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Abstract: This paper presents machine learning methods for approximate solutions of reaction-diffusion equations
with multivalued interaction functions. This approach addresses the challenge of finding all possible solutions for
such equations, which often lack uniqueness. The proposed method utilizes physics-informed neural networks

(PINNS) to approximate generalized solutions.

Keywords: reaction-diffusion equations; multivalued interaction functions; machine learning; physics-informed

neural networks; approximate solutions

1. Introduction

In this paper we establish machine learning methods for approximate solutions of classes of
reaction-diffusion equations with multivalued interaction functions allowing for non-unique solutions
of the Cauchy problem. The relevance of this problem is primarily due to the lack of methods for
finding all solutions for such mathematical objects. Therefore, there is an expectation that another
approximate method will provide us with yet another solution for these problems. In addition, methods
for approximate solutions of nonlinear systems with partial derivatives without uniqueness are mostly
theoretical and are used primarily in qualitative research [1,2]. The availability of computational
power for parallel computations and the creation of open-source software libraries such as PyTorch [3]
have stimulated a new wave of development in IT and artificial intelligence methods. Sample-based
methods for approximate solutions of such problems were first proposed in [4]. To date, such systems
with smooth nonlinearities have been qualitatively and numerically studied. There is a need to develop
a methodology for approximating generalized solutions of nonlinear differential-operator systems
without uniqueness using recurrent neural networks, sample-based methods, and variations of the
Monte Carlo method.

Let T,v > 0, and ug : R> — R be a sufficiently smooth function. We consider the problem:

%’:(x, £ € vV2u(x, ) — fu(x ), () € R2x [0,T], 1)

with initial conditions:
u(x,0) = ug(x), x€R? ()

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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where f : R — R is a function satisfying the condition of at most linear growth:
AC>0: |f(s)|<C(1+]s|]) foreachseR.

We note that such nonlinearities appear in impulse feedback control problems, etc. [5-9]. Moreover,
the global attractor for solutions of Problem 1 may be a nontrivial set in the general case and can
have arbitrarily large fractal dimension. The convergence rate of solutions to the attractor may not be
exponential; see [10-14] and references therein.

For a fixed up € CJ°(R?) let Q C R? be a bounded domain with sufficiently smooth boundary
and supp ug C Q). According to [1] (see the book and references therein), there exists a weak solution
u=u(xt) € L*(0,T; H}(Q)) with % € L2(0, T; H1(Q2)), of Problem (1)~(2) in the following sense:

/‘/ u(x, )0 ntyum+u/'/ (Vu(x, t) - Vo(x) +d(x, t)o(x))y(t)dt = 0, 3)
forallv € C5°(Q), n € C°(0,T), where d : R x [0, T] — R be a measurable function such that
d(x,t) € f(u(x,t)) forae. (x,t) € R? x (0,T). 4)

Such inclusions with multivalued nonlinearities appear in problems of climatology (Budyko-Sellers
Model), chemical kinetics (Belousov-Zhabotinsky equations), biology (Lotka—Volterra systems with
diffusion), quantum mechanics (FitzHugh-Nagumo system), engineering and medicine (several
syntheses and impulse control problems); see [1,2] and references therein.

The main goal of this paper is to develop an algorithm for approximation of solutions for classes of
reaction-diffusion equations with multivalued interaction functions allowing for non-unique solutions
of the Cauchy problem (1)—(2) via the so-called physics-informed neural networks (PINNs); [15-17]
and references therein.

2. Methodology of Approximate Solutions for Reaction-Diffusion Equations with Multivalued
Interaction Functions

Fix an arbitrary T > 0, and a sufficiently smooth function ug : R*> — R. We approximate the
function f by the following Lipschitz functions satisfying the condition of at most linear growth
(Pasch-Hausdorff envelopes):

filx) i= inf {f() +Klx =¥}, xeR; ©)

see [18] and references therein. For a fixed k = 1,2, ..., consider the problem:

auk

g(x, t) = szuk(x,t) — fi(ug(x, 1)), (x,t) € R? x [0,T], (6)

with initial conditions:
u(x,0) = up(x), x €R% (7)

According to [2] and references therein, for each k = 1,2, ... Problem (6)—(7) has an unique solution u; €
C*!(R? x [0, T]). Moreover, [19] implies that each convergent subsequence {uy, }1—15, . C {utg}r=12,..
of corresponding solutions to Problem (6)—(7) weakly converges to a solution u of Problem (1)—(2) in
the space

