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Abstract

Driver distraction and diminished alertness remain key contributors to road-traffic accidents. This
study introduces a real-time multimodal driver-monitoring framework that integrates heart rate
(HR) with gaze-based metrics. Five licensed drivers undertook 480 minutes of naturalistic driving in
both urban and motorway settings while instrumented with Polar H10 chest-strap ECG sensors and
Pupil Labs Invisible eye-tracking glasses. Inferential statistics (p < 0.05) revealed significantly higher
mean HR and more frequent gaze indicators of cognitive load during urban driving. Leveraging
these findings, we designed a weighted-fusion algorithm that combines HR, blink duration, fixation
duration, and saccade kinematics into a single alertness score, which is then compared with a tunable
binary threshold. A sensitivity analysis shows that adjusting feature weights and the decision threshold
enables a controllable trade-off between false alarms and missed detections. The results demonstrate
the feasibility of integrating physiological and gaze information for practical, real-time detection
of reduced driver alertness, paving the way for adaptive in-vehicle safety systems that proactively
mitigate risk.

Keywords: multimodal driving framework; heart rate; gaze tracking; mental workload

1. Introduction
Road traffic accidents remain a significant global public health concern, accounting for more

than 1.35 million fatalities annually [1]. Driver distraction and reduced alertness have consistently
been cited as the major contributors to these accidents, with studies substantial proportion of crashes
involve a distracted driver [2,3]. This challenge is further compounded by the steady increase in
automobile usage worldwide, where the total number of vehicles grew from 1.2 billion to 1.59 billion
between 2015 and 2020 [4]. Therefore, developing strategies to maintain driver awareness and mitigate
distraction is crucial to reducing road traffic incidents.

A promising approach to improving road safety centers on the continuous monitoring of physio-
logical and behavioral states [5]. Heart Rate (HR) data, in particular, can serve as a real-time signal
of stress, cognitive workload, and fatigue [6–8]. For example, a study observed that HR increased
by roughly 2.5% to 3% during aggressive driving [6], indicating an association between increased
physiological reactivity and increased driving tension [9]. Simultaneously, gaze-based measures,
such as blink rate, fixation duration, and saccadic movements, have been shown to correlate with
fluctuations in visual attention and cognitive load [10–16]. By combining insights from both vital signs
and gaze behavior, it become possible to to achieve a more comprehensive understanding of a driver’s
alertness and detect early signs of potential distraction or fatigue [17].

Despite the evident synergy between physiological and gaze-based signals, most multimodal
driver monitoring systems have been validated primarily under controlled laboratory or simulator
conditions [18–20]. Although simulators offer significant advantages, such as the precise reproducibil-
ity of driving tasks and seamless synchronization of sensor data, they cannot fully encapsulate the
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variability of real-world driving environments. Factors like unpredictable traffic, adverse weather, and
evolving driver mental states are more difficult to replicate in a simulator [21], casting doubts on the
direct applicability of simulator findings to actual on-road scenarios.

In addition, many real-world studies continue to rely on single-modality techniques [7,10,22],
which may provide an incomplete picture of the driver’s state. An outstanding research gap exists in
the development and validation of truly multimodal frameworks that incorporate both HR and gaze
metrics validated in naturalistic driving settings.

This study aims to address these limitations by:

1. Collecting real-world multimodal data: Acquiring a synchronized dataset of HR and gaze mea-
surements from real-world driving, extending beyond what simulator-based or single-modality
research has thus far achieved.

2. Performing scenario-based and subject-based analyses: Examining how different driving environ-
ments shape the interaction between physiological and visual indicators, ultimately informing
more about driving behavior. Statistical analysis will help set thresholds for the proposed
multimodal algorithm.

3. Proposing a multimodal driver monitoring algorithm: Developing a weighted scoring system
that integrates physiological signals (HR) with gaze-related metrics (blink, fixation, and saccade)
in real time, classifying driving segments as either normal or abnormal, and illustrating how the
fusion of these modalities can provide enhanced understanding of driver vigilance.

The remainder of this paper is organized as follows. Section 2 provides a detailed review of related
work on driver monitoring approaches. Section 3 describes the experimental methodology, detailing the
hardware setup, data synchronization procedures, and the proposed multimodal algorithm. Section 4
then outlines our experimental results, including scenario-based analyses and the proposed algorithm.
Finally, Section 5 concludes the paper by summarizing key findings and discussing future directions
for enhancing multimodal driver monitoring.

