN =
T
N

,

in a partial finite differences context, discretizing in t consider the approximate equation system

un+1 − un

∆tN
= ε∇2un+1 + g(un+1) + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
Fix M ∈ N. In a finite elements context for the variable x ∈ Rn, denoting hM = L0/M, for an

appropriate fixed L0 > 0 consider a mesh with a concerning thickness hM and a related solution uM
n of

the following system

uM
n+1 − uM

n

∆tN
= ε∇2

MuM
n+1 + g(uM

n+1) + f M
n , in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
Here ∇2

M is the operator in a finite elements context corresponding to the Laplace operator ∇2.
We highlight in the next lines, as the meaning is clear, we may denote simply ∇2

M = ∇2.
Observe that there exists a not relabeled r > 0, K1 > 0 and K2 > 0 such that

∥g′(uM)∥ ≤ K2,

and
−K1 Id ≤ −ε∇2

M − g′(uM) ≤ K1 Id,

∀uM ∈ Br(ûM
0 ), ∀M ∈ N.

Observe also that there exists N0 ∈ N such that if N > N0, then

0 <
K + 2K2∆tN

K + 1 − K1∆tN
< 1.

Indeed, we may find α0 ∈ R such that

0 <
K + 2K2∆tN

K + 1 − K1∆tN
< α0 < 1, ∀N > N0.
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Let MN ⊂ N be a sequence such that MN < MN+1, ∀N ∈ N.
Fix N > N0.
For n = 0, we are going to calculate u1 = uMn ,N

1 though the following iterations, which already
include a proximal formulation and concerning linearization.

Set u0
1 = û0 = ûMN ,N

0 ,
Having uk

1, let uk+1
1 be such that

uk+1
1 − û0 = ε∇2uk+1

1 ∆tN + g(uk
1))∆tN

+g′(uk
1)(u

k+1
1 − uk

1)∆tN + f1∆tN − K(uk+1
1 − uk

1), (408)

Here we suppose K ≡ KN
n > 0 is large enough so that

u1
1 ∈ B r(1−α0)

N
(u0).

Reasoning inductively, suppose u0
1, u1

1, · · · , uk+1
1 ∈ B r

N
(u0), and observe that

uk+1
1 − û0 − ε∇2uk+1

1 ∆tN − g(uk
1))∆tN

−g′(uk
1)(u

k+1
1 − uk

1)∆tN − f1∆tN + K(uk+1
1 − uk

1)

= 0, (409)

and

uk+2
1 − û0 − ε∇2uk+2

1 ∆tN − g(uk+1
1 ))∆tN

−g′(uk+1
1 )(uk+2

1 − uk+1
1 )∆tN − f1∆tN + K(uk+2

1 − uk+1
1 )

= 0, (410)

so that for an appropriate ũk
1,(

Id − ε∇2
N∆tN − g′(uk+1

1 )∆tN + KId

)
(uk+2

1 − uk+1
1 )

=
(
(−g′(ũk

1) + g′(uk+1
1 ))∆tN + KId

)(
uk+1

1 − uk
1

)
. (411)

Hence,

∥uk+2
1 − uk+1

1 ∥

≤
∥∥∥∥(Id − ε∇2

N∆tN − g′(uk+1
1 )∆tN + KId

)−1(
(−g′(ũk

1) + g′(uk+1
1 ))∆tN + KId

)∥∥∥∥
×
∥∥∥uk+1

1 − uk
1

∥∥∥
≤ K + 2K2∆tN

K + 1 − K1∆tN

∥∥∥uk+1
1 − uk

1

∥∥∥
≤ α0

∥∥∥uk+1
1 − uk

1

∥∥∥. (412)

Thus, we have got

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥, ∀j ∈ {1, · · · , k}.
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Therefore

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥

≤ α2
0∥uj

1 − uj−1
1 ∥

...

≤ α
j+1
0 ∥u1

1 − u0
1∥. (413)

Thus,

∥uk+2
1 − u1

1∥ = ∥uk+2
1 − uk+1

1 + uk+1
1 − · · · − u2

1 + u2
1 − u1

1∥
≤ ∥uk+2

1 − uk+1
1 ∥+ ∥uk+1

1 − uk
1∥+ · · ·+ ∥u2

1 − u1
1∥

≤
k+1

∑
j=1

α
j
0∥u1

1 − u0
1∥

≤
∞

∑
j=1

α
j
0∥u1

1 − u0
1∥

=
α0

1 − α0
∥u1

1 − u0
1∥. (414)

Therefore

∥uk+2
1 − u0

1∥ ≤ ∥uk+2
1 − u1

1 + u1
1 − u0

1∥
≤ ∥uk+2

1 − u1
1∥+ ∥u1

1 − u0
1∥

≤ α0

1 − α0
∥u1

1 − u0
1∥+ ∥u1

1 − u0
1∥

=
1

1 − α0
∥u1

1 − u0
1∥

<
1

1 − α0
(1 − α0)

r
N

=
r
N

. (415)

Summarizing,

∥uk+2
1 − u0

1∥ <
r
N

,

so that
uk+2

1 ∈ B r
N
(u1

0).

The induction is complete, so that

uk
1 ∈ B r

N
(u1

0), ∀k ∈ N.

From such results we have also obtained

∥uk+2
1 − uk+1

1 ∥ ≤ α0∥uk+1
1 − uk

1∥, ∀k ∈ N.

Thus, from these results and the Banach fixed point theorem, there exists u1 = uMN ,N
1 ∈ B r

N
(u1

0)

such that
lim
k→∞

uk
1 = u1 = uMN ,N

1 .
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0 = lim
k→∞

(
uk+1

1 − û0

−ε∇2uk+1
1 ∆tN − g(uk

1))∆tN

−g′(uk
1)(u

k+1
1 − uk

1)∆tN − f1∆tN + K(uk+1
1 − uk

1)
)

= u1 − û0 − ε∇2u1∆tN − g(u1)∆tN − f1∆tN , (416)

so that
u1 − û0

∆tN
= ε∇2u1 + g(u1) + f1, in Ω,

Reasoning inductively again having u1 ∈ B r
N
(û0) and uj ∈ B r

N
(uj−1), ∀j ∈ {2, · · · , n} similarly

as we have obtained u1 in the last lines, we may obtain

un+1 = uMN ,N
n+1 ∈ B r

N
(un),

such that
un+1 − un

∆tN
= ε∇2un+1 + g(un+1) + fn, in Ω.

The induction on n is also complete.
Fix n ∈ {1, · · · , N − 1}.
Observe that

∥un − û0∥ = ∥un − un−1 + un−1 − un−2 + · · · − u1 + u1 − u0∥
≤ ∥un − un−1∥+ · · ·+ ∥u1 − û0∥

≤ n
N

r

< r (417)

Summarizing un ∈ Br(û0), ∀n ∈ {0, 1, · · · , N − 1}.
From these results, denoting now more generically un ≡ uMN ,N

n = uN
n , we may infer that there

exists K4 > 0 such that

∥uN
j ∥ ≤ K4, ∀j ∈ {0, 1, · · · , N}, ∀N ∈ N.

With a completely analogous reasoning, we may obtain that

∥uN
j ∥1,2,Ω ≤ K̂4, ∀j ∈ {0, 1, · · · , N}, ∀N ∈ N,

for some K̂4 > 0.
Define now

uN
0 (x, t) = uN

n (x)
(

n + 1 − t
∆tN

)
+ uN

n+1(x)
(

t
∆tN

− n
)

,

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that

uN
0 (x, t) = uN

n (x), if t = n∆tN , ∀n ∈ {0, 1, · · · , N},

and

∂uN
0 (x, t)
∂t

=
uN

n+1 − uN
n

∆tN

= ε∇2uN
n+1 + g(uN

n+1) + fn, (418)

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
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Fix φ ∈ C∞
c (Ω).

Thus, fixing t ∈ [n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣
〈

∂uN
0

∂t
, φ

〉
L2

∣∣∣∣∣ ≤ ε|⟨∇uN
n+1,∇φ⟩L2 |+ |⟨g(uN

n+1), φ⟩L2 |

+|⟨φ, fn⟩L2 |
≤ ε∥uN

n+1∥1,2,Ω∥φ∥1,2,Ω + K18∥uN
n+1∥1,2,Ω∥φ∥1,2,Ω + K3∥φ∥1,2,Ω

≤ K5∥φ∥1,2,Ω, ∀φ ∈ C∞
c (Ω), (419)

for some appropriate K5 > 0.
Since φ ∈ C∞

c (Ω) is arbitrary, we may conclude that∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω)

≤ K6, ∀N > N0,

uniformly in t on [0, T], for some appropriate constant K6 > 0.
Also, from the definition of uN

0 we have that there exists K7 > 0 such that

∥uN
0 ∥1,2,Ω ≤ K7, ∀N ∈ N

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω)) and v0 ∈ L2([0, T]; H−1(Ω)) such that

uN
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω)),

and
∂uN

0
∂t

⇀ v0, weakly-star in L2([0, T], H−1(Ω)),

so that we may easily obtain

v0 =
∂u0

∂t
in a distributional sense.

At this point, we provide more details about this last result.
Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , N − 1} such that t ∈ [n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T)).
From this, we may infer that

∫
Ω

∂uN
0

∂t
φ(x, t) dx

=
∫

Ω

uN
n+1 − uN

n

∆tN
φ(x, t) dx

≤ ε
∫

Ω
|∇uN

n+1 · ∇φ| dx

+
∫

Ω
|g(uN

n+1) φ(x, t)| dx +
∫

Ω
| fn φ| dx

≤ (K8∥uN
n+1∥1,2,Ω + K20)∥φ∥1,2,Ω

≤ K9∥φ∥1,2,Ω, (420)

for some appropriate constants K8 > 0, K9 > 0, K20 > 0.
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Hence,

∫ T

0

∫
Ω

∂uN
0

∂t
φ(x, t) dx dx

≤ K9

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (421)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T)) is arbitrary, we may infer that∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω×(0,T))

≤ K15,

for N ∈ N, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T))

such that, up to a not relabeled subsequence

∂uN
0

∂t
⇀ v0, weakly-star in H−1(Ω × (0, T)).

Therefore, ∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt →

∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T)).

On the other hand
∥uN

0 ∥0,2,Ω×(0,T) ≤ K16,

∀N ∈ N, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T)) such that, up to a not

relabeled subsequence,
uN

0 ⇀ u0, weakly in L2(Ω × (0, T)).

Now fix again φ ∈ C∞
c (Ω × (0, T)).

Observe that ∫ T

0

∫
Ω

u0 φt dx dt = lim
N→∞

∫ T

0

∫
Ω

uN
0 φt dx dt

= − lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= −
∫ T

0

∫
Ω

v0 φ dx dt, (422)

Since such a φ ∈ C∞
c (Ω × (0, T)) is arbitrary, we may infer that

v0 =
∂u0

∂t

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
N→∞

∫
Ω

∂uN
0

∂t
φ dx =

∫
Ω

∂u0

∂t
φ dx,

∀φ ∈ H1
0(Ω).
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Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uNk(t)
0 → u0(x, t), strongly in L2(Ω), for almost all t ∈ [0, T].

so that, up to subsequences,

uNk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Here we emphasise the sequence {Nk(t)} ⊂ N may depends on t.
Since g is continuous we have that

g(uNk(t)
0 (x, t)) → g(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|g(uNk(t)
0 (x, t))− g(u0(x, t))| ≤ ε, for almost all x ∈ F.

Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω
(g(uNk(t)

0 (x, t))− g(u0(x, t)))φ dx
∣∣∣∣

≤
∫

Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

=
∫

F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx +
∫

Ω\F
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx +

∫
Ω
|g(uNk(t)

0 (x, t))− g(u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥g(uNk(t)
0 )∥0,2,Ω + ∥g(u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (423)

for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
g(uNk(t)

0 )φ dx →
∫

Ω
g(u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω).

From such results, we have

0 = lim
k→∞

(∫
Ω

∂uNk(t)
0
∂t

φ dx + ε
∫

Ω
∇uNk(t)

0 · ∇φ dx

−
∫

Ω
g(uNk(t)

0 )φ dx −
∫

Ω
f Nk(t)φ dx

)
=

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

∫
Ω

f φ dx. (424)
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so that, from this and by the density of C∞
c (Ω) in H1

0(Ω), we have got

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

∫
Ω

f φ dx = 0, ∀φ ∈ H1
0(Ω), (425)

a.e. on [0, T].
Observe now that

∂(Ω × (0, T)) = (∂Ω × [0, T]) ∪
(
∂[0, T]× Ω

)
.

Let φ ∈ C∞
c (Ω × (0, T)).

Hence

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt.

From this, since C∞
c (Ω × (0, T)) is dense L2(Ω × (0, T)) we may infer that

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt,

∀φ ∈ L2(Ω × (0, T)).
Let φ ∈ C∞(Ω × [0, T]) such that

φ(x, T) = 0, in Ω.

From such results, we may obtain

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= lim
N→∞

(
−
∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt −

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

)
= −

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt −

∫
Ω

u0(x, 0)φ(x, 0) dx. (426)

However, since uN
0 ⇀ u0, weakly in L2(Ω × (0, T)), we obtain

lim
N→∞

∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt =

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt.

From these last results, we may infer that∫
Ω

û0 φ(x, 0) dx = lim
N→∞

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

=
∫

Ω
u0(x, 0) φ(x, 0) dx, (427)

so that ∫
Ω

û0(x)φ(x, 0) dx =
∫

Ω
u0(x, 0)φ(x, 0) dx,

∀φ ∈ C∞(Ω × [0, T]) such that φ(x, T) = 0, in Ω.
Therefore, we may infer that u0(x, 0) = û0(x) in this specified weak sense.
Similarly, it may be proven that

u0 = 0, on ∂Ω × [0, T],

in an appropriate weak sense.
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Hence, we have obtained that u0 is a solution, in a weak sense, of the parabolic non-linear equation
in question.

60. More Results on the Convergence of Newton’s Method Combined with a
Proximal Approach for a Parabolic Equation

Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider the parabolic non-linear equation
∂u
∂t = ε∇2u + g(u) + f , in Ω × (0, T),
u(x, 0) = û0, in Ω,
u = 0, on ∂Ω × [0, T].

(428)

Here ε > 0, f ∈ L2([0, T], W1,2(Ω)) ∩ L∞(Ω × [0, T]), û0 ∈ H1
0(Ω) ∩ L∞(Ω), where t denotes time

and [0, T] is a time interval.
Also g : R → R is a continuous function neither necessarily linear nor convex.
We assume there exists r > 0 such that

∥g′(u)∥∞ ≤ K2,

and
∥g(u)∥∞ ≤ K̂7

∀u ∈ Br(û0), for some K2 > 0 and K̂7 > 0.
Here

Br(û0) = {u ∈ H1
0(Ω) : ∥u − û0∥1,2,Ω < r}.

About the references, the main ones are [6,22? ]. Other related results may be found in [7,8].
Consider the operator

−∇2 : D ⊂ L2(Ω) → L2(Ω),

where
D = H1

0(Ω) ∩ H2(Ω)

is dense in L2(Ω) concerning the L2(Ω) norm.
From the standard spectral analysis theory (please see [8], for details), denoting the spectral

decomposition of −∇2 by
{E(λ), λ ∈ [0,+∞)},

we may obtain

−∇2u =
∫ ∞

0
λdE(λ)u,

∀u ∈ D.
Fix M ∈ N and define

(−∇2)M =
∫ M

0
λdE(λ),

which is a bounded operator in D.
Also from the standard spectral theory, we have

lim
M→∞

∥(−∇2)Mu − (−∇2)u∥0,2 = 0, ∀u ∈ D.

Similarly, defining the self-adjoint densely defined in L2(Ω),

Bj : H1
0(Ω) → L2(Ω),
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by

Bj(u) = i
∂u
∂xj

,

Denoting by
{Ej(λ), λ ∈ R},

the spectral decomposition of Bj and fixing again M ∈ N, we define

(Bj)M = −i
∫ M

−M
λdEj(λ),

so that

(Bj)M(u) = −i
∫ M

−M
λdEj(λ)u, ∀u ∈ H1

0(Ω).

We may also infer that

∥(Bj)M(u)− (−i)Bj(u)∥0,2 → 0, as M → ∞,

∀u ∈ H1
0(Ω).

Finally, we define
∇M = ((B1)M, · · · , (Bm)M),

which is a bounded linear operator from H1
0(Ω) into L2(Ω).

60.1. The Main Result

Fix again M ∈ N (a new value).
Moreover, fixing N ∈ N and defining

∆tN =
T
N

,

in a partial finite differences context, discretizing in t consider the approximate equation system

un+1 − un

∆tN
= ε(∇2)Mun+1 + g(un+1) + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
Denoting un = uM

n we may write

uM
n+1 − uM

n

∆tN
= ε∇2

MuM
n+1 + g(uM

n+1) + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
Observe that there exists a not relabeled r > 0, K1 = K1(M) > 0 and K2 > 0 such that

∥g′(uM)∥ ≤ K2,

and
−K1 Id ≤ −ε∇2

M − g′(uM) ≤ K1 Id,

∀uM ∈ Br(ûM
0 ).

Fix K ≫ 1.
Observe also that there exists N0 = N0(M) ∈ N such that if N > N0, then

0 <
K + 2K2∆tN

K + 1 − K1∆tN
< 1.
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Indeed, we may find α0 ∈ R such that

0 <
K + 2K2∆tN

K + 1 − K1∆tN
< α0 < 1, ∀N > N0.

Let N = NM ⊂ N be a sequence such that NM < NM+1, ∀M ∈ N.
and NM > N0(M).
For n = 0, we are going to calculate u1 = uMn ,NM

1 though the following iterations, which already
include a proximal formulation and concerning linearization.

Set u0
1 = û0 = ûM,NM

0 ,
Having uk

1, let uk+1
1 be such that

uk+1
1 − û0 = ε(∇2)Muk+1

1 ∆tN + g(uk
1))∆tN

+g′(uk
1)(u

k+1
1 − uk

1)∆tN + f1∆tN − K(uk+1
1 − uk

1), (429)

Here we suppose r > 0 is large enough so that

u1
1 ∈ B r(1−α0)

NM

(u0).

Reasoning inductively, suppose u0
1, u1

1, · · · , uk+1
1 ∈ B r

NM
(u0), and observe that

uk+1
1 − û0 − ε(∇2)Muk+1

1 ∆tN − g(uk
1))∆tN

−g′(uk
1)(u

k+1
1 − uk

1)∆tN − f1∆tN + K(uk+1
1 − uk

1)

= 0, (430)

and

uk+2
1 − û0 − ε(∇2)Muk+2

1 ∆tN − g(uk+1
1 ))∆tN

−g′(uk+1
1 )(uk+2

1 − uk+1
1 )∆tN − f1∆tN + K(uk+2

1 − uk+1
1 )

= 0, (431)

so that for an appropriate ũk
1,(

Id − ε∇2
M∆tN − g′(uk+1

1 )∆tN + KId

)
(uk+2

1 − uk+1
1 )

=
(
(−g′(ũk

1) + g′(uk+1
1 ))∆tN + KId

)(
uk+1

1 − uk
1

)
. (432)

Hence,

∥uk+2
1 − uk+1

1 ∥

≤
∥∥∥∥(Id − ε∇2

M∆tN − g′(uk+1
1 )∆tN + KId

)−1(
(−g′(ũk

1) + g′(uk+1
1 ))∆tN + KId

)∥∥∥∥
×
∥∥∥uk+1

1 − uk
1

∥∥∥
≤ K + 2K2∆tN

K + 1 − K1∆tN

∥∥∥uk+1
1 − uk

1

∥∥∥
≤ α0

∥∥∥uk+1
1 − uk

1

∥∥∥. (433)

Thus, we have got

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥, ∀j ∈ {1, · · · , k}.
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Therefore

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥

≤ α2
0∥uj

1 − uj−1
1 ∥

...

≤ α
j+1
0 ∥u1

1 − u0
1∥. (434)

Thus,

∥uk+2
1 − u1

1∥ = ∥uk+2
1 − uk+1

1 + uk+1
1 − · · · − u2

1 + u2
1 − u1

1∥
≤ ∥uk+2

1 − uk+1
1 ∥+ ∥uk+1

1 − uk
1∥+ · · ·+ ∥u2

1 − u1
1∥

≤
k+1

∑
j=1

α
j
0∥u1

1 − u0
1∥

≤
∞

∑
j=1

α
j
0∥u1

1 − u0
1∥

=
α0

1 − α0
∥u1

1 − u0
1∥. (435)

Therefore

∥uk+2
1 − u0

1∥ ≤ ∥uk+2
1 − u1

1 + u1
1 − u0

1∥
≤ ∥uk+2

1 − u1
1∥+ ∥u1

1 − u0
1∥

≤ α0

1 − α0
∥u1

1 − u0
1∥+ ∥u1

1 − u0
1∥

=
1

1 − α0
∥u1

1 − u0
1∥

<
1

1 − α0
(1 − α0)

r
NM

=
r

NM
. (436)

Summarizing,

∥uk+2
1 − u0

1∥ <
r

NM
,

so that
uk+2

1 ∈ B r
NM

(u1
0).

The induction is complete, so that

uk
1 ∈ B r

NM
(u1

0), ∀k ∈ N.

From such results we have also obtained

∥uk+2
1 − uk+1

1 ∥ ≤ α0∥uk+1
1 − uk

1∥, ∀k ∈ N.

Thus, from these results and the Banach fixed point theorem, there exists u1 = uM,NM
1 ∈ B r

NM
(u1

0)

such that
lim
k→∞

uk
1 = u1 = uM,N=NM

1 .
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0 = lim
k→∞

(
uk+1

1 − û0

−ε(∇2)Muk+1
1 ∆tN − g(uk

1))∆tN

−g′(uk
1)(u

k+1
1 − uk

1)∆tN − f1∆tN + K(uk+1
1 − uk

1)
)

= u1 − û0 − ε(∇2)Mu1∆tN − g(u1)∆tN − f1∆tN , (437)

so that
u1 − û0

∆tN
= ε(∇2)Mu1 + g(u1) + f1, in Ω,

Reasoning inductively again having u1 ∈ B r
NM

(û0) and uj ∈ B r
NM

(uj−1), ∀j ∈ {2, · · · , n}
similarly as we have obtained u1 in the last lines, we may obtain

un+1 = uM,NM
n+1 ∈ B r

NM
(un),

such that
un+1 − un

∆tN
= ε(∇2)Mun+1 + g(un+1) + fn, in Ω,

where we recall to have denoted N = NM.
The induction on n is also complete.
Fix n ∈ {1, · · · , NM − 1}.
Observe that

∥un − û0∥ = ∥un − un−1 + un−1 − un−2 + · · · − u1 + u1 − u0∥
≤ ∥un − un−1∥+ · · ·+ ∥u1 − û0∥

≤ n
NM

r

< r (438)

Summarizing un ∈ Br(û0), ∀n ∈ {0, 1, · · · , NM − 1}.
From these results, denoting now more generically un ≡ uM,N=NM

n = uM
n , we may infer that there

exists K4 > 0 such that

∥uM
j ∥ ≤ K4, ∀j ∈ {0, 1, · · · , NM}, ∀M ∈ N.

With a completely analogous reasoning, we may obtain that

∥uM
j ∥1,2,Ω ≤ K̂4, ∀j ∈ {0, 1, · · · , NM}.

for some K̂4 > 0.
Recalling again, we have denoted N = NM, define now

uM
0 (x, t) = uM

n (x)
(

n + 1 − t
∆tN

)
+ uM

n+1(x)
(

t
∆tN

− n
)

,

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that

uM
0 (x, t) = uM

n (x), if t = n∆tN , ∀n ∈ {0, 1, · · · , N = NM},
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and

∂uM
0 (x, t)

∂t
=

uM
n+1 − uM

n

∆tN

= ε(∇2)MuM
n+1 + g(uM

n+1) + fn, (439)

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Fix φ ∈ C∞

c (Ω).
Thus, fixing t ∈ [n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣

〈
∂uM

0
∂t

, φ

〉
L2

∣∣∣∣∣ ≤ ε|⟨∇MuM
n+1,∇M φ⟩L2 |+ |⟨g(uM

n+1), φ⟩L2 |

+|⟨φ, fn⟩L2 |
≤ ε∥uM

n+1∥1,2,Ω∥φ∥1,2,Ω + K18∥uM
n+1∥1,2,Ω∥φ∥1,2,Ω + K3∥φ∥1,2,Ω

≤ K5∥φ∥1,2,Ω, ∀φ ∈ C∞
c (Ω), (440)

for some appropriate K5 > 0.
Since φ ∈ C∞

c (Ω) is arbitrary, we may conclude that∥∥∥∥∥∂uM
0

∂t

∥∥∥∥∥
H−1(Ω)

≤ K6, ∀M > N3,

uniformly in t on [0, T], for some appropriate constant K6 > 0 and N3 ∈ N.
Also, from the definition of uM

0 we have that there exists K7 > 0 such that

∥uM
0 ∥1,2,Ω ≤ K7, ∀M ∈ N

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω)) and v0 ∈ L2([0, T]; H−1(Ω)) such that

uM
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω)),

and
∂uM

0
∂t

⇀ v0, weakly-star in L2([0, T], H−1(Ω)),

so that we may easily obtain

v0 =
∂u0

∂t
in a distributional sense.

At this point, we provide more details about this last result.
Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , NM − 1} such that t ∈ [n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T)).
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From this, we may infer that

∫
Ω

∂uM
0

∂t
φ(x, t) dx

=
∫

Ω

uM
n+1 − uM

n

∆tN
φ(x, t) dx

≤ ε
∫

Ω
|∇MuM

n+1 · ∇M φ| dx

+
∫

Ω
|g(uM

n+1) φ(x, t)| dx +
∫

Ω
| fn φ| dx

≤ (K8∥uM
n+1∥1,2,Ω + K20)∥φ∥1,2,Ω

≤ K9∥φ∥1,2,Ω, (441)

for some appropriate constants K8 > 0, K9 > 0, K20 > 0.
Hence,

∫ T

0

∫
Ω

∂uM
0

∂t
φ(x, t) dx dx

≤ K9

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (442)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T)) is arbitrary, we may infer that∥∥∥∥∥∂uM
0

∂t

∥∥∥∥∥
H−1(Ω×(0,T))

≤ K15,

for N ∈ N, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T))

such that, up to a not relabeled subsequence

∂uM
0

∂t
⇀ v0, weakly-star in H−1(Ω × (0, T)).

