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11 Abstract: Contrary to optical images, Synthetic Aperture Radar (SAR) images are in different
12 electromagnetic spectrum where the human visual system is not accustomed to. Thus, with more
13 and more SAR applications, the demand for enhanced high-quality SAR images has increased
14 considerably. However, high-quality SAR images entail high costs due to the limitations of current
15 SAR devices and their image processing resources. To improve the quality of SAR images and to
16 reduce the costs of their generation, we propose a Dialectical Generative Adversarial Network
17 (Dialectical GAN) to generate high-quality SAR images. This method is based on the analysis of
18 hierarchical SAR information and the “dialectical” structure of GAN frameworks. As a
19 demonstration, a typical example will be shown where a low-resolution SAR image (e.g., a
20 Sentinel-1 image) with large ground coverage is translated into a high-resolution SAR image (e.g., a
21 TerraSAR-X image). Three traditional algorithms are compared, and a new algorithm is proposed
22 based on a network framework by combining conditional WGAN-GP (Wasserstein Generative
23 Adversarial Network - Gradient Penalty) loss functions and Spatial Gram matrices under the rule
24 of dialectics. Experimental results show that the SAR image translation works very well when we
25 compare the results of our proposed method with the selected traditional methods.
26 Keywords: dialectical generative adversarial network; image translation; Sentinel-1; TerraSAR-X.
27

28 1. Introduction

29 In remote sensing, SAR images are well-known for their all-time and all-weather capabilities.
30  In the 1950s, the first SAR system was invented [1]. However, the design and implementation of a
31  SAR system is a complex system engineering and costs many resources, both in money and
32 intellectual effort. Therefore, most SAR instruments on satellites are supported by government
33 organizations. For example, the German Aerospace Center (DLR) and EADS Astrium had jointly
34 launched TerraSAR-X in 2007 [2] and TanDEM-X in 2010 [3]. The Canadian Space Agency (CSA)
35 had launched in 1995 the RADARSAT-1 and in 2007 the RADARSAT-2 satellites [4], while the
36  Italian Ministry of Research and the Ministry of Defence together with the Italian Space Agency
37 (ASI) had launched the COSMO-SkyMed -1, 2, 3, and 4 satellites in 2007, 2008 and 2010 [5]. The
38  European Space Agency (ESA) had launched the Sentinel-1 SAR satellite in 2014 [6]. In addition,
39  there are many governments and institutions having launched their own SAR satellites [7], [8].
40  Nowadays, SAR has become one of the most valuable tools for remote sensing of the Earth and its
41  environment.

42 In the era of big data, deep learning can accommodate large amount of data and generate
43  promising new applications. With the recent development of deep learning, image translation is an
44 easy way to obtain high-quality SAR images. “Translation” is a word borrowed from the linguistic
45  field which denotes the change from one language to another one. This translation is often applied
46  when one language is hard to understand while another one is more familiar to us. Though the two
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47  languages have different vocabularies and grammars, the translation is premised on the identity of
48  the contents. In general for image translation there are two “sides” of the translation, namely the
49  two images coming from different sensors. In this paper, we demonstrate a typical example where a
50  low-resolution SAR image (e.g., a Sentinel-1 image) with large ground coverage is translated using
51  deep learning into a high-resolution SAR image (e.g., a TerraSAR-X image). To some extent, this
52 kind of translation is related to super-resolution and neural style transfer.

53 From 2013, deep learning has becomes a popular tool for many applications, such as image
54 recognition, classification, semantic segmentation, target detection, etc. The first milestone in deep
55  learning based image translation is Gatys et al.’s paper [9]. They introduced the Visual Geometry
56  Group (VGG) networks, a pre-trained neural network used for ImageNet in order to define the
57  content and “style” information of images, which provides a framework for image translation
58  wunder the background of deep learning. Within a neural network based framework, many
59  researchers have proposed their own methods for their specific purposes [10], [11]. The second
60  milestone is the invention of Generative Adversarial Networks (GANSs) that was made by
61  Goodfellow et al. [12]. As a generative neural network, it seems that a GAN is well-suited for image
62  translation. According to the conception presented in [13], the image translation can be regarded as
63  the “pix2pix” task, and the authors of [13] have unitized a conditional GAN to carry out image
64  translations. Inspired by this paper, we think that we can apply these algorithms to do SAR image
65  translation. In SAR image processing, there are many papers about how to use deep learning for
66 classification, segmentation, etc. [14], [15]. However, little attention has been paid to the translation
67  between different SAR instruments using deep learning.

68 Translation of Sentinel-1 data to high-resolution images like TerraSAR-X has attracted great
69  interest within the remote sensing community. First, the high resolution of TerraSAR-X generates
70 SAR images rich in information that allow innovative applications. Second, the wide area coverage
71  of Sentinel-1 images reduces the need for multiple acquisitions and decreases the demand for
72 high-cost data. Third, it is much easier for researchers to access Sentinel-1 images than TerraSAR-X
73 images because the Sentinel-1 images are freely available, while the TerraSAR-X images are usually
74  commercial. To meet these requirements for high-quality data, we propose a “Dialectical GAN”
75  method based on the analysis of the hierarchical SAR information and the “dialectical” structure of
76 GAN frameworks. The data used for validation is covering urban areas, so we can apply a spatial
77  matrix to extract geometrical arrangement information. By using a GAN, we were able to achieve
78  good results with fine visual effects and our indicators show that our proposed method is better
79  than the existing traditional methods discussed in this paper.

80 This paper is organized as follows. Section 2 presents the data set and the characteristics of
81  both satellites (Sentinel-1 and TerraSAR-X). In Sections 3 and 4, we deeply explain the deep
82  learning methods for SAR image translation, including the development of traditional methods and
83  the creation of the proposed method. Section 5 describes the experiments based on an urban area
84  using the traditional and proposed methods, while Section 6 discusses the advantages of the
85  proposed method compared with the traditional methods. Finally, Section 7 concludes this paper
86  and gives future research perspectives.

87  2.Dataset

88 In the field of radar remote sensing, they are many satellites for different applications [16]. In
89  this paper, we chose two typical satellite systems, Sentinel-1 and TerraSAR-X, which serve the same
90  purpose but with different characteristics.

91 Sentinel-1 is a C-band SAR satellite system launched by ESA, whose missions include sea and
92  land monitoring, emergency response after environmental disasters, and commercial applications
93 [17]. In contrast, TerraSAR-X is an X-band Earth observation SAR satellite being operated under a
94 public-private-partnership between the German Aerospace Center (DLR) and EADS Astrium (now
95  Airbus), whose main features are its high resolution with excellent geometrical accuracy [18]. In our
96  opinion, Sentinel-1 is a good option to generate large-scale SAR images, while TerraSAR-X is an
97  adept solution for high resolution. To avoid being influenced by radar configurations, we try to
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keep the radar system parameters of two products as consistent as possible. A comparison of the

radar parameters of two image products we used in this paper is shown in Table 1.