2. Related Work
The evolution in driver monitoring systems has been considerable due to advances in physio-

logical and eye-tracking sensing technologies. This section reviews notable advancements in driver
monitoring, addresses persistent issues in multimodal integration, and situates our study within the
practical context of algorithmic innovation.

2.1. Physiological Monitoring in Driving Contexts

Physiological metrics such as HR have emerged as a robust biomarker of cognitive states, with a
study by [7] showing a 9.3% reduction in HR during drowsy highway driving. Real-world studies,
such as [6], have further established task-dependent HR fluctuations, showing increases from 2.5% to
3% during aggressive maneuvers. Another study [23] utilized HR to assess driver fatigue. However,
such research predominantly examined a single modality and used bulk medical electrocardiogram
(ECG) systems (e.g., Holter monitors), which limit naturalistic validity. In contrast, wearable chest
sensors such as the Polar H10 [24] now enable unobtrusive monitoring and have already been used in
validated research [25].

2.2. Gaze Monitoring in Driving Contexts

Eye-tracking research has progressed from controlled experiments to naturalistic driving studies.
Early simulator work [26] established baseline blink thresholds (100–400 ms) and fixation thresholds
(150–900 ms), while [27] linked cognitive load to gaze metrics. Real-world advancements include
[10], who demonstrated 20% wider gaze dispersion on residential roads versus motorways using
head-mounted eye trackers, and [28], who proposed purpose-based gaze interpretation for pedestrian
detection. The DR(eye)VE project [29] marked a milestone by correlating gaze patterns with the
saliency of the real-world scene between different drivers, but omitted physiological integration.
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Despite these advances, gaze-only systems struggle to differentiate cognitive states (e.g., stress vs.
fatigue) [30], which requires considering other modalities and metric inputs.

2.3. Multimodal Approaches

Recent efforts to fuse physiological and visual data highlight the potential and challenges of
multimodal systems. [18] achieved 89% distraction detection accuracy in simulators using thermal
cameras and ECG, while [20] developed a six-degree-of-freedom simulator dataset with synchronized
EEG and eye tracking. However, as Table 1 illustrates, multimodal studies [18–20] remain simulator
bound, failing to capture real environment factors.

Table 1. Comparison of Driver Monitoring Utilizing HR and Gaze Metrics.

Study HR Gaze Metrics Real Environment

Blink Fixation Saccade

[7] ✓ ✗ ✗ ✗ ✓
[31] ✓ ✗ ✗ ✗ ✓
[23] ✓ ✗ ✗ ✗ ✗
[32] ✗ ✗ ✓ ✗ ✓
[18] ✓ ✓ ✓ ✗ ✗
[20] ✓ ✓ ✓ ✗ ✗
[19] ✓ ✓ ✓ ✓ ✗
Present Work ✓ ✓ ✓ ✓ ✓

Significant progress has been made in driver monitoring systems, but limitations remain, par-
ticularly in the reliance on simulator and laboratory environments [18,20,22,23,26,33]. Real-world
studies are needed for better generalization. Integrating multimodal data, such as combining gaze
and physiological signals, can enhance the accuracy of the system [34]. This present study collects
real-world data, integrating eye-tracking and HR metrics for a comprehensive driver monitoring
system, enhancing abnormal state detection beyond single modality or simulator-based approaches.

3. System Model
In this section, the detailed workflow of the study is explained, starting with data collection,

moving on to analyzing the results, and ending with the proposed multimodal algorithm. The system
model is generally depicted in Figure 1.

Figure 1. The workflow of Multimodal Monitoring of Driver starting from real driving data collection, analyzing
the data, and proposing a multimodal algorithm based on gaze and heart metrics.
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3.1. Data Collection Setup

Real-world driving environment experiments were conducted to collect data for our multimodal
driver monitoring project. Although the presented work here is a pilot study, it includes a substantial
amount of driving data, totaling 480 minutes, which provides sufficient data points for preliminary
validation and statistical analysis. Five licensed participants, as detailed in Table 2, drove their
vehicles, ensuring they were comfortable with the driving environment and minimizing the influence
of unfamiliar vehicle dynamics.

Table 2. Participant demographics.

