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Abstract 

This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide 

(CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and ozone (O₃)—across Dhaka City from 2020 to 

2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was conducted, 

integrating spatial mapping, seasonal composites, and Mann-Kendall trend testing. Results indicated 

clear seasonal variations: CO and NO₂ concentrations peaked during winter, with maximum monthly 

averages of 0.05287 mol/m² and 0.00035 mol/m², respectively, while SO₂ reached a high of 0.00043 

mol/m² in pre-monsoon months. In contrast, O₃ peaked in May (0.13023 mol/m²), following an inverse 

seasonal trend driven by photochemical activity. Spatial analysis revealed persistent pollution 

hotspots in central-western zones like Tejgaon and Mirpur for CO and NO₂, while SO₂ was 

concentrated in southern industrial zones such as Keraniganj and Jatrabari. The Mann-Kendall test 

identified moderate to strong increasing trends for CO (τ = 0.8, p = 0.086 in June and September) and 

SO₂ (τ = 0.8, p = 0.086 in April and May), although most trends lacked statistical significance due to 

the limited temporal window. This study demonstrates the viability of combining satellite remote 

sensing and cloud-based processing for urban air quality monitoring and provides actionable 

insights for targeted seasonal interventions and evidence-based policymaking in Dhaka’s evolving 

urban context.  

Keywords: urban air pollution; Sentinel-5P; Google Earth Engine (GEE); Dhaka city; CO; NO₂; SO₂; 

O₃; spatiotemporal analysis; Mann-Kendall trend test 

 

1. Introduction 

Air pollution has emerged as one of the most pressing environmental and public health 

challenges of the 21st century, particularly in densely populated and rapidly urbanizing cities in the 

Global South. The World Health Organization (WHO) estimates that air pollution contributes to 

approximately 7 million premature deaths globally each year, with urban populations facing 

disproportionately high exposure to harmful pollutants [1]. Among the most critical urban air 

pollutants are carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and ground-level 

ozone (O₃), each of which poses unique risks to human health, ecosystems, and the climate[2,3]. These 

pollutants are primarily emitted from anthropogenic sources, including vehicular exhaust, industrial 

activities, fossil fuel combustion, and biomass burning [4]. As cities continue to grow, understanding 
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the spatiotemporal dynamics of these pollutants becomes essential for effective environmental 

governance and sustainable urban planning. 

In South Asia, Bangladesh—particularly its capital, Dhaka—has been identified as one of the 

cities with the worst air quality in the world [5]. Dhaka’s complex urban structure, high population 

density, unregulated industrial clusters, and chronic traffic congestion contribute to persistent and 

often severe air pollution episodes. Despite growing public concern, monitoring air quality in Dhaka 

has been hampered by limitations in ground-based sensor networks, including sparse spatial 

coverage, inconsistent data availability, and maintenance issues [6,7]. These limitations necessitate 

the integration of satellite remote sensing technologies for continuous, consistent, and large-scale 

monitoring of atmospheric pollutants. 

In recent years, the launch of the European Space Agency’s Sentinel-5P satellite—equipped with 

the TROPOspheric Monitoring Instrument (TROPOMI)—has revolutionized atmospheric 

monitoring by providing high-resolution, near-real-time data on key trace gases at a global scale [8]. 

Sentinel-5P offers daily coverage and spatial granularity sufficient to detect intra-urban pollution 

variations, making it especially valuable for cities like Dhaka. Coupled with cloud-based geospatial 

platforms such as Google Earth Engine (GEE), which enables large-scale environmental data 

processing, researchers now have powerful tools to assess both the spatial and temporal patterns of 

air pollutants with unprecedented detail and continuity [9]. 

Several recent studies have demonstrated the utility of Sentinel-5P data in urban air quality 

monitoring across different contexts. For instance, Bauwens et al. [10] used Sentinel-5P to assess 

reductions in NO₂ during COVID-19 lockdowns worldwide. Similarly, Matandirotya et al. [11] 

analyzed SO₂ and CO over African megacities, while Biswas et al. [12] explored pollution trends in 

Indian cities. However, there remains a significant research gap in applying these advanced tools for 

long-term, high-resolution air pollution trend analysis in Bangladeshi cities. Most existing studies in 

Dhaka focus on short-term assessments, use sparse in-situ data, or analyze only one or two pollutants 

[10,13,14]There is a lack of integrated, multi-pollutant studies that capture both spatial and temporal 

variations in air quality over multiple years.  

To address this gap, the present study aims to monitor and analyze the spatiotemporal dynamics 

of four major urban air pollutants—CO, NO₂, SO₂, and O₃—over Dhaka city using Sentinel-5P 

satellite data processed through Google Earth Engine. By constructing a continuous 60-month 

(January 2020–December 2024) time-series of monthly pollutant concentrations, this research 

provides one of the most comprehensive assessments of long-term air pollution trends in Dhaka to 

date. 

This research contributes to the growing body of work on satellite-based air quality monitoring 

by providing a detailed, multi-pollutant assessment of Dhaka’s atmospheric environment. The study 

reveals emerging seasonal patterns, potential pollution hotspots, and trend directions for each 

pollutant, offering valuable information for policymakers, urban planners, and public health officials. 

By linking satellite-based insights with urban management goals, the findings underscore the 

potential for remote sensing and cloud computing to support data-driven environmental governance 

in rapidly growing cities of the Global South. 

The remainder of this paper is structured as follows. Section 2 outlines the materials and 

methods, detailing the study area, data sources, satellite processing in Google Earth Engine (GEE), 

spatial analysis in ArcGIS Pro, Python-based automation, and the application of the Mann-Kendall 

trend test. Section 3 presents the results, including temporal and seasonal pollutant variations, 

interannual trends, spatial distributions, and statistical trend assessments. Section 4 provides an in-

depth discussion of the observed patterns, highlighting their meteorological, anthropogenic, and 

spatial drivers. This section also explores the policy implications of the findings, emphasizing 

targeted interventions for urban air quality management. Finally, Section 5 concludes the study by 

summarizing the key insights and offering recommendations for integrating satellite-based air 

quality assessments into evidence-driven urban planning. 
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2. Materials and Methods 

We employed a multi-platform geospatial and remote sensing approach to examine the 

spatiotemporal variations of key urban air pollutants over Dhaka city from January 2020 to December 

2024. Our methodological framework integrated satellite-based atmospheric data, cloud-based 

remote sensing processing, desktop GIS analysis, and Python-based automation to extract, analyze, 

and visualize monthly and seasonal patterns of carbon monoxide (CO), nitrogen dioxide (NO₂), 

sulfur dioxide (SO₂), and ozone (O₃). The entire workflow consisted of several interlinked stages, 

including study area delineation, data acquisition and preprocessing, time-series pollutant derivation 

in Google Earth Engine (GEE), and spatial mapping and analysis in ArcGIS Pro.  

