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Abstract: In the last two decades, the application of composite structures in many industrial sectors has been 

made progressively. For the current major scientific and technological challenge, the energy transition with 

sustainable and eco-friendly initiatives, the polymer matrix laminated composites have been revealed as an 

excellent alternative for the renewable energy sector. In this context, the knowledge about mechanical behavior 

of multiphase materials is required. Then, researches related to macro, mesomechanical and multiscale 

approaches are very important to improve the accuracy of the models to predict effective mechanical properties 

and to develop a better understanding about complex phenomena such as progressive damage, creep and 

fatigue. Due to theses necessities, this research is a synthesis of fundamentals and advanced topics concerning 

to global modeling of laminated composite structures, layerwise analyzes and micro-macromechanical models, 

in which mainly fiber, matrix, interface and damage characteristics are studied and used in the macroscale 

approach. A deeper physical and mathematical description of the models is proposed, intead of general and 

vague reviews typically stated in the specific literature. At the end of this work, some final remarks and a trend 

analysis are made based on articles consulted, in other words, expectations for the future works are done by 

the authors of this study. 

Keywords: macromechanics; mesomechanics; multiscale analysis; laminated polymer composites 

 

1. Introduction 

 The growing worldwide demand for an energy transition in recent years has been presented as 

a great technical-scientific challenge to scholars, given that it needs to be both sustainable and eco-

friendly simultaneously. In this context, laminated composites have proven to be an important basis 

through researches into so-called biocomposites, which have had their thermomechanical 

characteristics widely analyzed in a way that is favorable to the appropriate design needs in branches 

of the renewable energy sector [1]. 

 Then, it becomes of complete relevance, mastery of the fundamentals and knowledge of more 

advanced applications related to macromechanical, mesomechanical and multiscale analyzes of 

polymer matrix laminated composites, bearing in mind that the structural behavior of engineering 

components to be developed with these materials must be analyzed and be in full compliance with 

aspects of functionality, safety and durability expected for a given project. All this entire discussion 

constitutes a motivational stimulus for the preparation of this research. 

 With the aim of analyzing the development of knowledge associated with the aforementioned 

scales of analyzes related to the group of composite materials in question, this systematic literature 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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review proposes a broad approach to the topic, which ranges from fundamental theories to cutting-

edge approaches inserted in the state of art of laminated composite mechanics. 

 As soon as engineering sectors began to introduce fiber-reinforced composites more actively in 

their structural components, between the 1940s and 1950s, mechanical analyzes began to appear in 

the form of a few documents and technical notes. Since then, it has been realized that both static and 

dynamic behaviors, fatigue and creep would be relevant for an analysis depending on the application 

in which this group of materials was being used. However, it was basically between 1970 and 2000 

that the theoretical foundations of some macroscopic mechanical behaviors of this kind of composites 

began to be further developed and consolidated within the mechanics of solids [2]. 

 Briefly, macromechanical modeling consists of studying the global mechanical behavior of the 

material as if it were homogeneous, an approach according to which the effects of each constituent 

phase and intrinsic specificities remain associated only to the effective/average properties of the 

composite [3]. 

 The homogenization of the composite based on the behavior observed at the level of the laminae 

is the so-called mesomechanics or layerwise analysis [3]. Macromechanics considers the material as 

if it were homogeneous and anisotropic (in general) and, therefore, is well suited to structural 

performances involving linear elastic regimes. In fact, determinations made in microscale can and 

should be used to input data for macromechanics analysis models (multiscales approaches) [3]. 

 This research is organized to get started exploring a literature associated with the fundamental 

concepts of the macromechanics of laminated composites of polymer matrices and advances to the 

most recent knowledge involving the global scale of a structure made up of laminate, as well as what 

is highlighted regarding studies meso and multiscale.  

 The initial description of the reference [4] quantifies these analysis scales through ranges of 

characteristic lengths, which are: from 10μm to 1mm (micromechanics), from 1mm to 10cm 

(mesomemechanics) and from 10cm to meters (macromechanics).  

 Additionally, in Figure 1, Machado and other authors of this research suggested a brief 

representative synthesis of these scales of mechanical analyzes in laminated composites and their 

respective purposes, in general. 

 

Figure 1. Classification and generic scope of each mechanical analysis scale in laminated composite 

homogenization processes. 

 The novelty of this review is to discuss macro, meso and multiscale mechanical modelings in 

the context of physical hypotheses, laws and theories of them, in other words, this study proposes 

different and deeper descriptions of the models than typical literature reviews. In summary, this 

research brings a novel and a vast approach referring to polymer laminated composite global, 

layerwyse and multiscale mechanical models in essence of them because in this context, the current 

review may expand the chances of advancements to novel and more accurate models. Finally, the 

research is complemented with an analysis about the perspectives of the new studies.  
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2. Literature Review 

2.1. Fundamentals and Past Studies 

 Anisotropy is an outstanding characteristic of composite materials and leads, in a more general 

case, to the elastic constitutive relationship given by equation 1, observing the minor and major 

symmetries existing for the 4th order stiffness tensor [5]: 

[
 
 
 
 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶1111 𝐶1122 𝐶1133
 𝐶2222 𝐶2233
  𝐶3333

𝐶1123 𝐶1113 𝐶1112
𝐶2223 𝐶2213 𝐶2212
𝐶3323 𝐶3313 𝐶3312

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

   
   
   

𝐶2323 𝐶2313 𝐶2312
 𝐶1313 𝐶1312
  𝐶1212]

 
 
 
 
 

  ×   

[
 
 
 
