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Abstract: In this paper, we propose an unsupervised blind restoration model for images in hybrid 
degradation scenes. The proposed model encodes the content information and degradation 
information of images and then uses the attention module to disentangle the two kinds of 
information. It can improve the ability of disentangled presentation learning for a generative 
adversarial network (GAN) to restore the images in hybrid degradation scenes, enhance the detailed 
features of restored image and remove the artifact combining the adversarial loss, cycle-consistency 
loss, and perception loss. The experimental results on the DIV2K dataset and medical images show 
that the proposed method outperforms existing unsupervised image restoration algorithms in terms 
of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and subjective visual evaluation. 
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1. Introduction 
Image restoration is a typical under-determined problem in the field of image 

processing. Traditional methods use the degraded image as the known data and establish 
a corresponding mathematical model according to the image degradation mechanism, 
through which the original clear image can be restored [1,2]. Image prior information is 
the effective information of the image itself. Different image restoration methods 
proposed by researchers based on different prior information can estimate different 
original images. The prior information often used for image restoration includes local 
smoothness [3], non-local similarity [4], sparsity [5,6]. However, traditional methods 
heavily rely on prior knowledge of the image and the precise depiction of the degradation 
process, and the restoration effect is limited .  

With the display of the effects of deep learning, more and more researchers have 
begun to use deep learning technology to solve related problems in the field of computer 
vision, and have achieved remarkable results [7-9]. Because of its powerful image feature 
learning ability, researchers in the field of image restoration also widely use this 
technology for research and method implementation in the field of image restoration 
[10,11].The currently proposed image restoration algorithms based on deep learning are 
mainly used for the restoration of degraded images caused by a single degradation 
mechanism, such as motion blur, rain, fog, noise, and super-resolution [12].Image blurring 
seriously affects the quality of the image itself, and will affect both image recognition and 
object recognition in the image. In order to obtain clear images, Kupyn et al. proposed a 
series of end-to-end deblurring methods based on conditional generation adversarial 
networks [13,14]. Nimisha proposed an unsupervised image deblurring method based on 
GAN, adding repetition loss and multi-scale gradient loss to the model [15]. Wang et al. 
presents a novel framework to deal with the non-uniform blur[16]. Most of the models 
that have been proposed for rain removal based on deep learning use fully supervised 
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methods [17-19]. However, the real rain map and the rainless map with the same 
background are difficult to obtain, so some researchers have proposed semi-supervised 
rain removal models [20] and unsupervised rain removal models [21]. Image defogging 
can eliminate the influence of haze environment on image quality and increase the 
visibility of images. Early image defogging methods based on deep learning were mainly 
based on atmospheric degradation models [22,23]. At present, researchers are more 
inclined to directly use the input foggy image output to obtain the defogging image 
[24,25,26]. Image denoising aims to restore a potentially relatively clean image from an 
image containing noise. DnCNNs[27], FFDNet[28] and CBDNet[29] proposed by Zhang 
et al. are very representative algorithms. 

Due to the influence of multiple degradation factors, compared to a single 
degradation type, the image degradation of multiple degradation types is more serious, 
and the image restoration algorithm for a single degradation type mentioned above is not 
well applicable. In order to better restore images of mixed degraded types, the RL-Restore 
proposed by Yu et al. constructs a toolbox that contains small-scale convolutional 
networks for different restoration tasks, and selects appropriate according to different 
images to be restored The tool gradually restores damaged images [30]. The OWAN 
proposed by Suganuma et al. performs multiple basic operations in parallel in its core 
module, and selects the appropriate operation to restore the image according to the 
specific conditions of the image to be restored [31]. Bai et al. proposed an adaptive 
restoration algorithm based on hierarchical feature fusion. The algorithm directly fused 
the features of different receptive field branches to enhance the structure of the restored 
image [32].  