Participant Age Gender Driving Experience (Years)

1 35–40 Male 15–20
2 25–30 Male 5–10
3 30–35 Male 5–10
4 30–35 Male 10–15
5 40–45 Male 20–25

Before commencing the actual drives, participants underwent a familiarization period in a parking
lot. During this period, all sensors were worn for at least 20 minutes while the copilot ensured correct
sensor operation and participant comfort. Participants also drove short loops within the parking area
to acclimate to the equipment, proceeding to public roads only when they felt safe and comfortable.

Two wearable sensing systems were deployed: Pupil Labs Invisible eye-tracking glasses [35]
connected to a companion smartphone for continuous gaze data acquisition, and the Polar H10
chest-worn sensor [24] for HR monitoring. A dashcam recorded the forward road view for reference
and potential manual labeling. The copilot was responsible for hardware handling, synchronization,
and real-time monitoring of data quality. Figure 2 illustrates the complete setup in a real driving
environment.

Data collection took place mostly during the daytime and under various weather conditions,
including clear skies, overcast conditions, and light rain. Extreme weather scenarios (e.g., heavy
rain, fog) were intentionally excluded to maintain consistent visual and physiological measurement
conditions. Traffic conditions were naturally variable, ranging from low-density rural motorway
segments to dense urban traffic, and included both high-flow and stop-and-go conditions. While traffic
density and environmental variability are recognized as influencing factors, this pilot dataset reflects
uncontrolled, realistic conditions. More systematic control of these variables is planned for future
large-scale studies.

Driving scenarios were naturally mixed, with participants alternating between city and motorway
environments over multiple sessions and on different days. The final dataset comprises approximately
66% urban driving and 33% motorway driving. In total, the data collection yielded 28,963 HR samples,
10,669 blink events, 63,300 fixation events, and 63,050 saccade events, forming a rich multimodal
dataset for analysis.

All participants provided informal consent before the study, acknowledging the voluntary nature
of participation and their understanding of the procedures involved. Given the pilot nature of this
work and the use of commercially available sensors, formal institutional ethical approval was not
sought at this stage; however, future studies involving broader participant recruitment will follow
formal ethical approval protocols.
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Figure 2. (a) Data Collection Setup. (b) Pupil Lab Invisible Eye-Tracking glasses, and (c) Polar H10 HR Sensor.

3.2. HR Data Collection and Processing

HR data were collected using the Polar H10 chest strap [24], a device known for its high reliability
and validity in measuring HR in various settings [36] and shown in Figure 2c. The Polar H10 records
raw electrocardiogram (ECG) signals at a sampling frequency of 1000 Hz [36]. In this study, HR data
were processed to output an HR value at 1 Hz, which is sufficient for capturing temporal changes
in HR during real-world driving. The strap incorporates plastic electrodes on the underside to
detect the heart’s electrical activity, and was securely positioned around the lower chest to ensure
stable and accurate measurements throughout each driving session. Data collection was managed
via the Polar Beat smartphone application, which allowed real-time monitoring and session control.
Upon completion, the recorded data were uploaded to the Polar cloud service for secure storage and
subsequently downloaded to a PC for further processing and analysis. This study focuses on HR
rather than heart rate variability (HRV). While HRV can provide additional information on autonomic
nervous system activity, our focus is motivated by the fact that HR alone has demonstrated strong
sensitivity to cognitive and environmental driving demands. State-of-the-art research [37] has shown
that HR can achieve higher accuracy than HRV in differentiating cognitive load during urban and
motorway driving scenarios. Nevertheless, HRV analysis is recognized as a valuable complementary
measure and will be incorporated in future studies to provide a more comprehensive physiological
assessment.

3.3. Gaze Data Collection and Processing

The gaze data were collected using Pupil Labs Invisible glasses [35], an advanced eye-tracking
device designed for dynamic real-world scenarios, as shown in Figure 2b. The glasses are equipped
with a front-facing scene camera and two infrared (IR) eye cameras that capture eye images at a
resolution of 192 x 192 pixels and a frequency of 200 Hz. A companion device runs a neural network
algorithm [38] to compute gaze data. During recording, the Pupil invisible companion device calculates
gaze data in real-time, with the frame rate dependent on the companion device model. For this work,
using a OnePlus 8, the frame rate is over 120 Hz. Once uploaded to the Pupil Lab cloud, the gaze
data is recalculated at the maximum frame rate of 200 Hz. Then, the Pupil Labs algorithms were
employed for gaze data processing. Blink detection is achieved through an XGBoost classifier trained
on device-specific datasets, ensuring high recall and low false detection rates [39]. This algorithm
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processes optical flow patterns associated with eyelid closure and reopening events, resulting in
accurate detection of blink events with a recall of approximately 95% [39].