 
 
𝜖11
𝜖22
𝜖33
2𝜖23
2𝜖13
2𝜖12]

 
 
 
 
 

              (1) 

And according to Voigt or Engineering notation, the above relationship is rewritten as follows 

[5]: 

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
 𝐶22 𝐶23
  𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 

𝐶44 𝐶45 𝐶46
 𝐶55 𝐶56
  𝐶66]

 
 
 
 
 

  ×   

[
 
 
 
 
 
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6]
 
 
 
 
 

       (2) 

 Based on the analysis of symmetry planes for levels of anisotropy less accentuated than that 

explicit by equations 1 and 2, it can be demonstrated that in orthotropic composites, for example, the 

stiffness tensor depends only on nine independent constants, that is [5]: 

𝐶 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
 𝐶22 𝐶23
  𝐶33

 
0    0     0
0    0     0
0    0     0

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

   
   
   

𝐶44 0 0
 𝐶55 0
   𝐶66]

 
 
 
 
 

       (3) 

 From the previous mathematical descriptions, the stiffness tensor for an orthotropic laminated 

composite can be represented as a function of the elastic constants for the homogenized material, 

which form each component of the stiffness tensor in equation 3 [6]: 

𝐶 = 

[
 
 
 
 
 
 
 
(1−𝜈23𝜈32)𝐸1

∆

(𝜈21+𝜈23𝜈31)𝐸1

∆

(𝜈31+𝜈32𝜈21)𝐸1

∆

  
(1−𝜈13𝜈31)𝐸2

∆

(𝜈32+𝜈31𝜈12)𝐸2

∆

   
(1−𝜈12𝜈21)𝐸3

∆

  0  
 

    
0
 

    0
 

  0       0      0 
  0       

 
0  

 
    0

   𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦                         

⬚             
                 

   𝐺23 0 0
    𝐺31 0
  𝐺12]

 
 
 
 
 
 
 

           (4) 

In which, .∆= 1 − 𝜈23𝜈32 − 𝜈31𝜈13 − 𝜈12𝜈21 − 𝜈23𝜈31𝜈12 − 𝜈32𝜈21𝜈13 [6] 
 For a stress field that depends only on the spatial variables contained in a plane, i.e.: 𝜎(𝑥1, 𝑥2) 

with, 𝜎3 = 𝜎4 = 𝜎5 = 0 the plane state stress field acting on a lamina can be expressed as [5,6]: 

[

𝜎1
𝜎2
𝜎6
] = [

𝐶11 𝐶12 𝐶16
 𝐶22 𝐶26
  𝐶66

]  ×  [

𝜖1
𝜖2
𝜖6
]              (5) 

 Considering orthotropy and in relation to the principal directions of the material, equation 5 

reduces to [5,6]: 

[

𝜎1
𝜎2
𝜎6
] = [

𝑄11 𝑄12 0
 𝑄22 0
  𝑄66

]  × [

𝜖1
𝜖2
𝜖6
]               (6) 

 The linear transformation of the base through the product of the rotation tensor by the stress 

tensor in the original base and, consequently, by the product of the resulting matrix by the transpose 

rotation tensor, can be expressed by equation (7) [5,6]: 

[𝜎′] = [𝑅][𝜎][𝑅𝑇]                    (7) 
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Where, [𝑅] = [
𝑐𝑜𝑠𝜙 𝑠𝑒𝑛𝜙 0
−𝑠𝑒𝑛𝜙 𝑐𝑜𝑠𝜙 0
0 0 1

] (8) 

Then: [
𝜎′1
𝜎′2
𝜎′6

] = [

𝑐𝑜𝑠²𝜙 𝑠𝑒𝑛²𝜙 2𝑠𝑒𝑛𝜙𝑐𝑜𝑠𝜙

𝑠𝑒𝑛²𝜙 𝑐𝑜𝑠²𝜙 −2𝑠𝑒𝑛𝜙𝑐𝑜𝑠𝜙

−𝑠𝑒𝑛𝜙𝑐𝑜𝑠𝜙 𝑠𝑒𝑛𝜙𝑐𝑜𝑠𝜙 𝑐𝑜𝑠2𝜙 − 𝑠𝑒𝑛²𝜙

]  ×  [

𝜎1
𝜎2
𝜎6
]               (9) 

With the angle ϕ being positive (counterclockwise), neverthless, conventionally in studying 

laminates it is defined 𝜃 = −𝜙 to indicate the orientation of the lamina in relation to the principal 

axes of the laminate and in a complementary way the parameters are also defined 𝑚 = 𝑐𝑜𝑠𝜃 𝑒 𝑛 =

𝑠𝑒𝑛𝜃.Therefore, it is written [5,6]: 

[

𝜎′1
𝜎′2
𝜎′6

] = [
𝑚² 𝑛² −2𝑚𝑛
𝑛² 𝑚² 2𝑚𝑛
𝑚𝑛 −𝑚𝑛 𝑚² − 𝑛²

]  ×  [

𝜎1
𝜎2
𝜎6
]              (10) 

and 

[

𝜖′1
𝜖′2
𝜖′6

] = [
𝑚² 𝑛² −2𝑚𝑛
𝑛² 𝑚² 2𝑚𝑛
𝑚𝑛 −𝑚𝑛 𝑚² − 𝑛²

]  × [

𝜖1
𝜖2
𝜖6
]      (11) 

 According to Shenoi and Wellicome [6], the transformation of the components of the stiffness 

matrix with respect to the symmetry axes of an orthotropic lamina (𝐶16 = 𝐶26 = 0) is expressed by: 

