Pre prints.org

Article Not peer-reviewed version

Further Accurate Numerical Radius
Inequalities

Tarig. Qawasmeh , Ahmad Qazza *, Raed Hatamleh , Mohammad W. Alomari , Rania Saadeh

Posted Date: 30 April 2023
doi: 10.20944/preprints202304.1255Vv1

Keywords: Numerical radius; Norm; Inequalities; Hermite-Hadamard inequality

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/704429
https://sciprofiles.com/profile/978764
https://sciprofiles.com/profile/1099306
https://sciprofiles.com/profile/225668
https://sciprofiles.com/profile/844879

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2023 doi:10.20944/preprints202304.1255.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Further Accurate Numerical Radius Inequalities

Tariq Qawasmeh !, Ahmad Qazza >*, Raed Hatamleh !, Mohammad W. Alomari 3

and Rania Saadeh %*

1 Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, P.C.

21110, Jordan; e-mail: ta.qawasmeh@jadara.edu.jo (T.Q.), e-mail: raed@jadara.edu.jo (R.H.)

Department of Mathematics, Faculty of Science, Zarqa University, Zarga 13110, Jordan; e-mail:
agqazza@zu.edu.jo (A.Q.), e-mail: rasaadeh@zu.edu.jo (R.S.)

Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, P.O.
Box 2600, Irbid, P.C. 21110, Jordan; e-mail: mwomath@gmail.com

*  Correspondence: aqazza@zu.edu.jo; (A.Q.); rasaadeh@zu.edu.jo (R.S.)

Abstract: In this work, new refinements of some numerical radius inequalities are proved. Namely,
new improvements and refinements purify the recent inequalities of some famous inequalities
concerning the numerical radius of Hilbert space operators. The proven inequalities in this work
are not only an improvement over old inequalities, but rather they are stronger than them. Several
examples that support the validity of our results are established as well.
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1. Introduction

Let <7 (_7 ) be the Banach algebra of all bounded linear operators defined on a complex Hilbert
space (7; (-,-)) with the identity operator 1 ; in &/ (7). For a bounded linear operator § on a
Hilbert space _#, The numerical range W (F) of a bounded operator § € &/ (_#) is defined by
W (F) ={@uu):ue 7, |u|=1}. Also, the numerical radius is defined to be

w(§) = sup |B|= sup |[(Su, p)l.
BEW(F) =1

We recall that the usual operator norm of an operator § is defined to be
181l = sup {lISull : p € 7, lull = 1},

It’s well known that the numerical radius w (-) defines an operator norm on .« (_# ) which is
equivalent to the operator norm || - ||. Moreover, we have

1
S8 <@ @) < I3 )

forany § € 7 (7).
In 2003, Kittaneh [1] provided a refinement of the right-hand side of (1), by obtaining that

. 1 2(11/2
151+ 1871 < 5 (181 + 1520172) @

NI~

w(F) <

forany § € o (7).
Two years after that, Kittaneh [2] proved his celebrated two-sided inequality

1 1
7188 +85 1 < ? () < 51575+ 55 ©)

forany § € o7 (_# ). These inequalities are sharp.
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In [3], Dragomir established an upper bound for the numerical radius of the product of two
Hilbert space operators, as follows:

W (6°9) < 3 19 + o

(r=>1). 4)

In his recent work [4], Alomari provided a generalized refinement of the right-hand side of (3) and the
recent result of Kittaneh and Moradi [5], as follow:

W (§) < 701577 + 1 PO P4 2 (1= 8) P ) [ 1827° + [0 ©)

IN

%5 H |S|4pz5 + |3:*|4P(1—5) H + % (1-9)w” () H mzpé T W’zp(l—a) H

IN

% H|3|4p5 i |3,*|4p(17(5)H

for any operator § € &/ ( Z),p>1,and d € [0,1]. In particular, it was shown that

1 .
W (§) < = 12 |||S|+|$*||| + R0 @IS+ 8l (Alomari [4]) (6)
1
<z H 13>+ |%*|2H + 3@ () I8+ 3"l (Kittaneh-Moradi [5)

