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Abstract

The RNA-guided endonuclease system CRISPR-Cas9 has been extensively modified since
its discovery, allowing its capabilities to be extending far beyond double-stranded cleavage to
high fidelity insertions, deletions, and single base edits. Such innovations have been possible
due to the modular architecture of CRISPR-Cas9 and the robustness of its component parts
to modifications and the fusion of new functional elements. Here, we review the broad toolkit
of CRISPR-Cas9-based systems now available for diverse genome editing tasks. We provide
an overview of their core molecular structure and mechanism and distil the design principles
used to engineer their diverse functionalities. We end by looking beyond the biochemistry and
towards the societal and ethical challenges that these CRISPR-Cas9 systems face if their

transformative capabilities are to be deployed in a safe and acceptable manner.
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Introduction

Defined originally as an array of DNA repeats in 1987%, the exact function of the clustered
regularly interspaced short palindromic repeats (CRISPR) remained a mystery until the further
discovery of associated Cas proteins and RNA elements. This established their combined
function as a prokaryotic immune system?=, which had evolved to combat invading phages
by cleaving and degrading their DNA. The core components are a Cas (CRISPR-associated)
endonuclease, directed to a DNA target by a multi-component guide RNA (gRNA)&’, which
has since been simplified into a single guide RNA (sgRNA)Z.

The power of the CRISPR system comes from its highly programmable nature that
allows it to be easily targeted to virtually any DNA locus by merely placing a complementary
sequence within the gRNA. Whilst its built-in functionality has ushered in a new era of genome
engineering, CRISPR’s real merit lies in its robustness for significant modification. This has
allowed the CRISPR system to be refined as well radically extended to broaden its capabilities.
These developments have enabled CRISPR to be used for diverse applications covering gene
regulation, large genomic insertions and deletions, accurate base editing, and precise
sequence replacement®3,

In this review, we explore the development of modified Cas9-based CRISPR systems
for genome editing tasks, and the main approaches used to engineer these functionalities.
This includes the mutagenesis of Cas9 domains, redesign of the gRNA, fusion of additional
enzymatic domains to Cas9, and the screening of other organisms for naturally occurring
CRISPR variants with more desirable features. Our aim is to provide a clear mechanistic
overview of how the modular structure of the CRISPR-Cas9 system has facilitated engineering
efforts and allowed for a ‘plug-n-play’ type approach to the development of new DNA-targeted
functionalities. Whilst the potential benefits of such systems are already starting to be realized,
we end by raising caution when considering their wider deployment and discuss some of the

less widely acknowledged ethical and evolutionary challenges associated with this technology.

The native CRISPR-Cas9 system

The CRISPR-Cas9 system is a class Il type Il CRISPR system derived from Streptococcus
pyogenes!. It consists of a Cas nuclease SpCas9 and a gRNA8 The gRNA has two
components — a trans-activating RNA (tracrRNA) and CRISPR RNA (crRNA)®. crRNA is
responsible for recognition and binding of the target DNA region and tracrRNA for cRNA
maturation and association with SpCas9. Once the gRNA binds the SpCas9, the SpCas9
undergoes a conformational change which permits the SpCas9-crRNA-tracrRNA complex to
relocate to the target region and cleave both DNA strands’. The target region is determined

by a 20-nucleotide ‘spacer’ in the crRNA, complementary to the target ‘protospacer’ in the
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DNA31®, For recognition, the protospacer must be superseded by several nucleotides called
the protospacer adjacent motif (PAM). This varies for different Cas proteins; for SpCas9 it is
‘5-NGG-3'816, Providing there is the correct PAM present directly downstream of the target
locus, engineering a gRNA with a different spacer region allows for targeting of a different
genomic location.

When the target region is found, the bases upstream of the PAM are melted and bind
to the complementary region of the gRNA"18, Once the complex is bound, the two nucleases
produce a double-stranded break (DSB) 3—4 nucleotides (nt) upstream of the PAM*®. The DSB
induces the endogenous DNA repair machinery, commonly the non-homologous end-joining
pathway (NHEJ). NHEJ is notoriously error-prone, so the break is often fixed incorrectly and
the target sequence becomes mutated®. Alternatively, the homology-directed repair pathway
(HDR) can be used to fix the break using a homology template to accurately insert a desired
sequence?®?!, Recognition of CRISPR’s ability to perform gene knockdown/insertion was the
beginning of a series of alterations which would highlight the diverse applications of this
system and its derivatives.