The image restoration methods for mixed degraded images mentioned above require 
a large number of paired training samples. Paired training samples are difficult to obtain, 
and strict supervised training will cause the model to have overfitting problems and poor 
generalization performance. Therefore, this paper introduces a new unsupervised image 
restoration algorithm that can better solve the image restoration problem in complex 
scenes without the need for paired training samples compared to the current methods. 

2. Disentanglement Method Based on Attention Mechanism 

2.1 Framework of Proposed Model 
The proposed framework consists of four parts: 1) content encoders 𝐸௦௖  and 𝐸௕௖  for 

clear image domain and degraded image domain affected by multiple degradation 
factors; 2) a degradation information encoder 𝐸௕ ; 3) degraded and clear image 
discriminators 𝐷௕  and 𝐷௦; and 4) degraded and clear image generators 𝐺௕ and 𝐺௦. Given 
a training sample 𝑠𝑖𝑚𝑔 ∈ 𝑆 in the clear image domain and 𝑏𝑖𝑚𝑔 ∈ 𝐵 in the degraded 
image domain, the content encoder  𝐸௕௖  extracts content information 𝑓𝑐  from clear 
samples, and 𝐸௕  extracts degradation information 𝑓𝑑 from degraded samples. 𝐺௕then 
takes attention-based content information and degradation information to generate a 
degraded image 𝑠𝑡𝑏𝑖𝑚𝑔, while 𝐺௦ uses attention information to generate a clear image 
𝑏𝑡𝑠𝑖𝑚𝑔 . The discriminators 𝐷௕  and 𝐷௦  distinguish between the real and generated 
examples. The architecture is illustrated in Fig. 1. 

As shown in Fig. 1, the model first uses the encoder to perform a disentangled 
representation on the real image input. There are two kinds of encoders in the model, both 
mainly used for image feature extraction: content information encoder 𝐸௕௖  and 
degradation information encoder 𝐸௦௖ . 𝐸௕௖ contains three strided convolution layers and 
four residual blocks; 𝐸௦௖  contains four strided convolution layers and a fully connected 
layer, and they are used to extract content information from clear images and degraded 
images, respectively. Because the unpaired image data used in this model is easier to 
obtain, our method uses the strategy of sharing parameter weights of 𝐸௕௖  and 𝐸௦௖  to 
better extract effective content information from the degraded image for image 
restoration. 
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Fig. 1 Framework of proposed model 

The degradation information encoder 𝐸௕  should only encode degradation 
information from a degraded image 𝑏𝑖𝑚𝑔. However, in our experiments, we found that 
the generated degraded images 𝑠𝑡𝑏𝑖𝑚𝑔  were also influenced by content information 
from 𝑏𝑖𝑚𝑔, such as color information. To help 𝐸௕ suppress as much content information 
as much as possible, we add a KL divergence loss to regularize the distribution of 
degradation information 𝑧௕ = 𝐸௕௖(𝑏𝑖𝑚𝑔)  to be close to the normal distribution 
𝑝(𝑧)~𝑁(0,1). The KL divergence loss is defined as: 

 𝐾𝐿(𝑞(𝑧ே)‖𝑝(𝑧)) = − ∫ 𝑞(𝑧ே) log
௣(௭)

௤(௭ಿ)
𝑑𝑧. (1) 

Minimizing the KL divergence is equivalent to minimizing the following loss: 

 𝐿௄௅ =
ଵ

ଶ
∑ (𝜇௜

ଶ + 𝜎௜
ଶ − 𝑙𝑜𝑔(𝜎௜

ଶ) − 1)ே
௜ୀଵ , (2) 

where 𝜇 and 𝜎 are the mean and standard deviation of 𝑧௕ and N is the dimension of 𝑧௕. 
𝑧௕ is sampled as 𝑧௕ = 𝜇 + 𝑧 ∗ 𝜎, and * represents element-wise multiplication. 

