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Abstract: In this paper, we propose an unsupervised blind restoration model for images in hybrid
degradation scenes. The proposed model encodes the content information and degradation
information of images and then uses the attention module to disentangle the two kinds of
information. It can improve the ability of disentangled presentation learning for a generative
adversarial network (GAN) to restore the images in hybrid degradation scenes, enhance the detailed
features of restored image and remove the artifact combining the adversarial loss, cycle-consistency
loss, and perception loss. The experimental results on the DIV2K dataset and medical images show
that the proposed method outperforms existing unsupervised image restoration algorithms in terms
of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and subjective visual evaluation.
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1. Introduction

Image restoration is a typical under-determined problem in the field of image
processing. Traditional methods use the degraded image as the known data and establish
a corresponding mathematical model according to the image degradation mechanism,
through which the original clear image can be restored [1,2]. Image prior information is
the effective information of the image itself. Different image restoration methods
proposed by researchers based on different prior information can estimate different
original images. The prior information often used for image restoration includes local
smoothness [3], non-local similarity [4], sparsity [5,6]. However, traditional methods
heavily rely on prior knowledge of the image and the precise depiction of the degradation
process, and the restoration effect is limited .

With the display of the effects of deep learning, more and more researchers have
begun to use deep learning technology to solve related problems in the field of computer
vision, and have achieved remarkable results [7-9]. Because of its powerful image feature
learning ability, researchers in the field of image restoration also widely use this
technology for research and method implementation in the field of image restoration
[10,11].The currently proposed image restoration algorithms based on deep learning are
mainly used for the restoration of degraded images caused by a single degradation
mechanism, such as motion blur, rain, fog, noise, and super-resolution [12].Image blurring
seriously affects the quality of the image itself, and will affect both image recognition and
object recognition in the image. In order to obtain clear images, Kupyn et al. proposed a
series of end-to-end deblurring methods based on conditional generation adversarial
networks [13,14]. Nimisha proposed an unsupervised image deblurring method based on
GAN, adding repetition loss and multi-scale gradient loss to the model [15]. Wang et al.
presents a novel framework to deal with the non-uniform blur[16]. Most of the models
that have been proposed for rain removal based on deep learning use fully supervised

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202202.0159.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 February 2022 d0i:10.20944/preprints202202.0159.v1

methods [17-19]. However, the real rain map and the rainless map with the same
background are difficult to obtain, so some researchers have proposed semi-supervised
rain removal models [20] and unsupervised rain removal models [21]. Image defogging
can eliminate the influence of haze environment on image quality and increase the
visibility of images. Early image defogging methods based on deep learning were mainly
based on atmospheric degradation models [22,23]. At present, researchers are more
inclined to directly use the input foggy image output to obtain the defogging image
[24,25,26]. Image denoising aims to restore a potentially relatively clean image from an
image containing noise. DnCNNs[27], FFDNet[28] and CBDNet[29] proposed by Zhang
et al. are very representative algorithms.

Due to the influence of multiple degradation factors, compared to a single
degradation type, the image degradation of multiple degradation types is more serious,
and the image restoration algorithm for a single degradation type mentioned above is not
well applicable. In order to better restore images of mixed degraded types, the RL-Restore
proposed by Yu et al. constructs a toolbox that contains small-scale convolutional
networks for different restoration tasks, and selects appropriate according to different
images to be restored The tool gradually restores damaged images [30]. The OWAN
proposed by Suganuma et al. performs multiple basic operations in parallel in its core
module, and selects the appropriate operation to restore the image according to the
specific conditions of the image to be restored [31]. Bai et al. proposed an adaptive
restoration algorithm based on hierarchical feature fusion. The algorithm directly fused
the features of different receptive field branches to enhance the structure of the restored
image [32].

The image restoration methods for mixed degraded images mentioned above require
a large number of paired training samples. Paired training samples are difficult to obtain,
and strict supervised training will cause the model to have overfitting problems and poor
generalization performance. Therefore, this paper introduces a new unsupervised image
restoration algorithm that can better solve the image restoration problem in complex
scenes without the need for paired training samples compared to the current methods.

