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Abstract

This study investigated the spatiotemporal dynamics of four major air pollutants —carbon monoxide
(CO), nitrogen dioxide (NO), sulfur dioxide (50,), and ozone (Os) —across Dhaka City from 2020 to
2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was conducted,
integrating spatial mapping, seasonal composites, and Mann-Kendall trend testing. Results indicated
clear seasonal variations: CO and NO, concentrations peaked during winter, with maximum monthly
averages of 0.05287 mol/m? and 0.00035 mol/m?, respectively, while SO, reached a high of 0.00043
mol/m? in pre-monsoon months. In contrast, Os; peaked in May (0.13023 mol/m?), following an inverse
seasonal trend driven by photochemical activity. Spatial analysis revealed persistent pollution
hotspots in central-western zones like Tejgaon and Mirpur for CO and NO,, while SO, was
concentrated in southern industrial zones such as Keraniganj and Jatrabari. The Mann-Kendall test
identified moderate to strong increasing trends for CO (1= 0.8, p = 0.086 in June and September) and
SO, (t=10.8, p=0.086 in April and May), although most trends lacked statistical significance due to
the limited temporal window. This study demonstrates the viability of combining satellite remote
sensing and cloud-based processing for urban air quality monitoring and provides actionable
insights for targeted seasonal interventions and evidence-based policymaking in Dhaka’s evolving
urban context.

Keywords: urban air pollution; Sentinel-5P; Google Earth Engine (GEE); Dhaka city; CO; NO,; SO;
Os; spatiotemporal analysis; Mann-Kendall trend test

1. Introduction

Air pollution has emerged as one of the most pressing environmental and public health
challenges of the 21st century, particularly in densely populated and rapidly urbanizing cities in the
Global South. The World Health Organization (WHO) estimates that air pollution contributes to
approximately 7 million premature deaths globally each year, with urban populations facing
disproportionately high exposure to harmful pollutants [1]. Among the most critical urban air
pollutants are carbon monoxide (CO), nitrogen dioxide (NO,), sulfur dioxide (SO,), and ground-level
ozone (O3), each of which poses unique risks to human health, ecosystems, and the climate[2,3]. These
pollutants are primarily emitted from anthropogenic sources, including vehicular exhaust, industrial
activities, fossil fuel combustion, and biomass burning [4]. As cities continue to grow, understanding
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the spatiotemporal dynamics of these pollutants becomes essential for effective environmental
governance and sustainable urban planning.

In South Asia, Bangladesh —particularly its capital, Dhaka—has been identified as one of the
cities with the worst air quality in the world [5]. Dhaka’s complex urban structure, high population
density, unregulated industrial clusters, and chronic traffic congestion contribute to persistent and
often severe air pollution episodes. Despite growing public concern, monitoring air quality in Dhaka
has been hampered by limitations in ground-based sensor networks, including sparse spatial
coverage, inconsistent data availability, and maintenance issues [6,7]. These limitations necessitate
the integration of satellite remote sensing technologies for continuous, consistent, and large-scale
monitoring of atmospheric pollutants.

In recent years, the launch of the European Space Agency’s Sentinel-5P satellite —equipped with
the TROPOspheric Monitoring Instrument (TROPOMI)—has revolutionized atmospheric
monitoring by providing high-resolution, near-real-time data on key trace gases at a global scale [8].
Sentinel-5P offers daily coverage and spatial granularity sufficient to detect intra-urban pollution
variations, making it especially valuable for cities like Dhaka. Coupled with cloud-based geospatial
platforms such as Google Earth Engine (GEE), which enables large-scale environmental data
processing, researchers now have powerful tools to assess both the spatial and temporal patterns of
air pollutants with unprecedented detail and continuity [9].

Several recent studies have demonstrated the utility of Sentinel-5P data in urban air quality
monitoring across different contexts. For instance, Bauwens et al. [10] used Sentinel-5P to assess
reductions in NO, during COVID-19 lockdowns worldwide. Similarly, Matandirotya et al. [11]
analyzed SO, and CO over African megacities, while Biswas et al. [12] explored pollution trends in
Indian cities. However, there remains a significant research gap in applying these advanced tools for
long-term, high-resolution air pollution trend analysis in Bangladeshi cities. Most existing studies in
Dhaka focus on short-term assessments, use sparse in-situ data, or analyze only one or two pollutants
[10,13,14]There is a lack of integrated, multi-pollutant studies that capture both spatial and temporal
variations in air quality over multiple years.

To address this gap, the present study aims to monitor and analyze the spatiotemporal dynamics
of four major urban air pollutants—CO, NO,, SO,, and Os—over Dhaka city using Sentinel-5P
satellite data processed through Google Earth Engine. By constructing a continuous 60-month
(January 2020-December 2024) time-series of monthly pollutant concentrations, this research
provides one of the most comprehensive assessments of long-term air pollution trends in Dhaka to
date.

This research contributes to the growing body of work on satellite-based air quality monitoring
by providing a detailed, multi-pollutant assessment of Dhaka’s atmospheric environment. The study
reveals emerging seasonal patterns, potential pollution hotspots, and trend directions for each
pollutant, offering valuable information for policymakers, urban planners, and public health officials.
By linking satellite-based insights with urban management goals, the findings underscore the
potential for remote sensing and cloud computing to support data-driven environmental governance
in rapidly growing cities of the Global South.