 

Fig. 2 Structure of attention-based disentangling operation 
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Second, due to the complexity of the degradation scenes of the images to be restored, 
there is the problem of inadequate disentanglement with only one disentangling 
operation. This model introduces a second disentangling operation of the attention 
mechanism on the content information 𝑓𝑐 and the degradation information 𝑓𝑑 encoded 
by the encoders to fully disentangle the image features and the degradation mechanism 
features, in order to improve the effectiveness of the encoded features. As shown in Fig. 
2, motivated by Class Activation Mapping (CAM) [33], this model proposed in this paper 
first performs the splicing operation on the content information 𝑓𝑐 and the degradation 
information 𝑓𝑑 , and then inputs the spliced information into the upper and lower 
branches, respectively. We first perform pooling operations on the two branches. Pooling 
operations not only reduce the parameters of the model, but also keep the rotation, 
translation, and expansion characteristics of the features unchanged. Common pooling 
methods include average pooling and maximum pooling. Average pooling integrates the 
global spatial information of the features, while maximum pooling reduces the 
interference of useless information in the extracted features and extracts the features with 
the best response to the next module. In this paper, we use both pooling methods to 
calculate the attention weights, combine the advantages of both, and then feed the pooling 
results to the fully connected layer and the convolution layer to obtain the attention 
weights 𝑎𝑐 and 𝑎𝑑 of the degradation and content information. 𝑓𝑐௜  is the 𝑖-th layer of 
the content information 𝑓𝑐, and 𝑎𝑐௜  is the attention weight of 𝑓𝑐௜ . The attention-based 
content information is then defined as:  

 𝑓𝑎𝑐 = {𝑎𝑐௜ ∗ 𝑓𝑐௜|1 ≤ 𝑖 ≤ 𝑘}, (3) 

where 𝑘 is the number of layers of content information in the network. 
Similarly, the attention-based degradation information is categorized as shown in 

formula (4):   

 𝑓𝑎𝑑 = {𝑎𝑑௜ ∗ 𝑓𝑑௜|1 ≤ 𝑖 ≤ 𝑘}. (4)

After the disentangling operation is done, we feed the attention-based degradation 
information and content information that have been adequately disentangled into the 
generator to generate corresponding images. The generator is used to generate clear 
images and degraded images, and the discriminator is used to discriminate between the 
generated images and the real images, both of which gradually improve the effectiveness 
of the model in restoring images during continuous adversarial training. The generator 
contains four residual blocks and three transposed convolution layers; the discriminator 
consists of convolution layers and activation functions. To make the generated images 
look more realistic, we apply the adversarial loss on clear image domain 𝑆 and degraded 
image domain 𝐵. For the clear image domain, we define the adversarial loss as formula 
(5): 

 𝐿஽௦௜௠௚ = 𝐸௦௜௠௚~௣(௦௜௠௚)[𝑙𝑜𝑔 𝐷ௌ(𝑠𝑖𝑚𝑔)]+𝐸௕௜௠௚~௣(௕௜௠௚)ൣ𝑙𝑜𝑔൫1 − 𝐷ௌ(𝑏𝑡𝑠𝑖𝑚𝑔)൯൧. (5) 

𝑏𝑡𝑠𝑖𝑚𝑔 is categorized as shown in formula (6): 

 𝑏𝑡𝑠𝑖𝑚𝑔 = 𝐺ௌ(𝐸௕௖(𝑏𝑖𝑚𝑔), 𝑧௕). (6) 

Similarly, we define the adversarial loss in the degraded image domain as 𝐿஽௕௜௠௚: 

 𝐿஽௕௜௠௚ = 𝐸௕௜௠௚~௣(௕௜௠௚)[𝑙𝑜𝑔 𝐷஻(𝑏𝑖𝑚𝑔)] + 𝐸௦௜௠௚~௣(௦௜௠௚)ൣ𝑙𝑜𝑔൫1 − 𝐷஻(𝑏𝑡𝑠𝑖𝑚𝑔)൯൧. (7) 

𝑠𝑡𝑏𝑖𝑚𝑔 is categorized as shown in formula (8): 

