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Abstract: Background: In the field of brain-computer interfaces, neural decoding plays a crucial role in translating

neural signals into meaningful physical actions. These signals are transmitted to processors for decoding via wired

or wireless channels, often encountering data loss, commonly referred to as "packet loss." Despite its importance,

the impact of different types and degrees of packet loss on neural decoding has yet to be comprehensively studied.

Understanding this impact is critical for advancing neural signal processing and data filtering. Methods: This

paper addresses this gap by constructing four distinct packet loss models, simulating congestion packet loss,

distributed packet loss, and burst packet loss scenarios. Using macaque superior arm-movement decoding

experiments, we evaluate the effects of these packet loss types on decoding performance. Results: Our findings

reveal that continuous burst packet loss significantly degrades decoding performance at the same packet loss

probability, and decoding parameters that are sensitive to data continuity are more heavily impacted by packet

loss. Conclusions: This study provides an analysis of the relationship between packet loss and neural decoding

results, offering valuable insights for future strategies aimed at preventing and handling packet loss in neural

signal acquisition.

Keywords: neural decoding; packet loss; Gilbert-Elliott model

1. Introduction

Neural decoding technology plays a critical role in brain-computer interface (BCI) research.
By analyzing neural signals, researchers can extract information about the subject’s intentions or
movements, enabling brain-controlled operations. Over the past few decades, neural decoding has
enabled various interpretations, such as motion decoding [1–3] and language decoding [4,5]. This
technology holds significant potential in the diagnosis, treatment, and rehabilitation of neurological
diseases [6–8].

Neural signal acquisition, as the primary data source for neural decoding technology, is vital to
the overall effectiveness of decoding. The transmission media used in neural signal acquisition can
be categorized into two types: wired and wireless. Wired transmission offers higher bandwidth and
more channels, making it the most commonly used method in current applications. However, wireless
transmission is free from cable interference, enabling greater freedom of movement for the subject,
which is particularly advantageous in experimental studies involving free motion. As research into the
nervous system progresses, lightweight and flexible wireless brain-computer interface systems are
gaining increasing attention from researchers due to their practical benefits and versatility.

Between the recording and decoding of neural signal data, packet loss is inevitable, whether using
wired or wireless transmission modes. When the device configuration is correct, the physical reasons
for packet loss may include network congestion and line interference [9,10]. Compared to wired
transmission, wireless transmission are more susceptible to external interference, and considering
factors such as power consumption, size, and transmission distance, the data transmission bandwidth
is smaller compared to wired transmission. The wireless neural signal acquisition and transmission
system developed by related neuroscience instrument companies and research teams has gradually
been promoted in the field of neuroscience research, such as CerePlex W(Blackrock Neurotech, USA),
the results and processing methods related to data packet loss have been mentioned in some studies.
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Berger et al. [11] have used two 96-channel Exilis Headstages(Blackrock Neurotech, USA) to record
neural signals from monkeys wirelessly. In their experiment, the best session showed loss rates of
1.03%, and the worst session of 6.59%, respectively. They believe that experimental results bias was
introduced by trials with high data loss rates. When removing trials with a loss rate of above 5%
there was no significant bias anymore. Lee et al. [12] have developed wireless recording system could
stably transmit neural data to the server, the packet loss rate is approximately 3%. Packet losses can
occur randomly, but most of the causes were from crosstalk with other nearby wireless communication
systems. Simeral et al. [13] have used four components provided by Blackrock Neurotech to record
neural signals from participants: a pedestal-mounted wireless transmitter, four polarized planar
antennas, a wireless receiver and a digital hub. This device achieves a minimum packet loss of 0.4166%
and a maximum packet loss of 4.69%. Due to the use of multiple transmitters, a large number of
packet losses on one transmitter have little impact on the final decoding result. Hansmeyer et al. [14]
have also used 96-channel Exilis Headstages(Blackrock Neurotech, USA) to record neural signals from
monkeys. They have reinforced the structure, with an average packet loss rate of 1.5% compared to
previous studies. In current research, the packet loss rate of wireless devices is generally within 7%.
Due to electromagnetic environment, device placement, and other conditions, the packet loss situation
may be better or worse. However, there is currently a lack of quantitative research on the impact of
packet loss on neural signal processing, especially subsequent neural decoding.

