

Green Building and Policy Innovation in Low-Income Housing Developments (LIHTC)

Armin Judd Yeganeh^a*, Andrew P McCoy^a, Georg Reichard^a, Todd Schenk^b, Steve Hankey^b

^a Myers-Lawson School of Construction, Virginia Tech, USA

^b School of Public and International Affairs, Virginia Tech, USA

* Corresponding author: Armin Judd Yeganeh, 1345 Perry St, Blacksburg, VA 24060, USA

Email: yeganeh@vt.edu

Word count: ~5700 words (Excluding the abstract, highlights, figures, tables, captions, references) + (5) tables + (1) figure + (1) appendix table

Running title: *Green building in low-income housing developments 0(0)*

Acknowledgments: The authors wish to acknowledge the role of Gobal Green in enabling this research, and Huyen Le, currently an assistant professor at Ohio State University, for sharing her expertise.

Competing financial interest: The authors declare they have no competing financial interest.

Green Building and Policy Innovation in Low-Income Housing Developments (LIHTC)

Abstract

The present article analyzes the integration of green building policy and practice with the largest low-income housing production program in the US and the innovativeness of its housing agencies. Drawing on policy innovation literature, panel data and regression analysis are employed to quantify associations between state-level characteristics and the adoption of green building criteria into the Low-Income Housing Tax Credit (LIHTC) program. Results show that, on average, housing agencies have increasingly adopted green building criteria, and most have identified co-benefits from energy-efficient buildings and smart growth. Despite overall progress, the rate of adoption of green building criteria has decreased, few states have comprehensive criteria, and many have dropped important criteria, such as on-site renewable energy generation. Results are consistent with hypotheses derived from the literature and suggest the integration of green building with LIHTC developments is significantly associated with government motivation, financial resources, and exogenous characteristics that affect the demand for green building. Future research should explore organization-level factors that affect environmental policy innovation. It is recommended that LIHTC housing agencies require compliance with green building rating systems and periodically reconfigure green building criteria based on planned evolutionary change, data-driven strategies, and life-cycle analyses towards zero net energy consumption.

1 **1. Introduction:**

2 While renewable energy is rapidly growing in worldwide adoption, approximately 89% of the
3 energy consumed in the US in 2019 still came from non-renewable sources like coal, gas, and
4 nuclear power [1]. Of that energy produced, the residential sector accounted for about 21% of
5 consumption. Simultaneously, almost half of all renter households are cost-burdened, often due to
6 poverty and, in large metro areas, rapidly rising housing prices [2,3]. The residential sector in the
7 US is clearly in need of comprehensive policymaking reforms that concurrently address
8 affordability and environmental sustainability, reducing uncertainties around the national
9 economy, energy security, declining natural resources, and climate change.

10 In the spirit of sustainability, Environmental Policy Integration (EPI) has been established as
11 a key strategy to increase organizational effectiveness in policy coordination and achieve equal
12 weighting of sectorial and environmental policies [4,5]. Since the 1980s, many state governments
13 in the US have taken environmental and climate leadership roles following the federal
14 government's dwindling environmental preeminence. For instance, many state governments have
15 integrated green building (i.e., building with higher than basic standards based on a holistic attitude
16 toward the planning, design, construction, operation, and recycling or renewal of buildings) into
17 low-income housing programs to achieve co-benefits like reducing the life-cycle cost of
18 homeownership, increasing energy and water efficiency, increasing indoor environmental quality,
19 providing a healthy, safe, and productive built environment, and furthering environmental
20 stewardship [6,7]. However, the lack of involvement on the part of federal and some state
21 governments combined with obstacles at the local level has created challenges in the ultimate
22 achievement of environmental targets [8].

23 In 1986, the US Congress enacted the Low-Income Housing Tax Credit (LIHTC) program,
24 which provides state and local LIHTC-allocating agencies with about \$8 billion per year to issue
25 tax credits for the acquisition, rehabilitation, or new construction of rental housing for low-income
26 households [9]. With more than 2.4 million active units [10], LIHTC is the principal federal
27 affordable housing production program, which incentivizes the production of a significant portion
28 of below-market-rate multifamily rental units for extremely low-income to low-income
29 households based on an indirect federal subsidy. Residents that qualify to live in a LIHTC unit
30 receive income and quality benefits depending on their certified annual income and the maximum
31 rent set by the project [11]. McClure, 2019, describes the basics of the LIHTC program [12].

32 Green building is increasingly considered important in LIHTC Qualified Allocation Plans
33 (QAPs), which outline the criteria based on which state housing agencies allocate financial
34 incentives in the form of tax credits to multi-family residential developers. The basic federal
35 criteria included in QAPs do not mandate green building standards, but additional criteria that
36 support state housing policy goals may include specific energy-efficiency or other requirements.
37 Previous studies show QAPs have significant impacts on the location and quality of LIHTC
38 developments [13]. As a result, QAPs could either promote or inhibit the application of innovative
39 designs and technologies in low-income developments. Existing literature on the LIHTC program
40 suggests that, among other co-benefits, green LIHTC properties have generated considerable
41 financial savings for the occupants [14]. Despite its significance as an opportunity to drive
42 innovation in housing, green building in LIHTC has not received much attention in the literature.

43 The rationale for undertaking this study is twofold. First, there is no systematic study exploring
44 the adoption of green building criteria in LIHTC, and the literature in this area is both nascent and
45 ad-hoc. Second, many states have sometimes reduced or abandoned the adoption of green building

46 criteria despite revealed public health, economic development, and local environmental
47 improvement co-benefits. Drawing from these reasons, this article explores the following
48 questions about the LIHTC program: What components of green building are promoted in state
49 QAPs? Are all states contributing equally to environmental sustainability through the LIHTC
50 program? Why are some LIHTC-allocating agencies more innovative than others in adopting and
51 maintaining green building criteria? The next section sets forth a concise review of the literature
52 on green building and policy innovation. Following descriptive analyses, an empirical framework
53 is then introduced to investigate the extent to which interstate variations in the adoption of green
54 building criteria are associated with certain economic, environmental, political, and societal state
55 characteristics. The article concludes with a discussion on research and policy implications.

56 **2. Literature Review:**

57 *2.1. The need for green LIHTC developments*

58 Sustainability thinking has long encouraged integrated, interdisciplinary approaches and
59 policies that holistically address multiple contemporary problems [15]. Sustainable development
60 requires a balanced integration of economic, environmental, and social goals with traditionally
61 siloed policy sectors, such as low-income housing, as a goal of governance [16,17]. Policy
62 integration is deemed necessary because some policy sectors – like environment and climate –
63 alone are not capable of achieving all of the objectives and thus must work with other sectors [18].
64 Despite the importance of sustainability to the future of the planet, there are inherent economic,
65 environmental, and social justice conflicts involved in reaching sustainable development, and
66 conflict resolution is not easy [19,20].

67 In light of rapid urbanization and the need for improving the living conditions of low-income
68 households, policy integration has been challenging to implement in the federal political system

69 [5,21]. Historically, low-income households and racial minorities in the US have lived in proximity
70 to large amounts of pollution and poor environmental conditions and experienced disproportionate
71 costs of energy, transport, healthcare, and safety [22–24]. Even access to green space, recreation,
72 and civic services has been dependent upon income and race and become an environmental justice
73 issue [20]. Affordable housing is often defined solely based on house price to household income
74 ratio, thus, neglecting transportation, healthcare, education, and other trade-offs low-income
75 households should make to survive [25]. Siting and building LIHTC developments under green
76 building standards have the potential to reduce operating costs, promote resident health, and
77 mitigate negative environmental impacts [26].

78 At the neighborhood level, LIHTC properties built to green building standards can help further
79 revitalize distressed neighborhoods (i.e., the place-based approach) or improve the quality of life
80 of low-income households by moving them to high-opportunity neighborhoods (i.e., the people-
81 based approach) [27]. An increase in the diffusion and clustering of green buildings is associated
82 with positive spillover effects on neighboring buildings, thus reducing the risk of investment in
83 LIHTC developments, improving neighborhood characteristics, and encouraging further
84 sustainability [28]. As social justice advocates increasingly demand the siting of low-income
85 housing beyond central cities, improved building quality could make developments more
86 acceptable to the host suburban communities. Recent studies suggest that LIHTC units are
87 increasingly located in suburban areas with poverty rates of less than 10 percent [29].

88 At the building level, there is empirical evidence that green building codes and standards bring
89 a range of co-benefits, such as energy and water efficiency, improved health, safety, productivity,
90 and indoor environmental quality, that significantly reduce the total cost of living throughout the
91 building life-cycle [30,31]. Life-cycle thinking is particularly consistent with the finance of LIHTC

92 developments, and empirical evidence suggests green LIHTC units can be more cost-effective than
93 non-green units for stakeholders and the society as a whole in the long term [32,33].