Therefore, ∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt →

∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T)).

On the other hand
∥uM

0 ∥0,2,Ω×(0,T) ≤ K16,

∀M ∈ N, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T)) such that, up to a not

relabeled subsequence,
uM

0 ⇀ u0, weakly in L2(Ω × (0, T)).

Now fix again φ ∈ C∞
c (Ω × (0, T)).
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Observe that ∫ T

0

∫
Ω

u0 φt dx dt = lim
M→∞

∫ T

0

∫
Ω

uM
0 φt dx dt

= − lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt

= −
∫ T

0

∫
Ω

v0 φ dx dt, (443)

Since such a φ ∈ C∞
c (Ω × (0, T)) is arbitrary, we may infer that

v0 =
∂u0

∂t

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
M→∞

∫
Ω

∂uM
0

∂t
φ dx =

∫
Ω

∂u0

∂t
φ dx,

∀φ ∈ H1
0(Ω).

Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uMk(t)
0 → u0(x, t), strongly in L2(Ω), for almost all t ∈ [0, T].

so that, up to subsequences,

uMk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Here we emphasise the sequence {Mk(t)} ⊂ N may depends on t.
Since g is continuous we have that

g(uMk(t)
0 (x, t)) → g(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|g(uMk(t)
0 (x, t))− g(u0(x, t))| ≤ ε, for almost all x ∈ F.

Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω
(g(uMk(t)

0 (x, t))− g(u0(x, t)))φ dx
∣∣∣∣

≤
∫

Ω
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

=
∫

F
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ| dx +
∫

Ω\F
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx +

∫
Ω
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥g(uMk(t)
0 )∥0,2,Ω + ∥g(u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (444)
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for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
g(uMk(t)

0 )φ dx →
∫

Ω
g(u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω).

From such results, we have

0 = lim
k→∞

(∫
Ω

∂uMk(t)
0
∂t

φ dx − ε
∫

Ω
(∇2)Mk(t)u

Mk(t)
0 φ dx

−
∫

Ω
g(uMk(t)

0 )φ dx −
∫

Ω
f Nk(t)φ dx

)
=

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

∫
Ω

f φ dx. (445)

so that, from this and by the density of C∞
c (Ω) in H1

0(Ω), we have got

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

∫
Ω

f φ dx = 0, ∀φ ∈ H1
0(Ω), (446)

a.e. on [0, T].
Observe now that

∂(Ω × (0, T)) = (∂Ω × [0, T]) ∪
(
∂[0, T]× Ω

)
.

Let φ ∈ C∞
c (Ω × (0, T)).

Hence

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt.

From this, since C∞
c (Ω × (0, T)) is dense L2(Ω × (0, T)) we may infer that

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt,

∀φ ∈ L2(Ω × (0, T)).
Let φ ∈ C∞(Ω × [0, T]) such that

φ(x, T) = 0, in Ω.

From such results, we may obtain

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt

= lim
M→∞

(
−
∫ T

0

∫
Ω

uM
0

∂φ

∂t
dx dt −

∫
Ω

uM
0 (x, 0)φ(x, 0) dx

)
= −

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt −

∫
Ω

u0(x, 0)φ(x, 0) dx. (447)
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However, since uM
0 ⇀ u0, weakly in L2(Ω × (0, T)), we obtain

lim
M→∞

∫ T

0

∫
Ω

uM
0

∂φ

∂t
dx dt =

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt.

From these last results, we may infer that∫
Ω

û0 φ(x, 0) dx = lim
M→∞

∫
Ω

uM
0 (x, 0)φ(x, 0) dx

=
∫

Ω
u0(x, 0) φ(x, 0) dx, (448)

so that ∫
Ω

û0(x)φ(x, 0) dx =
∫

Ω
u0(x, 0)φ(x, 0) dx,

∀φ ∈ C∞(Ω × [0, T]) such that φ(x, T) = 0, in Ω.
Therefore, we may infer that u0(x, 0) = û0(x) in this specified weak sense.
Similarly, it may be proven that

u0 = 0, on ∂Ω × [0, T],

in an appropriate weak sense.
Hence, we have obtained that u0 is a solution, in a weak sense, of the parabolic non-linear equation

in question.

61. On the Convergence of Newton’s Method for a More General Non-Linear
Parabolic Equation

Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider the parabolic non-linear equation
∂u
∂t = ε∇2u + g(u,∇u) + f , in Ω × (0, T),
u(x, 0) = û0, in Ω,
u = 0, on ∂Ω × [0, T].

(449)

Here ε > 0, f ∈ L2([0, T], W1,2(Ω)) ∩ L∞(Ω × [0, T]), û0 ∈ H1
0(Ω) ∩ L∞(Ω), where t denotes time

and [0, T] is a time interval.
Also g : R → R is a C1 class function neither necessarily linear nor convex.
We assume

∥g∥1,∞ ≤ K8,

for an appropriate real constant K8 > 0.
Moreover, from now and on, we denote

Br(û0) = {u ∈ H1
0(Ω) : ∥u − û0∥1,2,Ω < r}.

About the references, the main ones are [6,22? ]. Other related results may be found in [7,8].
Consider the operator

−∇2 : D ⊂ L2(Ω) → L2(Ω),

where
D = H1

0(Ω) ∩ H2(Ω)

is dense in L2(Ω) concerning the L2(Ω) norm.
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From the standard spectral analysis theory (please see [8], for details), denoting the spectral
decomposition of −∇2 by

{E(λ), λ ∈ [0,+∞)},

we may obtain

−∇2u =
∫ ∞

0
λdE(λ)u,

∀u ∈ D.
Fix M ∈ N and define

(−∇2)M =
∫ M

0
λdE(λ),

which is a bounded operator in D.
Also from the standard spectral theory, we have

lim
M→∞

∥(−∇2)Mu − (−∇2)u∥0,2 = 0, ∀u ∈ D.

Similarly, we define the self-adjoint densely defined in L2(Ω),

Bj : H1
0(Ω) → L2(Ω),

by

Bj(u) = i
∂u
∂xj

,

Denoting by
{Ej(λ), λ ∈ R},

the spectral decomposition of Bj and fixing again M ∈ N, we also define

(Bj)M = −i
∫ M

−M
λdEj(λ),

so that

(Bj)M(u) = −i
∫ M

−M
λdEj(λ)u, ∀u ∈ H1

0(Ω).

We may infer that
∥(Bj)M(u)− (−i)Bj(u)∥0,2 → 0, as M → ∞,

∀u ∈ H1
0(Ω).

Finally, we define
∇M = ((B1)M, · · · , (Bm)M),

which is a bounded linear operator from H1
0(Ω) into L2(Ω).

61.1. The Main Result

Fix again M ∈ N (a new value).
Moreover, fixing N ∈ N and defining

∆tN =
T
N

,

in a partial finite differences context, discretizing in t consider the approximate equation system

un+1 − un

∆tN
= ε(∇2)Mun+1 + g(un+1, (∇M)un+1) + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


282 of 360

Denoting un = uM
n we may write

uM
n+1 − uM

n

∆tN
= ε∇2

MuM
n+1 + g(uM

n+1, (∇M)uM
n+1) + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
We assume g is also such that there exists r > 0, K1 = K1(M) > 0 and K2 > 0 such that

∥gu(u,∇Mu) + (∇∗
M)gv(u, (∇M)u)∥ ≤ K2,

where we have denoted v = ∇Mu, and

∥ − ε∇2
M − G′

M(u)∥ ≤ K1,

∀u ∈ Br(ûM
0 ), where we have denoted

GM(u) = g(u, (∇M)u),

and
G′

M(u) = gu(u, (∇M)u) + (∇∗
M)gv(u, (∇M)u).

Fix K ≫ 1.
Observe also that there exists N0 = N0(M) ∈ N such that if N > N0, then

0 <
K + 2K2∆tN

K + 1 − K1∆tN
< 1.

Indeed, we may find α0 ∈ R such that

0 <
K + 2K2∆tN

K + 1 − K1∆tN
< α0 < 1, ∀N > N0.

Let {N = NM} ⊂ N be a sequence such that NM < NM+1, ∀M ∈ N.
and NM > N0(M).
For n = 0, we are going to calculate u1 = uMn ,NM

1 though the following iterations, which already
include a proximal formulation and concerning linearization.

Set u0
1 = û0 = ûM,NM

0 ,
Having uk

1, let uk+1
1 be such that

uk+1
1 − û0 = ε(∇2)Muk+1

1 ∆tN + GM(uk
1)∆tN

+G′
M(uk

1)(u
k+1
1 − uk

1)∆tN + f1∆tN − K(uk+1
1 − uk

1), (450)

Here we suppose r > 0 is large enough so that

u1
1 ∈ B r(1−α0)

NM

(u0).

Reasoning inductively, suppose u0
1, u1

1, · · · , uk+1
1 ∈ B r

NM
(u0), and observe that

uk+1
1 − û0 − ε(∇2)Muk+1

1 ∆tN − GM(uk
1)∆tN

−G′
M(uk

1)(u
k+1
1 − uk

1)∆tN − f1∆tN + K(uk+1
1 − uk

1)

= 0, (451)
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and

uk+2
1 − û0 − ε(∇2)Muk+2

1 ∆tN − GM(uk+1
1 )∆tN

−G′
M(uk+1

1 )(uk+2
1 − uk+1

1 )∆tN − f1∆tN + K(uk+2
1 − uk+1

1 )

= 0, (452)

so that for an appropriate ũk
1,(
Id − ε∇2

M∆tN − G′
M(uk+1

1 )∆tN + KId

)
(uk+2

1 − uk+1
1 )

=
(
(−G′

M(ũk
1) + G′

M(uk+1
1 ))∆tN + KId

)(
uk+1

1 − uk
1

)
. (453)

Hence,

∥uk+2
1 − uk+1

1 ∥

≤
∥∥∥∥(Id − ε∇2

M∆tN − G′
M(uk+1

1 )∆tN + KId

)−1(
(−G′

M(ũk
1) + G′

M(uk+1
1 ))∆tN + KId

)∥∥∥∥
×
∥∥∥uk+1

1 − uk
1

∥∥∥
≤ K + 2K2∆tN

K + 1 − K1∆tN

∥∥∥uk+1
1 − uk

1

∥∥∥
≤ α0

∥∥∥uk+1
1 − uk

1

∥∥∥. (454)

Thus, we have got

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥, ∀j ∈ {1, · · · , k}.

Therefore

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥

≤ α2
0∥uj

1 − uj−1
1 ∥

...

≤ α
j+1
0 ∥u1

1 − u0
1∥. (455)

Thus,

∥uk+2
1 − u1

1∥ = ∥uk+2
1 − uk+1

1 + uk+1
1 − · · · − u2

1 + u2
1 − u1

1∥
≤ ∥uk+2

1 − uk+1
1 ∥+ ∥uk+1

1 − uk
1∥+ · · ·+ ∥u2

1 − u1
1∥

≤
k+1

∑
j=1

α
j
0∥u1

1 − u0
1∥

≤
∞

∑
j=1

α
j
0∥u1

1 − u0
1∥

=
α0

1 − α0
∥u1

1 − u0
1∥. (456)
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Therefore

∥uk+2
1 − u0

1∥ ≤ ∥uk+2
1 − u1

1 + u1
1 − u0

1∥
≤ ∥uk+2

1 − u1
1∥+ ∥u1

1 − u0
1∥

≤ α0

1 − α0
∥u1

1 − u0
1∥+ ∥u1

1 − u0
1∥

=
1

1 − α0
∥u1

1 − u0
1∥

<
1

1 − α0
(1 − α0)

r
NM

=
r

NM
. (457)

Summarizing,

∥uk+2
1 − u0

1∥ <
r

NM
,

so that
uk+2

1 ∈ B r
NM

(u1
0).

The induction is complete, so that

uk
1 ∈ B r

NM
(u1

0), ∀k ∈ N.

From such results we have also obtained

∥uk+2
1 − uk+1

1 ∥ ≤ α0∥uk+1
1 − uk

1∥, ∀k ∈ N.

Thus, from these results and the Banach fixed point theorem, there exists u1 = uM,NM
1 ∈ B r

NM
(u1

0)

such that
lim
k→∞

uk
1 = u1 = uM,N=NM

1 .

0 = lim
k→∞

(
uk+1

1 − û0

−ε(∇2)Muk+1
1 ∆tN − GM(uk

1)∆tN

−G′
M(uk

1)(u
k+1
1 − uk

1)∆tN − f1∆tN + K(uk+1
1 − uk

1)
)

= u1 − û0 − ε(∇2)Mu1∆tN − GM(u1)∆tN − f1∆tN , (458)

so that
u1 − û0

∆tN
= ε(∇2)Mu1 + GM(u1) + f1, in Ω,

Reasoning inductively again having u1 ∈ B r
NM

(û0) and uj ∈ B r
NM

(uj−1), ∀j ∈ {2, · · · , n}
similarly as we have obtained u1 in the last lines, we may obtain

un+1 = uM,NM
n+1 ∈ B r

NM
(un),

such that
un+1 − un

∆tN
= ε(∇2)Mun+1 + g(un+1, (∇M)un+1) + fn, in Ω,

where we recall to have denoted N = NM.
The induction on n is also complete.
Fix n ∈ {1, · · · , NM − 1}.
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Observe that

∥un − û0∥ = ∥un − un−1 + un−1 − un−2 + · · · − u1 + u1 − u0∥
≤ ∥un − un−1∥+ · · ·+ ∥u1 − û0∥

≤ n
NM

r

< r (459)

Summarizing un ∈ Br(û0), ∀n ∈ {0, 1, · · · , NM − 1}.
From these results, denoting now more generically un ≡ uM,N=NM

n = uM
n , we may infer that there

exists K4 > 0 such that

∥uM
j ∥ ≤ K4, ∀j ∈ {0, 1, · · · , NM}, ∀M ∈ N.

With a completely analogous reasoning, we may obtain that

∥uM
j ∥1,2,Ω ≤ K̂4, ∀j ∈ {0, 1, · · · , NM}.

for some K̂4 > 0.
Recalling again, we have denoted N = NM, define now

uM
0 (x, t) = uM

n (x)
(

n + 1 − t
∆tN

)
+ uM

n+1(x)
(

t
∆tN

− n
)

,

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that

uM
0 (x, t) = uM

n (x), if t = n∆tN , ∀n ∈ {0, 1, · · · , N = NM},

and

∂uM
0 (x, t)

∂t
=

uM
n+1 − uM

n

∆tN

= ε(∇2)MuM
n+1 + g(uM

n+1, (∇M)uM
n+1) + fn, (460)

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Fix φ ∈ C∞

c (Ω).
Thus, fixing t ∈ [n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣

〈
∂uM

0
∂t

, φ

〉
L2

∣∣∣∣∣ ≤ ε|⟨(∇M)uM
n+1, (∇M)φ⟩L2 |+ |⟨g(uM

n+1, (∇M)uM
n+1), φ⟩L2 |

+|⟨φ, fn⟩L2 |
≤ ε∥uM

n+1∥1,2,Ω∥φ∥1,2,Ω + K18∥uM
n+1∥1,2,Ω∥φ∥1,2,Ω + K3∥φ∥1,2,Ω

≤ K5∥φ∥1,2,Ω, ∀φ ∈ C∞
c (Ω), (461)

for some appropriate K5 > 0.
Since φ ∈ C∞

c (Ω) is arbitrary, we may conclude that∥∥∥∥∥∂uM
0

∂t

∥∥∥∥∥
H−1(Ω)

≤ K6, ∀M > N3,

uniformly in t on [0, T], for some appropriate constant K6 > 0 and N3 ∈ N.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


286 of 360

Also, from the definition of uM
0 we have that there exists K7 > 0 such that

∥uM
0 ∥1,2,Ω ≤ K7, ∀M ∈ N

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω)) and v0 ∈ L2([0, T]; H−1(Ω)) such that

uM
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω)),

and
∂uM

0
∂t

⇀ v0, weakly-star in L2([0, T], H−1(Ω)),

so that we may easily obtain

v0 =
∂u0

∂t
in a distributional sense.

At this point, we provide more details about this last result.
Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , NM − 1} such that t ∈ [n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T)).
From this, we may infer that

∫
Ω

∂uM
0

∂t
φ(x, t) dx

=
∫

Ω

uM
n+1 − uM

n

∆tN
φ(x, t) dx

≤ ε
∫

Ω
|(∇M)uM

n+1 · ∇M φ| dx

+
∫

Ω
|g(uM

n+1, (∇M)uM
n+1) φ(x, t)| dx +

∫
Ω
| fn φ| dx

≤ (K8∥uM
n+1∥1,2,Ω + K20)∥φ∥1,2,Ω

≤ K9∥φ∥1,2,Ω, (462)

for some appropriate constants K8 > 0, K9 > 0, K20 > 0.
Hence,

∫ T

0

∫
Ω

∂uM
0

∂t
φ(x, t) dx dx

≤ K9

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (463)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T)) is arbitrary, we may infer that∥∥∥∥∥∂uM
0

∂t

∥∥∥∥∥
H−1(Ω×(0,T))

≤ K15,

for N ∈ N, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T))

such that, up to a not relabeled subsequence

∂uM
0

∂t
⇀ v0, weakly-star in H−1(Ω × (0, T)).
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Therefore, ∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt →

∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T)).

On the other hand
∥uM

0 ∥0,2,Ω×(0,T) ≤ K16,

∀M ∈ N, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T)) such that, up to a not

relabeled subsequence,
uM

0 ⇀ u0, weakly in L2(Ω × (0, T)).

Now fix again φ ∈ C∞
c (Ω × (0, T)).

Observe that ∫ T

0

∫
Ω

u0 φt dx dt = lim
M→∞

∫ T

0

∫
Ω

uM
0 φt dx dt

= − lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt

= −
∫ T

0

∫
Ω

v0 φ dx dt, (464)

Since such a φ ∈ C∞
c (Ω × (0, T)) is arbitrary, we may infer that

v0 =
∂u0

∂t

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
M→∞

∫
Ω

∂uM
0

∂t
φ dx =

∫
Ω

∂u0

∂t
φ dx,

∀φ ∈ H1
0(Ω).

Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uMk(t)
0 → u0(x, t), strongly in L2(Ω), for almost all t ∈ [0, T].

so that, up to subsequences,

uMk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Observe also that

(∇2
M)uM

0 (x, t) ∈ L2(Ω), ∀M ∈ N, for almost all t ∈ [0, T].

Fixing t ∈ (0, T), from such a result, similarly as it has been obtained in reference [? ], up to a
subsequence, we may obtain a measurable functions h1 such that

(∇2
M)uM

0 (x, t) → h1 ∈ R, a.e. in Ω.

From such a result, also similarly as it has been made in reference [? ], we may obtain a measurable
vectorial function h2 such that

(∇M)uM
0 (x, t) → h2 ∈ Rm, a.e. in Ω.
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Consequently, considering that

(∇M)uM
0 (x, t) ⇀ ∇u0(x, t), weakly in L2(Ω),

we obtain
(∇M)uM

0 (x, t) → ∇u0(x, t), a.e. in Ω.

Here we emphasise the sequence {M = Mk(t)} ⊂ N may depends on t.
Since g is continuous we have that

g(uMk(t)
0 (x, t), (∇M)uMk(t)

0 (x, t)) → g(u0(x, t),∇u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|g(uMk(t)
0 (x, t), (∇M)uMk(t)

0 (x, t))− g(u0(x, t), (∇M)uMk(t)
0 (x, t))| ≤ ε, for almost all x ∈ F.

Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω

(g(uMk(t)
0 (x, t), (∇M)uMk(t)

0 (x, t))− g(u0(x, t),∇u0(x, t)))φ dx
∣∣∣∣

≤
∫

Ω
|g(uMk(t)

0 (x, t), (∇M)uMk(t)
0 (x, t))− g(u0(x, t),∇u0(x, t))| |φ| dx

=
∫

F
|g(uMk(t)

0 (x, t), (∇M)uMk(t)
0 (x, t))− g(u0(x, t),∇u0(x, t))| |φ| dx

+
∫

Ω\F
|g(uMk(t)

0 (x, t),∇MuMk(t)
0 (x, t))− g(u0(x, t),∇u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx

+
∫

Ω
|g(uMk(t)

0 (x, t), (∇M)uMk(t)
0 (x, t))− g(u0(x, t),∇u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥g(uMk(t)
0 , (∇M)uMk(t)

0 (x, t))∥0,2,Ω

+∥g(u0,∇u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (465)

for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
g(uMk(t)

0 , (∇M)uMk(t)
0 (x, t))φ dx →

∫
Ω

g(u0,∇u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω).

From such results, we have

0 = lim
k→∞

(∫
Ω

∂uMk(t)
0
∂t

φ dx − ε
∫

Ω
(∇2)Mk(t)u

Mk(t)
0 φ dx

−
∫

Ω
g(uMk(t)

0 , (∇M)uMk(t)
0 (x, t))φ dx −

∫
Ω

f Nk(t)φ dx
)

=
∫

Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0,∇u0)φ dx −

∫
Ω

f φ dx. (466)
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so that, from this and by the density of C∞
c (Ω) in H1

0(Ω), we have got

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0,∇u0)φ dx −

∫
Ω

f φ dx = 0, ∀φ ∈ H1
0(Ω), (467)

a.e. on [0, T].
Observe now that

∂(Ω × (0, T)) = (∂Ω × [0, T]) ∪
(
∂[0, T]× Ω

)
.

Let φ ∈ C∞
c (Ω × (0, T)).

Hence

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt.

From this, since C∞
c (Ω × (0, T)) is dense L2(Ω × (0, T)) we may infer that

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt,

∀φ ∈ L2(Ω × (0, T)).
Let φ ∈ C∞(Ω × [0, T]) such that

φ(x, T) = 0, in Ω.

From such results, we may obtain

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt

= lim
M→∞

(
−
∫ T

0

∫
Ω

uM
0

∂φ

∂t
dx dt −

∫
Ω

uM
0 (x, 0)φ(x, 0) dx

)
= −

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt −

∫
Ω

u0(x, 0)φ(x, 0) dx. (468)

However, since uM
0 ⇀ u0, weakly in L2(Ω × (0, T)), we obtain

lim
M→∞

∫ T

0

∫
Ω

uM
0

∂φ

∂t
dx dt =

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt.

From these last results, we may infer that∫
Ω

û0 φ(x, 0) dx = lim
M→∞

∫
Ω

uM
0 (x, 0)φ(x, 0) dx

=
∫

Ω
u0(x, 0) φ(x, 0) dx, (469)

so that ∫
Ω

û0(x)φ(x, 0) dx =
∫

Ω
u0(x, 0)φ(x, 0) dx,

∀φ ∈ C∞(Ω × [0, T]) such that φ(x, T) = 0, in Ω.
Therefore, we may infer that u0(x, 0) = û0(x) in this specified weak sense.
Similarly, it may be proven that

u0 = 0, on ∂Ω × [0, T],

in an appropriate weak sense.
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Hence, we have obtained that u0 is a solution, in a weak sense, of the parabolic non-linear equation
in question.

61.2. An Existence Result for a General Parabolic Non-Linear Equation, a New Development and Result for a
Simpler Case

Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider the parabolic non-linear equation
∂u
∂t = ε∇2u + g(u) + ∑m

j=1 gj(u) ∂u
∂xj

+ f , in Ω × (0, T),

u(x, 0) = û0, in Ω,
u = 0, on ∂Ω × [0, T].

(470)

Here ε > 0, f ∈ L2([0, T], W1,2(Ω)) ∩ L∞(Ω × [0, T]), û0 ∈ H1
0(Ω) ∩ L∞(Ω), where t denotes time

and [0, T] is a time interval.
Also g : R → R and gj : R → R are continuous functions neither necessarily linear nor

convex, ∀j ∈ {1, · · · , m}.
We assume there exist K33 > 0 and K1 > 0 such that

∥g∥∞ ≤ K33

m(Ω)1/2 ,

∥gj∥∞ ≤ K1

m
,

∀j ∈ {1, · · · , n}.
At this point, we recall that fixing γ > 0,

(Id − γ∇2)−1 : L2(Ω) → H1
0(Ω)

is a bounded and linear operator, so that for each h ∈ L2(Ω) there exists a unique u ∈ H1
0(Ω) such that

(Id − γ∇2)u = h.

In such a case we denote
u = (Id − γ∇2)−1h,

so that
∥u∥1,2,Ω ≤ ∥(Id − γ∇2)−1∥∥h∥0,2,Ω.

Moreover, fixing N ∈ N, define

∆tN =
T
N

.

Fix M ∈ N.
Let {N = NM} ∈ N be a subsequence such that NM < NM+1, ∀M ∈ N and

∥(∇2
M)∆tNM∥ <

1
M2 ,

and
∥(∇M)∆tNM∥ <

1
M2 .

Denoting N = NM, in a partial finite differences context, discretizing in t and also denoting
{un} = {uM

n }, consider the approximate equation system
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un+1 − un

∆tN
= ε(∇2)Mun+1 + g(un) +

m

∑
j=1

gj(un)(Bj)M(un) + fn, in Ω,

∀n ∈ {0, 1, · · · , N − 1}.
From such a system, for n = 0, we obtain

u1 − û0 = ε(∇2)M(u1)∆tN + g(û0)∆tN +
m

∑
j=1

gj(û0)(Bj)Mû0∆tN + f0∆tN .