W:&GHQP%KM'%GHMTH(QH ®)

endowed with the standard graph norm, where Q C R? is a bounded domain with sufficiently smooth
boundary and supp 1y C Q.
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Further, to simplify the conclusions we consider as f the following function:
{0}, s<0;
fls):=19 01, s=0 )
{1}, s>0.
We approximate it by the following Lipschitz functions:
0, s<0;
fr(s) =< ks, s€[0,1); k=12,.... (10)
1, s>4,

Thus, the first step of the algorithm is to replace the function f in Problem (1)-(2) with fi
considering Problem (6)—(7) for sufficiently large k.

Let us now consider Problem (6)—(7) for sufficiently large k. Theorem 16.1.1 from [15] allows
us to reformulate Problem (6)—(7) as an infinite dimensional stochastic optimization problem over
a certain function space. More exactly, let t € C([0,T]; (0,00)), & € C(R%;(0,0)), let (Q, F,P) be a
probability space, let 7 : QO — [0, T] and X : Q — R? be independent random variables. Assume for
all A € B([0,T]), B € B(R?) that

P(T € A) :/At(t) it and P(X < B) :/Bg(x) dx.

Note that f; : R — R be Lipschitz continuous, and let £; : C*!(R? x [0, T],R) — [0, oc] satisfy for all
v = (0(x,1)) (ryerexfo7) € C7(R? x [0, T]) that
2]

al(/\f, T) = vV20(X, T)+fi(v(X, T))

0(,0) — uo(A) P+ |

ﬁk(l)) =E

Theorem 16.1.1 from [15] implies that the following two statements are equivalent:

1. Ttholds that Ly (uy) = inf, 21 (R2x[0,T]) Ly (v).
2. Itholds uy € C>'(R? x [0, T]) is the solution of Problem (6)—(7).

Thus, the second step of the algorithm is to reduce the regularized Problem (6)—(7) to the infinite
dimensional stochastic optimization problem in C>!(R? x [0, T]) :

Ly(v) — min,
{ v € C21(R? x [0,T]). (1)

However, due to its infinite dimensionality, the optimization problem (11) is not yet suitable for
numerical computations. Therefore, we apply the third step, the so-called Deep Galerkin Method
(DGM) [20], that is, we transform this infinite dimensional stochastic optimization problem into a finite
dimensional one by incorporating artificial neural networks (ANNSs); see [15,20] and references therein.
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Leta : R — R be differentiable, leth € N, 14,1, ..., 1,0 € Nsatisfy 0 = 415 + [ZZZZ (e + 1)+ 1,4+ 1,
and let £y j, : R® — [0, 00) satisfy for all § € R° that

Lin(0) = LN on Dﬁu,lh,idR)

u,llr alyreer
0,3 2
—E| NG, ony, e (X00) = 0(X)
oNE3 . 12
Maty - May AdR 20703
+ 18t — (X, T)-vV Nma,xl,~-~,9ﬁa,zh,idR(X' T)

i

where sml,,,d is the d-dimensional version of a function ¢, that is,

0,3
+fk (Nmuh ’""mﬂ,lh Adg (X’ T)>

My,q : RS — RY

is the function which satisfies for all x = (x¢)keq10,.4) € R, y = Widkeqi2,...4y € R with Vk €
{1,2,...,d} : yx = P(xi) that

My, (x)=y;
for each d,L € N, Iy, I1,...,1; € N, € R® satisfying o > Z,Igzl Iy(Iy_1 + 1), and for a function ¥y :
Rlk — Rk, k e {1,2,...,L}, we denote by /\/\gll ?‘Yz,---,‘YL : Rl — R/t the realization function of the fully-
connected feedforward artificial neural network associated to & with L + 1 layers with dimensions
(Ip, 1, ..., 11 ) and activation functions (Y1, ¥5,...¥ 1), defined as:

0,1 . 0,5 (1 +1) 0. 2 e (le_1+1)
N‘Yll‘Yzln-,‘YL (x) - (‘YL © AlLrlL—l o¥r-10 AIL—I/ZL—Z Qe

..o¥s0 Alezrflll(loJrl) o¥;o0 AQ,O )(X),

Iylo

for all x € Rb; and for each d,m,n € N,s € Ny := NU{0},0 = (61,6,,...,04) € R4 satisfying
d > s 4+ mn + m, the affine function Agrm,n from R" to R™ associated to (6, s), is defined as

95+1 Os+2 o Osqn 0
s+n+1 s+n+2 to s+2n 0
Adn(x) = s+2n+1 51242 cor o Usyan 4 )
9 0 0 Xn Os+mnt+m
s+(m—1)n+1  Ys+(m—-1)n+2 *°° Ust+mn

forall x = (xq,x2,...,%,) € R™.