[𝐶′] = [𝑇][𝐶][𝑇𝑇]      (12) 

and 

[
 
 
 
 
 
 
𝐶′11
𝐶′22
𝐶′12
𝐶′66
𝐶′16
𝐶′26]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑚4

𝑛4

𝑚²𝑛²

𝑛4

𝑚4

𝑚²𝑛²

2𝑚²𝑛²
2𝑚²𝑛²
𝑚4 + 𝑛4

             
4𝑚²𝑛²
4𝑚²𝑛²
−4𝑚²𝑛²

𝑚²𝑛²
𝑚³𝑛
𝑚𝑛³

𝑚²𝑛²
−𝑚𝑛³
−𝑚𝑛³

−2𝑚²𝑛²
−𝑚𝑛(𝑚2 − 𝑛2)

𝑚𝑛(𝑚2 − 𝑛2)

(𝑚2 − 𝑛2)²

−2𝑚𝑛(𝑚2 − 𝑛2)

2𝑚𝑛(𝑚2 − 𝑛2) ]
 
 
 
 
 
 

×  [

𝐶11
𝐶22
𝐶12
𝐶66

]      (13) 

 Within the domain of geometric linearity, the strains in a lamina are described by [5,6]: 

[𝜖] = [𝜖0] + 𝑧. [𝑘]                (14) 

Where, [𝜖0] is the strain in the midplane of the lamina [5,6]. 

 Second the classical theory of plates and shells, the internal forces acting in an xy plane are 

given by [5,6]: 

𝑁𝑥 = ∫ 𝜎𝑥𝑑𝑧
ℎ/2

−ℎ/2
               (15) 

𝑁𝑦 = ∫ 𝜎𝑦𝑑𝑧
ℎ/2

−ℎ/2
                    (16) 

𝑁𝑥𝑦 = ∫ 𝜎𝑥𝑦𝑑𝑧
ℎ/2

−ℎ/2
            (17) 

whose dimensions are force/length, and [5,6]: 

𝑀𝑥 = ∫ 𝜎𝑥𝑧𝑑𝑧
ℎ/2

−ℎ/2
          (18) 

𝑀𝑦 = ∫ 𝜎𝑦𝑧𝑑𝑧
ℎ/2

−ℎ/2
         (19) 

𝑀𝑥𝑦 = ∫ 𝜎𝑥𝑦𝑧𝑑𝑧
ℎ/2

−ℎ/2
            (20) 

Where the appropriate dimensions are torque/length [5,6]. 

 Physical modeling of classical laminated plate theory considers the following hypotheses below 

[5,6]: 

• There is a plane state of stress in each lamina. 

• There is no slipping between any two laminae. 

• The laminae remain cohesive. 

• A line of material perpendicular to the midplane remains this way in relation 

to it in the deformed configuration. 
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 In this way, the laminate deforms according to matrix equation (14). Strains are assumed to 

vary continuously throughout the laminate and in-plane stresses change linearly across the laminate. 

According to these hypotheses, the calculations begin with the linear variation of the strain 

distribution in a plane and the constitutive relationship of the kth lamina referring to the principal 

directions of the lamina is expressed by [5,6]: 

[

𝜎1𝑘
𝜎2𝑘
𝜎6𝑘

] = [

𝐶11𝑘 𝐶12𝑘 0
 𝐶22𝑘 0
  𝐶66𝑘

]  ×  [

𝜖1𝑘
𝜖2𝑘
𝜖6𝑘
]          (21) 

 Concerning the principal directions of the laminated composite, it can be 

written [5,6]: 

[

𝜎′1𝑘
𝜎′2𝑘
𝜎′6𝑘

] = [

𝐶′11𝑘 𝐶′12𝑘 𝐶′16𝑘
 𝐶′22𝑘 𝐶′26𝑘
  𝐶′66𝑘

]  × [

𝜖′1𝑘
𝜖′2𝑘
𝜖′6𝑘

]          (22) 

 The stiffness tensor in equation (22) is expressed by the set of equations from (23) to (28) [5,6]: 

𝐶′11𝑘 = 𝐶11𝑘𝑐𝑜𝑠
4𝜃 + 2(𝐶12𝑘 + 2𝐶66𝑘)𝑠𝑒𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝐶22𝑘𝑠𝑒𝑛
4𝜃       (23) 

𝐶′22𝑘 = 𝐶11𝑘𝑐𝑜𝑠
4𝜃 + 2(𝐶12𝑘 + 2𝐶66𝑘)𝑠𝑒𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝐶22𝑘𝑐𝑜𝑠
4𝜃       (24) 

𝐶′12𝑘 = (𝐶11𝑘 + 𝐶22𝑘 − 4𝐶66𝑘)𝑠𝑒𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝐶12𝑘(𝑠𝑒𝑛

4𝜃 + 𝑐𝑜𝑠4𝜃)    (25) 

𝐶′66𝑘 = (𝐶11𝑘 + 𝐶22𝑘 − 2𝐶12𝑘 − 2𝐶66𝑘)𝑠𝑒𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝐶66𝑘(𝑠𝑒𝑛

4𝜃 + 𝑐𝑜𝑠4𝜃)         (26) 

𝐶′16𝑘 = (𝐶11𝑘 − 𝐶12𝑘 − 2𝐶66𝑘)𝑠𝑒𝑛𝜃𝑐𝑜𝑠
3𝜃 − (𝐶22𝑘 − 𝐶12𝑘 − 2𝐶66𝑘)𝑠𝑒𝑛

3𝜃𝑐𝑜𝑠𝜃      (27) 

