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Abstract

Hybrid modeling techniques are increasingly important for improving predictive accuracy and
control in biomanufacturing, particularly under data-limited conditions. This study focuses on the
development and experimental validation of a hybrid deep learning model predictive control (MPC)
framework for fed-batch P. pastoris fermentations producing recombinant proteins. Bayesian
optimization and grid search were employed to identify optimal network architectures, revealing
that models combining LSTM layers with fully connected layers provided the best balance between
prediction accuracy and computational efficiency. The top-performing architecture was adapted to a
new dataset involving bacteriophage Qf coat protein production using transfer learning, yielding
strong predictive performance with low validation and test losses. Experimental implementation of
the novel hybrid MPC system demonstrated robust real-time control of substrate feeding to maintain
target specific growth rates. While moderate discrepancies were observed in biomass and product
predictions—particularly during the methanol adaptation phase and late-stage cytotoxic
conditions—the controller effectively regulated process dynamics. These findings suggest that hybrid
neural networks, when integrated with MPC and refined through automated architecture selection,
offer a practical and generalizable solution for real-time control in microbial bioprocesses. This work
provides a validated framework for deploying hybrid digital twins in fermentation and highlights
the need to account for physiological effects in future models.

Keywords: Pichia Pastoris; hybrid process model; deep learning; Bayesian optimization; hybrid model
architecture screening; transfer learning; model predictive control; hybrid MPC

1. Introduction

The inherent complexity of biological systems—characterized by interconnected subsystems
and nonlinear dynamics— presents enduring challenges for effective bioprocess monitoring and
control. Mathematical modeling offers a powerful means to capture and manage this complexity [1].
Over the past few decades, such models have become indispensable in understanding and
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optimizing bioprocesses, benefiting from advances in computational capabilities and analytical tools.
This progress has led to the adoption of advanced modeling approaches, such as genome-scale
metabolic models and computational fluid dynamics simulations [2,3]. With the advent of Industry
4.0, modeling has taken on an even more prominent role in the digital transformation of
biomanufacturing [4]. However, the limitations of mechanistic models —particularly their reliance on
complete system knowledge —have prompted interest in alternative strategies. As a result, machine
learning techniques are gaining traction, offering flexible, data-driven alternatives that can extract
insights without relying on fully defined system knowledge —supporting next-generation bioprocess
digitalization [5-8].

To bridge this gap, hybrid neural network (HNN) models have emerged as a compelling
solution, integrating domain knowledge with data-driven flexibility [9-14]. These models combine
the structure of mechanistic frameworks (e.g., mass or energy balances) with the flexibility of data-
driven components such as ANNSs, effectively leveraging both physical laws and empirical data
[15,16]. A typical use case involves modeling unknown or complex kinetics using neural networks
within a differential equation-based framework. Compared to purely nonparametric models, hybrid
approaches often yield more accurate, generalizable, and interpretable results—leading to more
robust bioprocess operation and control [17]. The recent surge in deep learning methodologies has
further enhanced hybrid modeling by enabling neural networks to approximate intricate biological
functions, as deep neural networks (DNNs) with multiple hidden layers have demonstrated superior
capacity for learning hierarchical and compositional functions with fewer parameters and reduced
sample complexity compared to shallow architectures [9,10,18]. As such, hybrid deep learning
models are emerging as a powerful tool in the development of digital twins and advanced bioprocess
monitoring systems.

In parallel, deep learning developments have expanded modeling capabilities across bioprocess
applications. DNNSs, through their multilayered architectures, enable the extraction of hierarchical
and compositional features, allowing for the accurate approximation of highly nonlinear biological
dynamics [18,19]. These models have demonstrated strong performance across a range of
bioprocessing tasks, including soft sensing, anomaly detection, forecasting, and system identification,
particularly when applied to high-resolution data streams generated by modern process analytical
technologies (PAT). Long Short-Term Memory (LSTM) networks, designed to retain temporal context
over extended time horizons, have proven especially valuable for modeling dynamic bioreactor
cultivations. When coupled with mechanistic models, LSTMs form powerful hybrid frameworks
capable of accurately capturing both short-term variability and long-term process trends [11]. Critical
to the effective training of such deep architectures are modern optimization and activation strategies:
the rectified linear unit (ReLU) activation function addresses vanishing gradient problems, while the
Adaptive Moment Estimation (Adam) optimizer accelerates convergence and enhances
generalization through adaptive learning rate adjustments [10,20]. Collectively, these innovations
position deep hybrid modeling as a central enabler of next-generation digital twins for real-time
monitoring, control, and optimization in biomanufacturing.

However, training deep models requires extensive, high-frequency datasets that are often
unavailable in bioprocessing due to high costs, long cultivation times, and sensor limitations [21]. In
early-stage bioprocess development or pilot-scale operations, datasets typically contain only a small
number of replicates per condition, resulting in limited coverage of the process space and insufficient
diversity to support generalizable deep models [22]. Bioprocess data is typically noisy,
heterogeneous, and expensive to generate, posing a major bottleneck for training deep architectures.
Such data limitations have accelerated the adoption of hybrid modeling frameworks, which leverage
both prior process knowledge and empirical data. The promising approach of integrating historical
process data through transfer learning frameworks can significantly improve prediction accuracy
and reduce the need for extensive new experimental data [23,24].

Transfer learning (TL) in deep neural networks involves repurposing a model trained on a
source task to enhance learning on a related target task, especially when labeled data are scarce. By
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leveraging pre-trained models—often developed on large, generic datasets —TL facilitates improved
convergence speed, generalization, and computational efficiency compared to training from scratch
[25,26]. In bioprocess engineering, TL enables the adaptation of models trained on well-characterized
systems to predict dynamics in novel or data-limited processes. For instance, TL has been successfully
applied to model microalgal bioprocess dynamics using limited time-series data, achieving high
accuracy in forecasting process behavior [27] and for the quantification and identification of cellular
phenotypes from high-content microscopy images [28].