Table 1. Selected data set parameters

SAR instrument TerraSAR-X Sentinel-1A
Carrier frequency band X-band C-band
Product level Level 1b Level 1

Instrument mode

High Resolution Spotlight

Interferometric Wide Swath

Polarization \A% \A%
Orbit branch Descending Ascending
Incidence angle 39° 30°-46°
o Ground Range Detected
Product type Enhanced E?hpsmd Corrected High Resolution (GRDH)
(EEC) (amplitude data) .
(amplitude data)
Enhancement Radiometrically enhanced Multi-looked
Ground range resolution 29m 20m
Pixel spacing 1.25m 10 m
Equlvalen.t number of looks 30%0.6=8.3 5x] =5
(rangexazimuth)
Map projection WGS-84 WGS-84
Acquisition date 2013-04-29 2014-10-13
Original full image size 9200%8000 34,255x18,893
(colsxrows)
Used image sizes (colsxrows) 6370x4320 1373x936

2.1 Image quantization

The amplitude of SAR image products is usually not in the range of [0, 255] which is the
dynamic range where optical image products stay. The amplitude of SAR images relates with the

radar cross section (RCS) and has a large dynamic range. There are many methods for SAR image

quantization [19]. Because we need to use pre-trained neural networks designed for optical images,
the SAR data should be scaled to the brightness range of optical pixels. In order to generate the SAR
images with good visual effects, an 8-bit uniform quantization is applied in different brightness
range. For Sentinel-1 images, the range is [0, 800] while for TerraSAR-X images it is [0, 570]. These

parameters were defined by the brightness levels of our test data which contain 98% of the pixels in

the pixel brightness histograms.

2.2 Image co-registration
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114 The image translation between two different products should be done with co-registered image
115  pairs. Fortunately, remote sensing products can be projected the same coordinates by using
116  geo-coding. Geo-coding is a technique that yields every pixel its longitude and latitude on Earth.
117 Thus, for each pixel, once its location is determined, the pixel information from both Sentinel-1 and
118  TerraSAR-X images can be retrieved. In order that the two images have the same content and the
119  same pixel size, the pixel spacing for both images is set to the same value, where the scale is 1:10.
120  Finally, the interpolation and the co-registration are completed automatically in the QGIS software,
121 which is an open source tool. In this software, the interpolation is based on IDW (Inverse Distance
122 Weighted) method [20], and the co-registration relies on the annotation data of the image product
123 resulting the accuracy of a few meters.

124 2.3 Training data and test data

125 The selection of a training data set and a test data set for quality control is a primary task in
126  deep learning. There are several hyper-parameters to be determined and they can finally impact the
127  capabilities of the trained networks. The selected patch size is one of the hyper-parameters that can
128  affect both the final results and the amount of the training data. When the patch size is too large, the
129 number of the training data becomes small, even the data augmentation can be applied. Based on
130 the discoveries in [21], which yielded a best patch size for SAR image classification, we chose for
131  our studies a patch size of 128x128 pixels [21]. Using an overlap of 50% between the tiled patches,

132 we obtained 1860 patches for training and 224 patches for testing,.
133

134 3. Related work

135 Deep learning has been widely used in the last years in computer vision, biology, medical
136  imaging, and remote sensing. Although the theory of deep learning is not yet mature, its capabilities
137  shown in numerous applications have attracted the attention of many researchers. Let us simply
138  review the development of image translation with deep learning. In 2016, Gatys et al. demonstrated
139 the power of Convolutional Neural Networks (CNNs) in creating fantastic artistic imagery. With a
140  good understanding of the pre-trained VGG networks, they have achieved the style transfer and
141  demonstrated that semantic exchange could be made by using neural networks. Since then, Neural
142 Style Transfer has become a trending topic both in academic literature and industrial applications
143 [22]. To accelerate the speed of Neural Style Transfer, a lot of follow-up studies were conducted. A
144 typical one is Texture networks. With the appearance of GANSs, several researchers turned to GANs
145  to find more general methods without defining the texture. In this paper, we examine three typical
146  methods, the method of Gatys et al. [9], Texture Networks [10] and Conditional GANs [13]. By
147  analyzing their advantages and disadvantages in SAR image translations, we propose a new
148  GAN-based framework which is the combination of the manifestations of SAR images in the
149  VGG-19 network, the definition of texture content, and the WGAN method.

150  3.1. VGG-19 network

151 VGG-19 is a key tool to conduct style transfers. It is a pre-trained CNN model for large-scale
152 visual recognition developed by Visual Geometry Group at the University of Oxford, which has
153 achieved excellent performances in the ImageNet challenge. Gatys et al. [9] firstly introduced this
154 CNN in their work. Then, the next studies were focused on the utilization of the outcomes of
155  VGG-19. However, VGG-19 has been trained on the ImageNet dataset which is the collection of
156  optical images. In order to find the capabilities of VGG-19 for SAR images, we first visualize the
157  content of each layer in VGG-19 when the input is a SAR image and then analyze the meaning of
158  each layer. The input SAR images are in the 8-bit dynamic range without histogram changes for
159 fitting the optical type. There are 19 layers in the VGG-19 network, but the most commonly used
160 layers are the layers after down-sampling, which are called ReLU1_1, ReLU2_1, ReLU3_1, ReLU4_1,
161  and ReLU5_1. A visualization of SAR images via the VGG-19 layers is shown in Figure 1.
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Original RelLU1 1 ReLU2_1 ReLU3_1 ReLU4_1 ReLU5_1
e

Sentinel-1

TerraSAR-X
162
163
164 Figure 1. Visualization of Sentinel-1 and TerraSAR-X SAR images in the VGG-19 layers

165 As can be seen from Figure 1, the images in ReLU 1_1, ReLU 2_1, and ReLU 3_1 layers are quite
166 different, while the images in ReLU 4_1 and ReLU5_1 of both two sensors are similar. According to
167  the conception of deep learning, the higher layers contain higher semantic information [9], which
168  supports the results in Figure 1. Therefore, Gatys et al. used the shallow (i.e., lower) layers as the
169  components of texture and took the deep layers as the content information. However, we find that
170  the ReLU5_1 images in both Sentinel-1 and TerraSAR-X are almost featureless. In another paper
171  [23], the authors found that ReLU5_1 has real content for optical images. This may be because this
172 training of VGG-19 is based on optical images. Whatever, we decide to ignore the ReLU5_1 layer in
173 our algorithm in order to accelerate the computation. It will be discussed in the experiment part.

174 3.2. Texture definion-Gram matrix

175 The success of Gatys’ paper is to some extent achieved by the introduction of a Gram matrix. If
176  we regard the pixels of the feature map in each layer as a set of random variables, the Gram matrix
177  is a kind of second-order moment. The Gram matrix in that paper is computed on the selected
178  layers as described in Section 3.1. Assuming L layers are selected and their corresponding number
179  of feature maps is N;, the Gram matrix of the [** layer is

mq
11T
6=\ B IR B R, W
1 H
T
FIlVl:J

180  where F}. is the column vector generated from the i*" feature map of layer [, and M, is the size
181  number of each feature map in this layer. An element of the N' x N! Gram matrix is

M;
1 1
%=EZ%%=MWﬁ% (”
k=1

182 where (-} denotes the inner product. When we get the Gram matrices {G'},c Lsotected ’ where
183 Lgyectea is the set of the selected layers to define the texture information. Having the Gram matrices,
184  the definition of the style difference between two images is

