Pre prints.org

Article Not peer-reviewed version

Shape-Based Maritime Man-Made
Object Detection Using Deep Learning
Fusion-Based Neural Network and
Region-Based Methods

-~ . *
lvan Suzdalev, Bernardas MarsSalka , Ignas Daugéla

Posted Date: 18 August 2025
doi: 10.20944/preprints202508.1162.v1

Keywords: maritime; ship; detection; drone; computer vision; fusion; ANN; region-based; dataset; search
and rescue

Preprints.org is a free multidisciplinary platform providing preprint service
L that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of
(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/1627867
https://sciprofiles.com/profile/2722175
https://sciprofiles.com/profile/1627866

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 d0i:10.20944/preprints202508.1162.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Shape-Based Maritime Man-Made Object Detection
Using Deep Learning Fusion-Based Neural Network
and Region-Based Methods

Ivan Suzdalev, Bernardas Marsalka and Ignas Daugéla *

Aerospace Data Center, Antanas Gustaitis’ Aviation Institute, Vilnius Gediminas Technical University, Vilnius, 08217

* Correspondence: ignas.daugela@vilniustech.lt

Abstract

Maritime search-and-rescue (SAR) work typically involves scanning large sea areas looking for ships
and related objects, where targets are sparse and appearance can be unknown. This labor- and capital-
intensive task could be automated using reconnaissance drones and applying computer vision
algorithms. In this work, the authors suggest the possibility of detecting man-made objects in marine
backgrounds without prior knowledge of their appearance. The basis of detection is visual patterns
(shapes), typical for such objects. Two algorithms were developed for this task: a deep learning
fusion-based neural network consisting of a convolutional edge filter, an autoencoder, and a neural
network (ANN), and a classical region-based detector built on Canny edges and geometric trimming.
We curate a balanced dataset of 37,032 images (18,516 positive; 18,516 negative) derived from ships,
platforms, and wind turbines and perform six-fold grouped cross-validation. The F1 score achieved
by the artificial neural network-based method was no lower than 0.97, while 0.67 was scored by the
region-based method. The result of the artificial neural network using a convolutional edge filter and
a convolutional autoencoder was greater than those achieved by networks without such layers. The
region-based method demonstrated an exceptional processing speed of 143 FPS. An algorithm
involving both methods was proposed to be used for search and rescue operations using a drone.
Results indicate that emphasizing shape primitives improves robustness to wave texture and
reflections, limitations remain for very small targets. The experiment confirms the viability of using
a shape-based method to detect objects, characterized by distinct patterns in marine environments.

Keywords: maritime; ship; detection; drone; computer vision; fusion; ANN; region-based; dataset;
search and rescue

1. Introduction

Instead of hindering scientific progress, a frequently overlooked positive characteristic of science
is that it must inevitably fail to achieve the important task it is set out to do: discovery [1]. The human
mind generates unique geometries in the design phase of development. It is therefore reasonable to
believe that the search for man-made objects in a natural background can be enhanced by
distinguishing these geometries from those generated by nature.

To date, maritime search and rescue (SAR) missions require satellites, planes, or helicopters.
Satellite-based images cover significantly more ground. However, they lack resolution compared to
aircraft-based images. The latter can cover tens of kilometers in radius. The ship-based detection
radius is limited by the horizon occlusion caused by the roundness of the Earth. The proposed
method should use aerial imagery, which offers greater coverage than the ship-based detection, but
with a high enough resolution, so that the details are distinguishable. It has the potential to be used
in conjunction with existing SAR methods, improving the accuracy of object detection. The goal is
detection of any artificial object on open water (no shorelines), prioritizing robustness over class
recognition.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Many ship detection methods rely on image segmentation or deep learning artificial neural
networks (ANNSs) trained on raw imagery. Image segmentation is sensitive to lighting and surface
conditions (color, reflections), while ANNs rely on the size and content of the training dataset for
detection performance [2]. Generalization is characteristic of ANNs. However, they are still
struggling to recognize objects that were absent from the training dataset. When searching for debris,
the object’s appearance, size, and number is not certain. Performance drops when targets are
fragmentary or absent from training. Therefore, it is reasonable to train the network based on shapes,
characteristic of man-made objects and their parts in the sea.