Hence

u1 = (Id − ε(∇2)M∆tN)
−1

(
û0 + g(û0)∆tN +

m

∑
j=1

gj(û0)(Bj)Mû0∆tN + f0∆tN

)
,

so that

∥u1∥1,2,Ω

≤ ∥(Id − ε(∇2)M∆tN)
−1∥

×
(
∥û0∥0,2,Ω + ∥g(û0)∥0,2,Ω∆tN +

m

∑
j=1

∥gj(û0)(Bj)Mu0∥0,2,Ω ∆tN + ∥ f0∥0,2,Ω∆tN

)
. (471)

Observe that there exists K2 > 0 such that ∥ f ∥∞,Ω×[0,T] ≤ K2 so that

∥ fn∥1,2,Ω ≤ K36, ∀n ∈ {0, 1, · · · , N − 1},

for some appropriate K36 > 0.
From such results and the hypotheses, we may infer that

∥u1∥1,2,Ω ≤ ∥(Id − ε(∇2)M∆tN)
−1∥(∥û0∥1,2,Ω + K33∆tN + K1∥û0∥1,2,Ω∆tN + K36∆tN)

≤ ∥(Id − ε(∇2)M∆tN)
−1∥(∥û0∥1,2,Ω + K1∥û0∥1,2,Ω∆tN + K3∆tN), (472)

where
K3 = K33 + K36,

so that
∥u1∥1,2,Ω ≤ α1∥û0∥1,2,Ω + α2,

where
α1 = ∥(Id − ε(∇2)M∆tN)

−1∥(1 + K1∆tN),

and
α2 = ∥(Id − ε(∇2)M∆tN)

−1∥K3∆tN .

In fact, generically we may similarly obtain

∥un+1∥1,2,Ω ≤ α1∥un∥1,2,Ω + α2,

∀n ∈ {0, 1, · · · , N − 1}.
From such a result, inductively we may obtain

∥uj∥1,2,Ω ≤ (α1)
j∥û0∥1,2,Ω +

j−1

∑
k=0

αk
1α2.
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In particular for j = NM = N, we get

∥uM
N ∥1,2,Ω

≤ (α1)
N∥û0∥1,2,Ω +

N−1

∑
k=0

αk
1α2

= (α1)
N∥û0∥1,2,Ω +

1 − αN
1

1 − α1
α2

=

∥∥∥∥∥
(

Id − ε(∇2)M
T
N

)−1
∥∥∥∥∥

N(
1 + K1

T
N

)N
∥û0∥1,2,Ω

+
1 − αN

1
1 − α1

α2. (473)

Observe that ∥∥∥∥∥
(

Id − ε(∇2)M
T
N

)−1
∥∥∥∥∥

N(
1 + K1

T
N

)N

≤ Kb

(
1 + K1

T
N

)N

≤ KbeK1T , ∀M ∈ N, (474)

for some real constant Kb > 0.
Moreover, since

∥(∇2)M∆tNM∥ < 1/M2, ∀M ∈ N,

there exists a real constant Ks > 0 such that∣∣∣∣∣1 − α
NM
1

1 − α1
α2

∣∣∣∣∣ < Ks, ∀M ∈ N.

Consequently, we may infer that there exists K4 > 0 such that

∥uM
j ∥1,2,Ω ≤ K4, ∀j ∈ {0, 1, · · · , NM}, ∀M ∈ N.

Define now

uM
0 (x, t) = uM

n (x)
(

n + 1 − t
∆tN

)
+ uM

n+1(x)
(

t
∆tN

− n
)

,

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that

uM
0 (x, t) = uM

n (x), if t = n∆tN , ∀n ∈ {0, 1, · · · , NM},

and

∂uM
0 (x, t)

∂t
=

uM
n+1 − uM

n

∆tN

= ε(∇2)MuM
n+1 + g(uM

n ) +
m

∑
j=1

gj(uM
n )(Bj)M(uM

n ) + fn, (475)

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Fix φ ∈ C∞

c (Ω).
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Thus, fixing t ∈ [n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣
〈

∂uM
0

∂t
, φ

〉
L2

∣∣∣∣∣ ≤ ε|⟨(∇)MuM
n+1,∇φ⟩L2 |+ |⟨g(uM

n ), φ⟩L2 |

+
∫

Ω

∣∣∣∣∣ m

∑
j=1

gj(uM
n )(Bj)M(uM

n )φ

∣∣∣∣∣ dx + |⟨φ, fn⟩L2 |

≤ ε∥uM
n+1∥1,2,Ω∥φ∥1,2,Ω + K1∥uM

n ∥1,2,Ω∥φ∥1,2,Ω + K3∥φ∥1,2,Ω

≤ K5∥φ∥1,2,Ω, ∀φ ∈ C∞
c (Ω), (476)

for some appropriate K5 > 0.
Since φ ∈ C∞

c (Ω) is arbitrary, we may conclude that∥∥∥∥∥∂uM
0

∂t

∥∥∥∥∥
H−1(Ω)

≤ K6, ∀M ∈ N,

uniformly in t on [0, T], for some appropriate constant K6 > 0.
Also, from the definition of uM

0 we have that there exists K7 > 0 such that

∥uM
0 ∥1,2,Ω ≤ K7, ∀M ∈ N

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω)) and v0 ∈ L2([0, T]; H−1(Ω)) such that

uM
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω)),

and
∂uM

0
∂t

⇀ v0, weakly-star in L2([0, T], H−1(Ω)),

so that we may easily obtain

v0 =
∂u0

∂t
in a distributional sense.

At this point, we provide more details about this last result.
Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , N − 1} such that t ∈ [n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T)).
From this, we may infer that

∫
Ω

∂uM
0

∂t
φ(x, t) dx

=
∫

Ω

uM
n+1 − uM

n

∆tN
φ(x, t) dx

≤ ε
∫

Ω
|(∇)MuM

n+1 · ∇φ| dx

+
∫

Ω
|g(uM

n ) φ(x, t)| dx +
∫

Ω

∣∣∣∣∣ m

∑
j=1

gj(uM
n )(Bj)M(uM

n )φ

∣∣∣∣∣ dx

+
∫

Ω
| fn φ| dx

≤ (K8∥uM
n ∥1,2,Ω + K20)∥φ∥1,2,Ω

≤ K9∥φ∥1,2,Ω, (477)

for some appropriate constants K8 > 0, K9 > 0, K20 > 0.
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Hence,

∫ T

0

∫
Ω

∂uM
0

∂t
φ(x, t) dx dx

≤ K9

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (478)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T)) is arbitrary, we may infer that∥∥∥∥∥∂uM
0

∂t

∥∥∥∥∥
H−1(Ω×(0,T))

≤ K15,

for M ∈ N, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T))

such that, up to a not relabeled subsequence

∂uM
0

∂t
⇀ v0, weakly-star in H−1(Ω × (0, T)).

Therefore, ∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt →

∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T)).

On the other hand
∥uM

0 ∥0,2,Ω×(0,T) ≤ K16,

∀M ∈ N, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T)) such that, up to a not

relabeled subsequence,
uM

0 ⇀ u0, weakly in L2(Ω × (0, T)).

Now fix again φ ∈ C∞
c (Ω × (0, T)).

Observe that ∫ T

0

∫
Ω

u0 φt dx dt = lim
M→∞

∫ T

0

∫
Ω

uM
0 φt dx dt

= − lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt

= −
∫ T

0

∫
Ω

v0 φ dx dt, (479)

Since such a φ ∈ C∞
c (Ω × (0, T)) is arbitrary, we may infer that

v0 =
∂u0

∂t

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
M→∞

∫
Ω

∂uM
0

∂t
φ dx =

∫
Ω

∂u0

∂t
φ dx,

∀φ ∈ H1
0(Ω).
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Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uMk(t)
0 → u0(x, t), strongly in L2(Ω), for almost all t ∈ [0, T].

so that, up to subsequences,

uMk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Here we emphasise the sequence {Mk(t)} ⊂ N may depends on t.
Since g is continuous we have that

g(uMk(t)
0 (x, t)) → g(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|g(uMk(t)
0 (x, t))− g(u0(x, t))| ≤ ε, for almost all x ∈ F.

Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω
(g(uMk(t)

0 (x, t))− g(u0(x, t)))φ dx
∣∣∣∣

≤
∫

Ω
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

=
∫

F
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ| dx +
∫

Ω\F
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx +

∫
Ω
|g(uMk(t)

0 (x, t))− g(u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥g(uMk(t)
0 )∥0,2,Ω + ∥g(u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (480)

for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
g(uMk(t)

0 )φ dx →
∫

Ω
g(u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω).

Similarly, fixing j ∈ {1, · · · , n}, since gj is continuous we have that

gj(u
Mk(t)
0 (x, t)) → gj(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix again t ∈ (0, T)
Let ε > 0 (a new value). From the Egorov Theorem, there exists a closed set F1 such that

m(Ω \ F1) ≤ ε and k0 ∈ N such that if k > k0, then

|gj(u
Mk(t)
0 (x, t))− gj(u0(x, t))| ≤ ε, for almost all x ∈ F1.
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Observe now that∫
Ω
|gj(u

Mk(t)
0 (x, t))− gj(u0(x, t))|2 dx

≤
∫

F1

|gj(u
Mk(t)
0 (x, t))− gj(u0(x, t))|2 dx +

∫
Ω\F1

|gj(u
Mk(t)
0 (x, t))− gj(u0(x, t))|2 dx

≤
∫

F1

ε2 dx +
∫

Ω
|gj(u

Mk(t)
0 (x, t))− gj(u0(x, t))|2χΩ\F1

dx

≤ ε2m(Ω) + 2K2
1

∫
Ω

χΩ\F1
dx

≤ ε2m(Ω) + 2K2
1ε, ∀k > k0. (481)

Since such a ε > 0 is arbitrary, we may infer that∫
Ω
|gj(u

Mk(t)
0 )− gj(u0)|2 dx → 0, as k → ∞,

∀j ∈ {1, · · · , m}.
Select again φ ∈ C∞

c (Ω). Since

∥gj(u
Mk(t)
0 )− gj(u0)∥0,2,Ω → 0, as k → ∞

and
(∇M)uMk(t)

0 ⇀ ∇u0, weakly in L2(Ω;Rm),

we obtain,

∣∣∣∣∫Ω
gj(u

Mk(t)
0 )(Bj)M(uMk(t)

0 ) φ dx −
∫

Ω
gj(u0)(u0)xj φ dx

∣∣∣∣
≤

∣∣∣∣∫Ω
gj(u

Mk(t)
0 )(Bj)M(uMk(t)

0 ) φ dx −
∫

Ω
gj(u0)(Bj)M(uMk(t)

0 ) φ dx
∣∣∣∣

+

∣∣∣∣∫Ω
gj(u0)(Bj)M(uMk(t)

0 ) φ dx −
∫

Ω
gj(u0)(u0)xj φ dx

∣∣∣∣
≤ ∥gj(u

Mk(t)
0 )− gj(u0)∥0,2,ΩK7∥φ∥∞

+

∣∣∣∣∫Ω
gj(u0)(Bj)M(uMk(t)

0 ) φ dx −
∫

Ω
gj(u0)(u0)xj φ dx

∣∣∣∣
→ 0, as k → ∞, (482)

∀j ∈ {1, · · · , m}.
From such results, we have

0 = lim
k→∞

(∫
Ω

∂uMk(t)
0
∂t

φ dx − ε
∫

Ω
(∇2)MuMk(t)

0 φ dx

−
∫

Ω
g(uMk(t)

0 )φ dx −
m

∑
j=1

∫
Ω

gj(u
Mk(t)
0 )(Bj)M(uMk(t)

0 )φ dx

−
∫

Ω
f Mk(t)φ dx

)
=

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

m

∑
j=1

∫
Ω

gj(u0)(u0)xj φ dx

−
∫

Ω
f φ dx. (483)
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so that, from this and by the density of C∞
c (Ω) in H1

0(Ω), we have got

∫
Ω

∂u0

∂t
φ dx + ε

∫
Ω
∇u0 · ∇φ dx

−
∫

Ω
g(u0)φ dx −

m

∑
j=1

∫
Ω

gj(u0)(u0)xj φ dx

−
∫

Ω
f φ dx = 0, ∀φ ∈ H1

0(Ω), (484)

a.e. on [0, T].
Observe now that

∂(Ω × (0, T)) = (∂Ω × [0, T]) ∪
(
∂[0, T]× Ω

)
.

Let φ ∈ C∞
c (Ω × (0, T)).

Hence

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt.

From this, since C∞
c (Ω × (0, T)) is dense L2(Ω × (0, T)) we may infer that

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt,

∀φ ∈ L2(Ω × (0, T)).
Let φ ∈ C∞(Ω × [0, T]) such that

φ(x, T) = 0, in Ω.

From such results, we may obtain

lim
M→∞

∫ T

0

∫
Ω

∂uM
0

∂t
φ dx dt

= lim
M→∞

(
−
∫ T

0

∫
Ω

uM
0

∂φ

∂t
dx dt −

∫
Ω

uM
0 (x, 0)φ(x, 0) dx

)
= −

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt −

∫
Ω

u0(x, 0)φ(x, 0) dx. (485)

However, since uN
0 ⇀ u0, weakly in L2(Ω × (0, T)), we obtain

lim
M→∞

∫ T

0

∫
Ω

uM
0

∂φ

∂t
dx dt =

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt.

From these last results, we may infer that∫
Ω

û0 φ(x, 0) dx = lim
M→∞

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

=
∫

Ω
u0(x, 0) φ(x, 0) dx, (486)

so that ∫
Ω

û0(x)φ(x, 0) dx =
∫

Ω
u0(x, 0)φ(x, 0) dx,

∀φ ∈ C∞(Ω × [0, T]) such that φ(x, T) = 0, in Ω.
Therefore, we may infer that u0(x, 0) = û0(x) in this specified weak sense.
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Similarly, it may be proven that

u0 = 0, on ∂Ω × [0, T],

in an appropriate weak sense.
Hence, we have obtained that u0 is a solution, in a weak sense, of the parabolic non-linear equation

in question.

62. On the Convergence of Newton’s Method Combined with a Proximal
Approach for an Eigenvalue Problem

Let Ω ⊂ R3 be an open, bounded and connected set a regular (Lipschitzian) boundary denoted
by ∂Ω.

Consider the eigenvalue problem of finding u ∈ V and λ ∈ R such that
−ε∇2u + g(u)− λu = 0, in Ω,
u = 0, on ∂Ω,∫

Ω u2 dx = ∥u∥2
0,2,Ω = 1.

(487)

Here ε > 0, V = H1
0(Ω), and g : R → R is a C1 class function, such that either g is linear or such

that
g(tu) = tg(u), ∀t > 0, ∀u ∈ R

In a finite differences or finite elements context, already including a proximal formulation, we
shall look for a sequence {un} ⊂ RN for an appropriate N ∈ N such that

−ε∇2un+1 + g(un+1)−
un

∥un∥
+ K(un+1 − un) = 0,

∀n ∈ N∪ {0}.
Now considering a concerning linearization of g, such an equation approximately stands for

−ε∇2un+1 + g(un) + g′(un)(un+1 − un)−
un

∥un∥
+ K(un+1 − un) = 0,

∀n ∈ N∪ {0}.
Assume u0 ∈ RN is such that there exists r > 0 such that

K1 Id ≤ g′(u) ≤ K2 Id,

∀u ∈ Br(u0), for some K1, K2 > 0.
Suppose there exists a symmetric matrix H6(u, v) such that

u
∥u∥ − v

∥v∥ = H6(u, v)(u − v),

and
−K3 Id ≤ H6(u, v) ≤ K3 Id,

∀u, v ∈ Br(u0), for some K3 > 0
And also there exists a symmetric matrix H5(u, v) such that

g(u)− g(v) = H5(u, v)(u − v),

and
K4 Id ≤ H5(u, v) ≤ K5 Id,
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∀u, v ∈ Br(u0), for some K4, K5 > 0. Moreover, we assume that these last constants, K > 0 and
0 < α1 < 1 are such that

(1 − α1)(−ε∇2 + K1 Id) + K4 Id − K3 Id − K2 Id) ≥ α1KId = K Id − (1 − α1)K Id,

so that
(−ε∇2 + K1 Id + KId)

−1(−K4 Id + K2 Id + K3 Id + KId) ≤ (1 − α1)Id.

Observe that
ε∇2 + g′(u) + K Id ≥ −ε∇2 + K1 Id + K Id ≥ 0

and
0 ≤ −H5(u, v) + H6(u, v) + g′(v) + K Id ≤ −K4 Id + K2 Id + K3 Id + KId,

∀u, v ∈ Br(u0) so that

(ε∇2 + g′(u) + K Id)
−1(−H5(u, v) + H6(u, v) + g′(v) + K Id)

≤ (−ε∇2 + K1 Id + KId)
−1(−K4 Id + K2 Id + K3 Id + KId)

≤ (1 − α1)Id, (488)

∀u, v ∈ Br(u0).
Summarizing, defining α0 = 1 − α1 we have got

∥(ε∇2 + g′(u) + K Id)
−1(−H5(u, v) + H6(u, v) + g′(v) + K Id)∥ ≤ α0 < 1,

∀u, v ∈ Br(u0).
Suppose K > 0 and α1 > 0 are such that u1 ∈ Br(1−α0)

(u0).
Reasoning inductively, suppose also

u0, u1, · · · , un+1 ∈ Br(u0).

From the results above we have

−ε∇2un+2 + g(un+1) + g′(un+1)(un+2 − un+1)−
un+1

∥un+1∥
+ K(un+2 − un+1) = 0,

and
−ε∇2un+1 + g(un) + g′(un)(un+1 − un)−

un

∥un∥
+ K(un+1 − un) = 0,

so that

−ε(∇2un+2 −∇2un+1) + g′(un+1)(un+2 − un+1) + K(un+2 − un+1)

= −g(un+1) + g(un) +
un+1

∥un+1∥
− un

∥un∥
+ g′(un)(un+1 − un) + K(un+1 − un)

= (−H5(un+1, un) + H6(un+1, un) + g′(un) + KId)(un+1 − un). (489)

Therefore

un+2 − un+1

= ((−ε∇2 + g′(un+1) + KId)
−1(−H5(un+1, un) + H6(un+1, un) + g′(un) + KId)

×(un+1 − un), (490)
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so that

∥un+2 − un+1∥
≤ ∥((−ε∇2 + g′(un+1) + KId)

−1(−H5(un+1, un) + H6(un+1, un) + g′(un) + KId)∥
×∥un+1 − un∥

≤ α0∥un+1 − un∥. (491)

Summarizing, we have got

∥uj+2 − uj+1∥ ≤ α0∥uj+1 − uj∥, ∀j ∈ {1, · · · , n}.

Therefore

∥uj+2 − uj+1∥ ≤ α0∥uj+1 − uj∥
≤ α2

0∥uj − uj−1∥
...

≤ α
j+1
0 ∥u1 − u0∥. (492)

Thus,

∥un+2 − u1∥ = ∥un+2 − un+1 + un+1 − · · · − u2 + u2 − u1∥
≤ ∥un+2 − un+1∥+ ∥un+1 − un∥+ · · ·+ ∥u2 − u1∥

≤
n+1

∑
j=1

α
j
0∥u1 − u0∥

≤
∞

∑
j=1

α
j
0∥u1 − u0∥

=
α0

1 − α0
∥u1 − u0∥. (493)

Therefore

∥un+2 − u0∥ ≤ ∥un+2 − u1 + u1 − u0∥
≤ ∥un+2 − u1∥+ ∥u1 − u0∥

≤ α0

1 − α0
∥u1 − u0∥+ ∥u1 − u0∥

=
1

1 − α0
∥u1 − u0∥

<
1

1 − α0
(1 − α0)r

= r. (494)

Summarizing,
∥un+2 − u0∥ < r,

so that
un+2 ∈ Br(u0).

The induction is complete, so that

un ∈ Br(u0), ∀n ∈ N.
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From such results we have also obtained

∥un+2 − un+1∥ ≤ α0∥un+1 − un∥, ∀n ∈ N.

Thus, from these results and the Banach fixed point theorem, there exists û0 ∈ Br(u0) such that

lim
n→∞

un = û0.

From such results we obtain

0 = lim
n→∞

(
−ε∇2un+1 + g(un) + g′(un)(un+1 − un)

− un

∥un∥
+ K(un+1 − un)

)
= −ε∇2û0 + g(û0)−

û0

∥û0∥
. (495)

Summarizing, we have got

−ε∇2û0 + g(û0)−
û0

∥û0∥
= 0.

Consequently, defining

ũ0 =
û0

∥û0∥0,2,Ω
,

λ =
1

∥û0∥
and recalling that

g(tû0) = tg(û0), ∀t > 0,

we have obtained
−ε∇2ũ0 + g(ũ0)− λũ0 = 0,

and
∥ũ0∥0,2,Ω = 1.

The objective of this section is complete.

Remark 28. For the general case we may drop the hypotheses of g being linear or g(tu) = tg(u), ∀t >

0, ∀u ∈ R, by defining the following iterations:

−ε∇2un+1 + ∥un∥ g
(

un

∥un∥

)
− un

∥un∥
+ K(un+1 − un) = 0, ∀n ∈ N∪ {0}.

However in such a case some changes on the hypotheses are necessary in order to obtain the related theoretical
results.

62.1. A Numerical Example

For Ω = [0, 1] ⊂ R, we have obtained numerical results for the following eigenvalue equation
−εu′′ + Au3 − λu = 0, in Ω,
u = 0, on ∂Ω,∫

Ω u2 dx = ∥u∥2
0,2,Ω = 1,

(496)

where ε = 0.01, and A = 1.0
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Observe that for a fixed K > 0 we may obtain for this last equation

−εu′′ + Au3 + K u − K u − λu = 0, in Ω,

so that
−εu′′ + Au3 + K u − λ1u = 0, in Ω,

where λ1 = K + λ. In this example we have fixed K = 500.
In order to obtain such numerical results we have used the following algorithm:

1. Choose u1 ∈ W1,2
0 , set n = 1, b12 = 10−4 and nmax = 100.

2. Calculate un+1 ∈ W1,2
0 solution of equation

−εu′′
n+1 + A

u3
n

∥un∥2
0,2,Ω

+ K un+1 −
un

∥un∥0,2,Ω
= 0, in Ω,

3. If ∥un+1 − un∥∞ ≤ b12 or n > nmax, then stop. Otherwise n := n + 1 and go to item 2.

For the optimal solution u obtained, please see Figure 43.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

Figure 43. Solution u(x) for ε = 0.01

Here we present the software in MAT-LAB through which we have obtained such numerical
results.
*********************

1. clear all
m8=100;
d=1/m8;
K=500;
A=1;
e1=0.01;
for i=1:m8
uo(i,1)=0.1;
end;
b12=1.0;
k=1;
while (b12 > 10−4) && (k < 100)
k
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k=k+1;
S=0;
for i=1:m8-1
S=S+uo(i, 1)2 ∗ d;
end;
S=sqrt(S);
m12=2+K*d2;
m50(1)=1/m12;
z(1)=m50(1)*(uo(i, 1)/S ∗ d2-A*uo(i, 1)3/S2 ∗ d2/e1);
for i=2:m8-1
m12=2+K∗d2-m50(i-1);
m50(i)=1/m12;
z(i)=m50(i)*(uo(i, 1)/S ∗ d2 − A ∗ uo(i, 1)3/S2 ∗ d2/e1 + z(i − 1));
end;
u(m8,1)=0;
for i=1:m8-1
u(m8-i,1)=m50(m8-i)*u(m8-i+1)+z(m8-i);
end;
b12=max(abs(uo-u));
uo=u;
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,uo/S)

************************************

Remark 29. With the high value K = 500 we have obtained the following eigenvalue for this problem:

λ =

(
1
S
− K

)
ε = 133.8090 ε = 1.338.

63. On the Convergence of Newton’s Method Combined with a Proximal
Approach for a General Parabolic non-Linear System

Let Ω ⊂ Rm be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider the parabolic non-linear system
∂uj
∂t = ε j∇2uj + gj(u) + ∑r

k=1 ∑m
l=1 gjkl(u)

∂uk
∂xl

+ f j, in Ω × (0, T),
uj(x, 0) = (û0)j, in Ω,
uj = 0, on ∂Ω × [0, T], ∀j ∈ {1, · · · , r}.

(497)

Here
u = (u1, · · · , ur) = {uj} ∈ H1

0(Ω;Rr),

ε j > 0, f = { f j} ∈ L2([0, T], W1,2(Ω;Rr)) ∩ L∞(Ω × [0, T];Rr), û0 = {(û0)j} ∈ H1
0(Ω;Rr) ∩

L∞(Ω;Rr), where t denotes time and [0, T] is a time interval.
Also gj : R → R and gjkl : R → R are C1 class functions neither necessarily linear nor

convex, ∀j, k ∈ {1, · · · , r}, l ∈ {1, · · · , m}.
We define

Fj(u) = ε j∇2uj + gj(u) +
r

∑
k=1

m

∑
l=1

gjkl(u)
∂uk
∂xl

+ f j,
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∀j ∈ {1, · · · , r}, so that the system in question stands for

∂uj

dt
= Fj(u), ∀j ∈ {1, · · · , r}.

Fixing N ∈ N and defining ∆tN = T/N, in a finite differences context we may define the following
approximate system

un+1 − un

∆tN
= Fj(un+1), ∀j ∈ {1, · · · , r}, ∀n ∈ {0, · · · , N − 1}.

Fix n = 0. In a Newton’s method context combined with a proximal approach, we shall obtain u1

through the following iterations,
Define u0

1 = û0 and having uk
1 let uk+1

1 be such that

uk+1
1 − u0

1 = Fj(uk
1)∆tN + ∆tN

{
∂Fj(uk

1)

∂ul

}
(uk+1

1 − uk
1)− K(uk+1

1 − uk
1).

At this point we assume there exist r > 0 and K1 > 0, such that

−K1 Id ≤
{

∂Fj(u)
∂ul

}
≤ K1 Id,

∀u ∈ Br(û0).
Moreover, generically denoting F(u) = {Fj(u)}, we assume there exists a matrix operator H5(u, v),

such that
F(u)− F(v) = H5(u, v)(u − v),

and
−K3 Id ≤ H5(u, v) ≤ K3 Id,

∀u, v ∈ Br(û0), for some appropriate real constant K3 > 0.
Now suppose K > 0 and 0 < α1 < 1 are such that there exists N0 ∈ N such that if N > N0, then

(1 − α1)(Id − K1 Id∆tN)− K1 Id∆tN − K3 Id∆tN) ≥ α1K Id = K Id − (1 − α1)K Id,

so that
(Id − K1 Id∆tN + KId)

−1(K1 Id∆tN + K3 Id∆tN + K Id) ≤ (1 − α1)K Id.