There are various reasons for packet loss in wireless transmission. In terms of specific manifesta-
tions, there are several types: Congestion loss. The packet loss will occur when the buffer overflows
caused by the burst of data traffic [15–17]. This type of packet loss is specifically manifested as the loss
of continuous large segments of data packets. Distributed loss. This type of packet loss often occurs in
situations such as signal interference and equipment failure. In terms of statistical probability, this
type of packet loss is more likely to the average distribution [18–20]. Burst loss. This type of packet
loss is mostly continuous, meaning that once a packet loss occurs, several packet losses will occur.
Unlike congestion loss, this type of packet loss is still probabilistic. Currently, most studies use the
Gilbert-Elliott model(GE model) to investigate burst loss [21–23].It is widely believed that packet loss
will have an impact on subsequent data processing. However, in the field of neural signal decoding,
there is a lack of quantitative analysis on the decoding results caused by data packet loss, especially
the impact of different types of packet loss on neural decoding. In most studies, the processing method
for data with packet loss is to directly discard it. In this study, we constructed four different types of
packet loss models and used macaque superior arm-movement decoding experiments [24] to verify
the impact of packet loss on decoding results. The results indicate that different types of packet loss
have significant differences in their impact on decoding results, providing reference for other studies
on packet loss prevention, the impact of packet loss, and the processing of packet loss data.

2. Materials and Methods

2.1. Signal Acquisition

The neural data utilized in this study were sourced from a publicly available dataset provided
by the Sabes lab. [25] These data were recorded from both the M1 and S1 areas of a macaque during
the performance of a behavioral task, which involved continuous self-paced reaching movements
towards targets arranged in an 8×8 square grid using the right arm. The recordings were made using a
96-channel intracranial micro-electrode array. This study used all 37 sessions of data from the monkey
Indy, spanning approximately 10 months and encompassing a total of 20,000 reaching movements.

2.2. Signal Processing

The recurrent exponential-family harmonium (rEFH) [26] is a novel filter introduced by Philip
N. Sabes to address the limitations of the Kalman filter algorithm [27], which is widely used in
neural decoding. For the data mentioned above, rEFH outperforms some of the most frequently used

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 September 2024 doi:10.20944/preprints202409.1901.v1

https://doi.org/10.20944/preprints202409.1901.v1


3 of 14

decoding algorithms. This study select rEFH as the neural decoding algorithm to analyze the effects of
packet loss.

Prior to commencing neural network training, it is essential to perform several preprocessing
steps on the raw data extracted from the dataset to enhance its manageability and facilitate subsequent
processing. As shown in Figure 1(a), the raw neural data is structured in a 192×3 cell array, where
the 192 rows correspond to 192 channels from the M1 and S1 areas of the monkey, and the 3 columns
represent three distinct spike signal types. Each cell contains a matrix with dimensions N×1, where
each entry denotes the time at which a spike signal occurs.

Figure 1. (a) shows the original matrix derived from a publicly available dataset. In (b), data processing
is applied, where the primary dimensional transformation treats each spike type as a separate channel,
counting the number of spikes within a specified time interval. (c) illustrates the matrix after completing
data processing, where each cell corresponds to the number of spikes in the respective channel during
a particular time interval.

As the first step, we consider neural pathways rather than physical channels, implying that neural
signals passing through the same physical channel may originate from different neural pathways.
Consequently, the original cell array is transformed into a 576×1 cell array, where the 576 rows
represent the 576 neural pathways. As shown in Figure 1(b).

The next step is to construct a new matrix based on the time information in each cell. By defining
a time interval, we can count the number of spikes occurring within each interval for each neural
channel. This results in a matrix with dimensions N×576, where the nth row represents the nth time
interval, and the 576 columns correspond to the 576 neural pathways. Each element in the matrix
represents the number of spikes observed in a single neural pathway during a given time interval. As
shown in Figure 1(c).

This matrix serves as the foundation for initiating neural network training, using both the spike
data and location information provided in the dataset. Additionally, a packet loss model can be
incorporated to simulate the effects of actual packet loss on the neural pathways.