Whilst CRISPR can perform efficient cleavage of a target genomic region, a common
problem is the presence of non-target cleavage, or off-target effects, particularly in larger
genomes??. The genomic target has 20 nt of complementarity to the spacer region of the
gRNA, but mutations at the 5’ end of the gRNA still permit efficient cleavage implying the first
12-13 nt are critical for specifying the target¢1%2%.. These essential 13 nt of the spacer region
have been dubbed the ‘seed sequence’®?®. Genomic regions with incomplete homology to the
spacer region which contain all or most of the seed sequence could be targeted by the Cas9,
resulting in off-target effects?*. Detection and prevention of this off-target activity is essential
for CRISPR to be used as a therapeutic tool. Efforts utilising altered, higher-fidelity Cas9
proteins and truncated gRNA?>-2” have been the focus of efforts to reduce such promiscuity
and will be discussed later in this review.

To assist with the characterization of CRISPR, large-scale bioinformatic tools have
been developed for genomic analysis and specifically the identification of potential editing
sites. Complementary biological assays have also been developed to assess off-target
cleavage®. A widely used assay to investigate off-target binding is the T7 endonuclease 1
(T7E1) mismatch detection assay. Despite its widespread use, validations in the literature
have exposed the poor accuracy and sensitivity of T7E1 assay?. Cleavage by SpCas9 has
been observed at sites with up to 5 mismatches to the spacer region and even in sites without
the 5'-NGG-3’ PAM, for example at those containing 5’-NAG-3"3°31,

Computational tools such as Cas-OFFinder and E-CRISP assume that sites with more
homology to the spacer region are more likely to be targeted and vice versa, allowing the user

to visualize potential off-target loci®222. These approaches, however, do not take into account
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off-target sites which do not fit the model's parameters®*. Genome-wide, unbiased
identification of DSBs enabled by sequencing (GUIDE-seq) provides a more robust method
for identifying off target effects, and has become widely used®. A small oligo-nucleotide tag is
integrated into DSB sites targeted by NHEJ, and sequencing analysis is used to pin-point the
location of off-target sites. This permits the detection of sites neglected by other computational
tools®*2. GUIDE-seq is a simple method to identify sites which have up to 6 mismatches to the
protospacer sequence as well as noncanonical PAMs, giving a broad profile of off-target
effects, but is limited by the use of an oligo tag3*%. Another example of a genome-wide tool is
digested genome sequencing (Digenome-seq) which involves the digestion of genomic DNA
with Cas9-gRNA complexes and subsequent deep sequencing to identify identical Cas9
cleavage fragments®. Analysis is performed on extracted DNA, eliminating the influence of
cellular context (e.g. chromatin arrangements, methylation patterns and DNA accessibility).
However, this method is time-consuming as many reads have to be analyzed to identify
patterns, and fails to recognize identical fragments caused by chance®*. Overall, no single
method is able to comprehensively analyse off-target effects and so the method employed
must be carefully considered on a case-by-case basis. For example, in eukaryotic genomes,
Digenome-seq is appropriate because it is not vulnerable to chromatin arrangements®, but
for large genomes GUIDE-seq is easier to use and more sensitive®. For a truly comprehensive
understanding of all off-target effects, a multi-system analysis involving both computational
and biological approaches is necessary, but rarely performed.

Structure of SpCas9

SpCas9 is a multi-domain protein exhibiting a bilobed structure where the nuclease lobe and
the recognition lobe®!° are linked by an arginine-rich bridge helix as well as a disordered linker®
(Figure 1A). The overall shape of SpCas9 is oblong with two large grooves, to accommodate
the DNA:RNA and RNA:RNA complexes. Adaptations of the two previously-recognized,
adjacent nucleases (HNH®, named for the three characteristic residues, and RuvC?®) of the
nuclease lobe facilitate much of the diversification of CRISPR’s function?>2¢, Each nuclease
cleaves one strand of DNA; RuvC cleaves the non-complementary and HNH the
complementary strand®!®. Another key component of the nuclease lobe is the C-terminal
domain, with a region essential for PAM recognition and binding often called the PAM-
interacting (Pl) domain’. Mutagenesis of these domains permits the evolution of CRISPR

function.

Naturally occurring variants
CRISPR is a naturally occurring system in prokaryotes, thus different species possess

different systems whose variations can be potentially exploited®. Type | and Il systems enlist
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multiple Cas proteins whereas type Il uses a single, Cas9 protein for DNA cleavage®°. Whilst
SpCas9 from S. pyogenes is the most heavily studied to date, Cas9 variants from different
bacteria with distinct cleavage patterns and PAM requirements are becoming more widely
used, such as FnCas9 from Francisella novicida*', SaCas9 from Staphylococcus aureus*?43
and recently the Campylobacter jejuni Cas9, the smallest to date**°.