 𝑠𝑡𝑏𝑖𝑚𝑔 = 𝐺஻(𝐸௦௖(𝑠𝑖𝑚𝑔), 𝑧௕). (8) 

The discriminator mentioned above can discriminate between the images generated 
by the generator and the input real images, so the model can guarantee the authenticity 
of the input restored images. However, since the training data is unpaired, the images 
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restored by the model may appear inconsistent with the content information of the 
degraded images input. Motivated by CycleGAN [34], this paper solves this problem by 
adding cycle-consistency loss to the model. Specifically, the degraded image 𝑠𝑡𝑏𝑖𝑚𝑔 
generated by the generator is re-transformed to the original clear image domain by using 
the attention module to perform the disentangling operation, as well as image generation 
of the generator, in order to obtain the generated clear image 𝑠𝑠𝑖𝑚𝑔 . Similarly, the 
generated degraded image 𝑏𝑏𝑖𝑚𝑔 can be obtained, and the specific process is defined as 
shown in formulas (9) and (10): 

 𝑠𝑠𝑖𝑚𝑔 = 𝐺ௌ൫𝐸௕௖(𝑠𝑡𝑏𝑖𝑚𝑔), 𝐸௕(𝑠𝑡𝑏𝑖𝑚𝑔)൯, (9) 

 𝑏𝑏𝑖𝑚𝑔 = 𝐺஻൫𝐸௦௖(𝑏𝑡𝑠𝑖𝑚𝑔), 𝐸௕(𝑏𝑡𝑠𝑖𝑚𝑔)൯. (10) 

We define the cycle-consistency loss in both domains as formula (11): 

 𝐿௖௬௖ = 𝐸௖௜௠௚~௣(௖௜௠௚)[‖𝑐𝑖𝑚𝑔 − 𝑐𝑐𝑖𝑚𝑔‖ଵ]+𝐸௕௜௠௚~௣(௕௜௠௚)[‖𝑏𝑖𝑚𝑔 − 𝑏𝑏𝑖𝑚𝑔‖ଵ]. (11) 

In addition, we use the content information and degradation information to 
transform the input clear images from the clear image domain to the degraded image 
domain. However, in the experiments, we find that the generated images often contain 
many artifacts. To solve this problem, we add perceptual loss to the model to further 
constrain the model, which is defined as: 

 𝐿௣ = ฮ𝑓௟ି௟௔௬௘௥(𝑠𝑡𝑏𝑖𝑚𝑔) − 𝑓௟ି௟௔௬ (𝑏𝑖𝑚𝑔)ฮ
ଶ

ଶ
, (12) 

where 𝑓௟ି௟௔௬௘௥(𝑥) are the features of the 𝑙-th layer of the pre-trained convolutional neural 
network (CNN). 

The full objective function is a weighted sum of all the losses from (5) to (12): 

 𝐿𝑜𝑠𝑠 = 𝜆஽௦௕௜௠௚൫𝐿஽௦௜௠௚ + 𝐿஽௕௜௠௚൯ + 𝜆௄௅𝐿௄௅ + 𝜆௖௬௖𝐿௖௬௖ + 𝜆௣𝐿௣.  (13) 

2.2 Parameter Settings of the Model 

Table 1 Hyperparameter settings of proposed network  

Parameters Value Specified 

Learning Rate γ 0.0002 

Optimization Method Adam 

Batch Size 24 

Iteration Times 𝑁 100 

𝜆஽௦௕௜௠௚  1 

𝜆௄௅ 0.01 

𝜆௖௬௖ 10 

𝜆௣ 0.1 
 

The hyperparameters of the model were set as shown in Table 1. The model was 
trained for a total of 100 iterations, and the model weight parameters were saved at the 
end of each training session. The learning rate was initially set to 0.0002, and we used the 
Adam algorithm to optimize our model. Considering the memory used by the model 
runtime, the model was trained by a small batch gradient descent algorithm with a batch 
size of 24. For each training of the model, the discriminator was first trained by 
simultaneously fixing the generator weight parameters and updating the discriminator 
weight parameters, and then the generator was trained by fixing the discriminator 
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parameters until the final training count was reached. For hyperparameters, we 
experimentally set: 𝜆஽௦௕௜௠௚ = 1, 𝜆௄௅ = 0.01, 𝜆௖௬௖ = 10 and 𝜆௣ = 0.1. 