The remainder of this paper is structured as follows. Section 2 outlines the materials and
methods, detailing the study area, data sources, satellite processing in Google Earth Engine (GEE),
spatial analysis in ArcGIS Pro, Python-based automation, and the application of the Mann-Kendall
trend test. Section 3 presents the results, including temporal and seasonal pollutant variations,
interannual trends, spatial distributions, and statistical trend assessments. Section 4 provides an in-
depth discussion of the observed patterns, highlighting their meteorological, anthropogenic, and
spatial drivers. This section also explores the policy implications of the findings, emphasizing
targeted interventions for urban air quality management. Finally, Section 5 concludes the study by
summarizing the key insights and offering recommendations for integrating satellite-based air
quality assessments into evidence-driven urban planning.
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2. Materials and Methods

We employed a multi-platform geospatial and remote sensing approach to examine the
spatiotemporal variations of key urban air pollutants over Dhaka city from January 2020 to December
2024. Our methodological framework integrated satellite-based atmospheric data, cloud-based
remote sensing processing, desktop GIS analysis, and Python-based automation to extract, analyze,
and visualize monthly and seasonal patterns of carbon monoxide (CO), nitrogen dioxide (NO,),
sulfur dioxide (50,), and ozone (O;). The entire workflow consisted of several interlinked stages,
including study area delineation, data acquisition and preprocessing, time-series pollutant derivation
in Google Earth Engine (GEE), and spatial mapping and analysis in ArcGIS Pro.

2.1. Study Area

This study focused on Dhaka city, the capital and largest urban center of Bangladesh, which is
recognized as one of the most densely populated and polluted cities globally [15]. We delineated the
study boundary using an administrative shapefile of Dhaka, obtained from the Bangladesh Bureau
of Statistics (BBS), representing the Dhaka City Corporation area. The shapefile was projected to WGS
84 UTM 46 N and used as a consistent clipping mask throughout our processing. The spatial extent
of the study area ranged approximately from 23.67°N to 23.90°N latitude and from 90.33°E to 90.51°E
longitude and has an area of 305.82 km?. The area is characterized by dense urban infrastructure, high
traffic emissions, and rapid industrialization—factors contributing significantly to air quality
deterioration. Figure 1 and Figure 2 show the location and upazila (Upazila is the level 3
administrative boundary in Bangladesh) boundary of the study area respectively.
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Figure 1. Location of (a) Dhaka district in Bangladesh; (b) the city of Dhaka in Dhaka district; and (c) base map
of the city of Dhaka.
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Dhaka City Upazila Boundary
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Figure 2. Dhaka city upazila boundary.

Dhaka has a tropical wet and dry climate, characterized by hot, humid conditions and a distinct
monsoon season. Temperatures generally range from 18°C (64°F) in January to 29°C (84°F) in August,
with an annual average of 25°C (77°F). The rainy season, influenced by monsoons, typically occurs
from April to September, with June seeing the heaviest rainfall. The driest period is from November
to March [16]

The air and water in Dhaka are becoming more and more polluted due to the city’s constantly
growing population. To meet the demands of the growing population, multistory buildings and real
estate developments are taking up wetland and green space, endangering the city’s biodiversity and
urban ecosystem [14].

2.2. Data Sources and Acquisition

We utilized Level 3 (L3) tropospheric column concentration products from the Sentinel-5
Precursor (Sentinel-5P) satellite, which is equipped with the Tropospheric Monitoring Instrument
(TROPOMI). This instrument provides daily global measurements of several atmospheric pollutants
at a spatial resolution of up to 7 x 3.5 km? (after August 2019), making it suitable for urban-scale air
quality analysis [8]. The pollutant-specific datasets used were:

e  CO: COPERNICUS/S5P/OFFL/L3_CO;
e NOy COPERNICUS/S5P/OFFL/L3_NO2;

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0687.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2025 d0i:10.20944/preprints202507.0687.v1

5 of 26

e 50, COPERNICUS/S5P/OFFL/L3_SO2;

e Oz COPERNICUS/S5P/OFFL/L3_O3.

We accessed and processed these datasets directly from the Google Earth Engine (GEE)
platform, which offers high-performance cloud-based geospatial computation and analysis tools. In
total, 60 months of data were acquired and analyzed for each pollutant, covering January 2020 to
December 2024. Additionally, we used auxiliary data including Dhaka’s administrative boundary
and OpenStreetMap (OSM) layers for contextual mapping.

2.3. Data Processing in Google Earth Engine

All pollutant-specific atmospheric datasets were processed using JavaScript in the GEE code
editor. We filtered the Sentinel-5P datasets temporally and spatially to extract pollutant
concentrations over Dhaka on a monthly basis. Each ImageCollection was filtered using the
ee.Filter.date() function to isolate data for each month. Spatially, we applied the .clip() function using
the Dhaka shapefile to confine the dataset to our study boundary.

To ensure the quality and reliability of satellite-derived measurements, we applied a quality
assurance (QA) filtering step for each dataset. We applied a quality assurance threshold of QA > 0.75
to filter out low-quality retrievals, following established practice in TROPOMI NO, and SO, studies
[17-20]. This threshold effectively removes pixels affected by clouds, snow/ice, and retrieval noise,
ensuring high-confidence data for spatial and temporal analyses.

Monthly mean composites were generated using the ImageCollection.mean() function in GEE.
These monthly average images were then exported in GeoTIFF format to Google Drive using the
Export.image.toDrive() function, with a resolution of 0.01 degrees (~1 km) and a bounding box
matching the extent of Dhaka. We developed a modular and reusable GEE script that looped through
each month and pollutant type to automate the composite generation and export process. This
significantly reduced processing time and ensured consistency across the 60-month dataset.

2.4. Spatial Analysis and Visualization in ArcGIS Pro

We performed the spatial analysis and visualization of pollutant data using ArcGIS Pro 3.x,
which served as the principal desktop GIS platform for integrating, processing, and interpreting the
Sentinel-5P-derived outputs. After exporting the monthly raster layers for CO, NO,, SO,, and O3 from
Google Earth Engine (GEE) as GeoTIFF files, we imported these into ArcGIS Pro and organized them
systematically in raster catalogs corresponding to each pollutant. This structured organization
facilitated batch processing, visualization, and temporal analysis of the 60 monthly rasters (January
2020-December 2024) for each pollutant.