Furthermore, the sea exhibits varying colors, shapes and sizes of waves, lighting, reflections, and
visibility conditions. Wave patterns generate high-contrast clutter and pseudo-edges. Such non-
stationary backgrounds degrade detectors that rely mainly on intensity or texture. It is important to
find man-made objects of uncertain appearance in this challenging background. Contemporary deep
learning algorithms (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet, and YOLO) mostly use training
based on photos or video frames. In essence, RGB or grayscale images, containing objects, are used
as input. The first layers of deep convolutional neural networks (CNN) respond to the distribution
of spots, colors and textures [3]. The human brain, on the other hand, first responds to the peculiarity
of shapes [4,5]. In this work, it is suggested to focus on the detection of shapes rather than attempting
to recognize objects from all the visual data, including spots, textures and colors. The authors suggest
using algorithms that are sensitive to the shapes contained in the image. In this work, a hybrid
algorithm is proposed, which is expected to be capable of detecting man-made object debris in marine
waters. It is composed of a region- and an ANN fusion-based methods. This might improve the
differentiation between the natural and man-made geometries. Furthermore, the authors hypothesize
that, in search of ships in seas, where objects are sparse, it is reasonable to search for any artificial
object, instead of recognizing it.

The purpose of the method is to detect any artificial objects on the surface of water from aerial
images, including various lighting and waving conditions. Both crewed and uncrewed aerial vehicles
are suitable for image capture. The latter, however, could be more suitable for automated tasks, such
as search due to reduced weight, cost, and risk of human error. The finished algorithm could be used
to search for lost vessels, debris in SAR missions, as well as collision, contraband prevention and
unfriendly marine drone detection [6]. We now outline detector families relevant to open-water
imagery(satellite and aircraft/UAV) and the datasets used in practice. Given our scope (any artificial
object on water, no shorelines) and the likelihood of partial/previously unseen targets, we prioritise
approaches whose cues are robust to sea-state and illumination changes.

1.1. Related Work

To date, algorithms have been mostly developed to detect ships using satellite imagery [2,6,7].
However, this source suffers from cloud occlusion as well as lower resolution [9]. Some authors
suggest detecting ships from other ships [10]. This greatly reduces the coverage area both in terms of
the direct line of sight and the ability to move quickly. As for drone operations, Wang et al. reason
that for specialized purposes, such as SAR, specialized datasets should be used [8], including
applicable camera angles and objects. To get a general understanding of the state of the art in ship
and debris detection, such topics should be covered: satellite-driven object detection, aircraft-driven
object detection and datasets used for object detection experiments.

According to Li et al. [2], there are several main ship detection methods. The coastline matching
method is based on knowledge of the precise position of the shore line. Objects in the sea are assumed
to be ships. Regional homogeneity classification and methods based on statistical modelling work by
dividing the image into segments and deciding which segment is a ship. Deep learning methods use
data-based training to perform the detection, while methods based on normalized difference water
index relies on multispectral camera imagery to detect which part of the sea reflects light differently
than water. It is assumed that all of these methods are also suitable for other artificial marine object
detection with some confidence. Let us analyze existing ship detection methods.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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1.1.1. Satellite-Driven Floating Object Detection

While searching for ships in satellite imagery, one can be certain that they will always remain
within a background of water. In essence the objects will not protrude the horizon. This is beneficial,
because the background of the ship is more constant (it is always surrounded by water). Ships can be
detected by removing repetitive background. As described by Li et al. [2]. Moreover, satellite imagery
cannot capture high detail, which is relevant for feature extraction. Several methods can be used in
such scenarios: Dong et al. divide the ship detection problem into separate tasks of detection and
position determination [12]. Object detection methods can be divided into two categories: classic
methods and deep learning. Classic methods include segmentation, such as clustering, threshold,
region, edge, and watershed-based methods, and generally perform positioning less accurately [9].
Another group of classic algorithms is called primitive search and includes such methods as region
analysis [10], Haar feature search [11,15] and the Hough transform [16]. as well as classic machine
learning. They are considered less accurate than deep learning-based methods, such as R-RCC [12],
SPP-net [13] Fast and Faster R-CNN [19] deep learning algorithms. Coverage and persistence are
strong, but spatial detail and revisit constraints limit small-object detection; satellites often hint
aircraft/UAV assets.