SaCas9 has a longer PAM (5-NNGRRT-3’) than SpCas9 and is smaller at 1053 amino
acids (aa) compared to 1368 aa** (Figure 1B). Because of its smaller size, SaCas9 provides
valuable information regarding the elements of Cas9 that are essential and those that can be
removed or modified without impacting overall function. Characterization of SaCas9 has
shown comparable on-target cleavage to SpCas9, whilst boasting a higher specificity and
easier introduction into cells*®. Both SpCas9 and SaCas9 are bilobed, with a nuclease (NUC)
and recognition (REC) lobe linked by an arginine bridge and a linker region. They both contain
two nuclease domains, HNH and RuvC and undergo a conformational change when gRNA is
bound. However, SaCas9 only has 17% structural similarity to SpCas9; key DNA/RNA binding
domains such as the nucleases and Pl domain have been conserved but others such as the
REC2 domain are not, suggesting its presence is not crucial for Cas9 function. This
demonstrates the flexibility of Cas9’s structure whilst retaining efficacy*®. Despite these
differences, it is apparent that SaCas9 and SpCas9 share important similarities, and that
SaCas9 is a useful case study for synthetic reduction of SpCas9 size and complexity, already
attempted by the successful removal of the REC2 domain®’.

Another SpCas9 ortholog is FnCas9 which produces staggered cleavage and binds
less frequently to non-target regions***¢ (Figure 1C). The non-target strand is cleaved 3-8 bp
upstream of the PAM (5’-NGG-3’), whereas the target strand is cleaved 3 bp upstream as by
SpCas9 and SaCas9, producing overhangs of up to 4 nt and more efficient recruitment of
HDR*l. FnCas9 is considerably larger than SpCas9 and SaCa9, comprised of 1629 aa®.
Whilst its larger size may be a hinderance for transfection, FnCas9’s markedly reduced
tolerance of target mismatches makes it a valuable system for precise editing tasks. SpCas9
tolerates several mismatches of the gRNA in the non-seed region, but just one mismatch at
the 5’ end of FnCas9 gRNA is tolerated for successful cleavage®. This increased specificity
means FnCas9 produces far less off-target cleavage as fewer sites are recognized as
‘target’*!. FnCas9 is structurally dissimilar to SpCas9 and SaCas9, lacking bilobed structure
and containing distinct REC2 and REC3 domains (Figure 1C). REC3 domain mutations have
generated high-fidelity Cas9 enzymes®®; these structural differences explain the striking
differences in targeting specificity. Despite its increased specificity, it has much lower on-target
recognition than SpCas9 in eukaryotic genomes. As postulated in the literature*®, local
chromatin conformations likely affect the access to DNA, a vulnerability not shared by SpCas9.

To eliminate this problem FnCas9 has been used alongside a catalytically dead SpCas9
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(SpdCas9) to enable access and subsequent DNA cleavage®. Such problems are not present
when used in prokaryotes where FnCas9 has been shown to function effectively®?.

Finally, CjCas9 is the smallest ortholog characterized to date at only 984 aa, which
makes it suitable for size-restricted delivery methods such as those using adeno-associated
viruses (AAV) (Figure 1D). It has a bilobed structure, as in SaCas9 and SpCas9, with a
simplified REC lobe and size-reduced NUC lobe* (Figure 1D). Initial studies showed
recognition of a 5’-NNNNACA-3’ PAM? or the more promiscuous 5’-NNNVRYM-3"%® providing
an assortment of target sites. However, recent studies have found a requirement for an 8" C
at the 3’ end, suggesting 5-NNNNRYAC-3'** and 5-NNNNACAC-3' sequences®?. Tested
against SaCas9 in human cells, CjCas9 was found to be more specific with comparable
efficiencies to other variants**. However, due to discrepancies in the PAM recognition
sequences and limited research into the structure and mechanism of CjCas9, care should be
taken when placing confidence in this finding.

Comparisons of each Cas9 ortholog and their respective sgRNA has also revealed
several structural and functional differences (Figure 1). The essential region of the sgRNA
consists of a DNA binding region, the repeat:antirepeat duplex (R:AR) and at least 2 stem
loops. Removal of stem loop 1, which has extensive interactions with Cas9, prevents
cleavage, so its presence is essential®*2, In contrast, removal of loops 2 or 3 decreases
efficiency, without abolishing cleavage!®. Stem loop 2 interacts with the Pl and RuvC domains
in SaCas9 and SpCas9, and the REC domains in FnCas9 and CjCas9742454749 SaCas9 and
SpCas9’s sgRNAs exhibit the greatest similarity, particularly regarding cognate Cas9
interactions with the key difference being the lack of stem loop 3 in SaCas9*. This further
highlights the simplicity of SaCas9 compared to SpCas9 because of the reduction of non-
essential elements. FnCas9 and CjCas9’s sgRNAs are structurally distinct to SaCas9 and
SpCas9, with the same core region but some unigue features. For instance, FnCas9 has a
longer, U shaped linker, contrasting with the shorter, single-stranded linker present in SaCas9
and SpCas9*. The novel structural arrangement of CjCas9's gRNA forms a triple helix
between stem loops 1, 2, and 3*. The relevance of this structure is unfortunately still unknown
due to a lack of comprehensive structural studies of CjCas9 complexes.

