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Abstract 

 

Hybrid modeling techniques are increasingly important for improving predictive accuracy and 

control in biomanufacturing, particularly under data-limited conditions. This study focuses on the 

development and experimental validation of a hybrid deep learning model predictive control (MPC) 

framework for fed-batch P. pastoris fermentations producing recombinant proteins. Bayesian 

optimization and grid search were employed to identify optimal network architectures, revealing 

that models combining LSTM layers with fully connected layers provided the best balance between 

prediction accuracy and computational efficiency. The top-performing architecture was adapted to a 

new dataset involving bacteriophage Qβ coat protein production using transfer learning, yielding 

strong predictive performance with low validation and test losses. Experimental implementation of 

the novel hybrid MPC system demonstrated robust real-time control of substrate feeding to maintain 

target specific growth rates. While moderate discrepancies were observed in biomass and product 

predictions—particularly during the methanol adaptation phase and late-stage cytotoxic 

conditions—the controller effectively regulated process dynamics. These findings suggest that hybrid 

neural networks, when integrated with MPC and refined through automated architecture selection, 

offer a practical and generalizable solution for real-time control in microbial bioprocesses. This work 

provides a validated framework for deploying hybrid digital twins in fermentation and highlights 

the need to account for physiological effects in future models. 

Keywords: Pichia Pastoris; hybrid process model; deep learning; Bayesian optimization; hybrid model 

architecture screening; transfer learning; model predictive control; hybrid MPC 

 

1. Introduction 

The inherent complexity of biological systems—characterized by interconnected subsystems 

and nonlinear dynamics— presents enduring challenges for effective bioprocess monitoring and 

control. Mathematical modeling offers a powerful means to capture and manage this complexity [1]. 

Over the past few decades, such models have become indispensable in understanding and 
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optimizing bioprocesses, benefiting from advances in computational capabilities and analytical tools. 

This progress has led to the adoption of advanced modeling approaches, such as genome-scale 

metabolic models and computational fluid dynamics simulations [2,3]. With the advent of Industry 

4.0, modeling has taken on an even more prominent role in the digital transformation of 

biomanufacturing [4]. However, the limitations of mechanistic models—particularly their reliance on 

complete system knowledge—have prompted interest in alternative strategies. As a result, machine 

learning techniques are gaining traction, offering flexible, data-driven alternatives that can extract 

insights without relying on fully defined system knowledge—supporting next-generation bioprocess 

digitalization [5–8]. 

To bridge this gap, hybrid neural network (HNN) models have emerged as a compelling 

solution, integrating domain knowledge with data-driven flexibility [9–14]. These models combine 

the structure of mechanistic frameworks (e.g., mass or energy balances) with the flexibility of data-

driven components such as ANNs, effectively leveraging both physical laws and empirical data 

[15,16]. A typical use case involves modeling unknown or complex kinetics using neural networks 

within a differential equation-based framework. Compared to purely nonparametric models, hybrid 

approaches often yield more accurate, generalizable, and interpretable results—leading to more 

robust bioprocess operation and control [17]. The recent surge in deep learning methodologies has 

further enhanced hybrid modeling by enabling neural networks to approximate intricate biological 

functions, as deep neural networks (DNNs) with multiple hidden layers have demonstrated superior 

capacity for learning hierarchical and compositional functions with fewer parameters and reduced 

sample complexity compared to shallow architectures [9,10,18]. As such, hybrid deep learning 

models are emerging as a powerful tool in the development of digital twins and advanced bioprocess 

monitoring systems. 

In parallel, deep learning developments have expanded modeling capabilities across bioprocess 

applications. DNNs, through their multilayered architectures, enable the extraction of hierarchical 

and compositional features, allowing for the accurate approximation of highly nonlinear biological 

dynamics [18,19]. These models have demonstrated strong performance across a range of 

bioprocessing tasks, including soft sensing, anomaly detection, forecasting, and system identification, 

particularly when applied to high-resolution data streams generated by modern process analytical 

technologies (PAT). Long Short-Term Memory (LSTM) networks, designed to retain temporal context 

over extended time horizons, have proven especially valuable for modeling dynamic bioreactor 

cultivations. When coupled with mechanistic models, LSTMs form powerful hybrid frameworks 

capable of accurately capturing both short-term variability and long-term process trends [11]. Critical 

to the effective training of such deep architectures are modern optimization and activation strategies: 

the rectified linear unit (ReLU) activation function addresses vanishing gradient problems, while the 

Adaptive Moment Estimation (Adam) optimizer accelerates convergence and enhances 

generalization through adaptive learning rate adjustments [10,20]. Collectively, these innovations 

position deep hybrid modeling as a central enabler of next-generation digital twins for real-time 

monitoring, control, and optimization in biomanufacturing. 

However, training deep models requires extensive, high-frequency datasets that are often 

unavailable in bioprocessing due to high costs, long cultivation times, and sensor limitations [21]. In 

early-stage bioprocess development or pilot-scale operations, datasets typically contain only a small 

number of replicates per condition, resulting in limited coverage of the process space and insufficient 

diversity to support generalizable deep models [22]. Bioprocess data is typically noisy, 

heterogeneous, and expensive to generate, posing a major bottleneck for training deep architectures. 

Such data limitations have accelerated the adoption of hybrid modeling frameworks, which leverage 

both prior process knowledge and empirical data. The promising approach of integrating historical 

process data through transfer learning frameworks can significantly improve prediction accuracy 

and reduce the need for extensive new experimental data [23,24]. 

Transfer learning (TL) in deep neural networks involves repurposing a model trained  on a 

source task to enhance learning on a related target task, especially when labeled data are scarce. By 
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leveraging pre-trained models—often developed on large, generic datasets—TL facilitates improved 

convergence speed, generalization, and computational efficiency compared to training from scratch 

[25,26]. In bioprocess engineering, TL enables the adaptation of models trained on well-characterized 

systems to predict dynamics in novel or data-limited processes. For instance, TL has been successfully 

applied to model microalgal bioprocess dynamics using limited time-series data, achieving high 

accuracy in forecasting process behavior [27] and for the quantification and identification of cellular 

phenotypes from high-content microscopy images [28]. 

Despite its advantages, TL poses challenges such as negative transfer, which occurs when source 

and target domains are insufficiently aligned, and catastrophic forgetting during fine-tuning [29]. 

Effective transfer requires careful selection of source models, layer-freezing strategies, and learning 

rate tuning to preserve useful features while adapting to the new task. In bioprocess applications, 

these considerations are critical due to the heterogeneity of biological systems and the frequent lack 

of large annotated datasets. Nevertheless, TL remains a promising strategy—especially when 

combined with hybrid modeling approaches that integrate mechanistic insights with data-driven 

learning [30]. 