1.1.2. Aircraft-Driven Floating Object Detection

When using an aerial platform as a source of imagery, the captured object may protrude from
the horizon or stay below, depending on the position of the object and the sensor height above the
surface. The object may also be seen from various angles, distances, and lighting conditions.
Moreover, it can be partially occluded by obstacles or the horizon [14,15]. The problem of how to
detect objects with a background of the horizon as well as other objects is addressed by Hong et al.
They have utilized and enhanced the YOLOv4 algorithm for higher performance and detection
accuracy. The problem was partially solved by applying coastline feature segmentation to segment
the sea and air. The interference targets on the shore can be separated, the number of bounding boxes
can be reduced, and the detection time can be saved. This algorithm is also capable of detecting and
tracking multiple objects simultaneously [21]. Cheng et al. have used a drone to detect ships in the
sea using deep learning ANN-based YOLOv5-ODConvNeXt algorithm. The algorithm was
optimized to achieve greater accuracy and faster processing than YOLO v5s, making it more suitable
as an airborne platform [16]. Xiao-Sheng et al. suggest using drone swarms instead of a single drone.
This would increase search area or resolution, as well as allow us to determine the position of a
detected object more accurately by triangulation and redundancy. Some of the algorithms utilized
for such tasks include Faster R-CNN, YOLOvV5, CenterNet (Hourglass104, ResNet101, ResNet18),
FairMOT R34, Tracktor++, Atom, DiMP18, PrDiMP18, PrDiMP50, DiMP50 [17,18]. For tracking, an
unscented [19,20] or non-linear [21] Kalman filter can be used. Tracking improves detection accuracy,
since temporally inconsistent detections can be eliminated.

The methods analyzed do not emphasize the importance of the characteristics such as shape or
other visual pattern of the object. We therefore test whether explicit shape emphasis improves
robustness in open-water scenes without shorelines.

1.2. Related Datasets

Only two datasets were found to contain drone-based marine object imagery. SeaDroneSim [22]
was created as a benchmark and contains real and simulated images of a water rover BlueROV. The
purpose of the training dataset was agricultural; however, the authors suggest using simulated data
for SAR-related object detection. Another relevant dataset is SeaDroneSee [17], a drone-based aerial
dataset consisting of more than 54,000 frames that contain instances of people in water and on board,
as well as small boats. This dataset is aimed at helping train computer vision algorithms for SAR. All
other datasets [27-34] containing found marine objects were collected or simulated as satellite images.
They are aimed at detecting whole ships and other objects with few details. The dataset presented in
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this work contains relatively detailed ship fragments with no shoreline, which is argued to be
effective in SAR missions involving lost or wrecked ships. The datasets which have been covered are
listed in Table 1.

Table 1. A list of aerospace-based datasets, containing marine objects .

Angle
Dataset Platform
Range
[23] Simulated satellite 90°
Airbus Ship [24] Satellite 90°
NWPU VHR-10 [25] Satellite 90°
NWPU RESISC45 [26] Satellite 90°
HRSC2016 [27] Satellite 90°
FGSD [28] Satellite 90°
SeaDroneSim [22] Simulated drone 0-90°
DOIR [29] Satellite 90°
xView [30] Satellite 90°
SeaDronesSee [17] Drone 0-90°

2. Materials and Methods

2.1. Dataset

After the analysis of the existing datasets, it was concluded that there is a need for a new dataset
suitable for artificial object detection algorithm training. In order to satisfy this need, such a dataset
was created and includes marine objects such as cargo ships, gas carriers, military ships, tankers, oil
rigs, and windmills. It was assumed that the shape-based algorithm would be able to find all marine
objects featuring similar geometries.

To test the algorithm capable of artificial object detection, a dataset containing the ground truth
is required. In total, 3086 images of artificial marine objects were collected. This includes cargo ships
(400 images), gas carriers (323 images), military ships (1243 images), tankers (105 images), oil rigs
(538 images), and wind powerplants (377 images). The same number of images containing only the
sea surface were obtained from open sources. Each image was resized to 256x128 pixels and divided
in half in such a way that the dataset was doubled and each photo did not necessarily contain a whole
maritime object, but only a cropped segment (in case of positive instances). After cropping, the
augmentation of the dataset was applied using a blur filter and a gamma reduction. In the final
dataset 18,516 images of maritime objects (Figure 1 (a)) and 18,516 images of sea (Figure 1 (b), (c))
were present in RGB, grayscale and edge formats. The dimensions of the final images were 128 pixels
high and 128 pixels wide. According to Poolsawad et al., an equal class balance is desirable for
training, while undersampling improves certain metrics associated with negative class predictions
[31].

The background of the sea, especially the waves, might complicate the detection. Images of a
calm and wavy sea were selected as the basis of the negative ground truth. The size of the waves in
the image depends on the perspective, distance from the sensor to the surface, type, and size of the
waves. A diverse selection of sea images was included in the dataset, including images taken from a
long distance and containing an abundance of reflections (Figure 1 (c)).

The balanced dataset contained 37,032 images (18,516 positive; 18,516 negative). We used six-
fold cross-validation with per-fold class balance. In each of six iterations, a different one-sixth of the
data served as the validation set and the remaining five-sixths for training, so that each image was
validated exactly once. We adopted k-fold to obtain more reliable averages across splits and to limit
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sensitivity to any single partition. Such a cross-validation method enables per-fold confusion matrices
to be comparable.

_' ey
LS v b o———
< 1.5 mefl vl ool o g |

(@)
Figure 1. Images containing parts of a ship (positive ground truth) (a), container ship part (positive ground truth)
(b), waves (negative ground truth) (c) .