2. Disentanglement Method Based on Attention Mechanism

2.1 Framework of Proposed Model

The proposed framework consists of four parts: 1) content encoders E. and Ej, for
clear image domain and degraded image domain affected by multiple degradation
factors; 2) a degradation information encoder Ej,; 3) degraded and clear image
discriminators D, and Dj; and 4) degraded and clear image generators G, and G,. Given
a training sample simg € S in the clear image domain and bimg € B in the degraded
image domain, the content encoder Ej,,. extracts content information fc from clear
samples, and E, extracts degradation information fd from degraded samples. G,then
takes attention-based content information and degradation information to generate a
degraded image stbimg, while G; uses attention information to generate a clear image
btsimg. The discriminators D, and D, distinguish between the real and generated
examples. The architecture is illustrated in Fig. 1.

As shown in Fig. 1, the model first uses the encoder to perform a disentangled
representation on the real image input. There are two kinds of encoders in the model, both
mainly used for image feature extraction: content information encoder E;. and
degradation information encoder Es.. Ej,. contains three strided convolution layers and
four residual blocks; E. contains four strided convolution layers and a fully connected
layer, and they are used to extract content information from clear images and degraded
images, respectively. Because the unpaired image data used in this model is easier to
obtain, our method uses the strategy of sharing parameter weights of E,. and Es. to
better extract effective content information from the degraded image for image
restoration.
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Fig. 1 Framework of proposed model

The degradation information encoder E, should only encode degradation
information from a degraded image bimg. However, in our experiments, we found that
the generated degraded images stbimg were also influenced by content information
from bimg, such as color information. To help E, suppress as much content information
as much as possible, we add a KL divergence loss to regularize the distribution of
degradation information z, = E,.(bimg) to be close to the normal distribution
p(2)~N(0,1). The KL divergence loss is defined as:

KL lIp(2) = = [ q(zy) log ZE- d. )

Minimizing the KL divergence is equivalent to minimizing the following loss:

Ly = %Z?}ﬂ(ﬂiz +af —log(e?) — 1), @

where u and o are the mean and standard deviation of z, and N is the dimension of z,.
zp, is sampled as z, = p + z * 0, and * represents element-wise multiplication.
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Fig. 2 Structure of attention-based disentangling operation
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Second, due to the complexity of the degradation scenes of the images to be restored,
there is the problem of inadequate disentanglement with only one disentangling
operation. This model introduces a second disentangling operation of the attention
mechanism on the content information fc and the degradation information fd encoded
by the encoders to fully disentangle the image features and the degradation mechanism
features, in order to improve the effectiveness of the encoded features. As shown in Fig.
2, motivated by Class Activation Mapping (CAM) [33], this model proposed in this paper
first performs the splicing operation on the content information fc and the degradation
information fd, and then inputs the spliced information into the upper and lower
branches, respectively. We first perform pooling operations on the two branches. Pooling
operations not only reduce the parameters of the model, but also keep the rotation,
translation, and expansion characteristics of the features unchanged. Common pooling
methods include average pooling and maximum pooling. Average pooling integrates the
global spatial information of the features, while maximum pooling reduces the
interference of useless information in the extracted features and extracts the features with
the best response to the next module. In this paper, we use both pooling methods to
calculate the attention weights, combine the advantages of both, and then feed the pooling
results to the fully connected layer and the convolution layer to obtain the attention
weights ac and ad of the degradation and content information. f¢; is the i-th layer of
the content information fc, and ac; is the attention weight of fc;. The attention-based
content information is then defined as:

fac ={ac; * fe;|1 < i <k}, 3)

where k is the number of layers of content information in the network.
Similarly, the attention-based degradation information is categorized as shown in
formula (4):

fad = {ad; * fd;|1 < i < k}. “4)