Deep neural network architecture screening typically involves systematic strategies to identify 

optimal model configurations and hyperparameters. Common methods include grid search, which 

exhaustively evaluates combinations within a predefined parameter grid [31]. While easy to 

implement and parallelize, grid search becomes computationally expensive as the number of 

hyperparameters increases. Random search improves efficiency by sampling configurations at 

random, often outperforming grid search in high-dimensional spaces where only a few parameters 

significantly affect performance [31]. A more advanced and efficient approach is Bayesian 

optimization, which builds a probabilistic surrogate model (e.g., Gaussian Process) to predict 

performance and selects promising configurations using acquisition functions like Expected 

Improvement [32]. This strategy significantly reduces the number of required evaluations and is 

especially valuable when model training is computationally costly. Several studies confirm that 

Bayesian optimization typically outperforms traditional approaches in terms of sample efficiency and 

final model performance [31,32]. 

As the dominant production mode, fed-batch fermentation remains widely used due to its 

robustness and high product yields, with most biotherapeutics in clinical and commercial use 

produced using this mode [33,34]. However, maintaining optimal substrate feeding remains a major 

challenge, requiring precise control to ensure consistent performance. Model Predictive Control 

(MPC) has emerged as a powerful strategy to address this, leveraging predictive models to optimize 

feeding decisions in real time [35,36]. Yet, the nonlinear and dynamic nature of high cell density 

fermentations often limits the accuracy of purely mechanistic models, as parameter estimation and 

unforeseen biological interactions degrade model reliability [33,37]. Hybrid modeling strategies help 

mitigate these challenges by improving parameter adaptability, accounting for process nonlinearities, 

and enhancing real-time prediction accuracy [38]. Integrating hybrid bioreactor process models with 

MPC enhances the optimization and control of bioprocesses, particularly in complex systems like 

high cell density fermentations, resulting in improved modelling accuracy, increased adaptability to 

changing process conditions and real-time feed-back for increased process stability [39–41]. 

The selection of an appropriate expression system is a critical factor in recombinant protein 

production, as it directly influences yield, functionality, and downstream processing. Among the 

various platforms available, the methylotrophic yeast Pichia pastoris has emerged as a preferred host 

over the past two to three decades for both research and industrial applications. It offers several 

advantages, including ease of genetic manipulation, high transformation efficiency, and the ability to 

achieve high protein titers both intracellularly and extracellularly [42,43]. Furthermore, P. pastoris 

supports essential eukaryotic post-translational modifications such as glycosylation, disulfide bond 

formation, and proteolytic processing, making it well-suited for producing complex proteins. Its 

minimal native protein secretion simplifies purification, and its capacity for rapid growth in defined 

media, along with robust genetic tools and stable expression over extended cultivation periods, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2025 doi:10.20944/preprints202506.2217.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2217.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 21 

 

strengthens its suitability for scalable production. These characteristics along with growing interest 

in digital bioprocessing, make P. pastoris a strong candidate for hybrid model development and 

advanced biomanufacturing strategies [44,45]. 

The Qβ coat protein virus-like particles (VLPs) are self-assembling, non-infectious 

nanostructures derived from the bacteriophage Qβ. These VLPs have garnered significant attention 

in biomedicine due to their uniform size, stability, and ability to present antigens in a repetitive, high-

density manner, which is highly effective in eliciting strong immune responses. Notably, Qβ VLPs 

have been successfully utilized in vaccine development [46,47]. Furthermore, their versatility allows 

for the encapsulation of various cargos, making them valuable in drug delivery and 

nanotechnological applications. Qβ VLPs can be efficiently produced in P. pastoris, a widely used 

yeast expression system, which offers high-yield, cost-effective recombinant protein production with 

proper protein folding and scalability for biopharmaceutical applications [48]. 

Recent work has explored hybrid modeling in recombinant P. pastoris cultivations, 

demonstrating performance gains in process control, generalization, and scalability. Ferreira et al. 

used a serial HNN, consisting of a three-layer feedforward neural network (FFNN) combined with 

material balance equations, for dynamic modeling of P. pastoris GS115 expressing scFv in a 50 L pilot 

bioreactor. This hybrid model was then applied for iterative batch-to-batch control, resulting in a 4-

fold increase in titer after four optimization cycles [12]. Pinto et al. revisited the general bioreactor 

hybrid model and introduced deep learning techniques. Multi-layer networks with varying depths 

were combined with First Principles equations to form deep hybrid models. Techniques like ADAM, 

stochastic regularization, and depth-dependent weight initialization were evaluated in this context. 

The methods were applied to a synthetic E. coli dataset and a 50 L Mut+ P. pastoris process expressing 

a single-chain antibody fragment. Results showed significant improvements in generalization, with 

an 18.4% increase in prediction accuracy and a 43.4% reduction in CPU time compared to shallow 

models [10]. In another study, Pinto et al. developed a hybrid deep modeling method with state-space 

reduction, applied to a P. pastoris GS115 Mut+ strain expressing scFv. Deep FFNNs of varying depths 

were combined with bioreactor material balance equations and trained using ADAM, semidirect 

sensitivity equations, and stochastic regularization. A state-space reduction method, based on 

principal component analysis (PCA) of the cumulative reacted amount, reduced model complexity 

by 60% and improved predictive accuracy by 18.5%. Validation with data from nine fed-batch P. 

pastoris 50 L cultivations highlighted optimization opportunities, with potential increases in scFv titer 

of 30% and 80% by optimizing methanol feed and inorganic elements, respectively [9]. 

This study presents a hybrid deep learning model tailored to recombinant P. pastoris 

fermentations, trained using a transfer-learning approach of historical and newly acquired batch 

data, incorporating both at-line and in-line biomass measurements. The model architecture integrates 

mechanistic knowledge with data-driven components to effectively capture the complex dynamics 

of the fermentation process. The resulting model is integrated into a novel Model Predictive Control 

framework, enabling adaptive feeding strategies and dynamic trajectory tracking. We validate the 

approach through an experimental fermentation run, showcasing improved control precision and 

enhanced process stability. 

2. Materials and Methods 

Experimental conditions 

Cultivations were performed using a recombinant Pichia pastoris X-33 wild-type strain 

producing Qβ coat protein VLPs. The construction of the expression vector and the selection of clones 

for this specific producer are described in detail elsewhere [48]. 