Despite its advantages, TL poses challenges such as negative transfer, which occurs when source
and target domains are insufficiently aligned, and catastrophic forgetting during fine-tuning [29].
Effective transfer requires careful selection of source models, layer-freezing strategies, and learning
rate tuning to preserve useful features while adapting to the new task. In bioprocess applications,
these considerations are critical due to the heterogeneity of biological systems and the frequent lack
of large annotated datasets. Nevertheless, TL remains a promising strategy —especially when
combined with hybrid modeling approaches that integrate mechanistic insights with data-driven
learning [30].

Deep neural network architecture screening typically involves systematic strategies to identify
optimal model configurations and hyperparameters. Common methods include grid search, which
exhaustively evaluates combinations within a predefined parameter grid [31]. While easy to
implement and parallelize, grid search becomes computationally expensive as the number of
hyperparameters increases. Random search improves efficiency by sampling configurations at
random, often outperforming grid search in high-dimensional spaces where only a few parameters
significantly affect performance [31]. A more advanced and efficient approach is Bayesian
optimization, which builds a probabilistic surrogate model (e.g.,, Gaussian Process) to predict
performance and selects promising configurations using acquisition functions like Expected
Improvement [32]. This strategy significantly reduces the number of required evaluations and is
especially valuable when model training is computationally costly. Several studies confirm that
Bayesian optimization typically outperforms traditional approaches in terms of sample efficiency and
final model performance [31,32].

As the dominant production mode, fed-batch fermentation remains widely used due to its
robustness and high product yields, with most biotherapeutics in clinical and commercial use
produced using this mode [33,34]. However, maintaining optimal substrate feeding remains a major
challenge, requiring precise control to ensure consistent performance. Model Predictive Control
(MPC) has emerged as a powerful strategy to address this, leveraging predictive models to optimize
feeding decisions in real time [35,36]. Yet, the nonlinear and dynamic nature of high cell density
fermentations often limits the accuracy of purely mechanistic models, as parameter estimation and
unforeseen biological interactions degrade model reliability [33,37]. Hybrid modeling strategies help
mitigate these challenges by improving parameter adaptability, accounting for process nonlinearities,
and enhancing real-time prediction accuracy [38]. Integrating hybrid bioreactor process models with
MPC enhances the optimization and control of bioprocesses, particularly in complex systems like
high cell density fermentations, resulting in improved modelling accuracy, increased adaptability to
changing process conditions and real-time feed-back for increased process stability [39—41].

The selection of an appropriate expression system is a critical factor in recombinant protein
production, as it directly influences yield, functionality, and downstream processing. Among the
various platforms available, the methylotrophic yeast Pichia pastoris has emerged as a preferred host
over the past two to three decades for both research and industrial applications. It offers several
advantages, including ease of genetic manipulation, high transformation efficiency, and the ability to
achieve high protein titers both intracellularly and extracellularly [42,43]. Furthermore, P. pastoris
supports essential eukaryotic post-translational modifications such as glycosylation, disulfide bond
formation, and proteolytic processing, making it well-suited for producing complex proteins. Its
minimal native protein secretion simplifies purification, and its capacity for rapid growth in defined
media, along with robust genetic tools and stable expression over extended cultivation periods,
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strengthens its suitability for scalable production. These characteristics along with growing interest
in digital bioprocessing, make P. pastoris a strong candidate for hybrid model development and
advanced biomanufacturing strategies [44,45].

The QB coat protein virus-like particles (VLPs) are self-assembling, non-infectious
nanostructures derived from the bacteriophage Q. These VLPs have garnered significant attention
in biomedicine due to their uniform size, stability, and ability to present antigens in a repetitive, high-
density manner, which is highly effective in eliciting strong immune responses. Notably, Q@ VLPs
have been successfully utilized in vaccine development [46,47]. Furthermore, their versatility allows
for the encapsulation of various cargos, making them valuable in drug delivery and
nanotechnological applications. Qf VLPs can be efficiently produced in P. pastoris, a widely used
yeast expression system, which offers high-yield, cost-effective recombinant protein production with
proper protein folding and scalability for biopharmaceutical applications [48].

Recent work has explored hybrid modeling in recombinant P. pastoris cultivations,
demonstrating performance gains in process control, generalization, and scalability. Ferreira et al.
used a serial HNN, consisting of a three-layer feedforward neural network (FFNN) combined with
material balance equations, for dynamic modeling of P. pastoris GS115 expressing scFv in a 50 L pilot
bioreactor. This hybrid model was then applied for iterative batch-to-batch control, resulting in a 4-
fold increase in titer after four optimization cycles [12]. Pinto ef al. revisited the general bioreactor
hybrid model and introduced deep learning techniques. Multi-layer networks with varying depths
were combined with First Principles equations to form deep hybrid models. Techniques like ADAM,
stochastic regularization, and depth-dependent weight initialization were evaluated in this context.
The methods were applied to a synthetic E. coli dataset and a 50 L Mut* P. pastoris process expressing
a single-chain antibody fragment. Results showed significant improvements in generalization, with
an 18.4% increase in prediction accuracy and a 43.4% reduction in CPU time compared to shallow
models [10]. In another study, Pinto et al. developed a hybrid deep modeling method with state-space
reduction, applied to a P. pastoris G5115 Mut* strain expressing scFv. Deep FFNNs of varying depths
were combined with bioreactor material balance equations and trained using ADAM, semidirect
sensitivity equations, and stochastic regularization. A state-space reduction method, based on
principal component analysis (PCA) of the cumulative reacted amount, reduced model complexity
by 60% and improved predictive accuracy by 18.5%. Validation with data from nine fed-batch P.
pastoris 50 L cultivations highlighted optimization opportunities, with potential increases in scFv titer
of 30% and 80% by optimizing methanol feed and inorganic elements, respectively [9].

This study presents a hybrid deep learning model tailored to recombinant P. pastoris
fermentations, trained using a transfer-learning approach of historical and newly acquired batch
data, incorporating both at-line and in-line biomass measurements. The model architecture integrates
mechanistic knowledge with data-driven components to effectively capture the complex dynamics
of the fermentation process. The resulting model is integrated into a novel Model Predictive Control
framework, enabling adaptive feeding strategies and dynamic trajectory tracking. We validate the
approach through an experimental fermentation run, showcasing improved control precision and
enhanced process stability.