94 Despite large benefits, affordable housing and green building have positive externalities,
95 meaning multiple factors can lead to underinvestment in these goods in the free market – e.g., split
96 incentives, information asymmetries, risk aversion, skill shortages, and analytical failures – thus
97 government intervention is required for efficient distribution [34–36]. Using hedonic modeling of
98 construction costs, rents, and occupancy rates, previous research on the economic performance of
99 green buildings suggests that building to green standards can increase upfront costs but generate
100 sufficient savings that benefit the owners within an acceptable payback period [37–39]. Although
101 benefits of green building for the society as a whole are often larger than the average cost premium
102 to obtain green building certifications, residential developers demand significant price premiums
103 that are likely to affect affordability [36]. For instance, researchers have often reported up to 10%
104 sales price premiums associated with single-family units with green building certifications in US
105 cities [40,41]. Therefore, LIHTC legislation demanding sustainable construction features like on-
106 site renewable energy generation should include considerations such as higher levels of LIHTC
107 subsidy or other financing mechanisms to preserve affordability. Empirical studies suggest that
108 financing initiatives have as high as 100% impact on the adoption of green building technologies
109 in the residential sector [42]. Therefore, short-term and long-term effects of green building on
110 affordability require careful assessment and several methods to examine such trade-offs are
111 introduced in the literature [25,43]. In practice, motivated LIHTC-allocating agencies have
112 prioritized developers that go beyond the minimum set by building codes to conform to internal or
113 third-party green building standards [44]. For instance, nearly 100% of recently approved LIHTC
114 projects in Virginia have pursued EarthCraft, a local green building rating system.

115 *2.2. Models of policy innovation*

116 There is a rich body of scholarship describing mechanisms involved in the adoption and
117 diffusion of innovative state policies as well as complementary structures and characteristics,
118 which can help describe the development of innovative policies like green building in the context
119 of the LIHTC program [45]. State policy innovation is often explained as the acquisition of policies
120 or programs from others that are new to the state adopting them but are not necessarily altogether
121 new ideas. Mohr (1969) broadly defines the policy innovation mechanism as “the function of an
122 interaction among the motivation to innovate, the strength of obstacles against innovation, and the
123 availability of resources for overcoming such obstacles” [46]. Policy innovation researchers argue
124 that as a result of having access to resources and information, public officials should take the
125 initiative to recognize and deploy the utility of innovative policies and programs, whether or not
126 such utilities are expressed wants of the ordinary citizens. This moral standpoint, which describes
127 the significance of policy innovation literature, reflects the idea of market failure in economics –
128 defined as the situation in which goods and services are inefficiently distributed in the free market.

129 Empirical models developed in the state policy innovation literature can help explain drivers
130 of subnational environmental initiatives, including green building, sustainable development, and
131 climate change [47]. Studies of policy innovation have explored innovation-driving forces to
132 explain why some state or local governments adopt policies or programs while others do not. Major
133 classic models of policy innovation that describe causal processes involved in the adoption of
134 innovative policies include the internal determinants model, the regional diffusion model, and the
135 national interaction model. The first model identifies the internal characteristics of states (e.g.,
136 population, income, political orientation) as driving forces of innovation [48]. The second model
137 depicts innovation clusters in which leading-edge states regularly function as regional trendsetters

138 spreading new policies to follower states that are searching for solutions to potentially
139 controversial or complicated issues. The spread of innovation might take place through imitation,
140 emulation, competition, or other mechanisms [49,50]. The third model attributes policy innovation
141 to free interactions between officials from leading-edge and follower states within a national
142 network of communications [51].

143 These classic models have inspired numerous empirical studies on policymaking. Nonetheless,
144 more recent studies have started to criticize presumptions of single-explanation models,
145 contending that such models do not have the required breadth to independently identify the causes
146 of policy innovation. Some researchers, for instance, argue that government officials' interactions
147 are complex and more selective than what the national interaction model suggests, and causal
148 factors could be understood only if new studies integrate internal and regional diffusion
149 determinants into a single discrete event history analysis [52,53]. Contending the diffusion of
150 innovation does not necessarily depend on geographical proximity, researchers criticize
151 geographic proximity models for failing to account for the role of communication networks,
152 overlapping media, and common attributes of proximate states [45]. Some other researchers
153 question the significance of early adoption – the focal point of the classic policy innovation
154 scholarship - arguing that other considerations like the level of dedication and policy re-invention,
155 could place late adopters in a superior position in solving local problems compared to earlier
156 adopters [54]. There are also studies referring to specification issues and flaws in history analysis
157 models regularly employed in empirical studies [53,55]. Highlighting the role of historical
158 evolution, process innovation, and institutions, more recent theoretical works on innovation
159 follows more comprehensive and interdisciplinary approaches to innovation, thus augmenting

160 earlier diffusion theories in policy studies [56–58]. Despite recent critiques, the early models of
 161 innovation remain essential to the literature on environmental policy innovation.

162 Policy innovation literature does not necessarily expand on complexities involved in decision-
 163 making by individuals in organizations, i.e., how decision-making happens within organizations
 164 [59]. Organizational economists and theorists help fill this gap by explaining various
 165 characteristics of organizations (e.g., birth, functioning, dynamics, progress, and impacts) and
 166 variables underlying decision-making (e.g., organizational culture, network structures, framing,
 167 and incentives) [60]. Of particular relevance to understanding drivers of policy innovation at the
 168 level of organizations are the notions of bounded rationality, optimization versus heuristics (i.e.,
 169 finding the best solution to the problem versus relying on intuition, habit, or rules of thumb when
 170 resources are limited) and human systems properties (e.g., limited certainty, limited predictability,
 171 indeterminate causality, and evolutionary change) [61–65]. The next section describes the
 172 development of hypotheses of an empirical model informed by a set of internal and regional
 173 correlates to explore policy innovation in LIHTC.

174 **3. Methodology:**

175 *3.1. Development of hypotheses*

176 This article's hypotheses examine the impact of internal characteristics of states and the
 177 horizontal diffusion of policy from neighboring states in the regions on the innovativeness of
 178 LIHTC-allocating agencies. The adapted model reflects Mohr's conceptualization of policy
 179 innovation as the sum of motivation to innovate, the strength of obstacles against innovation, and
 180 the availability of resources for overcoming the obstacles. Motivation has two different dictionary
 181 definitions: a) enthusiasm for doing something, and b) the need or reason for doing something [66].
 182 Mohr argues that activism and ideology are both important indicators of the motivation of

183 organizations to innovate. According to Mohr, activism is represented by “the ... officer’s
184 perception of the extent to which the role of ... officer requires interaction with others ... to obtain
185 ideas, support, approval, and resources for departmental programs.” and ideology is represented
186 by “the ... officer’s opinion regarding the scope of services that should properly be offered by the
187 local public ... agency in non-traditional ... program areas.” [46]. Resources, according to Mohr,
188 are “not only money and skills to overcome obstacles of expense, but also resources such as a
189 position of authority, a charismatic effect, the support of prestigious individuals and self-
190 confidence to overcome obstacles presented in terms of human forces.” [46] Therefore, resources
191 and obstacles that impact innovation can take a variety of forms, e.g., economic, environmental,
192 political, and societal.

193 *Hypothesis (1): There is a positive correlation between the availability of economic resources*
194 *and the innovativeness of LIHTC-allocating agencies.* The successful adoption, maintenance, and
195 development of green building criteria in the long term require financial resources to cover direct
196 and indirect program evaluation and implementation expenses, and states with high rates of debt
197 are less likely to take such initiatives. Obstacles like dependency on traditional construction
198 methods and resistance to change should be surmounted. Where carbon-intensive industries
199 constitute a substantial portion of the state economy, opposition group demand (e.g., lobbying from
200 manufacturing and extractive industries) and general pro-industry sentiments may constrain policy
201 innovation. Therefore, the authors adopt GDP per capita and the rate of state sales tax to represent
202 economic resources and intergovernmental revenue and value-added by manufacturing to
203 represent economic obstacles affecting innovativeness [47].

204 *Hypothesis (2): There is a positive correlation between the availability of environmental*
205 *resources and the innovativeness of LIHTC-allocating agencies.* In geographical areas where the

206 abundance of natural resources facilitate the supply of renewable energy (e.g., wind, solar,
207 geothermal, or biomass) or the high number of degree days increase residential energy demand,
208 stringent energy-efficiency requirements result in more savings in the long term. Urbanizing
209 economies with a high concentration of population often have a high demand for energy use, high
210 concentration of urban pollution, and high density to advance efficient transit services, mixed land-
211 use, smart growth, and transit-oriented development, which all align well with green building
212 requirements [23,67]. On the contrary, in areas where energy generation has historically relied on
213 the presence of ample fossil fuel resources, there could be obstacles to promoting clean energy
214 infrastructure. Also, policymakers are likely to divert resources to immediate- rather than long-
215 term environmental policy solutions in states that experience frequent extreme climatic events and
216 natural disasters. The authors adopt degree days of heating and population density to represent
217 environmental resources and disaster frequency and fossil fuel reliance to represent obstacles
218 affecting innovativeness.