2.1. Study Area 

This study focused on Dhaka city, the capital and largest urban center of Bangladesh, which is 

recognized as one of the most densely populated and polluted cities globally [15]. We delineated the 

study boundary using an administrative shapefile of Dhaka, obtained from the Bangladesh Bureau 

of Statistics (BBS), representing the Dhaka City Corporation area. The shapefile was projected to WGS 

84 UTM 46 N and used as a consistent clipping mask throughout our processing. The spatial extent 

of the study area ranged approximately from 23.67°N to 23.90°N latitude and from 90.33°E to 90.51°E 

longitude and has an area of 305.82 km2. The area is characterized by dense urban infrastructure, high 

traffic emissions, and rapid industrialization—factors contributing significantly to air quality 

deterioration. Figure 1 and Figure 2 show the location and upazila (Upazila is the level 3 

administrative boundary in Bangladesh) boundary of the study area respectively.  

 

Figure 1. Location of (a) Dhaka district in Bangladesh; (b) the city of Dhaka in Dhaka district; and (c) base map 

of the city of Dhaka. 
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Figure 2. Dhaka city upazila boundary. 

Dhaka has a tropical wet and dry climate, characterized by hot, humid conditions and a distinct 

monsoon season. Temperatures generally range from 18°C (64°F) in January to 29°C (84°F) in August, 

with an annual average of 25°C (77°F). The rainy season, influenced by monsoons, typically occurs 

from April to September, with June seeing the heaviest rainfall. The driest period is from November 

to March [16]  

The air and water in Dhaka are becoming more and more polluted due to the city’s constantly 

growing population. To meet the demands of the growing population, multistory buildings and real 

estate developments are taking up wetland and green space, endangering the city’s biodiversity and 

urban ecosystem [14].  

2.2. Data Sources and Acquisition 

We utilized Level 3 (L3) tropospheric column concentration products from the Sentinel-5 

Precursor (Sentinel-5P) satellite, which is equipped with the Tropospheric Monitoring Instrument 

(TROPOMI). This instrument provides daily global measurements of several atmospheric pollutants 

at a spatial resolution of up to 7 × 3.5 km² (after August 2019), making it suitable for urban-scale air 

quality analysis [8]. The pollutant-specific datasets used were: 

• CO: COPERNICUS/S5P/OFFL/L3_CO; 

• NO₂: COPERNICUS/S5P/OFFL/L3_NO2; 
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• SO₂: COPERNICUS/S5P/OFFL/L3_SO2; 

• O₃: COPERNICUS/S5P/OFFL/L3_O3. 

We accessed and processed these datasets directly from the Google Earth Engine (GEE) 

platform, which offers high-performance cloud-based geospatial computation and analysis tools. In 

total, 60 months of data were acquired and analyzed for each pollutant, covering January 2020 to 

December 2024. Additionally, we used auxiliary data including Dhaka’s administrative boundary 

and OpenStreetMap (OSM) layers for contextual mapping. 

2.3. Data Processing in Google Earth Engine 

All pollutant-specific atmospheric datasets were processed using JavaScript in the GEE code 

editor. We filtered the Sentinel-5P datasets temporally and spatially to extract pollutant 

concentrations over Dhaka on a monthly basis. Each ImageCollection was filtered using the 

ee.Filter.date() function to isolate data for each month. Spatially, we applied the .clip() function using 

the Dhaka shapefile to confine the dataset to our study boundary. 

To ensure the quality and reliability of satellite-derived measurements, we applied a quality 

assurance (QA) filtering step for each dataset. We applied a quality assurance threshold of QA > 0.75 

to filter out low-quality retrievals, following established practice in TROPOMI NO₂ and SO₂ studies 

[17–20]. This threshold effectively removes pixels affected by clouds, snow/ice, and retrieval noise, 

ensuring high-confidence data for spatial and temporal analyses. 

Monthly mean composites were generated using the ImageCollection.mean() function in GEE. 

These monthly average images were then exported in GeoTIFF format to Google Drive using the 

Export.image.toDrive() function, with a resolution of 0.01 degrees (~1 km) and a bounding box 

matching the extent of Dhaka. We developed a modular and reusable GEE script that looped through 

each month and pollutant type to automate the composite generation and export process. This 

significantly reduced processing time and ensured consistency across the 60-month dataset. 

2.4. Spatial Analysis and Visualization in ArcGIS Pro 

We performed the spatial analysis and visualization of pollutant data using ArcGIS Pro 3.x, 

which served as the principal desktop GIS platform for integrating, processing, and interpreting the 

Sentinel-5P-derived outputs. After exporting the monthly raster layers for CO, NO₂, SO₂, and O₃ from 

Google Earth Engine (GEE) as GeoTIFF files, we imported these into ArcGIS Pro and organized them 

systematically in raster catalogs corresponding to each pollutant. This structured organization 

facilitated batch processing, visualization, and temporal analysis of the 60 monthly rasters (January 

2020–December 2024) for each pollutant.  

We also generated annual and seasonal average maps by performing raster algebra operations 

using the “Raster Calculator” tool. Monthly rasters were grouped by year or season (i.e., winter, pre-

monsoon, monsoon, and post-monsoon) and averaged to create composite layers representing intra-

annual variability. These composites were crucial for identifying persistent pollution zones and for 

comparing spatial distribution changes over the years.  