1 112
< 71181+ 131

In the same work [4], a refinement of (4) was proved, as follows:

W (&'9) < 30|96+ 1 -o)w ) |IoP + 6P @)
< 0|1+l + 5 (- &) (@) 9P + e
<5 [+ 1ol
In particular, it was shown that
W (©"9) < = |97 + e H + w (&°9) 191 + 6’| (Alomari [4) ®)
S%HI&I + 8| H+§w(e§*s§)H|ﬁ| +16f||  (Kittaneh-Moradi [5])
<1l +1or]

In [6], Sababheh and Moradi presented some new numerical radius inequalities. Among others, the
well-known Hermite-Hadamard inequality was used to perform the following result.

ow@) | [ o(a-915+s 5 Das] < 3o 3D+ 05Dl ©

for every § € &7 (_# ), and increasing operator convex function ¢ : [0,00) — [0, ).
On the other hand, Moradi and Sababheh In [7], proved the following refinement of (9).

1 35|+ |3 +3|F*
ptwtan < Lo (SEEET) (1551 "
for all increasing convex function ¢ : [0,00) — [0,00). In particular, they proved
1 *
@ (§) < 55 || G181+ 1517 + (31 +315°17 - (11)

32
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The constant 3% is the best possible.
For more generalizations, counterparts, and recent related results, the reader may refer to [13]-[41].
In this work, new refinements of the previously mentioned inequalities are proved. Namely,
new improvement and refinements that purifies the inequalities (4)—(11) are established. The proven
inequalities in this work are not only an improvement over the previous inequalities, but rather they
are stronger than them. We presented examples that prove the validity of our words.

2. Refinements of the Numerical Radius Inequalities

Lemma 1. [10, Theorem 1.4] Let B € o7 (_#)", then

(P, c) < (PPe,c), p>1 (12)
for any vector c € _#. The inequality (12) is reversed if 0 < p < 1.

Lemma 2. [11] Let & € <7 (7). Then,
@A < (JeTAA) (18 P ), o<y <, 13)
for any vectors A,y € 7, where || = (Qﬁ*(’ﬁ)l/z.
The following lemma is an operator version of the classical Jensen inequality.

Lemma 3. ([10], Theorem 1.2)
Let & be a selfadjoint operator in Let <7 (_# ). Then, whose spectrum & C [m, M| for some scalars m < M,
and let y € _¢ be a unit vector. If f(t) is a convex function on [m, M], then

e((&u, 1)) < (@(B)p, ). (14)

We are in a position to state our main first result.

Theorem 1. Let§F € o (7). If ¢ : [0,00) — [0, 00) is an increasing and convex, then

0w @) < g o (G o (B2 (15)

Proof. Since ¢ is increasing and operator convex, then by Jensen’s inequality we have

¢ ([ 1))
Vs (5w by 09)

<'S' B+, y>) (by (13))
1
3

()0 (25
(555 (2227 )
(B ) o (220,
<2|S| + 37 > p <|3|+32|{§*|>] H/V>-

IN

¢

IN
N\»—\ NI~ NI~

IN
S
TA/—\/—\
<

IN

S

A~ —
S


https://doi.org/10.20944/preprints202304.1255.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2023 doi:10.20944/preprints202304.1255.v1

40f 15

Taking the supremum over all unit vector p € _¢ in all previous inequalities we get the required
result. O

Corollary 1. Let § € o/ (7). If ¢ : [0,00) — [0, 00) is an increasing and convex, then

L (28BN (18I +2187\"
1| (32 (20

In a particular case,

W (§) < 75 [ @181+ 172 + (51 + 2151 (16)
The constant 11—8 is the best possible.