2. Materials and Methods

Experimental conditions

Cultivations were performed using a recombinant Pichia pastoris X-33 wild-type strain
producing Q3 coat protein VLPs. The construction of the expression vector and the selection of clones
for this specific producer are described in detail elsewhere [48].

The batch and feed media formulations were prepared following the “Pichia Fermentation
Process Guidelines” provided by Invitrogen Corporation [49]: 1.9 L of Basal Salts Medium (26.7
mL-L- HsPOs 85%, 0.93 g-L CaSOs, 18.2 g-L1 K504, 14.9 g-L1 MgSO+7H:0, 4.13 g-L-' KOH, 40.0
gL glycerol and 4.35 mL-L' PTM: trace element solution (0.02 g-L' HsBOs, 5 mL-L- H2504 98%, 6.0
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gL CuSO«+5H20, 0.08 gL' Nal, 3.0 gL' MnSO+H20, 0.2 gL' NaMoO+2H20, 0.5 gL
Ca2504-2H:0, 20.0 g-L* ZnClz, 65.0 g-L! FeSO4+7H20, 0.2 g-L* biotin)), was inoculated with 100 mL
of inoculum grown in BMGY medium (10.0 g-L-! yeast extract, 20.0 g-L-! peptone, 100 mM potassium
phosphate buffer, pH 6.0, 13.4 g-L-! yeast nitrogen base, 10.0 g-L-! glycerol, 0.0004 g-L-! biotin) at 30°C
for 18-22 h in a shake flask at 250 RPM. Two feeding solutions were used: a glycerol feed consisting
of 50% v/v glycerol and 12 mL-L! PTM1, and a methanol fed-batch solution composed of 100%
methanol with 12 mL-L-* PTM1.

The bioreactor vessel was filled with distilled water and sterilized at 121 °C for 30 minutes. BSM,
BMGY, and the glycerol fed-batch solutions were autoclaved separately under the same conditions.
The PTML1 trace element solution was sterilized by filtration using a 0.2 pm membrane filter.

Fermentations were carried out in a 5 L bench-top bioreactor (Bioreactors.net, EDF-5.4/BIO-4,
Latvia) with a working volume of 2-4L, as illustrated in Figure 2. The pH was continuously
monitored using a calibrated pH probe (Hamilton, EasyFerm Bio, Switzerland) and adjusted to
5.0 +0.1 with a 28% NH4OH solution prior to inoculation, then maintained at this value throughout
the process. Temperature was regulated at 30.0 0.1 °C using a temperature sensor and jacketed
vessel control. A thermostatic circulator (LKB Bromma, Multitemp II, Sweden) maintained the
cooling water at a preset temperature of 6 °C during experiments.

Dissolved oxygen (DO) levels were measured using a DO sensor (Hamilton, Oxyferm Bio,
Switzerland) and maintained above 30 +5% via a dual cascade strategy: adjusting the stirrer speed
between 200-1000 RPM (Cascade 1), and supplementing the inlet air with pure O, when necessary
(Cascade 2). A constant airflow or air/oxygen mixture at 3.0 slpm was sustained throughout the
fermentation. A condenser was employed to capture moisture from exhaust gases, and Antifoam 204
(Sigma) was added as needed to suppress excessive foam formation. Substrate feeding was controlled
with a high-precision peristaltic pump (Longer-Pump, BT100-2], China).

The cultivations began with a glycerol batch phase. After 18-20 hours, once the batch glycerol
was depleted, a glycerol fed-batch phase was initiated by feeding the reactor with a glycerol solution
at a rate of 0.61 mL-min™ for 4 hours, or until an optical density (OD) of 100-120 was reached.
Following a short feeding pause of 5-20 minutes—allowing the cells to consume any residual
glycerol—the substrate was switched to methanol. Methanol feeding proceeded in three phases:
initially at 0.12 mL-min! for 5 hours, then at 0.24 mL-min~! for 2 hours, and finally at 0.36 mL-min-,
which continued either until the end of the experiment or for 2-3 hours until the hybrid MPC control
was activated.

In experiments where real-time biomass concentration was monitored using an in-situ turbidity
probe (Optek-Danulat, ASD19-EB-01, Germany), the turbidity signal was correlated with biomass
concentration using an exponential calibration equation reported previously [50]. To enhance signal
reliability, an algorithm was implemented to correct for abrupt spikes caused by sudden process
disturbances. The details of this algorithm are provided in a separate publication [51].

Although the cultivation conditions were generally similar across all historical experiments,
some minor differences were present. For detailed information on these variations, as well as the
construction of the expression vectors and clone selection, we refer the reader to the original
publications [44,52].

Downstream processing of Qf VLPs

4.0 g of wet cells were resuspended in 20 mL of lysis buffer (20 mM Tris 8.0, 100 mM NaCl) and
disrupted by French press (4x 10,000 psi). The suspension was then centrifuged for 30 min at 18,500
g (4°C). Ammonium sulfate was added to the supernatant to 40% saturation and proteins precipitated
at 4°C for 60 minutes. The suspension was then centrifuged for 20 min at 18,500 g (4°C) and the
supernatant discarded. Precipitate was dissolved in 20 mM Tris 8.0 buffer and loaded onto Sepharose
4 Fast Flow size-exclusion column (12 mL volume) in lysis buffer at 0.3 mL/min. Peak fractions were
pooled and loaded onto anion-exchange Fractogel DEAE (M) column (5 mL volume) in lysis buffer
and eluted with a linear gradient of 20 mM Tris-HCl, 1 M NaCl pH 8.0 at 2 mL/min.
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Analytical measurements

Cell growth was observed by off-line measurements of dry cell weight (DCW), determined
gravimetrically. Biomass samples were placed in pre-weighted Eppendorf® tubes and centrifuged at
15’500 g for 5 minutes. Afterwards, the supernatant was discarded and the remaining wet cell
biomass weighted. DCW was calculated using a previously determined correlation coefficient

DCW=WCW *0.27 (1)

Protein samples taken during cultivation were analysed using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), with a 5% stacking and 15% separating
polyacrylamide gel (PAAG), according to standard protocols. To visualize the separated protein
bands, the gels were stained with 0.4% Coomassie Brilliant Blue G-250 dye.