2.3. Packet Loss Model

After the preprocessing steps After completing the preprocessing of the raw data, we obtained a
matrix that next all named matrix A with dimensions N×576. At this stage, various packet loss models
can be applied to this matrix to simulate the effects of actual packet loss on the data. As shown in
Figure 2.
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Figure 2. (a) Congestion loss model: If the number of packets in a transmission exceeds the bandwidth
limit Z(red dot line), the spike signals within that transmission are discarded once the cumulative time-
ordered signals surpass the bandwidth threshold. (b) Single loss Model: This model randomly discards
individual spike signals from the matrix, simulating isolated signal loss within the transmission. (c)
Full loss model: This model considers all spike signals within a specific time interval as a single packet.
The model randomly discards entire rows of spike data from the matrix, representing complete loss
of information during transmission. (d) Burst loss model: This model simulates the state of wireless
transmission under burst packet loss conditions. During favorable transmission states, no packet loss
occurs. However, during unfavorable transmission states, entire rows of spike signals in the matrix are
randomly dropped, mimicking burst loss events.

2.3.1. Congestion Loss

Congestion packet loss often occurs when the amount of data in a transmission exceeds the
bandwidth of the data transmission, which can lead to a large amount of data loss in the excess of the
bandwidth. To simulating this type of packet loss, we first calculate the total number of spikes X for
each row i in the matrix A:

Xi =
N

∑
j=1

Aij

where Aij represents the spike count in the jth channel during the ith time interval, and N is the
total number of channels. If Xij exceeds the bandwidth Z, which corresponds to the number of packets
exceeding the bandwidth at a given time interval. All channel spike signals in the interval will be
sorted from early to late, assuming that the sorting results are Tjk, which j represents the channel and k
denotes the random ordering of spike signals for this channel. With the sorting result, we can simulate
the congestion loss mode using the following formula:

Aij =

{
Aij if Tjk < Z,

Aij − 1 if Tjk > Z.
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This process is repeated until all rows have been traversed, resulting in the modified matrix A’.

2.3.2. Distributed Loss

According to the different ways of data packaging, distributed packet loss can also be categorized
into two types, full package loss and single package loss.

The full packet loss model assumes that neural signals are transmitted in discrete, complete packet
formats. When packet loss occurs in this transmission mode, all neural signal data within the affected
packet is lost. In the resulting matrix A, each row represents a complete packet of spike data.

To simulate the full packet loss model within the neural signal matrix A, we first calculate the
total number of packets to be lost, denoted as L, using the following formula:

L = ⌊p × N⌋

where p represents the packet loss rate, and N corresponds to the total number of rows in matrix A.
Subsequently, we randomly select L rows from the matrix using the MATLAB function randperm, and
set their values to zero, thereby simulating the full packet loss model. The resulting matrix, denoted as
A’, reflects the impact of the packet loss, with the selected rows zeroed out.

The single package loss assumes that neural signals are transmitted alone. In order to simulate
packet loss within the neural signal matrix A, we first calculate the total number of packets to be lost L
as:

L = ⌊p × N × 576⌋

where p represents the packet loss rate. Subsequently, we randomly select elements Aij within the
matrix and decrement their values by 1, provided that Aij > 0. This process is repeated until L packets
have been lost, resulting in the modified matrix A’.

2.3.3. Burst Loss

The GE model was applied to simulate packet loss in the neural signal matrix A. This model oper-
ates based on a two-state Markov process, where each state represents a different packet transmission
state: ’good’ (no loss) and ’bad’ (packet loss). The transition between the states can be described by the
following equation:

statet+1 =


bad if statet = good and Pgood→bad is satisfied,

good if statet = bad and Pbad→good is satisfied,

statet otherwise.

Where statet denotes the state of the transition at time t, statet+1 represents the state at the
subsequent time step. During the ’bad’ state, a portion of the signals in the corresponding rows of
matrix A are set to zero, simulating packet loss. The resulting matrix A’ reflects the impact of packet
loss modeled by the Gilbert-Elliott process.

2.4. Evaluation Indicator

The result of the refh algorithm contains six parameters. They are position XY, speed XY, and
acceleration XY. They represent the reconstruction of the monkey’s motion information at the level of
position, speed, and acceleration. The coefficient of determination R2 is a commonly used metric in
statistics and regression analysis to measure how well a regression model explains the variation in the
data. Specifically, R2 quantifies the proportion of variance in the observed data that is explained by the
model’s predictions. The formula is given as:

R2 := 1 − ⟨(x − x̂)2⟩
⟨(x − ⟨x⟩)2⟩
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In this formula, x̂ represents the model’s predicted values, x is the actual observed value, and
⟨·⟩ denotes the expectation operator (i.e., the mean). The numerator ⟨(x − x̂)2⟩ represents the mean
squared error (MSE) between the observed and predicted values, while the denominator ⟨(x − ⟨x⟩)2⟩
represents the total variance of the observed data with respect to its mean.

