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Abstract

Caenorhabditis elegans (C. elegans) is a microscopic, free-living nematode widely used as a model
organism for studying fundamental biological processes, including development. Moreover, because
of its rapid growth and simple maintenance, C. elegans is widely used in high-throughput screening
studies. However, conventional methods for analyzing these morphological and developmental
characteristics often rely on manual microscopy and human evaluations. These methods are labor
intensive, slow, prone to mistakes, and not easy to scale up, particularly for high-throughput studies
where vast amounts of information are generated. To solve these problems, researchers can bypass
these methodologies by employing machine learning which can perform consistent and error-free
data processing. This review analyses how various machine learning methods have been employed
to counteract the problems faced in traditional experimental approaches. Their impact on the
enhancement of precision, effectiveness, and scalability of developmental studies in C. elegans has
been discussed, as well as the issues that pose constraints to the adoption of these technologies in
low-resource laboratories.

Keywords: Caenorhabditis elegans; morphology; development; machine learning; neural network;
automation

1. Introduction to Caenorhabditis Elegans as a Model Organism

Caenorhabditis elegans (C. elegans) are microscopic, free-living nematodes that grow around ~1
mm in length. Regardless of its small size, C. elegans shares significant genetic similarities to higher
living organisms including humans, and many of its key biological pathways are highly conserved
as well [1]. C. elegans have a variety of nociceptors, including Amphid Sensory Head (ASH), Amphid
Dorsal Left/Right (ADL), and Phasmid Posterior B (PHB) neurons, that detect noxious stimuli
including mechanical pressure, high osmolarity, or chemical repellents [2,3]. C. elegans are non-
sentient animals and lack pain perception, thus allowing researchers to adopt them as an ethical
alternative animal model for preliminary research before proceeding to higher animal models, such
as mice or rats. These attributes indicate C. elegans as a significant animal model for studying
fundamental biological processes, disorders, and diseases.

Studies have shown the significance of C. elegans as a model organism in investigating the
various developmental processes, including early embryogenesis [4], cell fate determination [5],
organogenesis [6], neuronal development [7], and aging [8]. Furthermore, the cell lineage of C. elegans
is completely mapped [9], and the entire developmental trajectory from a single-cell zygote to a
mature adult is completely documented [5]. This allows researchers to investigate the fundamental
developmental questions, including how cells divide, differentiate, and contribute to the organism’s
final morphology. C. elegans have transparent bodies and exhibit distinct and quantifiable
phenotypes, such as body size and shape, throughout their development process [10]. These
characteristic features provide a significant advantage over other animal models for non-invasive,
real-time tracking of developmental and morphological changes throughout its life cycle using
microscopic techniques.
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C. elegans has a short life cycle of ~3 days from egg to adult and a lifespan of ~2-3 weeks [10],
allowing researchers to perform rapid experiments across generations. Furthermore, C. elegans
produces many offspring (up to 300 per hermaphrodite), which is an advantage for experiments that
require extensive sample sizes for statistical robustness. Despite their rapid generation turnover, the
maintenance of C. elegans culture is easy and inexpensive, which requires minimal space, media, and
resources [10]. Due to its microscopic size, C. elegans can be studied in multi-well plates [11] or
microfluidic devices [12], allowing researchers to study many worms simultaneously. These suggest
the potential of C. elegans as a powerful animal model for high-throughput experimental assays.

On the other hand, using C. elegans for high-throughput screening and analysis comes with
challenges, including labor-intensive workflows, manual human errors during analysis, and the
generation of large datasets (e.g., imaging or genetic screens) that require advanced computational
tools for effective analysis and interpretation. This would be a big challenge, especially if the study
results in generating a huge volume of data ranging from high-resolution images to complex cell
lineage maps. Researchers have addressed these challenges in recent years by integrating machine
learning approaches into their analytical workflows, automating the labor-intensive and error-prone
processes. In the following sections, we discuss the fundamentals of machine learning, classification,
and the role of different models in C. elegans developmental research.

2. Overview of Machine Learning

Machine learning is a branch of artificial intelligence that trains computers to recognize patterns
in datasets and make predictions or decisions without explicit step-by-step programming. Instead of
depending on logical rules, machine learning models use algorithms to predict relationships,
correlations, and trends within the datasets which enables to improve their performance over time
through experience [13]. Machine learning can be further classified into different types based on their
learning paradigm and algorithm architecture (Fig. 1).

2.1. Types of Machine Learning

Based on the learning paradigm, machine learning models are mainly categorized into four
types: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning. The supervised learning model uses labeled datasets, where input features are paired with
corresponding outputs to predict the output for new unseen input. For example, using the amino
acid sequence dataset of annotated enzymatic and structural proteins, a machine learning model can
be trained to predict the unannotated proteins either as enzymes or non-enzymes based on their
amino acid sequence features [14]. The unsupervised learning model predicts hidden patterns in the
unlabelled dataset. For example, a machine learning model can be trained to learn to group proteins
in a dataset based on their similar structural features without any functional annotation [15]. Semi-
supervised learning model uses a small proportion of labeled data along with a large proportion of
unlabelled data to improve learning accuracy. For example, a machine learning model can be trained
to annotate the genes with unknown functions by using the characteristic features of a small set of
genes with known functions [16]. The reinforcement learning model is iterative in nature and learns
through feedback, such as rewards and penalties, rather than depending on the predefined labels.
For example, a machine learning model can be trained to optimize the drug design by iteratively
testing modifications of drug molecules and maximizing their binding affinity to a target protein [17].