𝐶′26𝑘 = (𝐶11𝑘 − 𝐶12𝑘 − 2𝐶66𝑘)𝑐𝑜𝑠𝜃𝑠𝑒𝑛
3𝜃 − (𝐶22𝑘 − 𝐶12𝑘 − 2𝐶66𝑘)𝑐𝑜𝑠

3𝜃𝑠𝑒𝑛𝜃      (28) 
 The strain vector 𝜖′𝑘 of the kth lamina as a function of the z coordinate is given by [5,6]: 

𝜖′𝑘 = 𝜖
0 + 𝑧. 𝑘      (29) 

Where z is the coordinate of the midplane of the kth lamina  𝑧𝑘−1 < 𝑧 < 𝑧𝑘. Then: 

𝜎′𝑘 = 𝐶′𝑘𝜖
0 + 𝑧𝐶′𝑘 . 𝑘               (30) 

 It is observed that in the case of a laminated composite with 𝜃 = 0, the matrices 𝐶′𝑘 and 𝐶𝑘 

are equal. Due to the stresses in the plane showing a discontinuity at interfaces, the sum of the 

integrals of separate laminae must be used [5,6]. 

𝑁 =  [

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = ∑ ∫ 𝜎′𝑘𝑑𝑧
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1 = ∫ (𝐶′𝑘𝜖

0 + 𝑧𝐶′𝑘 . 𝑘)𝑑𝑧
𝑧𝑘
𝑧𝑘−1

= (∑ 𝐶′𝑘(𝑧𝑘 − 𝑧𝑘−1))𝜖
0 +𝑛

𝑘=1

(
1

2
∑ 𝐶′𝑘(𝑧²𝑘 − 𝑧²𝑘−1))𝑘
𝑛
𝑘=1         (31) 

Contracting the equation (26), it can be written [5,6]: 

𝑁 = 𝐴𝜖0 + 𝐵𝑘        (32) 

 Matrices A and B are defined in the following ways [5,6]: 

𝐴𝑖𝑗 = ∑ 𝐶′𝑖𝑗,𝑘(𝑧𝑘 − 𝑧𝑘−1)
𝑛
𝑘=1     (33) 

𝐵𝑖𝑗 =
1

2
∑ 𝐶′𝑖𝑗,𝑘(𝑧²𝑘 − 𝑧²𝑘−1)
𝑛
𝑘=1                     (34) 

 Due to the matrices 𝐶′𝑘 are symmetric ones, matrices A and B are also symmetric, thus, 𝐴𝑖𝑗 =

𝐴𝑗𝑖  and 𝐵𝑖𝑗 = 𝐵𝑗𝑖 . By analogy, for the torque equation, it can be expressed as [5,6]:  

𝑀 = [

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑ ∫ 𝑧𝜎′𝑘𝑑𝑧
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1 = 𝐵𝜖0 + 𝐷𝑘   (35) 

𝐷𝑖𝑗 =
1

3
∑ 𝐶′𝑖𝑗,𝑘(𝑧³𝑘 − 𝑧³𝑘−1)
𝑛
𝑘=1  with i and j ∈ {1,2,6}     (36) 

Observing the existing symmetry for the matrix D (𝐷𝑖𝑗 = 𝐷𝑗𝑖), in contract form, can be written 

the following matrix equation [5,6]: 

[
[𝑁]

[𝑀]
] = [

[𝐴] [𝐵]

[𝐵] [𝐷]
] × [𝜖

0

𝑘
]            (37) 
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 It should be noted that matrix A has a force/length dimension, matrix B has a force dimension 

and D has a force x length dimension. The matrix A determines the stiffness in the midplane of the 

lamina under the influence of tension, compression and shear. The 𝐴𝑖𝑗 elements are called laminate 

planar stiffnesses. They are independent of the lamina packing sequence and the term 𝑧𝑘 − 𝑧𝑘−1 is a 

weighting factor for the lamina thickness. Matrix B is responsible for the coupling effects between in-

plane stresses and curvatures, between bending and twisting moments, and between strains that 

occur in the plane. This is called coupling matrix and the elements 𝐵𝑖𝑗  are the coupling stiffnesses 

and depend on the stacking sequence. D is a matriz that determines the stiffness of the laminate in a 

perpendicular direction under the influence of bending and torsional moments, while the elements 

𝐷𝑖𝑗  are the so-called flexural stiffnesses of the laminate and also depend on the lamina assemblage 

sequence [6]. 

 To the rotations of the coordinate system around an axis normal to the laminate midplane, the 

same transformation matrix T (here with respect to ϕ > 0) can be used. This linear transformation 

exhibits the fact of the laminate’s stiffnesses are function of analysis orientation [6]. 

[𝐴"] =  [𝑇][𝐴][𝑇𝑇]    (38) 

[𝐵"] =  [𝑇][𝐵][𝑇𝑇]         (39) 

[𝐷"] =  [𝑇][𝐷][𝑇𝑇]       (40) 

 The compliance tensors represented by matrices [a, b] and [d] are given for the following 

equations (41) to (43) below [6]: 

[𝑎] = [𝐴]−1 − [𝑏][𝐵][𝐴]−1                (41) 

[𝑏] = −[𝐴]−1[𝐵][𝑑]    (42) 

[𝑑] = ([𝐷] − [𝐵][𝐴]−1[𝐵])−1           (43) 

 Due to the assembly anisotropy of the laminate, there are several couplings between stresses 

and strains that are absent in an isotropic material. Most of these coupling effects, especially those 

resulting from matrix [B], are undesirable and should be avoided, except for very specific cases. To 

demonstrate these effects, it is simpler to analyze some elements of matrix [b]. Well, the existence of 

the element 𝑏11 leads to the curvature 𝑘𝑥 caused by an axial force 𝑁𝑥 and a moment 𝑀𝑥  to cause 

a strain 𝜖𝑥 . These coupling effects can be verified between other elements of the matrix [b] and 

respective components of forces and moments [6]. 

