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Abstract: This paper presents machine learning methods for approximate solutions of reaction-diffusion equations

with multivalued interaction functions. This approach addresses the challenge of finding all possible solutions for

such equations, which often lack uniqueness. The proposed method utilizes physics-informed neural networks

(PINNs) to approximate generalized solutions.

Keywords: reaction-diffusion equations; multivalued interaction functions; machine learning; physics-informed

neural networks; approximate solutions

1. Introduction

In this paper we establish machine learning methods for approximate solutions of classes of
reaction-diffusion equations with multivalued interaction functions allowing for non-unique solutions
of the Cauchy problem. The relevance of this problem is primarily due to the lack of methods for
finding all solutions for such mathematical objects. Therefore, there is an expectation that another
approximate method will provide us with yet another solution for these problems. In addition, methods
for approximate solutions of nonlinear systems with partial derivatives without uniqueness are mostly
theoretical and are used primarily in qualitative research [1,2]. The availability of computational
power for parallel computations and the creation of open-source software libraries such as PyTorch [3]
have stimulated a new wave of development in IT and artificial intelligence methods. Sample-based
methods for approximate solutions of such problems were first proposed in [4]. To date, such systems
with smooth nonlinearities have been qualitatively and numerically studied. There is a need to develop
a methodology for approximating generalized solutions of nonlinear differential-operator systems
without uniqueness using recurrent neural networks, sample-based methods, and variations of the
Monte Carlo method.

Let T, ν > 0, and u0 : R2 → R be a sufficiently smooth function. We consider the problem:

∂u
∂t

(x, t) ∈ ν∇2u(x, t)− f (u(x, t)), (x, t) ∈ R2 × [0, T], (1)

with initial conditions:
u(x, 0) = u0(x), x ∈ R2, (2)
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where f : R → R is a function satisfying the condition of at most linear growth:

∃C > 0 : | f (s)| ≤ C(1 + |s|) for each s ∈ R.

We note that such nonlinearities appear in impulse feedback control problems, etc. [5–9]. Moreover,
the global attractor for solutions of Problem 1 may be a nontrivial set in the general case and can
have arbitrarily large fractal dimension. The convergence rate of solutions to the attractor may not be
exponential; see [10–14] and references therein.

For a fixed u0 ∈ C∞
0 (R2) let Ω ⊂ R2 be a bounded domain with sufficiently smooth boundary

and supp u0 ⊂ Ω. According to [1] (see the book and references therein), there exists a weak solution
u = u(x, t) ∈ L2(0, T; H1

0(Ω)) with ∂u
∂t ∈ L2(0, T; H−1(Ω)), of Problem (1)–(2) in the following sense:

−
∫ T

0

∫
Ω

u(x, t)v(x)ηt(t)dxdt + ν
∫ T

0

∫
Ω
(∇u(x, t) · ∇v(x) + d(x, t)v(x))η(t)dt = 0, (3)

for all v ∈ C∞
0 (Ω), η ∈ C∞

0 (0, T), where d : R× [0, T] → R be a measurable function such that

d(x, t) ∈ f (u(x, t)) for a.e. (x, t) ∈ R2 × (0, T). (4)

Such inclusions with multivalued nonlinearities appear in problems of climatology (Budyko-Sellers
Model), chemical kinetics (Belousov-Zhabotinsky equations), biology (Lotka–Volterra systems with
diffusion), quantum mechanics (FitzHugh–Nagumo system), engineering and medicine (several
syntheses and impulse control problems); see [1,2] and references therein.

The main goal of this paper is to develop an algorithm for approximation of solutions for classes of
reaction-diffusion equations with multivalued interaction functions allowing for non-unique solutions
of the Cauchy problem (1)–(2) via the so-called physics-informed neural networks (PINNs); [15–17]
and references therein.