To support time-series visualization, we used the “Time Slider” tool in ArcGIS Pro. We assigned 

timestamps to each raster layer and created spatiotemporal animations to illustrate the dynamic 

monthly changes in pollutant distribution. This technique enabled an intuitive understanding of 

pollutant behavior and seasonality across years. 

2.5. Python-Based Automation Within ArcGIS Pro 

To streamline repetitive tasks such as map production, data export, and temporal plotting, we 

implemented Python scripting through ArcGIS Pro’s built-in Jupyter Notebook environment. Using 

the ArcPy module, we automated tasks including: 

• Batch map generation with consistent layouts (legend, north arrow, scale bar, title); 

• Exporting raster statistics to CSV files for each month and pollutant; 
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• Plotting pollutant trends over time using matplotlib and pandas; 

• Performing raster calculations (e.g., difference maps between years). 

This automation significantly improved the efficiency of our workflow and reduced the 

likelihood of human error in processing large volumes of spatial data. 

2.6. Temporal Trend and Seasonal Analysis 

To capture temporal variability, we categorized each month into four major seasons typical of 

South Asian monsoonal climates: Winter (December–February), Pre-monsoon (March–May), 

Monsoon (June–September), and Post-monsoon (October–November) [21]. For each season, we 

computed seasonal mean composites by averaging the monthly raster layers within each seasonal 

group. Annual means were also computed by averaging all 12 monthly composites for each year from 

2020 to 2024. The resulting seasonal and yearly rasters were used to analyze intra-annual fluctuations 

and interannual trends in pollutant levels. 

We further calculated percent changes in annual pollutant concentrations using raster algebra 

functions. Trend analysis graphs were generated using time-series data exported from zonal 

statistics, helping to visualize upward or downward trends across the study period. 

2.7. Monthly Trend Detection Using Mann-Kendall Test 

To statistically assess monotonic trends in pollutant concentrations over time, we conducted the 

non-parametric Mann-Kendall (MK) trend test on the monthly average values of CO, NO₂, SO₂, and 

O₃ for the 60-month period (January 2020 to December 2024). The Mann-Kendall test is widely used 

in environmental time-series analysis due to its robustness to missing data, non-normal distributions, 

and its ability to detect both increasing and decreasing trends without assuming linearity [22–24]. 

For each pollutant, we extracted monthly mean concentration values for the entire Dhaka city 

using the “Zonal Statistics as Table” tool in ArcGIS Pro. The output tables were exported as CSV files 

and processed in Python using the pymannkendall package, which implements the original Mann-

Kendall test along with the modified versions for seasonality and serial correlation correction. 

The test was applied to the time-series for each pollutant, yielding the Kendall’s tau coefficient, 

p-value, and trend classification (increasing, decreasing, or no trend). A significance level of α = 0.05 

was adopted to determine whether the observed trend was statistically significant. This step allowed 

us to quantitatively evaluate long-term changes in atmospheric pollutant concentrations and validate 

observed patterns in the spatiotemporal maps. 

The Mann-Kendall results were then integrated with the spatial analysis by visualizing the 

statistically significant trends alongside mapped changes in pollutant concentrations. This 

combination of visual and statistical trend assessment enabled a more comprehensive interpretation 

of urban air quality dynamics in Dhaka. 

3. Results 

This section presents the findings of the spatiotemporal analysis of four key atmospheric 

pollutants—carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and ozone (O₃)—

over Dhaka City from January 2020 to December 2024. The results are organized to highlight both 

temporal and spatial patterns, including monthly and seasonal variations, interannual trends, and 

statistically assessed changes using the Mann-Kendall trend test. Furthermore, spatial distribution 

maps and zone-wise comparisons reveal intra-urban pollution hotspots and potential source-

attribution patterns. All findings are derived from Sentinel-5P TROPOMI satellite data processed 

through Google Earth Engine and analyzed in ArcGIS Pro, ensuring consistency and high-resolution 

coverage across the 60-month study period. The results are reported in mol/m², and pollutant-specific 

characteristics are examined to uncover both meteorological and anthropogenic influences on air 

quality dynamics in Dhaka. 
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3.1. Temporal Variation of Pollutants (2020–2024) 

3.1.1. Carbon Monoxide (CO) 

The monthly mean CO concentrations over Dhaka displayed a distinct seasonal pattern, peaking 

during winter and declining through the summer monsoon (Figure 3). January recorded the highest 

mean (0.05136 mol/m²), with the maximum concentration reaching 0.05287 mol/m² and the mode at 

0.05195 mol/m². In contrast, July presented the lowest mean (0.03364 mol/m²), minimum (0.03279 

mol/m²), and mode (0.03345 mol/m²). The standard deviation was highest in January (0.00064), 

indicating greater variability during colder months, while June–September had the lowest standard 

deviations (approx. 0.00029–0.00033), reflecting more stable pollutant levels (Table A1). 

 

Figure 3. Monthly average CO concentration (2020-2024) in Dhaka city. 

3.1.2. Nitrogen Dioxide (NO₂) 

Monthly average NO₂ concentration (2020-2024) in Dhaka city has been presented in Figure 4. 

NO₂ also exhibited pronounced winter peaks and summer lows. January and December had the 

highest means (0.00030 and 0.00029 mol/m², respectively), with corresponding maxima (0.00035 and 

0.00035 mol/m²). July marked the lowest average concentration (0.000081 mol/m²) and also showed 

the smallest standard deviation (0.000010), suggesting uniformly low NO₂ levels during monsoon 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 July 2025 doi:10.20944/preprints202507.0687.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0687.v1
http://creativecommons.org/licenses/by/4.0/


 8 of 26 

 

months. The highest variability occurred in March and November (standard deviations: ~0.000030), 

suggesting increased fluctuation in emissions during seasonal transitions (Table A1). 

 

Figure 4. Monthly average NO₂ concentration (2020-2024) in Dhaka city. 