Lstyle = Z Wl||al - Gl”;Z: ’ 3)

l€Lselected

185  where w, is a kind of hyper-parameter define the weight of the style in the [* layer, G' is the
186  Gram matrix of the being generated image in the I** layer, G! is the corresponding term for the
187 reference image, and |||l is the Frobenius norm of the matrices. In our case, the style image is no
188  longer an artistic painting of art, and the Gram matrices did not perform well. Figure 2 shows the
189  mismatch of utilizing these Gram matrices to translate between SAR images.
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190
191 Figure 2. Experiment using the Gatys et al. method (a) content image (Sentinel-1) (b) transferred
192 image (Gram matrix) (c) style image (TerraSAR-X)
193 Figure 2(b) contains many fake targets. For example, there is nothing at the lower right part of

194 both Figure 2(a) and Figure 2(c), but some bright lines, usually from buildings, appear at that part
195  of Figure 2(b). Besides, contrary to Figure 2(c), the layout of buildings in Figure 2(b) is hard to
196  understand. In our experiment, the SAR data are depicting an urban area, where most targets are
197  buildings. The city structure is quite different from the design of artistic works, which means the
198  style definition should vary for different applications. Reflecting upon the Gram matrices, their
199  format should be changed. The vectorization of the feature maps makes the Gram matrices fully
200  blind to the arrangement information inside the maps [24]. To maintain the arrangement
201 information, which is useful for urban area, we should discuss this arrangement information and
202  how to make it suitable for our applications.

203 The arrangement most often indicates the placing of items according to a plan, but without
204  necessarily modifying the items themselves. Thus, an image with arrangement information should
205  contain similar items and the similar items are placed in different locations. When we tile the
206  images into small pieces (called patches) according to the scheme they belong to, the small pieces
207  should be similar. Their similarity can be determined by the Gram matrix, while the way to tile the
208  image is the part of our approach. The manifestation of most objects of urban areas in remote
209  sensing images is usually rectangular. Thus, the main outline of urban SAR images should be
210  straight lines.

211 The Spatial Gram method is a good way to represent this arrangement texture, which defined
212 by the self-similarity matrices themselves and by applying spatial transformations when generating
213 these matrices. A Gram matrix is a measurement of the relationship of two matrices, and the spatial
214  transformation determines which two. G. Berger et al. have proposed a series of CNN-based Spatial
215  Gram matrices to define the texture information. Based on their ideas in [24], we apply a spatial
216  transform tiling the feature map horizontally and vertically in different levels to represent the
217  “straight” texture information.

218 As we have several options to tile an image, how to compute their Gram matrices to define the
219  texture is still a question, either to add them or to regard them as parallel structures. When the
220  Spatial Gram computation just has one element, it degenerates into the traditional Gram matrix like
221  the one used by Gatys et al. But when it has too many elements, the ultimate configuration is that all
222 the pixels are in the Gram matrix individually and it will lose its capability to generate diverse
223 textures. A line, which is the basic unit of our images, can be determined by two parameters. Thus,
224 we use the two orthogonal dimensions (row and col), as two rows of the Spatial Gram matrix, and
225  the spatial transform types as the columns. Thus, the Spatial Gram matrix we applied in this paper

226 s
Sépatial _ (Giow,z Giow,4 G%ow,ﬁ—l)/ @
Gcol,Z Gcol,4 Gwl,27—l
227  where the type of transformation is related to the size of the feature maps in this layer. A, =
228  {2,..,277'} where the 7 is determined by the input size of patches (128x128), and Ly jereq = {1,2,3}.

229  Gl,,s and G, s are two kinds of spatial transformation which is related to the dimensions row

230  and col, and the shifted amount §. Assuming the feature map is F!, and its transformations are
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231 T(FY) where T denotes the function of spatial transformation. For example, the spatial
232 transformations of feature maps in the row dimension are defined as
Trows(F) =F'(6:M,1:N),
®)

Trow,—S(Fl) =F'(1:M - 6,1:N),

233 where M,N are the height and width of the feature map F'. T,,, s(F') is the transformation on the
234 row dimension. The vectorization of Ty, s(F") is written as Ty, s(F"). which is the column vector

235  Having these definitions, Gl,, s canbe written as

T
[ Trow,S (FD: ]
1 T
Gf’ow,S = Mill TTOW’S:(FZ): | [Trow,—S(FD: Trow,—S(Fé): Trow,—S(FIlVl):] ’ (6)
T
lTrow,S (Fllvl):

236 where Gf,, s can be written in the same way but the spatial transformation takes places in the row
237  direction. Thus, the spatial style loss function is
~ 2
Lstyle = Z Wl”Sépatial - Sépatial ”F : (7)

l€Lselected
238  where the S, if the spatial matrices of the target images and §§paa~al is for the generated

239 image. The style loss function L., is only dominated by the Spatial Gram matrices, it is not
240  necessary to add the traditional Gram matrices because when § is small, it is almost the same as
241  the traditional one. Figure 3 shows the results applying the new Spatial Gram matrix.

"

-

)

242

243 Figure 3. Experiment using Spatial Gram matrices (a) content image (Sentinel-1) (b) transferred
244 image (Spatial Gram matrix) (c) transferred image (Gatys et al.’s Gram matrix) (d) style image
245 (TerraSAR-X)

246 3.3 Conditional generative adversarial networks

247 The introduction of GANs is a milestone in deep learning, and it becomes popular where
248  hundreds of papers were published under the name of GAN [25]. A conditional GAN makes a
249  general GAN more useful because the inputs are no longer the noise but the things we can control.
250  In our case, the conditional inputs are Sentinel-1 images. The conditional GANs have achieved
251  impressive results on many image processing tasks, such as style transfer [26], supper-resolution
252 [27], or other tasks [28], [29]. Isola et al. [13] summarized the tasks of image translation as “pix2pix]”
253  translations and demonstrated the capabilities of conditional GANS in their paper. Inspired by their
254  works, we modified the “pix2pix” framework by adding new discoveries about GANs and specific
255  features of the SAR images translations. When we used the “pix2pix” framework in our application
256  this failed. Figure 4 shows the overfitting of the “pix2pix” conditional GAN because the training set
257  has good performances while the test set has bad results. Without any modification, we could not
258  reach our goals. In the next section, we propose a new method to realize Sentinel-1 to TerraSAR-X
259  image translations.
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Training &
set

Figure 4. SAR image translation using the “pix2pix” framework in both training and test set (a) input
image in the training set (b) GAN output of image (a) (c) target of image (a) (d) input image in the
test set (€) GAN output of image (d) (f) target of image (d)

4. Method

Although the conditional GAN is overfitting in our case, it is still a good strategy to complete our
task, which is to have a mapping function from Sentinel-1 to TerraSAR-X. In mathematical notation,
itis

G:x -y, (8)

where G is the mapping function, x is a Sentinel-1 image, and y is a TerraSAR-X image.
Actually, this task can be achieved by designing a neural network and by presetting a loss function
like traditional machine learning. Indeed, this idea has already been accomplished in [10] and [11].
However, the preset loss function is not general for all cases. A GAN provided an idea that the loss
function is not preset, and it can be trained through a network which is called “Discriminator”. The
mapping function G is realized through a “Generator” neural network.