2. Methodology of Approximate Solutions for Reaction-Diffusion Equations with Multivalued
Interaction Functions

Fix an arbitrary T > 0, and a sufficiently smooth function u0 : R2 → R. We approximate the
function f by the following Lipschitz functions satisfying the condition of at most linear growth
(Pasch-Hausdorff envelopes):

fk(x) := inf
x′∈R

{
f (x′) + k|x − x′|

}
, x ∈ R; (5)

see [18] and references therein. For a fixed k = 1, 2, . . . , consider the problem:

∂uk
∂t

(x, t) = ν∇2uk(x, t)− fk(uk(x, t)), (x, t) ∈ R2 × [0, T], (6)

with initial conditions:
uk(x, 0) = u0(x), x ∈ R2. (7)

According to [2] and references therein, for each k = 1, 2, . . . Problem (6)–(7) has an unique solution uk ∈
C2,1(R2 × [0, T]). Moreover, [19] implies that each convergent subsequence {ukl

}l=1,2,... ⊂ {uk}k=1,2,...
of corresponding solutions to Problem (6)–(7) weakly converges to a solution u of Problem (1)–(2) in
the space

W := {z ∈ L2(0, T; H1
0(Ω)) :

∂z
∂t

∈ L2(0, T; H−1(Ω))} (8)

endowed with the standard graph norm, where Ω ⊂ R2 is a bounded domain with sufficiently smooth
boundary and supp u0 ⊂ Ω.
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Further, to simplify the conclusions we consider as f the following function:

f (s) :=


{0}, s < 0;
[0, 1], s = 0;
{1}, s > 0.

(9)

We approximate it by the following Lipschitz functions:

fk(s) :=


0, s < 0;
ks, s ∈ [0, 1

k );
1, s ≥ 1

k ,
k = 1, 2, . . . . (10)

Thus, the first step of the algorithm is to replace the function f in Problem (1)–(2) with fk
considering Problem (6)–(7) for sufficiently large k.

Let us now consider Problem (6)–(7) for sufficiently large k. Theorem 16.1.1 from [15] allows
us to reformulate Problem (6)–(7) as an infinite dimensional stochastic optimization problem over
a certain function space. More exactly, let t ∈ C([0, T]; (0, ∞)), ξ ∈ C(R2; (0, ∞)), let (Ω,F ,P) be a
probability space, let T : Ω → [0, T] and X : Ω → R2 be independent random variables. Assume for
all A ∈ B([0, T]), B ∈ B(R2) that

P(T ∈ A) =
∫

A
t(t) dt and P(X ∈ B) =

∫
B

ξ(x) dx.

Note that fk : R → R be Lipschitz continuous, and let Lk : C2,1(R2 × [0, T],R) → [0, ∞] satisfy for all
v = (v(x, t))(x,t)∈R2×[0,T] ∈ C2,1(R2 × [0, T]) that

Lk(v) = E
[
|v(X , 0)− u0(X )|2 +

∣∣∣∣∂v
∂t

(X , T )− ν∇2v(X , T )+ fk(v(X , T ))

∣∣∣∣2
]

.

Theorem 16.1.1 from [15] implies that the following two statements are equivalent:

1. It holds that Lk(uk) = infv∈C2,1(R2×[0,T]) Lk(v).
2. It holds uk ∈ C2,1(R2 × [0, T]) is the solution of Problem (6)–(7).

Thus, the second step of the algorithm is to reduce the regularized Problem (6)–(7) to the infinite
dimensional stochastic optimization problem in C2,1(R2 × [0, T]) :{

Lk(v) → min,
v ∈ C2,1(R2 × [0, T]).

(11)

However, due to its infinite dimensionality, the optimization problem (11) is not yet suitable for
numerical computations. Therefore, we apply the third step, the so-called Deep Galerkin Method
(DGM) [20], that is, we transform this infinite dimensional stochastic optimization problem into a finite
dimensional one by incorporating artificial neural networks (ANNs); see [15,20] and references therein.
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Let a : R → R be differentiable, let h ∈ N, l1, l2, ..., lh, d ∈ N satisfy d = 4l1 + [∑h
k=2 lk(lk−1 + 1)] + lh + 1,

and let Lk,h : Rd → [0, ∞) satisfy for all θ ∈ Rd that

Lk,h(θ) = Lk(N θ,3
Ma,l1

,Ma,l2
,...,Ma,lh

,idR
)

= E
[∣∣∣∣N θ,3

Ma,l1
,...,Ma,lh

,idR
(X , 0)− u0(X )

∣∣∣∣2

+

∣∣∣∣∣∣
∂N θ,3

Ma,l1
,...,Ma,lh

,idR

∂t
(X , T )− ν∇2N θ,3

Ma,l1
,...,Ma,lh

,idR
(X , T )