Observe that such an N0 may be such that

Id −
{

∂Fj(u)
∂ul

}
∆tN + KId ≥ Id − K1 Id∆tN + KId > 0 Id,

and

0 ≤ H5(u, v)∆tN −
{

∂Fj(v)
∂ul

}
∆tN + KId ≤ K1 Id∆tN + K3 Id∆tN + K Id,

so that (
Id −

{
∂Fj(u)

∂ul

}
∆tN + KId

)−1(
H5(u, v)∆tN −

{
∂Fj(v)

∂ul

}
∆tN + KId

)
≤ (Id − K1 Id∆tN + KId)

−1(K1 Id ∆tN + K3 Id ∆tN + K Id)

≤ (1 − α1)Id, (498)

∀u, v ∈ Br(û0), ∀N > N0.
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Hence, denoting α0 = (1 − α1), we have got∥∥∥∥∥
(

Id −
{

∂Fj(u)
∂ul

}
∆tN + KId

)−1(
H5(u, v)∆tN −

{
∂Fj(v)

∂ul

}
∆tN + KId

)∥∥∥∥∥
≤

∥∥∥(Id − K1 Id∆tN + KId)
−1(K1 Id∆tN + K3 Id∆tN + K Id)

∥∥∥
≤ α0. (499)

∀u, v ∈ Br(û0), ∀N > N0.
Fix now a new N > N0.
Suppose now K = KN

n > 0 and 0 < α1 = (α1)
N
n < 1 are such that

u1
1 ∈ B r

N (1−α0)
(û0).

Reasoning inductively, suppose u0
1, u1

1, · · · , uk+1
1 ∈ B r

N
(u0), and observe that

uk+1
1 − u1

0 = Fj(uk
1)∆tN + ∆tN

{
∂Fj(uk

1)

∂ul

}
(uk+1

1 − uk
1)− K(uk+1

1 − uk
1).

and

uk+2
1 − u1

0 = Fj(uk+1
1 )∆tN + ∆tN

{
∂Fj(uk+1

1 )

∂ul

}
(uk+2

1 − uk+1
1 )− K(uk+2

1 − uk+1
1 ),

so that (
Id −

{
∂Fj(uk+1

1 )

∂ul

}
∆tN + KId

)
(uk+2

1 − uk+1
1 )

=

(
(F(uk+1

1 )− F(uk
1))∆tN −

{
∂Fj(uk

1)

∂ul

}
∆tN + KId

)
(uk+1

1 − uk
1)

=

(
H5(uk+1

1 , uk
1)∆tN −

{
∂Fj(uk

1)

∂ul

}
∆tN + KId

)
(uk+1

1 − uk
1). (500)

Thus,

uk+2
1 − uk+1

1

=

(
Id −

{
∂Fj(uk+1

1 )

∂ul

}
∆tN + KId

)−1(
H5(uk+1

1 , uk
1)∆tN −

{
∂Fj(uk

1)

∂ul

}
∆tN + KId

)
×(uk+1

1 − uk
1). (501)

Summarizing, we have got∥∥∥uk+2
1 − uk+1

1

∥∥∥
=

∥∥∥∥∥∥
(

Id −
{

∂Fj(uk+1
1 )

∂ul

}
∆tN + KId

)−1(
H5(uk+1

1 , uk
1)∆tN −

{
∂Fj(uk

1)

∂ul

}
∆tN + KId

)∥∥∥∥∥∥
×∥uk+1

1 − uk
1∥

≤ α0∥uk+1
1 − uk

1∥. (502)

Thus, we have got

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥, ∀j ∈ {1, · · · , k}.
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Therefore

∥uj+2
1 − uj+1

1 ∥ ≤ α0∥uj+1
1 − uj

1∥

≤ α2
0∥uj

1 − uj−1
1 ∥

...

≤ α
j+1
0 ∥u1

1 − u0
1∥. (503)

Thus,

∥uk+2
1 − u1

1∥ = ∥uk+2
1 − uk+1

1 + uk+1
1 − · · · − u2

1 + u2
1 − u1

1∥
≤ ∥uk+2

1 − uk+1
1 ∥+ ∥uk+1

1 − uk
1∥+ · · ·+ ∥u2

1 − u1
1∥

≤
k+1

∑
j=1

α
j
0∥u1

1 − u0
1∥

≤
∞

∑
j=1

α
j
0∥u1

1 − u0
1∥

=
α0

1 − α0
∥u1

1 − u0
1∥. (504)

Therefore

∥uk+2
1 − u0

1∥ ≤ ∥uk+2
1 − u1

1 + u1
1 − u0

1∥
≤ ∥uk+2

1 − u1
1∥+ ∥u1

1 − u0
1∥

≤ α0

1 − α0
∥u1

1 − u0
1∥+ ∥u1

1 − u0
1∥

=
1

1 − α0
∥u1

1 − u0
1∥

<
1

1 − α0
(1 − α0)

r
N

=
r
N

. (505)

Summarizing,

∥uk+2
1 − u0

1∥ <
r
N

,

so that
uk+2

1 ∈ B r
N
(u1

0).

The induction is complete, so that

uk
1 ∈ B r

N
(u1

0), ∀k ∈ N.

From such results we have also obtained

∥uk+2
1 − uk+1

1 ∥ ≤ α0∥uk+1
1 − uk

1∥, ∀k ∈ N.

Thus, from these results and the Banach fixed point theorem, there exists u1 ∈ B r
N
(u1

0) such that

lim
k→∞

uk
1 = u1.
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0 = lim
k→∞

(
uk+1

1 − û0

−F(uk
1)∆tN − ∆tN

{
∂Fj(uk

1)

∂ul

}
(uk+1

1 − uk
1)

+K(uk+1
1 − uk

1)
)

= u1 − û0 − F(u1)∆tN (506)

so that
u1 − û0

∆tN
= F(u1) in Ω,

Reasoning inductively again having u1 ∈ B r
N
(û0) and uj ∈ B r

N
(uj−1), ∀j ∈ {2, · · · , n} similarly

as we have obtained u1 in the last lines, we may obtain

un+1 ∈ B r
N
(un),

such that
un+1 − un

∆tN
= F(un+1), in Ω.

The induction on n is also complete.
Fix n ∈ {1, · · · , N − 1}.
Observe that

∥un − u0∥ = ∥un − un−1 + un−1 − un−2 + · · · − u1 + u1 − u0∥
≤ ∥un − un−1∥+ · · ·+ ∥u1 − u0∥

≤ n
N

r

< r. (507)

Summarizing un ∈ Br(û0), ∀n ∈ {0, 1, · · · , N − 1}.
From these results, denoting now more generically un ≡ uN

n , we may infer that there exists K̂4 > 0
such that

∥uN
j ∥1,2,Ω ≤ K̂4, ∀j ∈ {0, 1, · · · , N}, ∀N ∈ N.

Define now

uN
0 (x, t) = uN

n (x)
(

n + 1 − t
∆tN

)
+ uN

n+1(x)
(

t
∆tN

− n
)

,

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Observe that

uN
0 (x, t) = uN

n (x), if t = n∆tN , ∀n ∈ {0, 1, · · · , N},

and

∂uN
0 (x, t)
∂t

=
uN

n+1 − uN
n

∆tN

= F(uN
n+1), (508)

if t ∈ [n∆tN , (n + 1)∆tN ], ∀(x, t) ∈ Ω × [0, T].
Fix φ ∈ C∞

c (Ω;Rr).
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Thus, fixing t ∈ [n∆tN , (n + 1)∆tN ], we have∣∣∣∣∣
〈

∂uN
0

∂t
, φ

〉
L2

∣∣∣∣∣ ≤
∣∣∣⟨F(uN

n+1), φ⟩L2

∣∣∣
≤ K5∥φ∥1,2,Ω, ∀φ ∈ C∞

c (Ω;Rr), (509)

for some appropriate K5 > 0.
Since φ ∈ C∞

c (Ω;Rr) is arbitrary, we may conclude that∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω;Rr)

≤ K6, ∀N > N0,

uniformly in t on [0, T], for some appropriate constant K6 > 0.
Also, from the definition of uN

0 we have that there exists K7 > 0 such that

∥uN
0 ∥1,2,Ω ≤ K7, ∀N ∈ N

also uniformly in t on [0, T].
From such results, there exist u0 ∈ L2([0, T], H1

0(Ω;Rr)) and v0 ∈ L2([0, T]; H−1(Ω;Rr)) such
that

uN
0 ⇀ u0, weakly in L2((0, T); W1,2(Ω;Rr)),

and
∂uN

0
∂t

⇀ v0, weakly-star in L2([0, T], H−1(Ω;Rr)),

so that we may easily obtain

v0 =
∂u0

∂t
in a distributional sense. At this point, we provide more details about this last result.

Fix t ∈ (0, T). Thus, there exists n ∈ {0, 1, · · · , N − 1} such that t ∈ [n∆tN , (n + 1)∆tN ].
Let φ ∈ C∞

c (Ω × (0, T);Rr).
From this, we may infer that

∫
Ω

∂uN
0

∂t
φ(x, t) dx

=
∫

Ω

uN
n+1 − uN

n

∆tN
φ(x, t) dx

≤ ⟨F(uN
n+1), φ⟩L2

≤ K9∥φ∥1,2,Ω, (510)

for some appropriate constant K9 > 0.
Hence,

∫ T

0

∫
Ω

∂uN
0

∂t
φ(x, t) dx dt

≤ K9

∫
Ω
∥φ∥1,2,Ω dt

≤ K19∥φ∥1,2,Ω×(0,T), (511)

for some appropriate K19 > 0.
Since such a φ ∈ C∞

c (Ω × (0, T);Rr) is arbitrary, we may infer that
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∥∥∥∥∥∂uN
0

∂t

∥∥∥∥∥
H−1(Ω×(0,T);Rr)

≤ K15,

for N ∈ N, for some K15 > 0.
From such a result and from the Banach-Alaoglu Theorem, there exists v0 ∈ H−1(Ω × (0, T);Rr)

such that, up to a not relabeled subsequence

∂uN
0

∂t
⇀ v0, weakly-star in H−1(Ω × (0, T);Rr).

Therefore, ∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt →

∫ T

0

∫
Ω

v0 φ dx dt,

as N → ∞, ∀φ ∈ H1
0(Ω × (0, T);Rr).

On the other hand
∥uN

0 ∥0,2,Ω×(0,T) ≤ K16,

∀N > N0, for some K16 > 0.
From this and the Kakutani Theorem, there exists u0 ∈ L2(Ω × (0, T);Rr) such that, up to a not

relabeled subsequence,
uN

0 ⇀ u0, weakly in L2(Ω × (0, T);Rr).

Now fix again φ ∈ C∞
c (Ω × (0, T);Rr).

Observe that ∫ T

0

∫
Ω

u0 φt dx dt = lim
N→∞

∫ T

0

∫
Ω

uN
0 φt dx dt

= − lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= −
∫ T

0

∫
Ω

v0 φ dx dt, (512)

Since such a φ ∈ C∞
c (Ω × (0, T);Rr) is arbitrary, we may infer that

v0 =
∂u0

∂t

in a distributional sense.
Moreover, from such results we may also obtain, again up to a subsequence,

lim
N→∞

∫
Ω

∂uN
0

∂t
φ dx =

∫
Ω

∂u0

∂t
φ dx,

∀φ ∈ H1
0(Ω;Rr).

Observe also that, as a consequence of the Rellich-Kondrashov theorem, through appropriate
subsequences, we have

uNk(t)
0 → u0(x, t), strongly in L2(Ω;Rr), for almost all t ∈ [0, T].

so that, up to subsequences,

uNk(t)
0 (x, t) → u0(x, t), a.e. in Ω, for almost all t ∈ [0, T].

Here we emphasise the sequence {Nk(t)} ⊂ N may depends on t.
Fix j ∈ {1, · · · , r}.
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Since gj is continuous we have that

gj(u
Nk(t)
0 (x, t)) → gj(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix t ∈ (0, T).
Let ε > 0. From the Egorov Theorem, there exists a closed set F such that m(Ω \ F) ≤ ε and

k0 ∈ N such that if k > k0, then

|gj(u
Nk(t)
0 (x, t))− gj(u0(x, t))| ≤ ε, for almost all x ∈ F.

Let φ ∈ C∞
c (Ω). Observe now that∣∣∣∣∫Ω
(gj(u

Nk(t)
0 (x, t))− gj(u0(x, t)))φ dx

∣∣∣∣
≤

∫
Ω
|gj(u

Nk(t)
0 (x, t))− gj(u0(x, t))| |φ| dx

=
∫

F
|gj(u

Nk(t)
0 (x, t))− gj(u0(x, t))| |φ| dx +

∫
Ω\F

|gj(u
Nk(t)
0 (x, t))− gj(u0(x, t))| |φ| dx

≤
∫

F
ε∥φ∥∞ dx +

∫
Ω
|gj(u

Nk(t)
0 (x, t))− gj(u0(x, t))| |φ|χΩ\F dx

≤ ε∥φ∥∞m(Ω) + (∥gj(u
Nk(t)
0 )∥0,2,Ω + ∥gj(u0)∥0,2,Ω)∥φ∥0,4,Ω∥χΩ\F∥0,4,Ω

≤ ε∥φ∥∞m(Ω) + K21∥φ∥0,4,Ωm(Ω \ F)1/4

≤ ε ∥φ∥∞ m(Ω) + K21∥φ∥0,4,Ω ε1/4, ∀k > k0, (513)

for some appropriate constant K21 > 0 which does not depend on t.
Since such a ε > 0 is arbitrary, we may infer that∫

Ω
gj(u

Nk(t)
0 )φ dx →

∫
Ω

gj(u0)φ dx, as k → ∞,

∀φ ∈ C∞
c (Ω), ∀j ∈ {1, · · · , r}.

Similarly, fixing j, p ∈ {1, · · · , n}, and l ∈ {1, · · · , m}, since gjpl is continuous we have that

gjpl(u
Nk(t)
0 (x, t)) → gjpl(u0(x, t)), a.e. in Ω, for almost all t ∈ [0, T].

Fix again t ∈ (0, T)
Let ε > 0 (a new value). From the Egorov Theorem, there exists a closed set F1 such that

m(Ω \ F1) ≤ ε and k0 ∈ N such that if k > k0, then

|gjpl(u
Nk(t)
0 (x, t))− gjpl(u0(x, t))| ≤ ε, for almost all x ∈ F1.

Observe now that∫
Ω
|gjpl(u

Nk(t)
0 (x, t))− gjpl(u0(x, t))|2 dx

≤
∫

F1

|gjpl(u
Nk(t)
0 (x, t))− gjpl(u0(x, t))|2 dx +

∫
Ω\F1

|gjpl(u
Nk(t)
0 (x, t))− gjpl(u0(x, t))|2 dx

≤
∫

F1

ε2 dx +
∫

Ω
|gjpl(u

Nk(t)
0 (x, t))− gjpl(u0(x, t))|2χΩ\F1

dx

≤ ε2m(Ω) + 2K2
1

∫
Ω

χΩ\F1
dx

≤ ε2m(Ω) + 2K2
1ε, ∀k > k0. (514)
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Since such a ε > 0 is arbitrary, we may infer that∫
Ω
|gjpl(u

Nk(t)
0 )− gjpl(u0)|2 dx → 0, as k → ∞,

∀j, p ∈ {1, · · · , r}, l ∈ {1, · · · , m}.
Select again φ ∈ C∞

c (Ω). Since

∥gjpl(u
Nk(t)
0 )− gjpl(u0)∥0,2,Ω → 0, as k → ∞

and
∇uNk(t)

0 ⇀ ∇u0, weakly in L2(Ω;Rr×m),

we obtain,

∣∣∣∣∫Ω
gjpl(u

Nk(t)
0 )((u0)

Nk(t)
p )xl φ dx −

∫
Ω

gjpl(u0)((u0)p)xl φ dx
∣∣∣∣

≤
∣∣∣∣∫Ω

gjpl(u
Nk(t)
0 )((u0)

Nk(t)
p )xl φ dx −

∫
Ω

gjpl(u0)((u0)
Nk(t)
p )xl φ dx

∣∣∣∣
+

∣∣∣∣∫Ω
gjpl(u0)((u0)

Nk(t)
p )xl φ dx −

∫
Ω

gjpl(u0)((u0)p)xl φ dx
∣∣∣∣

≤ ∥gjpl(u
Nk(t)
0 )− gjpl(u0)∥0,2,ΩK7∥φ∥∞

+

∣∣∣∣∫Ω
gjpl(u0)((u0)

Nk(t)
p )xl φ dx −

∫
Ω

gjpl(u0)((u0)p)xl φ dx
∣∣∣∣

→ 0, as k → ∞, (515)

∀j, p ∈ {1, · · · , r}, l ∈ {1, · · · , m}.
From such results, for an arbitrary φ ∈ C∞

c (Ω;Rr), we have

0 = lim
k→∞

∫
Ω

∂(u0)
Nk(t)
j

∂t
φj dx − ⟨Fj(u

Nk(t)
0 ), φj⟩L2


=

∫
Ω

∂(u0)j

∂t
φj dx + ε j⟨∇(u0)j,∇φj⟩L2 − ⟨gj(u0), φj⟩L2

−
r

∑
p=1

m

∑
l=1

⟨gjpl(u0)((u0)p)xl , φj⟩L2 − ⟨ f j, φj⟩L2 (516)

so that, from this and by the density of C∞
c (Ω; ;Rr) in H1

0(Ω;Rr), we have got

∫
Ω

∂(u0)j

∂t
φj dx

= −ε j⟨∇(u0)j,∇φj⟩L2 + ⟨gj(u0), φj⟩L2

+
r

∑
p=1

m

∑
l=1

⟨gjpl(u0)((u0)p)xl , φj⟩L2 + ⟨ f j, φj⟩L2 , (517)

∀j ∈ {1, · · · , r}, ∀φ ∈ H1
0(Ω;Rr), a.e. on [0, T],

Observe now that
∂(Ω × (0, T)) = (∂Ω × [0, T]) ∪

(
∂[0, T]× Ω

)
.

Let φ ∈ C∞
c (Ω × (0, T);Rr).

Hence

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt.
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From this, since C∞
c (Ω × (0, T);Rr) is dense L2(Ω × (0, T);Rr) we may infer that

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt =

∫ T

0

∫
Ω

∂u0

∂t
φ dx dt,

∀φ ∈ L2(Ω × (0, T);Rr).
Let φ ∈ C∞(Ω × [0, T];Rr) such that

φ(x, T) = 0, in Ω.

From such results, we may obtain

lim
N→∞

∫ T

0

∫
Ω

∂uN
0

∂t
φ dx dt

= lim
N→∞

(
−
∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt −

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

)
= −

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt −

∫
Ω

u0(x, 0)φ(x, 0) dx. (518)

However, since uN
0 ⇀ u0, weakly in L2(Ω × (0, T);Rr), we obtain

lim
N→∞

∫ T

0

∫
Ω

uN
0

∂φ

∂t
dx dt =

∫ T

0

∫
Ω

u0
∂φ

∂t
dx dt.

From these last results, we may infer that∫
Ω

û0 φ(x, 0) dx = lim
N→∞

∫
Ω

uN
0 (x, 0)φ(x, 0) dx

=
∫

Ω
u0(x, 0) φ(x, 0) dx, (519)

so that ∫
Ω

û0(x)φ(x, 0) dx =
∫

Ω
u0(x, 0)φ(x, 0) dx,

∀φ ∈ C∞(Ω × [0, T];Rr) such that φ(x, T) = 0, in Ω.
Therefore, we may infer that u0(x, 0) = û0(x) in this specified weak sense.
Similarly, it may be proven that

u0 = 0, on ∂Ω × [0, T],

in an appropriate weak sense.
Hence, we have obtained that u0 is a solution, in a weak sense, of the parabolic non-linear system

in question.

64. A Note on the Convergence of the Finite Elements Method
In this section we develop some remarks on the convergence of the finite elements method.
This section is based on reference [18], Chapter 7.
For the proofs not presented here and for more details please see reference [18], Chapter 7.
We start by recalling the following classical result.

Theorem 12 (Lax-Milgram). Let V be a separable Hilbert space with a inner product

⟨·, ·⟩ : V × V → R,
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and related norm
∥ · ∥ : V → R+

where
∥u∥ =

√
⟨u, u⟩, ∀u ∈ V.

Let a : V × V → R be a bilinear form such that

1. a is continuous, that is, there exists M > 0 such that

|a(u, v)| ≤ M∥u∥ ∥v∥, ∀u, v ∈ V,

2. a is coercive, that is, there exists α > 0 such that

a(v, v) ≥ α∥v∥2, ∀u ∈ V.

Moreover, let L : V → R be a linear and continuous functional.
Under such hypotheses, there exists a unique u ∈ V such that

a(u, v) = L(v), ∀v ∈ V.

Definition 2. Let V be a Banach space. We say that a sequence {Vn} of finite dimensional subspaces of V is a
Galerkin scheme for V if for each v ∈ V, there exists a sequence {vk} ⊂ ∪∞

n=1Vn where vk ∈ Vk, ∀k ∈ N, such
that

vk → v, strongly in norm, as k → ∞.

Remark 30. Let Ω ⊂ R2 be a polygonal set. A triangulation T of Ω is a finite union of subsets of Ω, such that

1.
Ω = ∪K∈TK,

2. Each set K ∈ T is a triangle,
3. For each pair K1, K2 ∈ T, such sets are quasi-disjoints, that is, their interiors are disjoint.

We define
h(T) = max

K∈T
diam(K) ≡ h,

where
diam(K) = sup{|x, y| : x, y ∈ K}.

In such a case we also denote T = Th.
Moreover, we define

Vh = {v ∈ C(Ω) : v is affine on each K ∈ Th and v = 0, on ∂Ω}.

We denote by aj the vertices in the triangulation Th, where

j ∈ {1, · · · , I(h)}.

Let {φj} ⊂ Vh be such that
φj(ak) = δjk, ∀1 ≤ j, k ≤ I(h).

Here

δjk =


1, if j = k,

0, if j ̸= k.
(520)

Observe that {φ1, · · · , φI(h)} is a basis for Vh.
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At this point we define

Ph(v) =
I(h)

∑
j=1

v(aj)φj, ∀v ∈ V.

Here we assume {Th}h>0 be a regular family of triangulations of Ω.
Let {hn} ⊂ R+ be a sequence such that

0 < hn+1 < hn, ∀n ∈ N,

and
lim

n→∞
hn = 0.

We denote Vn = Vhn and Pn = Phn , ∀n ∈ N.
Consider the Ginzburg-Landau type equation

−γ∇2u + αu3 − βu − f = 0, in Ω,

u = 0, on ∂Ω.
(521)

Here γ > 0, α > 0, β > 0 and f ∈ L2(Ω).
Assume un ∈ Vn is a weak solution of this last equation, in the following sense,

γ⟨∇un,∇φ⟩L2 + α⟨u3
n, φ⟩L2

−β⟨un, φ⟩L2 − ⟨ f , φ⟩L2 ,

= 0, ∀φ ∈ Vn. (522)

We assume there exist u0 ∈ H1
0 ∩ W1,∞(Ω), r > 0, α1 > 0 and M > 0 such that

α1∥u − v∥2
1,2,Ω

≤ γ⟨∇(u − v),∇(u − v)⟩L2 + α⟨3ũ2(u, v)(u − v), (u − v)⟩L2 − β⟨(u − v), (u − v)⟩L2 ,

and ∣∣∣γ⟨∇(u − v),∇(u − w)⟩L2 + α⟨3ũ2(u, v)(u − v), (u − w)⟩L2 − β⟨(u − v), (u − w)⟩L2

∣∣∣
≤ M∥u − v∥1,2,Ω∥u − w∥1,2,Ω, (523)

∀u, v, w ∈ Br(u0).
Here ũ(u, v) is on the line connecting u and v so that

u3 − v3 = 3ũ2(u − v).

Similarly as we have done in previous sections, we assume u0 and r > 0 are such that we may obtain
un ∈ Br(u0), ∀n ∈ N.

Also similarly as in the previous section, we may consider such a ball either related to the H1
0(Ω) norm or

the W1,∞(Ω) one.
Let m, n ∈ N be such that m > n.
Observe that un, um ∈ Vm so that

γ⟨∇um,∇(un − um)⟩L2 + α⟨u3
m, (un − um)⟩L2

−β⟨um, (un − um)⟩L2 − ⟨ f , (un − um)⟩L2

= 0, (524)
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so that, for φ ∈ Vn, we obtain

γ⟨∇(un − um),∇(un − um)⟩L2 + α⟨(u3
n − u3

m), (un − um)⟩L2

−β⟨(un − um), (un − um)⟩L2

= γ⟨∇(un − um),∇(un − φ)⟩L2 + α⟨(u3
n − u3

m), (un − φ)⟩L2

−β⟨(un − um), (un − φ)⟩L2

+γ⟨∇(un − um),∇(φ − um)⟩L2 + α⟨(u3
n − u3

m), (φ − un)⟩L2

−β⟨(un − um), (φ − um)⟩L2

= γ⟨∇(un − um),∇(φ − um)⟩L2 + α⟨(u3
n − u3

m), (φ − um)⟩L2

−β⟨(un − um), (φ − um)⟩L2 . (525)

Summarizing, we have got

γ⟨∇(un − um),∇(un − um)⟩L2 + α⟨3ũ2
n(un − um), (un − um)⟩L2

−β⟨(un − um), (un − um)⟩L2

= γ⟨∇(un − um),∇(φ − um)⟩L2 + α⟨3ũ2
n(un − um), (φ − um)⟩L2

−β⟨(un − um), (φ − um)⟩L2 (526)

∀φ ∈ Vn, where ũn is on the line connecting um and un.
Here we recall that α1 > 0 and M > 0 are such that

γ⟨∇(un − um),∇(un − um)⟩L2 + α⟨3ũ2
n(un − um), (un − um)⟩L2

−β⟨(un − um), (un − um)⟩L2

≥ α1∥un − um∥2
1,2,Ω (527)

and

γ⟨∇(un − um),∇(φ − um)⟩L2 + α⟨3ũ2
n(un − um), (φ − um)⟩L2

−β⟨(un − um), (un − φ)⟩L2

≤ M∥um − un∥1,2,Ω∥φ − um∥1,2,Ω, (528)

where α1 and M does not depend on m, n.
From such results, we may infer that

∥um − un∥1,2,Ω ≤ M
α1

∥um − φ∥1,2,Ω, ∀φ ∈ Vn

so that
∥um − un∥1,2,Ω ≤ M

α1
∥um − Pn(um)∥1,2,Ω, ∀m > n.