Fixation events were identified using an extended I-VT (identification by velocity threshold) algo-
rithm [40]. This method compensates for head and body movements through optical flow correction
and applies adaptive velocity thresholds based on dynamic scene conditions. Events with durations
below physiological plausibility thresholds were filtered, ensuring precise fixation detection even in
challenging real-world scenarios. Saccade events were detected as transitions between fixations using
thresholds for velocity, amplitude, and duration [40].

3.4. Data Analysis

The collected gaze and HR data were systematically analyzed to extract meaningful metrics to
assess the state of the driver. The analysis consisted of reading and synchronizing the data, cleaning
outliers, and performing statistical analyses to uncover insights based on subjects and driving scenarios.

Initially, gaze data, including blinks, fixations, and saccades, and HR data were read from their
respective files. Synchronization was achieved by normalizing the timestamps to ensure temporal
alignment across datasets. The normalized timestamp t was calculated as:

t = toriginal − tmin (1)

where toriginal is the original timestamp, tmin is the minimum timestamp in the dataset segment.
Outlier removal was performed to enhance data quality by excluding physiologically implausible

values. For each metric m, data points that fall outside the predefined lower and upper bounds
(Lm, Um) were discarded:

Cleaned_Data = {x ∈ Data | Lm ≤ x ≤ Um} (2)

This step ensured that the analyses were not skewed by erroneous measurements or artifacts. The
limits used in this study are illustrated in Table 3.

Table 3. Limits for eye-tracking and physiological metrics.

Metric Lower Limit Upper Limit
Blink Duration (ms) 50 2000
Fixation Duration (ms) 50 5000
Saccade Duration (ms) 10 1000
Saccade Velocity (px/s) 0 10000
Saccade Amplitude (degrees) 0 50
HR (bpm) 40 200

To gain insights into driver behavior, we conducted a frequency distribution analysis and com-
puted metric counts. Frequency distributions were generated for key metrics such as blink duration,
fixation duration, saccade duration, saccade amplitude, saccade velocity, and HR. For each metric,
data were binned, and the frequency percentage for each bin was calculated:

Frequency =

(
Count in Bin
Total Count

)
× 100% (3)

Analyzing these distributions enabled us to observe patterns and variations in HR and gaze
behavior under different conditions. Ultimately, it also helped establish the thresholds for what can
be considered normal or abnormal. Moreover, to get an idea of how different scenarios and subjects
vary, normalized counts per minute were calculated for blinks, fixations, and saccades. The counts
per minute or second, which facilitated fair comparisons irrespective of the duration of each driving
session, were computed as:
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Counts per Minute (or Second) =
Total Count

Total Duration
(4)

To statistically validate scenario-based differences in HR and gaze metrics, pairwise comparisons
were conducted between driving scenarios using Welch’s t-test [41], which does not assume equal
variances. For each metric, samples X1 and X2 corresponding to two different scenarios were compared.
The test statistic was computed as:

t =
X̄1 − X̄2√

s2
1

n1
+

s2
2

n2

(5)

where X̄i, s2
i , and ni denote the sample mean, variance, and size for scenario i, respectively. The

resulting p-values were used to assess the statistical significance of observed differences, with p < 0.05
indicating a significant effect of the driving scenario on the corresponding metric. This analysis ensured
that only metrics with sufficient sample size and statistically significant variation were used to inform
the threshold and weight selection in the proposed multimodal algorithm that will be detailed next.

3.5. Driver Multimodal Monitoring Algorithm

As discussed in Sections 1 and 2, there is a need for a comprehensive algorithm that is both
computationally lightweight and practical for real-time deployment in on-road driving environments.
To address this, we propose a Driver Multimodal Monitoring Algorithm that integrates physiological
and gaze-based metrics at the decision level. The fusion occurs through a weighted decision-making
process, combining HR and gaze metrics into a unified state score. This approach not only enables
real-time driver state estimation but also establishes a foundation for future refinements in parameter
tuning based on scenario-specific labeling and deep learning models.