 In order to avoid these coupling effects, it is sufficient to make [b] = 0 or [B] = 0. From the 

analysis of equation (34) it can be noted that a symmetrical laminate in relation to the midplane, i. e., 

with the same number of layers (same configuration) above and below that plane, will not present 

the coupling effects caused by matrix [B] [6].         

 According [6], the kth lamina is symmetrical, in relation to the midplane, to the (n+1-k)th lamina. 

Both laminae of each pair are identical and have the same orientation, as follows: 

[𝐶′𝑖𝑗]𝑘 = [𝐶′𝑖𝑗]𝑛+1−𝑘      (44) 

But, (𝑍𝑘
2 − 𝑍𝑘−1

2 ) = − (𝑍𝑛+1−𝑘
2 − 𝑍𝑛−𝑘

2 ), in other words, the symmetric contributions in relation 

to the midplane cancel each other out [6]. 

 In addition to the laminated composite concepts mentioned above, it can also be structured 

with orthotropy in relation to the in-plane stiffness matrix, [A], that is, to constitute the material in 

such a way to obtain the elements 𝐴16 = 𝐴26 = 𝐴61 = 𝐴62 = 0  with respect to the principal 

directions of the multiphase material [6]. 

 The equation (33) shows that orthotropy in relation to the planar stiffness of the laminate can 

be created using pairs of identical laminae and when one of them has an orientation 𝜃𝑖 , the 

symmetrical one must have an orientation −𝜃𝑖. In this condition, the contributions of each lamina in 

the pair to 𝐴16  and 𝐴26  cancel each other out, given that: 𝐶′16(−𝜃𝑖) =  −𝐶
′
16(𝜃𝑖) 𝑒 𝐶

′
26(−𝜃𝑖) =

−𝐶′26(𝜃𝑖). There are no requirements regarding the packing sequence of these laminae. Therefore, it 

is easy to make a combination so that there is orthotropy in relation to planar stiffness with symmetry 

to the midplane [6]. 

 Layers with 0°/90° orientation do not generate the terms 𝐴16 𝑒 𝐴26, and they can be included to 

angle ply laminates, i.e., those with 𝜃𝑖  in a layer and −𝜃𝑖  in another, without disrupting its 
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orthotropy characteristic. Laminates with a 0°/90° orientation are called cross ply laminates, which 

are always orthotropic in relation to the matrix [A] [6]. 

 As regards matrix [D], it is also possible to obtain the orthotropy, which means, in summary, 

to have 𝐷16 = 𝐷26 = 0. From equation (36), it is noted that this characteristic of [D] is contradictory 

to that of [B], because to be achieved it, the laminate needs to be antisymmetric in relation to the 

midplane, however, for practical issues, the consideration of not coupling made to the matrix [B] is 

indispensable [6]. 

 According to the works of Jones [7] and Daniel and Ishai [8], macroscopic theories of failure in 

composites have been proposed as extensions and/or adaptations of theories for isotropic materials 

in the sense of considering the characteristic of anisotropy and strength of the composites. 

 First of all, strength to failure of a simple isolated lamina is discussed, for which the theories 

can be subdivided according to [8]: 

• Non-interactive or limit theories (direct comparisons between stresses and strains in a lamina 

with the respective limits for each that field, for example, the theory of maximum stress and 

strain). 

• Interactive theories (where interactions between stress components are considered, for example, 

Tsai-Hill and Tsai-Wu) 

• Failure-mode-based or partially interactive theories (in which separate criteria are used for fiber, 

matrix and interface, for example, those of Hashin-Rotem and Puck). 

 Due to the synthesis aspect of this research, it adresses only the last two groups of theories 

mentioned above, considering that they present more sophisticated models than non-interactive 

theories. Firstly, the theoretical macroscopic failure model for an orthotropic Tsai-Hill lamina is 

described, which is based on the Von Mises maximum distortion energy criterion, thus, can be written 

[8]: 
𝜎1
2

𝐹1
2 +

𝜎2
2

𝐹2
2 +

𝜏6
2

𝐹6
2 −

𝜎1𝜎2

𝐹1
2 = 1(45) 

In which each F (1, 2 and 6, respectively) represents the ultimate strength to longitudinal, 

transverse and shear stresses in-plane of the lamina, while the stresses indicated in the numerator are 

the respective ones acting. The equation (45) does not differentiate tensile strength from compressive 

strength, only making a distinction for the appropriate values according to the signs in 𝜎1 and 𝜎2 

[8]. 

 The limitations of the Tsai-Hill criterion are associated with the fact that it is based on a physical 

model in which the set of hypotheses includes the homogeneity and ductility of the material, 

however, it is known that most composites have marked characteristics of heterogeneity and 

brittleness [8]. 