3.1.3. Ozone (O₃) 

O₃ concentrations exhibited an inverse seasonal pattern. According to Figure 5, the mean was 

highest in May (0.13004 mol/m²) and lowest in December (0.11476 mol/m²). Maximum values peaked 

in May (0.13023 mol/m²) and minimums were lowest in January (0.11639 mol/m²). The lowest 

standard deviation was recorded in June (0.000045), showing remarkably consistent levels during 

early monsoon. Mode values across all months closely aligned with mean values, indicating normally 

distributed data and low skewness in O₃ concentrations (Table A1). 
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Figure 5. Monthly average O₃ concentration (2020-2024) in Dhaka city. 

3.1.4. Sulfur Dioxide (SO₂) 

SO₂ showed high variability across seasons and zones. As shown in Figure 6, February and 

March had the highest mean concentrations (0.00030 and 0.00030 mol/m²), with maxima reaching up 

to 0.00043 mol/m². The lowest means were observed in July (0.000029 mol/m²), with minimums as 

low as 0.0000 mol/m², reflecting near-absence of SO₂ in some zones during monsoon. High standard 

deviations, especially in January (0.000064) and November (0.000058), suggest sporadic and spatially 

concentrated emissions, while July and August exhibited the lowest variability (Table A1). 
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Figure 6. Monthly average SO₂ concentration (2020-2024) in Dhaka city. 

3.2. Interannual Trends of Pollutants 

Figure 7 presents the year-wise monthly trends of four key urban pollutants—CO, NO₂, O₃, and 

SO₂—over Dhaka from 2020 to 2024. Each pollutant exhibits distinct seasonal and interannual 

variations in line with meteorological cycles, urban activity levels, and anthropogenic emission 

sources. 

CO concentrations consistently peak during the winter months (December–February) across all 

years. The highest monthly average values were recorded in January and March, while the lowest 

concentrations occurred during the monsoon (June–August), especially in July 2022 (~0.033 mol/m²). 

The CO trends also demonstrate relatively consistent seasonal cycles year-to-year, though 2020 and 

2024 showed higher winter values compared to other years. The multi-year mean concentration 

ranged from 0.0336 to 0.0514 mol/m², with standard deviation peaking in January (0.00064 mol/m²), 

indicating greater temporal variability during colder months. 

NO₂ exhibited sharp seasonal contrast, with peak concentrations during January–March, and 

the lowest in July–August. Across the years, 2022 recorded the highest NO₂ levels in winter months, 

while 2024 showed the lowest in March and April. The mean concentrations ranged between 0.00008 

and 0.00030 mol/m², with maximum values reaching 0.00035 mol/m² (January). Standard deviation 
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values were lowest during monsoon, indicating reduced temporal variation due to uniform wet 

deposition. 

 

Figure 7. Monthly average concentration trends of (a) CO, (b) NO₂, (c) SO₂, and (d) O₃ over Dhaka City from 

2020 to 2024. Winter peaks in CO, NO₂, and SO₂ are consistent across years, while O₃ displays photochemical 

summer peaks. 

Unlike the primary pollutants, O₃ displayed an opposite seasonal pattern, with maximum values 

observed in April–May and a consistent decline from June to December. The annual peak 

concentration exceeded 0.130 mol/m² during May of 2024. All years follow the same seasonal 

curvature, driven by photochemical processes, though interannual differences are subtle. Monthly 

standard deviation remained low (as little as 0.000045 mol/m² in June), indicating stable O₃ formation 

conditions. 

SO₂ showed the highest interannual and intra-month variability. Concentrations peaked during 

January–March, particularly in 2020 and 2022, with values surpassing 0.0008 mol/m² in January 2022. 

In contrast, monsoon values (June–August) dropped to near zero in all years. The sharp fluctuations 

and high standard deviations (up to 0.000064 mol/m²) point to episodic, localized emissions likely 

from brick kilns and small-scale industries. 

Interannual variations highlight the year 2022 as having the highest winter concentrations across 

all pollutants except O₃, which peaked in 2024. By contrast, 2023 saw relatively suppressed pollution 

levels, possibly influenced by improved emission control or climatic anomalies such as stronger 

monsoonal winds. 

3.3. Monthly Mann-Kendall Trend Test Over 2020 to 2024 

The Mann-Kendall trend test was applied to monthly maximum concentrations of four key 

atmospheric pollutants (CO, NO₂, SO₂, and O₃) over Dhaka city from 2020 to 2024. The analysis aimed 

to assess temporal patterns and detect statistically significant trends over this five-year period. 

According to Figure 8, CO exhibited predominantly increasing trends across most 

months, notably in June and September with a Kendall’s Tau of 0.8 and a p-value 

of 0.086, indicating a near-significant upward trend. Moderate increasing trends 
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were also observed in April, May, and August (Tau = 0.4; p = 0.462). In contrast, 

February, March, November, and December showed decreasing trends, though 

none were statistically significant (p > 0.05).

 

Figure 8. Man-Kendal test of monthly maximum CO concentration (2020-2024) in Dhaka city. 

According to Figure 9, NO₂ displayed a mix of trends, with decreasing tendencies in February, 

March, September, October, November, and December. The steepest downward trend occurred in 

September (Tau = -0.6; p = 0.220), though it was not statistically significant. Other months like January, 

April, and August showed no discernible trend (Tau = 0). 
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Figure 9. Man-Kendal test of monthly maximum NO₂ concentration (2020-2024) in Dhaka city. 

As presented in Figure 10, For SO₂, strong increasing trends were identified in April and May 

(Tau = 0.8; p = 0.086), indicating potential temporal growth in SO₂ levels during pre-monsoon months. 

Mild upward trends were noted in March and July, while slight to moderate decreases were observed 

in August, September, November, and December. These changes, however, were not statistically 

significant at the 0.05 level. 
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Figure 10. Man-Kendal test of monthly maximum SO₂ concentration (2020-2024) in Dhaka city. 

As shown in Figure 11, O₃ trends were predominantly positive throughout the year. Months 

such as May, June, and September showed moderate increasing tendencies (Tau = 0.6; p = 0.220), 

while January, August, and October had moderate upward trends as well (Tau = 0.4; p = 0.462). 

Decreasing trends were observed in February and November, but without statistical significance. 
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Figure 11. Man-Kendal test of monthly maximum O3 concentration (2020-2024) in Dhaka city. 