2.1. Types of Machine Learning Architecture

Based on algorithm architecture, machine learning models can be broadly classified into two
categories: classical machine learning models and artificial neural networks (Figure 1). The
architecture of classical machine learning models is usually simpler and mostly used for analyzing
structured and smaller datasets. They depend on statistical principles and mathematical algorithms
to analyze and make predictions from data. A few of the key types of classical models include
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Regression models: used for predicting continuous numerical values (e.g., predicting gene expression
levels based on the transcription factors concentration) [18]; Classification models: used for
predicting discrete categories or labels (e.g., classify diseases based on the patient data) [19];
Clustering models: used to group similar data points (e.g., grouping patients into clusters based on
their metabolic profiles) [20]; Dimensionality Reduction models: used to reduce the number of
features while retaining important information (e.g., visualizing high-dimensional multi-omics data)
[21]; Instance-based models: used to make predictions for new data based on similarities to the stored
instances (e.g., predict drug-response phenotypes based on historical patient data) [22]; Probabilistic
methods: used to predict outcomes by estimating the likelihood of different events or categories (e.g.,
predicting the likelihood of genetic diseases based on family history) [23]; Ensemble methods: used
to improve accuracy, robustness, and stability by combining predictions from multiple models (e.g.,
predicting disease progression using clinical data and biomarkers) [24]; and Hybrid models: used to
combine multiple machine learning approaches to improve flexibility and performance (e.g., identify
patterns and relationships in clinical and pathological features, then apply classification model to
predict cancer recurrence) [25].

Figure 1. A hierarchical overview of artificial intelligence, machine learning paradigms, and algorithm
architecture. The figure illustrates a layered representation of the relationship between Artificial Intelligence,
Machine Learning, and its learning paradigms and architectures. The core represents artificial intelligence,
encompassing machine learning as a subset. The next layer illustrates the primary learning paradigms in
machine learning: supervised, unsupervised, semi-supervised, and reinforcement learning. The outermost layer
highlights specific algorithmic models and architectures within classical machine learning, such as classification
and regression models, etc., and deep learning, such as Feedforward Neural Networks (FNN), Convolutional
Neural Networks (CNN), and Recurrent Neural Networks, etc.
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On the other hand, artificial neural networks are the modern machine learning architecture
inspired by the structure and functioning of the human brain. They consist of interconnected layers
of artificial neurons called nodes that analyze data, learn patterns, and are specifically used to process
complex and large datasets. The architecture of artificial neural networks consists of three layers. The
input layer takes the input features. The hidden layer performs computations by applying
mathematical and non-linear activation functions to learn patterns in the data. The output layer
generates the final prediction [26]. Deep learning is a subset of machine learning that uses artificial
neural network architecture with multiple hidden layers. The deeper architecture enables the model
to analyze complex and hierarchical patterns in large datasets, making them suitable for intricate
tasks such as image recognition, language processing, etc. A few key types of deep learning
architectures include feedforward neural networks (FNNs)—the simplest type of artificial neural
network used for tasks utilizing basic regression and classification (e.g., predicting disease states or
classifying cancer subtypes based on a patient’s gene expression profiles) [27]; Convolutional Neural
Network (CNN)—used for processing images through extracting special features (e.g., identifying
and segmenting sub-cellular organelles in high-resolution cell images) [28]; and Recurrent Neural
Network (RNN)—used for analyzing sequential data such as time series, text, etc. (e.g., predicting
protein structure or function based on the amino acid sequence) [29,30]. The detailed discussion on
specific components of machine learning, including model training, validation, deployment,
evaluation metrics, and activation functions, is beyond the scope of this review. Readers interested
in these aspects are encouraged to refer to comprehensive articles on machine learning methodologies
[26].

3. Machine Learning in C. elegans Developmental Research
3.1. Classification and Morphological Phenotyping of C. elegans

Classification and phenotyping are fundamental to understanding the C. elegans developmental
biology. These tasks can be automated using machine learning, which also helps the researcher
recognize the various developmental stages, estimate the physiological age, and classify sexual
phenotypes with great accuracy. Furthermore, the real-time tracking systems provide dynamic
insights into the phenotypical changes that can be studied on a larger scale with less human
intervention. This section discusses how these methods mitigate the phenomics data collection
bottleneck and enhance the proficiency in accuracy and speed of C. elegans developmental studies.

3.1.1. Classification of Developmental Stages

It is crucial to accurately recognize and classify C. elegans at different stages to study the effect
of a drug or gene of interest on the developmental process. This would be a tiring and challenging
task if performed manually, especially recognizing the developmental stage from the large image
datasets containing mixed populations of adult worms, larvae, and eggs. DevStaR (Developmental
Stage Recognition) is an object recognition system based on a hierarchical principle developed for
automatic recognition and classification of C. elegans developmental stages from high-throughput
image datasets [31]. The DevStaR system consists of four hierarchical layers, each having a specific
function and output groups of units, which are then used as the input for the consecutive layer. The
first layer identifies the well region containing C. elegans by extracting contrast-based features using
steerable filters. The second layer segments objects by analyzing the pixels within the area of interest
and grouping them into connected components. The third layer deconstructs segmented objects into
parts by analyzing their boundary contours and constructs a tree graph from boundary elements
using a symmetry-based scoring system. The fourth layer extracts morphological features from object
parts, including area, symmetry axis length, boundary contour length, and changes in width (Fig.
2A). These features are then classified using the support vector machine (SVM) classifier trained on
~2000 labeled examples to categorize objects into developmental stages.
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DevStaR achieves high precision and recall for adult worm classification and overall object-
background separation. However, DevStaR has low precision and recall for larvae and eggs due to
boundary pixel errors and clumping of eggs, respectively. Additionally, it can quantify the lethality
and survival rates of C. elegans accurately by measuring the egg-to-larvae ratio and larvae-to-adult
ratio, respectively. DevStaR surpasses manual annotations by efficiently processing large, high-
resolution image datasets in near real-time. However, it does show segmentation errors when objects
overlap or occlude each other, particularly in images where worms are curled or eggs form clusters.

3.1.2. 3-dimensional Morphological Reconstruction and Phenotyping

Comprehensive 3-dimensional (3D) morphological visualization of C. elegans anatomy enables
researchers to observe the spatial organization of cells and tissues and quantitative phenotyping,
which is critical for understanding developmental processes including organ formation and tissue
generation. However, precise morphological phenotyping remains a challenge when using widefield
or confocal microscopy techniques. This is because, at high magnification, the image resolution often
degrades, and the signal can blur or lose intensity, thus leading to unclear and noisy images.
Additionally, the 3D reconstruction of C. elegans is difficult due to the nematode’s irregular, flexible
shape and varying developmental stages, which can cause errors in aligning the images resulting in
inaccurate 3D reconstructions.