 The Tsai-Wu criterion is based on the concept of strength tensors, which is more general for 

failures in composites and gives rise to strength predictions in general stress states. More specifically, 

Tsai and Wu suggested the so-called polynomial theory of modified tensors, where the existence of 

a failure surface in the stress space is assumed. Therefore, the mathematical model of the criterion 

can be expressed by [8]: 

𝑓𝑖𝜎𝑖 + 𝑓𝑖𝑗𝜎𝑖𝜎𝑗 = 1 (i,j = 1, 2,...6)    (46) 

In which, 𝑓𝑖 and 𝑓𝑖𝑗  are the respective second and fourth order strength tensors whose 

components can be mathematically obtained from algebraic expressions that include the strengths 

related to the appropriate acting stresses [8]. For a plane stress state it can be expanded in following 

form [8]: 

 𝑓1𝜎1 + 𝑓2𝜎2 + 𝑓11𝜎1
2 + 𝑓22𝜎2

2 + 𝑓66𝜏6
2 + 2𝑓12𝜎1𝜎2 = 1   (47) 

 As can be seen, both the Tsai-Hill and Tsai-Wu criteria do not consider the relationship between 

the kinds of acting loads and failures in the constituents of the composite, in other words, in the fiber 

and in the interfibers regions (matrix + interface) [8]. As the ultimate tensile strength for other axis, 

except the longitudinal of the fibers, are experimentally distinct for ductile and brittle matrices in a 

unidirectional composite, Hashin and Rotem noted that failure in a lamina can be conditioned on a 

non-single criterion, as can be seen in equation (48), for example: 
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{

|𝜎1|

𝐹1
= 1

(
𝜎2

𝐹2
)
2

+ (
𝜏6

𝐹6
)
2

= 1
                 (48) 

Where, consecutively, equation (48) defines a double criterion regarding failure for the fiber and 

for the interfiber region, with the lamina being subjected to a plane stress state. Regarding strengths 

𝐹𝑖, for linear behavior until failure, the ultimate strength is used, whereas in cases of non-linearity the 

proportional limit can be used [8]. 

 Puck's theory can be seen in a detailed way in the next section, but like the Hashin-Rotem 

theory, it also considers non-linear aspects of stress-strain relationships and also distinguishes fiber 

and interfibers, neverthless, because it is more complex and requires additional parameters related 

to the material without proven advantages, the Hashin-Rotem theory ends up being preferred in 

many cases [8][54]. 

 Daniel and Ishai [8] also describe about failure criteria for fabric-reinforced composites. The 

authors state that the failure in these composites depends on the type of the weave, in addition to the 

fiber and matrix properties. In case of tensile loading along the plane of the laminae (acting in the 

two preferential axes) a non-linear behavior is presented due to the nucleation of micro cracks in the 

matrix, a mechanism that precedes the ultimate tensile strength. 

 Failure criteria discussed in this research can be used to analyzelysis in fabric-reinforced 

composites as long as they are properly modified. With this remark, the Tsai-Hill criterion, for 

example, can be presented with the following mathematical modeling [8]: 
𝜎1
2+𝜎2

2

𝐹1
2 +

𝜎3
2

𝐹3
2 +

𝜏6
2

𝐹6
2 +

𝜏4
2+𝜏5

2

𝐹4
2 −

(𝜎1𝜎2+𝜎2𝜎3+𝜎3𝜎1)

𝐹1
2 = 1  (49) 

 Just as a complement to the previous discussion on failure criteria for structural composites, 

reference is also made to the works of Robinson et al [9], Hilton et al [10], and the classic paper of Tsai 

and Wu [11], where is proposed a general theory of strength for anisotropic materials. 

 Also in the way to establish mathematical models as parameters for evaluating macro failures 

in structural composites, the context of buckling is analyzed, which constitutes a relevant failure 

mechanism in structural components. In this sense, Ventsel and Krauthammer [12] present an 

interesting macromechanical modeling about buckling of orthotropic circular cylindrical shells, 

which can be useful for laminated composite structures with this directional characteristic after 

having their effective properties and, consequently, homogenization defined. To this end, these 

authors are based on the Donnell-Mushtari-Vlasov theory (DMV theory) of thin shells in order to 

determine the governing equations for that kind of shell subjected to uniform axial compression 

loading 𝑞. In this context, the authors have obtained [12]: 

∇𝐷
4𝑤 −

1

𝑅

𝜕2𝛷

𝜕𝑥2
+ 𝑞

𝜕2𝛷

𝜕𝑥2
= 0                    (50) 

∇𝐵
4𝛷 +

1

𝑅

𝜕2𝑤

𝜕𝑥2
= 0            (51) 

Where, ∇𝐷
4  and ∇𝐵

4  are the bi-harmonic operators associated respectively with the bending and 

extension stiffnesses, and the distortion stiffness of the cylindrical shell. R is the radius of curvature 

of the circular base, 𝛷 is the stress function and w is the displacement function in the z direction 

(with x and y belonging to surface of the problem) [12]. 

 Using the Galerkin method and assuming that the critical load corresponds to the axisymmetric 

instability mode with only circumferential bulges, can be written the following solutions for the 

displacement function and critical load, consecutively [12]: 

𝑤 = 𝑓 sin
𝜋𝑥

𝑙𝑥
                   (52) 

𝑞¹𝑐𝑟 =
2

𝑅
√
𝐷11𝐵𝑠

𝐵11
         (53) 

Where, 𝑓 is the so-called small parameter (ratio between the deflection w0 at a reference point 

of the middle surface and the thickness of the structure), 𝑙𝑥  is the longitudinal half-wave length 

caused by the instability and, 𝐷11𝐵𝑠𝐵11 , are components associated with the bending and axial 

stiffnesses, in this case [12]. 