The collected data are divided into fixed-length segments of duration T (set to 10 seconds in
this study). Although the proposed algorithm can be adapted to any window length, a 10-second
duration has been shown to effectively capture short-term changes in physiological and visual attention,
while remaining responsive to transient events. Longer windows could capture more context but
would reduce the temporal sensitivity of the system [42]. Optimizing the window size for each
modality is left for future work. For each segment s, key metrics are calculated, including the mean
HR (HRmean), mean blink duration (BDmean), mean fixation duration (FDmean), and mean saccade
metrics—duration (SDmean), amplitude (SAmean), and velocity (SVmean). Each metric is compared
against statistically informed thresholds and classified as Normal or Abnormal. To prioritize more
informative modalities, a weighted scoring system is employed. The metric weights were initially
determined based on statistical analyses of our dataset (Section 4.1), with additional validation through
sensitivity analysis (Section 4.2.3). These initial values serve as a baseline for future refinement
once larger, more comprehensively labeled datasets are available. The weighting framework follows
methodologies from mental workload estimation [43] and cognitive workload fusion [44], emphasizing
factors that contribute most significantly to classification performance [45]. The overall score Stotal for
each segment is computed as:

Stotal = wHR · I{HR Status = Normal}
+ wBlink · I{Blink Status = Normal}
+ wFixation · I{Fixation Status = Normal}
+ wSaccade · I{Saccade Status = Normal}

(6)

Here, wHR, wBlink, wFixation, and wSaccade are the respective metric weights, and I{·} is an indicator
function returning 1 if the condition is true and 0 otherwise.
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The final decision is derived using a decision threshold θ, set to θ = 0.5 in this pilot study.
A binary classification (Normal vs. Abnormal) was intentionally adopted for real-time practicality,
as it facilitates rapid intervention in safety-critical contexts without the computational overhead of
multi-class classification [46]. The classification rule is:

Final Decision =

Normal, if Stotal ≥ θ

Abnormal, if Stotal < θ
(7)

Sensitivity analyses were conducted to examine how varying θ and the weights affect classification
outcomes (Section 4.2.3). The results confirm that weight calibration strongly influences detection rates
and highlight the importance of carefully selecting θ that represents accurate driver state detections.
Algorithm 1 presents a step-by-step pseudocode implementation of the proposed system, showing the
complete flow from metric extraction to decision-level fusion.

Algorithm 1: Multimodal Driver Monitoring
Input : Gaze data (Blinks, Fixations, Saccades), HR data; Segment length T;

Thresholds: HRlower, HRupper, BDlower, BDupper, etc.;
Weights: wHR, wBlink, wFixation, wSaccade;
Decision threshold: θ

Output : Final decision per segment (Normal or Abnormal)
foreach segment, s, of length T do

// Calculate mean metrics
HRmean ← Mean(HR in bpm)

BDmean ← Mean(Blink duration in s)
FDmean ← Mean(Fixation duration in s)
SDmean, SAmean, SVmean ← Mean saccade metrics in s, deg, px/s

// Evaluate thresholds
HRstatus ← Normal if HRlower ≤ HRmean ≤ HRupper; else Abnormal
Blinkstatus ← Normal if BDlower ≤ BDmean ≤ BDupper; else Abnormal
Fixationstatus ← Normal if FDlower ≤ FDmean ≤ FDupper; else Abnormal
if SDlower ≤ SDmean ≤ SDupper and
SAlower ≤ SAmean ≤ SAupper and
SVlower ≤ SVmean ≤ SVupper then

Saccadestatus ← Normal
else

Saccadestatus ← Abnormal
end

// Calculate total score
Stotal ← wHR · I(HRstatus = Normal)
Stotal ← Stotal + wBlink · I(Blinkstatus = Normal)
Stotal ← Stotal + wFixation · I(Fixationstatus = Normal)
Stotal ← Stotal + wSaccade · I(Saccadestatus = Normal)

if Stotal ≥ θ then
Final Decision← Normal

else
Final Decision← Abnormal

end
end

4. Experimental Results
This section presents the experimental results derived from our study, which involved collecting

and analyzing approximately 480 minutes of real driving data from five subjects. The driving sce-
narios included city and motorway conditions, capturing a diverse range of driving behaviors and
environments.

The results are organized into two main subsections. In Section 4.1, observations based on different
scenarios and subjects are detailed, highlighting variations in HR and gaze metrics. In Section 4.2, the
proposed multimodal driver monitoring algorithm is applied and evaluated.