By calculating the coefficient of determination R2, we obtain a value ranging between 0 and 1,
where a value of 1 signifies that the model fully accounts for the variance in the data, while a value of
0 indicates that the model fails to explain any variance. In this study, we calculate R2 between the six
parameters of the refh algorithm results and the actual data. We employ R2 to evaluate the impact of
packet loss on neural decoding. A higher R2 value corresponds to a reduced impact of packet loss.

3. Results

The rEFH algorithm generates six-dimensional outputs, including position (x, y), speed (x, y),
and acceleration (x, y). By comparing the algorithm’s outputs with actual results and calculating the
evaluation parameterR2, the impact of different packet loss models on the performance of the refh
algorithm can be rigorously analyzed.

3.1. Results of Packet Loss Model Construction

The results of packet loss simulation are shown in Figure 3. The average packet loss rate of each
model is controlled at 2%. For the single loss model, the packet loss rate remains consistent across time
intervals, fluctuating within a narrow range of approximately 2%. In the full loss model, entire packets
are dropped at random time intervals, with the points of packet loss scattered more unpredictably.
For the congestion loss model, packet loss is concentrated within specific intervals, with loss rates
generally staying below 40%, and most variations occur between 0 and 20%. The burst loss model
shows a packet loss rate of 100% at random intervals; unlike the full loss model, these intervals are
more continuous, with consecutive time periods where the loss rate remains at 100%.

Figure 3. The figure depicts the variation of packet loss rate over time , highlighting the behavior of
four distinct packet loss models: burst loss, full loss, single loss, and congestion loss. The packet loss
rate is plotted on the vertical axis, while time is represented on the horizontal axis. Each packet loss
model is distinguished by a unique color, allowing for clear comparison of their respective trends over
time.
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3.2. The Impact of Different Packet Loss on Decoding Results

3.2.1. Congestion Loss

Figure 4. Curve representing the R2 value of acceleration (X, Y) speed (X, Y) position (X, Y) with
decreasing bandwidth constraints under the congestion loss model.

When the set Z is varied at larger values (corresponding to greater wireless transmission band-
width), there is no significant change in the R2values representing the six parameters. However, as Z
gradually decreases toward a critical threshold, theR2values for all six parameters exhibit a noticeable
decline. The trends in R2for the different parameters are largely consistent as Z varies, with speed and
acceleration being more significantly affected by changes in Z compared to the other parameters.

3.2.2. Distributed Loss

Figure 5. Curve representing the R2 value of acceleration (X, Y) speed (X, Y) position (X, Y) with
increasing packet loss rate under the whole packet loss model.
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The R2 representing the six parameters exhibit a decreasing trend as the packet loss rate increases.
Among these, the R2 value associated with the acceleration shows the most significant change due to
packet loss, while the R2 value corresponding to the position is the least affected.

Figure 6. Curve representing the R2 value of acceleration (X, Y) speed (X, Y) position (X, Y) with
increasing packet loss rate under the single loss model.

The R2 values representing the six parameters decreased volatility as the packet loss rate increases.
Among these, the R2 value for acceleration shows the greatest change in magnitude, while the overall
trend and magnitude of changes in the R2 values for position and speed are similar.

3.2.3. Burst Loss

Figure 7. Curve representing the R2 value of acceleration (X, Y) speed (X, Y) position (X, Y) under the
GE packet loss model with increasing packet loss rate.
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The R2 values representing the six parameters all exhibit a gradual decline as the packet loss rate
increases. Among them, the R2 for acceleration shows the most significant change, while the R2 values
for position and speed follow similar overall trends and magnitudes.

3.3. Performance of Different Decoding Parameters on Packet Loss Data

The R2 representing the position parameter XY exhibits a decreasing trend as the packet loss
rate increases across different packet loss models. As shown in Figure 8(a). Under the full loss and
burst models, the decline in R2 is more gradual with increasing packet loss rate. In contrast, under
the single loss model, R2 shows a fluctuating downward trend, with occasional small increases as
the packet loss rate rises. This suggests that the R2 for parameter XY is least affected by the packet
loss rate under the single loss model and most affected under the burst model. Furthermore, the R2

values for parameters X and Y are similarly influenced by the various packet loss models, with the
main difference observed under the full loss model. In this model, the R2 representing parameter X
demonstrates a more complex, fluctuating downward trend, while the R2 representing parameter Y
follows a more steady downward trajectory.