Dataset for hybrid model training

The characteristics of the dataset of P. pastoris fermentation data used for the hybrid model
training is compiled in Table 1.

Table 1. Dataset of P. pastoris fermentations and parameter ranges used for hybrid model training.

Exp No. Strain, product Induction time,h DCW, g-L-1 Feed rate, mL-min! Venq, L Reference
1* GS115, HBcAg 65 37.5—101.6 0.12—0.78 2.85
2% GS115, HBcAg 45 40.6—113.5 0.12—1.00 3.09
3* GS115, HBcAg 43 41.2—120.1 0.12—0.98 3.13 [44,50]
4* GS115, HBcAg 50 59.2—120.1 0.12—0.36 2.54 ’
5* GS115, HBcAg 51 41.4—96.6 0.12—0.36 2.87
6 GS115, HBcAg 48 49.1—120.0 0.12—0.50 2.88
7 GS115, HBcAg 43 53.7—101.5 0.12—0.36 2.74 Unpublished
8 GS115, CA IX 54 44.1—-84.0 0.12—0.56 2.75 data
9* X-33, LegH 65 55.4—123.2 0.12—0.36 2.57
10* X-33, LegH 46 495—954 0.12—0.60 2.98
11 X-33, LegH 65 489—111.2 0.12—0.36 2.85
12 X-33, LegH 48 56.4—105.3 0.12—0.50 2.63
13 X-33, LegH 50 45.3—101.3 0.12—0.36 2.61 [52]
14 X-33, LegH 45 52.9—103.1 0.12—0.36 2.55
15 X-33, LegH 46 45.1—101.3 0.12—0.36 2.52
16 X-33, LegH 65 51.0—101.7 0.12—0.36 2.66
17 X-33, LegH 46 50.6—92.4 0.12—0.60 3.00
18 X-33, QB 65 52.5—117.6 0.12—0.49 3.23
19 X-33, QB 48 49.3—117.2 0.12—1.00 3.40 This research
20 X-33, QB 55 50.1—107.7 0.12—0.36 2.84

*Experiments with real-time turbidity measurements.

Hybrid process model structure and training

The general structure of the hybrid process model is illustrated in Figure 1. The input layer
comprises five variables: substrate feed rate (Fs, mL-min™), dry cell biomass concentration (X, g-L™),
product concentration (P, mg-L™), culture medium volume (V, L), and an empirical shock factor (Sh)
representing the cumulative toxic effect of methanol on the cells. To enhance model training
efficiency and convergence, the sequence input layer incorporates normalization of the input features
by scaling each sequence sample to the [0, 1] range using the minimum and maximum values
computed over the entire dataset The output layer provides three variables: the specific cell growth
rate (i, h™), production rate (qe, h™), and the rate of change of the shock factor (k;). The optimal
composition of hidden layer structure was investigated in further steps.

The outputs of the non-parametric model are then passed to the parametric component, which
captures the dynamics of the state variables using a system of ordinary differential equations (ODEs)
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derived from macroscopic and/or intracellular material balances, as well as other relevant physical
assumptions. The only external inputs to the model are the aforementioned substrate feed rate (Fs)
and the volumetric flow rate (F), which is calculated by the following equation:
F:F;+Fb+FAF_F;2vp(2)
where Fv and Far are the added base and antifoam solution flow rates (mL-min™) and Fevp is the
determined culture evaporation rate (0.11 mL-min™).

Input layer Hidden layers Output layer 1F

Figure 1. Overview of the hybrid model structure.

The loss function was defined as normalized root mean square error (NRMSE):

L i-yit)?
NRMSE =Y—"—100% (3)

Ymax~Ymin
where n is the number of training samples, y: represents the measured values, yi* is the

corresponding predicted variables, and ymi» and ym« denote the minimum and maximum values for
the dataset, respectively.

To fully utilize the real-time cell biomass sensor data, each process dataset was segmented into
60 equally spaced batches using an interleaved batching approach. Given a time-series dataset
consisting of N total time points {ti, t2, ..., tv} and a chosen number of segments k = 60, each batch B;
(forj=1,2, ..., 60) was constructed by selecting every k-th time point starting from offset j. This can
be expressed mathematically as:

Bj={tjli=j+nkn€Nyj+nk <N} (4

This approach ensures that each batch contains a temporally distributed subset of the full
dataset, preserving temporal variability and aiding in model generalization. For instance, Batch 1
contains {t1, te1, ti21, ...}, Batch 2 includes {f, te2, ti22, ...} and so on, up to Batch 60. Because time-series
data were recorded at one-minute intervals, this batching scheme effectively introduced a consistent
60-minute gap between successive data points within each batch. As a result, it enabled the estimation
of average dynamic rates (e.g., biomass growth or product formation) on an hourly basis—an
appropriate timescale for bioprocess interpretation and modeling. This method is particularly
suitable for sequence-based machine learning models, as it ensures a diverse temporal representation
in each training segment.

In experiments where only sparse experimental measurements were available, interpolation was
necessary to ensure that each segmented batch contained the corresponding measurement values at
the correct time points. To achieve this, piecewise cubic Hermite interpolating polynomial (PCHIP)
interpolation was applied to the time-series data. This approach generated estimated values at all
necessary time points, thereby ensuring that each batch contained a continuous and temporally
consistent signal aligned with the original, sparsely sampled experimental measurements.
Importantly, to preserve the integrity of model evaluation, NRMSE was computed only at the original
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measurement time points, ensuring that model performance was assessed strictly against
experimentally observed data rather than interpolated estimates.

Prior to model training, a validation dataset was created by randomly selecting 10% of the
original time-series data. Specifically, six batches were sampled from each fermentation experiment
to form the validation partition. This subset was held out during training and used exclusively to
monitor model performance, assess generalization to unseen data and as an early-stopping criterion
for training.

The hybrid process model was trained using the Adaptive Moment Estimation (ADAM)
optimization algorithm, which combines the advantages of both momentum-based and adaptive
learning rate methods [20]. The optimizer was configured with standard recommended parameters:
an initial learning rate ao = 0.001, first moment decay rate f:=0.9, second moment decay rate 52 =
0.999, and a small numerical stability constant ¢ = 10-. To facilitate stable convergence and mitigate
overfitting, an exponential learning rate decay strategy was employed, where the learning rate was
gradually decreased every 100 epochs from 0.001 to 0.0001 by a calculated decay factor over the
course of training, as per the formula:

a(t) = a <yl (5)

where, a(t) is the learning rate at epoch t and the learning rate decay factor y = 0.9007.