After the disentangling operation is done, we feed the attention-based degradation
information and content information that have been adequately disentangled into the
generator to generate corresponding images. The generator is used to generate clear
images and degraded images, and the discriminator is used to discriminate between the
generated images and the real images, both of which gradually improve the effectiveness
of the model in restoring images during continuous adversarial training. The generator
contains four residual blocks and three transposed convolution layers; the discriminator
consists of convolution layers and activation functions. To make the generated images
look more realistic, we apply the adversarial loss on clear image domain S and degraded
image domain B. For the clear image domain, we define the adversarial loss as formula

®):
Lpsimg = Esimg~p(simg)[10g Ds (SING) 1+ Epimg~p(vimg) [log (1 — Ds(btsimg))]. )
btsimg is categorized as shown in formula (6):
btsimg = Gs(E,.(bimg), zp). (6)
Similarly, we define the adversarial loss in the degraded image domain as Lppng:
Lobimg = Epimg~pimg)[10g Dp(bimg)] + Egimgp(simgy|L0g (1 — Dg (btsimg))]. (7

stbimg is categorized as shown in formula (8):
sthimg = Gg(E;.(simg), z,). ®)

The discriminator mentioned above can discriminate between the images generated
by the generator and the input real images, so the model can guarantee the authenticity
of the input restored images. However, since the training data is unpaired, the images
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restored by the model may appear inconsistent with the content information of the
degraded images input. Motivated by CycleGAN [34], this paper solves this problem by
adding cycle-consistency loss to the model. Specifically, the degraded image stbimg
generated by the generator is re-transformed to the original clear image domain by using
the attention module to perform the disentangling operation, as well as image generation
of the generator, in order to obtain the generated clear image ssimg. Similarly, the
generated degraded image bbimg can be obtained, and the specific process is defined as
shown in formulas (9) and (10):

ssimg = Gg(Ep.(stbimg), E, (stbimg)), )
bbimg = Gz(Esc(btsimg), E,(btsimg)). (10)
We define the cycle-consistency loss in both domains as formula (11):
Leye = Ecimg~p(cimg [llcimg — ccimgll1]+Epimg~ppimg) [lIbimg — bbimg||,]. (1)

In addition, we use the content information and degradation information to
transform the input clear images from the clear image domain to the degraded image
domain. However, in the experiments, we find that the generated images often contain
many artifacts. To solve this problem, we add perceptual loss to the model to further
constrain the model, which is defined as:

Lp = ”fl—layer(Stbimg) _fl—lay (bimg)”z’ (12)

where fi_jqyer(x) are the features of the [-th layer of the pre-trained convolutional neural
network (CNN).
The full objective function is a weighted sum of all the losses from (5) to (12):

Loss = ADsbimg (LDsimg + LDbL’mg) + /1KLLKL + )lcychyc + )lpr- (13)
2.2 Parameter Settings of the Model

Table 1 Hyperparameter settings of proposed network

Parameters Value Specified
Learning Rate y 0.0002
Optimization Method Adam
Batch Size 24
Iteration Times N 100
Absbimg 1
AkL 0.01
Aeye 10
Z 0.1

The hyperparameters of the model were set as shown in Table 1. The model was
trained for a total of 100 iterations, and the model weight parameters were saved at the
end of each training session. The learning rate was initially set to 0.0002, and we used the
Adam algorithm to optimize our model. Considering the memory used by the model
runtime, the model was trained by a small batch gradient descent algorithm with a batch
size of 24. For each training of the model, the discriminator was first trained by
simultaneously fixing the generator weight parameters and updating the discriminator
weight parameters, and then the generator was trained by fixing the discriminator
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parameters until the final training count was reached. For hyperparameters, we
experimentally set: Apspimg = 1, Ag, = 0.01, A = 10 and 4, = 0.1.

2.3 Algorithm

The training process of our model is shown in Table 2.