Moreover, since um ∈ H1
0(Ω), there exists a sequence {vk = vm

k } ⊂ C∞
c (Ω) such that

∥vm
k − um∥1,2,Ω → 0, as k → ∞.

From such results, for a not relabeled subsequence we have

vm
k → um, a.e. in Ω,

∇vm
k → ∇um, a.e. in Ω.

Let ε > 0.
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From the Egorov theorem, for each m ∈ N there exists a closed set Fm ⊂ Ω such that m(Fm) < ε/2m and

vm
k → um, uniformly in Ω \ Fm,

∇vm
k → ∇um, uniformly in Ω \ Fm.

Define F = ∪∞
m=1Fm so that

m(F) ≤
∞

∑
m=1

(Fm) ≤
∞

∑
m=1

ε/2m ≤ ε.

Observe that there exists k0 = km
0 ∈ N such that if k > k0 = km

0 , then

∥vm
k − um∥1,2,Ω < ε,

and
∥vm

k − um∥∞,Ω\Fm < ε,

and
∥∇vm

k −∇um∥∞,Ω\Fm < ε.

Fixing m ∈ N we may find j0 ∈ N (which does not depend on m) and lm ∈ N

∥Pj(vl
k)− Pj(ul)∥0,2,Ω\Fl

< K1ε,

and
∥∇Pj(vl

k)−∇Pj(ul)∥0,2,Ω\Fl
< K5ε, ∀j > j0, ∀l > lm ∈ N, ∀k > kl

0,

for some appropriate real constants K1 > 0, K5 > 0.
At this point we highlight that concerning the finite elements method ∥um∥1,∞ is uniformly bounded in m

so that
{∥vm

k ∥1,∞, k > km
0 , m ∈ N}

is also uniformly bounded in m and k > km
0 .

With such results in mind, fix n > j0 and select mn > max{n, kn
0 , ln} so that for ∀m > mn and k > km

0 ,
we have

∥∇um −∇Pn(vm
k )∥0,2,Ω/Fm

≤ ∥∇um −∇vm
k +∇vm

k −∇Pn(vm
k )∥0,2,Ω/Fm

≤ ∥∇um −∇vm
k ∥0,2,Ω + ∥∇vm

k −∇Pn(vm
k )∥0,2,Ω/Fm

≤ ε + K7/n, (529)

for some appropriate K7 > 0.
From such results, we may infer that

∥ um − Pn(um))∥1,2,Ω

≤ ∥um − Pn(vm
k ) + Pn(vm

k )− Pn(um)))∥1,2,Ω

≤ ∥um − Pn(vm
k )∥1,2,Ω + ∥Pn(vm

k )− Pn(um)∥1,2,Ω/Fm + ∥Pn(vm
k )− Pn(um)∥1,2,Fm

≤ K9(ε + K7/n + ε1/2), (530)
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for some appropriate K9 > 0, so that

∥um − un∥1,2,Ω ≤ M
α1

∥um − Pn(um)∥1,2,Ω

≤ K10(ε + K7/n + ε1/2), ∀m > mn, (531)

where
K10 = K9

M
α1

.

Therefore, if p, l > mn, then

∥ul − un∥1,2,Ω ≤ M
α1

∥ul − Pn(ul)∥1,2,Ω

≤ K10(ε + K7/n + ε1/2) (532)

and

∥up − un∥1,2,Ω ≤ M
α1

∥up − Pn(up)∥1,2,Ω

≤ K10(ε + K7/n + ε1/2), (533)

so that

∥ul − up∥1,2,,Ω = ∥ul − un + un − up∥1,2,Ω

≤ ∥ul − un∥1,2,Ω + ∥up − un∥1,2,Ω

≤ 2K10(ε + K7/n + ε1/2). (534)

Consequently, from such results we may infer that {un} is a Cauchy sequence in H1
0(Ω) so that there

exists u0 ∈ H1
0(Ω) such that

un → u0, strongly in H1
0(Ω).

Let φ ∈ ∪n∈NVn.
Indeed, we have got

0 = lim
n→∞

(
γ⟨∇un,∇φ⟩L2 + α⟨u3

n, φ⟩L2

−β⟨un, φ⟩L2 −⟨ f , φ⟩L2)

= γ⟨∇u0,∇φ⟩L2 + α⟨u3
0, φ⟩L2

−β⟨un, φ⟩L2 − ⟨ f , φ⟩L2 . (535)

Summarizing, we may infer that

γ⟨∇u0,∇φ⟩L2 + α⟨u3
0, φ⟩L2

−β⟨un, φ⟩L2 − ⟨ f , φ⟩L2

= 0, ∀φ ∈ H1
0(Ω). (536)

Therefore u0 ∈ H1
0(Ω) is a weak solution of the equation in question so that, under the indicated hypotheses,

the finite element method is convergent.
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65. A Dual Functional for a General Weak Primal Variational Formulation
Combined with the Newton’s Method

Let Ω = [0, 1] ⊂ R and consider a weak variational formulation for a Ginzburg-Landau type
equation corresponding to a functional J : V × V → R, where

J(u, v∗1) =
∫

Ω
v∗1(−εu′′ + Au3 − B u − f ) dx,

where ε > 0, A > 0, B > 0 and f ∈ Y = Y∗ = L2(Ω).
Moreover u ∈ V = W1,2

0 (Ω).
Observe that the variation in v∗1 of J, which stands for

∂J(u, v∗1)
∂v∗1

= 0,

corresponds to the following Ginzburg-Landau type equation

−εu′′ + Au3 − B u − f = 0, in Ω.

In a Newton type approach context, we linearize such an equation about a initial solution u0 ∈ V,
obtaining,

−εu′′ + 3Au2
0u − 2Au3

0 − B u − f = 0, in Ω.

With such results in mind, we define the functional J1 : [V]3 → R, where

J1(u, u0, v∗1) =
∫

Ω
v∗1(−εu′′ + 3Au2

0u − 2Au3
0 − B u − f ) dx.

We also define the functionals F1 : [V]3 → R and F2 : V → R, where

F1(u, u0, v∗1) = J1(u, u0, v∗1) +
K
2

∫
Ω

u2 dx,

and
F2(u) =

K
2

∫
Ω

u2 dx.

Moreover, we define the polar functionals F∗
1 : [V]2 × Y∗ → R and F∗

2 : Y∗ → R as

F∗
1 (u0, v∗1 , z∗) = sup

u∈V
{⟨u, z∗⟩L2 − F1(u, u0, v∗1)},

and

F∗
2 (z

∗) = sup
v∈Y

{⟨v, z∗⟩L2 − F2(v)}

=
1

2K

∫
Ω
(z∗)2 dx. (537)

Finally, we define the dual functional J∗ : [V]2 × Y∗ → R by

J∗(u0, v∗1 , z∗) = −F∗
1 (u0, v∗1 , z∗) + F∗

2 (z
∗).

Remark 31. Observe that

F∗
1 (u0, v∗1 , z∗) = sup

u∈V
{⟨u, z∗⟩L2 − F1(u, u0, v∗1)},
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and such a supremum is attained through the equation

∂

∂u
(⟨u, z∗⟩L2 − F1(u, u0, v∗1)) = 0,

which stands for
z∗ − (−ε(v∗1)

′′ + 3Au2
0v∗1 − Bv∗1)− Ku = 0,

so that

u =
ε(v∗1)

′′ − 3Au2
0v∗1 + Bv∗1 + z∗

K
.

Consequently, we may obtain

F∗
1 (u0, v∗1 , z∗) =

1
2K

∫
Ω
(ε(v∗1)

′′ − 3Au2
0v∗1 + Bv∗1 + z∗)2 dx

+
∫

Ω
(2Au3

0 + f )v∗1 dx. (538)

Hence, the variation in v∗1 of J∗,
∂J∗

∂v∗1
= −

∂F∗
1 (v

∗
1)

∂v∗1
= 0,

stands for
−εu′′ + 3Au2

0u − 2Au3
0 − Bu − f = 0, in Ω,

where, as above indicated,

u =
ε(v∗1)

′′ − 3Au2
0v∗1 + Bv∗1 + z∗

K
.

We have obtained a critical of J∗ through the following algorithm.

1. Set n = 1, b12 = 10−4, nmax = 100, z∗1 = 0 and choose (u0)1 ∈ V.
2. Calculate (v∗1)n ∈ V such that

∂J∗((u0)n, (v∗1)n, z∗n)
∂v∗1

= 0,

3. Calculate un ∈ V such that
∂H(un, (u0)n, (v∗1)n, z∗n)

∂u
= 0,

where
H(u, (u0), v∗1 , z∗) = ⟨u, z∗⟩ − F1(u, u0, v∗1),

so that

un =
ε(v∗1)

′′
n − 3A(u0)

2
n(v∗1)n + B(v∗1)n + z∗n

K
.

4. Set (u0)n+1 = un and z∗n+1 = Kun.
5. If ∥(u0)n+1 − (u0)n∥∞ < b12 or n > nmax, then stop. Otherwise, n := n + 1, and go to item 2.

Here we highlight that if û0 = limn→∞ un with corresponding limits v̂∗1 and ẑ∗ = Kû0, the solution
of equation indicated in the item 2, given by

∂J∗(û0, v̂∗1 , ẑ∗)
∂v∗1

= 0,

will stand for
−εû′′

0 + Aû3
0 − Bû0 − f = 0, in Ω.

We have obtained numerical results for ε = 0.1, A = B = 1 and f ≡ 1, in Ω.
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For such an optimal solution û0 obtained please see Figure 44.
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Figure 44. Solution û0(x) through the dual functional for ε = 0.1.

Here we present the software in MAT-LAB through which we have obtained such numerical
results.

********************************

1. clear all
global m8 d yo K uo u z A B e1 v1
m8=100;
d=1/m8;
K=10;
A=1;
B=1;
e1=0.1;
z(:,1)=0.1*ones(m8,1);
yo(:,1)=ones(m8,1);
uo(:,1)=1.2*ones(m8,1);
for i=1:m8
xo(i,1)=1.2;
end
b12=1.0;
k=1;
while (b12 > 10−4) && (k < 100)
k
k=k+1;
b14=1.0;
k1=1;
while (b14 > 10−4) && (k1 < 35)
k1
k1=k1+1;
X=fminunc(’funJune2024C10’,xo);
b14=max(abs(X-xo));
xo=X;
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u(m8/2,1)
end;
b12=max(abs(u-uo));
uo=u;
z=K*u;
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);

*************************************

With the auxiliary function "funJune2024C10", where

********************************

1. function S=funJune2024C10(x)
global m8 d yo K uo u z A B e1 v1
for i=1:m8
v1(i,1)=x(i,1);
end;
v1(m8,1)=0;
d2v1(1,1)=(-2*v1(1,1)+v1(2,1))/d2;
for i=2:m8-1
d2v1(i,1)=(v1(i+1,1)-2*v1(i,1)+v1(i-1,1))/d2;
end;
for i=1:m8-1
u(i,1)=(e1 ∗ d2v1(i, 1) + z(i, 1)− 3 ∗ A ∗ uo(i, 1)2 ∗ v1(i, 1) + B ∗ v1(i, 1))/K;
end;
u(m8,1)=0;
S=0;
for i=1:m8-1
S=S+(−e1 ∗ d2v1(i, 1) ∗ u(i, 1)) + v1(i, 1) ∗ 3 ∗ A ∗ uo(i, 1)2 ∗ u(i, 1)
−B ∗ v1(i, 1) ∗ u(i, 1) + K ∗ u(i, 1)2/2 − yo(i, 1) ∗ v1(i, 1)− 2 ∗ A ∗ uo(i, 1)3 ∗ v1(i, 1);
S=S −z(i, 1) ∗ u(i, 1)− v1(i, 1)2/2;
end;
S=-S;

**********************************

66. A New Convex Dual Variational Formulation for a Galerkin Type Non-Convex
Primal One

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.
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Consider a functional J : V × [Y]2 → R where

J(u, v0, v1) =
1
2

∫
Ω

(
−ε∇2u + v0u − f + v1 + K

u2

2
+ K

v2
0

2

)2

dx

+
1
2

∫
Ω

(
v1 + K

u2

2
+ K

v2
0

2

)2

dx

+
1
2

∫
Ω
(v0 − A(u2 − B))2 dx. (539)

Here ε > 0, A > 0, B > 0, K > 0, f ∈ L2(Ω) ∩ L∞(Ω), u ∈ V = W1,2
0 (Ω), v0, v1 ∈ Y = Y∗ =

L2(Ω).
Observe that the minimization of J corresponds to the solution of the following system of equa-

tions:

−ε∇2u + v0u − f + v1 + K
u2

2
+ K

v2
0

2
= 0, in Ω,

v1 + K
u2

2
+ K

v2
0

2
= 0, in Ω,

and
v0 − A(u2 − B) = 0, in Ω.

From such a solution we may obtain the solution of the following Ginzburg-Landau type equation:

−ε∇2u + A(u2 − B) u − f = 0, in Ω,

which is our final objective in this section.
Define the approximate relaxed functional J1 : V × [Y]2 → R where

J1(u, v0, v1) = J(u0, v0, v1) +
ε1

2

∫
Ω

v2
1 dx,

where ε1 > 0 is a small real constant.
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Observe that

J1(u, v0, v1) = −
〈
−ε∇2u + v0u − f + v1 + K

u2

2
+ K

v2
0

2
, v∗1

〉
L2

+
1
2

∫
Ω

(
−ε∇2u + v0u − f + v1 + K

u2

2
+ K

v2
0

2

)2

dx

−
〈

v1 + K
u2

2
+ K

v2
0

2
, v∗2

〉
L2

+
1
2

∫
Ω

(
v1 + K

u2

2
+ K

v2
0

2

)2

dx

−
〈

v0 − A(u2 − B), v∗3
〉

L2
+

1
2

∫
Ω
(v0 − A(u2 − B))2 dx

+

〈
−ε∇2u + v0u − f + v1 + K

u2

2
+ K

v2
0

2
, v∗1

〉
L2

+

〈
v1 + K

u2

2
+ K

v2
0

2
, v∗2

〉
L2

+
〈

v0 − A(u2 − B), v∗3
〉

L2
+

ε1

2

∫
Ω

v2
1 dx

≥ inf
w1∈Y

{
−⟨w1, v∗1⟩L2 +

1
2

∫
Ω

w2
1 dx

}
+ inf

w2∈Y

{
−⟨w2, v∗2⟩L2 +

1
2

∫
Ω

w2
2 dx

}
+ inf

w3∈Y

{
−⟨w3, v∗3⟩L2 +

1
2

∫
Ω

w2
3 dx

}
+ inf

(u,v0,v1)∈V×Y2

{〈
−ε∇2u + v0u − f + v1 + K

u2

2
+ K

v2
0

2
, v∗1

〉
L2

+

〈
v1 + K

u2

2
+ K

v2
0

2
, v∗2

〉
L2

+
〈

v0 − A(u2 − B), v∗3
〉

L2
+

ε1

2

∫
Ω

v2
1 dx

}
= −1

2

∫
Ω
(v∗1)

2 dx − 1
2

∫
Ω
(v∗2)

2 dx − 1
2

∫
Ω
(v∗3)

2 dx

−F∗(v∗1 , v∗2 , v∗3), ∀v∗ = (v∗1 , v∗2 , v∗3) ∈ A∗, (540)

where
A∗ = {v∗ ∈ [Y∗]3 : v∗1 + v∗2 ≥ 0 and v∗3 ≤ 0, in Ω, v∗1 = 0, on ∂Ω}.

Also

F∗(v∗) = F∗(v∗1 , v∗2 , v∗3)

= sup
(u,v0,v1)∈V×Y2

{
−
〈
−ε∇2u + v0u − f + v1 + K

u2

2
+ K

v2
0

2
, v∗1

〉
L2

−
〈

v1 + K
u2

2
+ K

v2
0

2
, v∗2

〉
L2

−
〈

v0 − A(u2 − B), v∗3
〉

L2
− ε1

2

∫
Ω

v2
1 dx

}
. (541)
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Hence, defining J∗1 : A∗ → R by

J∗1 (v
∗) = −1

2

∫
Ω
(v∗1)

2 dx − 1
2

∫
Ω
(v∗2)

2 dx − 1
2

∫
Ω
(v∗3)

2 dx − F∗(v∗),

we have obtained
inf

(u,v0,v1)∈V×[Y]2
J1(u, v0, v1) ≥ sup

v∗∈A∗
J∗1 (v

∗).

Remark 32. We highlight that for K > 0 sufficiently large, J∗1 is concave on the convex set A∗. Moreover, this
last inequality is in fact an equality so that there is no duality gap between such approximate primal and dual
formulations.

66.1. A Numerical Example for a Related Similar Functional

In order to obtain numerical results we proceed in following fashion.
Firstly we define Ω = [0, 1] ⊂ R and in a Newton’s method context, we linearize the Ginzburg-

Landau equation in question namely,

−εu′′ + Au3 − Bu − f = 0, in Ω

about an initial solution u0, obtaining the following approximate equation

−εu′′ + 3Au2
0u − 2Au3

0 − Bu − f = 0, in Ω.

Now we define the functional J∗1 : [V]2 × [Y∗]3 → R, where

J∗1 (u, u0, w1, v∗1 , v∗2) =

〈
−εu′′ + 3Au2

0u − 2Au3
0 − Bu − f + w1 +

K
2

u2, v∗1

〉
L2

+

〈
w1 +

K
2

u2, v∗2

〉
L2
− 1

2

∫
Ω
(v∗1)

2 dx − 1
2

∫
Ω
(v∗2)

2 dx. (542)

Again, similarly as in the Newton’s method approach, we obtain a quadratic approximation for
the non-quadratic terms

K
2

u2(v∗1 + v∗2),

expressed by

Ku2((v∗1)0 + (v∗2)0)−
K
2

u2
0(v

∗
1 + v∗2).

With replacements in mind, we define the functional J∗2 : [V]2 × [Y∗]5 → R, where

J∗2 (u, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0) =
〈
−εu′′ + 3Au2

0u − 2Au3
0 − Bu − f , v∗1

〉
L2

+
〈

Ku2, (v∗1)0 + (v∗2)0

〉
L2
−
〈

K
2

u2
0, v∗1 + v∗2

〉
L2

+⟨w1, v∗1 + v∗2⟩L2 −
1
2

∫
Ω
(v∗1)

2 dx − 1
2

∫
Ω
(v∗2)

2 dx. (543)

Let û ∈ V be such that

∂J∗2 (u, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂u

∣∣∣∣
u=û

= 0,

so that we define the functional J∗3 : V × [Y∗]5 → R by

J∗3 (u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0) = J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0).
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The variation in v∗1 of J∗3 stands for

∂J∗3 (u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗1
=

∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂u
∂û
∂v∗1

+
∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗1

=
∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗1
. (544)

Similarly, the variation of J∗3 in v∗2 , stands for

∂J∗3 (u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗2
=

∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂u
∂û
∂v∗2

+
∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗2

=
∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗2
. (545)

Summarizing, a critical point of J∗3 must satisfy the following equations:

∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂u
= 0,

which stands for
−ε(v∗1)

′′ + 3Au2
0v∗1 − Bv∗1 + 2Ku((v∗1)0 + (v∗2)0) = 0,

∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗1
= 0,

which stands for
−εu′′ + 3Au2

0u − 2Au3
0 − Bu − f + w1 −

K
2

u2
0 − v∗1 = 0,

∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂v∗2
= 0,

which stands for
w1 −

K
2

u2
0 − v∗2 = 0,

and
∂J∗2 (û, u0, w1, v∗1 , v∗2 , (v∗1)0, (v∗2)0)

∂w1
= 0,

which stands for
v∗1 + v∗2 = 0.

It is worth highlighting such a system is linear in (u, w1, v∗1 , v∗2) so that we have obtained numerical
results, in a Newton’s method context, through the following algorithm.

1. Set n = 1, b12 = 10−4, nmax = 100, (v∗1)0 ≡ 0.4, (v∗2)0 ≡ 0.4 and (u0) ≡ 1.2.
2. Calculate (un, (w1)n, (v∗1)n, (v∗2)n) such that the following linear system of equations is satisfied

(a)
∂J∗2 (un, (u0)n, (w1)n, (v∗1)n, (v∗2)n, ((v∗1)0)n, ((v∗2)0)n)

∂u
= 0,

(b)
∂J∗2 (un, (u0)n, (w1)n, (v∗1)n, (v∗2)n, ((v∗1)0)n, ((v∗2)0)n)

∂v∗1
= 0,
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(c)
∂J∗2 (un, (u0)n, (w1)n, (v∗1)n, (v∗2)n, ((v∗1)0)n, ((v∗2)0)n)

∂v∗2
= 0,

(d)
∂J∗2 (un, (u0)n, (w1)n, (v∗1)n, (v∗2)n, ((v∗1)0)n, ((v∗2)0)n)

∂w1
= 0.

3. Set (u0)n+1 = un, ((v∗1)0)n+1 = (v∗1)n, and ((v∗2)0)n+1 = (v∗2)n.
4. If ∥(u0)n+1 − (u0)n∥∞ < b12 or n > nmax, then stop.

Otherwise n := n + 1 and go to item 2.

We have obtained numerical results for ε = 0.01, A = B = 1 and f ≡ 1, in Ω.
For such an optimal solution û0 obtained please see Figure 45.
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Figure 45. Solution û0(x) through the dual functional for ε = 0.01.

Here we present the software in MAT-LAB through which we have obtained such numerical
results.
************************

1. clear all
global m8 d yo u K e1 A B v1 v2 uo vo1 vo2 K1
m8=200;
d=1/m8;
K=10;
K1=38;
e1=0.01;
A=1;
B=1;
uo(:,1)=1.2*ones(m8,1);
yo(:,1)=ones(m8,1);
vo1(:,1)=0.4*ones(m8,1);
vo2(:,1)=0.4*ones(m8,1);
xo=1.2*ones(4*m8,1);
b14=1;
k1=1;
while (b14 > 10−4) && (k1 < 100)
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k1
k1=k1+1;
b12=1;
k=1;
while (b12 > 10−4) && (k < 25)
k
k=k+1;
X=lsqnonlin(’funJune2024DC25’,xo);
b12=max(abs(X-xo));
xo=X;
u(m8/2,1)
end;
b14=max(abs(u-uo));
uo=u;
vo1=v1;
vo2=v2;
end;
for i=1:m8
x(i,1)=i*d;
end;
plot(x,u);
***********************

With the auxiliary function "funJune2024DC25",

**************************

1. function W=funJune2024DC25(x)
global m8 d yo u K e1 A B v1 v2 vo1 vo2 uo
for i=1:m8
u(i,1)=x(i,1);
v1(i,1)=x(i+m8,1);
v2(i,1)=x(i+2*m8,1);
w(i,1)=x(i+3*m8,1);
end;
v1(m8,1)=0;
u(m8,1)=0;
d2v(1,1)=(−2 ∗ v1(1, 1) + v1(2, 1))/d2;
d2u(1,1)=(−2 ∗ u(1, 1) + u(2, 1))/d2;
for i=2:m8-1
d2v1(i,1)=(v1(i + 1, 1)− 2 ∗ v1(i, 1) + v1(i − 1, 1))/d2;
d2u(i,1)=(u(i + 1, 1)− 2 ∗ u(i, 1) + u(i − 1, 1))/d2;
end;
for i=1:m8-1
W(i, 1) = −e1 ∗ d2v1(i, 1) + 3 ∗ A ∗ uo(i, 1)2 ∗ v1(i, 1)− B ∗ v1(i, 1) + 2 ∗ K ∗ vo1(i, 1) ∗ u(i, 1) +
2 ∗ K ∗ vo2(i, 1) ∗ u(i, 1);
W(i+m8, 1) = −e1 ∗ d2u(i, 1)+ 3 ∗ A ∗ uo(i, 1)2 ∗ u(i, 1)− 2 ∗ uo(i, 1)3 ∗ A− B ∗ u(i, 1)− yo(i, 1)+
w(i, 1)− K ∗ uo(i, 1)2/2 − v1(i, 1);
W(i + 2 ∗ m8, 1) = w(i, 1)− K ∗ uo(i, 1)2/2 − v2(i, 1);
W(i + 3 ∗ m8, 1) = v1(i, 1) + v2(i, 1);
end;
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********************************

67. A Convex Dual Variational Formulation for a Burger’s Type Equation
Let Ω = [0, 1] ⊂ R.
Consider the Burger’s type equation{

νuxx − u ux = 0, in Ω,
u(0) = 1, u(1) = 0.

(546)

Here ν > 0 is a real constant.
Define the Galerkin type functional J : V → R where

J(u) =
1
2

∫
Ω
(νuxx − u ux)

2 dx,

and
V = {u ∈ W1,2(Ω) : u(0) = 1, and u(1) = 0}.