2.2. Algorithm Description

Apart from the dataset, two algorithms have been implemented and tested in this work: a classic
region-based detection method involving contour perimeter, area, and complexity calculation as well
as a novel approach to an ANN-based detection involving contour emphasizing convolutional layer.
They are explained in the next sections. The use of the two algorithms allows for a comparison of
classic and modern methods. Furthermore, the region-based method is expected to complement the
ANN-based approach in cases where the sea is calm, and the objects are small. In this way, the
problem of small objects, which are hardly detectable by ANN, is addressed. Research is done
concerning such object detection by ANN [32], but in this work for such application a classic detection
algorithm is suggested. Furthermore, since it is hypothesized that it is reasonable to search for any
artificial object, instead of recognizing it, an assumption is made, that the shoreline will be classified
as an anomaly in the sea. Therefore, the proposed method is applicable only to images with a marine
background and without a shoreline.

2.2.1. Region-Based Detection

The Canny edge detection algorithm can detect object boundaries in images. It is the basis of the
region-based algorithm. Canny is one of the most advanced edge detection algorithms. Using this
algorithm, contours of objects and waves are extracted [33]. It is robust against false boundaries and
reacts to edge curves only once, which is relevant when the curves are wide. In an ideal case, an
algorithm capable of extracting only man-made object contours would be used. The region-based
method starts by extracting contours in the format of polygons using the Canny edge detector with
the lower and the higher thresholds set to 250 and 300 respectively. These values were chosen based
on the results of an iteration-based optimization method. The algorithm converts greyscale images to
edges. Mean pixel value is then calculated from negative and positive dataset edge images. The
assumption is that the mean value in the negative dataset has to be near 0, since our goal is to remove
any background. At the same time, in the positive the edge values will also be decreasing. Therefore,
in the ideal case there will be some threshold, using which there will be no background information
left and only the object will be visible. Canny threshold values were increased iteratively until the
point where the negative dataset mean pixel values started approaching 0, while positive values had
not started decreasing significantly. The optimization algorithm increments the edge values by 50
starting from 50 as the lower threshold and 100 as the higher one. The mean values from the positive
and negative dataset are provided in Table 2:

The region-based method then calculates the perimeters of the polygons from the detected
edges. After this, polygonal curves are approximated, and areas of the polygons are calculated. Edges

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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are then filtered by the size of their perimeter (=500 px), line count (>4) and area (= 20,000). The larger
ones remain to become the result of the detection algorithm. Using these steps waves are discarded
and ships - detected. No temporal smoothing is applied in this stage, tracking is reserved for future
work. The algorithm workflow is depicted in Figure 2.

Get Contours - Get perimeters of all Approximates a
Get areas of polygons
polygons polygons polygonal curve

v
“ ) g N '
Edgz ;:nd:nrl E.T;.‘ ) Edge function of Edge function of Count of filtered
pelyg Ieng:; polygons lines count polygons area polygons
J " 4

Figure 2. Sequence of a region-based detection algorithm .

Table 2. Tested Canny threshold values with respective mean pixel values on the positive and negative

datasets.
Low High Negative Positive
threshold threshold  mean mean
50 100 13.99 26.17
100 150 8.42 17.77
150 200 5.07 13.22
200 250 3.07 10.30
250 300 1.88 8.12
300 350 1.45 6.4
350 400 0.68 5.03
400 450 0.38 3.91
450 500 0.21 3.01
500 550 0.11 2.29
550 600 0.06 1.72
600 650 0.03 1.28
650 700 0.01 0.94
700 750 0.00 0.68

2.2.2. Fusion ANN-Based Detection

It is hypothesized that by extracting object contours before detection, accuracy can be improved.
One of the ways to achieve this is image preprocessing using classic edge extraction and filtering
methods in order to distinguish the shape and remove the noise, such as waves and sun reflections
contained in the image. The following architecture is proposed: a convolutional edge detection filter,
after which an autoencoder-like segment would distinguish dominant objects while reducing noise.
This would then be fed to a CNN, all fused to be part of the ANN architecture, with the expectation
of improved performance. Based on this hypothesis, an ANN architecture concept was developed,
which included the fusion of several elements: a convolutional filter, an autoencoder, and a CNN
(Figure 3).

The Sobel filter was included in a neural network by Sharifrazi et al. The inclusion of a Sobel
filter in a CNN support vector machine algorithm improved the classification accuracy, sensitivity,
and specificity compared to the one without the filter [34]. The autoencoder can be used for tasks

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where the input image is noisy [35]. In this work, we have included a convolutional autoencoder as
a segment of the neural network algorithm (Figure 3).