3.4. Spatial Distribution and Intra-Urban Pollution Zones 

The spatial distribution of atmospheric pollutants across Dhaka City from 2020 to 2024 revealed 

distinct intra-urban heterogeneity that corresponded strongly with land use characteristics, emission 

source density, urban form, and prevailing meteorological patterns (Figure 2 to Figure 6). Zone-wise 

analysis of Sentinel-5P-derived data for CO, NO₂, SO₂, and O₃ demonstrated significant spatial 

clustering of pollutant concentrations, which was persistent across years and seasons. 

The spatial pattern of CO concentrations across Dhaka indicated prominent hotspots in central-

western and southern zones, particularly those encompassing Mirpur, Tejgaon, Hazaribagh, and 

Mohammadpur (Figure 3). The road-heavy zones with poor traffic circulation exhibited consistently 

elevated CO concentrations, with monthly averages frequently exceeding 0.04 mol/m² during winter 

months. Additionally, commercial and transportation corridors near Gabtoli and Kallyanpur showed 

notable CO accumulation, especially during the dry season, indicating the influence of vehicular 

idling and bottlenecks. 
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Peripheral zones, particularly in the north-eastern and eastern areas such as Badda and 

Bashundhara, consistently showed lower CO concentrations, likely due to relatively lower 

population densities, higher vegetation cover, and better dispersion conditions facilitated by 

proximity to open spaces and wetland patches. 

NO₂ concentrations exhibited spatial clustering along high-traffic and high-density urban zones, 

with peak levels consistently recorded in central and northern sectors. The highest concentrations 

were observed in Motijheel, Farmgate, Gulshan, and Mohakhali—areas (Figure 4) that function as 

commercial and administrative hubs with high volumes of daily commuter traffic. The correlation 

between NO₂ and transportation activity was particularly strong, reflecting the dominance of 

vehicular exhaust as the primary emission source. 

Notably, zones along the airport corridor (from Banani to Uttara) also exhibited episodic NO₂ 

spikes, especially during the pre-monsoon season. This may be attributed to increased aviation 

activity, commercial transport operations, and associated roadway emissions. Comparatively, 

residential zones such as Lalmatia and Shyamoli reported lower NO₂ values, suggesting that land 

use and traffic volume are primary spatial drivers of NO₂ variability. 

The spatial distribution of SO₂ concentrations was more localized and distinctively clustered 

around the southern and southeastern zones of Dhaka, particularly in Keraniganj, Jatrabari, and parts 

of Demra (Figure 5). These areas host brick kilns, small-scale manufacturing units, and diesel-based 

energy generation facilities—all major sources of sulfur emissions. Seasonal SO₂ hotspots were most 

intense during winter and pre-monsoon periods, with monthly mean concentrations exceeding 

0.0018 mol/m² in some zones. 

Unlike primary pollutants, O₃ showed a distinct spatial pattern influenced by photochemical 

processes and regional transport mechanisms. The highest concentrations of ozone were observed in 

peri-urban and suburban zones, particularly in Uttara, Badda, and eastern fringe areas (Figure 6) 

adjacent to open and vegetated spaces.  

The core urban zones, including Motijheel, Farmgate, and Tejgaon, consistently recorded lower 

ozone levels—an outcome likely linked to titration of O₃ by high NO concentrations in heavily 

polluted environments. This phenomenon, commonly known as the “ozone scavenging effect,” 

results in suppressed O₃ formation in NO-rich areas and elevated ozone levels in surrounding 

downwind zones where NO₂ photolysis occurs in the presence of sunlight and VOCs. 

4. Discussion 

This study revealed distinct spatiotemporal variations in the concentrations of CO, NO₂, SO₂, 

and O₃ across Dhaka City from 2020 to 2024, using Sentinel-5P satellite data processed through 

Google Earth Engine. The findings indicate that Dhaka’s air quality is strongly influenced by seasonal 

meteorology, anthropogenic activity patterns, and the city’s heterogeneous urban morphology. The 

discussion that follows interprets these patterns in terms of causes, implications, and relevance for 

environmental management and policy. 

4.1. Temporal Variability and Seasonal Dynamics 

The observed temporal patterns are consistent with known urban air pollution dynamics in 

tropical monsoon climates. Wintertime accumulation of CO, NO₂, and SO₂ is driven by reduced 

boundary layer height, thermal inversion, and elevated emissions from vehicular traffic, industrial 

activities, and residential combustion [4,13,25] (Figure 7). These conditions limit vertical dispersion, 

trapping pollutants near ground level and increasing human exposure. Elevated winter CO levels 

reflect intensified vehicular traffic and residential combustion of biomass and fossil fuels. NO₂ and 

SO₂ peaks during the same period likely result from increased energy consumption for heating, 

higher industrial activity, and continued operation of diesel-based generators due to erratic grid 

power [26].  

In contrast, monsoon months (June–August) provide a cleansing effect (Figure 7), lowering 

pollutant levels due to rain-induced wet deposition, enhanced vertical mixing, enhanced atmospheric 
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dispersion and reduced industrial activity [26,27] corroborating findings from previous studies in 

South Asian megacities [28–32]. This was particularly evident in the near-zero SO₂ values during 

July–August across all years, suggesting operational shutdowns of key SO₂ sources like brick kilns. 

Ozone displayed an inverse seasonal trend, peaking during the pre-monsoon period. The 

spring/summer peak in O₃ (Figure 7) is attributed to intensified photochemical reactions under high 

solar radiation, involving precursor gases such as NOx and VOCs[33,34]. The temporal alignment of 

ozone maxima with NO₂ decline in April–May underscores the role of complex atmospheric 

chemistry, where NO₂ photolysis and low NO concentrations allow O₃ accumulation, especially in 

peripheral zones downwind from emission centers [35]. 

4.2. Spatial Heterogeneity and Urban Emission Sources 

The spatial analysis uncovered significant intra-urban variation in pollutant concentrations 

across Dhaka’s administrative zones. These spatial disparities are largely governed by the spatial 

arrangement of emission sources, land use patterns, and urban microclimates. 

