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Abstract: Contrary to optical images, Synthetic Aperture Radar (SAR) images are in different 11 
electromagnetic spectrum where the human visual system is not accustomed to. Thus, with more 12 
and more SAR applications, the demand for enhanced high-quality SAR images has increased 13 
considerably. However, high-quality SAR images entail high costs due to the limitations of current 14 
SAR devices and their image processing resources. To improve the quality of SAR images and to 15 
reduce the costs of their generation, we propose a Dialectical Generative Adversarial Network 16 
(Dialectical GAN) to generate high-quality SAR images. This method is based on the analysis of 17 
hierarchical SAR information and the “dialectical” structure of GAN frameworks.  As a 18 
demonstration, a typical example will be shown where a low-resolution SAR image (e.g., a 19 
Sentinel-1 image) with large ground coverage is translated into a high-resolution SAR image (e.g., a 20 
TerraSAR-X image). Three traditional algorithms are compared, and a new algorithm is proposed 21 
based on a network framework by combining conditional WGAN-GP (Wasserstein Generative 22 
Adversarial Network - Gradient Penalty) loss functions and Spatial Gram matrices under the rule 23 
of dialectics. Experimental results show that the SAR image translation works very well when we 24 
compare the results of our proposed method with the selected traditional methods. 25 

Keywords: dialectical generative adversarial network; image translation; Sentinel-1; TerraSAR-X.  26 
 27 

1. Introduction 28 

In remote sensing, SAR images are well-known for their all-time and all-weather capabilities. 29 
In the 1950s, the first SAR system was invented [1]. However, the design and implementation of a 30 
SAR system is a complex system engineering and costs many resources, both in money and 31 
intellectual effort. Therefore, most SAR instruments on satellites are supported by government 32 
organizations. For example, the German Aerospace Center (DLR) and EADS Astrium had jointly 33 
launched TerraSAR-X in 2007 [2] and TanDEM-X in 2010 [3]. The Canadian Space Agency (CSA) 34 
had launched in 1995 the RADARSAT-1 and in 2007 the RADARSAT-2 satellites [4], while the 35 
Italian Ministry of Research and the Ministry of Defence together with the Italian Space Agency 36 
(ASI) had launched the COSMO-SkyMed -1, 2, 3, and 4 satellites in 2007, 2008 and 2010 [5]. The 37 
European Space Agency (ESA) had launched the Sentinel-1 SAR satellite in 2014 [6]. In addition, 38 
there are many governments and institutions having launched their own SAR satellites [7], [8]. 39 
Nowadays, SAR has become one of the most valuable tools for remote sensing of the Earth and its 40 
environment.  41 

In the era of big data, deep learning can accommodate large amount of data and generate 42 
promising new applications. With the recent development of deep learning, image translation is an 43 
easy way to obtain high-quality SAR images. “Translation” is a word borrowed from the linguistic 44 
field which denotes the change from one language to another one. This translation is often applied 45 
when one language is hard to understand while another one is more familiar to us. Though the two 46 
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languages have different vocabularies and grammars, the translation is premised on the identity of 47 
the contents. In general for image translation there are two “sides” of the translation, namely the 48 
two images coming from different sensors. In this paper, we demonstrate a typical example where a 49 
low-resolution SAR image (e.g., a Sentinel-1 image) with large ground coverage is translated using 50 
deep learning into a high-resolution SAR image (e.g., a TerraSAR-X image). To some extent, this 51 
kind of translation is related to super-resolution and neural style transfer.  52 

From 2013, deep learning has becomes a popular tool for many applications, such as image 53 
recognition, classification, semantic segmentation, target detection, etc. The first milestone in deep 54 
learning based image translation is Gatys et al.’s paper [9]. They introduced the Visual Geometry 55 
Group (VGG) networks, a pre-trained neural network used for ImageNet in order to define the 56 
content and “style” information of images, which provides a framework for image translation 57 
under the background of deep learning. Within a neural network based framework, many 58 
researchers have proposed their own methods for their specific purposes [10], [11]. The second 59 
milestone is the invention of Generative Adversarial Networks (GANs) that was made by 60 
Goodfellow et al. [12]. As a generative neural network, it seems that a GAN is well-suited for image 61 
translation. According to the conception presented in [13], the image translation can be regarded as 62 
the “pix2pix” task, and the authors of [13] have unitized a conditional GAN to carry out image 63 
translations. Inspired by this paper, we think that we can apply these algorithms to do SAR image 64 
translation. In SAR image processing, there are many papers about how to use deep learning for 65 
classification, segmentation, etc. [14], [15]. However, little attention has been paid to the translation 66 
between different SAR instruments using deep learning. 67 

Translation of Sentinel-1 data to high-resolution images like TerraSAR-X has attracted great 68 
interest within the remote sensing community. First, the high resolution of TerraSAR-X generates 69 
SAR images rich in information that allow innovative applications. Second, the wide area coverage 70 
of Sentinel-1 images reduces the need for multiple acquisitions and decreases the demand for 71 
high-cost data. Third, it is much easier for researchers to access Sentinel-1 images than TerraSAR-X 72 
images because the Sentinel-1 images are freely available, while the TerraSAR-X images are usually 73 
commercial. To meet these requirements for high-quality data, we propose a “Dialectical GAN” 74 
method based on the analysis of the hierarchical SAR information and the “dialectical” structure of 75 
GAN frameworks. The data used for validation is covering urban areas, so we can apply a spatial 76 
matrix to extract geometrical arrangement information. By using a GAN, we were able to achieve 77 
good results with fine visual effects and our indicators show that our proposed method is better 78 
than the existing traditional methods discussed in this paper. 79 

This paper is organized as follows. Section 2 presents the data set and the characteristics of 80 
both satellites (Sentinel-1 and TerraSAR-X). In Sections 3 and 4, we deeply explain the deep 81 
learning methods for SAR image translation, including the development of traditional methods and 82 
the creation of the proposed method. Section 5 describes the experiments based on an urban area 83 
using the traditional and proposed methods, while Section 6 discusses the advantages of the 84 
proposed method compared with the traditional methods. Finally, Section 7 concludes this paper 85 
and gives future research perspectives. 86 

2. Data set 87 
In the field of radar remote sensing, they are many satellites for different applications [16]. In 88 

this paper, we chose two typical satellite systems, Sentinel-1 and TerraSAR-X, which serve the same 89 
purpose but with different characteristics.   90 

Sentinel-1 is a C-band SAR satellite system launched by ESA, whose missions include sea and 91 
land monitoring, emergency response after environmental disasters, and commercial applications 92 
[17]. In contrast, TerraSAR-X is an X-band Earth observation SAR satellite being operated under a 93 
public-private-partnership between the German Aerospace Center (DLR) and EADS Astrium (now 94 
Airbus), whose main features are its high resolution with excellent geometrical accuracy [18]. In our 95 
opinion, Sentinel-1 is a good option to generate large-scale SAR images, while TerraSAR-X is an 96 
adept solution for high resolution. To avoid being influenced by radar configurations, we try to 97 
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keep the radar system parameters of two products as consistent as possible. A comparison of the 98 
radar parameters of two image products we used in this paper is shown in Table 1.  99 

Table 1. Selected data set parameters 100 

SAR instrument TerraSAR-X Sentinel-1A 

Carrier frequency band X-band C-band 

Product level Level 1b Level 1 

Instrument mode High Resolution Spotlight Interferometric Wide Swath 

Polarization VV VV  

Orbit branch Descending Ascending 

Incidence angle 39° 30°-46° 

Product type Enhanced Ellipsoid Corrected 
(EEC) (amplitude data) 

Ground Range Detected 
High Resolution (GRDH) 
(amplitude data) 