219 *Hypothesis (3): There is a positive correlation between the availability of political resources*
220 *and the innovativeness of LIHTC-allocating agencies.* The presence of environmental attitudes and
221 ideologies among state policymakers could increase motivations to promote green building in
222 LIHTC developments [68]. Besides, supportive environmental and/or climate standards, energy
223 codes, and advanced building regulations and incentives can promote innovation in LIHTC or, at
224 least, increase the baseline LIHTC development requirements [69]. Policy innovation in LIHTC is
225 likely to accelerate in regional policy innovation clusters where state agencies are motivated to
226 remain competitive with their neighbors and receive resources in the form of information, training,
227 and expertise [70,71]. The authors adopt the state government ideology index to represent
228 motivation for innovation, green building in neighboring states to represent regional effects, and

229 the frequency of energy and building incentives and regulations to represent policy resources
 230 affecting innovativeness.

231 *Hypothesis (4): There is a positive correlation between the availability of societal resources*
 232 *and the innovativeness of LIHTC-allocating agencies.* Since the supply of LIHTC units results
 233 from a synthesis of the public sector and private sector actions, market demand – and therefore
 234 policymakers' resources – for improved green practices is likely to grow in urbanized states where
 235 highly educated citizens with high skills and environmentalist awareness and attitudes reside [72].
 236 Those communities are also more likely to be willing to pay higher upfront costs of building to
 237 green codes compared to less educated communities. The authors adopt the percentage of the
 238 population living in urban areas, workers holding post-professional degrees in the workforce, and
 239 the age of housing stock to represent societal resources affecting innovativeness.

240 *3.2. Dependent and independent variables*

241 Global Green is an organization that “works to create green cities, neighborhoods, affordable
 242 housing, and schools to protect environmental health, improve livability, and support our planet's
 243 natural systems; to address climate change and create resilient and sustainable communities” [73].
 244 Since 2006, Global Green has published reports and national performance rankings of state LIHTC
 245 QAPs on an annual basis (except for 2011) and invited all state housing agencies to review the
 246 reports and include any comments or further information before the final scores are released ([Table](#)
 247 [A1](#)). The organization assigns yearly scores to all QAPs based on a 45-point scale composed of
 248 the four components of energy efficiency, smart growth, resource conservation, and health
 249 protection ([Table 1](#)). The final QAP score represents the total number of green building points that
 250 states use to help prioritize projects to allocate tax credits.

251

252

Table 1. QAP scoring structure and scores achieved by 50 states during the 7-year period (2010, 2012-2017)

Component	Mean	S.D.	Min	Max	Component	Mean	S.D.	Min	Max
<i>Energy Efficiency</i>					<i>Resource Conservation</i>				
Energy Codes	1.59	0.79	0	2	Construction & Demolition Recycling	0.47	0.50	0	1
Energy Star Homes	1.77	1.48	0	3	Maintenance Free Standard	0.74	0.44	0	1
Energy Star Appliances	1.77	0.61	0	2	Preserve Existing Flora	0.46	0.50	0	1
HVAC Performance	1.79	0.56	0	2	Recycled Content Materials	0.45	0.50	0	1
Insulation Standards	0.86	0.34	0	1	Renewable Materials	0.32	0.47	0	1
Photovoltaics (PV)	0.47	0.50	0	1	Reused Materials	0.39	0.49	0	1
Specified Efficient Products	0.95	0.22	0	1	Stormwater Protection	0.57	0.50	0	1
Total Energy Efficiency	9.20	2.61	0	12	Water Conservation	3.62	1.73	0	5
					Total Resource Conservation	7.01	3.55	0	12
<i>Smart Growth</i>					<i>Health Protection</i>				
Adaptive Reuse	0.85	0.36	0	1	Carpet Quality	0.59	0.49	0	1
Brownfields Redevelopment	0.32	0.47	0	1	Environmental Assessment	0.82	0.38	0	1
Floodplain Preservation	0.69	0.46	0	1	Formaldehyde Free	0.52	0.50	0	1
Habitat Preservation	0.46	0.50	0	1	Hazard Abatement	2.30	1.79	0	5
Proximity to Public Transit	0.85	0.35	0	1	Hazard Proximity	0.66	0.47	0	1
Proximity to Services	0.87	0.33	0	1	Paint Quality	0.65	0.48	0	1
Rehabilitate Existing Housing	1.00	0.05	0	1	Ventilation Quality	0.78	0.42	0	1
Revitalization Plans	0.98	0.14	0	1	Total Health Protection	6.31	2.94	0	11
Urban Infill	0.56	0.50	0	1					
Wetland Preservation	0.62	0.49	0	1					
Total Smart Growth	7.12	2.08	1	10					

253 The main dependent variable to measure policy innovation among LIHTC-allocating agencies
 254 is QAP score, which is the sum of green building criteria. Besides, the authors develop models to
 255 explain scores in each of the four green building components. **Table 2** describes the independent
 256 variables of interest as well as operationalization methods and the sources of the applied database.
 257 The authors chose these variables based on their relevance to the hypotheses, a systematic review
 258 of the literature on policy adoption [8], and the availability of historic data for the seven-year study
 259 period. Since Global Green did not collect QAP data in 2011, the analysis covers the year 2010
 260 plus the 2012-16 timeframe. The regression models include the control variables of income,
 261 population, and time.

262

Table 2. Description of independent variables

Constructs and variables	Type ¹	Definition	Source
<i>Economic characteristics</i>			
GDP per capita	(r)	GDP per capita in 1,000 USD in 2017:Q4 dollars	US BEA
Intergovernmental revenue	(o)	Ratio of revenue from federal government to general revenue in percentage	US Census ACS-1
Manufacturing value added	(o)	Percentage of state GDP that is manufacturing GDP	US BEA
Sales tax	(r)	State general sales tax in percentage	Tax Policy Center
Unemployment rate	(r)	Percentage of unemployed population in the workforce	US Census
<i>Environmental characteristics</i>			
Degree days of heating	(r)	Heating degree days weighted by population in 100 degrees	US NOAA
Density	(r)	Population per square mile state area	US Census ACS-1
Disaster frequency	(o)	Number of federal disaster declarations by state	FEMA
Fossil fuel reliance	(o)	Electricity generated from natural gas in MCF per capita	US DOE
<i>Political characteristics</i>			
Energy code status	(r)	Status of state energy code based on 1-8 ordinal score	US DOE
Government ideology ⁴	(m)	State government ideology index. Higher scores are more liberal.	R. Fording
Neighbors' score ²	(r)	The average QAP score for green building in neighboring states	Global Green
RE incentive policy ³	(r)	Number of state-wide renewable energy incentives	DSIRE
RE portfolio standard	(r)	Presence of Renewable Energy Portfolio Standard (RPS)	DSIRE
RE regulatory policy	(r)	Number of state-wide renewable energy regulatory policies	DSIRE
<i>Societal characteristics</i>			
Higher education	(r)	Percentage of population holding master's or Ph.D. degrees in the workforce	US Census ACS-1
Housing stock built year	(r)	Median year house was built	US Census ACS-1
Urbanization	(r)	Percentage of urban population	US Census ACS-1
<i>Control variables</i>			
Median household income		Median household income in 1,000 USD	US Census ACS-1
Total population		Total population in 1M persons	US Census ACS-1
Time		Year	

263

Notes:

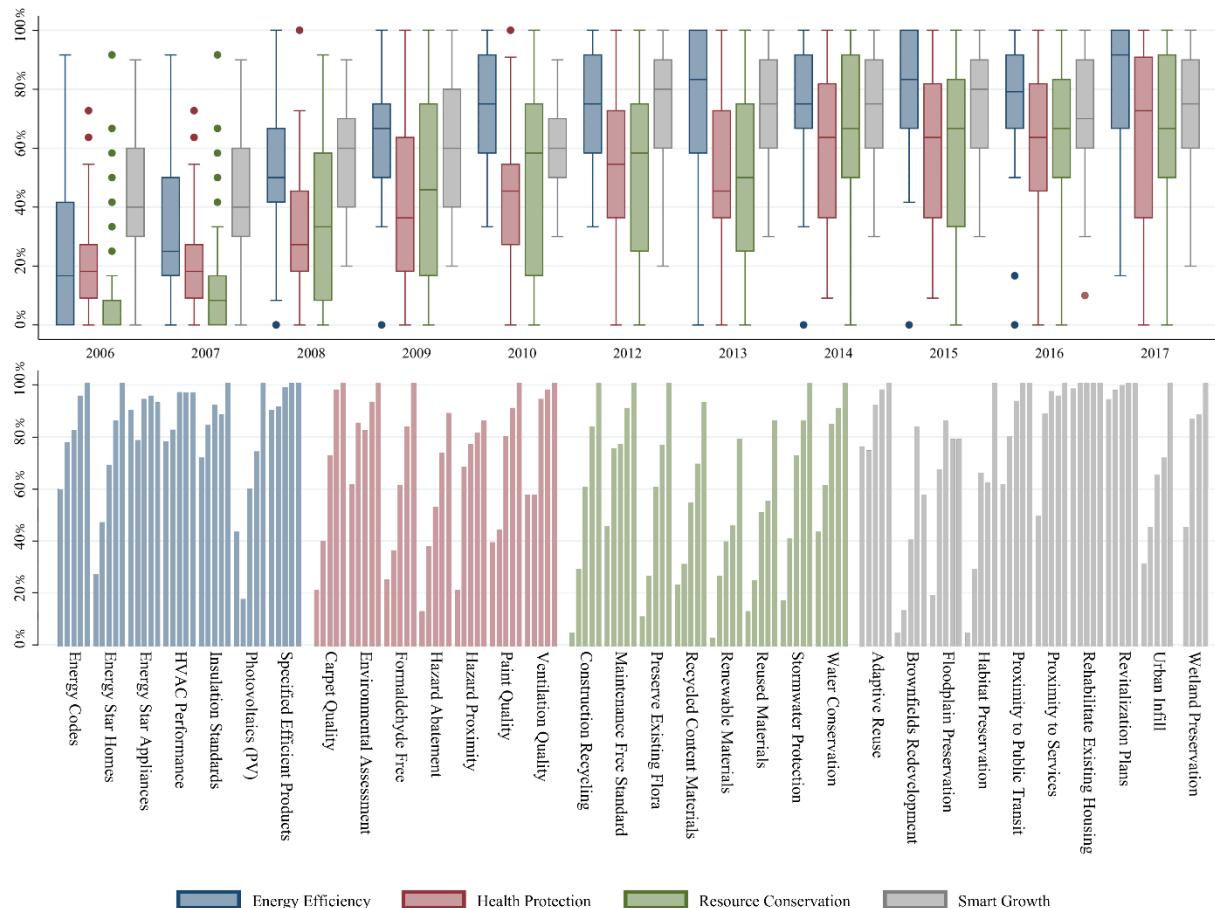
- 1- Motivations (m), obstacles (o), resources (r). For example, gross domestic product is titled as a resource because when its quantity is larger, it implies that more resources are available for policy innovation. Intergovernmental revenue is titled as an obstacle because when its quantity is larger, it implies that the government is largely in debt and faces obstacles.
- 2- Policy diffusion in a region is often explained by the public choice / economic competition (m) theory or the social learning theory (r) [49].
- 3- For a concise review and synthesis of the literature on regulatory policies and energy incentives see Ref. [68]
- 4- Compared to other frequently used measures suitable for cross-sectional single-state studies (e.g., the share of liberal candidate vote in an election) the citizen and government ideology data provided by Robert Fording capture temporal and geographical variations [74].