 In a study conducted by Jeong et al [13], a macroscopic dynamic analysis of a laminated 

composite is carried out based on the Euler-Bernoulli plate and beam theories, taking into account 
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the anisotropy of the material. In summary, after investigating the dynamic characteristics of an 

epoxy/carbon fiber composite experimentally, the authors conclude that the proposed 

macromechanical modeling has been able to predict those to a satisfactory approximation. 

 Fundamental dynamic macromechanical aspects for laminated composites are explored by 

Aydin et al [14]. From this published chapter it is possible to highlight the modeling presented for 

the transverse vibration of an orthotropic laminated plate of dimensions (a x b) upon which, applying 

the force balance, can be written [14]: 

𝐷11
𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
+ 𝜌0

𝜕²𝑤

𝜕𝑡²
= 0        (54) 

Where, 𝑤 = 𝑤(𝑥, 𝑦, 𝑡) is the displacement in the transverse direction z and the terms indicated 

by D are constants obtained from the integration of stiffness terms and 𝜌0 is the mass per unit area 

of the laminate [14] 

 From equation (54) the natural frequencies can be computed and the respective vibration modes 

of the plate are expressed by [14]: 

𝜔𝑚𝑚 =
𝜋2

(𝜌0)
1/2𝑎2

(𝐷11𝑚
4 + 2(𝐷12 + 2𝐷66)(𝑚𝑛𝑅)

2 + 𝐷22(𝑛𝑅)
4)1/2         (55) 

𝜔(𝑥, 𝑦) = 𝐴𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)(56) 

In which m and n are the indices related to each vibration mode and 𝑅 =
𝑎

𝑏
  [14].  

 Concerning the damping of dynamic loads in polymer laminated composites, the authors in 

[14] comment that although the main energy dissipation mechanism appears to be viscoelastic, other 

processes such as: thermoelastic, Coulomb friction, cracks and delaminations are also forms of energy 

dissipation in this kind of composites. 

 One multiscale analysis was proposed by Ladeveze and Dantec [15] in order to predict the 

mechanical behavior at the level of an elementary composite lamina and its effects on the entire 

laminate. These researchers used damage mechanics to describe microcracks in the matrix and the 

separation between fiber and continous phase, to this end, they developed a plasticity modeling in 

which the distinctions between tension and compression, as well as the directions of the fibers are 

considered. To prove the model's ability to account for the aforementioned characteristics and effects 

on the mechanical behavior of the multiphase material, the authors of the study [15] compared 

theoretical results with those obtained from tensile and compression tests.  

 Especially in the last two decades, modeling procedures proposing integration between the 

micro and macromechanical scales of analysis for composites have had significant growth, as can be 

seen below by describing some researches. Initially, stands out the study of Aboudi and Williams 

[16], in which the modeling aims to predict the response of multiphase composites whose 

constituents are hygrothermoelastic. In special cases which polymer continous phase are composed 

of thermoset resins, as epoxy and polyester, the effects of temperature and moisture variations may 

be relevant and must be computed to the strain analyzes and properties degradation studies related 

to the laminated composites [16][40].   

 One of the distinguishing features of the study [16] is the suggested geometric modeling, in 

which the multiphase laminated composite is formed from several inclusions immersed in a matrix. 

Other hypotheses assumed are: the plane containing the fibers (x2x3) has dimensions much larger 

than the thickness H in the direction of the x1 axis, the composite has a periodic structure in the x2x3 

plane and variable in x1. 

 Then, the construction of the geometric model use a generic unit cell composed of eight subcells 

identified by local variables (α, β, γ), with the dimensions of the subcells fixed at x2x3 (h1, h2 and l1, l2) 

and variables from one generic cell to another along x1 (d1(p), d2(p)), where the index p refers to the 

cell number and is associated with the dimensions of the subcells in this direction. As p remains 

constant in the x2x3 plane, two other indexes q and r have been introduced to identify a generic cell 

in these directions as well, so each cell is indicated by (p, q, r) [16]. When containing M generic cells 

in the x1 direction, the thickness H of the laminate is determined by: 

𝐻 = ∑ (𝑑1
𝑝
+ 𝑑2

𝑝
 )𝑀

𝑝=1           (57) 

 Micro-macromechanical modeling has been formulated to satisfy governing equations for a 

monolithic hygrothermoelastic material in each subcell, as well as fulfill interface conditions and 
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satisfy appropriate boundary conditions [16]. For analysis, the researchers base their model on the 

approximation of the displacement, temperature and moisture concentration fields in each subcell 

(of any cell) to the corresponding fields in the center of the subcells and a quadratic expansion in the 

local coordinates (x1(α), x2(β), x3(γ)) of the same [16], in summary, for the displacements, temperature 

and moisture concentration can be written: 

𝑢1
(𝛼𝛽𝛾)

= 𝑤1
(𝛼𝛽𝛾)

+ 𝑥1
(𝛼)
𝜑1
(𝛼𝛽𝛾)

+
1

2
(3𝑥1

(𝛼)2 −
1

4
𝑑𝛼
(𝑝)2

)𝑈1
(𝛼𝛽𝛾)

+
1

2
(3𝑥2

(𝛽)2
−

1

4
ℎ𝛽
2) 𝑉1

(𝛼𝛽𝛾)
+

1

2
(3𝑥3

(𝛾)2
−

1

4
𝑙𝛾
2)𝑊1

(𝛼𝛽𝛾)         (58) 

𝑢2
(𝛼𝛽𝛾)

= 𝑤2
(𝛼𝛽𝛾)

(𝒙) + 𝑥2
(𝛽)
𝜒2
(𝛼𝛽𝛾)

     (59) 

𝑢3
(𝛼𝛽𝛾)

= 𝑤3
(𝛼𝛽𝛾)

(𝒙) + 𝑥3
(𝛾)
𝜓3
(𝛼𝛽𝛾)

 (60) 

Where, 𝑤1
(𝛼𝛽𝛾)

 are the displacements in the centers of the subcells, 𝑈1
(𝛼𝛽𝛾)

, 𝑉1
(𝛼𝛽𝛾)

,𝑊1
(𝛼𝛽𝛾)

, 

𝜒2
(𝛼𝛽𝛾)

and 𝜓3
(𝛼𝛽𝛾)

 are all the micro variables that must be obtained for the subcells of the coupling of 

the governing equations of the hygrothermoelastic material with the interface and boundary 

conditions [16]. 