This gradual decay enabled the model to make larger updates early in training and finer
adjustments in later stages, facilitating both rapid convergence and precise parameter tuning. Each
epoch, the training dataset was randomly shuffled and divided into six minibatches to support
optimization using the ADAM algorithm. This randomization reduced the risk of learning spurious
temporal or sequential dependencies and enhanced generalization. The use of minibatches, combined
with ADAM'’s adaptive learning rate mechanism further improved training efficiency and
convergence reliability.

Hybrid model training was performed using a custom training script developed in the
MATLAB environment (MathWorks, R2024b, USA), leveraging the Deep Learning Toolbox. Training
was conducted on a personal computer equipped with an Intel i5-6600 CPU (3.30-3.90 GHz) and 16
GB of RAM. The training script was parallelized to enable simultaneous training of multiple
networks. For parallel training tasks, the High-Performance Computing (HPC) cluster of Riga
Technical University (RTU) was utilized in conjunction with the personal computer.

Hybrid model architecture screening

To efficiently identify the optimal hidden layer architecture for the hybrid model, a multi-step
strategy was implemented. First, a Bayesian optimization approach was employed. This method
systematically explores the hyperparameter space by building a probabilistic model of the objective
function, enabling informed and efficient searches for the best-performing network configurations
with fewer training iterations compared to traditional grid or random search methods.

To accelerate the screening process, networks were trained in parallel for a limited duration of
10 epochs (corresponding to 90 iterations) using an elevated initial learning rate of ao=0.01. This
higher learning rate was chosen to promote faster convergence during early training, enabling
quicker identification of promising model architectures without the need for extensive training. Only
historical experimental data (Exps. 1-17) was used in this step, to ensure the model adapted its
parameters based on well-established process dynamics before being fine-tuned with the new Qf
dataset, thereby improving generalization and robustness during transfer learning. Validation loss
was used as the primary performance criterion during the grid search, as it provides a more reliable
measure of the model’s ability to generalize to unseen data and helps prevent the selection of
overfitted architectures. Corrected Akaike information criterion (AICc) was used alongside
validation loss as a performance criterion to account for model complexity, ensuring that selected
architectures not only fit the data well but also avoid overparameterization, which can hinder
generalization:

AlCc = nin(L) + 2k + 2ED (g

n—-k-1
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where k is the number of model parameters, L is the loss function value (NRMSE, %), and # is
the number of observations (sample size).

For the initial optimization phase, several key hyperparameters were selected to systematically
investigate their impact on model performance. These included the choice of the first hidden layer
type—either LSTM or fully connected (FC). The number of subsequent fully connected layers was
varied between one and two to assess the effect of network depth. Additionally, the activation
functions within the fully connected layers were optimized, considering options such as ReLU, Leaky
ReLU(0.01), Tanh, or no activation, to evaluate how different nonlinearities affect learning. Finally,
the number of hidden units or nodes in each layer was explored within a range of 1 to 5, enabling
fine-grained control over model capacity and complexity. This amounts to 8,000 possible parameter
combinations. The Bayesian optimization algorithm was executed 10 times, each run consisting of
200 iterations. The best-performing model architecture with the lowest validation loss from each run
was saved for further evaluation.

In the second step, the scope of the parameter search was narrowed to focus on the activation
function (ReLU, Leaky ReLU, Tanh, or none), the number of LSTM hidden units (ranging from 1 to
5), and the number of fully connected layer nodes (ranging from 1 to 10). The upper limit for LSTM
hidden units was intentionally kept low to prevent overparameterization, as each additional LSTM
unit substantially increases the total number of trainable parameters. In contrast, the number of FC
layer nodes was expanded up to 10 based on favorable results observed in the previous optimization
step, where larger FC layers contributed to improved model performance without incurring excessive
computational cost. With only 200 possible combinations, a full grid search was conducted during
the second screening step. Each network architecture was evaluated across 10 training runs, and only
the best-performing candidate was retained for each parameter combination. To balance validation
loss with model complexity and mitigate overparameterization, a loss vs. AICc plot was generated
to identify the Pareto front (Figure A1l). From this front, five network architectures that best balanced
low validation loss and favorable AICc values were selected for further evaluation.

In the third step, the selected models were trained in full for 20,000 iterations, and their
predictive performance was assessed using validation loss. The best-performing model was chosen
as the optimal network configuration for the specific hybrid process model. Finally, the impact of
incorporating a dropout layer within the finalized hybrid model architecture was thoroughly
investigated to assess its effect on model robustness and generalization performance.

Hybrid model transfer learning

To leverage the selected trained hybrid model for a new experimental dataset involving Qf
production, a transfer learning approach was applied. The previously optimized model architecture,
trained on the historical dataset, served as the starting point. All model weights were initialized from
this pre-trained network to retain learned temporal and process dynamics. To adapt the model to the
Qp dataset, only the final fully connected layer was unfrozen and fine-tuned using the new data,
while the LSTM unit—capturing general process behavior —was kept fixed. This strategy allows the
model to efficiently adapt to the specific characteristics of the Q3 process while preserving useful
generalizations from the original training, thereby reducing training time and improving predictive
accuracy with limited new data. Experiment 20 was used for testing loss calculation.

Model Predictive Control (MPC) architecture

A comprehensive model predictive control framework was developed and implemented,
leveraging the advanced hybrid process model. The main task of the MPC controller was to track a
pre-selected growth trajectory close to the maximum specific growth rate of the cells.