We also generated annual and seasonal average maps by performing raster algebra operations
using the “Raster Calculator” tool. Monthly rasters were grouped by year or season (i.e., winter, pre-
monsoon, monsoon, and post-monsoon) and averaged to create composite layers representing intra-
annual variability. These composites were crucial for identifying persistent pollution zones and for
comparing spatial distribution changes over the years.

To support time-series visualization, we used the “Time Slider” tool in ArcGIS Pro. We assigned
timestamps to each raster layer and created spatiotemporal animations to illustrate the dynamic
monthly changes in pollutant distribution. This technique enabled an intuitive understanding of
pollutant behavior and seasonality across years.

2.5. Python-Based Automation Within ArcGIS Pro

To streamline repetitive tasks such as map production, data export, and temporal plotting, we
implemented Python scripting through ArcGIS Pro’s built-in Jupyter Notebook environment. Using
the ArcPy module, we automated tasks including:

e  Batch map generation with consistent layouts (legend, north arrow, scale bar, title);

e  Exporting raster statistics to CSV files for each month and pollutant;

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e  Plotting pollutant trends over time using matplotlib and pandas;

e  Performing raster calculations (e.g., difference maps between years).
This automation significantly improved the efficiency of our workflow and reduced the
likelihood of human error in processing large volumes of spatial data.

2.6. Temporal Trend and Seasonal Analysis

To capture temporal variability, we categorized each month into four major seasons typical of
South Asian monsoonal climates: Winter (December-February), Pre-monsoon (March-May),
Monsoon (June-September), and Post-monsoon (October-November) [21]. For each season, we
computed seasonal mean composites by averaging the monthly raster layers within each seasonal
group. Annual means were also computed by averaging all 12 monthly composites for each year from
2020 to 2024. The resulting seasonal and yearly rasters were used to analyze intra-annual fluctuations
and interannual trends in pollutant levels.

We further calculated percent changes in annual pollutant concentrations using raster algebra
functions. Trend analysis graphs were generated using time-series data exported from zonal
statistics, helping to visualize upward or downward trends across the study period.

2.7. Monthly Trend Detection Using Mann-Kendall Test

To statistically assess monotonic trends in pollutant concentrations over time, we conducted the
non-parametric Mann-Kendall (MK) trend test on the monthly average values of CO, NO,, SO,, and
O; for the 60-month period (January 2020 to December 2024). The Mann-Kendall test is widely used
in environmental time-series analysis due to its robustness to missing data, non-normal distributions,
and its ability to detect both increasing and decreasing trends without assuming linearity [22-24].

For each pollutant, we extracted monthly mean concentration values for the entire Dhaka city
using the “Zonal Statistics as Table” tool in ArcGIS Pro. The output tables were exported as CSV files
and processed in Python using the pymannkendall package, which implements the original Mann-
Kendall test along with the modified versions for seasonality and serial correlation correction.

The test was applied to the time-series for each pollutant, yielding the Kendall’s tau coefficient,
p-value, and trend classification (increasing, decreasing, or no trend). A significance level of a = 0.05
was adopted to determine whether the observed trend was statistically significant. This step allowed
us to quantitatively evaluate long-term changes in atmospheric pollutant concentrations and validate
observed patterns in the spatiotemporal maps.

The Mann-Kendall results were then integrated with the spatial analysis by visualizing the
statistically significant trends alongside mapped changes in pollutant concentrations. This
combination of visual and statistical trend assessment enabled a more comprehensive interpretation
of urban air quality dynamics in Dhaka.

3. Results

This section presents the findings of the spatiotemporal analysis of four key atmospheric
pollutants —carbon monoxide (CO), nitrogen dioxide (NO), sulfur dioxide (SO;), and ozone (Os) —
over Dhaka City from January 2020 to December 2024. The results are organized to highlight both
temporal and spatial patterns, including monthly and seasonal variations, interannual trends, and
statistically assessed changes using the Mann-Kendall trend test. Furthermore, spatial distribution
maps and zone-wise comparisons reveal intra-urban pollution hotspots and potential source-
attribution patterns. All findings are derived from Sentinel-5P TROPOMI satellite data processed
through Google Earth Engine and analyzed in ArcGIS Pro, ensuring consistency and high-resolution
coverage across the 60-month study period. The results are reported in mol/m?, and pollutant-specific
characteristics are examined to uncover both meteorological and anthropogenic influences on air
quality dynamics in Dhaka.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202507.0687.v1


https://doi.org/10.20944/preprints202507.0687.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2025

doi:10.20944/preprints202507.0687.v1

3.1. Temporal Variation of Pollutants (2020-2024)
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The monthly mean CO concentrations over Dhaka displayed a distinct seasonal pattern, peaking
during winter and declining through the summer monsoon (Figure 3). January recorded the highest
mean (0.05136 mol/m?), with the maximum concentration reaching 0.05287 mol/m? and the mode at
0.05195 mol/m?. In contrast, July presented the lowest mean (0.03364 mol/m?), minimum (0.03279
mol/m?), and mode (0.03345 mol/m?). The standard deviation was highest in January (0.00064),
indicating greater variability during colder months, while June-September had the lowest standard
deviations (approx. 0.00029-0.00033), reflecting more stable pollutant levels (Table A1).
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Figure 3. Monthly average CO concentration (2020-2024) in Dhaka city.

3.1.2. Nitrogen Dioxide (NO,)

Monthly average NO, concentration (2020-2024) in Dhaka city has been presented in Figure 4.
NO; also exhibited pronounced winter peaks and summer lows. January and December had the
highest means (0.00030 and 0.00029 mol/m?, respectively), with corresponding maxima (0.00035 and
0.00035 mol/m?). July marked the lowest average concentration (0.000081 mol/m?) and also showed
the smallest standard deviation (0.000010), suggesting uniformly low NO; levels during monsoon
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months. The highest variability occurred in March and November (standard deviations: ~0.000030),
suggesting increased fluctuation in emissions during seasonal transitions (Table Al).
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Figure 4. Monthly average NO, concentration (2020-2024) in Dhaka city.