Table 2 Training process of proposed model

Input: the total number of iteration N, hyperparameters (Apspimg, Akrs Acyc: 4p), Optimization method Adam,

learning rate y = 0.0002

L. Initialize the weights: wg_ of the clear image generator G,, wg, of the degraded image generator Gy,

wp_ of the clear image discriminator Dy and wp, of the degraded image discriminator D,
s b

2. cycle 1 start for n1 = 1: N

3. cycle 2 start for i = 1:3

4. Sample a batch size of real clear images simg; and a batch size of real degraded images bimg;

5. The first disentangling operation (the content encoders E;, and Ejp. for clear and degraded image

domains.) Given samples in two different image domains, the content encoder Eg, extracts content
information fc1; from simg;, then the content encoder Ej. and the degradation information encoder E,
extract content information fc2; and degradation information fd; from bimg;, respectively

6. The second disentangling operation. Calculate the attention value of content information and degradation
information. Obtain the attention-based content information facl;, fac2; and the attention-based
degradation information fad; according to formula (3) and formula (4), respectively

7. Put facl;, fac2; and fad; into the generator to obtain clear images btsimg; generated from G; and

degraded images sthimg; generated by G,

8. Execute the previous steps 5-7 to generate the reconstructed images ssimg; and bbimg;

9. Calculate the loss of discriminator

10. Update parameters w,_ and wp, by the gradient descent method

11. cycle 2 end

12. Execute steps 4-8 to calculate the loss of the generator

13. Update weights of the encoder, the attention module and the generator by the gradient descent method
14, cycle 1 end

Output: the updated weights wy, and w), of the degradation information encoder, wg of the clear image

generator, the updated attention weights w,. and wy,

3 Experimental Analysis

To demonstrate the effectiveness as well as the robustness of the proposed method,
the restoration experiments were verified for images with a mixture of multiple
degradation types as well as those with a single degradation type. The mixed degradation
type images were from the DIV2K dataset, and the factors leading to image degradation
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were a mix of adding Gaussian blur, Gaussian noise, and JPEG compression. The images
to be tested were classified as mild, moderate, or severe, according to the degree of
degradation. The single degradation type images were from the MRI dataset [35], and the
factors that caused the image degradation were Rician noise of different intensities.

3.1 Experimental Data
3.1.1 DIV2K Dataset

The DIV2K dataset has 800 high-definition large-size images, which in this paper are
divided into two parts, with the first 750 images as training data and the remaining 50 as
test data. To facilitate training, these large images are cropped into small images for
experiments. The 249,344 small images cropped from the first 750 are used as the training
dataset, and the 3584 small images cropped from the last 50 are used as the test dataset.

To simulate actual complex degradation scenes, we applied multiple types of
distortion to both the training and test data. Specifically, we added Gaussian blur,
Gaussian noise, and JPEG compression to the images. The standard deviations of
Gaussian blur and Gaussian noise were randomly generated from the ranges of [0, 5] and
[0, 50], respectively, and the quality of JPEG compression was randomly selected from the
range of [10, 100]. Only moderate images were used for training, and images of the three
degradation degrees were used for testing.

3.1.2 MRI Dataset

The MRI dataset used in this paper was selected from the Brain Web database, which
is derived from the McConnell Brain Imaging Centre of the Montreal Neurological
Institute at McGill University, For the experiments we use the synthetic MRI data (T1w
and PDw), which can be downloaded from http://brainweb.bic.mni.mcgill.ca/brainweb.
For the experimental testing, 5%, 10%, 15%, 20%, 25%, and 30% Rician noise was added
to the T1w images and PDw images. As shown in Fig. 3, the MRI images were cropped
into small size images of 63*63.

(D)

(A) (B) ©
(a) (b) (©

Fig. 3 Synthetic data used in our experiment. (A) and (C) are both clean MRI images. (B) and (D) are
noise MRI images. (a), (b), (c), and (d) are taken from (A), (B), (C), and (D), respectively.