+ fk

(
N θ,3

Ma,l1
,...,Ma,lh

,idR
(X , T )

)∣∣∣∣2
]

,

(12)

where Mψ,d is the d-dimensional version of a function ψ, that is,

Mψ,d : Rd → Rd

is the function which satisfies for all x = (xk)k∈{1,2,...,d} ∈ Rd, y = (yk)k∈{1,2,...,d} ∈ Rd with ∀k ∈
{1, 2, . . . , d} : yk = ψ(xk) that

Mψ,d(x) = y;

for each d, L ∈ N, l0, l1, ..., lL ∈ N, θ ∈ Rd satisfying d ≥ ∑L
k=1 lk(lk−1 + 1), and for a function Ψk :

Rlk → Rlk , k ∈ {1, 2, ..., L}, we denote by N θ,l0
Ψ1,Ψ2,...,ΨL

: Rl0 → RlL the realization function of the fully-
connected feedforward artificial neural network associated to θ with L + 1 layers with dimensions
(l0, l1, ..., lL) and activation functions (Ψ1, Ψ2, ...ΨL), defined as:

N θ,l0
Ψ1,Ψ2,...,ΨL

(x) = (ΨL ◦ A
θ,∑L−1

k=1 lk(lk−1+1)
lL ,lL−1

◦ ΨL−1 ◦ A
θ,∑L−2

k=1 lk(lk−1+1)
lL−1,lL−2

◦ ...

... ◦ Ψ2 ◦ A
θ,l1(l0+1)
l2,l1

◦ Ψ1 ◦ Aθ,0
l1,l0

)(x),

for all x ∈ Rl0 ; and for each d, m, n ∈ N, s ∈ N0 := N ∪ {0}, θ = (θ1, θ2, . . . , θd) ∈ Rd satisfying
d ≥ s + mn + m, the affine function Aθ

s,m,n from Rn to Rm associated to (θ, s), is defined as

Aθ
s,m,n(x) =


θs+1 θs+2 · · · θs+n

θs+n+1 θs+n+2 · · · θs+2n
θs+2n+1 θs+2n+2 · · · θs+3n

...
...

. . .
...

θs+(m−1)n+1 θs+(m−1)n+2 · · · θs+mn




x1

x2
...

xn

+


θs+mn+1

θs+mn+2
...

θs+mn+m


for all x = (x1, x2, . . . , xn) ∈ Rn.

The final step in the derivation involves approximating the minimizer of Lk,h using stochastic
gradient descent optimization methods [15]. Let ξ ∈ Rd, J ∈ N, (γn)n∈N ⊆ [0, ∞), for each n ∈ N,
j ∈ {1, 2, ..., J} let T : Ω → [0, T] and Xn,j : Ω → R2 be random variables. Let for each n ∈ N,
j ∈ {1, 2, ..., J}, A ∈ B([0, T]), B ∈ B(R2)

P(T ∈ A) = P(Tn,j ∈ A) and P(X ∈ B) = P(Xn,j ∈ B). (13)
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Let ℓk,h : Rd ×R2 × [0, T] → R is defined as

ℓk,h(θ, x, t) =
∣∣∣∣N θ,3

Ma,l1
,Ma,l2

,...,Ma,lh
,idR

(x, 0)− u0(x)
∣∣∣∣2

+

∣∣∣∣∣∣
∂N θ,3

Ma,l1
,Ma,l2

,...,Ma,lh
,idR

∂t
(x, t)− ν∇2N θ,3

Ma,l1
,Ma,l2

,...,Ma,lh
,idR

(x, t)

+ fk

(
N θ,3

Ma,l1
,Ma,l2

,...,Ma,lh
,idR

(x, t)
)∣∣∣∣2,

(14)

for each θ ∈ Rd, x ∈ R2, t ∈ [0, T], and let Θ = (Θn)n∈N0 : N0 × Ω → Rd satisfy for all n ∈ N that

Θ0 = ξ and Θn = Θn−1 − γn

[
1
J

J

∑
j=1

(∇θℓk,h)(Θn−1,Tn,j,Xn,j)

]
. (15)

Ultimately, for sufficiently large k, h, n ∈ N, the realization NΘn ,3
Ma,l1

,Ma,l2
,...,Ma,lh

,idR
is chosen as an

approximation:
NΘn ,3

Ma,l1
,Ma,l2

,...,Ma,lh
,idR

≈ u

of the unknown solution u of (1)–(2) in the space W defined in (8).
So, the following theorem is justified.