264

3.3. Statistical analysis

265 The authors use multivariate regression analysis with year-specific fixed effects to describe the
 266 correlates of policy innovation, assuming that ordinary least-squares regression analysis is an
 267 admissible estimate. Based on the maximum number of independent variables (13) included in the
 268 current analysis, a priori power analysis using G*Power 3.1.9.4 suggests that a minimum sample
 269 size of 218 is required to detect the effect size (f^2) of 0.05 (where 0.15 and 0.02 are f^2 conventions
 270 for medium and small effect sizes) with a statistical power of 0.95 at an alpha level of 0.05 [75].

271 The current analysis – performed in Stata 14.0 of StataCorp LLC – is based on data from all the
272 50 US states in 7 years. Therefore, the primary sample size is 350, except in the models for which
273 data for the states of Alaska and Hawaii are not applicable, where the sample size is reduced to
274 336. A Shapiro–Wilk test and standardized normal probability plot is applied to inspect the normal
275 distribution of QAP score and residuals, and Breusch-Pagan / Cook-Weisberg test is used to ensure
276 that heteroskedasticity levels are not significant. To prioritize the independent variables for
277 inclusion in the final regression analysis and to avoid overfitting, the authors rely on the magnitude
278 of Pearson correlation coefficient and statistical significance. To prevent multicollinearity, the use
279 of highly correlated variables in regression models is avoided based on the assumption that the
280 presence of zero-order Pearson coefficients above 0.80 (e.g., between education and income)
281 denotes multicollinearity [76]. The authors use robust standard errors to reduce heteroskedasticity
282 and use Variance Inflation Factors (VIFs) to control multicollinearity in regression models. US
283 Census estimates are at the state level; thus, error margins are negligible when assessed against the
284 coefficient of variation.


285 **4. Results:**

286 *4.1. Description of green building criteria in QAPs*

287 Figure 1 (top) presents a box plot of QAP scores achieved by the green building component
288 since the first year in which data collection started. Corresponding to Table 1, the Y-axes represent
289 the scores achieved as the percentage of the maximum score available for each component (top)
290 or construction option (bottom). The level of initiative state housing agencies take toward green
291 building in LIHTC varies considerably, particularly in resource conservation and health protection.
292 The energy efficiency component has the highest total score, followed by smart growth, resource
293 conservation, and health protection. There is also a notable upward trend in the median scores of

294 all four categories. Table A1 ranks the state housing agencies based on mean QAP scores achieved
 295 from 2006-17 and categorizes them into role model, strongly committed, committed, moderately
 296 committed, and weakly committed (i.e., least innovative) housing agencies [77]. The role model
 297 states, namely, Massachusetts and Connecticut, achieved mean scores above two standard errors
 298 from the mean of all states. Strongly committed states achieved scores between one and two
 299 standard errors above the mean and so on. Figure 1 (bottom) compares mean scores role model,
 300 strongly committed, committed, moderately committed, and weakly committed housing agencies
 301 achieved within each component as the percentage of the total score available.

302 **Figure 1.** Top: box plot of QAP scores achieved by component. Bottom: mean score achieved by the role model, strongly committed, committed,
 303 moderately committed, and weakly committed state housing agencies within each component.

304 *4.2. Roles of motivation, resources, and obstacles in innovation*

305 Table 3 introduces the summary of the dataset. The primary dependent variable, QAP score, is
306 reported in the original scoring format, but the secondary dependent variables (component scores)
307 are transformed to the percentage of the maximum score available for each component for
308 consistency. The right-most column contains the uncontrolled Pearson correlation coefficients,
309 suggesting that most dependent variables have statistically significant correlations with QAP
310 score. Among the economic correlates, there is a moderate (± 0.30 and ± 0.49) correlation between
311 GDP per capita (i.e., the per capita total value of produced goods and provided services in a state
312 in a year) and adoption of green building criteria ($R=0.317$). Among the environmental correlates,
313 QAP score is moderately correlated with degree days and population density. Also, QAP score is
314 significantly correlated with all the political and societal independent variables.

315

Table 3. Descriptive statistics (n = 350)

	Type	Mean	SD	Minimum	Maximum	Correlation w/ QAP
<i>Green building</i>						
QAP Score	Contin.	29.65	9.18	5.00	45.00	
Energy Efficiency	Contin.	76.64	21.75	0	100	
Health Protection	Contin.	57.35	26.71	0	100	
Resource Conservation	Contin.	58.43	29.61	0	100	
Smart Growth	Contin.	71.23	20.77	10	100	
<i>Economic characteristics</i>						
GDP per capita	Contin.	53.04	10.60	32.49	82.49	0.317***
Intergovernmental revenue	Percent.	33.56	5.71	17.33	50.69	-0.191***
Manufacturing value added	Percent.	11.96	5.65	1.83	29.89	-0.115
Sales tax	Percent.	5.07	1.98	0.00	8.25	0.156***
Unemployment rate	Percent.	7.04	2.31	2.60	15.10	-0.141***
<i>Environmental characteristics</i>						
Degree days of heating (n = 336)	Contin.	49.56	19.97	3.41	98.45	0.302***
Density	Contin.	167.76	205.38	1.07	1032.40	0.412***
Disaster frequency	Contin.	2.00	2.82	0.00	31.00	-0.034
Fossil fuel reliance	Contin.	11.36	11.96	0.01	81.13	-0.100*
<i>Political characteristics</i>						
Energy code status	Contin.	4.44	2.20	1.00	8.00	0.281***
Government ideology	Contin.	42.40	17.53	17.51	73.62	0.355***
Neighbor's score (n = 336)	Contin.	34.57	6.08	17.00	47.33	0.419***
RE incentive policy	Contin.	5.12	4.23	0	24	0.256***
RE portfolio standard	Binary	0.55	0.50	0	1	0.374***
RE regulatory policy	Contin.	4.47	1.89	0	9	0.321***
<i>Societal characteristics</i>						
Higher education	Percent.	9.05	2.26	5.16	16.41	0.476***
Housing stock built year	Contin.	1976.43	8.23	1955	1994	-0.337***
Urbanization	Percent.	73.58	14.44	38.66	94.95	0.178***
<i>Control variables</i>						
Median household income	Contin.	54.58	9.50	36.85	80.78	0.351***
Total population	Contin.	6.35	7.07	0.56	39.54	0.035
Year	Binary	0.1667	0.373	0	1	0.210***

*** p < 0.01 ** p < 0.05 * p < 0.10

316 **Table 4** presents regression analyses based on the block-wise forward selection method
 317 controlling for state population, household income, and time fixed effects. The authors develop
 318 four partial- and one full regression models for the primary dependent variable. These models
 319 describe the sample after 8 data points are removed as outliers after a visual inspection of the initial
 320 regression's residuals. These data points represent states and years in which the greatest radical
 321 changes occur to QAPs (including GA 2010, NJ 2013, OH 2013, TX 2014, TX 2015, TX 2016,
 322 WI 2016, and WI 2017). Robust standard errors ("vce (robust)" in Stata) are utilized to make the
 323 inferences valid despite minor levels of heteroskedasticity. Only independent variables that are