To overcome this challenge, a customized machine learning pipeline has been developed,
integrated with a robotic sample rotation system, to improve the image quality, precise 3D
morphological reconstruction, and enhance phenotyping of C. elegans embryos and worm bodies at
different developmental stages [32]. The machine learning model enhances the image quality by
reducing noise and improving the resolution and contrast, thus making subtle phenotypic features
more visible. It segments the worm boundaries and aligns the 2D image stacks precisely, resulting in
high-accuracy 3D reconstruction of C. elegans (IoU >95%) at various developmental stages (Fig. 2B).
Furthermore, using the 3D models, it accurately identifies key morphological readouts, including
volume, surface area, length, maximum width, and the ratio of length to maximum width.

Although the system excels in static morphological phenotyping and could be adopted for high-
throughput phenotyping, drug screening, and genetic interaction analysis, real-time or dynamic cell
interactions during development have not yet been fully explored.

3.1.3. Physiological Age Estimation

Due to its short lifespan and rapid developmental characteristics, C. elegans serves as an excellent
model for aging studies, including antiaging drug screening and genetic research. However, it is a
challenge to identify the precise physiological age of C. elegans through manual visual inspection of
morphological changes. This limitation is addressed by a CNN-based image processing approach
that analyzes bright-field microscopic images of C. elegans worms to measure the physiological age
with a granularity of days rather than broader age periods by using texture entropy [33] (Fig. 2C).
Among the five CNN architectures tested (ResNet50, InceptionV3, InceptionResNetV2, VGG16, and
MobileNet), the InceptionResNetV2 model achieved the best performance with a mean absolute error
(MAE) of less than 1 day. Other models performed worse, with ResNet50 reaching an MAE of 1.8
days and VGGI16 at 2.38 days. The models were trained on a dataset of 913 images spanning 14 days
of adulthood, with ~60 images per day.

Moreover, the inclusion of the “curved_or_straight” attribute, which captures the global contour
of nematodes (either curved or straight), significantly improved the model’s accuracy by reducing
classification errors. Additionally, two models were proposed: a linear regression model for
continuous age prediction and a logistic regression for discrete classification of age into specific days,
achieving an MAE of 0.94 days and 84.78% accuracy with a tolerance of one day, respectively. As
shown in Fig. 2C, the CNN-based model predicts physiological age with fine resolution. While
logistic regression had higher accuracy, it exhibited greater variability in predictions compared to
linear regression. However, the model’s reliance on the “curved_or_straight” attribute may introduce

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.0891.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2025 d0i:10.20944/preprints202505.0891.v2

6 of 24

bias, as manual labeling of nematodes into curved or straight categories is subjective and influenced
by preprocessing choices. While the model demonstrated strong internal cross-validation
performance (MAE < 1 day), future studies should assess generalizability by testing independent
external datasets.

3.1.4. Sexual Classification

Existing traditional image analysis tools, including WormSizer [34], Fiji [35], Quantworm [36],
and WormToolbox [37] lack automation and comprehensive analysis of intricate phenotypical
features, like continuous sexual phenotypes. WorMachine, a MATLAB-based software platform
integrated with image processing, feature extraction, and machine learning capabilities, has been
developed to automate the analysis of C. elegans morphological features, including area, length, mid-
width, and tail/head diameter ratios (for sexual classification) [38]. WormNet, a CNN-based classifier,
has been employed for worm identification and flagging defective or noisy images, thus enhancing
the data quality by distinguishing valid worms from artifacts. Additionally, it quantifies RNAi-
induced gene silencing, intracellular protein aggregation, and puncta distribution using the
fluorescence features, including corrected total worm fluorescence (CTWF), local maxima of
fluorescence intensity, and raw integrated density, thus broadening its application beyond sexual
classification. WorMachine employs machine learning algorithms, specifically the SVM, for the
binary classification task of distinguishing between male and hermaphrodite worms. Moreover, it
uses dimensionality reduction techniques like PCA and t-SNE to quantify continuous phenotypical
features, including masculinization or developmental stages, allowing users to quantify subtle
variations in phenotypes (Fig. 2D). Figure 2D demonstrates how WorMachine integrates
morphological and fluorescence features for robust phenotyping. It demonstrated successful sexual
classification of worms by using the morphological and fluorescence-based features extracted from
the images with a high accuracy of up to 98%. This approach enabled detection of subtle
masculinization phenotypes in temperature-sensitive sex-determination mutants, which were
validated through genetic and RNAi perturbation assays. Its modular design allows the user to adapt
to various experimental needs. However, the software has technical limitations, such as the size of
images used for analysis cannot be more than 1 GB due to its memory constraints, and images should
be of high contrast containing no overlapping or occluded worms, suggesting that it’s not suitable
for analyzing images with a high density of worms.
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Figure 2. Machine learning workflows for developmental stage recognition and phenotypic analysis in C.
elegans. (A) DevStaR pipeline for automated classification of developmental stages in C. elegans. A hierarchical
model segments the image, constructs object graphs, and categorizes objects into eggs, larvae, and adults using
SVM. (B) 3D morphological reconstruction pipeline. Low-resolution images are enhanced through super-
resolution and denoising, followed by segmentation, alignment, and volumetric reconstruction for detailed
phenotypic measurements. LR, low-resolution; HR, high-resolution. (C) CNN-based physiological age