The batch and feed media formulations were prepared following the “Pichia Fermentation 

Process Guidelines” provided by Invitrogen Corporation [49]: 1.9 L of Basal Salts Medium (26.7 

mL·L−1 H3PO4 85%, 0.93 g·L−1 CaSO4, 18.2 g·L−1 K2SO4, 14.9 g·L−1 MgSO4·7H2O, 4.13 g·L−1 KOH, 40.0 

g·L−1 glycerol and 4.35 mL·L-1 PTM1 trace element solution (0.02 g·L−1 H3BO4, 5 mL·L−1 H2SO4 98%, 6.0 
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g·L−1 CuSO4·5H2O, 0.08 g·L−1 NaI, 3.0 g·L−1 MnSO4·H2O, 0.2 g·L−1 Na2MoO4·2H2O, 0.5 g·L−1 

Ca2SO4·2H2O, 20.0 g·L−1 ZnCl2, 65.0 g·L−1 FeSO4·7H2O, 0.2 g·L-1 biotin)), was inoculated with 100 mL 

of inoculum grown in BMGY medium (10.0 g·L-1 yeast extract, 20.0 g·L-1 peptone, 100 mM potassium 

phosphate buffer, pH 6.0, 13.4 g·L-1 yeast nitrogen base, 10.0 g·L-1 glycerol, 0.0004 g·L-1 biotin) at 30°C 

for 18-22 h in a shake flask at 250 RPM. Two feeding solutions were used: a glycerol feed consisting 

of 50% v/v glycerol and 12 mL·L⁻¹ PTM1, and a methanol fed-batch solution composed of 100% 

methanol with 12 mL·L⁻¹ PTM1. 

The bioreactor vessel was filled with distilled water and sterilized at 121 °C for 30 minutes. BSM, 

BMGY, and the glycerol fed-batch solutions were autoclaved separately under the same conditions. 

The PTM1 trace element solution was sterilized by filtration using a 0.2 µm membrane filter. 

Fermentations were carried out in a 5 L bench-top bioreactor (Bioreactors.net, EDF-5.4/BIO-4, 

Latvia) with a working volume of 2–4 L, as illustrated in Figure 2. The pH was continuously 

monitored using a calibrated pH probe (Hamilton, EasyFerm Bio, Switzerland) and adjusted to 

5.0 ± 0.1 with a 28% NH₄OH solution prior to inoculation, then maintained at this value throughout 

the process. Temperature was regulated at 30.0 ± 0.1 °C using a temperature sensor and jacketed 

vessel control. A thermostatic circulator (LKB Bromma, Multitemp II, Sweden) maintained the 

cooling water at a preset temperature of 6 °C during experiments. 

Dissolved oxygen (DO) levels were measured using a DO sensor (Hamilton, Oxyferm Bio, 

Switzerland) and maintained above 30 ± 5% via a dual cascade strategy: adjusting the stirrer speed 

between 200–1000 RPM (Cascade 1), and supplementing the inlet air with pure O₂ when necessary 

(Cascade 2). A constant airflow or air/oxygen mixture at 3.0 slpm was sustained throughout the 

fermentation. A condenser was employed to capture moisture from exhaust gases, and Antifoam 204 

(Sigma) was added as needed to suppress excessive foam formation. Substrate feeding was controlled 

with a high-precision peristaltic pump (Longer-Pump, BT100–2J, China). 

The cultivations began with a glycerol batch phase. After 18–20 hours, once the batch glycerol 

was depleted, a glycerol fed-batch phase was initiated by feeding the reactor with a glycerol solution 

at a rate of 0.61 mL·min⁻¹ for 4 hours, or until an optical density (OD) of 100–120 was reached. 

Following a short feeding pause of 5–20 minutes—allowing the cells to consume any residual 

glycerol—the substrate was switched to methanol. Methanol feeding proceeded in three phases: 

initially at 0.12 mL·min⁻¹ for 5 hours, then at 0.24 mL·min⁻¹ for 2 hours, and finally at 0.36 mL·min⁻¹, 

which continued either until the end of the experiment or for 2–3 hours until the hybrid MPC control 

was activated. 

In experiments where real-time biomass concentration was monitored using an in-situ turbidity 

probe (Optek-Danulat, ASD19-EB-01, Germany), the turbidity signal was correlated with biomass 

concentration using an exponential calibration equation reported previously [50]. To enhance signal 

reliability, an algorithm was implemented to correct for abrupt spikes caused by sudden process 

disturbances. The details of this algorithm are provided in a separate publication [51]. 

Although the cultivation conditions were generally similar across all historical experiments, 

some minor differences were present. For detailed information on these variations, as well as the 

construction of the expression vectors and clone selection, we refer the reader to the original 

publications [44,52]. 

Downstream processing of Qβ VLPs 

4.0 g of wet cells were resuspended in 20 mL of lysis buffer (20 mM Tris 8.0, 100 mM NaCl) and 

disrupted by French press (4x 10,000 psi). The suspension was then centrifuged for 30 min at 18,500 

g (4°C). Ammonium sulfate was added to the supernatant to 40% saturation and proteins precipitated 

at 4°C for 60 minutes. The suspension was then centrifuged for 20 min at 18,500 g (4°C) and the 

supernatant discarded. Precipitate was dissolved in 20 mM Tris 8.0 buffer and loaded onto Sepharose 

4 Fast Flow size-exclusion column (12 mL volume) in lysis buffer at 0.3 mL/min. Peak fractions were 

pooled and loaded onto anion-exchange Fractogel DEAE (M) column (5 mL volume) in lysis buffer 

and eluted with a linear gradient of 20 mM Tris-HCl, 1 M NaCl pH 8.0 at 2 mL/min. 
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Analytical measurements 

Cell growth was observed by off-line measurements of dry cell weight (DCW), determined 

gravimetrically. Biomass samples were placed in pre-weighted Eppendorf® tubes and centrifuged at 

15’500 g for 5 minutes. Afterwards, the supernatant was discarded and the remaining wet cell 

biomass weighted. DCW was calculated using a previously determined correlation coefficient 

 DCW = WCW * 0.27 (1) 
Protein samples taken during cultivation were analysed using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS–PAGE), with a 5% stacking and 15% separating 

polyacrylamide gel (PAAG), according to standard protocols. To visualize the separated protein 

bands, the gels were stained with 0.4% Coomassie Brilliant Blue G-250 dye. 

Dataset for hybrid model training 

The characteristics of the dataset of P. pastoris fermentation data used for the hybrid model 

training is compiled in Table 1. 

Table 1. Dataset of P. pastoris fermentations and parameter ranges used for hybrid model training. 