In this paper, we use the concept of dialectics to unify the GANs and traditional neural
networks. There is a triad in the system of dialectics, thesis, antithesis and synthesis, and they are
regarded as a formula for the explanation of change. The formula is summarized as (1) a beginning
proposition called a thesis, (2) a negation of that thesis called the antithesis, and (3) a synthesis
whereby the two conflicting ideas are reconciled to form a new proposition [30]. We apply this
formula to describe the change of image translation. The “Generator” network is regarded as thesis
and it can be inherit the parameters from the previous thesis. In our case, the “Generator” inherits
from the texture network. The “Discriminator” network acts as a negation of the “Generator”. The
synthesis is based on the law of the Negation of the Negation. Thus, we can generate a new
“Generator” through the dialectical method. When the new data comes, it will enter the next state
of changing and development. The global flowchart of our method is shown in Figure 5. There are
two phrases, training phrase and operational phrase. The training phrase is the processing to
generate a final generator, and the operational phrase applies the final generator to conduct the
image translation task. In the following, we discuss the “Generator” network, the “Discriminator”
network and the details to train them.

d0i:10.20944/preprints201807.0340.v1
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290 Figure 5 Global flowchart of Dialectical GAN
291 4.1 “Genertor” network — thesis
292 The purpose of the generator is to generate an image G(x) has the content of image x and the

293 style of image y. Thus, the loss function has two parts, content loss and texture loss, which is defined as

LGenerator = Lcontent + /u:style

= Z ”Fl(G(x)) - Fl(x)”IZ: +1 Z Wl“Sépatial(G(x)) - Sépatial (y) ”12; ’ (9)

l€Lcontent l€Lgtyle

294  where 1 is a regularization parameter, F!(-) are the feature maps of the [** layer of an image,
295 Si,uia() are the Spatial Gram matrices that were defined in Section 3.2. According to the
296 discussion in Section 3.1, there is no information in “ReL.U5_1”". Therefore, we chose “ReLLU4_1" as
297 the content layer, and “ReLU1_1", "ReLU2_1"” and "ReLU3_1"as the style layers. Consequently,
298 Leontent = {4}1 and Lstyle = {11 2, 3}-

299 G can be any kind of functions, it can be as simple as a linear function or as complex as a
300  multiple composition of non-linear functions. As a powerful tool to approximate functions [31] [32],
301  deep neural networks are used as our notation of G in this paper. The input and the target images,
302  x and y, are from different SAR sensors, but they are observing the same test site. The properties of
303  SAR systems result in their own characteristics of image representation, such as final resolution,
304  polarization response, and the dynamic ranges. But the same observed area makes them share
305  identical compounds. Regardless of the changes in time, x and y are generated from identical
306  objects. For the analysis of our input and target images, there are plenty of network structures that
307  solve this problem.

308 Previous related works [28] [33] have used an encoder-decoder network [34] where the input
309  image is compressed in down-sampled layers and then be expanded again in up-sampled layers
310  where the process is reversed. The main problem of this structure is whether the information is
311  preserved in the down-sampled layers. Based on the discussion in [13], we chose the “U-Net”
312 network to execute our tasks. The “U-Net” is very well known for its skip connections which are a
313 way to protect the information from loss during transport in neural networks. According to the
314  behavior of our SAR images in the VGG-19 network, we set the “U-Net” to 6 layers. The structure
315  of the network we used is shown in Figure 5.
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318 Figure 6. Architecture of the “U-Net” Generator network
319 Although the network in Figure 5 has too many elements and is hard to be trained, we think it is

320  necessary to use a deep network because the architecture of a network can affect its expressiveness
321  of complex functions. Maybe there will be more efficient methods to approximate the mapping
322 function, but this is not the topic of this paper. Our goal is a powerful tool to describe the mapping
323 from Sentinel-1 to TerraSAR-X where the solution is a deep neural network.

324 4.2 “Discriminator” network — antithesis

325 A deep neural network is a suitable solution, but on the other hand, it can also easily generate
326  non-target results. Based on the concept of dialectics, when the appearance is not fit for the
327  conception, it is needed to deny the existence of this thing. In this case, it is the negation of the
328  generated images. In other words, we need a loss function yielding a small value when the output
329  equals the target while yielding a high value when the two are different. Usually, the loss function
330  is predefined. For example, the most common loss function, Mean Squared Error (MSE), is a
331  preinstalled function which is defined as

N
1w
MSE=— > (v - 71)°, (10)
=1

332 where Y is the generated vector of Y whose elements areY!. When computing the MSE function, it
333 outputs a scalar value to describe the similarity of the input and the target. But it is predefined, and
334 the only freedom are the input data. How it relates to the negation of the generated images is still a
335  question. There are three steps to solve the problem. First, the loss function should criticize the
336 existence of Y, so it has a term —Y. Second, it should approve the subsistence of Y, the target; thus,
337  the term Y shall appear. Third, the square operator makes sure the function is a kind of distance.
338  Through these three steps, the MSE has accomplished the negation of the generated vectors or
339  images. When the generated image differs from the target image, the distance is large. When the
340  generated image is the target image itself, their distance shall be zero. In contrast, a large distance
341  shall be generated when the input is markedly different from the target to lead to better negation.

342 It is reasonable to expect that the loss function is a kind of distance function because the
343  distance space is a weak assumption for the space of generated images. For instance, the loss
344 function in (9) is another kind of distance compared with the MSE that directly computes pixel
345  values. However, it is hard to find a unique common distance because our tasks differ while the
346  distance remains invariant. Using a neural network scheme to train a distance is a good choice.
347  Fortunately, the appearance of GANs has supported us solutions to find the proper distances. In
348  GAN systems, the negation of generated images is processed in the loss function of the
349  “Discriminator”. The discriminator is a mapping function, or a neural network to describe the
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350  existence of the input image. However, the properties of the discriminator have been little
351  discussed. In this paper, we try to use the theory of metric spaces to discuss this question.

352 Assuming that the distance in the image domain M; is d;(-) and the distance in the
353 discriminator domain M, is d,(-), the discriminator is the map D:M,; — M; [35]. The distance of
354 the conditional case, which is also the contradiction between two images, can be defined as

Lcontradiction = da2 (D(Y|x), D(G(x) |x)) ’ (11)

355 where D( |x) is the discriminator of an image under the condition that the input is x. If D(*) is a
356 map to map the image to itself, and d,(-) is the Frobenius norm, the contradiction becomes

Leontradiction = Iy = Gl , (12)

357  which is the L; norm that usually acts as a loss function in machine learning. This is one case of a
358  determined map. As for a training map function, the most important thing is to design its format. If
359 we still set d,(-) as the Frobenius norm, the distance of the discriminator becomes

Leontradiction = ID(¥|x) = DG ) lx, (13)

360  when the discriminator is a predefined network such as the Spatial Gram matrix, we conclude that
361 the loss function in (9) can be regarded as a specific case of (13).

362 If the range of d,(-) is [0,1], it is considered that the output is the possibility of being real.
363  There are many concepts to re-unite the formats of different loss functions. In f-GAN [36], the loss
364  functions are regarded as f-divergences, which are the measurements for the similarity of two
365  distributions. However, the drawback of divergences is that they don’t satisfy the triangle
366  inequality and the symmetry which are requirements of distance functions [37]. In LSGAN [38], the
367  least squares method is used to measure the output of the discriminator. In this method, the
368  generated images are in an inner product space which is also a metric space. Therefore, we infer
369  that the contradiction of the real image and the generated image should be contained in a function
370  that can define the distance of some metric space, and the map D should be constrained. One
371  constraint of D is that the range of D should be bounded because we compute it in a computer. Or
372 it will become an infinite number. Second, D should be continuous, even uniformly continuous,
373 because the gradient descent algorithms may fail when the loss function is not continuous. In
374  WGAN, the Wasserstein distance is used, where the Lipschitz-continuous map ensures the property
375  of uniformly continuous. In this paper, we focus on the WGAN framework.