The domains of each Cas9 interact with their associated sgRNAs in a distinct way due
to the slight differences in sgRNA structure*? (Figure 1). The stark differences between
SpCas9 and its orthologs demonstrate the diversity of naturally occurring Cas9 systems and
their varying characteristics. Whilst the four orthologs discussed here have been characterized
and established as potential genome-editing tools, their testing still pales in comparison to
SpCas9 and we expect that further characterisation experiments will be needed before their

deployment. Even so, the differences in mechanism and function seen across these variants

d0i:10.20944/preprints202007.0351.v1
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clearly highlight the wealth of preexisting systems available that may be suitable for many
applications.

Modifying CRISPR-Cas9 to enhance performance

Modification of guide RNAs
The CRISPR-Cas9 system requires a tracrRNA and a crRNA for target complementarity and
complex maturation. To simplify use, a single chimeric guide RNA (sgRNA) is generally used
to describe the dual-tracrRNA:crRNA structure (Figure 1, bottom row). As established by
Jinek and colleagues, a seed region (13 nt of complementarity between the crRNA and the 3’
end of the protospacer sequence) and a GG dinucleotide at the 3’ end of the PAM are essential
for sequence-specific recognition and cleavage®. By fusing the 3’ end of the crRNA to the 5’
end of tracrRNA this study simulated the tracrRNA:crRNA duplex formed in nature, inducing
a Cas9 open conformation and directed DNA targeting. In this study, the chimeric gRNA
produced cleaved all 5 expected targets in vitro and has since been widely used, confirming
its efficacy®. Such mimicking of nature’s gRNA design is a great example of how simple
biotechnological approaches can yield more streamlined genetic engineering systems.
Another modification involves truncating the gRNA such that it contains <20 nt of
complementarity to a target locus. Truncated gRNAs or tru-gRNAs have been shown to have
significantly lower off-target activity compared to full-length sgRNAs due to a reduction in
binding affinity and greater mismatch intolerance®*3, As demonstrated in two human cell
lines, the specificity of tru-gRNAs as compared to wild-type was estimated to be >10,000-fold
higher?’. Such estimates are supported by the finding that additional nucleotides added at the
5’ end of gRNA increases binding affinity for off-target sites?2. Using the same study systems,
it has been shown that positive synergism between tru-gRNAs and paired Cas9 nickases
permits a further reduction in off-target activity, demonstrating the promise of the additive

effects when combining modifications.

Modification of Cas9

Another way to improve performance is through modification of the Cas9 enzyme itself (Figure
2). Analysis of CRISPR-Cas9 variants and their resultant cleavage products established RuvC
and HNH nuclease-mediated cleavage of the non-complementary and complementary strand
respectively®!®. As double-stranded cleavage initiates the inaccurate NHEJ pathway, single-
stranded cleavage (or ‘nicking’) is favorable for efficient genome editing. A deactivating
mutation in the catalytic residues of one of the nucleases causes the Cas9 to cleave only one
strand of the target DNA. Such nicking permits accurate HDR or base excision repair

(BER)**%°, Two nicking variants (henceforth nickases) were engineered by an aspartate to
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alanine substitution in the active site of the RuvC domain to produce Cas9D10A and histidine
to alanine substitution in the HNH domain to produce Cas9H840A2°%5, The benefits of these
are twofold: they produce precise nicks in the DNA and exhibit decreased affinity to off-target
loci?®. When a DSB is required, a nickase can be used with two different gRNAs that target
each strand of the DNA. When both nicks are performed a staggered cleavage site is produced
(Figure 3)%. This dual nicking strategy has been shown to have comparable on-target
cleavage to SpCas9 whilst discriminating off-target sites more effectively®’. Continued editing
of nickases forms the basis of many other CRISPR editing systems that will be explored in the
next section.

As a mutation in one of the nuclease domains can alter Cas9 from a dsDNA
endonuclease to a ssDNA nickase, mutation of both domains can remove all cleavage activity.
An SpCas9 enzyme containing the H840A and D10A mutations is catalytically dead
(dCas9)8%8, but is still able to target and bind DNA. dCas9 has been shown to be a versatile
tool and can be tethered to other molecules such as other enzymes® or used to visualize target
affinity without cleavage®. Furthermore, dCas9 has become widely used in regulating gene
expression through CRISPR interference and activation (CRISPRi and CRISPRa,
respectively)®®® and become a valuable tool for knock-down screens where Cas9 is not
suitable®?.