4.1. Observations Based on Different Scenarios and Subjects
4.1.1. HR Analysis

The HR distribution for each subject in different scenarios is illustrated in Figure 3. HR was
consistently higher during city driving compared to motorway driving. Subject 3 exhibited the highest
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HR in both scenarios, averaging 97.35 bpm in the city and 96.54 bpm on the motorway. In contrast,
Subject 5 recorded the lowest HR averages, at 71.30 bpm in the city and 69.89 bpm on the motorway.
HR values across all participants ranged from 69.89 bpm to 97.35 bpm, highlighting personal variability
that may be influenced by stress levels, driving experience, or acclimatization to different driving
conditions. Notably, Subject 3 drove on a warm sunny day without air conditioning, potentially
contributing to increased physiological responses. Subject 5, with over 20 years of driving experience,
drove an automatic car, likely influencing lower physiological stress responses. The overall HR
distribution across all subjects is presented in Figure 4, confirming a statistically significant difference
between scenarios (city: 91.63 bpm, motorway: 89.42 bpm; t = −21.093, p < 0.001).

Figure 3. HR distribution of each participant during motorway and city driving.

Figure 4. HR distribution of all data based on two different scenarios: motorway and city driving.

4.1.2. Blink and Fixation Analysis

Blink and fixation rates were segmented into 1-minute intervals for detailed analysis across
different driving scenarios and subjects. As depicted in Figure 5, blink rates were consistently higher
on the motorway compared to the city. For example, Subject 1 showed an increased blink rate on the
motorway (31.03±6.89 blinks/min) compared to the city (26.61±5.91 blinks/min). Similar trends were
observed for other subjects, with increased blink rates in motorway driving.
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Conversely, fixation rates (per second) were higher in city scenarios, indicating increased vi-
sual engagement and cognitive workload (e.g., Subject 1 city: 2.18±0.29 fixations/s vs. motorway:
1.77±0.34 fixations/s). A similar pattern was evident across other subjects, with Subject 2 showing
the highest fixation rate of 2.60±0.31 fixations/s in the city, compared to 2.29±0.25 fixations/s on the
motorway.

Aggregated data across subjects revealed statistically significant scenario differences for blink
rates (motorway: 24.29±8.02 blinks/min vs. city: 21.20±7.51 blinks/min; t = 4.037, p = 0.000068)
and fixation rates (city: 2.29±0.40 fixations/s vs. motorway: 2.02±0.41 fixations/s; t = −6.847,
p < 0.000001), aligning with previous research [47–49].

Figure 5. Blink count per minute and fixation count per second for all subjects across different scenarios.

Detailed analysis of blink and fixation durations (Figure 6) showed motorway driving had slightly
longer blink durations (367.38±82.68 ms) compared to city driving (359.99±82.46 ms; t = 4.494, p =

0.000007). Fixation durations were significantly longer during motorway driving (390.84±385.23 ms)
versus city driving (343.57±331.27 ms; t = 15.124, p < 0.000001). These findings reflect the different
visual engagement patterns required in each driving scenario.

Figure 6. Blink and fixation duration distributions with mean and standard deviation values for motorway and
city driving.
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4.1.3. Saccadic Movement Characteristics

Analysis of saccade metrics (duration, amplitude, and velocity) is presented in Figure 7. Motor-
way driving resulted in longer average saccade durations (99.60±108.93 ms) compared to city driving
(87.14±108.92 ms; t = 13.466, p < 0.000001). Similarly, mean saccade amplitude was higher on the mo-
torway (11.18±11.34◦) versus the city (10.46±9.71◦; t = 7.796, p < 0.000001). Conversely, saccade ve-
locity was faster in city driving (2403.99±1016.49 px/s) compared to motorway (2335.76±1064.29 px/s;
t = −7.654, p < 0.000001). These findings suggest distinct gaze behavior patterns, influenced by visual
demands specific to each scenario.

Figure 7. Saccade duration, amplitude, and velocity distributions with mean and standard deviation values for
motorway and city driving.

4.1.4. Interpretation and Implications of Findings

These observations show that physiological and gaze metrics differ across driving scenarios and
subjects. Higher HR and lower blink rates during city driving indicate greater cognitive demands
due to the urban environment’s dynamic nature. Conversely, longer fixation durations on motorways
suggest sustained attention is necessary for monitoring the road ahead. The extended saccade durations
likely relate to longer gaze transitions between the road and mirrors.