324 statistically significant and describe greater amounts of variance in the dependent variable are
325 included in the full model. All independent variables included in the full model are statistically
326 significant (at $p < 0.05$) and corroborate Mohr's motivation-resource-obstacle hypothesis. The
327 effect sizes (i.e., partial degrees of associations) of independent variables in all models are
328 indicated by the Omega squared statistic ("estat esize, omega" in Stata) in the two right-most
329 columns in [Table 4](#). As expected, the availability of economic resources – represented by sales tax
330 revenue ($\omega^2 = 5.4\%$) and GDP per capita ($\omega^2 = 3.5\%$) – is significantly correlated with the adoption
331 of green building criteria in LIHTC and, to some extent, explain the total variability in QAP score.
332 Each one percent increase in state sales tax (resource) is associated with 0.85 unit (1.89%) increase
333 in QAP score. Environmental characteristics that increase the utility of improved building
334 practices, such as heating degree days ($\omega^2 = 4.3\%$) and density ($\omega^2 = 3.5\%$), appear to create
335 significant resources for policy innovation in LIHTC. Each one hundred degrees increase in
336 heating degree days is associated with 0.12 unit (0.27%) increase in QAP score. There is also
337 significant evidence of the impact of existing legislation, such as renewable portfolio standards
338 ($\omega^2 = 8.1\%$) and horizontal diffusion resulting from communication with innovative neighbors (ω^2
339 $= 3.0\%$). Government ideology (i.e., motivation) explains a small percentage ($\omega^2 = 1.9\%$) of the
340 total variability of QAP score among all the variables in the full model. Lastly, the age of housing
341 stock is inversely related to QAP score and explains 1.8 percent of the total variability. The effect
342 sizes of individual dependent variables are small, but together, the full model (Model 5) explains
343 54.6 percent of the total variability of green building criteria in QAPs.

Table 4. OLS regression and effect size analysis of QAP score

	Model 1		Model 2		Model 3		Model 4		Model 5		
	Economy		Environment		Policy		Society		Full model		
	Coef.	R.S.E.	Coef.	R.S.E.	Coef.	R.S.E.	Coef.	R.S.E.	Coef.	R.S.E.	
<i>Economic characteristics</i>											
GDP per capita	0.209***	0.074							0.200***	0.048	0.035
Int.gov. revenue	0.088	0.100									
Manufacturing value added	0.046	0.066									
Sales tax	1.205***	0.246							0.853***	0.165	0.054
Unemployment rate	0.289	0.306									
<i>Environmental characteristics</i>											
Degree days of heating			0.144***	0.023					0.119***	0.028	0.043
Density			0.014***	0.002					0.011***	0.003	0.035
Disaster frequency			-0.052	0.142							
Fossil fuel reliance			0.001	0.027							
<i>Political characteristics</i>											
Government ideology									0.066**	0.027	0.019
Energy code status					0.155	0.201					
Neighbor's score					0.327***	0.067			0.220***	0.072	0.030
RE incentive policy					-0.057	0.315					
RE portfolio standard					4.566***	1.004			4.320***	0.873	0.081
RE regulatory policy					0.004	0.249					
<i>Societal characteristics</i>											
Higher education							1.342***	0.333			
Housing stock built year							-0.257***	0.051	0.178***	0.059	0.018
Urbanization							0.027	0.036			
<i>Control variables</i>											
Median household income	0.224***	0.086	0.166**	0.069	0.281***	0.058	-0.017	0.087	-0.098	0.079	0.000
Total population	-0.050**	0.061	0.130**	0.051	-0.057**	0.054	0.016	0.049	-0.001	0.056	0.000
Year	0.625**	0.279	0.911***	0.180	0.582**	0.160	0.819***	0.187	0.944***	0.167	0.072
Constant	-1263.239	563.921	-1823.557	360.469	-1171.302	321.237	-1126.011	359.574	-2251.234	354.819	
Observations	342		328		328		342		328		
R-squared	0.244		0.442		0.458		0.319		0.546		
Root MSE	7.685		6.343		6.258		7.273		5.760		

*** p < 0.01 ** p < 0.05 * p < 0.10

Table 5 is a breakdown of the full model based on three of the four green building components.

Since 2010, most housing agencies have received high scores with low variability on the energy efficiency component (Mean = 76.64, SD = 21.75). Therefore, the model does not explain much of the variability of the energy efficiency score data around its mean ($R^2_{EE} = 0.262$) and is removed from this analysis. It appears from **Table 5** that resource conservation criteria have been adopted to large extent where liberal governments and environmentally active neighbor states exist. Conversely, resource conservation has gained far less priority than health protection and smart growth components in the presence of manufacturing industries and growing economies. Each

one percent growth in manufacturing value-added is associated with 0.54 percent decline in the adoption of resource conservation criteria.

Table 5. OLS regression and effect size analysis of components

	Health Protection			Resource Conservation			Smart Growth		
	Coef.	R.S.E.	ω^2	Coef.	R.S.E.	ω^2	Coef.	R.S.E.	ω^2
<i>Economic characteristics</i>									
GDP per capita	0.543***	0.175	0.022	0.206	0.183	0.000	0.679***	0.122	0.051
Manufacturing value added	-0.349	0.228	0.005	-0.540**	0.236	0.013	0.211	0.177	0.001
Sales tax	2.354***	0.663	0.036	0.719	0.642	0.000	1.297***	0.467	0.014
Unemployment rate	3.943***	0.976	0.042	0.529	1.104	0.000	1.587*	0.845	0.007
<i>Environmental characteristics</i>									
Degree days of heating	0.434***	0.101	0.047	0.410***	0.114	0.036	0.235**	0.091	0.018
Density	0.027***	0.009	0.018	0.020**	0.009	0.007	0.016**	0.008	0.007
<i>Political characteristics</i>									
Government ideology	0.019	0.087	0.000	0.338***	0.093	0.039	0.064	0.079	0.000
Neighbor's score	0.028	0.214	0.000	0.818***	0.259	0.031	0.350*	0.195	0.007
RE portfolio standard	13.057***	2.792	0.064	10.434***	3.366	0.035	9.612***	2.507	0.049
<i>Societal characteristics</i>									
Housing stock built year	0.220	0.205	0.000	0.338	0.213	0.003	0.062	0.205	0.000
<i>Control variables</i>									
Median household income	-0.065	0.275	0.000	-0.221	0.290	0.000	-0.404*	0.214	0.007
Total population	-0.247	0.176	0.001	0.561**	0.231	0.017	-0.424**	0.169	0.015
Year	5.484	0.786	0.110	3.885***	0.891	0.050	2.572***	0.727	0.035
Constant	-11513.330	1584.575		-8505.623	1811.865		-5295.062	1526.580	
Observations	328			328			328		
R-squared	0.467			0.482			0.371		
Root MSE	19.057			20.464			16.127		

*** p < 0.01 ** p < 0.05 * p < 0.10

345

5. Discussion and conclusion

346

5.1. Main findings and comparison with previous research

347

From 2006-2010, LIHTC-allocating agencies increasingly incorporated green building criteria

348

into QAPs. Adoption momentum has decreased since 2010 but is still on a slight upward trajectory.

349

Energy efficiency criteria have had the highest rates of adoption, followed by smart growth,

350

resource conservation, and health protection criteria. Even less innovative or weakly-committed

351

agencies, have scored high on the inclusion of energy efficiency criteria (e.g., energy-efficient

352

products, energy star appliances, and energy-efficient HVAC) and some smart growth criteria

353 (e.g., rehabilitation, revitalization, adaptive reuse) which suggests that most decisionmakers have,
354 to some extent, recognized co-benefits associated with these criteria (e.g., immediate financial
355 savings for low-income occupants, air-pollution impacts, technological innovation, reduced fuel
356 cost, and employment possibilities). Even though green building components have become
357 mainstream in the industry, health protection (e.g., carpet quality, paint quality, ventilation quality)
358 and resource conservation (e.g., recycled content materials, stormwater protection, water
359 conservation) have received less attention as project selection criteria. During the last two decades,
360 building product companies have developed and supplied environmentally friendly materials, such
361 as no-VOC paints, recycled content or low-toxic ingredients, waterless urinals, dual-flush toilets,
362 green roofs, etc. The cost of green components has decreased because of an increased availability
363 of green products, technological advances, federal and state subsidies, integrated design-build
364 practices, training of the professional workforce, etc. Nonetheless, the adoption of green building
365 in low-income housing developments is still in its infancy, and there are obstacles to policy
366 innovation besides the ones included in the regression models.