prediction of adult C. elegans. Brightfield images are normalized and fed into InceptionResNetV2, incorporating
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curvature features to estimate age at daily resolution. (D) WorMachine pipeline for sexual classification and
fluorescence-based phenotyping. CNN (WormNet) segments individual worms, extracts morphological and
fluorescence features, followed by SVM and dimensionality reduction (PCA, t-SNE) for classification and
continuous phenotype mapping. (E) WormPicker robotic system integrating CNN and Mask-RCNN for real-
time phenotypic analysis and autonomous worm picking. Worms are tracked in low magnification images and
analyzed for developmental stage, sex, and fluorescent expression at higher magnification. GFP, green
fluorescent protein; RFP, red fluorescent protein. (F) High-throughput microfluidic embryo phenotyping using
an AlexNet-based CNN. Embryos are loaded into microfluidic chips, imaged over time, and classified into
developmental or viability categories (e.g., normal, dead, late hatching) based on mobility and morphology.
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Figure 3. Machine learning approaches for developmental toxicity screening and tissue integrity assessment
in C. elegans. (A) The vivoChip-vivoBodySeg platform for high-throughput developmental toxicity testing.
Immobilized worms in vivoChip devices are imaged in z-stacks and segmented using a 2.5D U-Net to extract
morphological parameters, including body length, area, and autofluorescence. ViT, vision transformer. (B)
Multispectral imaging-based tissue damage and egg viability assessment. Worms and eggs treated with varying
bleach concentrations are imaged across multiple wavelengths, followed by region of interest (ROI) extraction
and spectral profile generation. Machine learning algorithms (PCA and SVM-DA) classify damage levels and
predict viability. (C) Morphometric analysis of pharynx tissue during aging. Differential interference contrast
(DIC) microscopy images of C. elegans pharynx are converted into high-dimensional feature vectors, class
centroids are calculated for age-defined groups, and morphological transitions are tracked to assign

physiological age and predict functional decline.
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> multicellular rosette structures

during C. elegans development. (A) StarryNite-based nuclear division annotation correction using SVM
classifiers. Nuclear features (e.g., size, fluorescence, movement) are used to distinguish valid from mis-annotated
divisions, improving lineage tracing accuracy. (B) CShaper pipeline for nucleus and membrane segmentation.

DMapNet performs membrane segmentation from time-lapse stacks, enabling comprehensive cell shape lineage

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202505.0891.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2025 d0i:10.20944/preprints202505.0891.v2

10 of 24

tracking in developing embryos. (C) Whole-body cell segmentation and recognition using a Displacement Vector
Field-based deep learning model. A statistical structural atlas is used for cell identification across densely packed
3D images. (D) Integration of automated cell tracing and agent-based modeling (ABM) for simulating cell
division and movement dynamics in embryogenesis. Data from 3D imaging informs ABM framework to model
fate specification and spatial behavior. (E) Deep reinforcement learning integrated with ABM to optimize cell
migration paths. Deep Q-network framework trains cells to mimic active and passive migratory behaviors
within a developmental context. (F) CentTracker pipeline for large-scale tracking of germline stem cell (GSC)
divisions. Modules include image registration, centrosome/Spot detection and tracking, track pair classification,
and mitotic event scoring. DTC, distal tip cell; GFP, green fluorescent protein; mCh, monomeric cherry
fluorescent protein; NEBD, nuclear envelop breakdown. (G) GAN-based framework for classification and
detection of multicellular rosette structures in embryonic tissue. Feature learning is performed with unlabeled

images, transferred to an AlexNet-style CNN for accurate classification using limited annotated data.

3.1.5. Real-Time Tracking and Dynamic Phenotyping

Recent technological advancements allow researchers to adopt automation in their routine
experimental workflows. WormPicker, a versatile automated robotic system, utilizes a motorized 3D
stage and a robotic arm to perform complex workflows in C. elegans studies, including imaging,
phenotyping, genetic manipulations, and transferring of worms onto standard nematode agar media
[39]. The system uses a machine vision algorithm based on CNNs and Mask-Regional CNNs (Mask-
RCNNSs) to process images at different magnifications, precisely segment C. elegans, and identify
features such as developmental stage, morphology, sex, and fluorescence expression. WormPicker
also employs an electrically self-sterilized wire loop for efficient and contamination-free worm
transfer.

The role of CNNSs is to analyze low-magnification bright-field images to track worms and the
robotic worm picks during real-time operations. On the other hand, the Mask-RCNN is used for
detailed segmentation of worms from high-magnification bright-field images that help in the detailed
phenotypical analysis, including developmental stage, sex, and morphology of individual worms
(Fig. 2E). Moreover, the machine vision system confirms the accuracy of phenotypical assessments
by analyzing fluorescence intensity in specific channels (e.g.,, GFP, RFP) and correlating the
fluorescence signals with the segmented worm contours captured from bright-field images.

Importantly, the integration of deep-learning-aided segmentation demonstrated that a robotic
system could perform complex genetic procedures such as genetic mapping, genomic transgene
integration, and phenotype-based sorting autonomously with improved accuracy and consistency.
The system’s throughput is comparable to that of experienced human researchers, thereby reducing
the need for labor-intensive manual intervention and minimizing human errors. In addition, the
proposed system allows the flexibility of writing custom scripts to carry out tailored experimental
workflows as well as integrating the machine vision system into various conventional genetic screens
and analyses. However, the system does have limited capability for handling worms with unusual
or extreme morphological variations; therefore, the algorithm may need to be custom trained for the
efficient recognition and identification of strains with abnormal morphology and phenotypes.

Conventional developmental and motility-associated phenotypical studies of adult nematodes
require long culture periods, therefore making large-scale screenings time-consuming. Interestingly,
C. elegans embryos, due to their shorter developmental periods and immobile nature, serve as an
attractive alternative for rapid phenotyping. However, traditional methods, such as mounting
embryos on agar pads are laborious and time-consuming. To overcome this difficulty, a high-
throughput microfluidic platform that combines machine learning and image processing has been
developed to automate the phenotyping of C. elegans embryos [40]. The system is capable of handling
up to 800 embryos simultaneously and employs a combination of AlexNet-based-CNN and standard
image processing techniques to process images of embryos across different developmental stages. By
training the CNN on labeled brightfield and fluorescent image patches, the model can classify and
distinguish between different embryonic developmental stages, including bean stage, twitching
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stage, and hatching stage (Fig. 2F). Furthermore, the model tracks temporal changes in embryo
images to infer mobility and classify viability states, thus being able to distinguish between normal,
dead, and late-hatching embryos. However, the model requires high-performance GPUs for optimal
performance and the classification accuracy may decrease with fewer labeled images, suggesting
areas for improvement, such as increased data labeling or model optimization.