Theorem 1. Let T > 0, and u0 ∈ C∞
0 (R2). Then the sequence of {NΘn ,3

Ma,l1
,Ma,l2

,...,Ma,lh
,idR

}k,h,n defined in

(14)–(15) has an accumulation point in the weak topology of W defined in (8). Moreover, each partial limit of the
sequence in hands is weakly converges in W to the solution of Problem (1)–(2) in the sense of (3)–(4).

Proof. According to Steps 1–4 above, to derive PINNs, we approximate u in the space W defined in
(8) by a deep ANN Nθ : R2 × [0, T] → R with parameters θ ∈ Rd and minimize the empirical risk
associated to Lk(v) over the parameter space Rd. More precisely, we approximate the solution u of
(1)–(2) by Nθ∗ where

θ∗ ∈ arg min
θ∈Rd

1
n

n

∑
i=1

[
|Nθ(Xi, 0)− u0(Xi)|2 +

∣∣∣∣∂Nθ

∂t
(Xi, Ti)− ν∇2Nθ(Xi, Ti)+ fk(Nθ(Xi, Ti))

∣∣∣∣2
]

for a suitable choice of training data {(Xi, Ti)}n
i=1. Here n ∈ N denotes the number of training samples

and the pairs (Xi, Ti), i ∈ {1, 2, . . . , n}, denote the realizations of the random variables X and T.
Analogously, to derive DGMs, we approximate u by a deep Galerkin method (DGM) Gθ : R2 ×

[0, T] → R with parameters θ ∈ Rd and minimize the empirical risk associated to Lk,h(v) over the
parameter space Rd. More precisely, we approximate the solution u of (1)–(2) by Gθ∗ , where

θ∗ ∈ arg min
θ∈Rd

1
n

n

∑
i=1

[
|Gθ(Xi, 0)− u0(Xi)|2 +

∣∣∣∣∂Gθ

∂t
(Xi, Ti)− ν∇2Gθ(Xi, Ti)+ fk(Gθ(Xi, Ti))

∣∣∣∣2
]

for a suitable choice (please, see the third (final) step above for details) of training data {(Xi, Ti)}n
i=1.

Here n ∈ N denotes the number of training samples and the pairs (Xi, Ti), i ∈ {1, 2, . . . , n}, denote the
realizations of the random variables X and T.

The empirical risk minimization problems for PINNs and DGMs are typically solved using
SGD or variants thereof, such as Adam [15]. The gradients of the empirical risk with respect to the
parameters θ can be computed efficiently using automatic differentiation, which is commonly available
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in deep learning frameworks such as TensorFlow and PyTorch. We provide implementation details
and numerical simulations for PINNs and DGMs in the next section.

3. Numerical Implementation

Let us present a straightforward implementation of the method as detailed in the previous Section
for approximating a solution u ∈ W of Problem (1)–(2) with ν = 0.005, and the initial condition
u0(x) := ψ(x2

1 + x2
2), where

ψ(s) :=

{
sin(8π exp

(
1 − 3

3−s
)
, s ∈ [0, 3);

0, otherwise,
(16)

(x1, x2) ∈ R2. Let k = 0.01. This implementation follows the original proposal by [16], where 20.000
realizations of the random variable (X , T ) are first chosen. Here, T is uniformly distributed over
[0, 3], and X follows a normal distribution in R2 with mean 0 ∈ R2 and covariance 4I2 ∈ R2×2. A fully
connected feed-forward ANN with 4 hidden layers, each containing 50 neurons, and employing the
Swish activation function is then trained. The training process uses batches of size 256, sampled from
the 20.000 preselected realizations of (X , T ). Optimization is carried out using the Adam SGD method.
A plot of the resulting approximation of the solution u after 20.000 training steps is shown in Figure 1.