(d)

3.2 Experimental Environment

The experimental environment is shown in Table 3. Because the model parameters
were large we required specific equipment for the experiments. We used a Linux server
with an Nvidia RTX 2070 Super graphics card deployed and configured with a compliant
acceleration platform and acceleration library.
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Table 3 Experimental environment

Equipment Configuration Remark
Operating System Ubuntu 16.04
Framework PyTorch 1.0.1.post2
Gru Nvidia RTX 2070 Super 8GB
Operating Platform CUDA 11.1
GPU Accelerator Library cuDNN 713
Language Python3 3.6.6

3.3 Subjective Assessment of Effects of Image Restoration
3.3.1 Experiments for Images in Hybrid Degradation Scenes

We used the DIV2K dataset as a validation dataset for image restoration in complex
degradation scenes. This part of the paper compares our method with the classical
unsupervised image restoration algorithm CycleGAN and the newly proposed
unsupervised image restoration algorithm UIDGAN [36]. The image restoration results of
the DIV2K dataset are shown in Figs. 4, 5, and 6. In Fig. 4, we can see that our method can
remove the noise from the image for the degradation degree of mild; the background color
of the image restored by CycleGAN is not consistent with the clear image; and UIDGAN,
which mainly targets domain-specific deblurring, cannot be used to restore the image in
complex degradation scenes. Not only is the background color of the image restored by
UIDGAN not consistent with that of the clear image, but also it does not remove the noise
well. Fig. 5 shows the restoration effect of these methods on the moderate images. It can
be seen that the image restored by our method is consistent with the content information
of the clear image, and the texture information in the image can be restored, while the
images restored by CycleGAN and UIDGAN lack texture information. The degree of
damage to the severe image is the most serious, and Fig. 6 shows the results of the
restoration. We can see that our method can still achieve relatively good restoration
results, and in the case of the image background being influenced by degradation factors,
the restored images of other methods show strange lines, which seriously affect the visual
display of the recovered images.

Fig. 4 Experimental results of mild images
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Fig. 6 Experimental results of severe images

3.3.2 Experiments for Images in Single Degradation Scene

To demonstrate the scalability as well as the robustness of the proposed method, we
used the MRI dataset as a validation dataset for image restoration of a single degradation
mechanism. This part of the paper mainly compares the proposed method with the
traditional restoration method Anisotropic Diffusion Filtering (ADF) [37], the classical
unsupervised image restoration algorithm CycleGAN based on deep learning, and the
newly proposed unsupervised image restoration algorithm UIDGAN based on deep
learning.

Figs. 7-12 show the T1w image restoration effect of each method. We can see that our
method and CycleGAN have good adaptability and achieve good visual results at
different Rician noise intensities. The images restored by the ADF lack details and obvious
noise starts to appear in the images as the Rician noise intensity increases, which seriously
impacts the visual effect. The image restored by UIDGAN showed other color artifacts at
different noise intensities.

In addition to T1w images, we also conducted an experimental comparison of image
restoration with PDw images, and Figs. 13-18 show the experimental results. Our method
is relatively stable in the restoration effect at different noise intensities, but it is slightly
deficient in the restoration of details. ADF also fails to sufficiently restore the details of the
image, and the larger the noise intensity, the more noise residuals are found. The image
restored by CycleGAN has a poor visual effect and very strange texture appears as the
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noise intensity increases. The image restored by UIDGAN shows artifacts again at various
noise intensities as PDw images.
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Fig.9 Results of T1w images with 15% Rician noise
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Fig.12 Results of T1w images with 30% Rician noise
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3.4 Objective Assessment of Effects of Image Restoration

We used structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) as
objective evaluation indices to evaluate the effect of image restoration.

3.4.1 Comparison of Quantitative Results of Image Restoration in Hybrid Degradation
Scenes

Tables 4 and 5 show the PNSR values and SSIM values obtained by each method for
images at different degradation levels. It can be seen that our method achieves the best
quantitative results regardless of whether the image quality is mild, moderate, or severe,
and also achieves a certain improvement compared with the recently proposed
unsupervised image restoration algorithms. It can be seen that the effect of the classical
unsupervised image restoration algorithm is poor, and in the comparison of SSIM values,
there is a gap between our method and UIDGAN.