Denoting Y = Y∗ = L2(Ω), define F1 : V × Y∗ → R and F2 : V × Y∗ → R by

F1(u, v∗1) =
1
2

∫
Ω
(νuxx − u ux + v∗1 + Ku2 + Ku2

x)
2 dx,

and
F2(u, v∗1) =

1
2

∫
Ω
(v∗1 + Ku2 + Ku2

x)
2 dx,

respectively. Here K > 0 is an appropriate large real constant.
Define also J1 : V × Y∗ → R by

J1(u, v∗1) = F1(u, v∗1) + F2(u, v∗1),

Observe that

J1(u, v∗1) = F1(u, v∗1) + F2(u, v∗1)

= −⟨v∗1 + νuxx, v∗4⟩L2 − ⟨u, v∗2⟩L2 − ⟨ux, v∗3⟩L2 + F1(u, v∗1)

−⟨v∗1 , v∗7⟩L2 − ⟨u, v∗5⟩L2 − ⟨ux, v∗6⟩L2 + F2(u, v∗1)

+⟨v∗1 + νuxx, v∗4⟩L2 + ⟨u, v∗2⟩L2 + ⟨ux, v∗3⟩L2

+⟨v∗1 , v∗7⟩L2 + ⟨u, v∗5⟩L2 + ⟨ux, v∗6⟩L2

≥ inf
(v1,v2,v3)∈[Y]3

{
−⟨v1, v∗4⟩L2 − ⟨v2, v∗2⟩L2 − ⟨v3, v∗3⟩L2 + F̃1(v1, v2, v3)

}
+ inf

(v1,v2,v3)∈[Y]3

{
−⟨v1, v∗7⟩L2 − ⟨v2, v∗2⟩L2 − ⟨v3, v∗3⟩L2 + F̃2(v1, v2, v3)

}
+ inf

(u,v∗1)∈V×Y∗
{⟨v∗1 + νuxx, v∗4⟩L2 + ⟨u, v∗2⟩L2 + ⟨ux, v∗3⟩L2

+⟨v∗1 , v∗7⟩L2 + ⟨u, v∗5⟩L2 + ⟨ux, v∗6⟩L2}
= −F̃∗

1 (v
∗
4 , v∗2 , v∗3)− F̃∗

2 (v
∗
7 , v∗5 , v∗6)

+ν(v∗4)x(0)u0(0), ∀(u, v∗1) ∈ V × Y∗, ∀v∗ ∈ A∗ ∩ B∗, (547)

where
A∗ = {v∗ = (v∗4 , v∗2 , v∗3 , v∗5 , v∗6 , v∗7) ∈ [Y∗]6 : ν(v∗4)xx + v∗2 − (v∗3)x = 0, in Ω},

B∗ = {v∗ ∈ [Y∗]6 : v∗4 ≥ 0, v∗7 ≥ 0, v∗4 + v∗7 = 0, in Ω and v∗4(0) = v∗4(1) = 0}.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


329 of 360

Moreover, denoting

F̃1(v1, v2, v3) =
1
2

∫
Ω
(v1 − v2v3 + Kv2

2 + Kv2
3)

2 dx,

and
F̃1(v1, v2, v3) =

1
2

∫
Ω
(v1 + Kv2

2 + Kv2
3)

2 dx,

for v∗ ∈ B∗, we have

F̃∗
1 (v

∗
4 , v∗2 , v∗3)

= sup
(v1,v2,v3)∈[Y]3

{
⟨v1, v∗4⟩L2 + ⟨v2, v∗2⟩L2 + ⟨v3, v∗3⟩L2 − F̃1(v1, v2, v3)

}
=

1
2(K2 − 1)

∫
Ω

(2v∗2v∗3 + 2K((v∗2)
2 + (v∗3)

2))

v∗4
dx +

1
2

∫
Ω
(v∗4)

2 dx, (548)

F̃∗
2 (v

∗
7 , v∗5 , v∗6)

= sup
(v1,v2,v3)∈[Y]3

{
⟨v1, v∗7⟩L2 + ⟨v2, v∗5⟩L2 + ⟨v3, v∗6⟩L2 − F̃2(v1, v2, v3)

}
=

1
4K

∫
Ω

(v∗5)
2

v∗7
dx +

1
4K

∫
Ω

(v∗6)
2

v∗7
dx +

1
2

∫
Ω
(v∗7)

2 dx. (549)

Here we define J∗ : [Y∗]6 → R by

J∗(v∗) = −F̃∗
1 (v

∗
4 , v∗2 , v∗3)− F̃∗

2 (v
∗
7 , v∗5 , v∗6) + ν(v∗4)x(0)u0(0).

It is worth highlighting we have got

inf
(u,v∗1)∈V×Y∗

J1(u, v∗1) ≥ sup
v∗∈A∗∩B∗

J∗(v∗).

Finally, we also emphasize that J∗ is convex (in fact concave) in the convex set A∗ ∩ B∗ so that we
have obtained a convex dual formulation for an originally non-convex primal dual one.

Remark 33. The conditions which define B∗ must be replaced by those concerning the regularized set

B∗
ε = {v∗ ∈ [Y∗]6 : v∗4 ≥ ε, v∗7 ≥ ε, v∗4 + v∗7 = 3ε, in Ω and v∗4(0) = v∗4(1) = ε}

for an appropriate real constant 0 < ε ≪ 1. Therefore, through B∗
ε , we may define an approximate dual

formulation so that will be particularly interested in the system behaviour as

ε → 0+.

68. A Convex Dual Variational Formulation for an Approximate Navier-Stokes
System

Let Ω ⊂ R2 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω = S.

Consider the approximate incompressible and time independent Navier-Stokes system, where
ν∇2u − u ux − v uy − Px = 0,
ν∇2v − u vx − v vy − Py = 0,
∇2P + u2

x + v2
y + 2uyvx = 0, in Ω,

u = u0, v = v0, P = P0, on ∂Ω = S.

(550)
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Here ν > 0 is a real constant. Moreover, n denotes the outward normal field to ∂Ω = S.
Define the Galerkin type functional J : V → R, where

J(u, v, P) =
1
2

∫
Ω
(ν∇2u − u ux − v uy − Px)

2 dx

+
1
2

∫
Ω
(ν∇2v − u vx − v vy − Py)

2 dx

+
1
2

∫
Ω
(∇2P + u2

x + v2
y + 2uyvx)

2 dx, (551)

and
V = {u = (u, v, P) ∈ W1,2(Ω;R3) : u = u0, v = v0 and P = P0 on ∂Ω}.

Denoting Y = Y∗ = L2(Ω), define F1 : V × Y∗ → R, F2 : V × Y∗ → R, F3 : V × Y∗ → R,
F4 : V × Y∗ → R, F5 : V × Y∗ → R and F6 : V × Y∗ → R by

F1(u, v∗50) =
1
2

∫
Ω
(ν∇2u − u ux − v uy − Px + Ku2 + Ku2

x + Kv2 + Ku2
y + v∗50)

2 dx,

F2(u, v∗60) =
1
2

∫
Ω
(ν∇2v − u vx − v vy − Py + Ku2 + Kv2

x + Kv2 + Kv2
y + v∗60)

2 dx,

F3(u, v∗70) =
1
2

∫
Ω
(∇2P + u2

x + v2
y + 2uyvx + Ku2

x + Kv2
y + Kv2

x + Ku2
y + v∗70)

2 dx,

F4(u, v∗50) =
1
2

∫
Ω
(Ku2 + Ku2

x + Kv2 + Ku2
y + v∗50)

2 dx,

F5(u, v∗60) =
1
2

∫
Ω
(Ku2 + Kv2

x + Kv2 + Kv2
y + v∗60)

2 dx,

and
F6(u, v∗70) =

1
2

∫
Ω
(Ku2

x + Kv2
y + Kv2

x + Ku2
y + v∗70)

2 dx,

respectively. Here K > 0 is an appropriate large real constant.
Define also J1 : V × [Y∗]3 → R by

J1(u, v∗50, v∗60, v∗70) = F1(u, v∗50) + F2(u, v∗60)

+F3(u, v∗70) + F4(u, v∗50)

+F5(u, v∗60) + F6(u, v∗70). (552)
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Observe that

J1(u, v∗50, v∗60, v∗70) = F1(u, v∗50) + F2(u, v∗60)

+F3(u, v∗70) + F4(u, v∗50)

+F5(u, v∗60) + F6(u, v∗70)

= −⟨v∗50 + ν∇2u − Px, v∗1⟩L2 − ⟨u, v∗2⟩L2 − ⟨ux, v∗3⟩L2

−⟨v, v∗4⟩L2 − ⟨uy, v∗5⟩L2 + F1(u, v∗50)

−⟨v∗60 + ν∇2v − Py, v∗6⟩L2 − ⟨u, v∗7⟩L2 − ⟨vx, v∗8⟩L2

−⟨v, v∗9⟩L2 − ⟨vy, v∗10⟩L2 + F2(u, v∗60)

−⟨v∗70 +∇2P, v∗11⟩L2 − ⟨ux, v∗12⟩L2 − ⟨vy, v∗13⟩L2

−⟨vx, v∗14⟩L2 − ⟨uy, v∗15⟩L2 + F3(u, v∗70)

−⟨v∗50, v∗16⟩L2 − ⟨u, v∗17⟩L2 − ⟨ux, v∗18⟩L2

−⟨v, v∗19⟩L2 − ⟨uy, v∗20⟩L2 + F4(u, v∗50)

−⟨v∗60, v∗21⟩L2 − ⟨u, v∗22⟩L2 − ⟨vx, v∗23⟩L2

−⟨v, v∗24⟩L2 − ⟨vy, v∗25⟩L2 + F5(u, v∗60)

−⟨v∗70, v∗26⟩L2 − ⟨ux, v∗27⟩L2 − ⟨vy, v∗28⟩L2

−⟨vx, v∗29⟩L2 − ⟨uy, v∗30⟩L2 + F6(u, v∗70)

+⟨v∗50 + ν∇2u − Px, v∗1⟩L2 + ⟨u, v∗2⟩L2 + ⟨ux, v∗3⟩L2

+⟨v, v∗4⟩L2 + ⟨uy, v∗5⟩L2

+⟨v∗60 + ν∇2v − Py, v∗6⟩L2 + ⟨u, v∗7⟩L2 + ⟨vx, v∗8⟩L2

+⟨v, v∗9⟩L2 + ⟨vy, v∗10⟩L2

+⟨v∗70 +∇2P, v∗11⟩L2 − ⟨ux, v∗12⟩L2 − ⟨vy, v∗13⟩L2

+⟨vx, v∗14⟩L2 + ⟨uy, v∗15⟩L2

+⟨v∗50, v∗16⟩L2 + ⟨u, v∗17⟩L2 + ⟨ux, v∗18⟩L2

+⟨v, v∗19⟩L2 + ⟨uy, v∗20⟩L2

+⟨v∗60, v∗21⟩L2 + ⟨u, v∗22⟩L2 + ⟨vx, v∗23⟩L2

+⟨v, v∗24⟩L2 + ⟨vy, v∗25⟩L2

+⟨v∗70, v∗26⟩L2 + ⟨ux, v∗27⟩L2 + ⟨vy, v∗28⟩L2

+⟨vx, v∗29⟩L2 + ⟨uy, v∗30⟩L2 . (553)
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From such a result, we obtain

J1(u, v∗50, v∗60, v∗70)

≥ inf
(v1,··· ,v5)∈[Y]5

{−⟨v1, v∗1⟩L2 − ⟨v2, v∗2⟩L2 − ⟨v3, v∗3⟩L2

−⟨v4, v∗4⟩L2 − ⟨v5, v∗5⟩L2 + F̃1(v1, · · · , v5)}
inf

(v6,··· ,v10)∈[Y]5
{−⟨v6, v∗6⟩L2 − ⟨v7, v∗7⟩L2 − ⟨v8, v∗8⟩L2

−⟨v9, v∗9⟩L2 − ⟨v10, v∗10⟩L2 + F̃2(v6, · · · , v10)}
inf

(v11,··· ,v15)∈[Y]5
{−⟨v11, v∗11⟩L2 − ⟨v12, v∗12⟩L2 − ⟨v13, v∗13⟩L2

−⟨v14, v∗14⟩L2 − ⟨v15, v∗15⟩L2 + F̃3(v11, · · · , v15)}
inf

(v16,··· ,v20)∈[Y]5
{−⟨v16, v∗16⟩L2 − ⟨v17, v∗17⟩L2 − ⟨v18, v∗18⟩L2

−⟨v19, v∗19⟩L2 − ⟨v20, v∗20⟩L2 + F̃4(v16, · · · , v20)}
inf

(v21,··· ,v25)∈[Y]5
{−⟨v21, v∗21⟩L2 − ⟨v22, v∗22⟩L2 − ⟨v23, v∗23⟩L2

−⟨v24, v∗24⟩L2 − ⟨v25, v∗25⟩L2 + F̃5(v21, · · · , v25)}
inf

(v26,··· ,v30)∈[Y]5
{−⟨v26, v∗26⟩L2 − ⟨v27, v∗27⟩L2 − ⟨v28, v∗28⟩L2

−⟨v29, v∗29⟩L2 − ⟨v30, v∗30⟩L2 + F̃6(v26, · · · , v30)}
+ inf

(u,v∗50,v∗60,v∗70)∈V×[Y]3
{⟨v∗50 + ν∇2u − Px, v∗1⟩L2 + ⟨u, v∗2⟩L2 + ⟨ux, v∗3⟩L2

+⟨v, v∗4⟩L2 + ⟨uy, v∗5⟩L2

−⟨v∗60 + ν∇2v − Py, v∗6⟩L2 + ⟨u, v∗7⟩L2 + ⟨vx, v∗8⟩L2

+⟨v, v∗9⟩L2 + ⟨vy, v∗10⟩L2

+⟨v∗70 +∇2P, v∗11⟩L2 + ⟨ux, v∗12⟩L2 + ⟨vy, v∗13⟩L2

+⟨vx, v∗14⟩L2 + ⟨uy, v∗15⟩L2

+⟨v∗50, v∗16⟩L2 + ⟨u, v∗17⟩L2 + ⟨ux, v∗18⟩L2

+⟨v, v∗19⟩L2 + ⟨uy, v∗20⟩L2

+⟨v∗60, v∗21⟩L2 + ⟨u, v∗22⟩L2 + ⟨vx, v∗23⟩L2

+⟨v, v∗24⟩L2 + ⟨vy, v∗25⟩L2

+⟨v∗70, v∗26⟩L2 + ⟨ux, v∗27⟩L2 + ⟨vy, v∗28⟩L2

+⟨vx, v∗29⟩L2 + ⟨uy, v∗30⟩L2}
= −F̃∗

1 (v
∗
1 , · · · , v∗5)− F̃∗

2 (v
∗
6 , · · · , v∗10)− F̃∗

3 (v
∗
11, · · · , v∗15)

−F̃∗
4 (v

∗
16, · · · , v∗20)− F̃∗

5 (v
∗
21, · · · , v∗25)− F̃∗

6 (v
∗
26, · · · , v∗30)

+ν
∫

∂Ω
u0(∇v∗1 · n) dS + ν

∫
∂Ω

v0(∇v∗6 · n) dS +
∫

∂Ω
P0(∇v∗11 · n) dS, (554)

if v∗ = (v∗1 , · · · , v∗30) ∈ A∗ ∩ B∗, where A∗ = A∗
1 ∩ A∗

2 ∩ A∗
3 ,

A∗
1 = {v∗ ∈ [Y∗]30 : ν∇2v∗1 + v∗2 − (v∗3)x − (v∗5)y

v∗7 − (v∗12)x − (v∗14)y + v∗17

−(v∗18)x − (v∗20)y − v∗22 − (v∗30)y = 0, in Ω}, (555)
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A∗
2 = {v∗ ∈ [Y∗]30 : v∗4 + ν∇2v∗6 − (v∗8)x − v∗9

−(v∗10)y − (v∗15)x + v∗19 − (v∗23)x

+v∗24 − (v∗25)y − (v∗28)y − (v∗29)x = 0, in Ω}, (556)

A∗
3 = {v∗ ∈ [Y∗]30 : (v∗1)x + (v∗6)y +∇2v∗11 = 0, in Ω}, (557)

B∗ = {v∗ ∈ [Y∗]30 : v∗1 + v∗16 = 0, v∗6 + v∗21 = 0, v∗11 + v∗26 = 0,

v∗1 ≥ 0, v∗6 ≥ 0, v∗11 ≥ 0,

v∗16 ≥ 0, v∗21 ≥ 0, v∗26 ≥ 0, in Ω,

v∗1 = v∗6 = v∗11 = 0, on ∂Ω} (558)

Moreover, denoting

F̃1(v1, · · · , v5) =
1
2

∫
Ω
(v1 − v2v3 − v4v5 + Kv2

2 + Kv2
3 + Kv2

4 + Kv2
5)

2 dx,

F̃2(v6, · · · , v10) =
1
2

∫
Ω
(v6 − v7v8 − v9v10 + Kv2

7 + Kv2
8 + Kv2

9 + Kv2
10)

2 dx,

F̃3(v11, · · · , v15) =
1
2

∫
Ω
(v11 + v2

12 + v2
13 + 2v14v15 + Kv2

12 + Kv2
13 + Kv2

14 + Kv2
15)

2 dx,

F̃4(v16, · · · , v20) =
1
2

∫
Ω
(v16 + Kv2

17 + Kv2
18 + Kv2

19 + Kv2
20)

2 dx,

F̃5(v21, · · · , v25) =
1
2

∫
Ω
(v21 + Kv2

22 + Kv2
23 + Kv2

24 + Kv2
25)

2 dx,

F̃6(v26, · · · , v30) =
1
2

∫
Ω
(v26 + Kv2

27 + Kv2
28 + Kv2

29 + Kv2
30)

2 dx,

we have

F̃∗
1 (v

∗
1 , · · · , v∗5)

= sup
(v1,··· ,v5)∈[Y]5

{⟨v1, v∗1⟩L2 + ⟨v2, v∗2⟩L2 + ⟨v3, v∗3⟩L2

⟨v4, v∗4⟩L2 + ⟨v5, v∗5⟩L2 − F̃1(v1, · · · , v5)}

=
1

2(4K2 − 1)

∫
Ω

2v∗2v∗3 + 2v∗4v∗5 + 2K((v∗2)
2 + (v∗3)

2 + (v∗4)
2 + (v∗5)

2)

v∗1
dx

+
1
2

∫
Ω
(v∗1)

2 dx, (559)
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F̃∗
2 (v

∗
6 , · · · , v∗10)

= sup
(v6,··· ,v10)∈[Y]5

{⟨v6, v∗6⟩L2 + ⟨v7, v∗7⟩L2 + ⟨v8, v∗8⟩L2

⟨v9, v∗9⟩L2 + ⟨v10, v∗10⟩L2 − F̃2(v6, · · · , v10)}

=
1

2(4K2 − 1)

∫
Ω

2v∗7v∗8 + 2v∗9v∗10 + 2K((v∗7)
2 + (v∗8)

2 + (v∗9)
2 + (v∗10)

2)

v∗6
dx

+
1
2

∫
Ω
(v∗6)

2 dx, (560)

F̃∗
3 (v

∗
11, · · · , v∗15)

= sup
(v11,··· ,v15)∈[Y]5

{⟨v11, v∗11⟩L2 + ⟨v12, v∗12⟩L2 + ⟨v13, v∗13⟩L2

⟨v14, v∗14⟩L2 + ⟨v15, v∗15⟩L2 − F̃3(v11, · · · , v15)}

=
1

4(K2 − 1)

∫
Ω

(−1 + K)((v∗12)
2 + (v∗13)

2) + K(v∗14)
2 − 2v∗14v∗15 + K(v∗15)

2

v∗11
dx

+
1
2

∫
Ω
(v∗11)

2 dx, (561)

F̃∗
4 (v

∗
16, · · · , v∗20)

= sup
(v16,··· ,v20)∈[Y]5

{⟨v16, v∗16⟩L2 + ⟨v17, v∗17⟩L2 + ⟨v18, v∗18⟩L2

⟨v19, v∗19⟩L2 + ⟨v20, v∗20⟩L2 − F̃2(v15, · · · , v20)}

=
1

4K

∫
Ω

((v∗17)
2 + (v∗18)

2 + (v∗19)
2 + (v∗20)

2)

v∗16
dx

+
1
2

∫
Ω
(v∗16)

2 dx, (562)

F̃∗
5 (v

∗
21, · · · , v∗25)

= sup
(v21,··· ,v25)∈[Y]5

{⟨v21, v∗21⟩L2 + ⟨v22, v∗22⟩L2 + ⟨v23, v∗23⟩L2

⟨v24, v∗24⟩L2 + ⟨v25, v∗25⟩L2 − F̃5(v21, · · · , v25)}

=
1

4K

∫
Ω

((v∗22)
2 + (v∗23)

2 + (v∗24)
2 + (v∗25)

2)

v∗21
dx

+
1
2

∫
Ω
(v∗21)

2 dx, (563)

F̃∗
6 (v

∗
26, · · · , v∗30)

= sup
(v26,··· ,v30)∈[Y]5

{⟨v26, v∗26⟩L2 + ⟨v27, v∗27⟩L2 + ⟨v28, v∗28⟩L2

⟨v29, v∗29⟩L2 + ⟨v30, v∗30⟩L2 − F̃6(v25, · · · , v30)}

=
1

4K

∫
Ω

((v∗27)
2 + (v∗28)

2 + (v∗29)
2 + (v∗30)

2)

v∗26
dx

+
1
2

∫
Ω
(v∗26)

2 dx. (564)
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Here we define J∗ : [Y∗]30 → R by

J∗(v∗) = −F̃∗
1 (v

∗
1 , · · · , v∗5)− F̃∗

2 (v
∗
6 , · · · , v∗10)− F̃∗

3 (v
∗
11, · · · , v∗15)

−F̃∗
4 (v

∗
16, · · · , v∗20)− F̃∗

5 (v
∗
21, · · · , v∗25)− F̃∗

6 (v
∗
26, · · · , v∗30)

+ν
∫

∂Ω
u0(∇v∗1 · n) dS + ν

∫
∂Ω

v0(∇v∗6 · n) dS +
∫

∂Ω
P0(∇v∗11 · n) dS, (565)

It is worth highlighting we have got

inf
(u,v∗50,v∗60,v∗70)∈V×[Y]3

J1(u, v∗50, v∗60, v∗70) ≥ sup
v∗∈A∗∩B∗

J∗(v∗).

Finally, we also emphasize that J∗ is convex (in fact concave) in the convex set A∗ ∩ B∗ so that we
have obtained a convex dual formulation for an originally non-convex primal dual one.

Remark 34. Here we highlight the conditions which define B∗ must be appropriately regularized through a
small parameter

0 < ε ≪ 1,

similarly as we have done in the previous section.

69. A D.C. Type Dual Variational Formulation for a Burger’s Type Equation
In this section we shall write a primal Galerkin type variational formulation for a Burger’s type

equation as a difference of two convex functionals (the so called D.C. approach) and establish a related
convex dual variational formulation.

Let Ω = [0, 1] ⊂ R.
Consider the Burger’s type equation{

νuxx − u ux = 0, in Ω,
u(0) = 1, u(1) = 0.

(566)

Here ν > 0 is a real constant.
Define a Galerkin type functional J : V → R, where

J(u) =
1
2

∫
Ω
(νuxx − u ux)

2 dx,

and
V = {u ∈ W1,2(Ω) : u(0) = 1, and u(1) = 0}.

Denoting Y = Y∗ = L2(Ω), define F1, F2 : V × Y∗ → R and F3, F4 : V → R by

F1(u, v∗50) =
1
2

∫
Ω
(νuxx − u ux + v∗50 + Ku2 + Ku2

x)
2 dx +

K1

2

∫
Ω

u2 dx +
K1

2

∫
Ω

u2
x dx,

F2(u, v∗50) =
1
2

∫
Ω
(v∗50 + Ku2 + Ku2

x)
2 dx +

K1

2

∫
Ω

u2 dx +
K1

2

∫
Ω

u2
x dx,

F3(u) =
K1

2

∫
Ω

u2 dx +
K1

2

∫
Ω

u2
x dx

and
F4(u) =

K1

2

∫
Ω

u2 dx +
K1

2

∫
Ω

u2
x dx,

respectively.
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Here K, K1 > 0 are appropriate large real constants such that

K1 ≫ K.

Define also J1 : V × Y∗ → R by

J1(u, v∗50) = F1(u, v∗50) + F2(u, v∗50)− F3(u)− F4(u),

Observe that
inf

(u,v∗50)∈V×Y∗
J1(u, v∗50) = 0,

so that, denoting

F̃1(v1, v2, v3) =
1
2

∫
Ω
(v1 − v2v3 + Kv2

2 + Kv2
3)

2 dx +
K1

2

∫
Ω
(v2)

2 dx +
K1

2

∫
Ω
(v3)

2 dx,

F̃2(v4, v5, v6) =
1
2

∫
Ω
(v6 + Kv2

4 + Kv2
5)

2 dx +
K1

2

∫
Ω
(v4)

2 dx +
K1

2

∫
Ω
(v5)

2 dx,

F̃3(z1, z2) =
K1

2

∫
Ω
(z1)

2 dx +
K1

2

∫
Ω
(z2)

2 dx,

F̃4(z1, z2) =
K1

2

∫
Ω
(z3)

2 dx +
K1

2

∫
Ω
(z4)

2 dx,

we have

0 ≤ J1(u, v∗50) = F1(u, v∗50) + F2(u, v∗50)− F3(u)− F4(u)

= −⟨u, z∗1 , ⟩L2 − ⟨ux, z∗2⟩L2 + F1(u, v∗50)

−⟨u, z∗3⟩L2 − ⟨ux, z∗4⟩L2 + F2(u, v∗50)

+⟨u, z∗1⟩L2 + ⟨ux, z∗2⟩L2 − F3(u)

+⟨u, z∗3⟩L2 + ⟨ux, z∗4⟩L2 − F4(u)

≤ −⟨z∗1 , u⟩L2 − ⟨ux, z∗2⟩L2 + F1(u, v∗50)

−⟨u, z∗3⟩L2 − ⟨ux, z∗4⟩L2 + F2(u, v∗50)

+ sup
(z1,z2)∈Y

{⟨z1, z∗1⟩L2 + ⟨z2, z∗2⟩L2 − F̃3(z1, z2)}

sup
(z3,z4)∈Y

{⟨z3, z∗3⟩L2 + ⟨z4, z∗4⟩L2 − F̃4(z3, z4)}

= −⟨z∗1 , u⟩L2 − ⟨ux, z∗2⟩L2 + F1(u, v∗50)

−⟨u, z∗3⟩L2 − ⟨ux, z∗4⟩L2 + F2(u, v∗50)

+F̃∗
3 (z

∗
1 , z∗2) + F̃∗

4 (z
∗
3 , z∗4), ∀u ∈ V, (z∗1 , · · · , z∗4) ∈ [Y∗]4. (567)

From such results, similarly as obtained in [5], we may infer that

0 = inf
(u,v∗50)∈V×Y

J1(u, v∗50)

≤ inf
(u,v∗50)∈V×Y

{−⟨u, z∗1 , ⟩L2 − ⟨ux, z∗2⟩L2 + F1(u, v∗50)

−⟨u, z∗3⟩L2 − ⟨ux, z∗4⟩L2 + F2(u, v∗50)}
+F̃∗

3 (z
∗
1 , z∗2) + F∗

4 (z
∗
3 , z∗4), ∀z∗ = (z∗1 , · · · , z∗4) ∈ [Y∗]4. (568)
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On the other hand, observe that

−⟨u, z∗1 , ⟩L2 − ⟨ux, z∗2⟩L2

−⟨νuxx + v∗50, v∗1⟩L2 − ⟨u, v∗2⟩L2 − ⟨ux, v∗3⟩L2 + F1(u, v∗50)

−⟨u, z∗3⟩L2 − ⟨ux, z∗4⟩L2

−⟨v∗50, v∗6⟩L2 − ⟨u, v∗4⟩L2 − ⟨ux, v∗5⟩L2 + F2(u, v∗50)

+⟨νuxx + v∗50, v∗1⟩L2 + ⟨u, v∗2⟩L2 + ⟨ux, v∗3⟩L2

+⟨v∗50, v∗6⟩L2 + ⟨u, v∗4⟩L2 + ⟨ux, v∗5⟩L2

≥ inf
(v1,v2,v3)∈[Y]3

{−⟨v2, z∗1⟩L2 − ⟨v3, z∗2⟩L2

−⟨v1, v∗1⟩L2 − ⟨v2, v∗2⟩L2 − ⟨v3, v∗3⟩L2 + F̃1(v1, v2, v3)}
+ inf

(v4,v5,v6)∈[Y]3
{−⟨v4, z∗3⟩L2 − ⟨v5, z∗4⟩L2

−⟨v6, v∗6⟩L2 − ⟨v4, v∗4⟩L2 − ⟨v5, v∗5⟩L2 + F̃2(v4, v5, v6)}
+ inf

(u,v∗50)∈V×Y
{⟨νuxx + v∗50, v∗1⟩L2 + ⟨u, v∗2⟩L2 + ⟨ux, v∗3⟩L2

+⟨v∗50, v∗6⟩L2 + ⟨u, v∗4⟩L2 + ⟨ux, v∗5⟩L2}
= −F̃∗

1 (v
∗
1 , v∗2 , v∗3 , z∗1 , z∗2)− F̃∗

2 (v
∗
4 , v∗5 , v∗6 , z∗3 , z∗4)− ν(v∗1)x(0)u(0), (569)

if v∗ = (v∗1 , · · · , v∗6) ∈ A∗ ∩ B∗, where
A∗ = A∗

1 ∩ A∗
2 ,

A∗
1 = {v∗ ∈ [Y∗]6 : ν(v∗1)xx + v∗2 − (v∗3)x + v∗4 − (v∗5)x = 0, in Ω},

A∗
2 = {v∗ ∈ [Y∗]6 : v∗1 + v∗6 = 0, v∗1 ≥ 0, v∗6 ≥ 0, in Ω},

and
B∗ = {v∗ ∈ [Y∗]6 : v∗1(0) = v∗1(1) = 0}.