Figure 1. Plots for the functions [−3, 3]2 ∋ x 7→ U(x, t) ∈ R, where t ∈ {0, 0.06, 0.12, 0.18, 0.24, 0.3} and
U ∈ C2,1(R2 × [0, 3]) is an approximation of the solution u of Problem (1)–(2) with ν = 0.005, u0(x) :=
ψ(x2

1 + x2
2), where ψ is defined in (16), computed by means of the PINN method as implemented in

Source code Listing 1.
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1 import os
2 import torch
3 import matplotlib.pyplot as plt
4 from torch.autograd import grad
5 from matplotlib.gridspec import GridSpec
6 from matplotlib.cm import ScalarMappable
7

8 dev = torch.device("cuda:0" if torch.cuda.is_available () else "cpu")
9

10 T = {\ color{black }0.3} # the time horizon
11 M = 20000 # the number of training samples
12 k = {\ color{black }10} # the parameter
13

14 torch.manual_seed (0)
15

16 x_data = torch.randn(M, 2).to(dev) * 2
17 t_data = torch.rand(M, 1).to(dev) * T
18

19 # The initial value
20 def phi(x):
21 x1 , x2 = x[:, 0], x[:, 1]
22 r_squared = x1.square () + x2.square ()
23 mask = r_squared < 3
24 result = torch.zeros_like(r_squared)
25 exponent = 1 - 3 / (3 - r_squared)
26 result[mask] = (8 * torch.pi * torch.exp(exponent[mask])).sin()
27 return result.unsqueeze (1)
28

29 # The interaction function
30

31 def fk(u, k):
32 return torch.where(u > 1/k, torch.tensor (1.0, device=u.device),
33 torch.where(u < 0, torch.tensor (0.0, device=u

.device), u * k))
34

35 N = torch.nn.Sequential(
36 torch.nn.Linear(3, 50), torch.nn.SiLU(),
37 torch.nn.Linear (50, 50), torch.nn.SiLU(),
38 torch.nn.Linear (50, 50), torch.nn.SiLU(),
39 torch.nn.Linear (50, 50), torch.nn.SiLU(),
40 torch.nn.Linear (50, 1),
41 ).to(dev)
42

43 optimizer = torch.optim.Adam(N.parameters (), lr=1e-3)
44

45 J = 256 # the batch size
46

47 for i in range (20000):
48 if i % 100 == 0:
49 print(f"Iteration {i}")
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50 # Choose a random batch of training samples
51 indices = torch.randint(0, M, (J,))
52 x = x_data[indices , :]
53 t = t_data[indices , :]
54

55 x1 , x2 = x[:, 0:1], x[:, 1:2]
56

57 x1.requires_grad_ ()
58 x2.requires_grad_ ()
59 t.requires_grad_ ()
60

61 optimizer.zero_grad ()
62

63 # Denoting by u the realization function of the ANN , compute
64 # u(0, x) for each x in the batch
65 u0 = N(torch.hstack ((torch.zeros_like(t), x)))
66 # Compute the loss for the initial condition
67 initial_loss = (u0 - phi(x)).square ().mean()
68

69 # Compute the partial derivatives using automatic
70 # differentiation
71 u = N(torch.hstack ((t, x1 , x2)))
72 ones = torch.ones_like(u)
73 u_t = grad(u, t, ones , create_graph=True)[0]
74 u_x1 = grad(u, x1, ones , create_graph=True)[0]
75 u_x2 = grad(u, x2, ones , create_graph=True)[0]
76 ones = torch.ones_like(u_x1)
77 u_x1x1 = grad(u_x1 , x1, ones , create_graph=True)[0]
78 u_x2x2 = grad(u_x2 , x2, ones , create_graph=True)[0]
79

80 # Compute the loss for the PDE
81 Laplace = u_x1x1 + u_x2x2
82 pde_loss = (u_t - (0.005 * Laplace - fk(u, k))).square ().mean()
83

84 # Compute the total loss and perform a gradient step
85 loss = initial_loss + pde_loss
86 loss.backward ()
87 optimizer.step()
88

89 if i % 100 == 0:
90 print(f"Loss at iteration {i}: {loss.item()}")
91

92 ### Function to plot the solution at different times
93 def plot_solution(i):
94 mesh = 128
95 a, b = -3, 3
96 x, y = torch.meshgrid(
97 torch.linspace(a, b, mesh),
98 torch.linspace(a, b, mesh),
99 indexing="xy"
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100 )
101 x = x.reshape ((mesh * mesh , 1)).to(dev)
102 y = y.reshape ((mesh * mesh , 1)).to(dev)
103 t = torch.full((mesh * mesh , 1), i * T / 5).to(dev)
104 z = N(torch.cat((t, x, y), 1))
105 z = z.detach ().cpu().numpy().reshape ((mesh , mesh))
106 return i, z
107