Convolutional filter }—} Autoencoder ——){ CMM ‘

Figure 3. Components of the artificial neural network.

First, the data enters the network through input neurons. There, the pixel values are rescaled,
and a Sobel-like convolutional filter is applied to extract contours contained in the image by
emphasizing gradients. This can be done using Canny edge detection, as in the case of the region-
based method, but at a higher computational cost compared to Sobel or other convolutional filters,
thus sacrificing real-time performance [36]. Another advantage of convolutional filter integration into
a neural network architecture is the possibility of GPU computations. The shape and values of the
convolutional filter are presented in Figure 4. There should be a separate filter for each channel.
Meaning that an RGB image would be processed by three filters. An example of the convolutional
edge input and output is provided in Figure 5. A grayscale image is depicted in Figure 5 (a), while
convolutional filter output, using parameters from Figure 4, is depicted in Figure 5 (b).

@ (b)

Figure 5. Result of a convolutional filter applied to an image. (a) - grayscale input image, (b) - same image after

the application of the convolutional filter.

Next, convolutional autoencoder-like layers are included for feature extraction. A classic
autoencoder would require separate training [37], therefore it was not used. A classical autoencoder
consists of an input, encoder, decoder, and output. The output of the encoder is a compressed
representation of the input vector (Figure 6).

An autoencoder is trained on a dataset to transform the input vector to a state commanded by
the support vector. In our case, the autoencoder is not a separate algorithm. It is fused with the
convolutional filter and CNN; therefore, it is not trained separately. The input vector is supplied to
the common network input during training.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In our work, the CNN is part of the ANN algorithm architecture. A conventional CNN was used,
as described by Alzubaidi et al. [38]. The network was constructed by pooling several kernel
convolution layers. These layers perform feature extraction and sub-discretization [42]. The main
processing takes place in the kernel layers, in which convolutional and max pooling layers are
arranged alternately. The output vector is processed by flattening and dense layers (Table 3). The
max pooling layer decreases the feature map size. The convolutional feature map is associated with
the previous layer and divided into regions according to the size of the pool. The last dense layers of
the network estimate the classification probability values [36].

Compressed

Input — Encoder —
representation

S Decoder S Output

Figure 6. Classic autoencoder architecture.

2.2.3. Hyperparameter Optimization

The hyperparameters of the CNN (filter count, layer count) as well as the activation function
type were tuned for high performance.

First, the number of filters in the CNN core layers was treated. The number of filters also
depends on number of the layer in the sequence. To describe the number of filters in a layer, such
formula is used:

x = filterFactor - 2™ - 8 4)

Where x is the number of filters in a layer, filterFactor is the multiplier coefficient, which is
iterated from 1 to 8 in this optimization step, n is the number of the convolutional layer in the CNN
sequence.

In the second step, the number of CNN convolutional layer pairs (convolution and maximum
pooling layers) is iterated from 1 to 5 pairs.

In the third step, several activation functions (ReLU, Leaky ReLU, softmax, and sigmoid) were
iterated. Each combination of the hyperparameters was matched, resulting in 160 different neural
network configurations. Each network was tested on 6 dataset combinations, so 960 tests were made
in total. Each network was trained for 3 epochs and compared. It was assumed that this is enough to
judge the training tendency. The iteration cycle structure is depicted in Figure 7. The chosen network
combination was trained for 30 epochs.

Activation functions optimization

Layers count optimization

Conv2D filters count
optimization

Figure 7. CNN hyperparameter iteration cycle structure.
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The final composition of the algorithm used in this work is presented in Table 3. The ANN input
vector is 128 by 128 pixels of the encoded edge image in grayscale. The ANN output is a rectified
linear unit (ReLU) function.

The algorithm was programmed using the Keras 2.13.1 library in Python 3.8. A dataset was
loaded using a standard Keras loader. The custom neural network architecture was programmed
using only standard TensorFlow modules. The confusion matrix metrics were output using the model

predict function on the dataset images.

Table 3. The ANN algorithm composition.

Parameter Specific function General
. L h
Nr ayer type Shape count function
1 Rescaling (128,128, 1) 0 Rescaling
2 Convolution (126, 126, 1) 9 Edge detection
3 Convolution (126, 126, 32) 64 . .
] Autoencoder-like ~ Preprocessing
4  Max pooling (63, 63, 32) 0 1
C lution e
5  omve (126,126, 32) 1056
transpose
6 Convolution (126, 126, 32) 1056 _
7 Maxpooling  (63,63,32) 0 Convolution core
. layer pairs Core layers
8 Convolution (63, 63, 96) 3168
9 Max pooling (31, 31, 96) 0
10 Flatten (92256) 0
11 Dense 4) 369028 Output layers
12 Dense (2) 10

2.2.4. Evaluation

The task of the algorithm is the recognition of marine objects; therefore, the dataset was binary
— positive images contain such objects, negative images — do not. This made the evaluation relatively
straightforward, as only a true or false guess could have been made by the algorithm. The true
positive (TP), false positive (FP), true negative (TN), and false negative (FN) guesses were counted to
form a confusion matrix. From this, performance metrics (accuracy, precision, recall, and F-1 score)
were calculated.