Proof. Consider f(s) = s”,s > 0 (p > 1) in (15) the we get the desired result. The particular case
in (16) follows directly by setting p = 2. To prove the sharpness of (16), assume that (16) holds with
another constant ¢ > 0, i.e.,

@ (§) < c|| @151+ 157 + (151 +215")7. (7)

Assume § is a normal operator and employ the fact that for normal operators we have w () = ||5||,
then by (17), we deduce that 11—8 < ¢, and this shows that the constant 11—8 is the best possible and thus
the inequality is sharp. [

A non-trivial refinement of (15) is considered in the following result.

Theorem 2. Let§ € o7 (7). If ¢ : [0,00) — [0, 00) is increasing and operator convex, then

<[ -0 (B2 o (8:351)

SzHgo(zlslngSﬂ)H)(I%HBZI%*I)” (18)
< HMI%I)Z(P(I&*I)H‘

Proof. Since ¢ is increasing and operator convex, then by Jensen’s inequality we have

o (1Gm 1))
<o (VU310 (5 )

((BLlE,,,)
(OB ) (22220
Lo (225 o (2525 )

On the other hand

IN
S|
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[0 (D) ) o (B2 )
- Lo (D)) (B2
((o-n (2m3121) o, (2200, )

([ (-0 (R o (250)) )
(o (25 o (32
< (2B eED, ),

Taking the supremum over all unit vector ¢ € _¢ in all previous inequalities we get the required
result. O

Corollary 2. Let § € o7 (7). Then,

o</ (09 (B3 oo (1)
S;H(lelgwl)”+ <|&|+2|s*|)”

3 (19)
131" + 18"
2

S ’

foralll <p <2
Proof. The result follows by applying the increasing operator function ¢ (t) =t/,1 < p <2. O

Corollary 3. Let § € o7 (7). Then,

[} (-0 (2BLEET) 1 (18 +32|s*|))2dsH

< e[| @ts+ 1502 + s + 21507 (20)

W (F) <

<5 |1sr+ 152

Example 1. Let § = [ (1) g ] . It is easy to observe that w (F) = 1.5. Applying the inequalities in (20), we
get

2.25 = w? ()

IN

=225

[ (-9 (BT (B2 Y,

@131+ 15"+ (131 +215°)7|| =227

<=

=18
1 .

o1 IR R

As we can see the first inequality turns to an equality for this example; that gives the exact value of the numerical
radius. Moreover, the second inequality improves Sabaheh-Mordai inequality (11). Roughly, we have
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1
225 =@ (§) < 55 | G131+ [5°1)* + (3] + 3157 = 23125

and this show that our first two inequalities are much better than (11). Practically and more preciously, the first
two inequalities in (20) are stronger than the lower bound in (3), and the inequalities in (9), (10), and (11).

Theorem 3. Let 5,6 € o7 (7). If ¢ : [0,00) — [0, 00) is an increasing and operator convex, then

IX; ((1 g <2|~6l23+ |®I2> re (lﬁlzgmlz)) dsH
2 2 2 2
Ll (2’3\3+|"5|> +o <|~‘5|+32|"5|>‘

:@3+M®ﬂ.

2
Proof. Let u € _# be a unit vector. Then by Cauchy-Schwarz inequality we have

¢ (w(679)) <

< (21)

¢ ((&"op, w)]) = ¢ ([(p, &p)]) < @ ([|9ul &)
=9 <<IYJ|2V,#>2 <|®|2Mt>2>
Y (<|5|2;w> + <|®|21w>) |

2

The rest of the proof goes similar to that one given for the proof of Theorem 1; by replacing |§| and
|3*| by |$]? and |&|?, respectively; we get the required result. [

We finish this work by introducing some refined improvements of numerical radius inequalities.
Among others, Sababheh—-Moradi in [6] and [7], presented some new general forms of numerical
radius inequalities for Hilbert space operators. In fact, Sababheh and Moradi used the classical
Hermite-Hadamard inequality and its operator version to prove their results. Our approach is based
on refining and extending these inequalities in the lighting of Alomari refinement extension of the
Hermite-Hadamard inequality [16].