108 def save_plot(results):
109 gs = GridSpec(2, 4, width_ratios =[1, 1, 1, 0.05])
110 fig = plt.figure(figsize =(16, 10), dpi =300)
111

112 a, b = -3, 3
113 for i, z in results:
114 ax = fig.add_subplot(gs[i // 3, i % 3])
115 ax.set_title(f"t = {i * T / 5}")
116 ax.imshow(
117 z, cmap="viridis", extent =[a, b, a, b], vmin=-1.2, vmax

=1.2
118 )
119

120 # Add the colorbar to the figure
121 norm = plt.Normalize(vmin=-1.2, vmax =1.2)
122 sm = ScalarMappable(cmap="viridis", norm=norm)
123 cax = fig.add_subplot(gs[:, 3])
124 fig.colorbar(sm, cax=cax , orientation=’vertical ’)
125

126 # Create the directory if it does not exist
127 output_dir = "../ plots"
128 os.makedirs(output_dir , exist_ok=True)
129 fig.savefig(os.path.join(output_dir , "pinn.pdf"), bbox_inches="

tight")

Listing 1. Modified version of sourse code from Section 16.3 of [15].

4. Conclusions

In this paper, we presented a novel machine learning methodology for approximating solutions to
reaction-diffusion equations with multivalued interaction functions, a class of equations characterized
by non-unique solutions. The proposed approach leverages the power of physics-informed neural
networks (PINNs) to provide approximate solutions, addressing the need for new methods in this
domain.

Our methodology consists of four key steps:

1. Approximation of the Interaction Function: We replaced the multivalued interaction function
with a sequence of Lipschitz continuous functions, ensuring the problem becomes well-posed.

2. Formulation of the Optimization Problem: The regularized problem was reformulated as an
infinite-dimensional stochastic optimization problem.

3. Application of Deep Galerkin Method (DGM): We transformed the infinite-dimensional problem
into a finite-dimensional one by incorporating artificial neural networks (ANNs).

4. Optimization and Approximation: Using stochastic gradient descent (SGD) optimization meth-
ods, we approximated the minimizer of the empirical risk, yielding an approximation of the
unknown solution.
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The numerical implementation demonstrated the effectiveness of the proposed method. We used
a fully connected feed-forward ANN to approximate the solution of a reaction-diffusion equation with
specific initial conditions. The results showed that the PINN method could approximate solutions
accurately, as evidenced by the visual plots.

The key contributions of this paper are as follows:

• Development of a Machine Learning Framework: We established a robust framework using
PINNs to tackle reaction-diffusion equations with multivalued interaction functions.

• Handling Non-Uniqueness: Our method addresses the challenge of non-unique solutions, pro-
viding a practical tool for approximating generalized solutions.

• Numerical Validation: We provided a detailed implementation and numerical validation, demon-
strating the practical applicability of the proposed approach.

Future work could explore the extension of this methodology to other classes of partial differential
equations with multivalued interaction functions, as well as further optimization and refinement of
the neural network architectures used in the approximation process. The integration of more advanced
machine learning techniques and the exploration of their impact on the accuracy and efficiency of the
solutions also present promising avenues for research.

Author Contributions: All the authors contributed equally to this work.

Funding: “This research was funded by EIT Manufacturing asbl, 0123U103025, grant: “EuroSpaceHub - increasing
the transfer of space innovations and technologies by bringing together the scientific community, industry and
startups in the space industry”. The second and the third authors were partially supported by NRFU project
No. 2023.03/0074 “Infinite-dimensional evolutionary equations with multivalued and stochastic dynamics”. The
authors thank the anonymous reviewers for their suggestions, which have improved the manuscript..

Institutional Review Board Statement: The authors have nothing to declare.

Informed Consent Statement: The authors have nothing to declare.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated or analyzed
during the current study.

Conflicts of Interest: The author have no relevant financial or non-financial interests to disclose.

References

1. Zgurovsky, M.Z.; Mel’nik, V.S.; Kasyanov, P.O. Evolution Inclusions and Variation Inequalities for Earth Data
Processing I: Operator Inclusions and Variation Inequalities for Earth Data Processing; Vol. 24, Springer Science &
Business Media, 2010.