376 When d, () is the Wasserstein distance [39], the loss function of the discriminator becomes

Lgiscriminator = W(D(Y|x), D(G(x) |x))/ (14)

377  where W(-) is the Wasserstein distance function which behaves better than the f — divergence
378  being used in traditional GANs. The realization of the Wasserstein distance enforces a Lipschitz
379 constraint on the Discriminator. In the WGAN-GP framework [40], the Lipschitz constraint is
380  realized by enforcing a soft version of the constraint with a penalty on the gradient norm for random
381 samples %~ Pz, where ¥ =€y + (1 —€)G(x). Based on the conclusions in WGAN [40], the
382  maximum of the Wasserstein distance between P, ,, and P;, becomes

PEWR - E__ D]

GO ~Pgx,x~Prx Y~Pryx~Prx,

gy B, [(IV:DEIDI, ~ 1)?] ’

(15)

* _ _ .
D* = mDaX(Ldiscriminator) - 1’1})11’1

383  where D* is the best discriminator, P, |, is the distribution of given real images, P,, is the
384 distribution of generated images and V;D(%|x) is the gradient of the discriminator D(-|-). When
385  adding the penalty of the distance between the normal of V¢D(%|x) and 1 in the loss function, the
386  Discriminator is forced to become a 1 — Lipschitz function. Ay, is usually set to 10 according to the
387  experiments conducted in [40]. Intuitively, the removal of the absolute operator ensures the
388  continuity of the derivation of the loss function at the origin. The 1 — Lipschitz constraint limits the
389  normal of the derivation from growing too large, which is a way to increase the distance but not in
390  the way we want.
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391 Once the loss function is determined, the next step is to design the architecture of D(- |x) that
392 can be easily trained for computers. Considering the ready-made function already discussed in the
393 previous section, the loss function of style defined by Gram matrices is a good choice because it can
394  be regarded as processing on a Markov random field [13] [26]. The “pix2pix” summarized it as the

395 “PatchGAN” whose input is the combination of x and y. The architecture of the discriminator is
396  shown in Figure 7.
Discriminator network
128+128%6 646464
32325128
16x16x256
5x15%512
14x14x1
— Output
397
398 Figure 7. Architecture of PatchGAN Discriminator network
399 4.3 Dialectical Generative adversarial network— synthesis
400 According to the dialectic, the third step is the negation of the negation. The negation of the

401  generated image is described by the loss function of the discriminator. Thus, the negation of
402  negation should be the negation of the loss function of the discriminator. The negation is trying to
403  make the distance defined by the discriminator to become larger, while the negation of negation
404  should make the distance smaller. In our WGAN framework, the negation is defined by equation
405  (15). Thus, the negation of negation can be realized by maximizing it. Therefore, the maximization of
406  the loss function in (15) is the negation of negation. At the last step of the dialectic, the negation of
407  negation should be combined with the thesis to form a synthesis.

408 The thesis can be regarded as a synthesis from the former dialectics. For example, the “pix2pix”
409  used the L; norm as their thesis, and the SRGAN used the Gram matrices on layer 5 of the VGG-19
410  network as their thesis. These initial loss functions are distance functions and contain the negation of
411  the generated images. In this paper, we start from the thesis defined by a Spatial Gram matrix. In
412 other words, we set the initial loss function as defined in (9). The negation of negation is the
413  maximization of (15). Therefore, the synthesis of our “Dialectical GAN” is the combination of (9) and
414  (15). Reducing the terms in (15) that independent of “Generator” networks, the loss function of the
415  “Dialectical GAN” becomes

nggerator = ‘CGenerator - AGAN‘Ccritical 16
= Leontent T A‘Cstyle — Aan G(x)~lP’gH,5x,x~lP’r,x [D(G(x)1x)] (16)
416 To optimize this new loss function, we need four steps: set up the generator, update the

417  discriminator, update the generator and iterate.

418 e Step 1, having a Generator G(-) and an input image x, use the to generate G(x), and then run
419 the Discriminator D(- | -).

420 e  Step 2, use gradient descent methods to update D(:|-) following (16)

421 e Step 3, use gradient descent methods to update G() following (15).

422 e Step 4, repeat Step 1 and Step 3 until the stopping condition is met.

423 Then the training of the Dialectical GAN is completed. Every loop can be considered as a
424  realization of the dialectics. The basic framework is based on the WGAN-GP. As for the
425 mathematical analysis of the GANs and deep learnings, please refer to [41], [42], [43]. Although the
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426  Deep Learning still looks like a “black box”, we tried to provide a logical analysis of it and attempted
427  to achieve “real” artificial intelligence with the capabilities of dialectics.

428 5. Experiments

429 The data used for demonstration has already been described in Section 2. Based on the method
430  proposed in Section 4, the GAN network used in this paper has two neural networks, Generator and
431  Discriminator. The Generator is a “U-Net” with 6 layers, and the Discriminator is a “PatchGAN”
432 convolutional neural network with 4 layers. In total, we had 1860 image pair-patches in the training
433 data set and 224 image pair-patches in the test data set. With these data sets, the training took two
434  days on a laptop with Intel Xeon CPU E3, an NVidia Q2000M GPU and 64 GB of memory. We
435  conducted three experiments with respect to the following networks further presented below.

436  5.1. SAR images in VGG-19 networks

437 VGG-19 has an essential role in this paper because its layers are the components of the texture
438  information determined by a Gram matrix. Besides, the selection of the content layer is a new
439  problem for SAR images. First, we compared the differences between Sentinel-1 and TerraSAR-X
440  images in each layer. Two image patch-pairs are the inputs in the VGG-19 networks and their

441  intermediate results are shown in Figure 8.
Original ReLUI 1 ReLU2 1 ReLU3 1 ReLU4 1 ReLUS 1

442
443

444 Figure 8. Two image patch-pairs input to in the VGG-19 networks and their intermediate results

445  Visually, the images of the ReLU4_1 layer have common parts. But this is not sufficient, and we
446  decided to introduce the MSE and the Structural Similarity Index (SSIM) [44] in order to compare
447  the image in different layers. The MSE is defined as:

MSE! = (MI)ZNlZ Z Z [xL ) — i@ D] 17)
=0 i=0 j=

448  where M! is the size of the feature maps in I layer, N'is the number of the feature maps in [

449  Tlayer, xL(i,j) is the pixel value of (i,j) in the k" feature map of the " layer of a Sentinel-1
450  image, and yL(i,j) is the counterpart of a TerraSAR-X image. In order to overcome the drawbacks
451  of the MSE, we applied the SSIM whose definition is
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(p2 + uz + Cl)(a,§+a§ +c,)

where p, and o, are the mean value and the standard deviation of image x; the same to applies
to y. ¢; and c, are two constants related with the dynamic range of the pixel values. For more
details, we refer the reader to [44]. The SSIM values range between -1 and 1, where 1 indicates
perfect similarity. The evaluation results with the two indicators are shown in Table 2.