367 In general, the results are consistent with previous research on green building adoption [78].
368 As reflected in [Table 3 and 4](#), the results suggest that the role model (i.e., most innovative) LIHTC-
369 allocating agencies have more motivation and resources than weakly-committed states to adopt
370 and commercialize green building policies and technologies. The authors accept the four
371 hypotheses examined since positive and statistically significant relationships exist between policy
372 innovation and the presence of economic resources (represented by sales tax and GDP per capita),
373 environmental resources (represented by heating degree days and population density), political
374 resources (represented by the presence of innovative agencies in the region and supportive
375 environmental standards), and societal resources (represented by the presence of highly educated

376 workforce and newly built housing stock). Based on the uncontrolled Pearson correlation, QAP
 377 score is significantly correlated with all the chosen political and societal independent variables.
 378 The full model suggests mandates to increase the production of energy from renewable resources,
 379 i.e., Renewable Portfolio Standards (RPS), are more important to policy innovation than baseline
 380 building codes, incentives, and regulations, which – if adopted alone – may not successfully
 381 address such sizeable problems as climate change or dependence on fossil fuel [68]. Besides, the
 382 absence of supportive regulation, even in areas where renewable resources of energy like high
 383 solar radiation are present, can result in the underutilization of natural endowments [79].

384 *5.2. Limitations, future research, and policy recommendations*

385 The independent variables employed in the regression models collectively explain up to ~ 55
 386 percent of the variance in the dependent variable, which raises the question about what other
 387 factors should be included in the model to explain the remaining variance. The adoption of green
 388 building criteria has varied significantly across states and, in several cases, changed radically
 389 within state over time, whereas the independent variables have not changed as much. Some states
 390 have adopted limited criteria to make them more attainable, and some others seem to have adopted
 391 them as an efficient instrument for short terms until state-wide standards have evolved [73]. Some
 392 states (e.g., Kentucky, Missouri, and Wisconsin) that scored high on green building criteria at the
 393 outset relinquished green construction options ([Table A1](#)). Anticipating the development of strict
 394 state-specific standards, some states dropped third-party certification requirements. In some other
 395 states, meeting HERS ratings was mandated as a substitution for certification programs and
 396 decreased the QAP score [73]. Texas, Florida, and some other states pursued a different path by
 397 abandoning sub-components at the start and re-adopting them in the following years. These

398 organization-level decisions affect the linear trajectory of policy adoption and, thus, reduce the
399 predictability of future outcomes from state-level data. According to previous research on social
400 and psychological barriers to green building, policymaking has not always followed pure
401 rationality in LIHTC too. Rather, individual-, organization-, and industry-level factors seem to be
402 involved in driving sub-optimal outcomes. The literature on organizations and the natural
403 environment broadly identifies and articulates how such factors affect organizations' interaction
404 with complex social and environmental issues [80]. Institutional barriers, such as adherence to
405 rigid building codes and standards, standard operating procedures, and unquestioned biases, that
406 impede rationality, innovativeness, and responses to societal interests regarding complex social
407 and environmental problems are very common in the construction industry and should be
408 accounted for in future research on policy innovation [81].

409 The current study shows that the change in the environmental performance of LIHTC units has
410 been slow and unsteady in coming, and factors that are external to housing agencies – such as state
411 economy, environment, policy, regional effect, and pressure from the society – provide partial
412 explanations regarding the adoption of green building practices. Future research can follow two
413 lines of research. First, to explore how role model housing agencies like Massachusetts and
414 Connecticut overcome organizational inertia, approach environmental problems, and set strategies
415 for action [82]. Second, to pursue life-cycle cost and benefit analyses of green building
416 components accounting for all measurable co-benefits involved across LIHTC projects' lifespan
417 to maximize the integration of social and environmental concerns into LIHTC developments
418 without foregoing financial viability. Previous research on the role of organizational culture and
419 subculture suggests that the adoption of new practices is easier when framed as a positive and
420 attractive option [83]. This line of research should account for the increased availability of green

421 products, technological advances, federal and state subsidies, integrated design-build practices,
422 and professional workforce, and determine what is needed to close the gap towards net-zero
423 energy. Data-driven analyses showing a long-term reduction in development expenses can
424 motivate LIHTC-allocating agencies to demand higher environmental performance from
425 developers.

426 The current study shows that supportive state-wide legislation like renewable energy portfolio
427 standards and the presence of innovative agencies in the region can help LIHTC-allocating
428 agencies overcome obstacles to innovation in the LIHTC context. Therefore, it is recommended
429 that LIHTC-allocating agencies cooperate with inter- and intrastate organizations and professional
430 networks to exchange information, training, and expertise in innovative housing policy solutions.
431 It is also recommended that agencies create and maintain effective partnerships with third-party
432 green building rating systems. Meeting long-term environmental and climatic goals in the context
433 of LIHTC requires planned evolutionary change based on data-driven strategies and life-cycle
434 analyses towards zero net energy consumption. Reducing frequent changes to green building
435 requirements would increase transparency, predictability, and the development of long-term
436 contracting and financing solutions. Exercising performance-based rather than prescriptive
437 regulation can help reduce development costs.

438 *5.3. Conclusion*

439 This article explored residential policy innovation in the context of the most significant
440 government-sponsored low-income housing program in the US. Using panel data and information
441 from seven years of collaboration between Global Green and LIHTC-allocating agencies, the
442 authors developed an empirical framework showing interstate variations in green building policy

443 are, to large extent, explained by state-level data of resources, motivations, and obstacles.
444 Significant state-by-state differences in the rate of integration of green building with LIHTC
445 developments persist, which raises the question about how this variation is explained. The results
446 suggest that the determinants influencing the propensity of LIHTC-allocating agencies to require
447 green construction options can include organization-level factors. Using multi-level methods,
448 future policy innovation research should explore factors that impact the utility of policy innovation
449 and barriers the environmental sustainability movement faces at the organization level. QAPs have
450 significant impacts on the location and quality of LIHTC developments and should be used as
451 effective policy tools to drive planned evolutionary change to housing. Buildings represent about
452 40% of global energy use and 30% of global greenhouse gas emissions, thus provide considerable
453 opportunities for national and subnational governments to promote global environmental
454 sustainability and climate change mitigation [84].

455 **Appendix:**456 **Table A1.** State QAP scores ranked by highest to lowest mean value

	Rank	State	2006	2007	2008	2009	2010	2012	2013	2014	2015	2016	2017	Mean	SD
Role model	1	Massachusetts	33	33	35	38	36	41	45	40	43	41	41	38.73	4.03
	2	Connecticut	6	14	43	45	44	45	45	45	45	45	44	38.27	14.11
Strongly	3	Maryland	25	25	27	38	37	45	45	45	45	39	39	37.27	8.08
Committed	4	Georgia	32	34	33	40	39	34	31	35	35	35	36	34.91	2.70
	5	Pennsylvania	26	26	29	29	27	40	38	40	40	44	43	34.73	7.25
	6	Maine	21	22	32	32	34	33	39	37	37	37	34	32.55	5.92
	7	New Jersey	13	15	32	34	35	38	19	41	41	43	44	32.27	11.38
	8	Minnesota	2	12	19	35	36	36	45	45	45	37	38	31.82	14.41
Committed	9	Washington	3	3	3	39	38	41	44	42	42	42	42	30.82	17.94
	10	New York	5	6	23	35	36	35	34	37	39	40	44	30.36	13.36
	11	Vermont	6	12	26	29	28	39	37	41	39	35	41	30.27	11.82
	12	California	30	28	28	28	30	31	23	30	31	29	40	29.82	4.05
	13	Rhode Island	6	6	11	29	38	36	40	35	36	44	41	29.27	14.44
	14	Nevada	24	23	24	25	27	28	36	34	28	33	35	28.82	4.83
	15	Delaware	6	9	24	26	32	32	33	36	38	40	40	28.73	11.70
	16	Michigan	5	5	27	27	36	34	32	34	35	35	45	28.64	12.63
	17	North Dakota	3	3	28	27	24	27	33	41	39	42	40	27.91	13.87
	18	Arizona	14	16	16	20	22	26	36	35	39	40	33	27.00	9.90
	19	Wyoming	17	17	21	24	18	29	28	37	34	32	38	26.82	7.91
	20	North Carolina	13	13	23	24	24	31	29	34	34	34	33	26.55	7.92
	21	New Hampshire	7	7	19	30	29	31	36	36	29	33	33	26.36	10.61
	22	Illinois	6	6	23	22	30	29	37	32	34	35	35	26.27	11.10
	23	Montana	9	14	29	28	28	29	32	28	29	30	30	26.00	7.35
	24	Iowa	15	15	12	27	31	31	28	33	30	30	33	25.91	7.89
	25	Indiana	17	18	21	27	29	28	28	31	31	26	28	25.82	4.92
	26	Colorado	8	8	8	14	35	33	19	34	34	41	45	25.36	14.16
	27	West Virginia	8	8	14	16	23	18	40	39	37	37	36	25.09	12.90
Moderately	28	Ohio	6	9	13	16	15	35	6	41	44	43	45	24.82	16.56
Committed	29	Alabama	19	20	21	20	21	23	19	25	23	28	32	22.82	4.09
	30	Kentucky	5	7	16	24	24	31	35	26	32	28	23	22.82	9.77
	31	Louisiana	10	15	14	27	26	21	22	23	22	32	34	22.36	7.37
	32	Kansas	13	17	19	21	20	23	26	29	25	24	28	22.27	4.84
	33	South Dakota	11	11	17	19	20	23	23	32	28	30	30	22.18	7.39
	34	New Mexico	8	15	20	23	25	26	27	15	28	29	24	21.82	6.62
	35	Arkansas	14	18	21	21	23	22	23	21	25	28	22	21.64	3.59
	36	Idaho	5	5	6	19	24	24	25	32	33	30	32	21.36	11.14
	37	South Carolina	13	13	16	18	15	23	24	29	23	27	31	21.09	6.44
	38	Utah	12	12	13	14	15	18	19	40	35	21	21	20.00	9.33
	39	Florida	4	4	19	19	20	28	17	25	27	25	28	19.64	8.65
	40	Oregon	7	7	21	6	22	25	14	26	26	31	31	19.64	9.55
	41	Texas	12	12	22	31	29	30	26	9	6	6	31	19.45	10.49
	42	Missouri	15	15	19	21	23	22	25	17	19	16	20	19.27	3.32
	43	Nebraska	2	2	26	14	14	19	29	27	23	26	26	18.91	9.77
Weakly	44	Hawaii			4	19	19	27	28	11	28	11	13	17.78	8.67
Committed	45	Virginia	10	10	12	12	22	21	17	19	22	22	20	17.00	5.02
	46	Mississippi	7	9	15	11	14	17	16	21	20	24	23	16.09	5.61
	47	Tennessee	4	5	7	11	13	15	16	21	20	27	27	15.09	8.09
	48	Wisconsin	5	5	4	14	15	20	22	35	16	5	9	13.64	9.55
	49	Alaska	6	6	10	8	17	12	16	14	16	14	13	12.00	3.97
	50	Oklahoma	6	6	12	12	11	13	13	19	12	12	15	11.91	3.65
		Mean	11.31	12.67	19.54	23.76	25.86	28.36	28.44	31.08	30.84	30.76	32.18		
		SD	7.94	7.70	8.65	8.91	8.13	7.97	9.65	9.16	9.07	9.87	9.23		