2.3 Algorithm 
The training process of our model is shown in Table 2. 

 

Table 2 Training process of proposed model 

Input: the total number of iteration 𝑵, hyperparameters (𝝀𝑫𝒔𝒃𝒊𝒎𝒈, 𝝀𝑲𝑳 , 𝝀𝒄𝒚𝒄, 𝝀𝒑), optimization method Adam, 

learning rate 𝜸 = 0.0002 

1. Initialize the weights: 𝒘𝑮𝒔
 of the clear image generator 𝑮𝒔, 𝒘𝑮𝒃

 of the degraded image generator 𝑮𝒃, 

𝒘𝑫𝒔
 of the clear image discriminator 𝑫𝒔 and 𝒘𝑫𝒃

 of the degraded image discriminator 𝑫𝒃 

2. cycle 1 start for 𝑛1 = 1: 𝑵 

3. cycle 2 start for 𝑖 = 1: 3 

4. Sample a batch size of real clear images 𝒔𝒊𝒎𝒈𝒊 and a batch size of real degraded images 𝒃𝒊𝒎𝒈௜  

5. The first disentangling operation (the content encoders 𝑬𝒔𝒄 and 𝑬𝒃𝒄 for clear and degraded image 

domains.) Given samples in two different image domains, the content encoder 𝑬𝒔𝒄 extracts content 

information 𝒇𝒄𝟏𝒊 from 𝒔𝒊𝒎𝒈𝒊, then the content encoder 𝑬𝒃𝒄 and the degradation information encoder 𝑬𝒃 

extract content information 𝒇𝒄𝟐௜  and degradation information 𝒇𝒅𝒊 from 𝒃𝒊𝒎𝒈𝒊, respectively 

6. The second disentangling operation. Calculate the attention value of content information and degradation 

information. Obtain the attention-based content information 𝒇𝒂𝒄𝟏𝒊, 𝒇𝒂𝒄𝟐𝒊, and the attention-based 

degradation information 𝒇𝒂𝒅𝒊 according to formula (3) and formula (4), respectively 

7. Put 𝒇𝒂𝒄𝟏𝒊, 𝒇𝒂𝒄𝟐𝒊 and 𝒇𝒂𝒅𝒊 into the generator to obtain clear images 𝒃𝒕𝒔𝒊𝒎𝒈𝒊 generated from 𝑮𝒔 and 

degraded images 𝒔𝒕𝒃𝒊𝒎𝒈𝒊 generated by 𝑮𝒃  

8. Execute the previous steps 5–7 to generate the reconstructed images 𝒔𝒔𝒊𝒎𝒈𝒊 and 𝒃𝒃𝒊𝒎𝒈𝒊 

9. Calculate the loss of discriminator 

10. Update parameters 𝒘𝑫𝒔
 and 𝒘𝑫𝒃

 by the gradient descent method 

11. cycle 2 end 

12. Execute steps 4–8 to calculate the loss of the generator 

13. Update weights of the encoder, the attention module and the generator by the gradient descent method 

14. cycle 1 end 

Output: the updated weights 𝒘𝒃𝒄 and 𝒘𝒃 of the degradation information encoder,  𝒘𝑮 of the clear image 

generator, the updated attention weights 𝒘𝒂𝒄 and 𝒘𝒂𝒃  

 

3 Experimental Analysis 
To demonstrate the effectiveness as well as the robustness of the proposed method, 

the restoration experiments were verified for images with a mixture of multiple 
degradation types as well as those with a single degradation type. The mixed degradation 
type images were from the DIV2K dataset, and the factors leading to image degradation 
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were a mix of adding Gaussian blur, Gaussian noise, and JPEG compression. The images 
to be tested were classified as mild, moderate, or severe, according to the degree of 
degradation. The single degradation type images were from the MRI dataset [35], and the 
factors that caused the image degradation were Rician noise of different intensities. 