3.2. Developmental Toxicity and Tissue Analysis in C. elegans

Evaluating developmental toxicity and evaluating tissue integrity is crucial to understanding
the impact of environmental, genetic, and chemical factors on the developmental biology of an
organism such as C. elegans. Machine learning plays a key role in the automation of these analyses,
especially in high-throughput experimental procedures. From developmental toxicity screening to
tissue damage examination and even tracking morphological changes, these techniques show the
degree of external interference on the structural and functional integrity of the tissue. This section
discusses the innovative machine learning solutions in these aspects, emphasizing their impact in
minimizing biases, improving accuracy, and increasing research output.

3.2.1. Developmental Toxicity Testing

Developmental toxicity (DevTox) tests are experimental assays used to investigate the adverse
effects of chemical substances on an organism’s normal development. Performing the DevTox test on
mammalian animal models like mice, rats, and rabbits is often preferred by regulatory agencies and
industries. Interestingly, recent scientific and technological advancements in test methodologies
suggest that C. elegans can be used as an alternative animal model for rapid high-throughput toxicity
testing [41,42]. Importantly, utilization of advanced microfluidic devices like vivoChip ensures rapid
and consistent immobilization of large numbers of worms without anesthetics and eliminates overlap
between worms [43]. Therefore, it allows us to capture clear images of individual worms without
interference and serves as an ideal platform for high-throughput developmental toxicity studies.

However, the manual labor-intensive morphological phenotype analysis process during the test
poses a limitation, especially in high-throughput screenings. A custom machine learning model
named vivoBodySeg is developed using a 2.5D U-Net architecture to automatically segment and
analyze the morphological features of immobilized C. elegans bodies from high-resolution images
obtained from vivoChip devices [44]. Firstly, the age-synchronized worms are treated with the
chemical substance of interest at different concentrations, followed by the immobilization of worms
using the vivoChip microfluidic device that comprises 960 channels per chip. Secondly, the high-
resolution time-lapse brightfield and z-stack fluorescence images of each channel are captured
automatically using a customized automated microscope. Alternatives such as light-sheet
microscopy or sparse sampling with computational super-resolution may reduce dependency on
resource-intensive z-stacks [45,46]. Finally, the model segments individual immobilized worms and
analyzes multiple morphological parameters, including body length, area, volume, and
autofluorescence from the images (Fig. 3A).

The model demonstrated to perform worm segmentation with a high accuracy of 97.8% and
analyze large image datasets rapidly at 140x faster than manual methods. Moreover, the model
demonstrates high statistical robustness with coefficients of variance between 3.7% and 8%, ensuring
low variability and high reproducibility. These suggest that the implementation of the model in the
DevTox test workflow would efficiently eliminate bias and variability associated with manual
analysis. Furthermore, the vivoChip-vivoBodySeg system offers superior performance compared to
traditional well-plate or flow cytometry methods by reducing user bias, improving measurement
precision, and achieving higher throughput efficiency. However, the dependence on high-resolution
images for accurate detection of body dimensions and autofluorescence intensity distribution, and
the high-end GPUs and memory systems for optimal performance, are a challenge for labs with
limited resources.
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3.2.1. Analysing Tissue Damage and Egg Viability

Studying tissue damage and egg viability in C. elegans may provide insights into how
environmental, genetic, and chemical factors affect tissue integrity, function, and organismal
development. Multispectral imaging is a powerful analytical imaging technique that captures image
data across multiple wavelengths of the electromagnetic spectrum. Unlike traditional imaging, which
captures information using either a single wavelength or a combination of a broad spectrum of
wavelengths (RGB images), multispectral imaging collects detailed spectral information for each
pixel in the image [47]. Due to its ability to collect high-resolution spectral and spatial data,
multispectral imaging is effective in studying subtle morphological and structural changes in tissues
or organisms in a non-invasive manner that correlate with key developmental processes, including
embryogenesis, cell differentiation, and structural integrity.

However, conventional approaches for assessing morphological alterations involve manual
observation and simple measurements, which are labor-intensive, and subjective to errors. To
address these challenges researchers have successfully implemented machine-learning approaches
in their study to analyze tissue damage and egg viability from multispectral images [48]. In their
study, worms and eggs were exposed to different bleaching treatment conditions, followed by
capturing multispectral images of treated worms and eggs using 7 light wavelengths ranging
between 450-950 nm. The captured images were then analyzed using machine learning algorithms
like PCA to reduce the high dimensionality of multispectral imaging data to visualize and
differentiate the tissue damage patterns. Whereas the SVM-DA has been employed to classify worms
and eggs based on the degree of damage and to predict egg viability (Fig. 3B).

The analysis revealed that increased alkaline hypochlorite concentrations correlated with
reduced egg viability and altered tissue morphology in eggshell layers. Moreover, the machine
learning framework algorithm identified specific zones of damage in worm bodies such as anatomical
orifices including the mouth, vulva, and anus, where alkaline hypochlorite penetration has been most
pronounced. Altogether, the algorithm framework effectively correlates imaging data with tissue
damage and egg viability (R? of up to 0.998) and demonstrates high classification accuracy for
treatment levels and viability prediction with >90% sensitivity and specificity. The model's ability to
identify hypochlorite damage to anatomical openings was experimentally supported by comparing
morphological changes across increasing bleach concentrations, thus confirming dose-response
sensitivity. However, the approach heavily relies on sophisticated multispectral imaging systems and
high computational configurations, thus it may pose a challenge for the successful adoption of this
approach in labs with limited resources. Nevertheless, the proposed framework shows potential for
application in studying the tissue damage of C. elegans exposed to different chemical substances.
Multispectral imaging enables precise and pixel-level tissue health diagnostics by extracting high-
dimensional spectral fingerprints. Its utility extends to identifying sub-lethal effects, mapping the
diffusion and effects of toxic chemical exposures, and correlating these profiles with developmental
delays. Future applications may include mapping the impact of stress granules, oxidative stress, or
RNAI treatments on internal tissues like hypodermis and neurons.