SSIM(x,y) = (18)

Table 2. Evaluation results with MSE and SSIM

Layers MSE SSIM
ReLU1_1 0.1616 0.4269
ReLU2_1 0.5553 0.0566
ReLU3_1 0.5786 0.2115
RelLU4_1 0.3803 0.7515
ReLU5_1 0.2273 0.7637

Although ReLU5_1 has the best performance with two indicators, we still ignore this layer due to
the poor diversity in this layer. Excluding ReLU5_1, the ReLU4_1 layer gives us the best result.
Therefore, the ReLU4_1 is chosen as the content layer, and the first three layers are used to define
texture information.

5.2. Gram martrices vs. Sptatial Gram martrices

A Spatial Gram matrix is an extension of a Gram matrix, which is used to describe the texture
information and is good at representing arrangement information. In Section 3.2, we have shown the
visual difference between two style definitions. In this experiment, we used the quantity indicators
to evaluate the two methods. Two image patch-pairs were chosen to conduct the comparison, whose
results are shown in Figure 9. In order to evaluate the image quality of the SAR images, we introduce
the equivalent numbers of looks (ENL), which act as a contrast factor to represent the image
resolutions approximately. A higher ENL value indicates that the image is smooth while a lower
value means that the image is in high resolution [45]. For our case, we need high-resolution images
and as a result, the lower their ENL value, the better. The definition of ENL is

2
ENL = % (19)

where u is the mean value of the image patch, and o is its standard deviation.

Transferred image (Spatial ~Transferred image (Gatys Style image (TerraSAR-X)

Content image (Sentinel-1
ge ) Gram matrices) et al. Gram matrices)

Image
pair 1

Figure 9. Comparison between a Spatial Gram matrix and a Gatys et al. Gram matrix in two
patch-pairs

d0i:10.20944/preprints201807.0340.v1
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476 Table 3. Evaluation of two methods for both image pairs 1 and 2
Image pairs Methods MSE SSIM ENL
. Gatys et al. Gram 0.3182 0.0925 1.8286
Spatial Gram 0.2762 0.1888 2.0951
5 Gatys et al. Gram 0.3795 0.0569 2.0389
Spatial Gram 0.3642 0.0700 1.9055
477
478 As can be seen from Figure 9 and Table 3, the Spatial Gram method performs better than Gatys ef

479  al’s method, both visually and according to evaluation indicators. However, the ENL of image pair
480 1 indicates that Gatys et al.’s method is better. To solve this problem, we need more experiments.
481  Because the traditional generative model regards every pixel as a random pixel and ignores the
482  relationships among neighboring pixels, its computing efficiency is limited. Nevertheless, a Spatial
483  Gram matrix is a good tool to determine the image style for our cases. In the next subsection, we
484  abandon the Gatys et al.’s method and replaced it with a “U-net” network to generate the enhanced
485  images. This method is called “Texture network”.

486  5.3. Spatial Gram matrices vs. traditional GANs

487 The texture network moves the computational burden to a learning stage and no longer needs
488  the style images as an aide to produce an image because the style information is already mapped in
489  the network through the learning steps. Although the feed-forward network supersedes the solution
490  of random matrices, the loss function is still the same. According to the above experiments, the
491  Spatial Gram matrix is the winner of the determinate loss function.

492 In contrast to the determinate one, other researchers found that the loss function can also be
493  learned, though the Spatial Gram matrix is also learned from the VGG-19 network. Nonetheless, the
494  learning of the loss function enables the definition of image style to become more optional. We use
495  the WGAN-GP framework to represent this kind of idea, which is the most stable one among the
496  GAN family. The results of the texture network and the WGAN-GP are compared in Figure 10 and
497  the evaluation results are listed in Table 4. The test set components in Table 4 are the average
498  performances of images in whole test set.

499 The texture network and the WGAN-GP are fast ways to conduct style transfer. According to
500 the values in Table 4, we conclude that the WGAN-GP has a better performance than the texture
501  network method with the given indicators. However, the WGAN-GP is not able to preserve the
502  content information of Sentinel-1 and its output images are muddled without obvious structures
503  like the texture network. Although texture network has no good performance in the evaluation
504  system, it has preferable visual effect in contrast to the WGAN-GP. How to balance the indicator
505  values and the visual performance is a crucial problem. The texture information is defined by the
506  VGG-19 network which has been trained by optical images. Thus, we have grounds to believe that
507  there is texture information that cannot be described by Spatial Gram matrices. In a following
508  experiment, we will compare the texture network with the proposed Dialectical GAN.
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Input image (Sentinel-1) Texture network WGAN-GP Target image (TerraSAR-X)

Image
pair 1

Image
pair 2

Figure 10. Comparison between Texture network and WGAN-GP for two patch-pairs

Table 4. Evaluation of Texture network and WGAN-GP in both image pair 1 and 2

Image pairs Methods MSE SSIM ENL

) Texture network 0.3265 0.0614 1.3932
WGAN-GP 0.2464 0.1993 2.8725

) Texture network 0.3396 0.0766 1.6269
WGAN-GP 0.2515 0.2058 3.5205

Texture network 0.3544 0.0596 1.7005

Test set

WGAN-GP 0.2632 0.2117 3.3299

5.4. Dialectical GAN vs. Spatial Gram matrices

The texture network defined the texture information in a determinate way while the
WGAN-GP uses a flexible method to describe the difference between generative images and target
images. In this paper, we proposed a new method that combines a determinate way and a flexible
way to enhance the generative images, and we called it “Dialectical- GAN” because the idea is
enlightened by the dialectical logic. The Dialectical-AN initializes its loss function with the Spatial
Gram matrix that was found a good way to describe the texture information of urban area and the
content loss defined by the ReLU4_1 layer of the VGG-19 network. Through the training of the
Dialectical GAN, new texture information can be learned and represented in the “Discriminator”
network. The comparison between a “Dialectical-GAN” and the texture network with a Spatial
Gram loss function are shown in Figure 11 and Table 5.

Both visual performance (Figure 11) and the indicator analysis (Table 5) proved that our
method is better than the texture network. However, these experiments all remained limited to the
patch level, and the figures of a whole scene have not yet been considered. Therefore, we show the
entire image composited with every path to check the overall performance and to estimate the
relationship between neighboring patches.

d0i:10.20944/preprints201807.0340.v1
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Figure 11. Comparison between Dialectical GAN and Texture network for two image patch-pairs

Table 5. Evaluation of Texture network and Dialectical GAN for both image pairs 1 and 2

Image pairs Methods MSE SSIM ENL
) Texture network 0.3264 0.0614 1.3933
Dialectical GAN 0.3291 0.0884 1.5885
) Texture network 0.3396 0.0766 1.6270
Dialectical GAN 0.3310 0.0505 1.8147
Texture network 0.3544 0.0596 1.7005
Test set ) )
Dialectical GAN 0.3383 0.0769 1.8804

5.5. Owerall visual perfomance

One of the most important merits of remote sensing images are their large-scale observations.
In this section, we are discussing how a remote sensing image looks when its patches are processed
by the selected neural networks. A full image is generated by concatenating the small processed
patches to produce a final image. In this paper, we focus on three networks, the texture network
with a Spatial Gram matrix, the WGAN-GP method, and our “Dialectical GAN” method. They are
shown in Figure 12, Figure 13, and Figure 14, respectively. As for the overall visual performance,
we consider that the Dialectical GAN has the best subjecti

-’

Lo | NN e Y.

ve visual performances.