Exp No. Strain, product Induction time, h DCW, g·L-1 Feed rate, mL·min-1 Vend, L Reference 

1* GS115, HBcAg 65 37.5—101.6 0.12—0.78 2.85 

[44,50] 

2* GS115, HBcAg 45 40.6—113.5 0.12—1.00 3.09 

3* GS115, HBcAg 43 41.2—120.1 0.12—0.98 3.13 

4* GS115, HBcAg 50 59.2—120.1 0.12—0.36 2.54 

5* GS115, HBcAg 51 41.4—96.6 0.12—0.36 2.87 

6 GS115, HBcAg 48 49.1—120.0 0.12—0.50 2.88 

7 GS115, HBcAg 43 53.7—101.5 0.12—0.36 2.74 Unpublished 

data 8 GS115, CA IX 54 44.1—84.0 0.12—0.56 2.75 

9* X-33, LegH 65 55.4—123.2 0.12—0.36 2.57 

[52] 

10* X-33, LegH 46 49.5—95.4 0.12—0.60 2.98 

11 X-33, LegH 65 48.9—111.2 0.12—0.36 2.85 

12 X-33, LegH 48 56.4—105.3 0.12—0.50 2.63 

13 X-33, LegH 50 45.3—101.3 0.12—0.36 2.61 

14 X-33, LegH 45 52.9—103.1 0.12—0.36 2.55 

15 X-33, LegH 46 45.1—101.3 0.12—0.36 2.52 

16 X-33, LegH 65 51.0—101.7 0.12—0.36 2.66 

17 X-33, LegH 46 50.6—92.4 0.12—0.60 3.00 

18 X-33, Qβ 65 52.5—117.6 0.12—0.49 3.23 

This research 19 X-33, Qβ 48 49.3—117.2 0.12—1.00 3.40 

20 X-33, Qβ 55 50.1—107.7 0.12—0.36 2.84 

*Experiments with real-time turbidity measurements. 

Hybrid process model structure and training 

The general structure of the hybrid process model is illustrated in Figure 1. The input layer 

comprises five variables: substrate feed rate (Fs, mL·min⁻¹), dry cell biomass concentration (X, g·L⁻¹), 

product concentration (P, mg·L⁻¹), culture medium volume (V, L), and an empirical shock factor (Sh) 

representing the cumulative toxic effect of methanol on the cells. To enhance model training 

efficiency and convergence, the sequence input layer incorporates normalization of the input features 

by scaling each sequence sample to the [0, 1] range using the minimum and maximum values 

computed over the entire dataset The output layer provides three variables: the specific cell growth 

rate (µ, h⁻¹), production rate (qP, h⁻¹), and the rate of change of the shock factor (k₁). The optimal 

composition of hidden layer structure was investigated in further steps. 

The outputs of the non-parametric model are then passed to the parametric component, which 

captures the dynamics of the state variables using a system of ordinary differential equations (ODEs) 
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derived from macroscopic and/or intracellular material balances, as well as other relevant physical 

assumptions. The only external inputs to the model are the aforementioned substrate feed rate (Fs) 

and the volumetric flow rate (F), which is calculated by the following equation: 

 𝐹 = 𝐹𝑠 + 𝐹𝑏 + 𝐹𝐴𝐹 − 𝐹𝑒𝑣𝑝 (2) 

where Fb and FAF are the added base and antifoam solution flow rates (mL·min⁻¹) and Fevp is the 

determined culture evaporation rate (0.11 mL·min⁻¹). 

 

Figure 1. Overview of the hybrid model structure. 

The loss function was defined as normalized root mean square error (NRMSE): 

 𝑁𝑅𝑀𝑆𝐸 =

√
∑ (𝑦𝑖−𝑦𝑖

∗)2𝑛
𝑖=1

𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
100% (3) 

where n is the number of training samples, yi represents the measured values, yi* is the 

corresponding predicted variables, and ymin and ymax denote the minimum and maximum values for 

the dataset, respectively. 

To fully utilize the real-time cell biomass sensor data, each process dataset was segmented into 

60 equally spaced batches using an interleaved batching approach. Given a time-series dataset 

consisting of N total time points {t1, t2, …, tN} and a chosen number of segments k = 60, each batch Bj 

(for j = 1, 2, …, 60) was constructed by selecting every k-th time point starting from offset j. This can 

be expressed mathematically as: 

 𝐵𝑗 = {𝑡𝑖|𝑖 = 𝑗 + 𝑛𝑘, 𝑛 ∈ ℕ0, 𝑗 + 𝑛𝑘 ≤ 𝑁} (4) 

This approach ensures that each batch contains a temporally distributed subset of the full 

dataset, preserving temporal variability and aiding in model generalization. For instance, Batch 1 

contains {t1, t61, t121, …}, Batch 2 includes {t2, t62, t122, …} and so on, up to Batch 60. Because time-series 

data were recorded at one-minute intervals, this batching scheme effectively introduced a consistent 

60-minute gap between successive data points within each batch. As a result, it enabled the estimation 

of average dynamic rates (e.g., biomass growth or product formation) on an hourly basis—an 

appropriate timescale for bioprocess interpretation and modeling. This method is particularly 

suitable for sequence-based machine learning models, as it ensures a diverse temporal representation 

in each training segment. 

In experiments where only sparse experimental measurements were available, interpolation was 

necessary to ensure that each segmented batch contained the corresponding measurement values at 

the correct time points. To achieve this, piecewise cubic Hermite interpolating polynomial (PCHIP) 

interpolation was applied to the time-series data. This approach generated estimated values at all 

necessary time points, thereby ensuring that each batch contained a continuous and temporally 

consistent signal aligned with the original, sparsely sampled experimental measurements. 

Importantly, to preserve the integrity of model evaluation, NRMSE was computed only at the original 
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measurement time points, ensuring that model performance was assessed strictly against 

experimentally observed data rather than interpolated estimates. 

Prior to model training, a validation dataset was created by randomly selecting 10% of the 

original time-series data. Specifically, six batches were sampled from each fermentation experiment 

to form the validation partition. This subset was held out during training and used exclusively to 

monitor model performance, assess generalization to unseen data and as an early-stopping criterion 

for training. 