2. Zgurovsky, M.Z.; Kasyanov, P.O. Qualitative and quantitative analysis of nonlinear systems; Springer, 2018.
3. Paszke, A.; Sam, G.; Chintala.; Soumith.; Chanan, G. PyTorch, 2016. Accessed on June 5, 2024.
4. Rust, J. Using randomization to break the curse of dimensionality. Econometrica: Journal of the Econometric

Society 1997, pp. 487–516.
5. Denkowski, Z.; Migórski, S.; Schaefer, R.; Telega, H. Inverse problem for the prelinear filtration of ground

water. Computer Assisted Methods in Engineering and Science 2023, 3, 97–107.
6. Eikmeier, A. On the existence of solutions to multivalued differential equations. PhD thesis, Dissertation,

Berlin, Technische Universität Berlin, 2022, 2023.
7. Papageorgiou, N.S.; Zhang, J.; Zhang, W. Solutions with sign information for noncoercive double phase

equations. The Journal of Geometric Analysis 2024, 34, 14.
8. Liu, Y.; Liu, Z.; Papageorgiou, N.S. Sensitivity analysis of optimal control problems driven by dynamic

history-dependent variational-hemivariational inequalities. Journal of Differential Equations 2023, 342, 559–595.
9. Peng, Z.; Gamorski, P.; Migórski, S. Boundary optimal control of a dynamic frictional contact problem.

ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 2020,
100, e201900144.

10. Cintra, W.; Freitas, M.M.; Ma, T.F.; Marín-Rubio, P. Multivalued dynamics of non-autonomous reaction–
diffusion equation with nonlinear advection term. Chaos, Solitons & Fractals 2024, 180, 114499.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 December 2024 doi:10.20944/preprints202407.2340.v2

https://doi.org/10.20944/preprints202407.2340.v2


11 of 11

11. Freitas, M.M.; Cintra, W. Multivalued random dynamics of reaction-diffusion-advection equations driven
by nonlinear colored noise. Communications on Pure and Applied Analysis 2024, pp. 0–0.

12. Zhao, J.C.; Ma, Z.X. GLOBAL ATTRACTOR FOR A PARTLY DISSIPATIVE REACTION-DIFFUSION
SYSTEM WITH DISCONTINUOUS NONLINEARITY. Discrete & Continuous Dynamical Systems-Series B
2023, 28.

13. Gu, A.; Wang, B. Random attractors of reaction-diffusion equations without uniqueness driven by nonlinear
colored noise. Journal of Mathematical Analysis and Applications 2020, 486, 123880.

14. Zhang, P.; Gu, A. Attractors for multi-valued lattice dynamical systems with nonlinear diffusion terms.
Stochastics and Dynamics 2022, 22, 2140013.

15. Jentzen, A.; Kuckuck, B.; von Wurstemberger, P. Mathematical introduction to deep learning: methods,
implementations, and theory. arXiv preprint arXiv:2310.20360 2023.

16. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational physics 2019, 378, 686–707.

17. Beck, C.; Hutzenthaler, M.; Jentzen, A.; Kuckuck, B. An overview on deep learning-based approximation
methods for partial differential equations. Discrete and Continuous Dynamical Systems-B 2023, 28, 3697–3746.

18. Feinberg, E.A.; Kasyanov, P.O.; Royset, J.O. Epi-Convergence of Expectation Functions under Varying
Measures and Integrands. Journal of Convex Analysis 2023, 30, 917–936.

19. Zgurovsky, M.Z.; Kasyanov, P.O.; Kapustyan, O.V.; Valero, J.; Zadoianchuk, N.V. Evolution Inclusions and
Variation Inequalities for Earth Data Processing III: Long-Time Behavior of Evolution Inclusions Solutions in Earth
Data Analysis; Vol. 27, Springer Science & Business Media, 2012.

20. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations.
Journal of computational physics 2018, 375, 1339–1364.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 December 2024 doi:10.20944/preprints202407.2340.v2

https://doi.org/10.20944/preprints202407.2340.v2

	Introduction
	Methodology of Approximate Solutions for Reaction-Diffusion Equations with Multivalued Interaction Functions
	Numerical Implementation
	Conclusions
	References