457 **References:**

- 458 1. USDOE Use of energy in the United States Available online:
459 https://www.eia.gov/energyexplained/index.php?page=us_energy_use (accessed on Jul 28, 2019).
- 460 2. Glaeser, E.L.; Gyourko, J. The impact of building restrictions on housing affordability. *Econ. Policy Rev.* **2003**, *9*.
- 462 3. JCHS *The State of the Nation's Housing 2019*; Harvard University: Harvard Joint Center for Housing Studies, 2019;
- 464 4. Adelle, C.; Russel, D. Climate policy integration: a case of déjà vu? *Environ. Policy Gov.* **2013**, *23*, 1–12.
- 466 5. Jordan, A.; Lenschow, A. Environmental policy integration: a state of the art review. *Environ. Policy Gov.* **2010**, *20*, 147–158.
- 468 6. Pearce, A.R.; DuBose, J.R.; Bosch, S.J. Green Building Policy Options for the Public Sector. *J. Green Build.* **2007**, *2*, 156–174, doi:10.3992/jgb.2.1.156.
- 470 7. USGBC What is green building? | U.S. Green Building Council Available online:
471 <https://www.usgbc.org/articles/what-green-building> (accessed on Jul 28, 2019).
- 472 8. Yeganeh, A.J.; McCoy, A.P.; Schenk, T. Determinants of climate change policy adoption: A meta-analysis. *Urban Clim.* **2020**, *31*, 100547, doi:10.1016/j.uclim.2019.100547.
- 474 9. HUD Low-Income Housing Tax Credits Available online:
475 <https://www.huduser.gov/portal/datasets/lihtc.html> (accessed on Sep 4, 2019).
- 476 10. HUD LIHTC Database Access Available online: <https://lihtc.huduser.gov/> (accessed on Apr 15, 2020).
- 478 11. Novogradac About the LIHTC Available online: <https://www.novoco.com/resource-centers/affordable-housing-tax-credits/lihtc-basics/about-lihtc> (accessed on Apr 13, 2020).
- 480 12. McClure, K. What should be the future of the Low-Income Housing Tax Credit program? *Hous. Policy Debate* **2019**, *29*, 65–81.
- 482 13. Ellen, I.G.; Horn, K.; Kuai, Y.; Pazuniak, R.; Williams, M.D. *Effect of QAP Incentives on the Location of LIHTC Properties*; Economic Systems Inc.: Falls Church, VA, 2015;
- 484 14. Zhao, D.; McCoy, A.P.; Agee, P.; Mo, Y.; Reichard, G.; Paige, F. Time effects of green buildings on energy use for low-income households: A longitudinal study in the United States. *Sustain. Cities Soc.* **2018**, *40*, 559–568.
- 487 15. Briassoulis, H. *Policy integration for complex environmental problems: the example of Mediterranean desertification*; Routledge, 2017;
- 489 16. Kivimaa, P.; Mickwitz, P. The challenge of greening technologies—Environmental policy integration in Finnish technology policies. *Res. Policy* **2006**, *35*, 729–744.
- 491 17. Runhaar, H.; Driessen, P.; Uittenbroek, C. Towards a Systematic Framework for the Analysis of Environmental Policy Integration. *Environ. Policy Gov.* **2014**, *24*, 233–246, doi:10.1002/eet.1647.
- 493 18. Lafferty, W.; Hovden, E. Environmental policy integration: towards an analytical framework. *Environ. Polit.* **2003**, *12*, 1–22.
- 495 19. Campbell, S. Green cities, growing cities, just cities?: Urban planning and the contradictions of sustainable development. *J. Am. Plann. Assoc.* **1996**, *62*, 296–312.
- 497 20. Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities 'just green enough.' *Landsc. Urban Plan.* **2014**, *125*, 234–244.
- 499 21. Patterson, J.J.; Thaler, T.; Hoffmann, M.; Hughes, S.; Oels, A.; Chu, E.; Mert, A.; Huitema, D.; Burch, S.; Jordan, A. Political feasibility of 1.5°C societal transformations: the role of social justice. *Curr. Opin. Environ. Sustain.* **2018**, *31*, 1–9, doi:10.1016/j.cosust.2017.11.002.

502 22. Chegut, A.; Eichholtz, P.; Holtermans, R. Energy efficiency and economic value in affordable
503 housing. *Energy Policy* **2016**, *97*, 39–49.

504 23. Yeganeh, A.J.; Hall, R.P.; Pearce, A.R.; Hankey, S. A social equity analysis of the US public
505 transportation system based on job accessibility. *J. Transp. Land Use* **2018**, *11*, 1039–1056.

506 24. Bullard, R.D. *Dumping in Dixie: Race, class, and environmental quality*; Routledge, 2018;

507 25. Mulliner, E.; Malys, N.; Maliene, V. Comparative analysis of MCDM methods for the assessment of
508 sustainable housing affordability. *Omega* **2016**, *59*, 146–156.

509 26. HUD Green Building in Low-Income Housing Tax Credit Developments Available online:
510 https://www.huduser.gov/portal/pdredge/pdr_edge_featd_article_061614.html (accessed on
511 May 5, 2020).

512 27. Davidson, N.M. Reconciling people and place in housing and community development policy. *Geo J
513 Poverty Pol* **2009**, *16*, 1.

514 28. Chegut, A.; Eichholtz, P.; Kok, N. Supply, demand and the value of green buildings. *Urban Stud.*
515 **2014**, *51*, 22–43.

516 29. McClure, K. The low-income housing tax credit program goes mainstream and moves to the
517 suburbs. **2006**.

518 30. Breysse, J.; Jacobs, D.E.; Weber, W.; Dixon, S.; Kawecki, C.; Aceti, S.; Lopez, J. Health outcomes and
519 green renovation of affordable housing. *Public Health Rep.* **2011**, *126*, 64–75.

520 31. Singh, A.; Syal, M.; Grady, S.C.; Korkmaz, S. Effects of green buildings on employee health and
521 productivity. *Am. J. Public Health* **2010**, *100*, 1665–1668, doi:10.2105/AJPH.2009.180687.

522 32. Bradshaw, W.; Connelly, E.F.; Cook, M.F.; Goldstein, J.; Pauly, J. The costs and benefits of green
523 affordable housing. *Camb. MA New Ecol.* **2005**.

524 33. Mueller, E.J.; Tighe, J.R. Making the case for affordable housing: Connecting housing with health
525 and education outcomes. *J. Plan. Lit.* **2007**, *21*, 371–385.

526 34. Deng, Y.; Wu, J. Economic returns to residential green building investment: The developers'
527 perspective. *Reg. Sci. Urban Econ.* **2014**, *47*, 35–44.

528 35. Matisoff, D.C.; Noonan, D.S.; Flowers, M.E. Policy monitor—Green buildings: Economics and
529 policies. *Rev. Environ. Econ. Policy* **2016**, *10*, 329–346.

530 36. Yeganeh, A.J.; McCoy, A.P.; Hankey, S. Green affordable housing: Cost-benefit analysis for zoning
531 incentives. *Sustainability* **2019**, *11*, 1–24.

532 37. Chegut, A.; Eichholtz, P.; Kok, N. The price of innovation: An analysis of the marginal cost of green
533 buildings. *J. Environ. Econ. Manag.* **2019**, doi:<https://doi.org/10.1016/j.jeem.2019.07.003>.