The hybrid process model was trained using the Adaptive Moment Estimation (ADAM) 

optimization algorithm, which combines the advantages of both momentum-based and adaptive 

learning rate methods [20]. The optimizer was configured with standard recommended parameters: 

an initial learning rate α0 = 0.001, first moment decay rate β1 = 0.9, second moment decay rate β2 = 

0.999, and a small numerical stability constant ε = 10−8. To facilitate stable convergence and mitigate 

overfitting, an exponential learning rate decay strategy was employed, where the learning rate was 

gradually decreased every 100 epochs from 0.001 to 0.0001 by a calculated decay factor over the 

course of training, as per the formula: 

 𝛼(𝑡) = 𝛼0 ∗ 𝛾[
𝑡

100
] (5) 

where, α(t) is the learning rate at epoch t and the learning rate decay factor γ = 0.9007. 

This gradual decay enabled the model to make larger updates early in training and finer 

adjustments in later stages, facilitating both rapid convergence and precise parameter tuning. Each 

epoch, the training dataset was randomly shuffled and divided into six minibatches to support 

optimization using the ADAM algorithm. This randomization reduced the risk of learning spurious 

temporal or sequential dependencies and enhanced generalization. The use of minibatches, combined 

with ADAM’s adaptive learning rate mechanism further improved training efficiency and 

convergence reliability. 

 Hybrid model training was performed using a custom training script developed in the 

MATLAB environment (MathWorks, R2024b, USA), leveraging the Deep Learning Toolbox. Training 

was conducted on a personal computer equipped with an Intel i5-6600 CPU (3.30–3.90 GHz) and 16 

GB of RAM. The training script was parallelized to enable simultaneous training of multiple 

networks. For parallel training tasks, the High-Performance Computing (HPC) cluster of Riga 

Technical University (RTU) was utilized in conjunction with the personal computer. 

Hybrid model architecture screening 

To efficiently identify the optimal hidden layer architecture for the hybrid model, a multi-step 

strategy was implemented. First, a Bayesian optimization approach was employed. This method 

systematically explores the hyperparameter space by building a probabilistic model of the objective 

function, enabling informed and efficient searches for the best-performing network configurations 

with fewer training iterations compared to traditional grid or random search methods. 

To accelerate the screening process, networks were trained in parallel for a limited duration of 

10 epochs (corresponding to 90 iterations) using an elevated initial learning rate of α0 = 0.01. This 

higher learning rate was chosen to promote faster convergence during early training, enabling 

quicker identification of promising model architectures without the need for extensive training. Only 

historical experimental data (Exps. 1-17) was used in this step, to ensure the model adapted its 

parameters based on well-established process dynamics before being fine-tuned with the new Qβ 

dataset, thereby improving generalization and robustness during transfer learning. Validation loss 

was used as the primary performance criterion during the grid search, as it provides a more reliable 

measure of the model’s ability to generalize to unseen data and helps prevent the selection of 

overfitted architectures. Corrected Akaike information criterion (AICc) was used alongside 

validation loss as a performance criterion to account for model complexity, ensuring that selected 

architectures not only fit the data well but also avoid overparameterization, which can hinder 

generalization: 

 𝐴𝐼𝐶𝑐 = 𝑛 ln(𝐿) + 2𝑘 +
2𝑘(𝑘+1)

𝑛−𝑘−1
 (6) 
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where k is the number of model parameters, L is the loss function value (NRMSE, %), and n is 

the number of observations (sample size). 

For the initial optimization phase, several key hyperparameters were selected to systematically 

investigate their impact on model performance. These included the choice of the first hidden layer 

type—either LSTM or fully connected (FC). The number of subsequent fully connected layers was 

varied between one and two to assess the effect of network depth. Additionally, the activation 

functions within the fully connected layers were optimized, considering options such as ReLU, Leaky 

ReLU(0.01), Tanh, or no activation, to evaluate how different nonlinearities affect learning. Finally, 

the number of hidden units or nodes in each layer was explored within a range of 1 to 5, enabling 

fine-grained control over model capacity and complexity. This amounts to 8,000 possible parameter 

combinations. The Bayesian optimization algorithm was executed 10 times, each run consisting of 

200 iterations. The best-performing model architecture with the lowest validation loss from each run 

was saved for further evaluation. 

In the second step, the scope of the parameter search was narrowed to focus on the activation 

function (ReLU, Leaky ReLU, Tanh, or none), the number of LSTM hidden units (ranging from 1 to 

5), and the number of fully connected layer nodes (ranging from 1 to 10). The upper limit for LSTM 

hidden units was intentionally kept low to prevent overparameterization, as each additional LSTM 

unit substantially increases the total number of trainable parameters. In contrast, the number of FC 

layer nodes was expanded up to 10 based on favorable results observed in the previous optimization 

step, where larger FC layers contributed to improved model performance without incurring excessive 

computational cost. With only 200 possible combinations, a full grid search was conducted during 

the second screening step. Each network architecture was evaluated across 10 training runs, and only 

the best-performing candidate was retained for each parameter combination. To balance validation 

loss with model complexity and mitigate overparameterization, a loss vs. AICc plot was generated 

to identify the Pareto front (Figure A1). From this front, five network architectures that best balanced 

low validation loss and favorable AICc values were selected for further evaluation. 

In the third step, the selected models were trained in full for 20,000 iterations, and their 

predictive performance was assessed using validation loss. The best-performing model was chosen 

as the optimal network configuration for the specific hybrid process model. Finally, the impact of 

incorporating a dropout layer within the finalized hybrid model architecture was thoroughly 

investigated to assess its effect on model robustness and generalization performance. 

Hybrid model transfer learning 

To leverage the selected trained hybrid model for a new experimental dataset involving Qβ 

production, a transfer learning approach was applied. The previously optimized model architecture, 

trained on the historical dataset, served as the starting point. All model weights were initialized from 

this pre-trained network to retain learned temporal and process dynamics. To adapt the model to the 

Qβ dataset, only the final fully connected layer was unfrozen and fine-tuned using the new data, 

while the LSTM unit—capturing general process behavior—was kept fixed. This strategy allows the 

model to efficiently adapt to the specific characteristics of the Qβ process while preserving useful 

generalizations from the original training, thereby reducing training time and improving predictive 

accuracy with limited new data. Experiment 20 was used for testing loss calculation. 

Model Predictive Control (MPC) architecture 

A comprehensive model predictive control framework was developed and implemented, 

leveraging the advanced hybrid process model. The main task of the MPC controller was to track a 

pre-selected growth trajectory close to the maximum specific growth rate of the cells. 