(a) (b) (c)
Figure 8. (a)Curve of R2 values representing position (X, Y) as a function of increasing packet loss
rate for different packet loss models.(b)Curve of R2 values representing speed (X, Y) as a function
of increasing packet loss rate for different packet loss models.(c)Curve of R2 values representing
acceleration (X, Y) as a function of increasing packet loss rate for different packet loss models.

The R2 values representing the speed parameter XY show an overall decreasing trend as the
packet loss rate increases across different packet loss models. As shown in Figure 8(b). The overall
decline is similar in both the full loss and burst loss models, with comparable rates of decrease. In
contrast, the single loss model demonstrates a fluctuating but decreasing trend, with a smaller overall
reduction compared to other packet loss models. Additionally, the decreasing trends of the speed
parameters X and Y are largely consistent across the different models.

The R2 representing the acceleration parameter exhibits a generally gentle decreasing trend as the
packet loss rate increases across different packet loss models. As shown in Figure 8(c). The magnitude
and trend of the decrease are nearly identical for both the full loss and burst loss models, whereas
the single loss model shows a significantly smaller reduction compared to the other two models. The
trends for both the acceleration parameter X and acceleration parameter Y are consistent across all
packet loss models.

Among the position, speed, and acceleration parameters, the R2 of the position parameter is
the least impacted by packet loss, exhibiting the smallest overall decrease. In contrast, the R2 of the
acceleration parameter is the most affected by packet loss, with the largest overall reduction.
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3.4. Reconstruction Result

Figure 9. Illustrative reconstructions. Reconstructions of a typical reach (dotted black lines) using the
refh position decoders, with the burst loss model. Only sagittal ( x ) kinematics (position) are shown
since the lateral (y) reconstructions are similar. These reconstructions correspond to the test data for
session Indy2016040702.

The overall reconstruction results indicate a clear trend: as the packet loss rate increases, the
deviation of the position reconstruction in the X direction progressively grows. The reconstruction
result that most closely aligns with the actual position is achieved by the rEFH algorithm without
incorporating any packet loss model. Conversely, the result with the greatest deviation from the actual
position is observed when the burst packet loss model, with a packet loss rate of 0.03, is applied.
Despite variations in the degree of deviation across different packet loss rates, the overall trend of the
reconstruction results remains consistent.

4. Discussion

In our study, we investigated the effects of various packet loss models on neural decoding
outcomes. Specifically, we designed four distinct packet loss models, each based on different packing
methods and wireless transmission characteristics. We applied these models to experimental data
involving macaque reach kinematics for testing and analysis. Unlike previous studies that tended
to discard data entirely when faced with significant packet loss, we took a different approach by
analyzing and comparing how different types of packet loss affect decoding performance. This shift in
methodology allows us to explore alternative strategies for dealing with lost data, offering insights into
how different packet loss models impact the decoding process. Our findings highlight the importance
of understanding the specific characteristics of packet loss, as different types of loss can have varying
effects on the accuracy of the neural decoding process. This analysis provides important guidelines
for handling packet loss in future neural signal processing and decoding applications, particularly in
wireless systems where packet loss is inevitable.

4.1. Continuous and Burst Packet Loss Have Greater Impact on Decoding

Our analysis shows that the congestion loss model has a minimal impact on the decoding of
position, speed, and acceleration in both the x and y directions. Even in scenarios with sufficient
bandwidth, where ample spike information is available, the decoding performance remains stable,
and ideal results can still be achieved despite packet loss caused by network congestion. Next is the
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single loss model. For the main experiments of this article, spikes were binned at 128ms intervals.
the single loss model resulted in a reduction of spike counts in every bin, though the complete loss
of an entire bin was exceedingly rare. This ensures that the continuity of the neural signals along the
timeline is largely preserved. In contrast, the full loss model, which results in the loss of complete data
bins, disrupts data continuity. Even when the total number of lost bits is similar, the loss of entire data
packets leads to poorer decoding performance compared to the single loss model. A key insight from
these results is the importance of designing data packaging strategies that minimize the size of the
data units being transmitted. By reducing the packet size, we can avoid the complete loss of packets,
thus preserving the continuity of neural signals and improving decoding performance. However, this
approach comes with trade-offs. Smaller packets require additional metadata (such as headers, tails,
and checksum) for transmission, which reduces overall efficiency and increases bandwidth usage.
Therefore, it is crucial to strike a balance between packaging size and transmission efficiency.