Enhancement Radiometrically enhanced Multi-looked 

Ground range resolution 2.9 m 20 m 

Pixel spacing 1.25 m 10 m 

Equivalent number of looks 
(range×azimuth) 3.2×2.6 = 8.3 5×1 = 5 

Map projection WGS-84 WGS-84 

Acquisition date  2013-04-29 2014-10-13 

Original full image size 
(cols×rows) 9200×8000 34,255×18,893 

Used image sizes (cols×rows) 6370×4320 1373×936 

2.1 Image quantization 101 
The amplitude of SAR image products is usually not in the range of [0, 255] which is the 102 

dynamic range where optical image products stay. The amplitude of SAR images relates with the 103 
radar cross section (RCS) and has a large dynamic range. There are many methods for SAR image 104 
quantization [19]. Because we need to use pre-trained neural networks designed for optical images, 105 
the SAR data should be scaled to the brightness range of optical pixels. In order to generate the SAR 106 
images with good visual effects, an 8-bit uniform quantization is applied in different brightness 107 
range. For Sentinel-1 images, the range is [0, 800] while for TerraSAR-X images it is [0, 570]. These 108 
parameters were defined by the brightness levels of our test data which contain 98% of the pixels in 109 
the pixel brightness histograms. 110 

 111 
 112 

2.2 Image co-registration  113 
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The image translation between two different products should be done with co-registered image 114 
pairs. Fortunately, remote sensing products can be projected the same coordinates by using 115 
geo-coding. Geo-coding is a technique that yields every pixel its longitude and latitude on Earth. 116 
Thus, for each pixel, once its location is determined, the pixel information from both Sentinel-1 and 117 
TerraSAR-X images can be retrieved. In order that the two images have the same content and the 118 
same pixel size, the pixel spacing for both images is set to the same value, where the scale is 1:10. 119 
Finally, the interpolation and the co-registration are completed automatically in the QGIS software, 120 
which is an open source tool. In this software, the interpolation is based on IDW (Inverse Distance 121 
Weighted) method [20], and the co-registration relies on the annotation data of the image product 122 
resulting the accuracy of a few meters. 123 

2.3 Training data and test data 124 
The selection of a training data set and a test data set for quality control is a primary task in 125 

deep learning. There are several hyper-parameters to be determined and they can finally impact the 126 
capabilities of the trained networks. The selected patch size is one of the hyper-parameters that can 127 
affect both the final results and the amount of the training data. When the patch size is too large, the 128 
number of the training data becomes small, even the data augmentation can be applied. Based on 129 
the discoveries in [21], which yielded a best patch size for SAR image classification, we chose for 130 
our studies a patch size of 128×128 pixels [21]. Using an overlap of 50% between the tiled patches, 131 
we obtained 1860 patches for training and 224 patches for testing. 132 

 133 

3. Related work 134 
Deep learning has been widely used in the last years in computer vision, biology, medical 135 

imaging, and remote sensing. Although the theory of deep learning is not yet mature, its capabilities 136 
shown in numerous applications have attracted the attention of many researchers. Let us simply 137 
review the development of image translation with deep learning. In 2016, Gatys et al. demonstrated 138 
the power of Convolutional Neural Networks (CNNs) in creating fantastic artistic imagery. With a 139 
good understanding of the pre-trained VGG networks, they have achieved the style transfer and 140 
demonstrated that semantic exchange could be made by using neural networks. Since then, Neural 141 
Style Transfer has become a trending topic both in academic literature and industrial applications 142 
[22]. To accelerate the speed of Neural Style Transfer, a lot of follow-up studies were conducted. A 143 
typical one is Texture networks. With the appearance of GANs, several researchers turned to GANs 144 
to find more general methods without defining the texture. In this paper, we examine three typical 145 
methods, the method of Gatys et al. [9], Texture Networks [10] and Conditional GANs [13]. By 146 
analyzing their advantages and disadvantages in SAR image translations, we propose a new 147 
GAN-based framework which is the combination of the manifestations of SAR images in the 148 
VGG-19 network, the definition of texture content, and the WGAN method. 149 

3.1. VGG-19 network 150 
VGG-19 is a key tool to conduct style transfers. It is a pre-trained CNN model for large-scale 151 

visual recognition developed by Visual Geometry Group at the University of Oxford, which has 152 
achieved excellent performances in the ImageNet challenge. Gatys et al. [9] firstly introduced this 153 
CNN in their work. Then, the next studies were focused on the utilization of the outcomes of 154 
VGG-19. However, VGG-19 has been trained on the ImageNet dataset which is the collection of 155 
optical images. In order to find the capabilities of VGG-19 for SAR images, we first visualize the 156 
content of each layer in VGG-19 when the input is a SAR image and then analyze the meaning of 157 
each layer. The input SAR images are in the 8-bit dynamic range without histogram changes for 158 
fitting the optical type. There are 19 layers in the VGG-19 network, but the most commonly used 159 
layers are the layers after down-sampling, which are called ReLU1_1, ReLU2_1, ReLU3_1, ReLU4_1, 160 
and ReLU5_1. A visualization of SAR images via the VGG-19 layers is shown in Figure 1. 161 
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162 
 163 

Figure 1. Visualization of Sentinel-1 and TerraSAR-X SAR images in the VGG-19 layers 164 

As can be seen from Figure 1, the images in ReLU 1_1, ReLU 2_1, and ReLU 3_1 layers are quite 165 
different, while the images in ReLU 4_1 and ReLU5_1 of both two sensors are similar. According to 166 
the conception of deep learning, the higher layers contain higher semantic information [9], which 167 
supports the results in Figure 1. Therefore, Gatys et al. used the shallow (i.e., lower) layers as the 168 
components of texture and took the deep layers as the content information. However, we find that 169 
the ReLU5_1 images in both Sentinel-1 and TerraSAR-X are almost featureless. In another paper 170 
[23], the authors found that ReLU5_1 has real content for optical images. This may be because this 171 
training of VGG-19 is based on optical images. Whatever, we decide to ignore the ReLU5_1 layer in 172 
our algorithm in order to accelerate the computation. It will be discussed in the experiment part. 173 

3.2. Texture definion-Gram matrix 174 
The success of Gatys’ paper is to some extent achieved by the introduction of a Gram matrix. If 175 

we regard the pixels of the feature map in each layer as a set of random variables, the Gram matrix 176 
is a kind of second-order moment. The Gram matrix in that paper is computed on the selected 177 
layers as described in Section 3.1. Assuming ܮ layers are selected and their corresponding number 178 
of feature maps is ௟ܰ, the Gram matrix of the ݈௧௛ layer is  179 

 ۵௟ =
1
௟ܯ

⎣
⎢
⎢
⎢
⎡ ۴ଵ:

௟ ்

۴ଶ:௟
்

⋮
۴ே೗:
௟ ்

⎦
⎥
⎥
⎥
⎤
ൣ۴ଵ:௟ ۴ଶ:௟ ⋯ ۴ே೗:

௟ ൧	, (1)

where ۴௜:௟  is the column vector generated from the ݅௧௛ feature map of layer ݈, and ܯ௟ is the size 180 
number of each feature map in this layer. An element of the ܰ௟ ×ܰ௟	Gram matrix is 181 

 ۵௜௝௟ =
1
௟ܯ

෍۴௜௞௟ ۴௝௞௟
ெ೗

௞ୀଵ

=
1
௟ܯ

〈۴௜:௟ , ۴௝:௟ 〉	, (2)

where 〈∙〉  denotes the inner product. When we get the Gram matrices {۵௟}௟∈ࡸೞ೐೗೐೎೟೐೏ 	 , where 182 
 ௦௘௟௘௖௧௘ௗ is the set of the selected layers to define the texture information. Having the Gram matrices, 183ࡸ
the definition of the style difference between two images is 184 

 ℒ௦௧௬௟௘ = ෍ ௟ฮ۵෡௟ݓ − ۵௟ฮி
ଶ

௟∈ࡸೞ೐೗೐೎೟೐೏

	, (3)

where ݓ௟ is a kind of hyper-parameter define the weight of the style in the ݈௧௛ layer, ۵෡௟ is the 185 
Gram matrix of the being generated image in the ݈௧௛ layer, ۵௟ is the corresponding term for the 186 
reference image, and ‖∙‖ி is the Frobenius norm of the matrices.  In our case, the style image is no 187 
longer an artistic painting of art, and the Gram matrices did not perform well. Figure 2 shows the 188 
mismatch of utilizing these Gram matrices to translate between SAR images. 189 
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 190 
Figure 2. Experiment using the Gatys et al. method (a) content image (Sentinel-1) (b) transferred 191 
image (Gram matrix) (c) style image (TerraSAR-X) 192 