An additional application of dCas9 is to fuse it to a Fokl nuclease, an endonuclease
which is strictly dependent on dimerization for cleavage activity®. This fusion enlists a long,
flexible linker with between 5-25 residues (eg. GGGGS)s fusing the Fokl endonuclease to
the Cas9 N-terminus®2-%*, The RNA-guided Fokl Nuclease (RFN) system consists of a dCas9-
Fokl fusion and two different gRNAs®®. These gRNAs must have specificity to the target region,
and both must be bound to their respective loci to allow for a functional Fokl dimer to form and
cleavage to take place. When there is off-target binding by one gRNA:Cas9 complex, the Fok
monomer remains inactive and cleavage does not occur®® (Figure 4). The use of these
alternative, exogenous nucleases creates a highly specific system with significantly lower indel
frequencies when compared to wild-type Cas9 nucleases and the use of single gRNAs®*.
However, RFNs are limited for genome-wide application due to the required presence of PAM
sequences either side of the protospacer regions (5’-CCNN2o-3’and 5’-N2oNGG-3’) as well as
14-17 bp between these®. This fusion system is also very large, limiting its application in AAV
delivery methods®®. Efforts have been made to use the smaller SaCas9 based system instead

of SpCas9, reducing the size and simplifying delivery®.

Mutation of REC3 domain
Targeted mutagenesis of other Cas9 domains has also been performed to find additional

useful modifications. For example, as DNA binds between the HNH and REC domains,
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mutations of the positively charged residues of REC3 to alanine could reduce binding affinity
making the Cas9 more strongly discriminate between target and off-target regions®’. Using
this knowledge, a high fidelity Cas9, SpCas9-HF1 was produced via mutation of four DNA-
interacting REC3 residues to alanine (N497A/R661A/Q695A/Q926A), with comparable on-
target cleavage to SpCas9%. Despite the reduction in off-target mutations as quantified by
GUIDE-seq, this variant was incompatible with the optimized truncated gRNA demonstrating
a case where independent enhancements could not be combined.

A failure to completely abolish off-target activity in SpCas9-HF1 led to further screening
of REC3 mutants in vivo and the development of another highly-specific SpCas9 variant,
dubbed ‘evoCas9™®°. This variant outperforms SpCas9-HF1 in distinguishing between on and

off-target sites and has better compatibility with optimized gRNAs.

Directed evolution for altered PAM specificity

Alterations to the nuclease and recognition domains have been shown to improve target
specificity and efficiency. However, SpCas9 is still limited to targeting of genomic regions
containing the 5’-NGG-3’ PAM®, whose number may be further reduced by local chromatin or
methylation patterns preventing Cas9 access to the site?°. PAM specificity is conferred by
several residues of the Pl domain, specifically SpCas9 arginine residues 1333 and 1335 which
interact with the two guanine nucleotides of the PAM’. Motivated by this, several studies have
focused on mutagenizing this domain to change the PAM recognized by Cas9. An attempt in
2014 substituted the two critical guanine-recognizing residues which interact with adenine
from arginine to glutamine in an attempt to modify SpCas9 recognition to a 5’-NAA-3’ PAMS8,
This effort was unsuccessful and the R13330Q/R1335Q variant produced failed to cleave DNA
in vitro. It was concluded that additional mutations were likely required for successful alteration
of PAM recognition.

Building on this work, Nishimasu and colleagues employed a positive selection
approach where survival of bacteria was only guaranteed by Cas9 cleavage of a toxic gene*.
This produced two main variants: VQR (D1135V/R1335Q/T1337R) which recognized 5'-
NGAN-3' and 5-NGCG-3' PAMs and VRER (D1135V/G1218R/R1335E/T1337R) which
recognized the 5-NGCG-3' PAM. The T1337R mutation was found to be a gain of function,
contrasting with the loss of function mutations utilized by other domain mutagenesis studies.
This specific gain of function permitted Cas9 recognition of a fourth PAM base which increased
the stringency of binding and reduced off target effects compared to wild-type SpCas9*.
These evolved SpCas9 variants with altered PAM specificities are still limited to one or two
PAMSs.

To expand PAM recognition, focus has shifted to generating SpCas9 variants able to

target multiple PAMs. So far, positive selection has been used to find useful mutagenized
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SpCas9 variants using phage assisted continuous evolution (PACE)*®. Such variants, dubbed
‘xCas9’ nucleases, had a different pattern of mutations than the rationally developed variants
which covered the entire cas9 gene’*3. xCas9-3.7 showed the best cleavage efficiency, with
a high indel formation of DNA adjacent to 5’-NG-3’, 5-GAA-3’ and 5’-GAT-3’ PAMs as well as
comparable activity to 5-NGG-3' with SpCas9'®. Together with the broader on-target
specificity, xCas9-3.7 produced less off-target cleavage than SpCas9, demonstrating the
potential merits of using an engineered Cas9 rather than the native system.