CO hotspots in zones such as Tejgaon, Mirpur, and Mohammadpur align with areas (Figure 3) 

of high population density, congested traffic corridors, and unplanned residential-industrial 

coexistence. The correlation between traffic volume and CO levels reflects typical urban pollution 

signatures, where incomplete combustion in aging vehicles dominates emissions [36]. 

NO₂ concentrations were especially high in the commercial core and transport hubs—Motijheel, 

Mohakhali, and Gulshan (Figure 4)—corresponding to heavy-duty vehicular movement and idling 

emissions. Given NO₂’s short atmospheric lifetime and local origin, its spatial distribution serves as 

a direct proxy for localized transportation emissions and combustion activity [1] 

SO₂ hotspots were sharply concentrated in industrial and peri-industrial zones such as 

Keraniganj and Jatrabari (Figure 5). These areas house numerous brick kilns and manufacturing 

plants that burn sulfur-rich fuels such as coal and heavy oil, releasing substantial quantities of 

SO₂[37]. The concentration gradients observed around these zones suggest both point-source 

emissions and short-range diffusion. 

O₃ hotspots in downwind, peri-urban areas like Uttara and Badda (Figure 6) reflect 

photochemical transformation rather than direct emission. In the urban core, high NO concentrations 

scavenge ozone via titration, whereas peripheral zones allow for O₃ formation due to sufficient 

precursor presence and sunlight. This spatial pattern, supported by other studies in subtropical cities, 

demonstrates the complexity of managing ozone pollution, which often intensifies away from 

emission sources [38–40]. 

4.3. Influence of COVID-19 and Post-Pandemic Recovery 

The temporal analysis suggests a marked dip in CO and NO₂ concentrations during 2020, 

coinciding with COVID-19 lockdown periods. The sharp reduction in vehicular traffic, industrial 

output, and construction activities significantly lowered atmospheric emissions [41]. However, the 

rebound in pollutant levels in subsequent years—especially 2022 and 2023—highlights the transience 

of air quality improvements in the absence of sustained emission control policies. 

The data also suggest a lagged recovery in SO₂ concentrations, likely due to delayed resumption 

of industrial operations and energy demand fluctuations. These post-pandemic dynamics underscore 

the importance of integrating environmental recovery into economic revival planning. 

4.4. Mann-Kendall Monthly Trend of Pollutants 

The Mann-Kendall trend test applied to monthly maximum concentrations of CO, NO₂, SO₂, and 

O₃ from 2020 to 2024 indicated subtle but informative patterns of change, although most trends were 

not statistically significant (Figure 8 to Figure 11 and Table A2). Nonetheless, the directionality of 

trends reveals emerging dynamics in Dhaka’s urban atmosphere and reflects evolving emission 

behavior and seasonal variability. 
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CO showed predominantly increasing trends, particularly in June and September (Tau = 0.8; p = 

0.086), suggesting seasonal build-up during early monsoon and post-monsoon months (Figure 8 and 

Table A2). These increases may be linked to vehicular emissions, biomass burning, and combustion 

from informal sectors under humid and stagnant atmospheric conditions. Declines observed in 

February, March, and winter months may reflect seasonal meteorology and temporary behavioral 

shifts, though not significant. Such patterns align with earlier studies showing CO elevation during 

periods of low dispersion and increased fuel use [4,13]. 

NO₂ exhibited generally decreasing trends, most notably in September (Tau = –0.6; p = 0.220), 

indicating possible improvements from vehicle emission control and wider CNG adoption (Figure 9 

and Table A2). However, flat trends in January, April, and August suggest persistent emissions in 

transport corridors. The impact of pandemic-related activity reductions may also contribute to these 

observations [42]. 

SO₂ displayed the strongest upward trends, especially in April and May (Tau = 0.8; p = 0.086), 

consistent with pre-monsoon peaks in industrial and brick kiln activity (Figure 10 and Table A2). This 

is concerning, as SO₂ is a key contributor to acid rain and respiratory ailments. Slight declines in late 

monsoon and early winter likely reflect kiln closures and seasonal wind shifts [37]. 

O₃ trends were moderately positive in most months, particularly in May, June, and September 

(Tau = 0.6), reflecting enhanced photochemical formation under high sunlight and temperature 

(Figure 11 and Table A2). Peripheral zones may be more affected due to lower NOx titration and 

downwind transport. These findings echo regional concerns about rising tropospheric ozone in 

densely populated cities [43,44]. 

Although statistical significance was limited by the five-year time frame, the trends suggest 

rising concern for CO, SO₂, and O₃, while NO₂ may be stabilizing. These insights underscore the need 

for targeted seasonal interventions—such as stricter industrial regulation in pre-monsoon months 

and vehicle emission control in winter. The use of Sentinel-5P and Mann-Kendall analysis provides 

a replicable approach for early detection of air quality changes in data-scarce urban contexts. 

4.5. Policy Relevance and Urban Planning Implications 

The spatiotemporal dynamics of air pollutants in Dhaka uncovered in this study have profound 

implications for public health, environmental governance, and urban planning. Dhaka consistently 

ranks among the most polluted cities in the world, with one of the highest pollution-related mortality 

rates in South Asia [45]. The findings from our 60-month Sentinel-5P-based assessment underscore 

the urgency of adopting geographically targeted and seasonally adaptive air quality management 

strategies. The concentration of pollutants such as CO, NO₂, SO₂, and O₃ in specific urban zones and 

seasons indicates that a uniform policy approach would be inadequate. Instead, a multi-sectoral, 

zone-specific, and temporally nuanced intervention framework is essential for addressing the 

evolving challenges of air pollution in Dhaka [46,47]. 

Transport Policy: Our analysis identified central business districts and high-traffic corridors—

such as Motijheel, Tejgaon, Farmgate, and Gabtoli—as persistent hotspots for CO and NO₂, with peak 

values occurring during winter months. These trends are largely driven by vehicular emissions 

exacerbated by thermal inversion and traffic congestion [13,42]. To mitigate these impacts, 

establishing low-emission zones (LEZs) in high-exposure neighborhoods should be prioritized. 