Recall is a property of the model to find relevant objects (least false negatives), while precision
is the property to make only correct guesses (least false positives). These values change depending
on the confidence level required for detection, typically inversely to each other. With high confidence,
one might avoid many false positives; however, more objects will be missed, yielding a higher
number of false negatives and vice versa. Accuracy is a measure of how correctly a model predicts
the outcomes of the data it is trained on or tested against. It represents the proportion of correct
predictions made by the model out of the total number of predictions. The F1 score represents both
precision and recall as one metric. It is the harmonic mean of these measurements. The harmonic
mean is used instead of the arithmetic mean to ensure that the F1 score is influenced more by the
lower of the two values (precision or recall). This means that the F1 score will be high only if both
precision and recall are high.

This study aimed to evaluate the suitability of region- and ANN fusion-based object recognition
algorithms for man-made maritime object detection. For comparison, three other algorithms: simple
CNN and MobileNet, were trained and tested on the dataset. Simple CNN is the same model as
described in Section 2.2.3, but the edge detection and autoencoder-like layers are missing. This was
done in order to quantify the performance gain using this combination. The proposed algorithms are
also compared to the performance metrics and processing speed of MobileNet, a CNN optimized for
performance at small network sizes and high speed [39].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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After each convolution operation in an ANN a feature map is generated. On some maps from
the first layers, important features may be highlighted and manually identified. Another way to
identify the influential features is by using a saliency map. It provides insights into which parts of
the input data (such as an image) are most influential in the prediction process. After the prediction
is obtained, backpropagation is used to compute the gradients of the prediction result with respect
to the input data. During back-propagation, the difference (loss) between a prediction and the ground
truth in a binary classification task is calculated using the binary cross-entropy loss function. This
loss function penalizes the model more when it makes confident incorrect predictions. The error is
propagated backwards through the network to adjust the parameters (weights and biases) of the
model. The gradients obtained from backpropagation are then used to create a saliency map. This
map highlights regions of the input data that have the most significant impact on the model’s
decision. Typically, brighter regions in the saliency map correspond to areas that strongly influence
the model’s prediction. In this work, feature as well as saliency maps were extracted for performance
analysis.

2.2.5. Algorithm Integration Concept

The area which is covered by the field of view of the camera is called the region of interest (ROI)
(Figure 8). The view contained in ROI could be split into frames, which would then be processed by
the algorithms described in this work to determine whether the frame contains recognizable (ship)
patterns. The basis of the detection is an algorithm consisting of several steps depicted in Figure 9.

: = —7 Region of

interest

Figure 8. UAV search mission schematic Every frame is used for detection, which is performed by two
algorithms simultaneously. The region-based method is responsible for detecting objects of appropriate size

and complexity, while the CNN-based method is responsible for detecting man-made patterns. .

In the next stage, clusters are formed from the detected objects. This is done using the k-means
method with n = 1 [40]. This allows one to detect at most one object in an image. It is suggested to use
separate clustering algorithms for each detector, since the two algorithms work differently. Therefore,
the results they produce may also differ.

The cluster coordinates are then sent to a Kalman filter, which tracks the target even in the
presence of wave noise and other sources of error. It enables improvement in object tracking [24] if it
is desired to keep the object in sight, and detection accuracy if a detection is made in several
consecutive frames. Unfortunately, this method is incapable of distinguishing one target if multiple
clusters are present. The diagram of the algorithm is presented in Figure 9.
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Figure 9. Diagram of the proposed detection and tracking algorithm .

3. Results

3.1. Region-Based Method Detection

The confusion matrix of the region-based method represents a considerable number of false
positives and negatives. On average, 1292 false negative and 348 false positive detections were made
out of 3086 instances each (Table 4). Possibly, the algorithm is less capable in wave and reflection rich
environments.

Table 4. Confusion matrix of the region-based method, tested on different dataset combinations .