3.1.3. Ozone (O3)

O; concentrations exhibited an inverse seasonal pattern. According to Figure 5, the mean was
highest in May (0.13004 mol/m?) and lowest in December (0.11476 mol/m?). Maximum values peaked
in May (0.13023 mol/m?) and minimums were lowest in January (0.11639 mol/m?). The lowest
standard deviation was recorded in June (0.000045), showing remarkably consistent levels during
early monsoon. Mode values across all months closely aligned with mean values, indicating normally
distributed data and low skewness in O; concentrations (Table A1).
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Figure 5. Monthly average Os concentration (2020-2024) in Dhaka city.

3.1.4. Sulfur Dioxide (SO,)

SO, showed high variability across seasons and zones. As shown in Figure 6, February and
March had the highest mean concentrations (0.00030 and 0.00030 mol/m?), with maxima reaching up
to 0.00043 mol/m?2. The lowest means were observed in July (0.000029 mol/m?), with minimums as
low as 0.0000 mol/m?, reflecting near-absence of SO, in some zones during monsoon. High standard
deviations, especially in January (0.000064) and November (0.000058), suggest sporadic and spatially
concentrated emissions, while July and August exhibited the lowest variability (Table Al).
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Figure 6. Monthly average SO, concentration (2020-2024) in Dhaka city.

3.2. Interannual Trends of Pollutants

Figure 7 presents the year-wise monthly trends of four key urban pollutants —CO, NO,, Os, and
SO,—over Dhaka from 2020 to 2024. Each pollutant exhibits distinct seasonal and interannual
variations in line with meteorological cycles, urban activity levels, and anthropogenic emission
sources.

CO concentrations consistently peak during the winter months (December—February) across all
years. The highest monthly average values were recorded in January and March, while the lowest
concentrations occurred during the monsoon (June-August), especially in July 2022 (~0.033 mol/m?).
The CO trends also demonstrate relatively consistent seasonal cycles year-to-year, though 2020 and
2024 showed higher winter values compared to other years. The multi-year mean concentration
ranged from 0.0336 to 0.0514 mol/m?, with standard deviation peaking in January (0.00064 mol/m?),
indicating greater temporal variability during colder months.

NO; exhibited sharp seasonal contrast, with peak concentrations during January-March, and
the lowest in July—August. Across the years, 2022 recorded the highest NO, levels in winter months,
while 2024 showed the lowest in March and April. The mean concentrations ranged between 0.00008
and 0.00030 mol/m?, with maximum values reaching 0.00035 mol/m? (January). Standard deviation

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0687.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2025 d0i:10.20944/preprints202507.0687.v1

11 of 26

values were lowest during monsoon, indicating reduced temporal variation due to uniform wet
deposition.

Monthly Trend of CO (2020-2024) Monthly Trend of NO: (2020-2024)
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Figure 7. Monthly average concentration trends of (a) CO, (b) NO,, (c) SO,, and (d) Oz over Dhaka City from
2020 to 2024. Winter peaks in CO, NO,, and SO, are consistent across years, while O3 displays photochemical
summer peaks.

Unlike the primary pollutants, O; displayed an opposite seasonal pattern, with maximum values
observed in April-May and a consistent decline from June to December. The annual peak
concentration exceeded 0.130 mol/m? during May of 2024. All years follow the same seasonal
curvature, driven by photochemical processes, though interannual differences are subtle. Monthly
standard deviation remained low (as little as 0.000045 mol/m? in June), indicating stable O3 formation
conditions.

SO; showed the highest interannual and intra-month variability. Concentrations peaked during
January—-March, particularly in 2020 and 2022, with values surpassing 0.0008 mol/m? in January 2022.
In contrast, monsoon values (June-August) dropped to near zero in all years. The sharp fluctuations
and high standard deviations (up to 0.000064 mol/m?) point to episodic, localized emissions likely
from brick kilns and small-scale industries.

Interannual variations highlight the year 2022 as having the highest winter concentrations across
all pollutants except Os;, which peaked in 2024. By contrast, 2023 saw relatively suppressed pollution
levels, possibly influenced by improved emission control or climatic anomalies such as stronger
monsoonal winds.

3.3. Monthly Mann-Kendall Trend Test Over 2020 to 2024

The Mann-Kendall trend test was applied to monthly maximum concentrations of four key
atmospheric pollutants (CO, NO,, SO,, and Os) over Dhaka city from 2020 to 2024. The analysis aimed
to assess temporal patterns and detect statistically significant trends over this five-year period.

According to Figure 8, CO exhibited predominantly increasing trends across most
months, notably in June and September with a Kendall’s Tau of 0.8 and a p-value
of 0.086, indicating a near-significant upward trend. Moderate increasing trends
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were also observed in April, May, and August (Tau = 0.4; p = 0.462). In contrast,
February, March, November, and December showed decreasing trends, though
none were statistically significant (p > 0.05).
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Figure 8. Man-Kendal test of monthly maximum CO concentration (2020-2024) in Dhaka city.

According to Figure 9, NO; displayed a mix of trends, with decreasing tendencies in February,
March, September, October, November, and December. The steepest downward trend occurred in
September (Tau =-0.6; p =0.220), though it was not statistically significant. Other months like January,
April, and August showed no discernible trend (Tau = 0).
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Figure 9. Man-Kendal test of monthly maximum NO, concentration (2020-2024) in Dhaka city.

As presented in Figure 10, For SO,, strong increasing trends were identified in April and May
(Tau=0.8; p=0.086), indicating potential temporal growth in SO, levels during pre-monsoon months.
Mild upward trends were noted in March and July, while slight to moderate decreases were observed
in August, September, November, and December. These changes, however, were not statistically
significant at the 0.05 level.
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Figure 10. Man-Kendal test of monthly maximum SO, concentration (2020-2024) in Dhaka city.