The noted differences among subjects underscore the impact of individual factors such as driv-
ing experience, environmental conditions, and vehicle characteristics on physiological responses.
These findings establish baseline variations in HR and gaze metrics, providing a foundation for the
multimodal algorithm discussed next.
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4.2. Real-Time Multimodal Algorithm Performance
4.2.1. Justification of Algorithm Parameters

The multimodal driver monitoring algorithm, detailed in Section 3.5, was evaluated using the
collected dataset to assess its real-time efficacy in driver state monitoring. This evaluation aimed
to showcase the algorithm’s capability to integrate HR and gaze metrics for crucial driving state
classification. Threshold values for the algorithm were established through statistical data analysis
presented in Section 4.1, and supported by insights from previous research.

Normal segments were characterized by HR and gaze metrics that fell within well-established
normal ranges, which were determined by a combination of existing literature [26,50] and the statistical
distributions observed in our dataset. For instance, the threshold for blink duration (set at 100–400
ms) was selected based on normative values reported in prior studies and further refined using our
collected dataset. Specifically, the distribution of blink durations in our study (Figure 6a) showed a
mean of 367.38 ms with a standard deviation of 82.68 ms, supporting the chosen upper and lower
bounds.

Similarly, other thresholds were derived as follows: segments with mean HR between 65–95
bpm, fixation duration between 150–900 ms, saccade duration between 0–100 ms, saccade amplitude
between 0°–15°, and saccade velocity between 0–3000 px/s were defined as normal (see Table 4). Each
range was selected by referencing published physiological norms and the actual distributions observed
in this study. Conversely, segments in which one or more metrics exceeded the predefined thresholds
were classified as abnormal.

In terms of how each metric would influence the final output of the proposed algorithm, HR was
assigned the highest weight (0.5) due to its clear differentiation between urban and motorway driving
conditions, as demonstrated by the statistically significant difference in mean HR and the distinct
distributions presented in Figures 3 and 4. This suggests HR is a strong indicator of the driver’s
physiological state in response to varying driving environments. Gaze metrics were weighted lower
(blink: 0.2, fixation: 0.2, saccade: 0.1), reflecting the more subtle and overlapping differences observed
in blink, fixation, and saccade characteristics across scenarios (Figures 5, 6 and 7). Furthermore, during
the manual review of approximately 5% of segments by the first author with the assistance of dashcam
recordings captured during data collection, the effects identified as most clearly linked to abnormal
segments were primarily related to HR fluctuations, such as stops at traffic lights or driving in busy
congestion areas (see example in Figure 9). Nonetheless, these weight settings are subject to further
refinement in future studies with a more detailed dataset.
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Table 4. Threshold values and weights assigned to each metric to assess the proposed algorithm.

Threshold Values for Each Metric

Metric Lower Bound Upper Bound

HR 65 bpm 95 bpm
Blink Duration [26] 100 ms 400 ms
Fixation Duration [26] 150 ms 900 ms
Saccade Duration 0 ms 100 ms
Saccade Amplitude [50] 0◦ 15◦

Saccade Velocity 0 px/s 3000 px/s

Weights Assigned to Each Metric

Metric Weight

wHR 0.5
wBlink 0.2
wFixation 0.2
wSaccade 0.1

Labeling of segments as normal or abnormal was performed automatically using the multimodal
algorithm (Algorithm 1), referencing statistically justified thresholds as described earlier. To ensure
labeling consistency, approximately 5% of segments were manually reviewed by the first author with
the assistance of dashcam recordings captured during data collection. An example of this manual
verification process is shown in Figure 9.

4.2.2. Multimodal Classification Results

The algorithm results across all subjects and scenarios are illustrated in Figure 8. Of the 2,937
analyzed segments (each with a duration of 10 seconds), 89.38% were classified as normal, while
10.62% were classified as abnormal. Notably, intra-subject variability revealed a higher frequency
of abnormal segments during city driving, which is consistent with the elevated HR and increased
cognitive demands discussed in Section 4.1.