Mutation of the Pl domain in this way is not limited to SpCas9 and has been performed
in SaCas9 to similar effect. Using an analogous bacterial selection approach, mutated SaCas9
variants were tested for their efficiency for 5-NNNRRT-3’ PAM loci cleavage. Results showed
that an E782K/N968K/R1015H variant called SaKKH was functional and that this variant
disrupted 5’-NNGRRT-3’ sites (and off-target loci) at a similar efficiency to wild-type SaCas9
whilst also cleaving sites adjacent to 5-NNARRT-3’, 5-NNTRRT-3’ and 5’-NNCRRT-3"%°,

Plug-n-play CRISPR-Cas9 modules

Base editing

NHEJ-based methods are useful for the downregulation or knock-out of genes, but for more
precise editing the less error-prone HDR is preferential. HDR has been shown to work
alongside the CRISPR system and in theory can induce a range of genome edits, but is hard
to employ in vivo™. Additionally, both of these DNA repair pathways rely on the generation of
DSBs, which can result in inadvertent genomic alterations, pathogenic lesions and deleterious
p53 activation responses’. Single stranded nicks are repaired by the high-fidelity BER
pathway, making this cleavage pattern preferable for specific base changes®®.

Studies of the mechanism of Cas9 cleavage have revealed that the displaced DNA
strand is unbound, this finding coupled with the need to more accurately alter genetic
sequences led to the development of base editors’ (Figure 5). A simple CRISPR base editor
consists of a dCas9 protein, a SgRNA and a base editing enzyme (e.g. cytidine deaminase)’.
Cytidine deaminases catalyze the conversion of cytosine to uracil™ and the rat cytidine
deaminase (rAPOBECL1) has been selected in a number of systems due to its high activity. To
localize rAPOBECIL to a target site in DNA and create the first base editor (BE1), rAPOBEC1
was fused to dCas9 via an XTEN linker which is commonly used in Fokl-dCas9 fusions®*"®
(Figure 5A). BE1 is able to deaminate 5 bases at the 5’ end of the protospacer and was found
to have a 50-80% efficiency in vitro, but only 0.8-7.7% in vivo (human cells)®®. This
discrepancy was attributed to the endogenous DNA repair machinery, specifically uracil DNA
glycosylase (UDG), which reverses the UG pair to a CG pair®®. To combat this, a uracil DNA

glycosylase inhibitor (UGI) was attached to the C-terminus of BE1, to create the second base
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editor variant BE2 (Figure 5B). This alteration increased editing efficiencies in human cells 3-
fold as UDG activity was drastically reduced®®. Both these editors are only active on the strand
containing the cytosine so to broaden the editors’ function dCas9 was modified to create
variant BE3 that acted as a nickase targeting the non-edited strand (Figure 5C). BE3 was 2
to 6- fold more efficient in creating cytosine to thymine transitions than BE2. All 3 editors
showed off target-binding, but no base editing was found to have occurred at these sites and
indel formation was significantly less than that induced by Cas9-mediated DSBs. A further
development produced an additional base editor variant BE4 which included three alterations
to BE3 (Figure 5D). The linkers fusing the rAPOBEC1 and UGI proteins to Cas9 were
extended to 32 and 9 aa, respectively, and an additional UGI was added to the C-terminus
with a 9 aa linker’®. BE4 showed higher C to T editing efficiency as well as better product yield
compared to BE3. The evolution of this base editor system highlights the robust nature of the
Cas9 protein to the ‘plug-n-play’ for additional functional modules in a rational way.

Another study which used this combined approach employed a SaCas9 nickase
instead of SpCas9 in a BE3 variant, SaBE3’". As previously described, SaCas9 is much
smaller than SpCas9* and recognizes a 5-NNGRRT-3’ PAM. The creation of a base editing
system with this different nickase allowed for targeting of not only 5-NGG-3’ but also 5’-
NNGRRT-3 PAMSs, increasing the number of potential editing sites. SaBE3 also possesses
other benefits, such as an increased editing efficiency on target as well as base editing outside
of the expected activity window compared to the SpCas9-based BE3°%’’. Furthermore, Kim
and colleagues utilized SpCas9 variants with altered PAM specificities, specifically VQR and
VRER (described previously) and EQR from the same study*, as well as an engineered
SaCas9 variant, SaKKH®. All these variants had editing efficiencies of up to 50% for sites with
relevant PAMs, with SaKKH-BE3 editing up to 62% of target sites. SaBE3 and SaKKH-BE3
had a similar off-target activity to SpCas9 whereas EQR-BE3 and VQR-BE3 showed markedly
reduced levels’’. These data again highlight the merits of combining CRISPR-Cas9

modifications to extend functionalities.