The MPC algorithm was implemented to dynamically estimate the optimal substrate feed rate,
F4(t), required to maintain a desired specific growth rate, p(t). In the developed hybrid modeling
framework, the substrate feed rate served as an input, while the specific growth rate was one of the
predicted outputs. Due to the non-invertible structure of the hybrid model, analytical inversion to
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compute Fy(t) from a given p,..(t) was not feasible. Consequently, a numerical optimization approach
was employed at each control step using MATLAB’s bounded nonlinear optimization function
fminbnd, which searched for the optimal feed rate within specified operational constraints. The
optimization problem at each time step was formulated as:

min L TR0 = e ()P (7)

Fs€[0.36,1.00] mL min
subject to the hybrid model dynamics:

x(k +1) = frypria(x(k), Fs (k) (8)

where x(k) is the vector of the state variables, and p(k) is the predicted specific growth rate at
step k. The control horizon was set to N: = 1 hour and the prediction horizon to N, = 12 hours. The
hybrid model itself was simulated with a finer sampling time of 1 minute to ensure accurate forward
predictions, while the MPC made decisions on an hourly basis.

To improve model accuracy and adaptability, the hybrid model was retrained after each
sampling (approx. three times per day). Each time, the newly measured biomass concentration,
Xmeas(t), was appended to the training dataset, and the model parameters were updated to reflect the
latest process dynamics.

The MPC framework was experimentally validated in a P. pastoris fed-batch fermentation under
the methanol-inducible AOX1 promoter. Real-time process data, including substrate feed rate, base
and antifoam addition, were integrated into MATLAB via an OPC server, enabling seamless
bidirectional communication with the SCADA system. A more technical description is available
elsewhere [33]. This real-time data integration allowed the MPC to adjust the substrate feed rate
based on actual process conditions.

MPC was initiated after methanol adaptation, typically 8-10 hours after inoculation. The growth
rate setpoint yis.(t) was scheduled in a step-wise fashion to reflect the physiological limits of the cells:
an initial value of 0.04 h-! was maintained for the first 12 hours, followed by reductions to 0.02 h-
and 0.01 h? at 12-hour intervals. This trajectory was selected to optimize productivity while
preventing metabolic overload during prolonged methanol feeding.

3. Results

3.1. Optimal hybrid model architecture screening

The Bayesian optimization approach was effectively employed to identify optimal hybrid model
architectures. Although not all configurations within the design space were explored, the method
yielded valuable insights while substantially narrowing the range of candidate architectures. This
efficiency stems from the Bayesian framework’s ability to prioritize promising regions of the
hyperparameter space, reducing the number of models requiring evaluation. The ten best-performing
network architectures, ranked by their validation loss, are summarized in Table 2.

Table 2. Summary of the ten best-performing architectures from Bayesian optimization screening.

First layer type No. of FC layers Hidden units Nodes Activation Validation No. of AlCc
Loss (%) parameters
5 5 Tanh 9.73 268 2417
5 5 LeakyReLu 10.07 268 2431
5 4 Tanh 10.17 259 2312
1 5 ReLu 10.26 56 1126
5 5 Tanh 10.37 268 2444
LSTM 1
3 5 Tanh 10.42 146 1448
4 5 None 10.51 203 1783
5 5 Tanh 10.68 268 2457
4 5 ReLu 10.75 203 1792
5 4 Tanh 11.30 259 2358
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The results of the Bayesian optimization screening indicate that while individual performance
metrics varied across architectures, consistent structural trends emerged among the top-performing
models. Notably, all ten selected architectures include an LSTM layer as the first hidden layer,
emphasizing the importance of temporal feature extraction in capturing the dynamics of the process.
This is followed in each case by at least one fully connected layer, which likely contributes to
nonlinear transformation and mapping of the LSTM outputs to the target outputs. This consistent
architectural pattern suggests that the hybrid model benefits from a sequence-aware representation
(via LSTM), followed by flexible function approximation (via FC layers). Although the activation
functions and number of units varied, these two structural components formed the core of the most
effective configurations, reinforcing their critical role in model performance.

In the subsequent step, a comprehensive grid search was conducted across the full domain of
feasible network architectures to investigate the optimal number of hidden units, node counts, and
activation functions for the hidden layers. This systematic approach enabled an exhaustive
evaluation of all combinations of relevant hyperparameters, ensuring that no potentially optimal
configuration within the predefined design space was overlooked. To mitigate the risk of network
overparameterization, AICc values were evaluated in parallel with validation loss. Candidate
architectures from the Pareto front of the Loss vs. AICc plot (Figure Al) were identified as the most
promising, and their configurations are detailed in Table 3.

Table 3. Summary of the best-performing architectures from grid search screening.

Validation Loss No. of

Hidden units Nodes Activation AlICc
(%) parameters

5 9 LeakyReLu 8.85 304 3050
4 10 LeakyReLu 9.27 243 2092
3 6 LeakyReLu 9.29 153 1427
3* 5 LeakyReLu 9.37 146 1403
2% 10 LeakyReLu 9.68 127 1334
2% 9 Tanh 9.99 121 1316
2% 8 ReLu 10.03 115 1302
1* 9 Tanh 10.26 76 1189
1 6 LeakyReLu 10.21 61 1139
1 4 ReLu 10.25 51 1112
1 1 Tanh 10.36 36 1079

* Network architectures selected for the next optimization step.

To ensure a balanced trade-off between predictive accuracy and model complexity, the middle
five architectures from the Pareto front were selected for further optimization. These architectures,
indicated with an asterisk in Table 3, offer a pragmatic compromise: they demonstrate competitive
validation losses (ranging from 9.37% to 10.26%) while maintaining a relatively low number of
trainable parameters (between 76 and 146). This subset effectively spans the central region of the
Pareto front, avoiding both the highly complex models at the top—which, despite slightly better
accuracy, incur significantly higher parameter counts and AICc values—and the simplest models at
the bottom, which show diminishing returns in terms of validation loss. By focusing on this middle
range, the selected architectures are expected to generalize well while remaining computationally
efficient and less prone to overfitting.

In the final step, the five selected network architectures underwent an extensive evaluation to
rigorously assess their stability and predictive performance. Each architecture was trained
independently across 10 separate runs, with each training session lasting 20,000 iterations. This
repeated training procedure helped account for variability due to random initialization and stochastic
optimization effects, ensuring a robust comparison of model reliability and convergence behavior.
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The results, including key performance metrics such as validation loss and generalization capability,
from every network’s best session, are summarized in Table 4.

Table 4. Summary of the best-performing network architectures.