Subject-specific classification further underscores the impact of individual characteristics on
algorithm outcomes. Subject 3, who had less driving experience and drove under warm conditions
without air conditioning, exhibited the highest proportion of abnormal segments (24.73% in city driving
and 20.16% on the motorway). In contrast, Subject 5, who possessed extensive driving experience and
drove an automatic vehicle, had minimal abnormal classifications (1.65% in city driving and nearly
none on the motorway). These results are in strong agreement with the physiological differences
previously described in Section 4.1, highlighting the algorithm’s sensitivity to meaningful physiological
and behavioral variations across different scenarios and subjects.
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Figure 8. Percentage of normal and abnormal segments for various subjects, illustrating subject-specific variability
based on defined thresholds.

Real-time examples presented in Figures 9 and 10 further validate algorithm responsiveness.
Figure 9 illustrates typical city driving patterns, where HR decreases at traffic stops and gaze metrics
normalize, while Figure 10 demonstrates stable motorway driving with brief HR fluctuations leading
to transient abnormal classifications.
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Figure 9. Subject metrics and decision-making during city driving, illustrating HR normalization during traffic
stops. Final decisions are highlighted based on the threshold θ.
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Figure 10. Motorway driving showing stable HR with brief increases influencing abnormal classification decisions.

4.2.3. Sensitivity Analysis and Parameter Optimization

Sensitivity analysis (Tables 5 and 6) demonstrated the critical importance of parameter selection
in the algorithm’s performance. Variations in HR and gaze weights had a noticeable effect on the
classification outcomes. For example, increasing the HR weight to 0.7 substantially reduced the
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proportion of segments classified as normal to 64.79%, highlighting the dominant influence of HR
in the final decision. Similarly, adjusting the decision threshold θ from 0.30 to 0.80 led to a marked
decrease in normal segment classifications, from 97.34% down to 59.76%.

Table 5. HR and Gaze Weights with Normal Segment Percentage at a threshold (θ = 0.5) of the total score.

HR Weight Gaze Weight Normal Segment (%)

0.1 0.9 92.32
0.2 0.8 91.75
0.3 0.7 91.75
0.4 0.6 86.32
0.5 0.5 87.38
0.6 0.4 64.79
0.7 0.3 64.79
0.8 0.2 64.79
0.9 0.1 64.79

Table 6. Threshold values and corresponding normal percentages.

Threshold (θ) Normal Percentage (%)

0.30 97.34
0.35 93.26
0.40 93.26
0.45 87.38
0.50 87.38
0.55 63.73
0.60 63.73
0.65 63.28
0.70 63.28
0.75 59.76
0.80 59.76

These analyses support the need for careful algorithm calibration, ensuring it reliably adapts
to diverse real-world driving contexts and individual differences. Future enhancements should
focus on automating adaptive parameter adjustments based on real-time driver characteristics and
environmental factors.

5. Conclusions
This study presented a multimodal driver state monitoring framework combining HR and gaze

measures to assess driver states under naturalistic driving conditions. Using a collected dataset and
detailed statistical analyses, we found that greater HR and lower blink rates occur when driving in
city conditions, reflecting greater cognitive load and environment complexity characteristic of urban
driving conditions. The algorithm could differentiate between normal and abnormal driving states
and, interestingly, detected a greater prevalence of abnormal segments when driving in city conditions,
paralleling differences noted in HR and gaze metrics.

Despite these positive findings, several limitations need to be investigated further. First, as this is
a pilot study, it involved a small number of participants; a larger pool of volunteers will be recruited as
the project progresses. Second, the manually chosen thresholds and metric weights, although based on
statistical calculations and literature, might not be fully reflective of variations in individual physiology
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or driving behavior. Third, although naturalistic driving data improves ecological validity, it introduces
variability that demands robust experimental design and well-defined labeling procedures to ensure
consistency and reliability.

To tackle these issues and continue to advance this field, future work would investigate objective,
automatic parameter optimization methods, e.g., by applying machine learning algorithms or adaptive
methods that can dynamically vary thresholds and weights based on individual driver behavior and
driving conditions. Furthermore, augmenting the dataset’s richness by capturing a wider variety
of scenarios would significantly enhance the algorithm’s stability. Combining other modalities, like
electroencephalography (EEG) or breathing measurements, could provide richer information about
driver states.

Based on the HR and gaze metrics examined, this multimodal solution has significant potential
to increase road safety. Such an adaptive, comprehensive, and data-driven monitoring system could
offer real-time warnings of driver abnormal situations such as distraction and fatigue. Ongoing
improvement of this multimodal framework would make it even more accurate, dependable, and
universally applicable across different driving conditions and driver profiles.
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