Prime editing

A similar combinatorial approach was used to create another form of more complex editing
machinery. So called, prime editing combines the functionalities of a Cas9 nickase, reverse
transcriptase (RT) and unique prime editing gRNA (pegRNA) (Figure 6). By combining these
elements more precise changes to DNA can be made that go beyond the capabilities of other
base editors (e.g. transversion point mutations, insertions, deletions)!!. The pegRNA is novel,
as it both guides the Cas9-gRNA complex to the target and provides the sequence substrate
for the RT to rewrite into the genome. The first prime editor PE1 consisted of a wild-type M-
MLV RT attached to the C-terminus of H840A nickase (Figure 6A). PE1 was able to generate
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transversion mutations at efficiencies of up to 5.5% and insertions and deletions of up to
17%". To increase the efficiency of PE1, a second prime editor variant PE2 was produced by
incorporating five RT mutations designed to enhance binding affinity (Figure 6B). PE2 had
increased efficiency of insertions and deletions and up to 5.1-fold increases in efficiency of
targeted point mutations as compared to PE1. The further prime editor PE3 used the PE2
protein machinery alongside an additional sgRNA targeting the non-edited strand (Figure 6C).
This simple modification increased editing efficiency by 1.5-4.2-fold, which is thought to be

due to the edited strand acting as a template for non-edited strand repair*.

Challenges

Inconsistent off-target detection methods

Precise detection of off-target activity is crucial if CRISPR technology is to be used more
widely and especially in a clinical setting’®. However, many existing methods have differing
sensitivities” making comparisons between studies difficult (e.g. CIRCLE-seq has been
shown to identify more off-target cleavage sites compared to GUIDE-seq and Digenome-seq,
whilst Sanger sequencing identifies more compared to T7E1 assays). Furthermore, many of
the original CRISPR-Cas9 results that the field has been built upon utilised suboptimal
detection methods®%8!, A further complication are disagreements between in vitro and in vivo
results, which have been reported even for some of the most robust methods developed®.
Together these problems make comparisons and decisions on use difficult. Therefore, moving
forward it will be essential that more reliable off-target detection methods are developed, as

well as revisiting historic results to verify their accuracy.

Biases in CRISPR research

Another factor hampering our understanding and comparison of CRISPR-Cas9 systems is the
lack of standardised studies and benchmarking®?. Most studies make use of different and
limited genetic targets, environments (i.e. in vivo/in vitro) and experimental conditions. This
makes comparisons impossible and further hinders effective reuse.

An additional bias when assessing CRISPR use is the relatively young age of the
technology. Most studies to date have focused on demonstrating successful proofs-of-concept
with little concern for the longer-term implications. Furthermore, those moderately longer-term
studies that do exist have largely focused on ill-effects®384. Clearly these handful of examples
do not paint a full picture and the reality is that we have a very limited and biased
understanding as to the long-term consequences of CRISPR use®®. Ensuring we are aware of
these biases will be crucial when considering possible future deployment into the clinic or the

wider environment (e.g. through gene drives®®7).
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Ethical, societal and evolutionary concerns

Parallel to scientific advances, ethical and societal concerns have also grown around
preclinical research, somatic cell editing, and germline alterations using CRISPR-Cas9. The
main focus of these surround germline editing; the work of He Jianku in 2018 that led to the
CRISPR-baby scandal re-emphasised the dangers of not regulating this technology®. In
Jianku’s work, the CCR5 gene was largely disabled to confer protection from HIV infection.
However, the pleiotropic role of CCR5 suggests likely undesirable long-term side effects®.
Understanding the full impact of any germline edit is incredibly difficult. It dictates the fate of
individuals, forbids consent of future offspring and potentially exposes the lineage to off-target
mutagenesis risks®>%, making it ethically questionable in most cases. For those cases where
it might be acceptable, it is essential that open and balanced discussions at a societal level
are performed to ensure this technology is used in an understood and agreed manner.

From a Darwinian perspective, CRISPR technologies are a powerful means by which
individuals could eradicate genes they deem as deleterious from a population. Furthermore,
the decision to remove one deleterious gene will likely make it easier to justify the removal of
another®2, This ‘slippery slope’ ultimately leads to removal of genes in a biased manner,
moving from a situation where genome editing is used for medical necessity to one with a
selfish purpose, such as enhancing one’s offspring®®. The ability to select for and against traits
would allow humans to act as mediators of natural selection, and bioethicists fear that such
control tempts a backlash from nature®. What form this might take has yet to be fully
understood but has drawn recent attention®°®, Longer-term, the ability to delete variation and
distort heritability may eventually call for a revised theory of natural selection with ethical and

societal implications that go far beyond clinical applications.

Conclusion

In this review we have shown how robust the CRISPR-Cas9 system is to modifications and
extension, allowing its functionality to be tailored for a broad array of genome editing tasks.
The rapid development of these systems was made possible by the highly modular structure
of both the Cas9 protein and its associated gRNA that allowed in many cases for directed
mutations to have a desired impact on the systems overall function. This bodes well for the
engineering of other non-Cas9-based CRISPR systems that may better suited to other tasks
such as multiplexed DNA editing (e.g. Cas12a%?°’) or the localization of enzymatic activities
to RNAs (e.g. Cas13%).