Figure 2(b) contains many fake targets. For example, there is nothing at the lower right part of 193 
both Figure 2(a) and Figure 2(c), but some bright lines, usually from buildings, appear at that part 194 
of Figure 2(b). Besides, contrary to Figure 2(c), the layout of buildings in Figure 2(b) is hard to 195 
understand. In our experiment, the SAR data are depicting an urban area, where most targets are 196 
buildings. The city structure is quite different from the design of artistic works, which means the 197 
style definition should vary for different applications. Reflecting upon the Gram matrices, their 198 
format should be changed. The vectorization of the feature maps makes the Gram matrices fully 199 
blind to the arrangement information inside the maps [24]. To maintain the arrangement 200 
information, which is useful for urban area, we should discuss this arrangement information and 201 
how to make it suitable for our applications. 202 

The arrangement most often indicates the placing of items according to a plan, but without 203 
necessarily modifying the items themselves. Thus, an image with arrangement information should 204 
contain similar items and the similar items are placed in different locations. When we tile the 205 
images into small pieces (called patches) according to the scheme they belong to, the small pieces 206 
should be similar. Their similarity can be determined by the Gram matrix, while the way to tile the 207 
image is the part of our approach. The manifestation of most objects of urban areas in remote 208 
sensing images is usually rectangular. Thus, the main outline of urban SAR images should be 209 
straight lines. 210 

The Spatial Gram method is a good way to represent this arrangement texture, which defined 211 
by the self-similarity matrices themselves and by applying spatial transformations when generating 212 
these matrices. A Gram matrix is a measurement of the relationship of two matrices, and the spatial 213 
transformation determines which two. G. Berger et al. have proposed a series of CNN-based Spatial 214 
Gram matrices to define the texture information. Based on their ideas in [24], we apply a spatial 215 
transform tiling the feature map horizontally and vertically in different levels to represent the 216 
“straight” texture information.  217 

As we have several options to tile an image, how to compute their Gram matrices to define the 218 
texture is still a question, either to add them or to regard them as parallel structures. When the 219 
Spatial Gram computation just has one element, it degenerates into the traditional Gram matrix like 220 
the one used by Gatys et al. But when it has too many elements, the ultimate configuration is that all 221 
the pixels are in the Gram matrix individually and it will lose its capability to generate diverse 222 
textures. A line, which is the basic unit of our images, can be determined by two parameters. Thus, 223 
we use the two orthogonal dimensions (ݓ݋ݎ and ݈ܿ݋), as two rows of the Spatial Gram matrix, and 224 
the spatial transform types as the columns. Thus, the Spatial Gram matrix we applied in this paper 225 
is  226 

௦௣௔௧௜௔௟௟܁  = ൭
۵௥௢௪,ଶ௟ ۵௥௢௪,ସ௟ ⋯ ۵௥௢௪,ଶళష೗

௟

۵௖௢௟,ଶ௟ ۵௖௢௟,ସ௟ ⋯ ۵௖௢௟,ଶళష೗
௟ ൱, (4)

where the type of transformation is related to the size of the feature maps in this layer. Δ௟ =227 
{2, … , 2଻ି௟} where the 7 is determined by the input size of patches (128×128), and ࡸ௦௘௟௘௧௘ௗ = {1, 2, 3}. 228 
۵௥௢௪,ఋ௟  and ۵௖௢௟,ఋ௟  are two kinds of spatial transformation which is related to the dimensions 229 ݓ݋ݎ 
and ݈ܿ݋, and the shifted amount ߜ. Assuming the feature map is	۴௟, and its transformations are 230 
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	ܶ(۴௟)  where ܶ  denotes the function of spatial transformation. For example, the spatial 231 
transformations of feature maps in the row dimension are defined as  232 

 
௥ܶ௢௪,ఋ(۴௟) = ۴௟(ܯ:ߜ, 1:ܰ), 

௥ܶ௢௪,ିఋ(۴௟) = ۴௟(1:ܯ − ,ߜ 1:ܰ), 
(5)

where ܯ,ܰ are the height and width of the feature map ۴௟. ௥ܶ௢௪,ఋ(۴௟) is the transformation on the 233 
row dimension. The vectorization of ௥ܶ௢௪,ఋ(۴௟) is written as ௥ܶ௢௪,ఋ(۴௟): which is the column vector 234 
Having these definitions, ۵௥௢௪,ఋ௟  can be written as 235 

 ۵௥௢௪,ఋ௟ = ଵ
ெ೗

⎣
⎢
⎢
⎢
⎡ ௥ܶ௢௪,ఋ(۴ଵ௟):

்

௥ܶ௢௪,ఋ(۴ଶ௟ ):
்

⋮
௥ܶ௢௪,ఋ൫۴ே೗

௟ ൯
:

்
⎦
⎥
⎥
⎥
⎤

ൣ ௥ܶ௢௪,ିఋ(۴ଵ௟): ௥ܶ௢௪,ିఋ(۴ଶ௟): ⋯ ௥ܶ௢௪,ିఋ൫۴ே೗
௟ ൯

:൧	, (6)

where ۵௥௢௪,ఋ௟  can be written in the same way but the spatial transformation takes places in the row 236 
direction. Thus, the spatial style loss function is  237 

 ℒ௦௧௬௟௘ = ෍ ෠௦௣௔௧௜௔௟௟܁௟ฮݓ − ௦௣௔௧௜௔௟௟܁ 	ฮ
ி

ଶ
	.

௟∈ࡸೞ೐೗೐೎೟೐೏

 (7)

where the ܁௦௣௔௧௜௔௟௟  if the spatial matrices of the target images and ܁෠௦௣௔௧௜௔௟௟  is for the generated 238 
image. The style loss function ℒ௦௧௬௟௘  is only dominated by the Spatial Gram matrices, it is not 239 
necessary to add the traditional Gram matrices because when ߜ is small, it is almost the same as 240 
the traditional one. Figure 3 shows the results applying the new Spatial Gram matrix.  241 

 242 
Figure 3. Experiment using Spatial Gram matrices (a) content image (Sentinel-1) (b) transferred 243 
image (Spatial Gram matrix) (c) transferred image (Gatys et al.’s Gram matrix) (d) style image 244 
(TerraSAR-X) 245 

3.3 Conditional generative adversarial networks 246 
The introduction of GANs is a milestone in deep learning, and it becomes popular where 247 

hundreds of papers were published under the name of GAN [25]. A conditional GAN makes a 248 
general GAN more useful because the inputs are no longer the noise but the things we can control. 249 
In our case, the conditional inputs are Sentinel-1 images. The conditional GANs have achieved 250 
impressive results on many image processing tasks, such as style transfer [26], supper-resolution 251 
[27], or other tasks [28], [29]. Isola et al. [13] summarized the tasks of image translation as “pix2pixl” 252 
translations and demonstrated the capabilities of conditional GANs in their paper. Inspired by their 253 
works, we modified the “pix2pix” framework by adding new discoveries about GANs and specific 254 
features of the SAR images translations. When we used the “pix2pix” framework in our application 255 
this failed. Figure 4 shows the overfitting of the “pix2pix” conditional GAN because the training set 256 
has good performances while the test set has bad results. Without any modification, we could not 257 
reach our goals. In the next section, we propose a new method to realize Sentinel-1 to TerraSAR-X 258 
image translations. 259 
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        260 
Figure 4. SAR image translation using the “pix2pix” framework in both training and test set (a) input 261 
image in the training set (b) GAN output of image (a) (c) target of image (a) (d) input image in the 262 
test set (e) GAN output of image (d) (f) target of image (d) 263 

4. Method  264 

Although the conditional GAN is overfitting in our case, it is still a good strategy to complete our 265 
task, which is to have a mapping function from Sentinel-1 to TerraSAR-X. In mathematical notation, 266 
it is	267 
:ܩ  ݔ → (8) ,	ݕ

where ܩ  is the mapping function, ݔ  is a Sentinel-1 image, and ݕ  is a TerraSAR-X image. 268 
Actually, this task can be achieved by designing a neural network and by presetting a loss function 269 
like traditional machine learning. Indeed, this idea has already been accomplished in [10] and [11]. 270 
However, the preset loss function is not general for all cases. A GAN provided an idea that the loss 271 
function is not preset, and it can be trained through a network which is called “Discriminator”. The 272 
mapping function ܩ is realized through a “Generator” neural network.  273 