Dataset
combination T N FP ™
1 1778 1308 373 2713
2 1834 1252 338 2748
3 1788 1298 353 2733
4 1809 1277 318 2768
5 1784 1302 339 2747
6 1772 1314 365 2721
Average 1794 1292 348 2744

The accuracy of the region-based method does not fall below 0.72. Furthermore, the lowest
precision values exceed 0.82. The reason for this is a low number of FPs (Table 4). It can be assumed
that the region-based method is sensitive to image noise and performs adequately only when the
water surface contains few waves or sun reflections. Concerning the recall metric, it was observed to
only reach a value of 0.57. This is due to a large number of false negatives. The F1 score exceeds 0.68
(Table 5). This value is influenced by the high TP to FN ratio. It is reasonable to use better denoising
algorithms when the region-based method is utilized.
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Table 5. Performance metrics of the region-based method, tested on different dataset combinations .

Dataset
combination Accuracy Precision Recall F1 score

1 0.728 0.827 0.576 0.679
2 0.742 0.844 0.594 0.697
3 0.733 0.835 0.579 0.684
4 0.742 0.850 0.586 0.694
5 0.734 0.840 0.578 0.685
6 0.728 0.829 0.574 0.679

Average 0.734 0.838 0.581 0.679

3.2. ANN-Based Detection

After training, the accuracy and F1 scores achieved were not less than 0.97, while recall and

precision were not less than 0.99. The network was trained for 33 epochs and did not show signs of

overfitting (Figure 10).
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Figure 10. ANN-based algorithm training performance diagrams.

The results presented a low ratio of false negatives (FN) to true negatives (TN) and an even lower

ratio of false positives (FP) to true positives (TP) (Table 6). From this, accuracy, precision, recall, and
F1 score metrics can be calculated (Table 7). The low FP and FN values confirm that the ANN detects
ship geometries correctly and that the wavy background is ignored. After a manual inspection, it was
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concluded that some of the false negative instances were too small to be detected. Possibly because
of the lack of detail.

Table 6. Confusion matrix of the ANN, trained and tested on 6 combinations of datasets .

Dataset
combination ™ N FP ™
1 2972 114 50 3036
2 3028 58 11 3075
3 3035 51 23 3063
4 3036 50 17 3069
5 3020 66 18 3068
6 3019 67 18 3068
Average 3018 68 23 3063

Table 7. Performance metrics of the ANN-based method, tested on different dataset combinations .

coxfl)]::;ii:on Accuracy Precision Recall F1 score
1 0.973 0.983 0.963 0.973
2 0.989 0.996 0.981 0.988
3 0.988 0.992 0.983 0.988
4 0.989 0.994 0.984 0.989
5 0.986 0.994 0.978 0.986
6 0.986 0.994 0.978 0.986
Average 0.985 0.992 0.978 0.985

3.3. Algorithm Comparison

To see how the newly developed algorithms compare to the existing ones, simple CNN and
MobileNet architectures were trained and tested on the dataset. This was done on a machine
featuring a 13th generation Intel® Core™ i9-13900KF CPU, GeForce RTX™ 4090 SUPRIM X 24G
GPU, Windows 11 Pro 23H2, Python 3.11.5. and Keras 2.15.0. Overall, the fusion-based ANN
performed very well and came out first in most metrics. It was outperformed by MobileNet in recall,
which demonstrated marginally lower accuracy and F1 scores. The frame rate of MobileNet was the
lowest of all. The region-based detection algorithm performed the worst in all metrics. However, it
offers the highest speed, nearly four times that of the fusion-based ANN. The simple CNN performed
worse than the fusion-based ANN or MobileNet, but the results are still comparable. Its speed was
only marginally lower than the fusion-based ANN (Table 8).

Table 8. Performance comparison of the algorithms tested.

Algorithm Accur Precision Recall F1 Frame
acy score  rate, Hz

Fusion-based

ANN (ours) 0.986 0.988 0.978 0985 36.9

Region-based 0734 0.838 0.581 0679 1429

detection (ours)

Simple CNN 0.929 0.907 0.957 0931 36.0

MobileNet 0.971 0.964 0.979 0971 247
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4. Discussion

In this work, two algorithms were developed and tested on a balanced dataset, which was
created for this purpose, an algorithm implementation concept was presented. The augmented
dataset contains 18,516 images of several types of ships, oil platforms, and wind turbines, as well as
18,516 images of calm and wavy sea.

The fusion-based ANN features unique autoencoder-like layers, while the region-based method
involves classic techniques, such as Canny edge detection and perimeter operations, but in a unique
man-made object detection in a marine background task. The performance of these algorithms was
compared to other available algorithms, simple CNN and MobileNet. Finally, an object detection
method, potentially useful for SAR operations, was proposed involving both ANN- and region-based
marine object detection algorithms, detection clustering, and Kalman filter for data fusion and object
tracking.