Table 4 PSNR values of each method for images at different degradation levels

Method Mild Moderate Severe
CycleGAN 17.0965 16.1240 15.5669
UIDGAN 19.7100 18.9580 18.9565
Ours 21.0428 20.3528 19.9386

Table 5 SSIM values of each method for images at different degradation levels

Method Mild Moderate Severe
CycleGAN 0.4876 0.3983 0.3095
UIDGAN 0.5757 0.4994 0.4437
Ours 0.6002 0.5254 0.4618

3.4.2 Image Restoration in a Single Degradation Scene

It can be seen from Tables 6 and 7 that the best PNSR values are achieved by our
method on T1w images with the addition of different intensities of noise. For the SSIM
value, our method also achieves the best value in the interval of noise intensity from 10%
to 25%. The SSIM values of CycleGAN are optimal at 5% and 30% of Rician noise intensity,
but the difference is not significant compared to the proposed method. The quantitative
results on PDw images with the addition of different intensities of Rician noise are shown
in Tables 8 and 9. The best PSNR values are obtained by our method when the noise
intensity is less than 15%. When the noise intensity gradually increases, CycleGAN has
the best PSNR value. ADF achieves the best SSIM value when the noise intensity is not
greater than 10%, followed by CycleGAN.

Table 6 Average PSNR results on T1w images

Method 5% 10% 15% 20% 25% 30%
ADF 20.6106 20.3751 19.8617 18.9694 17.9012 16.8302
CycleGAN 20.0163 20.1530 20.2088 20.1578 20.0792 19.7676
UIDGAN 22.5134 22.4281 22.3678 21.4129 20.4036 19.3042
Ours 24.9808 24.5294 24.1480 23.4785 22.2616 20.7901
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Table 7 Average SSIM results on T1w images

Method 5% 10% 15% 20% 25% 30%
ADF 0.7497 0.7125 0.6368 0.5044 0.3906 0.3104
CycleGAN 0.7606 0.7339 0.6901 0.6397 0.5897 0.5404
UIDGAN 0.7602 0.7259 0.6768 0.6191 0.5569 0.4986
Ours 0.7585 0.7689 0.7208 0.6631 0.6004 0.5377

Table 8 Average PSNR results on PDw images

Method 5% 10% 15% 20% 25% 30%
ADF 15.7612 15.7056 15.5447 15.2093 14.7566 14.2606
CycleGAN 20.1043 20.1353 20.1436 20.1450 20.1828 20.1941
UIDGAN 21.2514 20.9109 20.4918 20.0560 19.6652 19.1893
Ours 21.4081 21.0796 20.6209 20.1245 19.6098 19.1847

Table 9 Average SSIM results on PDw images

Method 5% 10% 15% 20% 25% 30%
ADF 0.7807 0.7548 0.6819 0.5378 0.4159 0.3358
CycleGAN 0.7249 0.7094 0.6855 0.6581 0.6302 0.6027
UIDGAN 0.6588 0.6457 0.6296 0.6120 0.5940 0.5721
Ours 0.6797 0.6652 0.6470 0.6250 0.6024 0.5795

4 Conclusion

In this paper, we propose a disentanglement algorithm based on the attention
mechanism for solving the problem of image restoration in complex degradation scenes.
Our model first performs a disentangling operation on the degraded image, using
encoders to encode content information and degradation information of images, and
applies a regularization constraint to the encoded degraded information, while making
content information encoders for clear and degraded image domains share parameter
weights. Secondly, due to the complexity of the image degradation scene and unpaired
training data, in order to fully disentangle the image features and degradation mechanism
features, we integrate the attention mechanism into the model for a second disentangling
operation, which improves the effectiveness of the encoded features. Finally, the model
combines adversarial loss, cycle-consistency loss, and perceptual loss to improve the
image restoration effect under unsupervised conditions. The experimental analysis in this
paper shows that our method can restore images in complex degradation scenes, and that
our method not only achieves good visual effects but also achieves the most optimal
quantitative results of the compared methods.
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