In this paper, we use the concept of dialectics to unify the GANs and traditional neural 274 
networks. There is a triad in the system of dialectics, thesis, antithesis and synthesis, and they are 275 
regarded as a formula for the explanation of change. The formula is summarized as (1) a beginning 276 
proposition called a thesis, (2) a negation of that thesis called the antithesis, and (3) a synthesis 277 
whereby the two conflicting ideas are reconciled to form a new proposition [30]. We apply this 278 
formula to describe the change of image translation. The “Generator” network is regarded as thesis 279 
and it can be inherit the parameters from the previous thesis. In our case, the “Generator” inherits 280 
from the texture network. The “Discriminator” network acts as a negation of the “Generator”. The 281 
synthesis is based on the law of the Negation of the Negation. Thus, we can generate a new 282 
“Generator” through the dialectical method. When the new data comes, it will enter the next state 283 
of changing and development. The global flowchart of our method is shown in Figure 5. There are 284 
two phrases, training phrase and operational phrase. The training phrase is the processing to 285 
generate a final generator, and the operational phrase applies the final generator to conduct the 286 
image translation task. In the following, we discuss the “Generator” network, the “Discriminator” 287 
network and the details to train them. 288 
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 289 
Figure 5 Global flowchart of Dialectical GAN 290 

4.1 “Genertor” network – thesis 291 

The	purpose	of	the	generator	is	to	generate	an	image	 	(ݔ)ܩ has	the	content	of	 image	 	ݔ and	the	292 
style	of	image	  as  293	defined	is	which	loss,	texture	and	loss	content	parts,	two	has	function	loss	the	Thus,	.ݕ

 
ℒீ௘௡௘௥௔௧௢௥ = ℒ௖௢௡௧௘௡௧ + ℒ௦௧௬௟௘ߣ 	

= ෍ ฮ۴௟൫(ݔ)ܩ൯ − ۴௟(ݔ)ฮி
ଶ

௟∈ࡸ೎೚೙೟೐೙೟

+ ߣ ෍ ௦௣௔௧௜௔௟௟܁௟ฮݓ ൫(ݔ)ܩ൯ − ௦௣௔௧௜௔௟௟܁ ฮ	(ݕ)
ி

ଶ

௟∈ࡸೞ೟೤೗೐

	, (9)

where ߣ is a regularization parameter, ۴௟(∙) are the feature maps of the ݈௧௛ layer of an image, 294 
௦௣௔௧௜௔௟௟܁ (∙)  are the Spatial Gram matrices that were defined in Section 3.2. According to the 295 
discussion in Section 3.1, there is no information in “ReLU5_1”. Therefore, we chose “ReLU4_1” as 296 
the content layer, and “ReLU1_1”, ”ReLU2_1” and ”ReLU3_1”as the style layers. Consequently, 297 
௖௢௡௧௘௡௧ࡸ = {4}, and	ࡸ௦௧௬௟௘ = {1, 2, 3}. 298 

 can be any kind of functions, it can be as simple as a linear function or as complex as a 299 ܩ
multiple composition of non-linear functions. As a powerful tool to approximate functions [31] [32], 300 
deep neural networks are used as our notation of ܩ in this paper. The input and the target images, 301 
 are from different SAR sensors, but they are observing the same test site. The properties of 302 ,ݕ and ݔ
SAR systems result in their own characteristics of image representation, such as final resolution, 303 
polarization response, and the dynamic ranges. But the same observed area makes them share 304 
identical compounds. Regardless of the changes in time, ݔ and ݕ are generated from identical 305 
objects. For the analysis of our input and target images, there are plenty of network structures that 306 
solve this problem. 307 

Previous related works [28] [33] have used an encoder-decoder network [34] where the input 308 
image is compressed in down-sampled layers and then be expanded again in up-sampled layers 309 
where the process is reversed. The main problem of this structure is whether the information is 310 
preserved in the down-sampled layers. Based on the discussion in [13], we chose the “U-Net” 311 
network to execute our tasks. The “U-Net” is very well known for its skip connections which are a 312 
way to protect the information from loss during transport in neural networks. According to the 313 
behavior of our SAR images in the VGG-19 network, we set the “U-Net” to 6 layers. The structure 314 
of the network we used is shown in Figure 5. 315 
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316 
 317 

Figure 6. Architecture of the “U-Net” Generator network 318 

Although the network in Figure 5 has too many elements and is hard to be trained, we think it is 319 
necessary to use a deep network because the architecture of a network can affect its expressiveness 320 
of complex functions. Maybe there will be more efficient methods to approximate the mapping 321 
function, but this is not the topic of this paper. Our goal is a powerful tool to describe the mapping 322 
from Sentinel-1 to TerraSAR-X where the solution is a deep neural network. 323 

4.2 “Discriminator” network – antithesis 324 
A deep neural network is a suitable solution, but on the other hand, it can also easily generate 325 

non-target results. Based on the concept of dialectics, when the appearance is not fit for the 326 
conception, it is needed to deny the existence of this thing. In this case, it is the negation of the 327 
generated images. In other words, we need a loss function yielding a small value when the output 328 
equals the target while yielding a high value when the two are different. Usually, the loss function 329 
is predefined. For example, the most common loss function, Mean Squared Error (MSE), is a 330 
preinstalled function which is defined as 331 

ܧܵܯ  =
1
ܰ
෍൫܇௜ − ෡௜܇ 	൯

ଶ
ே

௜ୀଵ

	, (10)

where ܇෡ is the generated vector of ܇ whose elements are܇௜. When computing the MSE function, it 332 
outputs a scalar value to describe the similarity of the input and the target. But it is predefined, and 333 
the only freedom are the input data. How it relates to the negation of the generated images is still a 334 
question. There are three steps to solve the problem. First, the loss function should criticize the 335 
existence of ܇෡, so it has a term −܇෡. Second, it should approve the subsistence of ܇, the target; thus, 336 
the term ܇ shall appear. Third, the square operator makes sure the function is a kind of distance. 337 
Through these three steps, the MSE has accomplished the negation of the generated vectors or 338 
images. When the generated image differs from the target image, the distance is large. When the 339 
generated image is the target image itself, their distance shall be zero. In contrast, a large distance 340 
shall be generated when the input is markedly different from the target to lead to better negation. 341 

It is reasonable to expect that the loss function is a kind of distance function because the 342 
distance space is a weak assumption for the space of generated images. For instance, the loss 343 
function in (9) is another kind of distance compared with the MSE that directly computes pixel 344 
values. However, it is hard to find a unique common distance because our tasks differ while the 345 
distance remains invariant. Using a neural network scheme to train a distance is a good choice. 346 
Fortunately, the appearance of GANs has supported us solutions to find the proper distances. In 347 
GAN systems, the negation of generated images is processed in the loss function of the 348 
“Discriminator”.	 The discriminator is a mapping function, or a neural network to describe the 349 
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existence of the input image. However, the properties of the discriminator have been little 350 
discussed. In this paper, we try to use the theory of metric spaces to discuss this question. 351 

Assuming that the distance in the image domain ܯଵ  is ݀ଵ(∙)  and the distance in the 352 
discriminator domain ܯଶ is ݀ଶ(∙), the discriminator is the map ܯ:ܦଵ →  ଵ [35]. The distance of 353ܯ
the conditional case, which is also the contradiction between two images, can be defined as  354 
 ℒୡ୭୬୲୰ୟୢ୧ୡ୲୧୭୬ = ݀ଶ൫(ݔ|(ݔ)ܩ)ܦ,(ݔ|ݕ)ܦ൯	, (11)

where ܦ(∙  is a 355 (∙)ܦ If .ݔ is the discriminator of an image under the condition that the input is (ݔ|
map to map the image to itself, and ݀ଶ(∙) is the Frobenius norm, the contradiction becomes  356 
 ℒୡ୭୬୲୰ୟୢ୧ୡ୲୧୭୬ = ݕ‖ − ி‖(ݔ)ܩ 	, (12)

which is the ܮଵ norm that usually acts as a loss function in machine learning. This is one case of a 357 
determined map. As for a training map function, the most important thing is to design its format. If 358 
we still set ݀ଶ(∙) as the Frobenius norm, the distance of the discriminator becomes  359 
 ℒୡ୭୬୲୰ୟୢ୧ୡ୲୧୭୬ = (ݔ|ݕ)ܦ‖ − ி‖(ݔ|(ݔ)ܩ)ܦ 	, (13)

when the discriminator is a predefined network such as the Spatial Gram matrix, we conclude that 360 
the loss function in (9) can be regarded as a specific case of (13). 361 