Validation Loss No. of

Hidden units Nodes Activation AICc
(%) parameters
3 5 LeakyReLu 7.28 146 1294
2 10 LeakyReLu 6.37 127 1155
2 9 Tanh 8.14 121 1236
2 8 ReLu 4.93 115 998
1 9 Tanh 8.27 76 1090

Training results indicate that the optimal network architecture comprises 2 hidden units in the
LSTM layer, 8 fully connected layer nodes, and utilizes a ReLU activation function. This configuration
achieved the best performance, with a validation loss of 4.93% and the lowest AICc value of 998
among all evaluated models, demonstrating an excellent balance between predictive accuracy and
model complexity. The training graphs are shown in Figure 2.

Training Loss

3 3 Validation Loss
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Figure 2. Training plots for the 5 best-performing network architectures.

The inclusion of a dropout layer with varying probabilities (ranging from 0.1 to 0.5) was
systematically evaluated. The results showed that increasing the dropout rate consistently led to
higher validation losses. Even a modest dropout probability of 0.1 negatively impacted model
performance, suggesting that the selected network architecture is already sufficiently regularized and
relatively simple. In such cases, the additional noise introduced by dropout appears to hinder
learning rather than mitigate overfitting. This outcome implies that the model generalizes well
without further regularization, and applying dropout may introduce unnecessary instability or lead
to underfitting. Moreover, the observation may reflect the nature of the dataset, which is likely clean
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and of limited size —conditions under which every training instance is valuable and even minimal
information loss (through activation masking) can reduce training efficiency.

3.2. Adapting the hybrid model to Qp dataset with Transfer Learning

Finally, the already trained optimal hybrid model was adapted to the new dataset (Qf
fermentations) using transfer learning. The LSTM layer weights were frozen, allowing the network
to retain useful generalizations from the original training.

The resulting network demonstrated strong predictive performance, achieving a training loss of
3.18%, a validation loss of 3.53%, and a testing loss of 5.61%. Additionally, the corrected AICc value
was 856, reflecting a favorable balance between model complexity and goodness of fit. Together,
these metrics indicate that the hybrid model effectively captured the underlying dynamics of the
experimental dataset while maintaining generalization to unseen data (Figure 3).
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Figure 3. Prediction of the dynamic profiles of variables (X, P, V, Sh) modeled with the trained hybrid network.

Asiillustrated in Figure 3, the hybrid model demonstrated strong predictive capability by closely
capturing the dynamic behavior of the modeled variables throughout the fermentation process.
Quantitatively, the model achieved a NRMSE of 1.68% for biomass concentration (X), indicating high
accuracy in cell growth prediction, and 9.54% for product concentration (P), reflecting reliable
estimation of recombinant protein production.

3.3. Hybrid MPC experimental validation

To evaluate the practical applicability and effectiveness of the hybrid MPC framework,
experimental validation was carried out controlling the feed rate in an actual fermentation run. This
allowed for assessment of the system’s ability to predict and regulate key bioprocess variables in real-
time. The results can be seen in Figure 4.
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Figure 4. Hybrid MPC modeling performance during experimental validation.

The tracking accuracy of cell biomass (X) by the hybrid model can be characterized as moderate.
Notably, the model failed to adequately capture the physiological adaptation phase of P. pastoris to
methanol during the first 8-12 hours following induction—a period in which cellular growth is
minimal or absent. As a result, predictions during this early phase were consistently higher than
observed values. In the later stages of fermentation, the model exhibited a tendency to overestimate
biomass concentration. To compensate for this discrepancy, manual adjustments to the biomass
profile were introduced during model re-training, following the availability of offline sampling data.
Despite these limitations, the model achieved an overall NRMSE of 6.51% for biomass prediction,
indicating acceptable predictive performance.

With respect to product concentration (P), the model similarly demonstrated a tendency to
overestimate values across the fermentation timeline. This resulted in an average NRMSE of 14.65%,
suggesting moderate accuracy in modeling recombinant protein production dynamics.

Although the predictive accuracy of the model was not exemplary —particularly in tracking
certain state variables with high precision —it nonetheless demonstrated strong performance in its
control functionality. Specifically, the model was able to generate robust and reliable feed rate
profiles, effectively regulating substrate addition to maintain the desired specific growth rate
throughout the fermentation process. This highlights the strength of the hybrid MPC framework in
achieving process objectives, even in the presence of moderate prediction errors. The p tracking
results are presented in Figure 5.
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Figure 5. Target vs experimental biomass growth, specific growth rate and feed rate plots. Vertical lines in the
Feed rate plot indicate p shifts.

The hybrid MPC system demonstrated good performance in tracking the specific growth rate
set-point over the course of the fermentation. However, similar to the behavior observed in the
prediction model, a slight deviation from the target biomass trajectory was noted during the final 12
hours of the process—particularly after the specific growth rate was reduced to 0.001 h-. This
deviation is likely attributable to the cytotoxic effects of methanol accumulation, which can impair
cellular metabolism and inhibit biomass formation in the later stages of fermentation. This
phenomenon is further reflected in the growth rate tracking plot, where the measured specific growth
rate was consistently lower than the target value during this terminal phase.

Overall, while minor discrepancies emerged toward the end of the process, the control system
maintained a high degree of accuracy in regulating growth for the majority of the fermentation,
underscoring its effectiveness and reliability under realistic bioprocessing conditions.

4. Discussion

This study highlights the efficiency of Bayesian optimization in identifying high-performing
hybrid neural network architectures for dynamic bioprocess modeling. By concentrating on the most
promising regions of the hyperparameter space, as demonstrated in neural architecture search
literature [53], Bayesian optimization substantially reduces the number of candidate configurations
compared to exhaustive strategies like grid or random search. A consistent architectural pattern
emerged among the top models: an LSTM layer followed by one or more fully connected (FC) layers.
This aligns with findings that temporal feature extraction via LSTM is critical in sequence modeling,
especially in bioprocess contexts [54]. The FC layers then effectively map these temporal
representations into nonlinear predictive outputs.

The grid search extended this exploration and employed AICc alongside validation loss to avoid
overfitting. This Pareto front strategy is known to balance model complexity and accuracy [31].
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Selecting architectures from the mid-section of the Pareto front ensured efficient, generalizable
models without unnecessary computational burden.