3.1 Experimental Data 
3.1.1 DIV2K Dataset 

The DIV2K dataset has 800 high-definition large-size images, which in this paper are 
divided into two parts, with the first 750 images as training data and the remaining 50 as 
test data. To facilitate training, these large images are cropped into small images for 
experiments. The 249,344 small images cropped from the first 750 are used as the training 
dataset, and the 3584 small images cropped from the last 50 are used as the test dataset. 

To simulate actual complex degradation scenes, we applied multiple types of 
distortion to both the training and test data. Specifically, we added Gaussian blur, 
Gaussian noise, and JPEG compression to the images. The standard deviations of 
Gaussian blur and Gaussian noise were randomly generated from the ranges of [0, 5] and 
[0, 50], respectively, and the quality of JPEG compression was randomly selected from the 
range of [10, 100]. Only moderate images were used for training, and images of the three 
degradation degrees were used for testing. 
3.1.2 MRI Dataset 

The MRI dataset used in this paper was selected from the Brain Web database, which 
is derived from the McConnell Brain Imaging Centre of the Montreal Neurological 
Institute at McGill University, For the experiments we use the synthetic MRI data (T1w 
and PDw), which can be downloaded from http://brainweb.bic.mni.mcgill.ca/brainweb. 
For the experimental testing, 5%, 10%, 15%, 20%, 25%, and 30% Rician noise was added 
to the T1w images and PDw images. As shown in Fig. 3, the MRI images were cropped 
into small size images of 63*63.

 

Fig. 3 Synthetic data used in our experiment. (A) and (C) are both clean MRI images. (B) and (D) are 
noise MRI images. (a), (b), (c), and (d) are taken from (A), (B), (C), and (D), respectively.

3.2 Experimental Environment 
The experimental environment is shown in Table 3. Because the model parameters 

were large we required specific equipment for the experiments. We used a Linux server 
with an Nvidia RTX 2070 Super graphics card deployed and configured with a compliant 
acceleration platform and acceleration library. 
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Table 3 Experimental environment 

Equipment Configuration Remark 
Operating System Ubuntu 16.04 

Framework PyTorch 1.0.1.post2 
GPU Nvidia RTX 2070 Super 8GB 

Operating Platform CUDA 11.1 
GPU Accelerator Library cuDNN 7.1.3 

Language Python3 3.6.6 
 

3.3 Subjective Assessment of Effects of Image Restoration 
3.3.1 Experiments for Images in Hybrid Degradation Scenes 

We used the DIV2K dataset as a validation dataset for image restoration in complex 
degradation scenes. This part of the paper compares our method with the classical 
unsupervised image restoration algorithm CycleGAN and the newly proposed 
unsupervised image restoration algorithm UIDGAN [36]. The image restoration results of 
the DIV2K dataset are shown in Figs. 4, 5, and 6. In Fig. 4, we can see that our method can 
remove the noise from the image for the degradation degree of mild; the background color 
of the image restored by CycleGAN is not consistent with the clear image; and UIDGAN, 
which mainly targets domain-specific deblurring, cannot be used to restore the image in 
complex degradation scenes. Not only is the background color of the image restored by 
UIDGAN not consistent with that of the clear image, but also it does not remove the noise 
well. Fig. 5 shows the restoration effect of these methods on the moderate images. It can 
be seen that the image restored by our method is consistent with the content information 
of the clear image, and the texture information in the image can be restored, while the 
images restored by CycleGAN and UIDGAN lack texture information. The degree of 
damage to the severe image is the most serious, and Fig. 6 shows the results of the 
restoration. We can see that our method can still achieve relatively good restoration 
results, and in the case of the image background being influenced by degradation factors, 
the restored images of other methods show strange lines, which seriously affect the visual 
display of the recovered images. 