At this point we recall that

F̃∗
1 (v

∗
1 , v∗2 , v∗3 , z∗1 , z∗2)

= sup
(v1,v2,v3)∈[Y]3

{⟨v2, z∗1⟩L2 + ⟨v3, z∗2⟩L2

+⟨v1, v∗1⟩L2 + ⟨v2, v∗2⟩L2 + ⟨v3, v∗3⟩L2 − F̃1(v1, v2, v3)
}

=
K1

2

∫
Ω

(v∗2 + z∗1)
2 + (v∗3 + z∗2)

2

(2Kv∗1 + K1)2 − (v∗1)
2 dx

+
∫

Ω

(v∗1)
2((v∗2 + z∗1)(v

∗
3 + z∗2) + K(v∗2 + z∗1)

2 + K(v∗3 + z∗2)
2)

(2Kv∗1 + K1)2 − (v∗1)
2 dx

+
1
2

∫
Ω
(v∗1)

2 dx, (570)

F̃∗
2 (v

∗
4 , v∗5 , v∗6 , z∗3 , z∗4)

= sup
(v4,v5,v6)∈[Y]3

{⟨v4, z∗3⟩L2 + ⟨v5, z∗4⟩L2

+⟨v6, v∗6⟩L2 + ⟨v4, v∗4⟩L2 + ⟨v5, v∗5⟩L2 − F̃2(v4, v5, v6)
}

=
1
2

∫
Ω

(v∗4 + z∗3)
2 + (v∗5 + z∗4)

2

(K1 + 2Kv∗6)
dx +

1
2

∫
Ω
(v∗6)

2 dx, (571)
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F̃∗
3 (z

∗
1 , z∗2) = sup

(z1,z2)∈[Y]2
{⟨z1, z∗1⟩L2 + ⟨z1, z∗1⟩L2 − F3(z1, z2)}

=
1

2K1

∫
Ω
(z∗1)

2 dx +
1

2K1

∫
Ω
(z∗2)

2 dx, (572)

and

F̃∗
4 (z

∗
3 , z∗4) = sup

(z3,z4)∈[Y]2
{⟨z3, z∗3⟩L2 + ⟨z4, z∗4⟩L2 − F4(z3, z4)}

=
1

2K1

∫
Ω
(z∗3)

2 dx +
1

2K1

∫
Ω
(z∗4)

2 dx. (573)

Moreover, for K1 > 0 sufficiently large, up to a restriction for the dual variables related to a ball of
radius proportional to K1, from the standard results on convex analysis and duality theory, we have

inf
(u,v∗50)∈V×Y

{−⟨u, z∗1 , ⟩L2 − ⟨ux, z∗2⟩L2

−⟨νuxx + v∗50, v∗1⟩L2 − ⟨u, v∗2 , ⟩L2 − ⟨ux, v∗3⟩L2 + F1(u, v∗50)

−⟨u, z∗3⟩L2 − ⟨ux, z∗4⟩L2

−⟨v∗50, v∗6⟩L2 − ⟨u, v∗4 , ⟩L2 − ⟨ux, v∗5⟩L2 + F2(u, v∗50)}
= sup

v∗∈A∗∩B∗
{−F̃∗

1 (v
∗
1 , v∗2 , v∗3 , z∗1 , z∗2)− F̃∗

2 (v
∗
4 , v∗5 , v∗6 , z∗3 , z∗4)− ν(v∗1)x(0)u(0)}. (574)

Consequently, from such results and (568) we have got

0 = inf
(u,v∗50)∈V×Y

J1(u, v∗50)

≤ inf
z∗∈Y∗

{
sup

v∗∈A∗∩B∗

{
−F̃∗(v∗1 , v∗2 , v∗3 , z∗1 , z∗2)− F̃∗(v∗4 , v∗5 , v∗6 , z∗3 , z∗4)− ν(v∗1)x(0)u(0)

}
+F̃∗

3 (z
∗
1 , z∗2) + F∗

4 (z
∗
3 , z∗4)

}
. (575)

Therefore, defining J∗ : [Y∗]10 → R by

J∗(v∗, z∗) = −F̃∗(v∗1 , v∗2 , v∗3 , z∗1 , z∗2)− F̃∗(v∗4 , v∗5 , v∗6 , z∗3 , z∗4)− ν(v∗1)x(0)u(0)

+F̃∗
3 (z

∗
1 , z∗2) + F∗

4 (z
∗
3 , z∗4), (576)

we have got

0 = inf
(u,v∗50)∈V×Y

J1(u, v∗50) ≤ inf
z∈[Y∗ ]4

{
sup

v∗∈A∗∩B∗
J∗(v∗, z∗)

}
.

Finally, we also emphasize that J∗ is concave in v∗ on the convex set A∗ ∩ B∗ and convex in z∗, so
that, after the supremum evaluation in v∗, we have obtained a final convex dual formulation in z∗ for
an originally non-convex primal dual one.

70. A Convex Dual Formulation for the Rank-One Approximation of a
Non-Convex Primal One

In this section, we develop a convex dual formulation for an approximate rank-one primal
formulation found in some vectorial phase transition models.

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Define a functional J : V → R by
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J(u) =
1
2

∫
Ω

(
αijkl

(
∂ui
∂xj

− βij

)(
∂uk
∂xl

− βkl

))2

dx − ⟨ui, fi⟩L2 ,

where {αijkl} is a a fourth order constant positive definite and symmetric tensor, {βij} ∈ R3N , f =

( f1, f2, f3) ∈ L2(Ω;RN) and
V = W1,2

0 (Ω;RN).

From now and on we denote Y = Y∗ = L2(Ω) and

Y1 = Y∗
1 = [Y]3N+N+3+1.

Define also F1 : Y1 → R, F2 : Y1 → R and F3 : [Y]N+3+1 → R by

F1(w, ξ, η, v50)

=
1
2

∫
Ω

(
αijkl(wij − βij)(wkl − βkl) + K|ξ|2 + K|η|2 + v50

)2
dx, (577)

F2(w, ξ, η, v50) =
N

∑
i=1

3

∑
j=1

K1

2

∫
Ω

(
wij − ξiηj + K|ξ|2 + K|η|2 + v50

)2
dx,

and
F3(ξ, η, v50) =

K1

2

∫
Ω

(
K|ξ|2 + K|η|2 + v50

)2
dx,

respectively.
Here K, K1 > 0 are real constants such that K1 ≫ K ≫ 1.
Moreover, define

J1(u, w, ξ, η, v50)

= −⟨ξiηj, (v∗1)ij⟩L2 + F1(w, ξ, η, v50)

+F2(w, ξ, η, v50) + F3(ξ, η, v50)

+

〈
∂ui
∂xj

, (v∗1)ij

〉
L2

− ⟨ui, fi⟩L2 . (578)

Observe that

J1(u, w, ξ, η, v50)

≥ inf
(ξ,η)∈[Y]3+N

{
−⟨ξiηj, (v∗1)ij⟩L2 + F1(w, ξ, η, v50)

+F2(w, ξ, η, v50) + F3(ξ, η, v50)}

+ inf
u∈V

{〈
∂ui
∂xj

, (v∗1)ij

〉
L2

− ⟨ui, fi⟩L2

}
= −F̃∗

12(v
∗
1), ∀v∗1 ∈ A∗

1 , (579)

where

F̃∗
12(v

∗
1) = sup

(ξ,η)∈[Y]3+N

{
⟨ξiηj, (v∗1)ij⟩L2 − F1(w, ξ, η, v50)− F2(w, ξ, η, v50)− F3(ξ, η, v50)

}
and

A∗
1 = {v∗1 ∈ [Y∗]3N : (v∗1)ij,j + fi = 0, ∀i ∈ {1, · · · , N}, in Ω}.
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On the other hand

W̃

= −⟨ξiηj, (v∗1)ij⟩L2 + F1(w, ξ, η, v50)

+F2(w, ξ, η, v50) + F3(ξ, η, v50)

= −⟨ξiηj, (v∗1)ij⟩L2 − ⟨wij, (w∗
1)ij⟩L2 − ⟨ξi, (v∗2)i⟩L2

−⟨ηj, (v∗3)j⟩L2 − ⟨v50, v∗4⟩L2 + F1(w, ξ, η, v50)

−⟨wij, (w∗
2)ij⟩L2 − ⟨ξi, (v∗5)i⟩L2

−⟨ηj, (v∗6)j⟩L2 − ⟨v50, v∗7⟩L2 + F2(w, ξ, η, v50)

−⟨ξi, (v∗8)i⟩L2 − ⟨ηj, (v∗9)j⟩L2

−⟨v50, v∗10⟩L2 + F3(w, ξ, η, v50)

+⟨wij, (w∗
1)ij⟩L2 + ⟨ξi, (v∗2)i⟩L2

+⟨ηj, (v∗3)j⟩L2 + ⟨v50, v∗4⟩L2

+⟨wij, (w∗
2)ij⟩L2 + ⟨ξi, (v∗5)i⟩L2

+⟨ηj, (v∗6)j⟩L2 + ⟨v50, v∗7⟩L2

+⟨ξi, (v∗8)i⟩L2 + ⟨ηj, (v∗9)j⟩L2 + ⟨v50, v∗10⟩L2 (580)

Thus,

W̃

≥ inf
(w,ξ,η,v50)∈Y1

{−⟨ξiηj, (v∗1)ij − ⟨wij, (w∗
1)ij⟩L2 − ⟨ξi, (v∗2)i⟩L2

−⟨ηj, (v∗3)j⟩L2 − ⟨v50, v∗4⟩L2 + F1(w, ξ, η, v50)}
+ inf

(w,ξ,η,v50)∈Y1

{−⟨wij, (w∗
2)ij⟩L2 − ⟨ξi, (v∗5)i⟩L2

−⟨ηj, (v∗6)j⟩L2 − ⟨v50, v∗7⟩L2 + F2(w, ξ, η, v50)}
+ inf

(ξ,η,v50)∈[Y]3+N+1
{−⟨ξi, (v∗8)i⟩L2 − ⟨ηj, (v∗9)j⟩L2

−⟨v50, v∗10⟩L2 + F3(w, ξ, η, v50)}
+ inf

(w,ξ,η,v50)∈Y1

{⟨wij, (w∗
1)ij⟩L2 + ⟨ξi, (v∗2)i⟩L2

+⟨ηj, (v∗3)j⟩L2 + ⟨v50, v∗4⟩L2

+⟨wij, (w∗
2)ij⟩L2 + ⟨ξi, (v∗5)i⟩L2

+⟨ηj, (v∗6)j⟩L2 + ⟨v50, v∗7⟩L2

+⟨ξi, (v∗8)i⟩L2 + ⟨ηj, (v∗9)j⟩L2 + ⟨v50, v∗10⟩L2}
= −F̃∗

1 (w
∗
1 , v∗1 , v∗2 .v∗3 , v∗4)− F̃∗

2 (w
∗
2 , v∗5 , v∗6 , v∗7)− F̃∗

2 (v
∗
8 , v∗9 , v∗10),

∀(w∗, v∗) ∈ A∗, (581)

where w∗ = (w∗
1 , w∗

2) ∈ [Y]6N ≡ Y∗
2 ,

v∗ = (v∗1 , v∗2 , v∗3 , v∗4 , v∗5 , v∗6 , v∗7 , v∗8 , v∗9 , v∗10) ∈ [Y]12N+9 ≡ Y∗
3 ,

A∗
2 = {(w∗, v∗) ∈ Y∗

2 × Y∗
3 : (w∗

1)ij + (w∗
2)ij = 0, ∀i ∈ {1, · · · , N}, ∀j ∈ {1, 2, 3}, in Ω,

(v∗2)i + (v∗5)i + (v∗8)i = 0, ∀i ∈ {1, · · · , N}, in Ω,

(v∗3)j + (v∗6)j + (v∗9)j = 0, ∀j ∈ {1, 2, 3}, in Ω,

v∗4 + v∗7 + v∗10 = 0, in Ω}, (582)
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A∗
3 = {(w∗, v∗) ∈ Y∗

2 × Y∗
3 : v∗1 ∈ A∗

1},

and
A∗ = A∗

2 ∩ A∗
3 .

Furthermore,

F̃∗
1 (w

∗
1 , v∗1 , v∗2 , v∗3 , v∗4)

= sup
(w,ξ,η,v50)∈Y1

{⟨ξiηj, (v∗1)ij⟩L2 + ⟨wij, (w∗
1)ij⟩L2 + ⟨ξi, (v∗2)i⟩L2

+⟨ηj, (v∗3)j⟩L2 + ⟨v50, v∗4⟩L2 − F1(w, ξ, η, v50)}, (583)

F̃∗
2 (w

∗
1 , v∗5 , v∗6 , v∗7)

= sup
(w,ξ,η,v50)∈Y1

{⟨wij, (w∗
2)ij⟩L2 + ⟨ξi, (v∗5)i⟩L2

+⟨ηj, (v∗6)j⟩L2 + ⟨v50, v∗7⟩L2 − F2(w, ξ, η, v50)}, (584)

F̃∗
3 (v

∗
8 , v∗9 , v∗10)

= sup
(ξ,η,v50)∈[Y]3+N+1

{⟨ξi, (v∗8)i⟩L2 + ⟨ηj, (v∗9)j⟩L2

+⟨v50, v∗10⟩L2 − F3(ξ, η, v50)}. (585)

Denoting

J∗(w∗, v∗) = −F̃∗
1 (w

∗
1 , v∗1 , v∗2 , v∗3 , v∗4)− F̃∗

2 (w
∗
1 , v∗5 , v∗6 , v∗7)− F̃∗

3 (v
∗
8 , v∗9 , v∗10),

we have got

inf
u∈V

J(u) ≥ inf
(u,w,ξ,η,v50)∈V×Y1

J1(u, w, ξ, η, v50)

≥ sup
(w∗ ,v∗)∈A∗

J∗(w∗, v∗). (586)

Finally, we emphasize J∗ is a convex (in fact concave) functional.

71. A Dual Variational Formulation for a General Non-Convex Primal One
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider a functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 , (587)

where γ > 0, α > 0, β > 0 and f ∈ L2(Ω).
Here u ∈ V = W1,2

0 (Ω) and we denote Y = Y∗ = L2(Ω).
At this point, we define the functionals F1 : V → R, F2 : V × Y → R and F3 : V → R, where

F1(u) =
γ

2

∫
Ω
∇u · ∇u dx,
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F2(u, v) =
α

2

∫
Ω
(u2 − β + v)2 dx +

K
2

∫
Ω

u2 dx − ⟨u, f ⟩L2 ;

and
F3(u) =

K
2

∫
Ω

u2 dx,

for some constant K > 0.
Moreover, we define

V1 =

{
u ∈ V : ∥u∥∞ <

3
2

}
and the following polar functionals

F∗
1 (v

∗
1 , z∗) = sup

u∈V
{⟨u, v∗1 + z∗⟩L2 − F1(u)}

=
1
2

∫
Ω

(v∗1 + z∗)2

(−γ∇2)
dx, (588)

F∗
2 (v

∗
1 , v∗0) = sup

(u,v)∈V×Y∗
{⟨u,−v∗1⟩L2 + ⟨v, v∗0⟩L2 − F2(u, v)}

=
1
2

∫
Ω

(−v∗1 + f )2

2v∗0 + K
dx

+
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx, (589)

if v∗0 ∈ B∗, where

B∗ =

{
v∗0 ∈ Y∗ : ∥2v∗0∥∞ ≤ K

8

}
and,

F∗
3 (z

∗) = sup
v∈Y

{⟨v, z∗⟩L2 − F3(v)}

=
1

2K

∫
Ω
(z∗)2 dx. (590)

Finally, denoting

D∗ =

{
v∗1 ∈ Y∗ : ∥ − v∗1 + f ∥∞ ≤ 5

4
K
}

,

we also define J∗1 : D∗ × B∗ × Y∗ → R by

J∗1 (v
∗
1 , v∗0 , z∗) = −F∗

1 (v
∗
1 , z∗)− F∗

2 (v
∗
1 , v∗0) + F∗

3 (z
∗)

+
K1

2

∥∥∥∥v∗1 + z∗

−γ∇2 − z∗

K

∥∥∥∥2

0,2

+
K1

2

∥∥∥∥−v∗1 + f
2v∗0 + K

− z∗

K

∥∥∥∥2

0,2
. (591)

Observe that if K1 > 0 is sufficiently large, then J∗1 is convex in (v∗1 , z∗), ∀v∗0 ∈ B∗.
Let (v̂∗1 , v̂∗0 , ẑ∗) ∈ D∗ × B∗ × Y∗ be such that

δJ∗1 (v̂
∗
1 , v̂∗0 , ẑ∗) = 0.
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From such a concerning convexity of J∗1 in (v∗1 , z∗) we may infer that

J∗1 (v̂
∗
1 , v̂∗0 , ẑ∗) ≤ J∗1 (v

∗
1 , v̂0, z∗), ∀v∗1 ∈ D∗, z∗ ∈ Y∗.

In particular fixing u ∈ V1, for v∗1 = (2v∗0 + K)u and z∗ = Ku, we obtain

J∗1 (v̂
∗
1 , v̂∗0 , ẑ∗) ≤ J∗1 (v

∗
1 , v̂0, z∗)

≤ −⟨u, v∗1 + z∗⟩L2 +
γ

2

∫
Ω
∇u · ∇u dx

+⟨u, v∗1⟩L2 + ⟨u2, v̂∗0⟩L2 +
K
2

∫
Ω

u2 dx

−⟨u, f ⟩L2 + ⟨u, z∗⟩L2 −
K
2

∫
Ω

u2 dx

− 1
2α

∫
Ω
(v̂∗0)

2 dx − β
∫

Ω
v̂∗0 dx

+
K1

2

∥∥∥∥∥−γ∇2u + 2v̂∗0u − f
−γ∇2

∥∥∥∥∥
2

0,2

≤ sup
v∗0∈Y∗

{
γ

2

∫
Ω
∇u · ∇u dx + ⟨u2, v∗0⟩L2 − ⟨u, f ⟩L2

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx

+
K1

2

∥∥∥∥∥−γ∇2u + 2v̂∗0u − f
−γ∇2

∥∥∥∥∥
2

0,2


=

γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx

−⟨u, f ⟩L2 +
K1

2

∥∥∥∥∥−γ∇2u + 2v̂∗0u − f
−γ∇2

∥∥∥∥∥
2

0,2

= J(u) +
K1

2

∥∥∥∥∥−γ∇2u + 2v̂∗0u − f
−γ∇2

∥∥∥∥∥
2

0,2

. (592)

Summarizing, we have got

J∗1 (v̂
∗
1 , v̂∗0 , ẑ∗) ≤ J(u) +

K1

2

∥∥∥∥∥−γ∇2u + 2v̂∗0u − f
−γ∇2

∥∥∥∥∥
2

0,2

, ∀u ∈ V1.

Let u0 ∈ V be such that

u0 =
ẑ∗

K
.

Assume u0 ∈ V1.
Similarly as in the previous sections, we may prove that

v̂∗0 = α(u2
0 − β),

δJ(u0) = −γ∇2u0 + 2v̂0u0 − f = 0,

and
J(u0) = J∗1 (v̂

∗
1 , v̂∗0 , ẑ∗),
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so that

J(u0) = min
u∈V1

J(u) +
K1

2

∥∥∥∥∥−γ∇2u + 2v̂∗0u − f
−γ∇2

∥∥∥∥∥
2

0,2


= J∗1 (v̂

∗
1 , v̂∗0 , ẑ∗)

= inf
(v∗1 ,z∗)∈D∗×Y∗

J∗1 (v
∗
1 , v̂∗0 , z∗). (593)

The objective of this section is complete.

72. A D.C. Type Duality Principle Suitable for Non-Convex Variational
Optimization

In this section we develop results concerning a D.C. approach inspired by the results of J.J. Telega,
W.R. Bielski and co-workers, [1–4] and Toland, [5].

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider a functional J : V → R where

J(u) =
ε

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 , (594)

where ε > 0, α > 0, β > 0 and f ∈ L2(Ω).
Here u ∈ V = W1,2

0 (Ω) and we denote Y = Y∗ = L2(Ω).
At this point, for a large constant K1 > 0, we define the approximate functional J1 : V × Y → R,

by

J1(u, v) =
ε

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(v − β)2 dx

+
K1

2

∫
Ω
(v − u2) dx − ⟨u, f ⟩L2 . (595)

We define also the functionals F1 : V → R, F2 : Y → R, F3 : V × Y → R, and F4 : V → R, where

F1(u) =
ε

2

∫
Ω
∇u · ∇u dx − ⟨u, f ⟩L2 ,

F2(v) =
α

2

∫
Ω
(v − β)2 dx

F3(u, v) =
K1

2

∫
Ω
(v − u2) dx +

K
2

∫
Ω

u2 dx

and
F4(u) =

K
2

∫
Ω

u2 dx,

for some appropriate constant K > 0.
Moreover, we define the following polar functionals

F∗
1 (v

∗
1) = sup

u∈V
{−⟨u, v∗1⟩L2 − F1(u)}

=
1
2

∫
Ω

(−v∗1 + f )2

(−ε∇2)
dx, (596)
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F∗
2 (v

∗
2) = sup

v∈Y∗
{⟨v, v∗2⟩L2 − F2(v)}

=
1

2α

∫
Ω
(v∗2)

2 dx + β
∫

Ω
v∗2 dx, (597)

F∗
3 (v

∗
1 , v∗2 , z∗) = sup

(u,v)∈V×Y
{⟨u, v∗1 + z∗⟩L2 − ⟨v, v∗2⟩L2 − F3(u, v)}

=
1
2

∫
Ω

(v∗1 + z∗)2

2v∗2 + K
dx +

1
2K1

∫
Ω
(v∗2)

2 dx, (598)

if v∗2 ∈ B∗, where

B∗ =

{
v∗2 ∈ Y∗ : ∥2v∗2∥∞ ≤ K

2

}
and,

F∗
4 (z

∗) = sup
w∈Y

{⟨w, z∗⟩L2 − F4(w)}

=
1

2K

∫
Ω
(z∗)2 dx. (599)

Finally, we define

D∗ =

{
z∗ ∈ Y∗ : ∥z∗∥∞ ≤ 5

4
K
}

,

and J∗1 : D∗ × B∗ × Y∗ → R by

J∗1 (v
∗
1 , v∗2 , z∗) = −F∗

1 (v
∗
1)− F∗

2 (v
∗
2)− F∗

3 (v
∗
1 , v∗2 , z∗) + F∗

4 (z
∗).

Let α1 ∈ R be such that
inf

(u,v)∈V×Y
J1(u, v) = α1.