Policy measures could include phasing out older diesel vehicles, enforcing stricter vehicle emission 

standards, and incentivizing the adoption of compressed natural gas (CNG) and electric vehicles 

[46,48]. Furthermore, investment in reliable and efficient public transit infrastructure—including 

electric buses, metro rail expansions, and park-and-ride systems—would reduce dependency on 

private and informal transport modes. Congestion pricing and intelligent traffic management in these 

identified zones could further alleviate air quality burdens during high-emission periods [48,49]. 

Industrial Regulation: The spatial clustering of SO₂ concentrations around southern and 

southeastern industrial belts—particularly in Jatrabari, Demra, and Keraniganj—indicates the 

dominance of stationary sources such as brick kilns, small-scale manufacturing units, and diesel-fired 
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generators. Our data revealed peak SO₂ levels in the pre-monsoon and winter seasons, with monthly 

maxima exceeding 0.00043 mol/m². These findings support the urgent need for targeted industrial 

regulation. Fuel switching—from coal and diesel to LPG or electricity—must be prioritized in brick 

kiln operations and informal industries [49,50]. Introducing clean production technologies, enforcing 

stack emission standards, and relocating high-emission industries away from residential clusters 

through better zoning practices are essential steps. Integration of emissions monitoring into building 

permits and environmental clearance processes can also ensure long-term compliance and 

transparency [51] 

Ozone Control: Unlike primary pollutants, O₃ exhibited an inverse seasonal pattern, peaking 

during the pre-monsoon months with concentrations exceeding 0.130 mol/m² in May. High ozone 

levels were recorded in peri-urban zones such as Uttara and Badda, driven by photochemical 

reactions involving transported NOx and VOCs in sunlight-rich conditions[34,50]. Ozone mitigation, 

therefore, requires an indirect yet strategic approach. This includes controlling both NOx and VOC 

emissions from transport and industrial solvents, regulating fuel composition, and promoting vapor 

recovery systems in fueling stations. Expanding urban green cover in ozone-sensitive downwind 

zones may also contribute to natural filtration and dispersion, while offering additional climate 

resilience and public health co-benefits[52]. Interventions must account for the ozone scavenging 

effect observed in core urban areas with high NO emissions, which paradoxically lowers O₃ 

concentrations locally but amplifies regional ozone burdens [43] 

Zonal Monitoring and Data-Driven Governance: The pronounced intra-urban variability 

revealed by Sentinel-5P TROPOMI data illustrates the inadequacy of current ground-based air 

quality monitoring networks, which often lack spatial granularity and temporal continuity ([21,31]. 

The use of satellite remote sensing and Google Earth Engine [9] in this study provides a scalable, 

cloud-based, and cost-effective framework for generating zone-specific air pollution baselines. These 

baselines can inform dynamic and adaptive environmental governance policies. Institutionalizing 

such monitoring frameworks within city governance systems (e.g., Dhaka North and South City 

Corporations) can facilitate real-time data integration into urban planning decisions. Additionally, 

integrating Sentinel-derived air quality layers with socio-economic and health datasets could enable 

targeted interventions in vulnerable neighborhoods, thereby maximizing the impact of 

environmental policies on human well-being. 

Policy Integration and Institutional Coordination: A key insight from this study is the 

interdependence between various pollution sources and their spatial-temporal impacts. Thus, policy 

responses must be integrative rather than fragmented. Coordination between urban planning 

authorities, environmental regulatory bodies, transportation departments, and health agencies is 

crucial. Establishing an interagency urban air quality task force could ensure alignment across 

sectoral policies and enhance the implementation of evidence-based strategies [32,42]. Furthermore, 

periodic updates of zoning regulations, informed by remote sensing data, can help balance 

development and environmental objectives. 

5. Conclusions 

This study provides a comprehensive assessment of the spatiotemporal behavior of four key 

atmospheric pollutants—CO, NO₂, SO₂, and O₃—across Dhaka City over a five-year period (2020–

2024) using Sentinel-5P satellite imagery and cloud-based analysis via Google Earth Engine. The 

results revealed strong seasonal variability and spatial heterogeneity in pollutant concentrations, 

reflecting the interplay of emission sources, land use, and meteorological conditions. CO, NO₂, and 

SO₂ concentrations peaked in winter due to enhanced combustion activities and poor dispersion, 

while O₃ levels reached maximum during pre-monsoon months due to favorable photochemical 

conditions. Spatial patterns showed persistent pollution hotspots aligned with traffic corridors and 

industrial zones, while ozone exhibited elevated concentrations in peripheral, downwind areas due 

to titration effects. 
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Trend analysis using the Mann-Kendall test showed increasing tendencies in CO, SO₂, and O₃ 

levels across several months, though most trends were not statistically significant given the limited 

temporal span. Nevertheless, these results indicate emerging concerns regarding pollution 

accumulation and underscore the importance of seasonal and zone-specific mitigation efforts. The 

integration of satellite remote sensing and cloud-based geospatial platforms proved effective in 

generating high-resolution, long-term air quality assessments, offering a replicable framework for 

similar cities facing monitoring constraints. These insights can inform evidence-based urban 

planning, emission control policies, and adaptive air quality management strategies tailored to 

Dhaka’s evolving urban landscape. 
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The following abbreviations are used in this manuscript: 

CO Carbon Monoxide 

GEE Google Earth Engine 

NO₂ Nitrogen Dioxide 

O₃ Ozone 

OSM Open Street Map 

QA Quality Assurance 

SO₂ Sulfur Dioxide 

TROPOMI Tropospheric Monitoring Instrument 

UTM Universal Transverse Mercator 

WGS World Geodetic System 

WHO World Health Organization 

Appendix A 

Table A1. Monthly average pollution concentration (mol/m2) (2020-2024). 