 

 

Fig. 4 Experimental results of mild images 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 February 2022                   doi:10.20944/preprints202202.0159.v1

https://doi.org/10.20944/preprints202202.0159.v1


8 

 

 

Fig. 5 Experimental results of moderate images 

 

 

Fig. 6 Experimental results of severe images 

 

3.3.2 Experiments for Images in Single Degradation Scene  
To demonstrate the scalability as well as the robustness of the proposed method, we 

used the MRI dataset as a validation dataset for image restoration of a single degradation 
mechanism. This part of the paper mainly compares the proposed method with the 
traditional restoration method Anisotropic Diffusion Filtering (ADF) [37], the classical 
unsupervised image restoration algorithm CycleGAN based on deep learning, and the 
newly proposed unsupervised image restoration algorithm UIDGAN based on deep 
learning. 

Figs. 7–12 show the T1w image restoration effect of each method. We can see that our 
method and CycleGAN have good adaptability and achieve good visual results at 
different Rician noise intensities. The images restored by the ADF lack details and obvious 
noise starts to appear in the images as the Rician noise intensity increases, which seriously 
impacts the visual effect. The image restored by UIDGAN showed other color artifacts at 
different noise intensities. 

In addition to T1w images, we also conducted an experimental comparison of image 
restoration with PDw images, and Figs. 13–18 show the experimental results. Our method 
is relatively stable in the restoration effect at different noise intensities, but it is slightly 
deficient in the restoration of details. ADF also fails to sufficiently restore the details of the 
image, and the larger the noise intensity, the more noise residuals are found. The image 
restored by CycleGAN has a poor visual effect and very strange texture appears as the 
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noise intensity increases. The image restored by UIDGAN shows artifacts again at various 
noise intensities as PDw images. 

 

Fig. 7 Experimental results of T1w images with 5% Rician noise 

 

 

Fig. 8 Results of T1w images with 10% Rician noise 

 

 

Fig.9 Results of T1w images with 15% Rician noise 
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Fig.10 Results of T1w images with 20% Rician noise 

 

 

Fig.11 Results of T1w images with 25% Rician noise 

 

 

Fig.12 Results of T1w images with 30% Rician noise 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 February 2022                   doi:10.20944/preprints202202.0159.v1

https://doi.org/10.20944/preprints202202.0159.v1


11 
 

 

 

 

Fig.13 Results of PDw images with 5% Rician noise 

 

 

Fig.14 Results of PDw images with 10% Rician noise 

 

Fig.15 Results of PDw images with 15% Rician noise 
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Fig.16 Results of PDw images with 20% Rician noise 

 

 

Fig.17 Results of PDw images with 25% Rician noise 

 

Fig.18 Results of PDw images with 30% Rician noise 
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3.4 Objective Assessment of Effects of Image Restoration 
We used structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) as 

objective evaluation indices to evaluate the effect of image restoration. 
 

3.4.1 Comparison of Quantitative Results of Image Restoration in Hybrid Degradation 
Scenes 

Tables 4 and 5 show the PNSR values and SSIM values obtained by each method for 
images at different degradation levels. It can be seen that our method achieves the best 
quantitative results regardless of whether the image quality is mild, moderate, or severe, 
and also achieves a certain improvement compared with the recently proposed 
unsupervised image restoration algorithms. It can be seen that the effect of the classical 
unsupervised image restoration algorithm is poor, and in the comparison of SSIM values, 
there is a gap between our method and UIDGAN. 