4 i

Figure 12. The overall results of a Dialectical GAN


http://dx.doi.org/10.20944/preprints201807.0340.v1
http://dx.doi.org/10.3390/rs10101597

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2018 d0i:10.20944/preprints201807.0340.v1

18 of 22
544
545
546
547 Figure 14. The overall results of a WGAN-GP (L1 +WGAN-GP)
548 The SAR image translation results compared with inputs and outputs image are shown in

549  Figure 15. First, we can see the entire effect of the image translation.in the Munich urban area. To
550  display detail results, we have three bounding box with different colors (Red, Green and Yellow) to
551  extract the patches from the full image. They are in Figure 15(d).

552
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(b)TerraSAR-X image of Munich, Germany
5N 7 335

Sentinel-1

3 Dialectical
GAN

553

554 Figure 15 Overall visual performance of Dialectical GAN compared with Sentinel-1 and TerraSAR-X images (a)
555  Sentinel-1 image (b) TerraSAR-X image (c) Dialectical GAN image (d) Zoom in results

556 6. Discussion

557 Compared with traditional image enhancement methods, deep learning is an end-to-end
558  method that is quite easy to be implemented. Deep learning has excellent performances and is
559  standing out among the machine learning algorithms, especially in the case of big data. Solutions
560  for remote sensing applications were discovered by the advent of deep learning. More importantly,
561  deep learning is now playing a crucial part in transferring the style of images.

562 Concerning SAR image translation, little attention has been focused on it and the performances
563  of deep learning on this topic are still unknown. The task that this paper addresses is related with
564  super-resolution tasks, but our image pairs are not of the same appearances due to the differences
565  in incidence angles, radar polarization, and acquisition times. From this aspect, our task belongs to
566  style transfer to some extent, like generating a piece of artistic painting without the constraint that
567  two images should be focused on same objects. Therefore, the SAR image translation is a mix of
568  super-resolution and style transfer and has never been focused in the conception of deep learning.
569 From Gatys et al.’s method to GAN frameworks, we have tested the capabilities of deep
570  learning in translating Sentinel-1 images to TerraSAR-X images. The resulting images of Gatys et
571  al’s method are of high quality but they don’t preserve well the structure information, which is an
572  essential characteristic of remote sensing SAR images, especially for urban areas. The improvement
573 canbe accomplished by introducing Spatial Gram matrices instead of the traditional ones in the loss
574  function. A Spatial Gram matrix is a compromise between the arrangement structure and the
575  freedom of style. In this paper, we compose Gram matrices computed in spatial shifting mode as a
576  new matrix-vector for each layer. The spatial matrix is a good indicator to describe arrangement
577  structures such as buildings and roads. However, our loss function modifications can only solve the
578  style presentation problem, but the high computation effort still limits the applications of image
579  translation for remote sensing. Fortunately, deep neural networks are a powerful tool for fitting
580  complicated functions that provides solutions to speed up the image translation. Instead of taking
581  every pixel as a random variable, a deep neural network regards an image as an input of the system,
582  and the only thing the deep learning can do is to approximate the mapping function. That is to say,
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the deep neural network is a generator, and the Spatial Gram matrix is used to define the loss
function.

The GAN framework gives us a new concept of a loss function which can also be defined by a
neural network called discriminator. We assume that the GAN framework has a dialectical logical
structure and explained it in a triad. However, due to the arbitrariness of a neural work and the
limitation of the training data, a GAN is hard to train and cannot achieve good performances for
our applications. Considering the diversity of GANs and the determinacy of Spatial Gram matrices,
we proposed a new method that combines their advantages together. With the initial loss function
defined by Spatial Gram matrices, our GAN system updates its discriminator and generator to
make the output image as “true” as possible. The Spatial Gram loss function works well, but we
still believe that there are other functions to determine the style of a given image. Using a
combination framework, our system is able to generate high-quality SAR images and to improve
the resolutions of Sentinel-1 images without the need for large amounts of data.

To appraise the generated images, we used three indicators, MSE, SSIM and ENL. The
comparison experiments show that the Spatial Gram matrix is better than the traditional Gram
matrix. A WGAN-GP without any initial loss function didn’t perform well in contrast to the Spatial
Gram matrix method. With the support of Spatial Gram matrices, the new WGAN-GP that we
proposed is the best of these three methods, both in visual performance and by quantitative
measurements (using the three indicators). Besides, we have tested the overall visual performance
rather than to stay on image patch level. It is a new attempt for deep learning to perform the image
transfer task in this way. The same results occurred when full images are considered and the new
proposed method outperforms the existing ones.

7. Conclusions

In this paper, a “Dialectical GAN” based on Spatial Gram matrices and a WGAN-GP
framework is proposed to conduct the SAR image transfer task from Sentinel-1 to TerraSAR-X
images. By analyzing the behavior of SAR image in the VGG-19 pre-trained network, we have
found that the relationship between two source images is maintained in the higher layers of the
VGG-19 network, which is the foundation of changing the “style” of images. In remote sensing
usually the urban areas are dominated by buildings and roads and, based on this observation, the
Spatial Gram matrixes are a very good metric to describe the “style” information of these areas,
including their arrangement structure.

In order to explain the idea of a GAN, we introduced the dialectical way and adapted each part
of the proposed frame to fit with this logical structure. The proposed method is combining the loss
functions of Spatial Gram and WGAN-GP methods in order to fulfil our requirements. The results
of the translation show promising capabilities, especially for urban areas. The networks learn an
adaptive loss from image pairs at hand, and regularized by the prescribed image style, which make
it applicable for the task of SAR image translation.

As future works, we plan to go into deeper mathematic details and explanations of the
Dialectical GAN. The combination of radar signal theory and deep learning needs to be
investigated in order to describe the change of the basic unit (e.g., point spread function). In
addition, this paper is limited to the application of SAR images translations, now we are trying to
understand the translation of SAR and optical images. In future, we would like to apply our
techniques to other target areas and other sensors.

Acknowledgments: We thank the TerraSAR-X Science Service System for the provision of images (Proposal
MTH-1118) and China Scholarship Council (Grant No. 201606030108)

Author Contributions: “Dongyang Ao and Mihai Datcu conceived and designed the experiments; Dongyang
Ao performed the experiments; Dongyang Ao, Dumitru Octavian, Gottfried Schwarz and Mihai Datcu
analyzed the data; Dumitru Octavian contributed data materials; Dongyang Ao proposed the method and
wrote the paper.”

Conflicts of Interest: The authors declare no conflict of interest.

d0i:10.20944/preprints201807.0340.v1


http://dx.doi.org/10.20944/preprints201807.0340.v1
http://dx.doi.org/10.3390/rs10101597

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2018 d0i:10.20944/preprints201807.0340.v1

21 of 22
633  References
634
635 1.  A.Love, "In memory of Carl A. Wiley," IEEE Antennas and Propagation Society Newsletter, vol. 27, pp.
636 17-18, 1985.
637 2. TerraSAR-X - Germany’s radar eye in space. Available online: https://www.dlr.de/dlr/en/desktopdefault.
638 aspx/tabid-10377/565_read-436/#/gallery/3501 (accessed on 18th May 2018).
639 3. TanDEM-X - the Earth in three dimensions. Available online https://www.dlr.de/dlr/en/desktopdefault.
640 aspx/tabid-10378/566_read-426/#/gallery/345G. (accessed on 18th May 2018).