As shown in Figure 11, O; trends were predominantly positive throughout the year. Months
such as May, June, and September showed moderate increasing tendencies (Tau = 0.6; p = 0.220),
while January, August, and October had moderate upward trends as well (Tau = 0.4; p = 0.462).
Decreasing trends were observed in February and November, but without statistical significance.
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Figure 11. Man-Kendal test of monthly maximum Os concentration (2020-2024) in Dhaka city.

3.4. Spatial Distribution and Intra-Urban Pollution Zones

The spatial distribution of atmospheric pollutants across Dhaka City from 2020 to 2024 revealed
distinct intra-urban heterogeneity that corresponded strongly with land use characteristics, emission
source density, urban form, and prevailing meteorological patterns (Figure 2 to Figure 6). Zone-wise
analysis of Sentinel-5P-derived data for CO, NO,, SO, and Os; demonstrated significant spatial
clustering of pollutant concentrations, which was persistent across years and seasons.

The spatial pattern of CO concentrations across Dhaka indicated prominent hotspots in central-
western and southern zones, particularly those encompassing Mirpur, Tejgaon, Hazaribagh, and
Mohammadpur (Figure 3). The road-heavy zones with poor traffic circulation exhibited consistently
elevated CO concentrations, with monthly averages frequently exceeding 0.04 mol/m? during winter
months. Additionally, commercial and transportation corridors near Gabtoli and Kallyanpur showed
notable CO accumulation, especially during the dry season, indicating the influence of vehicular
idling and bottlenecks.
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Peripheral zones, particularly in the north-eastern and eastern areas such as Badda and
Bashundhara, consistently showed lower CO concentrations, likely due to relatively lower
population densities, higher vegetation cover, and better dispersion conditions facilitated by
proximity to open spaces and wetland patches.

NO; concentrations exhibited spatial clustering along high-traffic and high-density urban zones,
with peak levels consistently recorded in central and northern sectors. The highest concentrations
were observed in Motijheel, Farmgate, Gulshan, and Mohakhali —areas (Figure 4) that function as
commercial and administrative hubs with high volumes of daily commuter traffic. The correlation
between NO, and transportation activity was particularly strong, reflecting the dominance of
vehicular exhaust as the primary emission source.

Notably, zones along the airport corridor (from Banani to Uttara) also exhibited episodic NO,
spikes, especially during the pre-monsoon season. This may be attributed to increased aviation
activity, commercial transport operations, and associated roadway emissions. Comparatively,
residential zones such as Lalmatia and Shyamoli reported lower NO, values, suggesting that land
use and traffic volume are primary spatial drivers of NO, variability.

The spatial distribution of SO, concentrations was more localized and distinctively clustered
around the southern and southeastern zones of Dhaka, particularly in Keraniganj, Jatrabari, and parts
of Demra (Figure 5). These areas host brick kilns, small-scale manufacturing units, and diesel-based
energy generation facilities —all major sources of sulfur emissions. Seasonal SO, hotspots were most
intense during winter and pre-monsoon periods, with monthly mean concentrations exceeding
0.0018 mol/m? in some zones.

Unlike primary pollutants, O; showed a distinct spatial pattern influenced by photochemical
processes and regional transport mechanisms. The highest concentrations of ozone were observed in
peri-urban and suburban zones, particularly in Uttara, Badda, and eastern fringe areas (Figure 6)
adjacent to open and vegetated spaces.

The core urban zones, including Motijheel, Farmgate, and Tejgaon, consistently recorded lower
ozone levels—an outcome likely linked to titration of Os; by high NO concentrations in heavily
polluted environments. This phenomenon, commonly known as the “ozone scavenging effect,”
results in suppressed O; formation in NO-rich areas and elevated ozone levels in surrounding
downwind zones where NO, photolysis occurs in the presence of sunlight and VOCs.

4. Discussion

This study revealed distinct spatiotemporal variations in the concentrations of CO, NO,, SO,,
and O; across Dhaka City from 2020 to 2024, using Sentinel-5P satellite data processed through
Google Earth Engine. The findings indicate that Dhaka’s air quality is strongly influenced by seasonal
meteorology, anthropogenic activity patterns, and the city’s heterogeneous urban morphology. The
discussion that follows interprets these patterns in terms of causes, implications, and relevance for
environmental management and policy.

4.1. Temporal Variability and Seasonal Dynamics

The observed temporal patterns are consistent with known urban air pollution dynamics in
tropical monsoon climates. Wintertime accumulation of CO, NO,, and SO, is driven by reduced
boundary layer height, thermal inversion, and elevated emissions from vehicular traffic, industrial
activities, and residential combustion [4,13,25] (Figure 7). These conditions limit vertical dispersion,
trapping pollutants near ground level and increasing human exposure. Elevated winter CO levels
reflect intensified vehicular traffic and residential combustion of biomass and fossil fuels. NO, and
SO, peaks during the same period likely result from increased energy consumption for heating,
higher industrial activity, and continued operation of diesel-based generators due to erratic grid
power [26].

In contrast, monsoon months (June—August) provide a cleansing effect (Figure 7), lowering
pollutant levels due to rain-induced wet deposition, enhanced vertical mixing, enhanced atmospheric

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0687.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2025 d0i:10.20944/preprints202507.0687.v1

17 of 26

dispersion and reduced industrial activity [26,27] corroborating findings from previous studies in
South Asian megacities [28-32]. This was particularly evident in the near-zero SO, values during
July—August across all years, suggesting operational shutdowns of key SO, sources like brick kilns.

Ozone displayed an inverse seasonal trend, peaking during the pre-monsoon period. The
spring/summer peak in O; (Figure 7) is attributed to intensified photochemical reactions under high
solar radiation, involving precursor gases such as NOx and VOCs[33,34]. The temporal alignment of
ozone maxima with NO, decline in April-May underscores the role of complex atmospheric
chemistry, where NO, photolysis and low NO concentrations allow Oz accumulation, especially in
peripheral zones downwind from emission centers [35].