Theorem 4. LetY : &7 (_f) — o/ (#) be a positive unital linear map and let § € o7 ( 7). If ¢ : [0,00) —
[0, 00) is an increasing and convex function, then

9 (@ (¥ ()

<o (3l (o))

1 3 2 %2 2 3 |7 2
<l (r () e (e ()
1
< sup [ ¢ <H‘1ﬂ/2 (=015 +t157) ;4H2> dt (22)
pe g 70
=1
<

3o (1x (BE5EE) ) 3l (o (o) w0 ()|
<3 (o %) + o (7))
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for any Unit vector y € 7.

Proof. In [16], Alomari proved the following refinement of the classical Hermite-Hadamard inequality

(b—a) 3a+b a+3b /b
> |8\~ ) T8l < | s(t)dt (23)
(b—a) [, (atbY, gla)+g(b)
S8l )t 5 .
for every convex function g : [a,b] — R. Moreover, since g is convex, then we may rewrite (23), as
follows
a+b\  (1[3a+b a+3b 1 3a+b a+3b
() =s G = e (55) v (5]
1
g/o g((1—tya+th)dt (24)
17, (atb) g@+e(b)
“als(57) 1
g(a) +g(b)

< > (g is convex)

Let § = K + iL be the Cartesian decomposition of § € < (_# ). Therefore, we have
5+ 15 =55 +55 =2 (K2 +1?) (25)
and
S )l = (Ko ) + (L), Ype 7. (26)

Replacing a and b by <‘I’ (|$|2) y,y> and <‘I’ (|S*|2) y,y> in (24), for y € _# such that ||| = 1,in

(4) we obtain

\ ((‘1’ (188) ) + (¥ (15°7) w>>

2

[q) (3@ (187) i) + (¥ (13°P) W>) Y (<w (181) ) +3 (¥ (15°F) w})]

IN
N =

4 4

1

o ((Y (A= +t15° ) up))dt

IN
S—

. % , (<‘I’ (157) mm) ﬂ;<‘i’ (I5°7) W>> L (C2 (1817) mow)) +2(p ((¥ (15°7) W>)]
o (Ce(sP) wm)) + o (CY(13) 1))

- 2
But since ¢ is convex and ¥ is a positive unital linear map, then the last two inequalities could be
refined respectively as follows:
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(o))} oo ) ()

2 2

(o o)) ol e o en)

2 2

1
2

<

NI~

and

o ((¥ (157) wn)) +2¢ ((2 (1) mm))
_ (¥ (e(Br)) W>+2 (¥ (o (137)) )

_ % (¥ (¢ (I57) + o (I517)) 1)

Combining the above two inequalities together we obtain

s [o (e (00w )l ) o

: )+ 2l (o ) o ()]

()
<3 l¥ (o (5P) +o (5 P)

Now, since ¢ is increasing then we have

o (IE @ mml) =g ((F K pw’+ ¥ L) pp?)
2

Y2 (K) o) + (Y2 (L) o))

({

EET () ) + 0 ({¥ (12) )

L, (<‘f (18F +15°7) m)
(

2

(¥ (157) ) + (¥ () W>)

2

Taking the supremum over all unit vector y € _¢ in all previous inequalities we get the required
result. [

The following example ensures that the inequalities in (22) refine Sababheh—Moradi inequality [6,
Theorem 2.2].

Example 2. Let § = l 3 i ] Let ¢ be a function defined by ¢ (t) = t2, t € [0,00). Define the unital

positive linear map ¥ : My (C) — My (C) be defined by ¥ (§) = L (tr (§)) L, for all matrices § € My (C).
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w* (Y (3)) = 39.0625

e () =5

2
1 31517+ |5
G

_l’_
e /01 |72 (=) 13+ 157 ) ]
lul=1

é ¥ (B2 +15P) Hz - i [® (151 + 15°1*) | = 251125

IN

IN

4

2 L2\ |12
o (W) H ] .

IN

IN

N

< % H‘Y (Is1*+ |8*|4)H — 446.