534 38. Matthiessen, L.F.; Morris, P. *Costing Green: A Comprehensive Cost Database and Budgeting
535 Methodology*; Davis Landon Adamson, 2004;

536 39. Matthiessen, L.F.; Morris, P. *Cost of green revisited: Reexamining the feasibility and cost impact of
537 sustainable design in the light of increased market adoption*; Continental Automated Buildings
538 Association, 2007;

539 40. Walls, M.; Gerarden, T.; Palmer, K.; Bak, X.F. Is energy efficiency capitalized into home prices?
540 Evidence from three US cities. *J. Environ. Econ. Manag.* **2017**, *82*, 104–124.

541 41. Kahn, M.E.; Kok, N. The capitalization of green labels in the California housing market. *Reg. Sci.
542 Urban Econ.* **2014**, *47*, 25–34.

543 42. Hughes, J.E.; Podolefsky, M. Getting green with solar subsidies: evidence from the California solar
544 initiative. *J. Assoc. Environ. Resour. Econ.* **2015**, *2*, 235–275.

545 43. Fulton, L.; Beauvais, B.; Brooks, M.; Kruse, C.S.; Lee, K. A Publicly Available Cost Simulation of
546 Sustainable Construction Options for Residential Houses. *Sustainability* **2020**, *12*, 2873.

547 44. Prum, D.A.; Aalberts, R.J.; Del Percio, S. In third parties we trust—the growing antitrust impact of
548 third-party green building certification systems for state and local governments. *J. Envtl Litig* **2012**,
549 *27*, 191.

550 45. Karch, A. Emerging Issues and Future Directions in State Policy Diffusion Research. *State Polit. Policy Q.* **2007**, *7*, 54–80, doi:10.1177/153244000700700104.

551 46. Mohr, L.B. Determinants of innovation in organizations. *Am. Polit. Sci. Rev.* **1969**, *63*, 111–126.

552 47. Krause, R.M. Policy Innovation, Intergovernmental Relations, and the Adoption of Climate Protection Initiatives by U.S. Cities. *J. Urban Aff.* **2011**, *33*, 45–60, doi:10.1111/j.1467-9906.2010.00510.x.

553 48. Walker, J.L. The Diffusion of Innovations among the American States*. *Am. Polit. Sci. Rev.* **1969**, *63*, 880–899, doi:10.1017/S0003055400258644.

554 49. Boehmke, F.J.; Witmer, R. Disentangling Diffusion: The Effects of Social Learning and Economic Competition on State Policy Innovation and Expansion. *Polit. Res. Q.* **2004**, *57*, 39–51, doi:10.1177/106591290405700104.

555 50. Mooney, C.Z. Modeling regional effects on state policy diffusion. *Polit. Res. Q.* **2001**, *54*, 103–124.

556 51. Gray, V. Innovation in the states: A diffusion study. *Am. Polit. Sci. Rev.* **1973**, *67*, 1174–1185.

557 52. Berry, F.S. Sizing up state policy innovation research. *Policy Stud. J.* **1994**, *22*, 442–456.

558 53. Berry, F.S.; Berry, W.D. State lottery adoptions as policy innovations: An event history analysis. *Am. Polit. Sci. Rev.* **1990**, *84*, 395–415.

559 54. Glick, H.R.; Hays, S.P. Innovation and reinvention in state policymaking: Theory and the evolution of living will laws. *J. Polit.* **1991**, *53*, 835–850.

560 55. Buckley, J.; Westerland, C. Duration dependence, functional form, and corrected standard errors: Improving EHA models of state policy diffusion. *State Polit. Policy Q.* **2004**, *4*, 94–113.

561 56. Freeman, C. *Technology Policy and Economic Performance: Lesson from Japan*; Pinter: London, 1987;

562 57. Lundvall, B.-A. National Innovation Systems: Towards a Theory of Innovation and Interactive Learning (London: Pinter). *Lundvall B-AA Borrás S1997 Glob. Learn. Econ. Implic. Innov. Policy TSER Programme DG XII Comm. Eur. Union MacKenzie Podsakoff P2012 Common Method Bias Mark. Causes Mech. Proced. Remedies J. Retail.* **1992**, *88*, 542–555.

563 58. Nelson, R.R. *National systems of innovation: A comparative study*; Oxford: Oxford university press, 1993;

564 59. March, J.G. *Primer on decision making: How decisions happen*; Simon and Schuster, 1994;

565 60. Perrow, C. An organizational analysis of organizational theory. *Contemp. Sociol.* **2000**, *29*, 469–476.

566 61. Gsottbauer, E.; Van den Bergh, J.C. Environmental policy theory given bounded rationality and other-regarding preferences. *Environ. Resour. Econ.* **2011**, *49*, 263–304.

567 62. Hjorth, P.; Bagheri, A. Navigating towards sustainable development: A system dynamics approach. *Futures* **2006**, *38*, 74–92, doi:10.1016/j.futures.2005.04.005.

568 63. Marsden, G.; Frick, K.T.; May, A.D.; Deakin, E. Bounded rationality in policy learning amongst cities: lessons from the transport sector. *Environ. Plan. A* **2012**, *44*, 905–920.

569 64. Nelson, K.L. Municipal choices during a recession: Bounded rationality and innovation. *State Local Gov. Rev.* **2012**, *44*, 44S–63S.

570 65. Gigerenzer, G.E.; Hertwig, R.E.; Pachur, T.E. *Heuristics: The foundations of adaptive behavior.*; Oxford University Press, 2011;

571 66. Cambridge English Dictionary Motivation definition in the Cambridge English Dictionary Available online: <https://dictionary.cambridge.org/us/dictionary/english/motivation> (accessed on Apr 20, 2020).

572 67. Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. *J. Am. Plann. Assoc.* **2010**, *76*, 265–294.

573 68. Carley, S. The era of state energy policy innovation: A review of policy instruments. *Rev. Policy Res.* **2011**, *28*, 265–294.

597 69. Shipan, C.R.; Volden, C. Bottom-Up Federalism: The Diffusion of Antismoking Policies from U.S.
 598 Cities to States. *Am. J. Polit. Sci.* **2006**, *50*, 825–843, doi:10.1111/j.1540-5907.2006.00218.x.

599 70. Bushnell, J.; Peterman, C.; Wolfram, C. *Local solutions to global problems: Policy choice and*
 600 *regulatory jurisdiction*; National Bureau of Economic Research, 2007;

601 71. Kahn, M.E.; Vaughn, R.K. Green market geography: The spatial clustering of hybrid vehicles and
 602 LEED registered buildings. *BE J. Econ. Anal. Policy* **2009**, *9*.

603 72. Kahn, M.E.; Morris, E.A. Walking the Walk: The Association Between Community Environmentalism
 604 and Green Travel Behavior. *J. Am. Plann. Assoc.* **2009**, *75*, 389–405,
 605 doi:10.1080/01944360903082290.

606 73. Global Green QAP Reports — Global Green Available online:
 607 <https://www.globalgreen.org/blog/m8fd4swjex4cj28xp7rxtahjt5zbg4> (accessed on May 13, 2019).

608 74. Berry, W.D.; Ringquist, E.J.; Fording, R.C.; Hanson, R.L. Measuring citizen and government ideology
 609 in the American states, 1960–93. **1998**.

610 75. Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests
 611 for correlation and regression analyses. *Behav. Res. Methods* **2009**, *41*, 1149–1160,
 612 doi:10.3758/BRM.41.4.1149.

613 76. Gujarati, D.N. *Basic econometrics*; Tata McGraw-Hill Education, 2009;

614 77. Rogers, E.M. *Diffusion of innovations*; Simon and Schuster, 2010;

615 78. Fuerst, F.; Kontokosta, C.; McAllister, P. Determinants of green building adoption. *Environ. Plan. B*
 616 *Plan. Des.* **2014**, *41*, 551–570.

617 79. Zahran, S.; Brody, S.D.; Vedlitz, A.; Lacy, M.G.; Schelly, C.L. Greening local energy: explaining the
 618 geographic distribution of household solar energy use in the United States. *J. Am. Plann. Assoc.*
 619 **2008**, *74*, 419–434.

620 80. Etzion, D. Research on Organizations and the Natural Environment, 1992–Present: A Review. *J.*
 621 *Manag.* **2007**, *33*, 637–664, doi:10.1177/0149206307302553.

622 81. Hoffman, A.J.; Henn, R. Overcoming the social and psychological barriers to green building. *Organ.*
 623 *Environ.* **2008**, *21*, 390–419.

624 82. Kaplan, S.; Henderson, R. Inertia and incentives: Bridging organizational economics and
 625 organizational theory. *Organ. Sci.* **2005**, *16*, 509–521.

626 83. Howard-Grenville, J.A. Inside the “Black Box”: How Organizational Culture and Subcultures Inform
 627 Interpretations and Actions on Environmental Issues. *Organ. Environ.* **2006**, *19*, 46–73,
 628 doi:10.1177/1086026605285739.

629 84. Edenhofer, O. *Climate change 2014: mitigation of climate change*; Cambridge University Press,
 630 2015; Vol. 3;.