The MPC algorithm was implemented to dynamically estimate the optimal substrate feed rate, 

Fₛ(t), required to maintain a desired specific growth rate, μₛₑₜ(t). In the developed hybrid modeling 

framework, the substrate feed rate served as an input, while the specific growth rate was one of the 

predicted outputs. Due to the non-invertible structure of the hybrid model, analytical inversion to 
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compute Fₛ(t) from a given μₛₑₜ(t) was not feasible. Consequently, a numerical optimization approach 

was employed at each control step using MATLAB’s bounded nonlinear optimization function 

fminbnd, which searched for the optimal feed rate within specified operational constraints. The 

optimization problem at each time step was formulated as: 

 min
𝐹𝑠∈[0.36,1.00] 𝑚𝐿 𝑚𝑖𝑛−1

∑ [𝜇(𝑘) − 𝜇𝑠𝑒𝑡(𝑘)]2𝑁𝑝
𝑘=1  (7) 

subject to the hybrid model dynamics: 

 𝑥(𝑘 + 1) = 𝑓ℎ𝑦𝑏𝑟𝑖𝑑(𝑥(𝑘), 𝐹𝑆(𝑘)) (8) 

where x(k) is the vector of the state variables, and μ(k) is the predicted specific growth rate at 

step k. The control horizon was set to Nc = 1 hour and the prediction horizon to Np = 12 hours. The 

hybrid model itself was simulated with a finer sampling time of 1 minute to ensure accurate forward 

predictions, while the MPC made decisions on an hourly basis. 

To improve model accuracy and adaptability, the hybrid model was retrained after each 

sampling (approx. three times per day). Each time, the newly measured biomass concentration, 

Xmeas(t), was appended to the training dataset, and the model parameters were updated to reflect the 

latest process dynamics. 

The MPC framework was experimentally validated in a P. pastoris fed-batch fermentation under 

the methanol-inducible AOX1 promoter. Real-time process data, including substrate feed rate, base 

and antifoam addition, were integrated into MATLAB via an OPC server, enabling seamless 

bidirectional communication with the SCADA system. A more technical description is available 

elsewhere [33]. This real-time data integration allowed the MPC to adjust the substrate feed rate 

based on actual process conditions. 

MPC was initiated after methanol adaptation, typically 8–10 hours after inoculation. The growth 

rate setpoint μₛₑₜ(t) was scheduled in a step-wise fashion to reflect the physiological limits of the cells: 

an initial value of 0.04 h⁻¹ was maintained for the first 12 hours, followed by reductions to 0.02 h⁻¹ 

and 0.01 h⁻¹ at 12-hour intervals. This trajectory was selected to optimize productivity while 

preventing metabolic overload during prolonged methanol feeding. 

3. Results 

3.1. Optimal hybrid model architecture screening 

The Bayesian optimization approach was effectively employed to identify optimal hybrid model 

architectures. Although not all configurations within the design space were explored, the method 

yielded valuable insights while substantially narrowing the range of candidate architectures. This 

efficiency stems from the Bayesian framework’s ability to prioritize promising regions of the 

hyperparameter space, reducing the number of models requiring evaluation. The ten best-performing 

network architectures, ranked by their validation loss, are summarized in Table 2. 

Table 2. Summary of the ten best-performing architectures from Bayesian optimization screening. 

First layer type No. of FC layers Hidden units Nodes Activation 
Validation 

Loss (%) 

No. of 

parameters 
AICc 

LSTM 1 

5 5 Tanh 9.73 268 2417 

5 5 LeakyReLu 10.07 268 2431 

5 4 Tanh 10.17 259 2312 

1 5 ReLu 10.26 56 1126 

5 5 Tanh 10.37 268 2444 

3 5 Tanh 10.42 146 1448 

4 5 None 10.51 203 1783 

5 5 Tanh 10.68 268 2457 

4 5 ReLu 10.75 203 1792 

5 4 Tanh 11.30 259 2358 
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The results of the Bayesian optimization screening indicate that while individual performance 

metrics varied across architectures, consistent structural trends emerged among the top-performing 

models. Notably, all ten selected architectures include an LSTM layer as the first hidden layer, 

emphasizing the importance of temporal feature extraction in capturing the dynamics of the process. 

This is followed in each case by at least one fully connected layer, which likely contributes to 

nonlinear transformation and mapping of the LSTM outputs to the target outputs. This consistent 

architectural pattern suggests that the hybrid model benefits from a sequence-aware representation 

(via LSTM), followed by flexible function approximation (via FC layers). Although the activation 

functions and number of units varied, these two structural components formed the core of the most 

effective configurations, reinforcing their critical role in model performance. 

In the subsequent step, a comprehensive grid search was conducted across the full domain of 

feasible network architectures to investigate the optimal number of hidden units, node counts, and 

activation functions for the hidden layers. This systematic approach enabled an exhaustive 

evaluation of all combinations of relevant hyperparameters, ensuring that no potentially optimal 

configuration within the predefined design space was overlooked. To mitigate the risk of network 

overparameterization, AICc values were evaluated in parallel with validation loss. Candidate 

architectures from the Pareto front of the Loss vs. AICc plot (Figure A1) were identified as the most 

promising, and their configurations are detailed in Table 3. 

Table 3. Summary of the best-performing architectures from grid search screening. 

Hidden units Nodes Activation 
Validation Loss 

(%) 

No. of 

parameters 
AICc 

5 9 LeakyReLu 8.85 304 3050 

4 10 LeakyReLu 9.27 243 2092 

3 6 LeakyReLu 9.29 153 1427 

3* 5 LeakyReLu 9.37 146 1403 

2* 10 LeakyReLu 9.68 127 1334 

2* 9 Tanh 9.99 121 1316 

2* 8 ReLu 10.03 115 1302 

1* 9 Tanh 10.26 76 1189 

1 6 LeakyReLu 10.21 61 1139 

1 4 ReLu 10.25 51 1112 

1 1 Tanh 10.36 36 1079 

* Network architectures selected for the next optimization step. 

To ensure a balanced trade-off between predictive accuracy and model complexity, the middle 

five architectures from the Pareto front were selected for further optimization. These architectures, 

indicated with an asterisk in Table 3, offer a pragmatic compromise: they demonstrate competitive 

validation losses (ranging from 9.37% to 10.26%) while maintaining a relatively low number of 

trainable parameters (between 76 and 146). This subset effectively spans the central region of the 

Pareto front, avoiding both the highly complex models at the top—which, despite slightly better 

accuracy, incur significantly higher parameter counts and AICc values—and the simplest models at 

the bottom, which show diminishing returns in terms of validation loss. By focusing on this middle 

range, the selected architectures are expected to generalize well while remaining computationally 

efficient and less prone to overfitting. 