The following result gives an alternative extensive proof of [6, Theorem 2.2]. The approach
presented in the proof is completely different and motivated by the concept of the Cartesian
decomposition of an arbitrary Hilbert space operator. At the same time, a chain of inequalities
improves the result in [6] and refines the lower bound of the celebrated Kittaneh inequality (3).

Theorem 5. Let K + iL be the Cartesian decomposition of an operator § € </ (7). If ¢ : [0,00) — [0,00) is
a non-negative increasing operator convex function, then the following chain of inequalities

(w2 (5) > (I ;L(p (B .

SRS

2
- [ o) 1210 (2)
> /01 o (662 + (1-0)12) ] a6

- H/o1 g (K2 +(1-0)12) d(SH

S*S + SS*
e (75

4

are hold.
Proof. Since § = K + iL, then we have

(Euu) P = (Kp,uw)® + (L p)?,  pe 7.

The monotonicity of ¢ and the above identity imply that

o9 (13m0 1) = o0 (K1),

and
(1=8) ¢ (1GrmP) = (1-0) ¢ (L w?)

for all § € [0,1]. Therefore,
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o (1Gn ) =dp (IGwmI*) + -6 o (1GwmI’)
> o9 ((Kp,m)?) + (1= 0) o (L w)?).
Taking the supremum over all unit vector y € _#, since ¢ is increasing we get
9 (@ (@) = o0 (IKI?) + (1 —0) ¢ (ILI?)

o9 (||K2]) +(1-0)e ([12])  since |37 < IISI% forall § € 7 (7))
=s|e (K)||+ -0 |o(r2)]|  inceqlsh) = lIe NI
> H(Sq) (k) +(1-0)9(r2) H (by triangle inequality)
> H(p (51<2 +(1-90) LZ) H (¢ is operator convex)

Integrating with respect to ¢ over [0, 1], we have

o (IIKI?) + ¢ (ILI7)

"’(“’2 (3)> = 2
2 e (IK2]) + o (I22])
= 2

_ e ()] + o (£2)]]

- [ lse(0) + 100 (1)

> /01H¢(51<2+(1—5)L2)Hd5
1

> / ¢ ((51(2 +(1-9) LZ) d(SH (by triangle inequality)
0
2 2
>l (K ;—L ) ' (¢ is operator convex)
_ (%*S + %S*)
e )l

and this proves the required result. [J

The following result refines (27) and gives a better estimate of the numerical radius.

Theorem 6. Let K + iL be the Cartesian decomposition of an operator § € </ (7). If ¢ : [0,00) — [0,00) is
non-negative increasing operator convex function, then

o («®) 2 o (IK7) + o (1L7) = o (2525 29

for all real numbers r,s > 0.

Proof. Our proof is similar to that one presented in the proof of Theorem 5. Let r,s > 0, since
§ = K+ iL, then we have

[(Ew))> = (K ) + (L u)®,  pe 7.

The monotonicity of ¢ and the above identity imply that
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o ((Kpnw)?)

r+s

and

o (1Enlf) = e (Lnw?)

for all positive real numbers r,s > 0. Therefore,

o (IGn ) =

>

o (150 1) )+m¢(|<c¢u,u>|2)

o ((Kuw?) + =0 ({Lww?).

r
r+s

r
r+s
Taking the supremum over all unit vector y € ¢, since ¢ is increasing we get

¢(w2(3))2r+s (H ||) r+s (||L||>
2r+s o (J)) + 2 (|2])  ince 570 < IR, forall 5 € 7 (7))

= o (@) |+ = o(?)]|  inceo s =llo (3D 1)

e (1) + e (1)

H <rK2—|—sL2)
r+s

which yields the desired result. O

‘ (by triangle inequality)

(¢ is operator convex)

2

3 5
(t > 0). So, by applying the first inequality in (28) (which is the same result given in [6, Theorem 2.2]) gives
that w (F) > 5.04635 (the case whenr =s =1)

Example 3. Consider § = . It is easy to observe that w (§) = 6. Define the function f(t) = t?