The GE loss model more closely approximates real-world conditions, and it demonstrates how
disruptions in data continuity significantly impact decoding performance. In the GE model, transitions
between Good and Bad states affect the integrity of the transmitted data. To mitigate the impact of
packet loss, it is essential to decrease the transition probability from the Good state to the Bad state,
while simultaneously increasing the probability of returning from a Bad state to a Good state. The
primary strategy is to enhance transmission quality to reduce the likelihood of entering a Bad state.
However, if a transition to the Bad state occurs, minimizing packet loss and rapidly returning to the
Good state is critical. This can be achieved through various techniques, including:Automatic Retrans-
mission Requests (ARQ) [28]: Requests to resend lost packets. Forward Error Correction (FEC) [29]:
Adding redundancy to the data stream to enable recovery of lost packets without retransmission.
Transmission Rate Adjustment: Dynamically adjusting the transmission rate to adapt to network con-
ditions and reduce packet loss. By applying these strategies, we can reduce the detrimental effects of
packet loss and maintain higher neural decoding accuracy, especially in systems where data continuity
is crucial.

4.2. Decoding with Higher Data Continuity Requirements Is More Affected by Packet Loss

In this decoding experiment, spike counts are a linear function of these variables as well as the
six kinematic states themselves [25]. Due to the sparsity of the processed spike count matrix and the
relatively slow changes in position compared to speed and acceleration, small amounts of packet loss
have a minimal impact on position decoding.

However, since speed and acceleration are derivatives of position and depend on the dynamic
discharge patterns in neural signals over short time intervals, packet loss or signal discontinuities can
directly affect the accuracy of these estimates. This is because the derivatives amplify any fluctuations
or inconsistencies in the underlying signal. Additionally, the recursive nature of the decoding algorithm
can exacerbate errors in speed and acceleration estimation, leading to the accumulation of prediction
errors. These accumulated errors further degrade decoding performance, especially for speed and
acceleration, which are highly sensitive to small temporal changes. As a result, neural decoding
algorithms that demand high data continuity and integrity are particularly sensitive to packet loss. In
contrast, algorithms based on sparse matrices or averaged spike rate data may exhibit slightly better
tolerance to packet loss due to the smoother or less dynamic nature of the data being processed.

4.3. The Relationship between Packet Loss Rate and Decoding Result

The accuracy requirements for decoding results vary depending on the evaluation criteria and the
specific application scenarios. For example, in the rat compression bar experiment [30], the goal is to
determine whether the bar has been pressed, a binary classification task. In such cases, high decoding
accuracy may not be essential, and the system can tolerate a certain amount of packet loss without
significantly affecting performance.
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In contrast, for trajectory prediction tasks, such as the experiment presented in this study, the
ideal scenario is for the decoded motion trajectory to perfectly match the actual trajectory—an outcome
where the R2 is 1. However, no existing decoding algorithm can achieve such a high performance
metric. Thus, in regression tasks like this, it is crucial to minimize packet loss to maximize decoding
accuracy.

In this study, we found that a packet loss of less than 2% can ensure that the difference in R2 values
between the predicted trajectory and the true trajectory is within 0.05. Additionally, the impact of
packet loss on position decoding was found to be slightly smaller compared to speed and acceleration.

This study has several limitations:
Firstly, given the high precision required in kinematic decoding, the analysis was limited to one

specific kinematic experimental paradigm. However, the packet loss model developed here can also be
applied to other forms of neural decoding, broadening its potential use in future studies.

Secondly, the evaluation metrics for assessing the impact of packet loss on decoding results
lack universality. Currently, the impact is gauged through performance indicators such as decoding
accuracy or trajectory similarity, which vary across different decoding algorithms. This variation com-
plicates the subsequent processing of packet loss data, as each algorithm requires tailored evaluation
criteria. Developing more universal metrics or models could streamline the process of data filtering
and handling in future research.

5. Conclusions

This study examines the impact of packet loss on neural signal decoding by constructing four
distinct packet loss models. Our results show that, under the same packet loss probability, continuous
burst packet loss has a more significant negative effect on decoding performance, suggesting the
necessity of prevention strategies like packet retransmission. On the other hand, occasional packet loss
has a comparatively minor effect on decoding results within certain limits. The insights and models
presented here offer valuable references for addressing packet loss in future neural signal acquisition
processes, particularly in wireless transmission environments where packet loss is more prevalent.
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