3.2.1. Tissue Morphological Transitions

During development, the tissues are generated from newly synthesized biomolecules through
morphogenic pathways, and during aging the tissues may undergo deterioration which is indicated
via functional and structural declines [49]. Quantification of structural transition in the tissues over
time can serve as a valuable biomarker marker in aging-related studies. However, these studies are
laborious, and the sensitivity of analysis is limited to the user’s visual perception and expertise. This
suggests that manual morphological analysis is limited to small-scale studies and may add significant
variation to the study. To address these challenges, a pattern recognition-based machine learning
algorithm has been developed to track structural changes in the pharynx across the lifespan of C.
elegans and examine their correlation with aging and functional decline [50].
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The algorithm extracts features such as texture statistics, polynomial decompositions,
segmentation statistics, and image transforms from differential interference contrast (DIC)
microscopy images to analyze morphological changes between age groups. The extracted features
were assigned weights using Fisher Discriminant scores based on their ability to distinguish between
different age groups. A trained morphology-based classifier then identifies morphological changes
in pharynx structure between early, mid, and late adulthood worms by converting image data into a
high-dimensional feature space and calculating similarities to predefined class centroids. The
analysis revealed three distinct morphological states associated with aging: early adulthood (days 0-
2), mid-life (days 4-8), and late adulthood (days 10-12) (Fig. 3C). This transition suggests that pharynx
morphology is dynamic in nature that undergoes characteristic, stepwise changes throughout
adulthood and may serve as a specific and quantifiable biomarker for tracking aging-associated
physiological changes.

Identified mid-life morphological states of the pharynx were then correlated with future
functional decline using a longitudinal lifetime pumping ability model, which measured pharynx
pumping rates across an organism’s lifespan. Altogether, the computational approach demonstrated
accurate identification of morphological transitions during aging and provides quantitative insights
into how structural changes influence tissue function during aging. However, the analysis is limited
to pharynx tissue suggesting the need for additional validation for broader application to other
tissues. Furthermore, the performance of the algorithm depends on the quality and uniformity of
microscopy images.

3.2. Cellular Dynamics and Lineage Studies in C. elegans

Analysis of cellular dynamics and lineage pattern is crucial for understanding the
developmental processes of C. elegans. The fusion of machine learning and modern imaging
technology has drastically changed the analysis of single cell activities, lineage tracing, and
multicellular interactions. These approaches allow whole-body cell segmentation, embryonic
modeling and germline stem cell division tracking with unprecedented details, thus enable high-
resolution insights into cellular behavior and fate determination. This section discusses advanced
methodologies that enhance the understanding of C. elegans development on a cellular level and
beyond.

3.2.1. Cell Lineage Tracing

Recent advances in microscopy imaging paved the way for tracking gene expression at single-
cell resolution. This can be applied to annotate and track cell lineages during C. elegans embryonic
development. StarryNite, an automated cell lineage tracing software, has been developed to
recognize cells by identifying nuclear divisions from the 3D confocal microscopy images of
developing embryos captured at high spatial and temporal resolution [51]. However, the software
produces a few error types including false positives, false negatives, incorrect positioning, diameter
estimation errors, and tracing errors, particularly during later stages of development due to the
increased cell density and noise. To address the errors generated by the StarryNite software, an SVM
classifier-based machine learning model has been developed [52]. The model analyzes the images by
extracting features such as time indices, spatial distances, nuclear sizes, fluorescence intensities, and
angles of nuclear movements. The SVM then classifies whether detected nuclear division calls are
valid or mis-annotated (Fig. 4A), thus improving annotation accuracy (AUC scores of ~0.933) and
reducing manual curation time up to 30%. SVM demonstrated accuracy improvements over
StarryNite’s baseline (83.8% to 94%). However, the performance of the algorithm may deteriorate on
analyzing datasets with varying imaging resolutions or biological conditions. Furthermore, it does
not address error types like false negatives or diameter estimation errors. Nevertheless, this opens
the possibility of applying the proposed framework to correct the errors generated by various image
analysis tasks.
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Though cellular dynamics like cell division, migration, and cell fate determination are well
studied during the developmental process, cellular morphological dynamics remain relatively under-
characterized. Therefore, it creates a significant knowledge gap that limits the comprehensive
understanding of developmental and cell biology. To address this, CShaper- an automated software
pipeline integrated with the DMapNet-deep learning model has been developed to quantify cellular
morphological dimensions of developing C. elegans embryos [53]. The CShaper analyzes 3D time-
lapse confocal microscopy images of C. elegans embryos of different developmental stages ranging
from 4-cell to 350-cell stages, and segments individual cells using fluorescently labeled membranes.
Instead of the traditional binary segmentation, the DMapNet neural network executes the membrane
segmentation by generating a discrete distance map to improve accuracy in identifying complex cell
boundaries, achieving a Dice score of 95.95% albeit the densely packed cellular environment of the
developing embryo. As a result, CShaper generates a comprehensive 3D cell morphological atlas
containing key phenotypical metrics, including cell shape, volume, surface area, nucleus position,
cell-cell contact, and spatial organization (Fig. 4B). The pipeline enables the precise identification cell
identities by combining membrane segmentation with cell lineage tracing produced by tools like
StarryNite and AceTree. Moreover, it demonstrates the efficiency of processing large image stacks in
~30 minutes, making it suitable for high throughput studies, though it requires significant
computational resources, particularly during distance map generation and segmentation. However,
the lack of a user-friendly visualization platform limits the interactive exploration of cell
morphological dynamics.