In the final step, the five selected network architectures underwent an extensive evaluation to 

rigorously assess their stability and predictive performance. Each architecture was trained 

independently across 10 separate runs, with each training session lasting 20,000 iterations. This 

repeated training procedure helped account for variability due to random initialization and stochastic 

optimization effects, ensuring a robust comparison of model reliability and convergence behavior. 
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The results, including key performance metrics such as validation loss and generalization capability, 

from every network’s best session, are summarized in Table 4. 

Table 4. Summary of the best-performing network architectures. 

Hidden units Nodes Activation 
Validation Loss 

(%) 

No. of 

parameters 
AICc 

3 5 LeakyReLu 7.28 146 1294 

2 10 LeakyReLu 6.37 127 1155 

2 9 Tanh 8.14 121 1236 

2 8 ReLu 4.93 115 998 

1 9 Tanh 8.27 76 1090 

Training results indicate that the optimal network architecture comprises 2 hidden units in the 

LSTM layer, 8 fully connected layer nodes, and utilizes a ReLU activation function. This configuration 

achieved the best performance, with a validation loss of 4.93% and the lowest AICc value of 998 

among all evaluated models, demonstrating an excellent balance between predictive accuracy and 

model complexity. The training graphs are shown in Figure 2. 

 

Figure 2. Training plots for the 5 best-performing network architectures. 

The inclusion of a dropout layer with varying probabilities (ranging from 0.1 to 0.5) was 

systematically evaluated. The results showed that increasing the dropout rate consistently led to 

higher validation losses. Even a modest dropout probability of 0.1 negatively impacted model 

performance, suggesting that the selected network architecture is already sufficiently regularized and 

relatively simple. In such cases, the additional noise introduced by dropout appears to hinder 

learning rather than mitigate overfitting. This outcome implies that the model generalizes well 

without further regularization, and applying dropout may introduce unnecessary instability or lead 

to underfitting. Moreover, the observation may reflect the nature of the dataset, which is likely clean 
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and of limited size—conditions under which every training instance is valuable and even minimal 

information loss (through activation masking) can reduce training efficiency. 

3.2. Adapting the hybrid model to Qβ dataset with Transfer Learning 

Finally, the already trained optimal hybrid model was adapted to the new dataset (Qβ 

fermentations) using transfer learning. The LSTM layer weights were frozen, allowing the network 

to retain useful generalizations from the original training. 

The resulting network demonstrated strong predictive performance, achieving a training loss of 

3.18%, a validation loss of 3.53%, and a testing loss of 5.61%. Additionally, the corrected AICc value 

was 856, reflecting a favorable balance between model complexity and goodness of fit. Together, 

these metrics indicate that the hybrid model effectively captured the underlying dynamics of the 

experimental dataset while maintaining generalization to unseen data (Figure 3). 

 

Figure 3. Prediction of the dynamic profiles of variables (X, P, V, Sh) modeled with the trained hybrid network. 

As illustrated in Figure 3, the hybrid model demonstrated strong predictive capability by closely 

capturing the dynamic behavior of the modeled variables throughout the fermentation process. 

Quantitatively, the model achieved a NRMSE of 1.68% for biomass concentration (X), indicating high 

accuracy in cell growth prediction, and 9.54% for product concentration (P), reflecting reliable 

estimation of recombinant protein production. 

3.3. Hybrid MPC experimental validation 

To evaluate the practical applicability and effectiveness of the hybrid MPC framework, 

experimental validation was carried out controlling the feed rate in an actual fermentation run. This 

allowed for assessment of the system’s ability to predict and regulate key bioprocess variables in real-

time. The results can be seen in Figure 4. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2025 doi:10.20944/preprints202506.2217.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2217.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 21 

 

 

Figure 4. Hybrid MPC modeling performance during experimental validation. 

The tracking accuracy of cell biomass (X) by the hybrid model can be characterized as moderate. 

Notably, the model failed to adequately capture the physiological adaptation phase of P. pastoris to 

methanol during the first 8–12 hours following induction—a period in which cellular growth is 

minimal or absent. As a result, predictions during this early phase were consistently higher than 

observed values. In the later stages of fermentation, the model exhibited a tendency to overestimate 

biomass concentration. To compensate for this discrepancy, manual adjustments to the biomass 

profile were introduced during model re-training, following the availability of offline sampling data. 

Despite these limitations, the model achieved an overall NRMSE of 6.51% for biomass prediction, 

indicating acceptable predictive performance. 

With respect to product concentration (P), the model similarly demonstrated a tendency to 

overestimate values across the fermentation timeline. This resulted in an average NRMSE of 14.65%, 

suggesting moderate accuracy in modeling recombinant protein production dynamics. 

Although the predictive accuracy of the model was not exemplary—particularly in tracking 

certain state variables with high precision—it nonetheless demonstrated strong performance in its 

control functionality. Specifically, the model was able to generate robust and reliable feed rate 

profiles, effectively regulating substrate addition to maintain the desired specific growth rate 

throughout the fermentation process. This highlights the strength of the hybrid MPC framework in 

achieving process objectives, even in the presence of moderate prediction errors. The µ tracking 

results are presented in Figure 5. 
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Figure 5. Target vs experimental biomass growth, specific growth rate and feed rate plots. Vertical lines in the 

Feed rate plot indicate µ shifts. 

The hybrid MPC system demonstrated good performance in tracking the specific growth rate 

set-point over the course of the fermentation. However, similar to the behavior observed in the 

prediction model, a slight deviation from the target biomass trajectory was noted during the final 12 

hours of the process—particularly after the specific growth rate was reduced to 0.001 h-1. This 

deviation is likely attributable to the cytotoxic effects of methanol accumulation, which can impair 

cellular metabolism and inhibit biomass formation in the later stages of fermentation. This 

phenomenon is further reflected in the growth rate tracking plot, where the measured specific growth 

rate was consistently lower than the target value during this terminal phase. 

Overall, while minor discrepancies emerged toward the end of the process, the control system 

maintained a high degree of accuracy in regulating growth for the majority of the fermentation, 

underscoring its effectiveness and reliability under realistic bioprocessing conditions. 

4. Discussion 

This study highlights the efficiency of Bayesian optimization in identifying high-performing 

hybrid neural network architectures for dynamic bioprocess modeling. By concentrating on the most 

promising regions of the hyperparameter space, as demonstrated in neural architecture search 

literature [53], Bayesian optimization substantially reduces the number of candidate configurations 

compared to exhaustive strategies like grid or random search. A consistent architectural pattern 

emerged among the top models: an LSTM layer followed by one or more fully connected (FC) layers. 

This aligns with findings that temporal feature extraction via LSTM is critical in sequence modeling, 

especially in bioprocess contexts [54]. The FC layers then effectively map these temporal 

representations into nonlinear predictive outputs. 