504635, if r=1,s=1;
542213, if r=2,5=1;
w(F)=6>1{ 584414, if r=9,s=1;
597039, if r=50,s=1;
599850, if r=1000, s = 1.

While selecting various values for v and s yields better estimations. Indeed, in this example; as the value of r is
greater than s we get a better estimation (lower bound) and this improves Mordai—Sabaheh’s inequality (the case
whenr = s = 1, above). In general, once the values of | K|| and r are large (small) enough and the values of ||L||
and s are small (large) enough we get better estimation, and vice versa. Based on that, it is convenient to note
that (30) always gives a better lower bound.

In [7], Moradi and Sabaheh used the interesting inequality
a+6\2 _[(9+6\ [|9H-6]\* H?+ 62
) <« (2= —
() =0 () =7 &

for every selfadjoint operators $), & € o7 (_# ), to prove the following refinement of the left-hand-side
of (3), as follows:
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1
2|2

1
55455 < |@s s+ 2+ 67| <@ (0)

By recalling the original result in [7], an interesting improvement of (30) holds. Namely, we have

1 2
L I55+55 < Hss+s@f (3 + 6
%
< s (11455 ||) G1)
< @ (3)

The next result extends and refines the inequality (31) as follows:

Theorem 7. Let K + iL be the Cartesian decomposition of § € <7 (_# ). Then,

(52) @+ 6r) + e 9
me)(ﬁ @))+@W+?mr

+ [(32+(s*)2) + (:Jr > (33 +3" &)}

1
1 (2 +5 )+ 15 -5
T 2V2 (r +s)?

w? (§)

<1
=1

1
2

(32)

forall § € [0,1] and all positive real numbers r,s > 0.

Proof. Since K + iL be the Cartesian decomposition of §. Then

rK2+sL*  (r—s _&2+(§*)2+33*+5*3
r+s  \r+s 4 4

and

rKZ—sL2_;¢2+(;¢*)2+ r—s\ 3 +3'%
r+s 4 (r+s> 4

Replacing $ and & by ;2-K? and ;212 (Vr,s > 0), respectively, in (29), we get
2
rK24sL2\* _ (rK2 4512\ ? LSS
r+s - r+s r+s
_2rK* 424211

(r+ 5)2

Consequently,

doi:10.20944/preprints202304.1255.v1
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ros\ F4E 3T _ e
r+s 4 4 r+s
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<r1<2 +sL2>2 . <|r1<2 — 12| )2
r+s r+s
2r2K* + 25214
(r—i—s)2
272 | K| * + 252 ||L|*
(r—ks)2
< w* (%),

IN

<

which gives the desired resultin (32). O
Remark 1. In particular, choosing r = s = 1 in (32), then we refer to (31).

Remark 2. In spite of that, (32) still can give a better estimation that (31). By choosing specific values for r and
s we would then get a better lower bound. To check that consider the same example considered in Example 3. We
left the investigation of this note to the interested reader. Nevertheless, once the values of || K|| and r are large
(small) enough and the values of ||L|| and s are small (large) enough we get a better estimation than (31).

3. Conclusion

In this work, more accurate numerical radius inequalities refine several well-known and
sharp inequalities obtained in the literature. Namely, as it is shown the inequality (12) refines
Sababheh—-Moradi inequality (9). In fact, (16) is sharper than both (14) and (11). An alternative
extensive proof of [6, Theorem 2.2] is provided as well. Among other inequalities, two interesting new
results are established. Namely, it is shown that

o6 9) = e () o (1) » o (K222

for every increasing operator convex function ¢ and all real numbers r,s > 0. Also,

(D) Frar) +ev 459

[( S) (F+ ) + (55 +s*&)r

r+s

1
4

1
2

+ [(32+(3*)2) + (:Jr ) (35" +35" 3)}

1
R S R el ek A
T 2V2 (1’4—5)2

w2(3).
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