Pollutant Month Mean Min Max StdDev 

CO Jan 0.0513614 0.0496658 0.0528690 0.0006383 

CO Feb 0.0503589 0.0493792 0.0510958 0.0003252 

CO Mar 0.0517501 0.0504490 0.0530655 0.0004845 

CO Apr 0.0501786 0.0491893 0.0512107 0.0004769 

CO May 0.0463520 0.0457516 0.0471837 0.0002862 
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Pollutant Month Mean Min Max StdDev 

CO Jun 0.0421077 0.0414376 0.0429054 0.0002888 

CO Jul 0.0336378 0.0327860 0.0343351 0.0003111 

CO Aug 0.0349084 0.0340728 0.0355727 0.0003255 

CO Sep 0.0370318 0.0362062 0.0375760 0.0002866 

CO Oct 0.0405656 0.0397436 0.0415074 0.0003488 

CO Nov 0.0445893 0.0431804 0.0453095 0.0004129 

CO Dec 0.0491688 0.0470178 0.0503863 0.0006701 

NO2 Jan 0.0003024 0.0002214 0.0003538 0.0000220 

NO2 Feb 0.0002512 0.0001832 0.0002996 0.0000192 

NO2 Mar 0.0002500 0.0001758 0.0003157 0.0000298 

NO2 Apr 0.0001171 0.0000753 0.0001521 0.0000137 

NO2 May 0.0001249 0.0000915 0.0001747 0.0000153 

NO2 Jun 0.0000914 0.0000561 0.0001220 0.0000123 

NO2 Jul 0.0000813 0.0000528 0.0001025 0.0000100 

NO2 Aug 0.0000827 0.0000563 0.0001006 0.0000091 

NO2 Sep 0.0001221 0.0000825 0.0001502 0.0000139 

NO2 Oct 0.0001870 0.0001296 0.0002367 0.0000174 

NO2 Nov 0.0002505 0.0001754 0.0003057 0.0000286 

NO2 Dec 0.0002861 0.0002124 0.0003477 0.0000266 

O3 Jan 0.1166113 0.1163946 0.1167787 0.0000739 

O3 Feb 0.1223674 0.1221601 0.1226222 0.0001024 

O3 Mar 0.1240289 0.1237723 0.1242836 0.0001006 

O3 Apr 0.1298555 0.1297234 0.1299784 0.0000632 

O3 May 0.1300368 0.1298265 0.1302312 0.0000822 

O3 Jun 0.1274474 0.1273492 0.1276508 0.0000450 

O3 Jul 0.1243732 0.1240519 0.1245990 0.0000839 

O3 Aug 0.1229746 0.1228815 0.1231112 0.0000436 

O3 Sep 0.1219184 0.1217339 0.1220841 0.0000615 

O3 Oct 0.1198456 0.1197089 0.1200084 0.0000644 

O3 Nov 0.1167096 0.1165568 0.1168116 0.0000472 

O3 Dec 0.1147646 0.1146131 0.1150170 0.0000667 

SO2 Jan 0.0002467 0.0000471 0.0004135 0.0000644 

SO2 Feb 0.0002999 0.0001972 0.0004326 0.0000407 

SO2 Mar 0.0002985 0.0002017 0.0004080 0.0000384 

SO2 Apr 0.0002144 0.0001565 0.0002967 0.0000241 

SO2 May 0.0000787 0.0000104 0.0001880 0.0000337 

SO2 Jun 0.0000584 0.0000000 0.0001419 0.0000329 

SO2 Jul 0.0000286 0.0000000 0.0001090 0.0000266 

SO2 Aug 0.0000379 0.0000000 0.0001342 0.0000288 

SO2 Sep 0.0000580 0.0000000 0.0001786 0.0000321 

SO2 Oct 0.0000717 0.0000153 0.0001525 0.0000263 

SO2 Nov 0.0001026 0.0000000 0.0002382 0.0000580 

SO2 Dec 0.0001576 0.0000369 0.0003072 0.0000560 

Table A2. Man-Kendal test of monthly maximum pollutants concentration (2020-2024). 

Pollutant Month Trend Tau P-value 

CO Jan increasing 0.2 0.806495941 

CO Feb decreasing -0.2 0.806495941 

CO Mar decreasing -0.2 0.806495941 

CO Apr increasing 0.4 0.462432726 

CO May increasing 0.4 0.462432726 

CO Jun increasing 0.8 0.086410733 
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Pollutant Month Trend Tau P-value 

CO Jul increasing 0.2 0.806495941 

CO Aug increasing 0.4 0.462432726 

CO Sep increasing 0.8 0.086410733 

CO Oct increasing 0.2 0.806495941 

CO Nov decreasing -0.2 0.806495941 

CO Dec decreasing -0.2 0.806495941 

NO2 Jan no trend 0 1 

NO2 Feb decreasing -0.4 0.462432726 

NO2 Mar decreasing -0.2 0.806495941 

NO2 Apr no trend 0 1 

NO2 May increasing 0.2 0.806495941 

NO2 Jun increasing 0.4 0.462432726 

NO2 Jul decreasing -0.2 0.806495941 

NO2 Aug no trend 0 1 

NO2 Sep decreasing -0.6 0.220671362 

NO2 Oct decreasing -0.4 0.462432726 

NO2 Nov decreasing -0.4 0.462432726 

NO2 Dec decreasing -0.4 0.462432726 

O3 Jan increasing 0.4 0.462432726 

O3 Feb decreasing -0.2 0.806495941 

O3 Mar no trend 0 1 

O3 Apr increasing 0.2 0.806495941 

O3 May increasing 0.6 0.220671362 

O3 Jun increasing 0.6 0.220671362 

O3 Jul increasing 0.2 0.806495941 

O3 Aug increasing 0.4 0.462432726 

O3 Sep increasing 0.6 0.220671362 

O3 Oct increasing 0.4 0.462432726 

O3 Nov decreasing -0.2 0.806495941 

O3 Dec increasing 0.2 0.806495941 

SO2 Jan no trend 0 1 

SO2 Feb no trend 0 1 

SO2 Mar increasing 0.2 0.806495941 

SO2 Apr increasing 0.8 0.086410733 

SO2 May increasing 0.8 0.086410733 

SO2 Jun no trend 0 1 

SO2 Jul increasing 0.2 0.806495941 

SO2 Aug decreasing -0.2 0.806495941 

SO2 Sep decreasing -0.4 0.462432726 

SO2 Oct no trend 0 1 

SO2 Nov decreasing -0.4 0.462432726 

SO2 Dec decreasing -0.4 0.462432726 
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