The results achieved by our ANN detector were excellent, with an average of 91 false guesses
from 6172 over the six combinations of the dataset. This translates to performance metrics of 0.96 and
higher, with precision exceeding 0.99. The region-based method made on average 1640 false guesses,
which is significantly more than the ANN. It was able to achieve a precision of 0.84, however, recall
was very low at 0.58. However, these calculations are performed at an exceptional speed of 143 Hz,
which is the highest of all. Exceeding the second-best result, that of the fusion-based ANN almost
four times. The performance of the simple CNN was somewhat worse in all metrics compared to the
fusion-based ANN, even the frame rate. This highlights the advantage of Sobel operation as well as
autoencoder-like filtering for the performance of an ANN. The MobileNet algorithm performed very
well, exceeding the recall value of the fusion-based ANN by around 0.02, while taking the second
place in all other metrics, except processing speed, which was actually the lowest. For context, the
average precision with intersection over union of 50 % (AP50) of 0.96 was achieved using the
Detectron2 algorithm used by Lin et al. [22] and the highest AP50 achieved in the binary object
detection leaderboard on the SeaDroneSee dataset [17] was 0.91 at the time of writing.

Therefore, the algorithms show promise of a novel detection method. The newly developed
fusion-based ANN has shown excellent performance in all metrics, coming first or second. The use
of the Sobel and autoencoder-like layers was validated by comparison to an ANN identical in other
ways but without these layers. Even though the classic shape-based algorithm demonstrated subpar
performance, the exceptionally fast computational speed is key to on-board weight and power
restricted processing, which motivates to continue work improving it.

3086 images of artificial sea objects were collected. This includes cargo ships, gas carriers,
military ships, tankers, oil rigs, and wind turbines. The same number of images of the sea surface was
collected. Each image was split into two halves, blur and gamma correction were applied to obtain a
balanced augmented dataset containing 37,032 images, 18,516 positive and 18,516 negative ground
truths. In comparison, the SeaDroneSee object detection dataset contains 8285 images [17].

The algorithms presented are intended to be used to search for lost vessels. This could be done
using an autonomous UAV, which would eliminate the cost of crew labor and eliminate the risk to
their lives. A method was proposed that involves the two developed algorithms, detection clustering
and data merging, for marine object detection and tracking. This would involve an on-board camera
and a GPU-enabled on-board computer where the algorithm would be running. This is argued to be
a quicker, more efficient and cheaper method of search compared to the ones including a manned
vessel or aircraft. The detection would be sent to a coordinating center, which would be able to
commence the rescue stage if confirmed. The results of this study are the first step in confirming the
applicability of shape-based detection algorithms in the task of detecting objects in a busy
background, such as rough sea. However, there are limitations and challenges to overcome for this
to be viable in SAR applications.

Even though the fusion-based ANN presented excellent results, the FN rate is still an issue to be
improved upon, when considering SAR operations. For this purpose, other shape extraction methods
should be tested, which could improve recall and processing speed. After manual inspection, it was
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concluded that the ships, which were not identified, were usually small in size or image area and
lacked in detail. Therefore, scale is still an issue for the ANN algorithm. Consequently, modifications
are necessary to enhance the network’s ability to accurately identify smaller entities, such as humans.
More extensive testing, however, is still needed to verify the performance in real world applications
to answer if it can be expected, that a model trained on shapes of ships will be able to detect parts of
a ship in the water. Another question arises concerning the performance of the algorithm. The
hardware on board a UAV is limited in terms of computing power due to constraints to the payload
mass and power consumption. In future work, it is reasonable to optimize this algorithm for a single
board computing system, such as Nvidia Jetson. A comparison of ANN sensitivity to different visual
building blocks, such as textures, lines, and spots, should be conducted for further insight. Regarding
the dataset, the negative subset could be improved to include even more diverse conditions, such as
varying lighting, camera angle, and altitude. The positive dataset would ideally include an increased
number and variety of examples of man-made marine objects, including debris. In future work, the
autoencoder compression level should be included in the hyperparameter optimization step.
Currently, the accuracy increment provided by the autoencoder was 0.03-0.05. However, it should be
investigated whether similar accuracy increases can be achieved using other methods instead and
whether the autoencoder truly isolates the dominant objects by eliminating waves and other noise in
the image. Another unanswered question is what influence the autoencoder has on the performance
of the entire system. It is known that preprocessing images with the Canny edge detector is a more
demanding process than with the convolutional filter, therefore it is reasonable to distribute the tasks
using parallel processing. However, in future research, the influence of the algorithm pipeline on the
processing resources should be closely investigated. Regarding the hyperparameter testing, it is likely
that after the three training epochs overfitting will not manifest. However, the chosen algorithm did
not show signs of overfitting when trained for 30 epochs, therefore the hyperparameter selection is
considered to be a success.
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