The grid search extended this exploration and employed AICc alongside validation loss to avoid 

overfitting. This Pareto front strategy is known to balance model complexity and accuracy [31]. 
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Selecting architectures from the mid-section of the Pareto front ensured efficient, generalizable 

models without unnecessary computational burden. 

Robustness was confirmed through repeated training of the selected architectures, mitigating 

variability from random initialization. The best-performing model—a minimal architecture with 2 

LSTM units and 8 FC nodes—achieved the lowest validation loss and AICc, illustrating that compact 

models can deliver strong performance. This has practical implications for real-time applications, 

where computational efficiency and stability are critical. Interestingly, dropout regularization 

consistently worsened performance, in contrast to its typical use in neural networks [55]. This 

suggests that for relatively clean and small datasets, additional noise can lead to underfitting rather 

than preventing overfitting, corroborating findings in Bayesian LSTM studies [56]. 

In summary, the structured workflow—combining Bayesian optimization, exhaustive grid 

search, and performance validation—successfully identified robust and efficient hybrid models. 

These findings offer valuable guidance for developing data-driven models in bioprocessing, 

particularly where data is limited and interpretability and computational efficiency are priorities. 

The application of transfer learning significantly enhanced predictive modeling in Qβ 

fermentation. By freezing the pretrained LSTM layer, the model effectively retained temporal feature 

representations learned from the original fermentation dataset—an approach aligned with known 

benefits of sequential inductive transfer learning, where pretrained layers serve as robust feature 

extractors. 

Performance metrics indicate robust predictive capability: training loss of 3.18%, validation loss 

of 3.53%, and testing loss of 5.61%, alongside an AICc value of 856. These figures suggest the model 

strikes a favorable balance between complexity and fit, as AICc penalizes excessive parameters. 

Figure 3 illustrates that the hybrid model accurately tracks the dynamic behavior of key process 

variables throughout the fermentation. Notably, the NRMSE of 1.68% for biomass (X) reflects 

excellent predictive accuracy, while a 9.54% NRMSE for product concentration (P) indicates reliable 

estimation of recombinant protein output—performance consistent with successful domain 

adaptation observed in bioprocess transfer learning studies. 

Overall, these results highlight that freezing the LSTM backbone preserves essential time-series 

features, enabling efficient adaptation to new but related bioprocesses. This echoes broader evidence 

that transfer learning, particularly with LSTM architectures, reliably enhances performance in data-

constrained scenarios [27]. The Qβ model's strong performance, with an experimental dataset of only 

3 fermentation runs, underscores the hybrid model's generalizability, positioning this approach as a 

promising strategy for rapid deployment in diverse fermentation contexts. 

To assess the practical utility of the hybrid MPC framework, a real-time control experiment was 

conducted involving feed rate adjustment in an actual P. pastoris fermentation (Figure 4). This exercise 

evaluated the framework’s ability to predict and regulate critical bioprocess variables during active 

operation. The hybrid model achieved a biomass NRMSE of 6.51%, indicative of moderate accuracy. 

However, the model struggled during the 8–12 hour adaptation phase following methanol induction, 

consistently overestimating X—likely due to the challenge of capturing initial physiological delays. 

During later stages, persistent biomass overestimation required offline-informed manual corrections, 

a common issue in MPC applications where adaptation lags affect real-time feedback control. Again, 

the model tended to overpredict P, with an average NRMSE of 14.65%, revealing moderate accuracy 

in tracking recombinant protein dynamics. 

Despite prediction inaccuracies, the hybrid MPC effectively maintained the target specific 

growth rate (µ) via robust feed profiles (Figure 5). This demonstrates the framework’s resilience and 

ability to meet control objectives even under prediction uncertainty. However, in the final 12 hours—

particularly after µ dropped to 0.001 h⁻¹—deviations emerged. These were likely driven by methanol-

induced cytotoxicity, which reduced cellular metabolism and hindered biomass formation. 

The hybrid MPC system showed strong real-time control capabilities, effectively regulating 

substrate feed to meet specific growth objectives throughout most of the fermentation. Prediction 

errors were manageable and did not significantly impair overall control performance. The observed 
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late-stage deviations underscore the importance of incorporating biological stress factors—such as 

methanol toxicity—into model formulations. 

This validation confirms that hybrid MPC, built on data-driven hybrid models, is a viable 

strategy for real-world bioprocess control. Future work should focus on refining model 

representations—possibly by including toxicity effects—and improving early-stage adaptation 

dynamics. Doing so would further enhance both predictive fidelity and control reliability, supporting 

broader application in fermentation-based production workflows. Also, a reliable estimator for 

recombinant protein concentration should be included in the MPC framework to provide accurate 

and reliable estimations to use for hybrid model re-training during operation. 

5. Conclusions 

This study presents a comprehensive framework for hybrid modeling and control of P. pastoris 

fed-batch fermentations, integrating deep learning with model predictive control (MPC). The use of 

Bayesian optimization proved effective in identifying efficient and accurate hybrid neural network 

architectures, with consistent structural trends—namely, the inclusion of an LSTM layer followed by 

fully connected layers—emerging among top-performing models. A complementary grid search, 

guided by AICc and validation loss, enabled the selection of models that balance accuracy with 

computational simplicity. 

Transfer learning was successfully employed to adapt the optimal hybrid model to Qβ 

fermentation data, achieving strong predictive performance while preserving generalizable temporal 

features. This highlights the model's flexibility and potential for rapid adaptation to new, yet related, 

bioprocesses—an important capability in multiproduct biomanufacturing environments. 

Experimental validation of the hybrid MPC framework demonstrated reliable real-time control 

of the fermentation process, despite moderate prediction errors in biomass and product 

concentration. Notably, the system maintained accurate regulation of the specific growth rate 

throughout most of the process, underscoring its practical robustness. 

In summary, this work establishes a robust, adaptable, and computationally efficient hybrid 

modeling approach for model predictive bioprocess control. The combination of automated 

architecture search, transfer learning, and MPC provides a scalable methodology for accelerating 

digital twin deployment in industrial biotechnology. Future work should aim to enhance biological 

realism and expand generalizability across strains and production conditions. 
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Appendix A 

Appendix A. 

 

Figure A1. Pareto front, demonstrating the best model architectures, considering Loss and AICc. L stands for 

LSTM layer hidden units, F – for FC hidden nodes, followed by activation function. For example, L4-F10-

leakyrelu is an LSTM layer with 4 hidden units, followed by a FC layer with 10 nodes and leaky relu activation. 
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