4.2. Spatial Heterogeneity and Urban Emission Sources

The spatial analysis uncovered significant intra-urban variation in pollutant concentrations
across Dhaka’s administrative zones. These spatial disparities are largely governed by the spatial
arrangement of emission sources, land use patterns, and urban microclimates.

CO hotspots in zones such as Tejgaon, Mirpur, and Mohammadpur align with areas (Figure 3)
of high population density, congested traffic corridors, and unplanned residential-industrial
coexistence. The correlation between traffic volume and CO levels reflects typical urban pollution
signatures, where incomplete combustion in aging vehicles dominates emissions [36].

NO; concentrations were especially high in the commercial core and transport hubs —Motijheel,
Mohakhali, and Gulshan (Figure 4) —corresponding to heavy-duty vehicular movement and idling
emissions. Given NOy's short atmospheric lifetime and local origin, its spatial distribution serves as
a direct proxy for localized transportation emissions and combustion activity [1]

SO, hotspots were sharply concentrated in industrial and peri-industrial zones such as
Keraniganj and Jatrabari (Figure 5). These areas house numerous brick kilns and manufacturing
plants that burn sulfur-rich fuels such as coal and heavy oil, releasing substantial quantities of
S0O,[37]. The concentration gradients observed around these zones suggest both point-source
emissions and short-range diffusion.

O; hotspots in downwind, peri-urban areas like Uttara and Badda (Figure 6) reflect
photochemical transformation rather than direct emission. In the urban core, high NO concentrations
scavenge ozone via titration, whereas peripheral zones allow for O; formation due to sufficient
precursor presence and sunlight. This spatial pattern, supported by other studies in subtropical cities,
demonstrates the complexity of managing ozone pollution, which often intensifies away from
emission sources [38—40].

4.3. Influence of COVID-19 and Post-Pandemic Recovery

The temporal analysis suggests a marked dip in CO and NO, concentrations during 2020,
coinciding with COVID-19 lockdown periods. The sharp reduction in vehicular traffic, industrial
output, and construction activities significantly lowered atmospheric emissions [41]. However, the
rebound in pollutant levels in subsequent years —especially 2022 and 2023 —highlights the transience
of air quality improvements in the absence of sustained emission control policies.

The data also suggest a lagged recovery in SO, concentrations, likely due to delayed resumption
of industrial operations and energy demand fluctuations. These post-pandemic dynamics underscore
the importance of integrating environmental recovery into economic revival planning.

4.4. Mann-Kendall Monthly Trend of Pollutants

The Mann-Kendall trend test applied to monthly maximum concentrations of CO, NO,, SO,, and
O; from 2020 to 2024 indicated subtle but informative patterns of change, although most trends were
not statistically significant (Figure 8 to Figure 11 and Table A2). Nonetheless, the directionality of
trends reveals emerging dynamics in Dhaka’s urban atmosphere and reflects evolving emission
behavior and seasonal variability.
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CO showed predominantly increasing trends, particularly in June and September (Tau=0.8; p =
0.086), suggesting seasonal build-up during early monsoon and post-monsoon months (Figure 8 and
Table A2). These increases may be linked to vehicular emissions, biomass burning, and combustion
from informal sectors under humid and stagnant atmospheric conditions. Declines observed in
February, March, and winter months may reflect seasonal meteorology and temporary behavioral
shifts, though not significant. Such patterns align with earlier studies showing CO elevation during
periods of low dispersion and increased fuel use [4,13].

NO; exhibited generally decreasing trends, most notably in September (Tau = -0.6; p = 0.220),
indicating possible improvements from vehicle emission control and wider CNG adoption (Figure 9
and Table A2). However, flat trends in January, April, and August suggest persistent emissions in
transport corridors. The impact of pandemic-related activity reductions may also contribute to these
observations [42].

SO, displayed the strongest upward trends, especially in April and May (Tau = 0.8; p = 0.086),
consistent with pre-monsoon peaks in industrial and brick kiln activity (Figure 10 and Table A2). This
is concerning, as SO is a key contributor to acid rain and respiratory ailments. Slight declines in late
monsoon and early winter likely reflect kiln closures and seasonal wind shifts [37].

O; trends were moderately positive in most months, particularly in May, June, and September
(Tau = 0.6), reflecting enhanced photochemical formation under high sunlight and temperature
(Figure 11 and Table A2). Peripheral zones may be more affected due to lower NOx titration and
downwind transport. These findings echo regional concerns about rising tropospheric ozone in
densely populated cities [43,44].

Although statistical significance was limited by the five-year time frame, the trends suggest
rising concern for CO, SO,, and Os, while NO, may be stabilizing. These insights underscore the need
for targeted seasonal interventions—such as stricter industrial regulation in pre-monsoon months
and vehicle emission control in winter. The use of Sentinel-5P and Mann-Kendall analysis provides
a replicable approach for early detection of air quality changes in data-scarce urban contexts.

4.5. Policy Relevance and Urban Planning Implications

The spatiotemporal dynamics of air pollutants in Dhaka uncovered in this study have profound
implications for public health, environmental governance, and urban planning. Dhaka consistently
ranks among the most polluted cities in the world, with one of the highest pollution-related mortality
rates in South Asia [45]. The findings from our 60-month Sentinel-5P-based assessment underscore
the urgency of adopting geographically targeted and seasonally adaptive air quality management
strategies. The concentration of pollutants such as CO, NO,, SO,, and Oj; in specific urban zones and
seasons indicates that a uniform policy approach would be inadequate. Instead, a multi-sectoral,
zone-specific, and temporally nuanced intervention framework is essential for addressing the
evolving challenges of air pollution in Dhaka [46,47].