641 4.  RADARSAT. Available online: https://en.wikipedia.org/wiki/RADARSAT (accessed on 18th May 2018).
642 5. COSMO-SkyMed Available online: http://en.wikipedia.org/wiki/COSMO-SkyMed (accessed on 18th May

643 2018).

644 6. European Space Agency. Available online: http://en.wikipedia.org/wiki/European_Space_Agency
645 (accessed on 18th May 2018).

646 7. Y.H.Li, A. Monti Guarnieri, C. Hy, and F. Rocca, "Performance and Requirements of GEO SAR Systems in
647 the Presence of Radio Frequency Interferences", Remote Sens., vol. 10, p. 82, 2018.

648 8. D.Y. Ao, Y.H. Li, C. Hy, and W.M. Tian, "Accurate Analysis of Target Characteristic in Bistatic SAR
649 Images: A Dihedral Corner Reflectors Case, " Sensors, vol. 18, no. 1, p. 24, 2018.

650 9. L. A. Gatys, A. S. Ecker, and M. Bethge, "Image style transfer using convolutional neural networks," in
651 Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on, 2016, pp. 2414-2423.

652 10. D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, "Texture Networks: Feed-forward Synthesis of
653 Textures and Stylized Images," in ICML, 2016, pp. 1349-1357.

654 11. J.Johnson, A. Alahi, and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-resolution," in
655 European Conference on Computer Vision, 2016, pp. 694-711.

656 12. I Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., "Generative adversarial
657 nets," in Advances in neural information processing systems, 2014, pp. 2672-2680.

658 13. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial
659 networks," arXiv:1611.07004, 2017.

660 14. N. Merkle, S. Auer, R. Miiller, and P. Reinartz, "Exploring the Potential of Conditional Adversarial
661 Networks for Optical and SAR Image Matching," IEEE Journal of Selected Topics in Applied Earth
662 Observations and Remote Sensing, 2018.

663 15 X.X.Zhuy, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, F. Fraundorfer, "Deep learning in remote sensing: a
664 review," arXiv preprint arXiv:1710.03959, 2017.

665 16. Hu C, Li Y, Dong X, et al. Optimal 3D deformation measuring in inclined geosynchronous orbit SAR
666 differential interferometry. Science China Information Sciences, 2017, 60(6): 060303.

667  17. Sentinel-1. Available online: http://en.wikipedia.org/wiki/Sentinel-1 (accessed on 18th May 2018).
668  18. TerraSAR-X. Available online: http://en.wikipedia.org/wiki/ TerraSAR-X (accessed on 18th May 2018).
669  19. D. Ao, R. Wang, C. Hy, and Y. Li, "A Sparse SAR Imaging Method Based on Multiple Measurement

670 Vectors Model," Remote Sensing, vol. 9, p. 297, 2017.

671 20. Mitas, L., Mitasova, H. (1999). Spatial Interpolation. In: P.Longley, M.F. Goodchild, D.J. Maguire,
672 D.W.Rhind (Eds.), Geographical Information Systems: Principles, Techniques, Management and
673 Applications, Wiley.

674 21. C. O.Dumitru, G. Schwarz, and M. Datcu, "Land cover semantic annotation derived from high-resolution
675 SAR images," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9,
676 pp- 2215-2232, 2016.

677 22. Y.]Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, "Neural style transfer: A review," arXiv:1705.04058,
678 2017.

679 23. J.Liao, Y. Yao, L. Yuan, G. Hua, and S. B. Kang, "Visual attribute transfer through deep image analogy,"
680 arXiv:1705.01088, 2017.

681 24. G. Berger and R. Memisevic, "Incorporating long-range consistency in CNN-based texture generation,"
682 arXiv:1606.01286, 2016.

683 25. The-gan-zoo. Available online: http://github.com/hindupuravinash/the-gan-zoo (accessed on 18th May
684 2018).

685 26. C. Li and M. Wand, "Precomputed real-time texture synthesis with Markovian generative adversarial
686 networks," in European Conference on Computer Vision, 2016, pp. 702-716.


http://dx.doi.org/10.20944/preprints201807.0340.v1
http://dx.doi.org/10.3390/rs10101597

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2018 d0i:10.20944/preprints201807.0340.v1

22 of 22

687 27. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, et al., "Photo-realistic single image

688 super-resolution using a generative adversarial network," arXiv preprint, 2016.

689 28. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, "Context encoders: Feature learning by
690 inpainting," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
691 2536-2544.

692 29. J.-Y. Zhu, P. Krdhenbiihl, E. Shechtman, and A. A. Efros, "Generative visual manipulation on the natural
693 image manifold," in European Conference on Computer Vision, 2016, pp. 597-613.

694 30. '"Hegel's Thesis-Antithesis-Synthesis Model". Encyclopedia of Sciences and Religions. Berlin: Springer.
695 2013. Retrieved 11 September 2016.

696 31. S.Liang and R. Srikant, "Why deep neural networks for function approximation?", arXiv:1610.04161, 2016.
697 32. D. Yarotsky, "Optimal approximation of continuous functions by very deep ReLU networks,"

698 arXiv:1802.03620, 2018.

699 33. X. Wang and A. Gupta, "Generative image modeling using style and structure adversarial networks," in
700 European Conference on Computer Vision, 2016, pp. 318-335.

701 34. G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks,"
702 science, vol. 313, pp. 504-507, 2006.

703 35. Metric space. Available online: https://en.wikipedia.org/wiki/Metric_space (accessed on 18th May 2018).
704 36. S. Nowozin, B. Cseke, and R. Tomioka, "f-gan: Training generative neural samplers using variational

705 divergence minimization," in Advances in Neural Information Processing Systems, 2016, pp. 271-279.
706 37. Divergence (statistics). Available online: https://en.wikipedia.org/wiki/ Divergence_(statistics). (accessed
707 on 18th May 2018).

708 38. X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, "Least squares generative adversarial
709 networks," in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2813-2821.

710 39. M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein gan," arXiv preprint arXiv:1701.07875, 2017.
711 40. 1. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, "Improved training of wasserstein

712 gans," in Advances in Neural Information Processing Systems, 2017, pp. 5769-5779.

713 41. ]. Pennington and Y. Bahri, "Geometry of neural network loss surfaces via random matrix theory," in
714 International Conference on Machine Learning, 2017, pp. 2798-2806.

715  42. B. D. Haeffele and R. Vidal, "Global optimality in neural network training," in Proceedings of the IEEE
716 Conference on Computer Vision and Pattern Recognition, 2017, pp. 7331-7339.

717  43. M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, "Are GANs Created Equal? A Large-Scale
718 Study," arXiv preprint arXiv:1711.10337, 2017.

719 44, 7. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to
720 structural similarity," IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004.

721 45. S. N. Anfinsen, A. P. Doulgeris, and T. Eltoft, "Estimation of the equivalent number of looks in
722 polarimetric synthetic aperture radar imagery," IEEE Transactions on Geoscience and Remote Sensing,

723 vol. 47, pp. 3795-3809, 2009.


http://dx.doi.org/10.20944/preprints201807.0340.v1
http://dx.doi.org/10.3390/rs10101597