Robustness was confirmed through repeated training of the selected architectures, mitigating
variability from random initialization. The best-performing model —a minimal architecture with 2
LSTM units and 8 FC nodes —achieved the lowest validation loss and AICc, illustrating that compact
models can deliver strong performance. This has practical implications for real-time applications,
where computational efficiency and stability are critical. Interestingly, dropout regularization
consistently worsened performance, in contrast to its typical use in neural networks [55]. This
suggests that for relatively clean and small datasets, additional noise can lead to underfitting rather
than preventing overfitting, corroborating findings in Bayesian LSTM studies [56].

In summary, the structured workflow —combining Bayesian optimization, exhaustive grid
search, and performance validation—successfully identified robust and efficient hybrid models.
These findings offer valuable guidance for developing data-driven models in bioprocessing,
particularly where data is limited and interpretability and computational efficiency are priorities.

The application of transfer learning significantly enhanced predictive modeling in Qf
fermentation. By freezing the pretrained LSTM layer, the model effectively retained temporal feature
representations learned from the original fermentation dataset—an approach aligned with known
benefits of sequential inductive transfer learning, where pretrained layers serve as robust feature
extractors.

Performance metrics indicate robust predictive capability: training loss of 3.18%, validation loss
of 3.53%, and testing loss of 5.61%, alongside an AICc value of 856. These figures suggest the model
strikes a favorable balance between complexity and fit, as AICc penalizes excessive parameters.
Figure 3 illustrates that the hybrid model accurately tracks the dynamic behavior of key process
variables throughout the fermentation. Notably, the NRMSE of 1.68% for biomass (X) reflects
excellent predictive accuracy, while a 9.54% NRMSE for product concentration (P) indicates reliable
estimation of recombinant protein output—performance consistent with successful domain
adaptation observed in bioprocess transfer learning studies.

Overall, these results highlight that freezing the LSTM backbone preserves essential time-series
features, enabling efficient adaptation to new but related bioprocesses. This echoes broader evidence
that transfer learning, particularly with LSTM architectures, reliably enhances performance in data-
constrained scenarios [27]. The QP model's strong performance, with an experimental dataset of only
3 fermentation runs, underscores the hybrid model's generalizability, positioning this approach as a
promising strategy for rapid deployment in diverse fermentation contexts.

To assess the practical utility of the hybrid MPC framework, a real-time control experiment was
conducted involving feed rate adjustment in an actual P. pastoris fermentation (Figure 4). This exercise
evaluated the framework’s ability to predict and regulate critical bioprocess variables during active
operation. The hybrid model achieved a biomass NRMSE of 6.51%, indicative of moderate accuracy.
However, the model struggled during the 8-12 hour adaptation phase following methanol induction,
consistently overestimating X—likely due to the challenge of capturing initial physiological delays.
During later stages, persistent biomass overestimation required offline-informed manual corrections,
a common issue in MPC applications where adaptation lags affect real-time feedback control. Again,
the model tended to overpredict P, with an average NRMSE of 14.65%, revealing moderate accuracy
in tracking recombinant protein dynamics.

Despite prediction inaccuracies, the hybrid MPC effectively maintained the target specific
growth rate (i) via robust feed profiles (Figure 5). This demonstrates the framework’s resilience and
ability to meet control objectives even under prediction uncertainty. However, in the final 12 hours—
particularly after u dropped to 0.001 h™' —deviations emerged. These were likely driven by methanol-
induced cytotoxicity, which reduced cellular metabolism and hindered biomass formation.

The hybrid MPC system showed strong real-time control capabilities, effectively regulating
substrate feed to meet specific growth objectives throughout most of the fermentation. Prediction
errors were manageable and did not significantly impair overall control performance. The observed
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late-stage deviations underscore the importance of incorporating biological stress factors —such as
methanol toxicity —into model formulations.

This validation confirms that hybrid MPC, built on data-driven hybrid models, is a viable
strategy for real-world bioprocess control. Future work should focus on refining model
representations—possibly by including toxicity effects—and improving early-stage adaptation
dynamics. Doing so would further enhance both predictive fidelity and control reliability, supporting
broader application in fermentation-based production workflows. Also, a reliable estimator for
recombinant protein concentration should be included in the MPC framework to provide accurate
and reliable estimations to use for hybrid model re-training during operation.

5. Conclusions

This study presents a comprehensive framework for hybrid modeling and control of P. pastoris
fed-batch fermentations, integrating deep learning with model predictive control (MPC). The use of
Bayesian optimization proved effective in identifying efficient and accurate hybrid neural network
architectures, with consistent structural trends —namely, the inclusion of an LSTM layer followed by
fully connected layers —emerging among top-performing models. A complementary grid search,
guided by AICc and validation loss, enabled the selection of models that balance accuracy with
computational simplicity.

Transfer learning was successfully employed to adapt the optimal hybrid model to Qf
fermentation data, achieving strong predictive performance while preserving generalizable temporal
features. This highlights the model's flexibility and potential for rapid adaptation to new, yet related,
bioprocesses—an important capability in multiproduct biomanufacturing environments.

Experimental validation of the hybrid MPC framework demonstrated reliable real-time control
of the fermentation process, despite moderate prediction errors in biomass and product
concentration. Notably, the system maintained accurate regulation of the specific growth rate
throughout most of the process, underscoring its practical robustness.

In summary, this work establishes a robust, adaptable, and computationally efficient hybrid
modeling approach for model predictive bioprocess control. The combination of automated
architecture search, transfer learning, and MPC provides a scalable methodology for accelerating
digital twin deployment in industrial biotechnology. Future work should aim to enhance biological
realism and expand generalizability across strains and production conditions.
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Appendix A
Appendix A.
Loss vs AlCc with Pareto Front
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Figure A1. Pareto front, demonstrating the best model architectures, considering Loss and AICc. L stands for
LSTM layer hidden units, F — for FC hidden nodes, followed by activation function. For example, L4-F10-
leakyrelu is an LSTM layer with 4 hidden units, followed by a FC layer with 10 nodes and leaky relu activation.
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