Transport Policy: Our analysis identified central business districts and high-traffic corridors—
such as Motijheel, Tejgaon, Farmgate, and Gabtoli—as persistent hotspots for CO and NO,, with peak
values occurring during winter months. These trends are largely driven by vehicular emissions
exacerbated by thermal inversion and traffic congestion [13,42]. To mitigate these impacts,
establishing low-emission zones (LEZs) in high-exposure neighborhoods should be prioritized.
Policy measures could include phasing out older diesel vehicles, enforcing stricter vehicle emission
standards, and incentivizing the adoption of compressed natural gas (CNG) and electric vehicles
[46,48]. Furthermore, investment in reliable and efficient public transit infrastructure —including
electric buses, metro rail expansions, and park-and-ride systems—would reduce dependency on
private and informal transport modes. Congestion pricing and intelligent traffic management in these
identified zones could further alleviate air quality burdens during high-emission periods [48,49].

Industrial Regulation: The spatial clustering of SO, concentrations around southern and
southeastern industrial belts—particularly in Jatrabari, Demra, and Keraniganj—indicates the
dominance of stationary sources such as brick kilns, small-scale manufacturing units, and diesel-fired
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generators. Our data revealed peak SO; levels in the pre-monsoon and winter seasons, with monthly
maxima exceeding 0.00043 mol/m?2. These findings support the urgent need for targeted industrial
regulation. Fuel switching —from coal and diesel to LPG or electricity —must be prioritized in brick
kiln operations and informal industries [49,50]. Introducing clean production technologies, enforcing
stack emission standards, and relocating high-emission industries away from residential clusters
through better zoning practices are essential steps. Integration of emissions monitoring into building
permits and environmental clearance processes can also ensure long-term compliance and
transparency [51]

Ozone Control: Unlike primary pollutants, Oz exhibited an inverse seasonal pattern, peaking
during the pre-monsoon months with concentrations exceeding 0.130 mol/m? in May. High ozone
levels were recorded in peri-urban zones such as Uttara and Badda, driven by photochemical
reactions involving transported NOx and VOCs in sunlight-rich conditions[34,50]. Ozone mitigation,
therefore, requires an indirect yet strategic approach. This includes controlling both NOx and VOC
emissions from transport and industrial solvents, regulating fuel composition, and promoting vapor
recovery systems in fueling stations. Expanding urban green cover in ozone-sensitive downwind
zones may also contribute to natural filtration and dispersion, while offering additional climate
resilience and public health co-benefits[52]. Interventions must account for the ozone scavenging
effect observed in core urban areas with high NO emissions, which paradoxically lowers Os;
concentrations locally but amplifies regional ozone burdens [43]

Zonal Monitoring and Data-Driven Governance: The pronounced intra-urban variability
revealed by Sentinel-5P TROPOMI data illustrates the inadequacy of current ground-based air
quality monitoring networks, which often lack spatial granularity and temporal continuity ([21,31].
The use of satellite remote sensing and Google Earth Engine [9] in this study provides a scalable,
cloud-based, and cost-effective framework for generating zone-specific air pollution baselines. These
baselines can inform dynamic and adaptive environmental governance policies. Institutionalizing
such monitoring frameworks within city governance systems (e.g., Dhaka North and South City
Corporations) can facilitate real-time data integration into urban planning decisions. Additionally,
integrating Sentinel-derived air quality layers with socio-economic and health datasets could enable
targeted interventions in vulnerable neighborhoods, thereby maximizing the impact of
environmental policies on human well-being.

Policy Integration and Institutional Coordination: A key insight from this study is the
interdependence between various pollution sources and their spatial-temporal impacts. Thus, policy
responses must be integrative rather than fragmented. Coordination between urban planning
authorities, environmental regulatory bodies, transportation departments, and health agencies is
crucial. Establishing an interagency urban air quality task force could ensure alignment across
sectoral policies and enhance the implementation of evidence-based strategies [32,42]. Furthermore,
periodic updates of zoning regulations, informed by remote sensing data, can help balance
development and environmental objectives.

5. Conclusions

This study provides a comprehensive assessment of the spatiotemporal behavior of four key
atmospheric pollutants —CO, NO,, SO, and Os—across Dhaka City over a five-year period (2020-
2024) using Sentinel-5P satellite imagery and cloud-based analysis via Google Earth Engine. The
results revealed strong seasonal variability and spatial heterogeneity in pollutant concentrations,
reflecting the interplay of emission sources, land use, and meteorological conditions. CO, NO,, and
SO, concentrations peaked in winter due to enhanced combustion activities and poor dispersion,
while O; levels reached maximum during pre-monsoon months due to favorable photochemical
conditions. Spatial patterns showed persistent pollution hotspots aligned with traffic corridors and
industrial zones, while ozone exhibited elevated concentrations in peripheral, downwind areas due
to titration effects.
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Trend analysis using the Mann-Kendall test showed increasing tendencies in CO, SO,, and O3
levels across several months, though most trends were not statistically significant given the limited
temporal span. Nevertheless, these results indicate emerging concerns regarding pollution
accumulation and underscore the importance of seasonal and zone-specific mitigation efforts. The
integration of satellite remote sensing and cloud-based geospatial platforms proved effective in
generating high-resolution, long-term air quality assessments, offering a replicable framework for
similar cities facing monitoring constraints. These insights can inform evidence-based urban
planning, emission control policies, and adaptive air quality management strategies tailored to
Dhaka’s evolving urban landscape.
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CO Carbon Monoxide

GEE Google Earth Engine
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OSM Open Street Map

QA Quality Assurance

SO, Sulfur Dioxide

TROPOMI Tropospheric Monitoring Instrument
UM Universal Transverse Mercator
WGS World Geodetic System

WHO World Health Organization
Appendix A

Table A1. Monthly average pollution concentration (mol/m?) (2020-2024).