If the range of ݀ଶ(∙) is [0,1], it is considered that the output is the possibility of being real. 362 
There are many concepts to re-unite the formats of different loss functions. In ݂-GAN [36], the loss 363 
functions are regarded as ݂-divergences, which are the measurements for the similarity of two 364 
distributions. However, the drawback of divergences is that they don’t satisfy the triangle 365 
inequality and the symmetry which are requirements of distance functions [37]. In LSGAN [38], the 366 
least squares method is used to measure the output of the discriminator. In this method, the 367 
generated images are in an inner product space which is also a metric space. Therefore, we infer 368 
that the contradiction of the real image and the generated image should be contained in a function 369 
that can define the distance of some metric space, and the map ܦ should be constrained. One 370 
constraint of ܦ is that the range of ܦ should be bounded because we compute it in a computer. Or 371 
it will become an infinite number. Second, ܦ should be continuous, even uniformly continuous, 372 
because the gradient descent algorithms may fail when the loss function is not continuous. In 373 
WGAN, the Wasserstein distance is used, where the Lipschitz-continuous map ensures the property 374 
of uniformly continuous. In this paper, we focus on the WGAN framework. 375 

When ݀ଶ(∙) is the Wasserstein distance [39], the loss function of the discriminator becomes  376 
 ℒୢ୧ୱୡ୰୧୫୧୬ୟ୲୭୰ = ܹ൫(ݔ|ݕ)ܦ, ൯, (14)(ݔ|(ݔ)ܩ)ܦ

where ܹ(∙) is the Wasserstein distance function which behaves better than the ݂ −  377 ݁ܿ݊݁݃ݎ݁ݒ݅݀
being used in traditional GANs. The realization of the Wasserstein distance enforces a Lipschitz 378 
constraint on the Discriminator. In the WGAN-GP framework [40], the Lipschitz constraint is 379 
realized by enforcing a soft version of the constraint with a penalty on the gradient norm for random 380 
samples  ݔො~	ℙ௫ො , where ݔො = ݕ߳ + (1 − (ݔ)ܩ(߳ . Based on the conclusions in WGAN [40], the 381 
maximum of the Wasserstein distance between  ℙ௥,௬|௫ and ℙ௚,௫ becomes  382 

∗ܦ  = max
஽
(ℒୢ୧ୱୡ୰୧୫୧୬ୟ୲୭୰)= min

஽
ቌ

ॱ
ீ(௫)~ℙ೒,ೣ,௫~ℙೝ,ೣ

[(ݔ|(ݔ)ܩ)ܦ] − ॱ
௬~ℙೝ,೤,௫~ℙೝ,ೣ,

	[(ݔ|ݕ)ܦ]

௚௣ߣ+ ॱ
௫ො~	ℙෝೣ

[(‖∇௫ොܦ(ݔො|ݔ)‖ଶ − 1)ଶ]				
ቍ, (15)

where ܦ∗ is the best discriminator, ℙ௥,௬|௫ is the distribution of given real images, ℙ௚,௫  is the 383 
distribution of generated images and  ∇௫ොܦ(ݔො|ݔ) is the gradient of the discriminator ܦ(∙ | ∙). When 384 
adding the penalty of the distance between the normal of ∇௫ොܦ(ݔො|ݔ) and 1 in the loss function, the 385 
Discriminator is forced to become a 1 −  ௚௣ is usually set to 10 according to the 386ߣ .function ݖݐℎ݅ܿݏ݌݅ܮ
experiments conducted in [40]. Intuitively, the removal of the absolute operator ensures the 387 
continuity of the derivation of the loss function at the origin. The 1 −  constraint limits the 388 ݖݐℎ݅ܿݏ݌݅ܮ
normal of the derivation from growing too large, which is a way to increase the distance but not in 389 
the way we want.  390 
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Once the loss function is determined, the next step is to design the architecture of ܦ(∙  that 391 (ݔ|
can be easily trained for computers. Considering the ready-made function already discussed in the 392 
previous section, the loss function of style defined by Gram matrices is a good choice because it can 393 
be regarded as processing on a Markov random field [13] [26]. The “pix2pix” summarized it as the 394 
“PatchGAN” whose input is the combination of ݔ and ݕ. The architecture of the discriminator is 395 
shown in Figure 7.  396 

 397 
Figure 7. Architecture of PatchGAN Discriminator network	398 

4.3 Dialectical Generative adversarial network– synthesis 399 
According to the dialectic, the third step is the negation of the negation. The negation of the 400 

generated image is described by the loss function of the discriminator. Thus, the negation of 401 
negation should be the negation of the loss function of the discriminator. The negation is trying to 402 
make the distance defined by the discriminator to become larger, while the negation of negation 403 
should make the distance smaller. In our WGAN framework, the negation is defined by equation 404 
(15). Thus, the negation of negation can be realized by maximizing it. Therefore, the maximization of 405 
the loss function in (15) is the negation of negation. At the last step of the dialectic, the negation of 406 
negation should be combined with the thesis to form a synthesis. 407 

The thesis can be regarded as a synthesis from the former dialectics. For example, the “pix2pix” 408 
used the ܮଵ norm as their thesis, and the SRGAN used the Gram matrices on layer 5 of the VGG-19 409 
network as their thesis. These initial loss functions are distance functions and contain the negation of 410 
the generated images. In this paper, we start from the thesis defined by a Spatial Gram matrix. In 411 
other words, we set the initial loss function as defined in (9). The negation of negation is the 412 
maximization of (15). Therefore, the synthesis of our “Dialectical GAN” is the combination of (9) and 413 
(15). Reducing the terms in (15) that independent of “Generator” networks, the loss function of the 414 
“Dialectical GAN” becomes 415 

 
ℒீ௘௡௘௥௔௧௢௥ீ஺ே = ℒீ௘௡௘௥௔௧௢௥ − 	஺ேℒ௖௥௜௧௜௖௔௟ீߣ

= 	ℒ௖௢௡௧௘௡௧ + ℒ௦௧௬௟௘ߣ − ஺ேீߣ ॱ
ீ(௫)~ℙ೒,ೣ,௫~ℙೝ,ೣ

(16) [(ݔ|(ݔ)ܩ)ܦ]

To optimize this new loss function, we need four steps: set up the generator, update the 416 
discriminator, update the generator and iterate. 417 
 Step 1, having a Generator ܩ(∙) and an input image ݔ, use the to generate (ݔ)ܩ, and then run 418 

the Discriminator ܦ(∙ | ∙). 419 
 Step 2, use gradient descent methods to update ܦ(∙ | ∙) following (16) 420 
 Step 3, use gradient descent methods to update ܩ(∙) following (15). 421 
 Step 4, repeat Step 1 and Step 3 until the stopping condition is met.  422 

Then the training of the Dialectical GAN is completed. Every loop can be considered as a 423 
realization of the dialectics. The basic framework is based on the WGAN-GP. As for the 424 
mathematical analysis of the GANs and deep learnings, please refer to [41], [42], [43]. Although the 425 
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Deep Learning still looks like a “black box”, we tried to provide a logical analysis of it and attempted 426 
to achieve “real” artificial intelligence with the capabilities of dialectics. 427 

5. Experiments 428 
The data used for demonstration has already been described in Section 2. Based on the method 429 

proposed in Section 4, the GAN network used in this paper has two neural networks, Generator and 430 
Discriminator. The Generator is a “U-Net” with 6 layers, and the Discriminator is a “PatchGAN” 431 
convolutional neural network with 4 layers. In total, we had 1860 image pair-patches in the training 432 
data set and 224 image pair-patches in the test data set. With these data sets, the training took two 433 
days on a laptop with Intel Xeon CPU E3, an NVidia Q2000M GPU and 64 GB of memory. We 434 
conducted three experiments with respect to the following networks further presented below. 435 