Observe that

α1 ≤ J1(u, v)

= F1(u) + F2(v) + F3(u, v)− F4(u)

= −⟨u, z∗⟩L2 + F1(u) + F2(v) + F3(u, v)

+⟨u, z∗⟩L2 − F4(u)

≤ −⟨u, z∗⟩L2 + F1(u) + F2(v) + F3(u, v)

+ sup
w∈Y

{⟨w, z∗⟩L2 − F4(w)}

= −⟨u, z∗⟩L2 + F1(u) + F2(v) + F3(u, v) + F∗
4 (z

∗), ∀u ∈ V, v ∈ Y, z∗ ∈ D∗. (600)

From such results we may infer that

α1 ≤ inf
(u,v)∈V×Y

{−⟨u, z∗⟩L2 + F1(u) + F2(v) + F3(u, v)}+ F∗
4 (z

∗).
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On the other hand, for an appropriate value of K > 0 and z∗ ∈ D∗, from standard results in
convex analysis, we have

inf
(u,v)∈V×Y

{−⟨u, z∗⟩L2 + F1(u) + F2(v) + F3(u, v)}

= sup
(v∗1 ,v∗2)∈Y∗×B∗

{−F∗
1 (v

∗
1)− F∗

2 (v
∗
2)− F∗

3 (v
∗
1 , v∗2 , z∗)}. (601)

Joining the pieces, we have got

α1 ≤ sup
(v∗1 ,v∗2)∈Y∗×B∗

{−F∗
1 (v

∗
1)− F∗

2 (v
∗
2)− F∗

3 (v
∗
1 , v∗2 , z∗)}+ F∗

4 (z
∗),

so that

α1 ≤ inf
z∗∈D∗

 sup
(v∗1 ,v∗2)∈Y∗×B∗

{−F∗
1 (v

∗
1)− F∗

2 (v
∗
2)− F∗

3 (v
∗
1 , v∗2 , z∗)}+ F∗

4 (z
∗)

,

that is,

α1 = inf
(u,v)∈V×Y

J1(u, v) ≤ inf
z∗∈D∗

 sup
(v∗1 ,v∗2)∈Y∗×B∗

J∗1 (v
∗
1 , v∗2 , z∗)

.

Let (v̂∗1 , v̂∗2 , ẑ∗) ∈ D∗ × B∗ × Y∗ be such that

δJ∗1 (v̂
∗
1 , v̂∗2 , ẑ∗) = 0.

Let (u0, v0) ∈ V × Y be such that

u0 =
ẑ∗

K
and

v0 =
v̂∗2
α

+ β.

Similarly as in the previous sections, we may prove that

δJ1(u0, v0) = 0,

and
J1(u0, v0) = J∗1 (v̂

∗
1 , v̂∗2 , ẑ∗),

so that

J1(u0, v0) = J∗1 (v̂
∗
1 , v̂∗2 , ẑ∗)

= sup
(v∗1 ,v∗2)∈Y∗×B∗

J∗1 (v
∗
1 , v∗2 , ẑ∗). (602)

The main objective of this section is complete.

72.1. A Numerical Example

We have obtained numerical results for an one-dimensional case where, Ω = [0, 1] ⊂ R, A = B =

1, f ≡ 2 and

1. Case A: ε = 0.1
2. Case B: ε = 0.01
3. Case C: ε = 0.001.

For the optimal solutions u0 ∈ V obtained for the cases A,B and C, please see Figures 46, 47 and
48, respectively.
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Figure 46. Solution u0(x) through the dual functional for the case A, ε = 0.1.
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Figure 47. Solution u0(x) through the dual functional for the case B, ε = 0.01.
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Figure 48. Solution u0(x) through the dual functional for the case C, ε = 0.001.

Here we present the software in MAT-LAB through which we have obtained such numerical
results.

1. clear all
global m8 d A B yo e1 K1 e2 u z K v2
m8=100;
d=1/m8;
yo(:,1)=2*ones(m8-1,1);
z(:,1)=1.2*ones(m8-1,1);
A=1;
B=1;
e1=0.001;
e2=0.00000001;
K1=1000000;
K=30;
for i=1:2*(m8-1)
xo(i,1)=0.7;
x1(i,1)=1.1;
end;
b14=1.0;
k7=1.0;
while (b14 > 10−4) && (k7 < 70)
k7
k7=k7+1;
b12=1.0;
k=1;
while (b12 > 10−4) && (k < 10)
k
k=k+1;
X=fminunc(’funJuly2024A1’,xo);
b12=max(abs(X-xo));
xo=X;
u(m8/2,1)
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end;
z=K*u;
b14=max(abs(x1-xo));
x1=xo;
end;
for i=1:m8-1
x(i,1)=i*d;
end;
plot(x,u);
*****************************

With the auxiliary function "funJuly2024A1", where

*********************************

1. function S=funJuly2024A1(x)
global m8 d A B yo e1 K1 e2 u z K v2
m2=zeros(m8-1,m8-1);
y1=ones(m8-1,1);
for i=2:m8-2
m2(i,i)=-2.0;
m2(i,i+1)=1.0;
m2(i,i-1)=1.0;
end;
m2(1,1)=-2.0;
m2(1,2)=1.0;
m2(m8-1,m8-1)=-2.0;
m2(m8-1,m8-2)=1.0;
for i=1:m8-1
v1(i,1)=x(i,1);
v2(i,1)=x(i+(m8-1),1);
end;
S = 1/2 ∗ (−v1 + yo)′ ∗ inv(−e1 ∗ m2/d2) ∗ (−v1 + yo) + v2′ ∗ v2/2/A + B ∗ v2′ ∗ y1;
for i=1:m8-1
S = S + (v1(i, 1) + z(i, 1))2/(2 ∗ v2(i, 1) + K)/2 + v2(i, 1)2/2/K1;
end;
u = inv(−e1 ∗ m2/d2) ∗ (−v1 + yo);

********************************************

73. A Concave Dual Variational Formulation for an Originally Non-Convex
Primal One

In this section we develop results also inspired by the approach found in the articles of J.J. Telega,
W.R. Bielski and co-workers, [1–4] and Toland, [5].

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider a functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 , (603)

where γ > 0, α > 0, β > 0 and f ∈ L2(Ω).
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Here u ∈ V = W1,2
0 (Ω) and we denote Y = Y∗ = L2(Ω).

Consider also the functionals F1 : V × Y → R, F2 : V × Y → R and F3 : V → R, where

F1(u, v∗0) =
γ

4

∫
Ω
∇u · ∇u dx +

1
2
⟨u2, v∗0⟩L2

+
K
2

∫
Ω

u2 dx − ⟨u, f ⟩L2

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx, (604)

F2(u, v∗0) =
γ

4

∫
Ω
∇u · ∇u dx

+
1
2
⟨u2, v∗0⟩L2 +

K
2

∫
Ω

u2 dx, (605)

F3(u) = K
∫

Ω
u2 dx,

for some appropriate constant K > 0.
Moreover, we define the following polar functionals

F∗
1 (v

∗
1 , v∗0 , z∗) = sup

u∈V

{〈
u, v∗1 +

z∗

2

〉
L2
− F1(u, v∗0)

}
=

1
2

∫
Ω

(v∗1 + z∗/2 + f )2

(−γ∇2 + 2v∗0)/2 + K
dx

+
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx, (606)

F∗
2 (v

∗
1 , v∗0 , z∗) = sup

u∈V

{〈
u,−v∗1 +

z∗

2

〉
L2
− F2(u, v∗0)

}
=

1
2

∫
Ω

(−v∗1 + z∗/2)2

(−γ∇2 + 2v∗0)/2 + K
dx, (607)

if v∗0 ∈ B∗, where

B∗ =

{
v∗0 ∈ Y∗ : ∥2v∗0∥∞ ≤ K

4

}
,

and,

F∗
3 (z

∗) = sup
w∈Y

{⟨w, z∗⟩L2 − F3(w)}

=
1

4K

∫
Ω
(z∗)2 dx. (608)

Finally, we define
A+ = {z∗ ∈ Y∗ : f z∗ ≥ 0, in Ω},

D∗ =

{
z∗ ∈ A+ : ∥z∗∥∞ ≤ 5

2
K
}

,

and J∗2 : Y∗ × B∗ × D∗ → R by

J∗2 (v
∗
1 , v∗0 , z∗) = −F∗

1 (v
∗
1 , v∗0 , z∗)− F∗

2 (v
∗
1 , v∗0 , z∗) + F∗

3 (z
∗).

Observe that the variation of J∗2 in v∗1 stands for
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−
v∗1 + z∗/2 + f

(−γ∇2 + 2v∗0)/2 + K
+

−v∗1 + z∗/2
(−γ∇2 + 2v∗0)/2 + K

= 0,

so that
2v∗1 + f = 0.

The variation of J∗2 in z∗ stands for

−1
2

v∗1 + z∗/2 + f
(−γ∇2 + 2v∗0)/2 + K

− 1
2

−v∗1 + z∗/2
(−γ∇2 + 2v∗0)/2 + K

+
z∗

2K
= 0.

Finally, the variation of J∗2 in v∗0 stands for,

1
2

(
v∗1 + z∗/2 + f

(−γ∇2 + 2v∗0)/2 + K

)2
+

1
2

( −v∗1 + z∗/2
(−γ∇2 + 2v∗0)/2 + K

)2
−

v∗0
α

− β = 0.

With such results in mind, we define the functional J∗3 : Y∗ × B∗ × D∗ → R, by

J∗3 (v
∗
1 , v∗0 , z∗)

= J∗2 (v
∗
1 , v∗0 , z∗)− K2

2
∥2v∗1 + f ∥2

0,2

+
8
√

K2

2

∥∥∥∥−1
2

v∗1 + z∗/2 + f
(−γ∇2 + 2v∗0)/2 + K

− 1
2

−v∗1 + z∗/2
(−γ∇2 + 2v∗0)/2 + K

+
z∗

2K

∥∥∥∥2

0,2

+
8
√

K2

2

∥∥∥∥∥1
2

(
v∗1 + z∗/2 + f

(−γ∇2 + 2v∗0)/2 + K

)2
+

1
2

( −v∗1 + z∗/2
(−γ∇2 + 2v∗0)/2 + K

)2
−

v∗0
α

− β

∥∥∥∥∥
2

0,2

. (609)

Observe that for K2 > 0 sufficiently large J∗5 : E∗ → R is concave in v∗1 on E∗, where

J∗5 (v
∗
1) = sta (v∗0 ,z∗)∈B∗×D∗ J∗3 (v

∗
1 , v∗0 , z∗),

and
E∗ = {v∗1 ∈ Y∗ : ∥2v∗1 + f ∥∞ ≤ 5}.

Let (v̂∗1 , v̂∗0 , ẑ∗) ∈ E∗ × B∗ × D∗ be such that

δJ∗3 (v̂
∗
1 , v̂∗0 , ẑ∗) = 0.

Let u0 ∈ V be such that

u0 =
ẑ∗

2K
Similarly as in the previous sections, we may prove that

δJ(u0) = 0,

and
J(u0) = J∗3 (v̂

∗
1 , v̂∗0 , ẑ∗),
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so that

J(u0) = J∗3 (v̂
∗
1 , v̂∗0 , ẑ∗)

= sup
v∗1∈E∗

J∗3 (v
∗
1 , v̂∗0 , ẑ∗)

= sup
v∗1∈E∗

J∗5 (v
∗
1)

= J∗5 (v̂
∗
1). (610)

The main objective of this section is complete.

74. A Dual Variational Formulation for an Originally Non-Convex Primal One
In this section we develop results also inspired by the approach found in the articles of J.J. Telega,

W.R. Bielski and co-workers, [1–4] and Toland, [5].
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider a functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 , (611)

where γ > 0, α > 0, β > 0 and f ∈ L2(Ω).
Here u ∈ V = W1,2

0 (Ω) and we denote Y = Y∗ = L2(Ω).
Consider also the functionals F1 : V → R and F2 : V × Y → R where,

F1(u) =
γ

2

∫
Ω
∇u · ∇u dx +

K
2

∫
Ω

u2 dx, (612)

F2(u, v∗0) = ⟨u2, v∗0⟩L2

−⟨u, f ⟩L2 −
K
2

∫
Ω

u2 dx

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx (613)

for some appropriate constant K > 0.
Moreover, we define the following polar functionals

F∗
1 (v

∗
1) = sup

u∈V
{⟨u, v∗1⟩L2 − F1(u)}

=
1
2

∫
Ω

(v∗1)
2

−γ∇2 + K
dx (614)

and

F∗
2 (v

∗
1 , v∗0) = inf

u∈V
{⟨u, v∗1⟩L2 − F2(u, v∗0)}

=
1
2

∫
Ω

(−v∗1 + f )2

2v∗0 − K
dx

+
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx, (615)
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if v∗0 ∈ B∗, where

B∗ =

{
v∗0 ∈ Y∗ : ∥2v∗0∥∞ ≤ K

2

}
.

Finally, we define
A+ = {u ∈ V : f u ≥ 0, in Ω},

V1 =

{
u ∈ A+ : ∥u∥∞ ≤ 3

2

}
,

D∗ =

{
v∗ ∈ Y∗ :

∥∥∥∥ v∗1
−γ∇2 + K

∥∥∥∥
∞
≤ 3

2

}
and J∗2 : D∗ × B∗ → R by

J∗2 (v
∗
1 , v∗0) = −F∗

1 (v
∗
1)− F∗

2 (v
∗
1 , v∗0).

Observe that the variation of J∗2 in v∗1 stands for

φ1 = −
v∗1

−γ∇2 + K
+

−v∗1 + f
2v∗0 − K

= 0.

On the other hand, the variation of J∗2 in v∗0 stands for

φ2 =

(−v∗1 + f
2v∗0 − K

)2
−

v∗0
α

− β = 0,

so that

φ3 =

(
v∗1

−γ∇2 + K

)2
−

v∗0
α

− β = 0.

With such results in mind, we define the functional J∗3 : D∗ × B∗ → R, by

J∗3 (v
∗
1 , v∗0)

= J∗2 (v
∗
1 , v∗0)

+
K2

2

∥∥∥∥− v∗1
−γ∇2 + K

+
−v∗1 + f
2v∗0 − K

∥∥∥∥2

0,2

+
K2

2

∥∥∥∥∥
(−v∗1 + f

2v∗0 − K

)2
−

v∗0
α

− β

∥∥∥∥∥
2

0,2

(616)

Here we assume K2 ≫ K ≫ max{1, α, β, γ, 1/α, 1/γ}.
Let (v̂∗1 , v̂∗0) ∈ D∗ × B∗ be such that

δJ∗3 (v̂
∗
1 , v̂∗0) = 0.

Let u0 ∈ V1 be such that

u0 =
v̂∗1

−γ∇2 + K

Similarly as in the previous sections, we may prove that

δJ(u0) = 0,

and
J(u0) = J∗3 (v̂

∗
1 , v̂∗0).
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Moreover, at a critical point of J∗3 we have φ1 = φ2 = φ3 = 0 so that,

∂2 J∗3 (v
∗
1 , v∗0)

∂(v∗1)
2 = O(K2

2),

∂2 J∗3 (v
∗
1 , v∗0)

∂(v∗0)
2 = O(K2

2),

and with the help of software MATHEMATICA, at a critical point, we may obtain

det

{
∂2 J∗3 (v

∗
1 , v∗0)

∂v∗1∂v∗0

}
=

K2
2(−γ∇2 + 4αu2 + 2v∗0)

2

α2(−γ∇2 + K)2(K − 2v∗0)
2 +O(K2) > 0.

With such results in mind, since

δJ(u0) = −γ∇2u0 + 2α(u2
0 − β)u0 − f = 0,

joining the pieces, assuming an approximate finite dimensional version for the model in question, if
necessary, we may infer that there exist r, r1 > 0 such that

J(u0) = inf
u∈Br(u0)

{
J(u) +

K2

2

∥∥∥∥−γ∇2u + 2α(u2 − β)u − f
−γ∇2 + K

∥∥∥∥2

0,2

}
= J∗3 (v̂

∗
1 , v̂∗0)

= inf
(v∗1 ,v∗0)∈Br1 (v̂

∗
1 ,v̂∗0)

J∗3 (v
∗
1 , v∗0). (617)

The main objective of this section is complete.

75. A Convex Dual Variational Formulation for an Originally Non-Convex Primal
One

In this section we develop results again inspired by the approach found in the articles of J.J. Telega,
W.R. Bielski and co-workers, [1–4] and Toland, [5].

Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by ∂Ω.

Consider a functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 , (618)

where γ > 0, α > 0, β > 0 and f ∈ L2(Ω).
Here u ∈ V = W1,2

0 (Ω) and we denote Y = Y∗ = L2(Ω).
Consider also the functionals F1 : V → R and F2 : V × Y → R where,

F1(u) =
γ

2

∫
Ω
∇u · ∇u dx +

K
2

∫
Ω

u2 dx, (619)

F2(u, v∗0) = ⟨u2, v∗0⟩L2

−⟨u, f ⟩L2 −
K
2

∫
Ω

u2 dx

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx (620)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2025 doi:10.20944/preprints202302.0051.v97

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0051.v97
http://creativecommons.org/licenses/by/4.0/


355 of 360

for some appropriate constant K > 0.
Moreover, we define the following polar functionals F∗

1 : Y∗ → R and F∗
2 : Y∗ × Y∗ → R where,

F∗
1 (v

∗
1) = sup

u∈V
{⟨u, v∗1⟩L2 − F1(u)}

=
1
2

∫
Ω

(v∗1)
2

−γ∇2 + K
dx, (621)

F∗
2 (v

∗
1 , v∗0) = inf

u∈V
{⟨u, v∗1⟩L2 − F2(u, v∗0)}

=
1
2

∫
Ω

(−v∗1 + f )2

2v∗0 − K
dx

+
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx, (622)

if v∗0 ∈ B∗, where

B∗ =

{
v∗0 ∈ Y∗ : ∥2v∗0∥∞ ≤ K

2

}
.

Finally, we define
A+ = {u ∈ V : f u ≥ 0, in Ω},

V1 =

{
u ∈ A+ : ∥u∥∞ ≤ 3

2

}
,

D+ =

{
v∗1 ∈ Y∗ : f

v∗1
−γ∇2 + K

≥ 0, in Ω
}

,

D∗ =

{
v∗1 ∈ D+ :

∥∥∥∥ v∗1
−γ∇2 + K

∥∥∥∥
∞
≤ 3

2

}
and J∗2 : D∗ × B∗ → R by

J∗2 (v
∗
1 , v∗0) = −F∗

1 (v
∗
1)− F∗

2 (v
∗
1 , v∗0).

Observe that the variation of J∗2 in v∗1 stands for

−
v∗1

−γ∇2 + K
+

−v∗1 + f
2v∗0 − K

= 0.

On the other hand, the variation of J∗2 in v∗0 stands for(−v∗1 + f
2v∗0 − K

)2
−

v∗0
α

− β = 0,

so that (
v∗1

−γ∇2 + K

)2
−

v∗0
α

− β = 0,

With such results in mind, we define the functional J∗3 : D∗ × B∗ → R, by
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J∗3 (v
∗
1 , v∗0)

= J∗2 (v
∗
1 , v∗0)

+
K2

2

∥∥∥∥− v∗1
−γ∇2 + K

+
−v∗1 + f
2v∗0 − K

∥∥∥∥2

0,2

+
K2

2

∥∥∥∥∥
(−v∗1 + f

2v∗0 − K

)2
−

v∗0
α

− β

∥∥∥∥∥
2

0,2

(623)

Observe that for K2 ≫ K ≫ max{1, α, β, γ, 1/α, 1/γ} we have that J∗3 is convex in (v∗1 , v∗0) on D∗ × B∗.
Let (v̂∗1 , v̂∗0) ∈ D∗ × B∗ be such that

δJ∗3 (v̂
∗
1 , v̂∗0) = 0.

Let u0 ∈ V be such that

u0 =
v̂∗1

−γ∇2 + K

Similarly as in the previous sections, we may prove that

δJ(u0) = 0,

and
J(u0) = J∗3 (v̂

∗
1 , v̂∗0).

so that from a concerning convexity,

J(u0) = J∗3 (v̂
∗
1 , v̂∗0) = inf

(v∗1 ,v∗0)∈D∗×B∗
J∗3 (v

∗
1 , v∗0).

Fix ṽ∗1 ∈ D∗. Let u ∈ V1 be such that

u =
−ṽ∗1 + f
2ṽ∗0 − K

where ṽ∗0 ∈ B∗ is such that
ṽ∗0 = α(u2 − β).
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From these results and definitions we may obtain

J(u0) = J∗3 (v̂
∗
1 , v̂∗0)

= inf
(v∗1 ,v∗0)∈D∗×B∗

J∗3 (v
∗
1 , v∗0)

≤ J∗3 (ṽ
∗
1 , ṽ∗0)

= −F∗
1 (ṽ

∗
1) + ⟨u, ṽ∗1⟩L2

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 −

K
2

∫
Ω

u2 dx

+
K2

2

∥∥∥∥∥−γ∇2u + 2ṽ∗0u − f
−γ∇2 + K

∥∥∥∥∥
2

0,2

≤ F1(u) +
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 −

K
2

∫
Ω

u2 dx

+
K2

2

∥∥∥∥∥−γ∇2u + 2ṽ∗0u − f
−γ∇2 + K

∥∥∥∥∥
2

0,2

=
γ

2

∫
Ω
∇u · ∇u dx +

α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2

+
K2

2

∥∥∥∥∥−γ∇2u + 2ṽ∗0u − f
−γ∇2 + K

∥∥∥∥∥
2

0,2

= J(u) +
K2

2

∥∥∥∥−γ∇2u + 2α(u2 − β)u − f
−γ∇2 + K

∥∥∥∥2

0,2
. (624)

Since
δJ(u0) = −γ∇2u0 + 2α(u2

0 − β)u0 − f = 0,

joining the pieces we have obtained

J(u0) = inf
u∈V1

{
J(u) +

K2

2

∥∥∥∥−γ∇2u + 2α(u2 − β)u − f
−γ∇2 + K

∥∥∥∥2

0,2

}
= J∗3 (v̂

∗
1 , v̂∗0)

= inf
(v∗1 ,v∗0)∈D∗×B∗

J∗3 (v
∗
1 , v∗0). (625)

The main objective of this section is complete.

76. A Duality Principle and a Related Convex Dual Functional Suitable for
Non-Convex Local Optimization

In this section we develop a new duality principle with a related convex dual functional.
Let Ω ⊂ R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.
Consider a functional J : V → R where

J(u) =
γ

2

∫
Ω
∇u · ∇u dx

+
α

2

∫
Ω
(u2 − β)2 dx − ⟨u, f ⟩L2 , (626)

where γ > 0, α > 0, β > 0 and f ∈ L2(Ω).
Here u ∈ V = W1,2

0 (Ω) and we denote Y = Y∗ = L2(Ω).
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Define the functionals F1 : V × Y∗ → R and F2 : V → R by

F1(u, v∗0) =
γ

2

∫
Ω
∇u · ∇u dx + ⟨u2, v∗0⟩L2

+
ε

2

∫
Ω

u2 dx − ⟨u, f ⟩L2

− 1
2α

∫
Ω
(v∗0)

2 dx − β
∫

Ω
v∗0 dx, (627)

and
F2(u) =

ε

2

∫
Ω

u2 dx,

where ε > 0 is small real constant such that ε ≪ 1.
Define also the polar functionals F∗

1 : Y∗ × Y∗ → R and F∗
2 : Y∗ → R by

F∗
1 (v

∗
1 , v∗0) = sta u∈V{⟨u, v∗1⟩L2 − F1(u, v∗0)}

=
1
2

∫
Ω

(v∗1 + f )2

−γ∇2 + 2v∗0 + ε
dx

+
1

2α

∫
Ω
(v∗0)

2 dx + β
∫

Ω
v∗0 dx, (628)

and

F∗
2 (v

∗
1) = sup

w∈L2
{⟨w, v∗1⟩L2 − F2(w)}

=
1
2ε

∫
Ω
(v∗1)

2 dx. (629)

Moreover, define
B∗ = {v∗0 ∈ Y∗ : ∥2v∗0∥ ≤ K/2},

D+ = {v∗1 ∈ Y∗ : v∗1 f ≥ 0, in Ω},

and
D∗ = {v∗1 ∈ D+ : ∥v∗1∥∞ ≤ 1}.

Assuming K1 ≫ max{γ, α, β, 1/α, K, 1} and

1
ε
≫ K1,

define J∗ : D∗ × B∗ → R by

J∗(v∗1 , v∗0) = −F∗
1 (v

∗
1 , v∗0) + F∗

2 (v
∗
1)

−K1

∥∥∥∥∥−v∗0
α

− β +

(
v∗1 + f

−γ∇2 + 2v∗0 + ε

)2
∥∥∥∥∥

2

0,2

. (630)

Clearly, we have
∂2 J∗(v∗1 , v∗0)

∂(v∗1)
2 = O(1/ε) > 0,

and
∂2 J∗(v∗1 , v∗0)

∂(v∗0)
2 = −O(K1/α2) < 0,

on D∗ × B∗.
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Let (v̂∗1 , v̂∗0) ∈ D∗ × B∗ be such that

δJ∗(v̂∗1 , v̂∗0) = 0.

Since J∗ is convex in v∗1 and concave in v∗0 on D∗ × B∗, from this and the Min-Max theorem we
may infer that

J∗(v̂∗1 , v̂∗0) = inf
v∗1∈D∗

{
sup

v∗0∈B∗
J∗(v∗1 , v∗0)

}
.

Let u0 ∈ V be such that

u0 =
v̂∗1
ε

.

Similarly as in previous sections we may obtain

δJ(u0) = 0,

and
J(u0) = J∗(v̂∗1 , v̂∗0).

Joining the pieces, we have got

J(u0) = J∗(v̂∗1 , v̂∗0)

= inf
v∗1∈D∗

{
sup

v∗0∈B∗
J∗(v∗1 , v∗0)

}
. (631)

Remark 35. Defining J∗1 : D∗ ∈ R by

J∗1 (v
∗
1) = sup

v∗0∈B∗
J∗(v∗1 , v∗0),

we have that J∗1 is convex in D∗ as a supremum of a family of convex functions in v∗1 .
In such case, we have

J(u0) = J∗(v̂∗1 , v̂∗0)

= inf
v∗1∈D∗

{
sup

v∗0∈B∗
J∗(v∗1 , v∗0)

}
= inf

v∗1∈D∗
J∗1 (v

∗
1)

= J∗1 (v̂
∗
1). (632)

The objective of this section is complete.

77. Conclusions
In the first part of this article we have developed a relaxation proposal and duality principles

suitable for a large class of models in physics and engineering.
In a second part we develop duality principles for the quasi-convex envelop of some vectorial

models in the calculus of variations.
We highlight such dual variational formulations established are in general convex (in fact concave).
Finally, in the last sections, we develop mathematical models for some types of chemical reactions,

including the hydrogen nuclear fusion and the water hydrolysis. Among such results, we highlight our
proposal of modeling the Ginzburg-Landau theory in super-conductivity as a two-phase eigenvalue
approach.
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