Pollutant Month Mean Min Max StdDev
CcO Jan 0.0513614 0.0496658 0.0528690 0.0006383
CcO Feb 0.0503589 0.0493792 0.0510958 0.0003252
CcO Mar 0.0517501 0.0504490 0.0530655 0.0004845
CcO Apr 0.0501786 0.0491893 0.0512107 0.0004769
CcO May 0.0463520 0.0457516 0.0471837 0.0002862
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Pollutant Month Mean Min Max StdDev
cO Jun 0.0421077 0.0414376 0.0429054 0.0002888
cO Jul 0.0336378 0.0327860 0.0343351 0.0003111
cO Aug 0.0349084 0.0340728 0.0355727 0.0003255
CcO Sep 0.0370318 0.0362062 0.0375760 0.0002866
CcO Oct 0.0405656 0.0397436 0.0415074 0.0003488
cO Nov 0.0445893 0.0431804 0.0453095 0.0004129
cO Dec 0.0491688 0.0470178 0.0503863 0.0006701

NO:2 Jan 0.0003024 0.0002214 0.0003538 0.0000220
NO:2 Feb 0.0002512 0.0001832 0.0002996 0.0000192
NO:2 Mar 0.0002500 0.0001758 0.0003157 0.0000298
NO: Apr 0.0001171 0.0000753 0.0001521 0.0000137
NO: May 0.0001249 0.0000915 0.0001747 0.0000153
NO:2 Jun 0.0000914 0.0000561 0.0001220 0.0000123
NO:2 Jul 0.0000813 0.0000528 0.0001025 0.0000100
NO:2 Aug 0.0000827 0.0000563 0.0001006 0.0000091
NO:2 Sep 0.0001221 0.0000825 0.0001502 0.0000139
NO:2 Oct 0.0001870 0.0001296 0.0002367 0.0000174
NO:2 Nov 0.0002505 0.0001754 0.0003057 0.0000286
NO:2 Dec 0.0002861 0.0002124 0.0003477 0.0000266
Os Jan 0.1166113 0.1163946 0.1167787 0.0000739
Os Feb 0.1223674 0.1221601 0.1226222 0.0001024
Os Mar 0.1240289 0.1237723 0.1242836 0.0001006
Os Apr 0.1298555 0.1297234 0.1299784 0.0000632
Os May 0.1300368 0.1298265 0.1302312 0.0000822
Os Jun 0.1274474 0.1273492 0.1276508 0.0000450
Os Jul 0.1243732 0.1240519 0.1245990 0.0000839
Os Aug 0.1229746 0.1228815 0.1231112 0.0000436
Os Sep 0.1219184 0.1217339 0.1220841 0.0000615
Os Oct 0.1198456 0.1197089 0.1200084 0.0000644
Os Nov 0.1167096 0.1165568 0.1168116 0.0000472
Os Dec 0.1147646 0.1146131 0.1150170 0.0000667
SOz Jan 0.0002467 0.0000471 0.0004135 0.0000644
SOz Feb 0.0002999 0.0001972 0.0004326 0.0000407
SOz Mar 0.0002985 0.0002017 0.0004080 0.0000384
SOz Apr 0.0002144 0.0001565 0.0002967 0.0000241
SOz May 0.0000787 0.0000104 0.0001880 0.0000337
SOz Jun 0.0000584 0.0000000 0.0001419 0.0000329
SOz Jul 0.0000286 0.0000000 0.0001090 0.0000266
SOz Aug 0.0000379 0.0000000 0.0001342 0.0000288
SO2 Sep 0.0000580 0.0000000 0.0001786 0.0000321
SOz Oct 0.0000717 0.0000153 0.0001525 0.0000263
SOz Nov 0.0001026 0.0000000 0.0002382 0.0000580
SO2 Dec 0.0001576 0.0000369 0.0003072 0.0000560

Table A2. Man-Kendal test of monthly maximum pollutants concentration (2020-2024).

Pollutant Month Trend Tau P-value
Cco Jan increasing 0.2 0.806495941
Cco Feb decreasing -0.2 0.806495941
CcO Mar decreasing -0.2 0.806495941
CcO Apr increasing 0.4 0.462432726
CcO May increasing 0.4 0.462432726
CcO Jun increasing 0.8 0.086410733
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Pollutant Month Trend Tau P-value
CcO Jul increasing 0.2 0.806495941
CcO Aug increasing 0.4 0.462432726
CcO Sep increasing 0.8 0.086410733
CcO Oct increasing 0.2 0.806495941
CcoO Nov decreasing -0.2 0.806495941
CcO Dec decreasing -0.2 0.806495941
NO2 Jan no trend 0 1
NO: Feb decreasing -0.4 0.462432726
NO: Mar decreasing -0.2 0.806495941
NO2 Apr no trend 0 1
NO2 May increasing 0.2 0.806495941
NO2 Jun increasing 0.4 0.462432726
NO: Jul decreasing -0.2 0.806495941
NO: Aug no trend 0 1
NO: Sep decreasing -0.6 0.220671362
NO: Oct decreasing -0.4 0.462432726
NO: Nov decreasing -0.4 0.462432726
NO: Dec decreasing -0.4 0.462432726

Os Jan increasing 0.4 0.462432726
Os Feb decreasing -0.2 0.806495941
Os Mar no trend 0 1

Os Apr increasing 0.2 0.806495941
Os May increasing 0.6 0.220671362
Os Jun increasing 0.6 0.220671362
Os Jul increasing 0.2 0.806495941
Os Aug increasing 0.4 0.462432726
Os Sep increasing 0.6 0.220671362
Os Oct increasing 0.4 0.462432726
Os Nov decreasing -0.2 0.806495941
Os Dec increasing 0.2 0.806495941
SOz Jan no trend 0 1

SOz Feb no trend 0 1

SO2 Mar increasing 0.2 0.806495941
SOz Apr increasing 0.8 0.086410733
SOz May increasing 0.8 0.086410733
SOz Jun no trend 0 1

SO2 Jul increasing 0.2 0.806495941
SO2 Aug decreasing -0.2 0.806495941
SOz Sep decreasing -0.4 0.462432726
SO2 Oct no trend 0 1

SO2 Nov decreasing -0.4 0.462432726
SO2 Dec decreasing -0.4 0.462432726
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