Table 4 PSNR values of each method for images at different degradation levels  

Method Mild Moderate Severe 

CycleGAN 17.0965 16.1240 15.5669 
UIDGAN 19.7100 18.9580 18.9565 

Ours 21.0428 20.3528 19.9386 
 

Table 5 SSIM values of each method for images at different degradation levels 

Method Mild Moderate Severe 
CycleGAN 0.4876 0.3983 0.3095 
UIDGAN 0.5757 0.4994 0.4437 

Ours 0.6002 0.5254 0.4618 
 

3.4.2 Image Restoration in a Single Degradation Scene 
It can be seen from Tables 6 and 7 that the best PNSR values are achieved by our 

method on T1w images with the addition of different intensities of noise. For the SSIM 
value, our method also achieves the best value in the interval of noise intensity from 10% 
to 25%. The SSIM values of CycleGAN are optimal at 5% and 30% of Rician noise intensity, 
but the difference is not significant compared to the proposed method. The quantitative 
results on PDw images with the addition of different intensities of Rician noise are shown 
in Tables 8 and 9. The best PSNR values are obtained by our method when the noise 
intensity is less than 15%. When the noise intensity gradually increases, CycleGAN has 
the best PSNR value. ADF achieves the best SSIM value when the noise intensity is not 
greater than 10%, followed by CycleGAN. 

Table 6 Average PSNR results on T1w images 

Method 5% 10% 15% 20% 25% 30% 
ADF 20.6106 20.3751 19.8617 18.9694 17.9012 16.8302 

CycleGAN 20.0163 20.1530 20.2088 20.1578 20.0792 19.7676 
UIDGAN 22.5134 22.4281 22.3678 21.4129 20.4036 19.3042 

Ours 24.9808 24.5294 24.1480 23.4785 22.2616 20.7901 
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Table 7 Average SSIM results on T1w images 

Method 5% 10% 15% 20% 25% 30% 
ADF 0.7497 0.7125 0.6368 0.5044 0.3906 0.3104 

CycleGAN 0.7606 0.7339 0.6901 0.6397 0.5897 0.5404 
UIDGAN 0.7602 0.7259 0.6768 0.6191 0.5569 0.4986 

Ours 0.7585 0.7689 0.7208 0.6631 0.6004 0.5377 
 

 

Table 8 Average PSNR results on PDw images 

Method 5% 10% 15% 20% 25% 30% 
ADF 15.7612 15.7056 15.5447 15.2093 14.7566 14.2606 

CycleGAN 20.1043 20.1353 20.1436 20.1450 20.1828 20.1941 
UIDGAN 21.2514 20.9109 20.4918 20.0560 19.6652 19.1893 

Ours 21.4081 21.0796 20.6209 20.1245 19.6098 19.1847 
 

 

Table 9 Average SSIM results on PDw images 

Method 5% 10% 15% 20% 25% 30% 
ADF 0.7807 0.7548 0.6819 0.5378 0.4159 0.3358 

CycleGAN 0.7249 0.7094 0.6855 0.6581 0.6302 0.6027 
UIDGAN 0.6588 0.6457 0.6296 0.6120 0.5940 0.5721 

Ours 0.6797 0.6652 0.6470 0.6250 0.6024 0.5795 

4 Conclusion 
In this paper, we propose a disentanglement algorithm based on the attention 

mechanism for solving the problem of image restoration in complex degradation scenes. 
Our model first performs a disentangling operation on the degraded image, using 
encoders to encode content information and degradation information of images, and 
applies a regularization constraint to the encoded degraded information, while making 
content information encoders for clear and degraded image domains share parameter 
weights. Secondly, due to the complexity of the image degradation scene and unpaired 
training data, in order to fully disentangle the image features and degradation mechanism 
features, we integrate the attention mechanism into the model for a second disentangling 
operation, which improves the effectiveness of the encoded features. Finally, the model 
combines adversarial loss, cycle-consistency loss, and perceptual loss to improve the 
image restoration effect under unsupervised conditions. The experimental analysis in this 
paper shows that our method can restore images in complex degradation scenes, and that 
our method not only achieves good visual effects but also achieves the most optimal 
quantitative results of the compared methods. 
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