Whilst the studies explored in this review pave the way for making CRISPR-Cas9 an

effective and safe tool, several hurdles spanning both science and society still remain.
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Therefore, if maximum benefit is to be realized from this technology, it is vital that future
studies widen their scope to consider the wider implications of use and the longer-term impacts
they might have on society and the natural world.
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Figure 1: Naturally occurring variants of Cas9 and their respective gRNA structures.
Top diagrams show the Cas9:gRNA complex and interactions of the gRNA with core Cas9
domains (labelled in white). Domains abbreviated as: REC = recognition, NUC = nuclease,
BH = bridge helix, Pl = PAM-interacting, CTD = C-terminal domain, WED = wedge. Bottom
diagrams show the gRNA structure with the DNA binding region, major stem loops (SLs) and
repeat:antirepeat (R:AR) duplex highlighted. The 5" end of each gRNA is denoted by a small
circle. (A) Streptococcus pyogenes Cas9 (SpCas9). (B) Staphylococcus aureus Cas9
(SaCas9). (C) Francisella novicida Cas9 (FnCas9). (D) Campylobacter jejuni Cas9 (CjCas9).
(E) Domain structure of the Cas9 variants. Linkers are denoted by white regions and REC

domains are numbered in white text where relevant.
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Figure 2: Key domains of Cas9 and the effect of modifications of each on phenotype.
Domains abbreviated as: REC = recognition, NUC = nuclease, BH = bridge helix, Pl = PAM-

interacting.
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Figure 3: Cas9D10A and Cas9H840A nickase systems. (A) The Cas9D10A nickase system
which nicks the complementary strand. This Cas9D10A is used in conjunction with a pair of
guides to target each strand independently. The 5’ end of each gRNA is denoted by a small
circle and inactive domains are outlined in red. (B) A complementary Cas9H840A nickase
system is able to nick the non-target strand. Again, this system is normally used with two
complementary guides to target each strand of DNA. (C) Domain structure of the nickase
system. Mutations are shown by bright red lines and three REC domains nhumbered in white
text. (D) Example of the Cas9D10A nickase system targeting two regions to create

complementary nicks on opposite strands. The PAM is shown in red.
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Figure 4. An RNA-guided Fokl Nuclease (RFN) system. (A) An RFN system consists of a
dCas9-Fokl fusion and two gRNA (green and blue) with targets ~15 bp apart. Two Fokl
monomers (blue) are required for the active dimer (purple) to cleave DNA, so off-target binding
of a single RFN does not (usually) result in cleavage. Domains outlined in red are inactive.
The 5’ end of each gRNA is denoted by a small circle. The PAM is shown in red. Linkers are
denoted by white rectangles. (B) Domain structure of the RFN. Linkers and nuclear
localization signals (NLSs) are denoted by white and black regions, respectively, and
mutations are shown by bright red lines. Three REC domains numbered in white text. (C) Two
RFNs bound in an active conformation to a target DNA locus. (D) Single inactive RFN bound

to an off-target DNA locus.
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Figure 5: Base editing systems. (A) Base editor 1 (BE1) consists of a SpdCas9 with a
cytidine deaminase (rAPOBEC1) fused to its N-terminus. (B) Base editor 2 (BE2) is similar to
BE1 but includes an additional uracil glycosylase inhibitor (UGI) fused to the C-terminus. (C)
Base editor 3 (BE3) is similar to BE2 but includes the catalytic activity of the HNH nuclease
domain restored, to allow target strand nicking. (D) Base editor 4 is as BE3 but with longer
linker proteins and an additional UGI fused to the C terminus. The 5" end of each gRNA is
denoted by a small circle. Linkers are denoted by white rectangles. Mutated domains are
outlined in red. (E) Domain structure of the base editors. Linkers and nuclear localization
signals (NLSs) are denoted by white and black regions, respectively, and mutations are shown
by bright red lines. Three REC domains humbered in white text.
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Figure 6: Prime editing systems and pegRNA. (A) Prime editor 1 (PE1) consists of a H840A
nickase with a flexible linker fusing an M-MLV wild-type (WT) reverse transcriptase (RT; red)
to the C-terminus. Linkers are denoted by white rectangles. Mutated domains are outlined in
red. (B) Prime editor 2 (PE2) is similar to PE1 but contains a mutated/engineered RT rather
than the WT variant. Prime editor 3 is identical to PE2 but makes use of an additional gRNA
targeting the unedited strand, allowing for increased editing efficiency. (C) The pegRNA
consists of a seed region and sgRNA (green) with a primer binding site (PBS; dark yellow)
and repair template (RT template, blue) containing a base edit (red). The PBS binds to the
nicked strand for initiation of repair via RT, using the repair template. The 5" end of each gRNA
is denoted by a small circle. (D) Domain structure of the prime editors. Linkers and nuclear
localization signals (NLSs) are denoted by white and black regions, respectively, and
mutations are shown by bright red lines. Three REC domains numbered in white text.
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