The final step in the derivation involves approximating the minimizer of £y using stochastic
gradient descent optimization methods [15]. Let & € R?, ] € N, (,),en C [0,00), for each n € N,
je{L2..,J}letT: Q — [0,T] and X, : Q — R? be random variables. Let for each n € N,
j€{1,2,..,]}, AeB(0,T)), B € B(R?)

P(T € A)=P(S,; € A) and P(X € B) =P(X,, € B). (13)
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Let £, : R? x R? x [0, T] — R is defined as
0,3 2
gk,h(e’ X, t) = 9:na,ll ,ma,lzz-.-,mm’h Adg (x’ 0) N MO(.X')
Ny .
Mty Mty Mg, idR 2. 03

’ . . — ’ . 14
+ 5 (x,t) —vV Nma,llrma,lzr'--/ma,lhrld]}{(x/ t) (14)

0,3 2

+fk <N My gy My 1y My, idy (x, t)) ’

foreachf € R?, x € R?,t € [0,T],and let ® = (On)nen, : No x Q — R? satisfy for all n € N that

J

1
©=¢ and ©, =0,-1—Tn [ Y (Volin) (©u_1,Tnj X )

. 15
1L (15)

n 13

. .. . ) .
Ultimately, for sufficiently large k,h,n € N, the realization Nm"’ll My My i is chosen as an

approximation:
0,3

. ~u
malll ,mﬂ,lz,...,mu,lh ,ldR

of the unknown solution u of (1)—-(2) in the space W defined in (8).
So, the following theorem is justified.

Theorem 1. Let T > 0, and ug € CP(R?). Then the sequence of {Ng{’? M, 1, idR}k,h,n defined in
alyr==ra,ly s a,ly o

(14)—(15) has an accumulation point in the weak topology of W defined in (8). Moreover, each partial limit of the
sequence in hands is weakly converges in W to the solution of Problem (1)—(2) in the sense of (3)—(4).

Proof. According to Steps 1-4 above, to derive PINNs, we approximate u in the space W defined in
(8) by a deep ANN N : R? x [0, T] — R with parameters # € R® and minimize the empirical risk
associated to Li(v) over the parameter space R°. More precisely, we approximate the solution u of
(1)~(2) by Ny where

2]

for a suitable choice of training data {(X;, T;) }/_,. Here n € N denotes the number of training samples
and the pairs (X;, T;), i € {1,2,...,n}, denote the realizations of the random variables X and T.
Analogously, to derive DGMs, we approximate u by a deep Galerkin method (DGM) Gy : R? x
[0, T] — R with parameters § € R® and minimize the empirical risk associated to Ly j,(v) over the
parameter space R®. More precisely, we approximate the solution u of (1)~(2) by Gy+, where
T

for a suitable choice (please, see the third (final) step above for details) of training data {(X;, T;) }7_;.
Here n € N denotes the number of training samples and the pairs (X;, T;),i € {1,2,...,n}, denote the

l n
0* € arg min —
geeRD n E{

NG5 0) — (X + | 200 (X, Ty) — w9 A (X T N (X, T)

1 n
0* € arg min —
8 jers n l;

1Go(X;,0) — uo(X;)|* + %(Xir T)) —vV2Ge(X, Ti)+ fi(Go (X, Ti))

realizations of the random variables X and T. [

The empirical risk minimization problems for PINNs and DGMs are typically solved using
SGD or variants thereof, such as Adam [15]. The gradients of the empirical risk with respect to the
parameters 6 can be computed efficiently using automatic differentiation, which is commonly available
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in deep learning frameworks such as TensorFlow and PyTorch. We provide implementation details
and numerical simulations for PINNs and DGMs in the next section.