5.1. SAR images in VGG-19 networks 436 
VGG-19 has an essential role in this paper because its layers are the components of the texture 437 

information determined by a Gram matrix. Besides, the selection of the content layer is a new 438 
problem for SAR images. First, we compared the differences between Sentinel-1 and TerraSAR-X 439 
images in each layer. Two image patch-pairs are the inputs in the VGG-19 networks and their 440 
intermediate results are shown in Figure 8. 441 

442 
 443 

Figure 8. Two image patch-pairs input to in the VGG-19 networks and their intermediate results 444 

Visually, the images of the ReLU4_1 layer have common parts. But this is not sufficient, and we 445 
decided to introduce the MSE and the Structural Similarity Index (SSIM) [44] in order to compare 446 
the image in different layers. The MSE is defined as: 447 

௟ܧܵܯ  =
1

ଶܰ௟(௟ܯ) ෍ ෍ ෍ൣݔ௞௟ (݅, ݆) − ௞௟ݕ (݅, ݆)൧
ଶ

ெ೗ିଵ

௝ୀ଴

ெ೗ିଵ

௜ୀ଴

ே೗ିଵ

௞ୀ଴

	, (17)

where	ܯ௟ is the size of the feature maps in ݈௧௛ layer, ܰ௟is the number of the feature maps in ݈௧௛ 448 
layer, ݔ௞௟ (݅, ݆) is the pixel value of (݅, ݆) in the ݇௧௛ feature map of the ݈௧௛ layer of a Sentinel-1 449 
image, and ݕ௞௟ (݅, ݆) is the counterpart of a TerraSAR-X image. In order to overcome the drawbacks 450 
of the MSE, we applied the SSIM whose definition is  451 
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,ݔ)ܯܫܵܵ  (ݕ =
൫2ߤ௫ߤ௬ + ܿଵ൯൫2ߪ௫௬ + ܿଶ൯

൫ߤ௫ଶ + ௬ଶߤ + ܿଵ൯൫ߪ௫ଶ+ߪ௬ଶ + ܿଶ൯
	, (18)

where ߤ௫ and ߪ௫ are the mean value and the standard deviation of image ݔ; the same to applies 452 
to ݕ. ܿଵ and ܿଶ are two constants related with the dynamic range of the pixel values. For more 453 
details, we refer the reader to [44]. The SSIM values range between -1 and 1, where 1 indicates 454 
perfect similarity. The evaluation results with the two indicators are shown in Table 2. 455 

Table 2. Evaluation results with MSE and SSIM 456 

Layers MSE SSIM 
ReLU1_1 0.1616 0.4269 
ReLU2_1 0.5553 0.0566 
ReLU3_1 0.5786 0.2115 
ReLU4_1 0.3803 0.7515 
ReLU5_1 0.2273 0.7637 

Although ReLU5_1 has the best performance with two indicators, we still ignore this layer due to 457 
the poor diversity in this layer. Excluding ReLU5_1, the ReLU4_1 layer gives us the best result. 458 
Therefore, the ReLU4_1 is chosen as the content layer, and the first three layers are used to define 459 
texture information. 460 

5.2. Gram martrices vs. Sptatial Gram martrices 461 
A Spatial Gram matrix is an extension of a Gram matrix, which is used to describe the texture 462 

information and is good at representing arrangement information. In Section 3.2, we have shown the 463 
visual difference between two style definitions. In this experiment, we used the quantity indicators 464 
to evaluate the two methods. Two image patch-pairs were chosen to conduct the comparison, whose 465 
results are shown in Figure 9. In order to evaluate the image quality of the SAR images, we introduce 466 
the equivalent numbers of looks (ENL), which act as a contrast factor to represent the image 467 
resolutions approximately. A higher ENL value indicates that the image is smooth while a lower 468 
value means that the image is in high resolution [45]. For our case, we need high-resolution images 469 
and as a result, the lower their ENL value, the better. The definition of ENL is 470 

ܮܰܧ  = ఓమ

ఙమ
, (19)

where ߤ is the mean value of the image patch, and ߪ is its standard deviation.  471 

472 
 473 

Figure 9. Comparison between a Spatial Gram matrix and a Gatys et al. Gram matrix in two 474 
patch-pairs 475 
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Table 3. Evaluation of two methods for both image pairs 1 and 2  476 

Image pairs Methods MSE SSIM ENL 

1 
Gatys et al. Gram 0.3182 0.0925 1.8286 

Spatial Gram 0.2762 0.1888 2.0951 

2 
Gatys et al. Gram 0.3795 0.0569 2.0389 

Spatial Gram 0.3642 0.0700 1.9055 
 477 
As can be seen from Figure 9 and Table 3, the Spatial Gram method performs better than Gatys et 478 

al.’s method, both visually and according to evaluation indicators. However, the ENL of image pair 479 
1 indicates that Gatys et al.’s method is better. To solve this problem, we need more experiments. 480 
Because the traditional generative model regards every pixel as a random pixel and ignores the 481 
relationships among neighboring pixels, its computing efficiency is limited. Nevertheless, a Spatial 482 
Gram matrix is a good tool to determine the image style for our cases. In the next subsection, we 483 
abandon the Gatys et al.’s method and replaced it with a “U-net” network to generate the enhanced 484 
images. This method is called “Texture network”. 485 

5.3. Spatial Gram matrices vs. traditional GANs 486 
The texture network moves the computational burden to a learning stage and no longer needs 487 

the style images as an aide to produce an image because the style information is already mapped in 488 
the network through the learning steps. Although the feed-forward network supersedes the solution 489 
of random matrices, the loss function is still the same. According to the above experiments, the 490 
Spatial Gram matrix is the winner of the determinate loss function.  491 

In contrast to the determinate one, other researchers found that the loss function can also be 492 
learned, though the Spatial Gram matrix is also learned from the VGG-19 network. Nonetheless, the 493 
learning of the loss function enables the definition of image style to become more optional. We use 494 
the WGAN-GP framework to represent this kind of idea, which is the most stable one among the 495 
GAN family. The results of the texture network and the WGAN-GP are compared in Figure 10 and 496 
the evaluation results are listed in Table 4. The test set components in Table 4 are the average 497 
performances of images in whole test set. 498 

The texture network and the WGAN-GP are fast ways to conduct style transfer. According to 499 
the values in Table 4, we conclude that the WGAN-GP has a better performance than the texture 500 
network method with the given indicators. However, the WGAN-GP is not able to preserve the 501 
content information of Sentinel-1 and its output images are muddled without obvious structures 502 
like the texture network. Although texture network has no good performance in the evaluation 503 
system, it has preferable visual effect in contrast to the WGAN-GP. How to balance the indicator 504 
values and the visual performance is a crucial problem. The texture information is defined by the 505 
VGG-19 network which has been trained by optical images. Thus, we have grounds to believe that 506 
there is texture information that cannot be described by Spatial Gram matrices. In a following 507 
experiment, we will compare the texture network with the proposed Dialectical GAN. 508 
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509 
 510 

Figure 10. Comparison between Texture network and WGAN-GP for two patch-pairs 511 

Table 4. Evaluation of Texture network and WGAN-GP in both image pair 1 and 2  512 

Image pairs Methods MSE SSIM ENL 

1 
Texture network 0.3265 0.0614 1.3932 

WGAN-GP 0.2464 0.1993 2.8725 

2 
Texture network 0.3396 0.0766 1.6269 

WGAN-GP 0.2515 0.2058 3.5205 

Test set 
Texture network 0.3544 0.0596 1.7005 

WGAN-GP 0.2632 0.2117 3.3299 
 513 

5.4.  Dialectical GAN vs. Spatial Gram matrices 514 
The texture network defined the texture information in a determinate way while the 515 

WGAN-GP uses a flexible method to describe the difference between generative images and target 516 
images. In this paper, we proposed a new method that combines a determinate way and a flexible 517 
way to enhance the generative images, and we called it “Dialectical-GAN” because the idea is 518 
enlightened by the dialectical logic. The Dialectical-AN initializes its loss function with the Spatial 519 
Gram matrix that was found a good way to describe the texture information of urban area and the 520 
content loss defined by the ReLU4_1 layer of the VGG-19 network. Through the training of the 521 
Dialectical GAN, new texture information can be learned and represented in the “Discriminator” 522 
network. The comparison between a “Dialectical-GAN” and the texture network with a Spatial 523 
Gram loss function are shown in Figure 11 and Table 5. 524 