3.3.2. Whole-Body Cell Segmentation and Recognition

Accurate studies of the cell lineages, cell fates, and gene expression at the single-cell level
resolution in C. elegans require precise segmentation and recognition of individual cells. However, it
may be a problem due to the highly dense distribution, identical shapes, and non-uniform intensity
profiles of whole-body cells observed in 3D fluorescence microscopy images. A novel Displacement
Vector Field (DVF) based deep learning model has been developed for the automated segmentation
and recognition of C. elegans whole-body cells from 3D fluorescence microscopy images [54]. The
algorithm pipeline has been implemented using PyTorch, the algorithm consists of two key modules:
a segmentation module that uses DVF for effective segmentation of densely packed cells with blurred
boundaries and a recognition module that uses a statistical-structural matching-based cell
recognition method. The recognition module generates a comprehensive statistical atlas of C. elegans
whole-body cells, incorporating statistic priors like average spatial positions, spatial position
variations, and topological structural variations for robust cell recognition (Fig. 4C). Moreover, the
pipeline demonstrated successful segmentation and recognition of all the 558 whole-body cells in L-
stage larvae with high performance (F1 score of 0.8956) and accuracy of 0.8879. Moreover, the
algorithm pipeline can also be adaptable to segment and recognize cells of other animal models
including Platynereis and rat kidney cells. However, the algorithm requires precise statistical priors
suggesting the demand for extensive manual annotations. Additionally, the algorithm’s efficiency is
sensitive to segmentation errors which further affect the cell recognition pipeline. Nevertheless, it
offers a promising framework for high-throughput and accurate cell segmentation and recognition
across different biological datasets.

3.3.3. Modelling Cellular Dynamics in Embryogenesis

Scientists study the early-stage embryogenesis of C. elegans to understand the intricate process
of cellular dynamics and behavior during development. Studies have demonstrated that agent-based
modeling (ABM), a computational approach with a set of physical and biological rules can be used
as a powerful tool for simulating complex biological systems including developmental biology
[55,56]. However, these simulations still lack a comprehensive understanding of the regulatory
mechanisms of cellular dynamics and thus require optimization. An observation-driven framework
combining ABM and deep reinforcement learning has been shown to simulate the movement and
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behavior of individual cells within the complex embryonic environment [57]. Observational data
from C. elegans embryos-derived 3D time-lapse fluorescence confocal microscopy enabled the
simulation of cellular behaviors including cell fate, division, and movement. By integrating
automated lineage tracing and tissue-specific fluorescently labeled gene expression, a developmental
landscape has been constructed to model cell fate and differentiation pathways (Fig. 4D). Overall, the
framework demonstrated the ability to combine observational mobile cellular morphology data
within computational models achieving a deep understanding of how these dynamics work at the
cellular level. Nevertheless, there is still an issue with scalability in analyzing larger datasets or other
organisms with more complex embryogenesis. The inclusion of hierarchical and multi-agent
reinforcement learning approaches in future research may help to address these limitations.

Furthermore, integration of a Deep-Q-network-based reinforcement learning with ABM has
been shown to optimize the cell migration paths during C. elegans early-stage embryogenesis [58]
(Fig. 4E). The model demonstrated the ability of cells to learn different migratory behaviors,
particularly distinguishing between active (reader-like) and passive (follower-like) migratory roles.
Importantly, the application of reinforcement learning improved the robustness of the simulation
model in exploring unknown regulatory mechanisms to hypothesize and test unknown interactions.
However, analysis of large-scale training and simulations require high computational requirements
including the powerful GPUs, suggesting a potential bottleneck in the workflow.

3.3.4. Tracking Germline Stem Cell Dynamics in Embryos

Tracking the germline stem cells (GSCs) division in developing C. elegans embryos is essential
for understanding the stem cell interaction. However, it would be technically challenging to analyze
the large-scale datasets of dividing GSCs. To address this challenge, CentTracker, a machine learning-
based automated image analysis tool has been developed to track the mitotic events in dividing GSCs
in large-scale live image datasets [59]. The framework pipeline consists of four main modules:
registration module, which corrects the sample movement during live imaging by registering images
by identifying spindle midpoints and applying corrections that account for displacement; spot
detection and tracking module, which identifies and tracks individual centrosomes, within the
registered images; track pair classifier module, which uses random forest-based classifier to pairs
centrosome tracks to true mitotic pairs; and scoring and analysis module, which analyzes paired
tracks to extract mitotic features and enables users to score mitotic landmarks including nuclear
envelope breakdown and anaphase onset (Fig. 4F).

The framework has been reported to identify centrosome pairs with a high precision of 94.5%,
with a discovery rate (identification of all mitotic cells) of 82.4%. However, the discovery rate depends
on initial tracking quality, and the performance reduces under noisy datasets or severely perturbed
spindle dynamics. Beyond technical performance, CentTracker revealed that GSC divisions are
spatially clustered, and that spindle orientation is biased along the distal-proximal axis of the gonad.
The system’s generalizability to other cell types and organisms highlights its potential for future
large-scale stem cell studies.

3.3.5. Detection and Characterization of Multicellular Structures in Embryos

The analysis of cellular shapes provides critical biological insights into morphogenetic events
and mechanisms in complex tissues, including cell intercalation and tissue morphogenesis. However,
analyzing extensive 3D time-lapse images of tissues is a labor-intensive and time-consuming task. To
address this, a generative adversarial network (GAN)-based deep learning model has been
developed to identify multicellular rosette structures in C. elegans embryos with fluorescently labeled
cell membranes [60]. The model combines unsupervised feature learning using GANs with feature
transfer to an Alex-style CNN, which is then trained on a small, labeled dataset (Fig. 4G). The GAN-
based approach utilized 11,250 unlabeled images for initial training and required only 10-15 rosette
images and 30-40 non-rosette images for supervised learning. This combined approach
outperformed classical CNNs by achieving >80% classification accuracy and maintaining >90% of
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full-dataset performance using only 20% of the labeled data, thus demonstrating its robustness
against data scarcity. While GANs exceeded 80% accuracy in low-labeled scenarios, traditional CNNs
like AlexNet typically plateaued at ~65-70%, thereby underscoring the benefit of generative
pretraining under data-scarce conditions. A sliding window approach and probability heat maps
further enhanced rosette detection within large observation images. The model successfully detected
multicellular rosette formations associated with early embryonic polarity defects, which were
subsequently confirmed using live imaging of par-6 mutants. However, performance reduces with
extremely small training datasets (<10%) and relies significantly on high-performance GPUs.
Nevertheless, the framework can be adapted for other biological image classification tasks.
Additionally, a public benchmark dataset has been created to support further research.