3. Numerical Implementation

Let us present a straightforward implementation of the method as detailed in the previous Section
for approximating a solution u € W of Problem (1)-(2) with v = 0.005, and the initial condition
up(x) := ¢(x? + x3), where

Y(s) =

sin(8exp(1— 52), s€[0,3); 16

0, otherwise, (16)
(x1,%2) € R2. Let k = 0.01. This implementation follows the original proposal by [16], where 20.000
realizations of the random variable (X, 7") are first chosen. Here, 7 is uniformly distributed over
[0,3], and X follows a normal distribution in R? with mean 0 € R? and covariance 4, € R?*2. A fully
connected feed-forward ANN with 4 hidden layers, each containing 50 neurons, and employing the
Swish activation function is then trained. The training process uses batches of size 256, sampled from
the 20.000 preselected realizations of (X, 7). Optimization is carried out using the Adam SGD method.
A plot of the resulting approximation of the solution u after 20.000 training steps is shown in Figure 1.

t=0.06 t=0.12

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 1. Plots for the functions [—3,3]% > x + U(x,t) € R, where t € {0,0.06,0.12,0.18,0.24,0.3} and
U € C*1(R? x [0,3]) is an approximation of the solution u of Problem (1)~(2) with v = 0.005, ug(x) :=
(x2 + x3), where 1 is defined in (16), computed by means of the PINN method as implemented in
Source code Listing 1.
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/| import os
2| import torch
s/ import matplotlib.pyplot as plt
s/ from torch.autograd import grad
s from matplotlib.gridspec import GridSpec
o/ from matplotlib.cm import ScalarMappable
sdev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
0|T = {\color{black}0.3} # the time horizon
1n|M = 20000 # the number of training samples
2lk = {\color{black}10} # the parameter
13
iz torch.manual_seed (0)
15
| x_data = torch.randn (M, 2).to(dev) * 2
7|t_data = torch.rand(M, 1).to(dev) * T
18
v|# The initial value
| def phi(x):
21 x1, x2 = x[:, 0], x[:, 1]
» r_squared = x1.square() + x2.square()
23 mask = r_squared < 3
24 result = torch.zeros_like(r_squared)
25 exponent = 1 - 3 / (3 - r_squared)
2% result [mask] = (8 * torch.pi * torch.exp(exponent[mask])).sin()
% return result.unsqueeze (1)
28
»|# The interaction function
50
sl def fk(u, k):
2 return torch.where(u > 1/k, torch.tensor (1.0, device=u.device),
% torch.where(u < 0, torch.tensor (0.0, device=u
.device), u * k))
34
s|N = torch.nn.Sequential(
3 torch.nn.Linear (3, 50), torch.nn.SiLU(),
37 torch.nn.Linear (50, 50), torch.nn.SiLU(),
38 torch.nn.Linear (50, 50), torch.nn.SiLU(),
3 torch.nn.Linear (50, 50), torch.nn.SiLU(),
40 torch.nn.Linear (50, 1),
) .to(dev)
42
sl optimizer = torch.optim.Adam(N.parameters(), lr=1e-3)
14
51 J = 256 # the batch size
16
w|for i in range (20000) :
13 if i % 100 == O:
49 print (f"Iteration {il}")
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50 # Choose a random batch of training samples
51 indices = torch.randint (0, M, (J,))
52 x = x_datal[indices, :]
53 t = t_datalindices, :]
54
55 x1, x2 = x[:, 0:11, =x[:, 1:2]
57 x1.requires_grad_()
58 x2.requires_grad_ ()
59 t.requires_grad_()
60
o1 optimizer.zero_grad ()
62
63 # Denoting by u the realization function of the ANN, compute
o4 # u(0, x) for each x in the batch
65 u0 = N(torch.hstack((torch.zeros_like(t), x)))
66 # Compute the loss for the initial condition
6 initial_loss = (u0 - phi(x)).square() .mean ()
68
69 # Compute the partial derivatives using automatic
70 # differentiation
7 u = N(torch.hstack((t, x1, x2)))
7 ones = torch.ones_like (u)
73 u_t = grad(u, t, ones, create_graph=True) [0]
74 u_x1 = grad(u, x1, ones, create_graph=True) [0]
75 u_x2 = grad(u, x2, ones, create_graph=True) [0]
76 ones = torch.ones_like(u_x1)
77 u_x1x1 = grad(u_x1, x1, ones, create_graph=True) [0]
78 u_x2x2 = grad(u_x2, x2, ones, create_graph=True) [0]
50 # Compute the loss for the PDE
81 Laplace = u_x1x1 + u_x2x2
82 pde_loss = (u_t - (0.005 * Laplace - fk(u, k))).square().mean()
84 # Compute the total loss and perform a gradient step
85 loss = initial_loss + pde_loss
86 loss.backward ()
% optimizer.step ()
88
89 if i % 100 == O0:
%0 print (f"Loss at iteration {i}: {loss.item()}")
91
o| ### Function to plot the solution at different times
s|def plot_solution(i):
94 mesh = 128
95 a, b = —3, 3
% X, y = torch.meshgrid(
o7 torch.linspace(a, b, mesh),
98 torch.linspace(a, b, mesh),
99 indexing="xy"
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)
x = x.reshape((mesh * mesh, 1)).to(dev)
y = y.reshape((mesh * mesh, 1)).to(dev)
103 t = torch.full((mesh * mesh, 1), i * T / 5).to(dev)
z = N(torch.cat((t, x, y), 1))
z = z.detach().cpu().numpy () .reshape ((mesh, mesh))
return i, z