Both visual performance (Figure 11) and the indicator analysis (Table 5) proved that our 525 
method is better than the texture network. However, these experiments all remained limited to the 526 
patch level, and the figures of a whole scene have not yet been considered. Therefore, we show the 527 
entire image composited with every path to check the overall performance and to estimate the 528 
relationship between neighboring patches.   529 
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 530 
Figure 11. Comparison between Dialectical GAN and Texture network for two image patch-pairs 531 

Table 5. Evaluation of Texture network and Dialectical GAN for both image pairs 1 and 2 532 

Image pairs Methods MSE SSIM ENL 

1 
Texture network 0.3264 0.0614 1.3933 
Dialectical GAN 0.3291 0.0884 1.5885 

2 
Texture network 0.3396 0.0766 1.6270 
Dialectical GAN 0.3310 0.0505 1.8147 

Test set 
Texture network 0.3544 0.0596 1.7005 
Dialectical GAN 0.3383 0.0769 1.8804 

 533 

5.5.  Overall visual perfomance 534 
One of the most important merits of remote sensing images are their large-scale observations. 535 

In this section, we are discussing how a remote sensing image looks when its patches are processed 536 
by the selected neural networks. A full image is generated by concatenating the small processed 537 
patches to produce a final image. In this paper, we focus on three networks, the texture network 538 
with a Spatial Gram matrix, the WGAN-GP method, and our “Dialectical GAN” method. They are 539 
shown in Figure 12, Figure 13, and Figure 14, respectively. As for the overall visual performance, 540 
we consider that the Dialectical GAN has the best subjective visual performances.  541 

 542 
Figure 12. The overall results of a Dialectical-GAN 543 
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 544 

Figure 13. The overall results of a texture network 545 

 546 
Figure 14. The overall results of a WGAN-GP (L1 +WGAN-GP) 547 

The SAR image translation results compared with inputs and outputs image are shown in 548 
Figure 15. First, we can see the entire effect of the image translation.in the Munich urban area. To 549 
display detail results, we have three bounding box with different colors (Red, Green and Yellow) to 550 
extract the patches from the full image. They are in Figure 15(d). 551 

 552 
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 553 

Figure 15 Overall visual performance of Dialectical GAN compared with Sentinel-1 and TerraSAR-X images (a) 554 
Sentinel-1 image (b) TerraSAR-X image (c) Dialectical GAN image (d) Zoom in results 555 

6. Discussion 556 

Compared with traditional image enhancement methods, deep learning is an end-to-end 557 
method that is quite easy to be implemented. Deep learning has excellent performances and is 558 
standing out among the machine learning algorithms, especially in the case of big data. Solutions 559 
for remote sensing applications were discovered by the advent of deep learning. More importantly, 560 
deep learning is now playing a crucial part in transferring the style of images. 561 

Concerning SAR image translation, little attention has been focused on it and the performances 562 
of deep learning on this topic are still unknown. The task that this paper addresses is related with 563 
super-resolution tasks, but our image pairs are not of the same appearances due to the differences 564 
in incidence angles, radar polarization, and acquisition times. From this aspect, our task belongs to 565 
style transfer to some extent, like generating a piece of artistic painting without the constraint that 566 
two images should be focused on same objects. Therefore, the SAR image translation is a mix of 567 
super-resolution and style transfer and has never been focused in the conception of deep learning. 568 

From Gatys et al.’s method to GAN frameworks, we have tested the capabilities of deep 569 
learning in translating Sentinel-1 images to TerraSAR-X images. The resulting images of Gatys et 570 
al.’s method are of high quality but they don’t preserve well the structure information, which is an 571 
essential characteristic of remote sensing SAR images, especially for urban areas. The improvement 572 
can be accomplished by introducing Spatial Gram matrices instead of the traditional ones in the loss 573 
function. A Spatial Gram matrix is a compromise between the arrangement structure and the 574 
freedom of style. In this paper, we compose Gram matrices computed in spatial shifting mode as a 575 
new matrix-vector for each layer. The spatial matrix is a good indicator to describe arrangement 576 
structures such as buildings and roads. However, our loss function modifications can only solve the 577 
style presentation problem, but the high computation effort still limits the applications of image 578 
translation for remote sensing. Fortunately, deep neural networks are a powerful tool for fitting 579 
complicated functions that provides solutions to speed up the image translation. Instead of taking 580 
every pixel as a random variable, a deep neural network regards an image as an input of the system, 581 
and the only thing the deep learning can do is to approximate the mapping function. That is to say, 582 
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the deep neural network is a generator, and the Spatial Gram matrix is used to define the loss 583 
function. 584 

The GAN framework gives us a new concept of a loss function which can also be defined by a 585 
neural network called discriminator. We assume that the GAN framework has a dialectical logical 586 
structure and explained it in a triad. However, due to the arbitrariness of a neural work and the 587 
limitation of the training data, a GAN is hard to train and cannot achieve good performances for 588 
our applications. Considering the diversity of GANs and the determinacy of Spatial Gram matrices, 589 
we proposed a new method that combines their advantages together. With the initial loss function 590 
defined by Spatial Gram matrices, our GAN system updates its discriminator and generator to 591 
make the output image as “true” as possible. The Spatial Gram loss function works well, but we 592 
still believe that there are other functions to determine the style of a given image. Using a 593 
combination framework, our system is able to generate high-quality SAR images and to improve 594 
the resolutions of Sentinel-1 images without the need for large amounts of data. 595 

To appraise the generated images, we used three indicators, MSE, SSIM and ENL. The 596 
comparison experiments show that the Spatial Gram matrix is better than the traditional Gram 597 
matrix. A WGAN-GP without any initial loss function didn’t perform well in contrast to the Spatial 598 
Gram matrix method. With the support of Spatial Gram matrices, the new WGAN-GP that we 599 
proposed is the best of these three methods, both in visual performance and by quantitative 600 
measurements (using the three indicators). Besides, we have tested the overall visual performance 601 
rather than to stay on image patch level. It is a new attempt for deep learning to perform the image 602 
transfer task in this way. The same results occurred when full images are considered and the new 603 
proposed method outperforms the existing ones. 604 

7. Conclusions 605 
In this paper, a “Dialectical GAN” based on Spatial Gram matrices and a WGAN-GP 606 

framework is proposed to conduct the SAR image transfer task from Sentinel-1 to TerraSAR-X 607 
images. By analyzing the behavior of SAR image in the VGG-19 pre-trained network, we have 608 
found that the relationship between two source images is maintained in the higher layers of the 609 
VGG-19 network, which is the foundation of changing the “style” of images. In remote sensing 610 
usually the urban areas are dominated by buildings and roads and, based on this observation, the 611 
Spatial Gram matrixes are a very good metric to describe the “style” information of these areas, 612 
including their arrangement structure. 613 

In order to explain the idea of a GAN, we introduced the dialectical way and adapted each part 614 
of the proposed frame to fit with this logical structure. The proposed method is combining the loss 615 
functions of Spatial Gram and WGAN-GP methods in order to fulfil our requirements. The results 616 
of the translation show promising capabilities, especially for urban areas. The networks learn an 617 
adaptive loss from image pairs at hand, and regularized by the prescribed image style, which make 618 
it applicable for the task of SAR image translation. 619 

As future works, we plan to go into deeper mathematic details and explanations of the 620 
Dialectical GAN. The combination of radar signal theory and deep learning needs to be 621 
investigated in order to describe the change of the basic unit (e.g., point spread function). In 622 
addition, this paper is limited to the application of SAR images translations, now we are trying to 623 
understand the translation of SAR and optical images. In future, we would like to apply our 624 
techniques to other target areas and other sensors. 625 
Acknowledgments: We thank the TerraSAR-X Science Service System for the provision of images (Proposal 626 
MTH-1118) and China Scholarship Council (Grant No. 201606030108)  627 
Author Contributions: “Dongyang Ao and Mihai Datcu conceived and designed the experiments; Dongyang 628 
Ao performed the experiments; Dongyang Ao, Dumitru Octavian, Gottfried Schwarz and Mihai Datcu 629 
analyzed the data; Dumitru Octavian contributed data materials; Dongyang Ao proposed the method and 630 
wrote the paper.”  631 
Conflicts of Interest: The authors declare no conflict of interest. 632 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2018                   doi:10.20944/preprints201807.0340.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 1597; doi:10.3390/rs10101597

http://dx.doi.org/10.20944/preprints201807.0340.v1
http://dx.doi.org/10.3390/rs10101597