Among the reviewed models, CNN-based architectures (e.g., InceptionResNetV2, Mask-RCNN)
appear most promising due to their high classification accuracy and adaptability to varied image
types [33,39]. For instance, CNN-based models such as InceptionResNetV2 outperformed classical
models like SVMs in age prediction tasks, achieving a MAE of less than 1 day compared to higher
errors in classical models, thereby demonstrating superior performance in complex image-based
phenotyping [33]. Classical models like SVM, while efficient, often struggle with overlapping worms
or noisy inputs [31,51]. GANs are powerful in low-data scenarios but require extensive tuning [60].
Hence, tool selection should align with dataset quality, task complexity, and resource availability.

4. Future Perspectives and Limitations

Machine learning has become a powerful tool that has transformed experimental workflows into
C. elegans research from classifying developmental stages and estimating physiological age to
tracking cellular dynamics and phenotyping embryonic and adults. These algorithms have
significantly improved the accuracy, reproducibility, and efficiency of data analysis. However,
several challenges and limitations must be addressed to enable universal adoption of machine
learning in developmental biology, especially in laboratories with limited resources. This section
discusses the key hurdles to implementing the above-mentioned research workflows in labs with
limited financial, technical, or computational resources. Table 1 represents the comparative summary
of the machine learning models, input data types, pros, and cons discussed in this review.

Table 1. Summary of machine learning models for phenotypic analysis in C. elegans development.
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[52]

[53]

[54]

[57,58]

[59]

[60]

One of the most critical limitations is the demand for high computational power. Many machine
learning models, especially deep learning architectures require high-performance GPUs to function
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optimally [40,44,48,58,60]. While C. elegans is a economical and easily maintained model organism,
the computational requirements of these pipelines often exceed what typical research or academic
labs can afford. Future technological advances may help mitigate this by either reducing the
computational complexity of models or lowering the cost of hardware or ideally, both. Another major
limitation is the need for sophisticated instruments, which many of the discussed workflows depend
on. These include robotic worm handling system [39], custom-designed microfluidic chips [40,44],
multispectral imaging system [48], and advanced microscopy systems [50,52-54,57,58]. These
instruments are essential for specific experiments and often inaccessible to laboratories with limited
resources. In such cases, lower-cost alternatives are currently unavailable, limiting the broader
application of these workflows.

Moreover, a further hurdle is the technical knowledge required to develop, adapt, or deploy
machine learning frameworks, which often involves proficiency in programming languages
including MATLAB, Python, and machine learning libraries like PyTorch or TensorFlow. Most
biologists do not have practical exposure to coding, making it difficult for them to customize or
implement these tools independently. Furthermore, many pipelines are tightly linked to code-based
platforms, creating a steep learning curve for non-expert users. However, tools like WorMachine
demonstrate how machine learning can be made more accessible through the implementation of a
graphical user interface (GUI), allowing researchers with no programming experience to perform
high-level phenotypic analysis [38]. This emphasizes the importance of user-friendly design in future
pipeline development. Building machine learning platforms with intuitive GUIs would equalize
access and significantly increase adoption among life science researchers. Finally, with the rise of
open-source, code-free platforms such as KNIME [61] and Orange [62], there is an opportunity to
develop and deploy machine learning workflows in more accessible ways. These tools provide drag-
and-drop interfaces for data analysis and machine learning, reducing the technical obstacle for users
while maintaining high functionality. Leveraging such platforms to design pipelines specific to C.
elegans developmental biology could accelerate the widespread use of machine learning in everyday
experimental workflows.

In addition to user-friendly and code-free platforms, further strategies can enhance accessibility
for researchers in resource-limited environments. Cloud-based platforms such as Google Colab and
Amazon Web Services (AWS) provide free or low-cost access to GPUs and scalable computer
infrastructure, thus eliminating the need for local high-performance hardware [63,64]. Additionally,
lightweight neural network architectures such as MobileNet and Tiny-YOLO, and model
compression techniques like pruning and quantization can significantly reduce memory and
processing demands without substantial compromise on accuracy [65]. Incorporating these
approaches can enable the deployment of machine learning models on modest computational setups,
thereby supporting broader adoption in under-resourced laboratories.

While this review primarily focused on developmental stages, the application of machine
learning to adult C. elegans studies is equally an important area. Recent advances have leveraged
using deep learning and object-tracking algorithms to assess motility, behavioral patterns, and
lifespan in adult worms [66]. Tools such as CeleST [67] and WormRACER [68] use computer vision
to analyze locomotion and neuromuscular decline across adulthood. In addition, machine learning
models including bimodal neural networks and random forests have been developed to predict
lifespan directly from imaging/data streams. For example, a bimodal neural network using time-
series motility and survival data accurately predicted lifespan [69]. However, these applications often
face challenges in distinguishing subtle behavioral patterns under varying experimental conditions.
Notably, developmental-stage research in C. elegans provides foundational insights such as improved
segmentation and phenotype classification, which can be applied to adult-stage studies [70]. Future
work could benefit from integrating developmental stage classifiers with longitudinal tracking tools
to better understand life-history traits, thereby bridging the gap between early development and
adult aging research.
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Automated phenotyping introduces ethical considerations, particularly in embryo manipulation
or synthetic dataset augmentation. It is important to ensure data reproducibility through public
datasets and external validation. Therefore, models should be benchmarked against independent test
cohorts wherever possible. While this review focuses on C. elegans, the machine learning strategies
discussed here are broadly applicable across other model systems. Recent studies have successfully
applied deep learning to evaluate morphological and physiological changes in zebrafish [71],
Drosophila [72], and murine models [73]. These tools hold promises in uncovering conserved
developmental principles and enhancing translational relevance to human biology.

5. Concluding Remarks

Machine learning has emerged as an essential tool in advancing developmental studies of C.
elegans. This review has covered a broad range of models and pipelines, that range from basic
classifying algorithms to sophisticated deep learning frameworks, which have revolutionized the
classification of developmental stages, phenotyping, estimation of physiological age, toxicity assays,
cell lineage tracing and cellular modeling. Nonetheless, there is a gap in machine learning
implementation for biological research due to the need for high-performance computational
resources, specialized imaging systems, and programming expertise. Overcoming these limitations
through affordable instruments, open-source and user-friendly interfaces will be crucial to facilitate
the application of machine learning in biological development studies.
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