ws| def save_plot(results):
109 gs = GridSpec (2, 4, width_ratios=[1, 1, 1, 0.05])
110 fig = plt.figure(figsize=(16, 10), dpi=300)

12 a, b = -3, 3

113 for i, z in results:

4 ax = fig.add_subplot(gs[i // 3, i % 31)
115 ax.set_title(f"t = {i = T / 5}")

116 ax.imshow (

117 z, cmap="viridis", extent=[a, b, a, bl], vmin=-1.2, vmax

=1.2
118 )
119
120 # Add the colorbar to the figure
121 norm = plt.Normalize(vmin=-1.2, vmax=1.2)
122 sm = ScalarMappable(cmap="viridis", norm=norm)
123 cax = fig.add_subplot(gsl[:, 31)
124 fig.colorbar(sm, cax=cax, orientation=’vertical’)
125
126 # Create the directory if it does not exist
127 output_dir = "../plots"
128 os.makedirs (output_dir, exist_ok=True)

129 fig.savefig(os.path.join(output_dir, "pinn.pdf"), bbox_inches="
tight")

Listing 1. Modified version of sourse code from Section 16.3 of [15].

4. Conclusions

In this paper, we presented a novel machine learning methodology for approximating solutions to
reaction-diffusion equations with multivalued interaction functions, a class of equations characterized
by non-unique solutions. The proposed approach leverages the power of physics-informed neural
networks (PINNSs) to provide approximate solutions, addressing the need for new methods in this
domain.

Our methodology consists of four key steps:

1. Approximation of the Interaction Function: We replaced the multivalued interaction function

with a sequence of Lipschitz continuous functions, ensuring the problem becomes well-posed.
2. Formulation of the Optimization Problem: The regularized problem was reformulated as an

infinite-dimensional stochastic optimization problem.
3. Application of Deep Galerkin Method (DGM): We transformed the infinite-dimensional problem

into a finite-dimensional one by incorporating artificial neural networks (ANNSs).
4. Optimization and Approximation: Using stochastic gradient descent (SGD) optimization meth-

ods, we approximated the minimizer of the empirical risk, yielding an approximation of the
unknown solution.
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The numerical implementation demonstrated the effectiveness of the proposed method. We used
a fully connected feed-forward ANN to approximate the solution of a reaction-diffusion equation with
specific initial conditions. The results showed that the PINN method could approximate solutions
accurately, as evidenced by the visual plots.

The key contributions of this paper are as follows:

e Development of a Machine Learning Framework: We established a robust framework using
PINN:Ss to tackle reaction-diffusion equations with multivalued interaction functions.

¢ Handling Non-Uniqueness: Our method addresses the challenge of non-unique solutions, pro-
viding a practical tool for approximating generalized solutions.

*  Numerical Validation: We provided a detailed implementation and numerical validation, demon-
strating the practical applicability of the proposed approach.

Future work could explore the extension of this methodology to other classes of partial differential
equations with multivalued interaction functions, as well as further optimization and refinement of
the neural network architectures used in the approximation process. The integration of more advanced
machine learning techniques and the exploration of their impact on the accuracy and efficiency of the
solutions also present promising avenues for research.
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