 21 of 22 

 

References 633 
 634 

1. A. Love, "In memory of Carl A. Wiley," IEEE Antennas and Propagation Society Newsletter, vol. 27, pp. 635 
17-18, 1985.  636 

2. TerraSAR-X – Germany’s radar eye in space. Available online: https://www.dlr.de/dlr/en/desktopdefault. 637 
aspx/tabid-10377/565_read-436/#/gallery/3501 (accessed on 18th May 2018).    638 

3. TanDEM-X - the Earth in three dimensions. Available online https://www.dlr.de/dlr/en/desktopdefault. 639 
aspx/tabid-10378/566_read-426/#/gallery/345G. (accessed on 18th May 2018).   640 

4. RADARSAT. Available online: https://en.wikipedia.org/wiki/RADARSAT (accessed on 18th May 2018).   641 
5. COSMO-SkyMed Available online: http://en.wikipedia.org/wiki/COSMO-SkyMed (accessed on 18th May 642 

2018).   643 
6. European Space Agency. Available online: http://en.wikipedia.org/wiki/European_Space_Agency 644 

(accessed on 18th May 2018). 645 
7. Y.H. Li, A. Monti Guarnieri, C. Hu, and F. Rocca, "Performance and Requirements of GEO SAR Systems in 646 

the Presence of Radio Frequency Interferences", Remote Sens., vol. 10, p. 82, 2018. 647 
8. D.Y. Ao, Y.H. Li, C. Hu, and W.M. Tian, "Accurate Analysis of Target Characteristic in Bistatic SAR 648 

Images: A Dihedral Corner Reflectors Case, " Sensors, vol. 18, no. 1, p. 24, 2018. 649 
9. L. A. Gatys, A. S. Ecker, and M. Bethge, "Image style transfer using convolutional neural networks," in 650 

Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on, 2016, pp. 2414-2423. 651 
10. D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, "Texture Networks: Feed-forward Synthesis of 652 

Textures and Stylized Images," in ICML, 2016, pp. 1349-1357. 653 
11. J. Johnson, A. Alahi, and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-resolution," in 654 

European Conference on Computer Vision, 2016, pp. 694-711. 655 
12. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., "Generative adversarial 656 

nets," in Advances in neural information processing systems, 2014, pp. 2672-2680. 657 
13. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial 658 

networks," arXiv:1611.07004, 2017. 659 
14. N. Merkle, S. Auer, R. Müller, and P. Reinartz, "Exploring the Potential of Conditional Adversarial 660 

Networks for Optical and SAR Image Matching," IEEE Journal of Selected Topics in Applied Earth 661 
Observations and Remote Sensing, 2018. 662 

15. X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, F. Fraundorfer, "Deep learning in remote sensing: a 663 
review," arXiv preprint arXiv:1710.03959, 2017. 664 

16. Hu C, Li Y, Dong X, et al. Optimal 3D deformation measuring in inclined geosynchronous orbit SAR 665 
differential interferometry. Science China Information Sciences, 2017, 60(6): 060303. 666 

17. Sentinel-1. Available online: http://en.wikipedia.org/wiki/Sentinel-1 (accessed on 18th May 2018).  667 
18. TerraSAR-X. Available online: http://en.wikipedia.org/wiki/ TerraSAR-X (accessed on 18th May 2018). 668 
19. D. Ao, R. Wang, C. Hu, and Y. Li, "A Sparse SAR Imaging Method Based on Multiple Measurement 669 

Vectors Model," Remote Sensing, vol. 9, p. 297, 2017. 670 
20. Mitas, L., Mitasova, H. (1999). Spatial Interpolation. In: P.Longley, M.F. Goodchild, D.J. Maguire, 671 

D.W.Rhind (Eds.), Geographical Information Systems: Principles, Techniques, Management and 672 
Applications, Wiley. 673 

21. C. O. Dumitru, G. Schwarz, and M. Datcu, "Land cover semantic annotation derived from high-resolution 674 
SAR images," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, 675 
pp. 2215-2232, 2016. 676 

22. Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, "Neural style transfer: A review," arXiv:1705.04058, 677 
2017. 678 

23. J. Liao, Y. Yao, L. Yuan, G. Hua, and S. B. Kang, "Visual attribute transfer through deep image analogy," 679 
arXiv:1705.01088, 2017. 680 

24. G. Berger and R. Memisevic, "Incorporating long-range consistency in CNN-based texture generation," 681 
arXiv:1606.01286, 2016. 682 

25. The-gan-zoo. Available online: http://github.com/hindupuravinash/the-gan-zoo (accessed on 18th May 683 
2018). 684 

26. C. Li and M. Wand, "Precomputed real-time texture synthesis with Markovian generative adversarial 685 
networks," in European Conference on Computer Vision, 2016, pp. 702-716. 686 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2018                   doi:10.20944/preprints201807.0340.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 1597; doi:10.3390/rs10101597

http://dx.doi.org/10.20944/preprints201807.0340.v1
http://dx.doi.org/10.3390/rs10101597


 22 of 22 

 

27. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, et al., "Photo-realistic single image 687 
super-resolution using a generative adversarial network," arXiv preprint, 2016. 688 

28. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, "Context encoders: Feature learning by 689 
inpainting," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 690 
2536-2544. 691 

29. J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, "Generative visual manipulation on the natural 692 
image manifold," in European Conference on Computer Vision, 2016, pp. 597-613. 693 

30. "Hegel's Thesis-Antithesis-Synthesis Model". Encyclopedia of Sciences and Religions. Berlin: Springer. 694 
2013. Retrieved 11 September 2016. 695 

31. S. Liang and R. Srikant, "Why deep neural networks for function approximation?", arXiv:1610.04161, 2016. 696 
32. D. Yarotsky, "Optimal approximation of continuous functions by very deep ReLU networks," 697 

arXiv:1802.03620, 2018. 698 
33. X. Wang and A. Gupta, "Generative image modeling using style and structure adversarial networks," in 699 

European Conference on Computer Vision, 2016, pp. 318-335. 700 
34. G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," 701 

science, vol. 313, pp. 504-507, 2006. 702 
35. Metric space. Available online: https://en.wikipedia.org/wiki/Metric_space (accessed on 18th May 2018). 703 
36. S. Nowozin, B. Cseke, and R. Tomioka, "f-gan: Training generative neural samplers using variational 704 

divergence minimization," in Advances in Neural Information Processing Systems, 2016, pp. 271-279. 705 
37. Divergence (statistics). Available online: https://en.wikipedia.org/wiki/ Divergence_(statistics). (accessed 706 

on 18th May 2018). 707 
38. X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, "Least squares generative adversarial 708 

networks," in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2813-2821. 709 
39. M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein gan," arXiv preprint arXiv:1701.07875, 2017. 710 
40. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, "Improved training of wasserstein 711 

gans," in Advances in Neural Information Processing Systems, 2017, pp. 5769-5779. 712 
41. J. Pennington and Y. Bahri, "Geometry of neural network loss surfaces via random matrix theory," in 713 

International Conference on Machine Learning, 2017, pp. 2798-2806. 714 
42. B. D. Haeffele and R. Vidal, "Global optimality in neural network training," in Proceedings of the IEEE 715 

Conference on Computer Vision and Pattern Recognition, 2017, pp. 7331-7339.  716 
43. M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, "Are GANs Created Equal? A Large-Scale 717 

Study," arXiv preprint arXiv:1711.10337, 2017. 718 
44. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to 719 

structural similarity," IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004. 720 
45. S. N. Anfinsen, A. P. Doulgeris, and T. Eltoft, "Estimation of the equivalent number of looks in 721 

polarimetric synthetic aperture radar imagery," IEEE Transactions on Geoscience and Remote Sensing, 722 
vol. 47, pp. 3795-3809, 2009. 723 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2018                   doi:10.20944/preprints201807.0340.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 1597; doi:10.3390/rs10101597

http://dx.doi.org/10.20944/preprints201807.0340.v1
http://dx.doi.org/10.3390/rs10101597