𝑇 
(𝛼𝛽𝛾) = 𝑇1

(𝛼𝛽𝛾)
+ 𝑥1

(𝛼)
𝑇2
(𝛼𝛽𝛾)

+
1

2
(3𝑥1

(𝛼)2 −
1

4
𝑑𝛼
(𝑝)2

) 𝑇3
(𝛼𝛽𝛾)

+
1

2
(3𝑥2

(𝛽)2
−

1

4
ℎ𝛽
2) 𝑇4

(𝛼𝛽𝛾)
+

1

2
(3𝑥3

(𝛾)2
−

1

4
𝑙𝛾
2) 𝑇5

(𝛼𝛽𝛾)           (61) 

In equation (61), 𝑇 
(𝛼𝛽𝛾) is the approximation for the temperature field in a given subcell, 𝑇1

(𝛼𝛽𝛾)
 

is the temperature at the center of the subcell (average temperature for the subcell), 𝑇𝑖
(𝛼𝛽𝛾)

(𝑖 = 2,… ,5) 

are unknowns to be determined from the governing equations in the subcells, so as well as continuity 

and boundary conditions [16]. 

𝐶 
(𝛼𝛽𝛾) = 𝐶1

(𝛼𝛽𝛾)
+ 𝑥1

(𝛼)
𝐶2
(𝛼𝛽𝛾)

+
1

2
(3𝑥1

(𝛼)2 −
1

4
𝑑𝛼
(𝑝)2

)𝐶3
(𝛼𝛽𝛾)

+
1

2
(3𝑥2

(𝛽)2
−

1

4
ℎ𝛽
2)𝐶4

(𝛼𝛽𝛾)
+

1

2
(3𝑥3

(𝛾)2
−

1

4
𝑙𝛾
2) 𝐶5

(𝛼𝛽𝛾)              (62) 

The equation (62) provides the deviation in relation to C0 (moisture concentration distribution 

in a given subcell (𝛼𝛽𝛾)), 𝐶1
(𝛼𝛽𝛾)

 is the concentration in the center of the subcell, 𝐶𝑖
(𝛼𝛽𝛾)

(𝑖 = 2,… ,5) 

are unknowns to be determined from the governing equations in the subcells, as well as the boundary 

and continuity conditions [16]. 

 Subsequently, the authors carry out volume analyzes for the equilibrium, energy and diffusion 

in order to write the coupled governing equations for the hygrothermoelastic multiphase composite 

in all its M generic cells [16], which in contracted form are expressed by: 

𝐴𝑈̇ = 𝐺(63) 

Where, A is the matrix that represents the stiffness tensor that contains geometric information 

and the hygrothermoelastic properties of the materials that constitute all the subcells in the M cells 

of the composite, 𝑈̇ contains 136𝑀 + 2 (includes the far field strain rates 𝜀22
−̇ , 𝜀33

−̇ , [16]) unknowns 

which represent the rates of micro variables present and G is the so-called force vector, which 

contains information on the hygrothermoelastic boundary conditions applied and, even, the values 

of the micro variables in the current iteration t, given that the system of equations is solved 

incrementally [16]. 

 In terms of the development of micro-macromechanical models, i.e., modeling that starts from 

considerations involving each phase (such as the paper [16]), to establish the influences of these 

components on the constitutive relation of the composites as a whole and, in this way, describe their 

physical behaviors with a better accuracy. In sequence, it is also done an extension on the study 

Toledo et al [17], where a micro-macromechanical approach for laminated composites is also 

proposed. 

 The authorss in [17] provide a constitutive modeling for the components of the composite 

expressed as follows: 

𝜎 = 𝐶𝜀𝑒 = 𝐶(𝜀 − 𝜀𝑝)   (64) 

In which, 𝜎 is the stress tensor, C is the elastic stiffness tensor, 𝜀𝑒 is the strain tensor for the 

elastic regime, 𝜀 is the strain tensor and 𝜀𝑝 is the strain tensor in the inelastic regime [17]. 

 Assuming behaviors in parallel (all constituents have the same strain) and in series (all 

constituents of the composite are subjected to the same stresses) when a simple composite is analyzed 

with respect to its principal directions, the researchers in [17] define the tensor ε* (containing strain 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 September 2024                   doi:10.20944/preprints202404.0826.v2

https://doi.org/10.20944/preprints202404.0826.v2


 11 

 

components related to the directions of parallel behavior and stress components corresponding to 

the directions of behavior in series) and the tensor σ* (containing stress components related to the 

directions of parallel behavior and respective strain components corresponding to the directions of 

behavior in series) for the rearrangement of the analysis. 

 To express this proposed rearrangement, the following fourth order tensors are defined [17]: 

𝛼𝑖𝑗𝑘𝑙
𝜎 = ∑ ∑ 𝛿𝑖𝑟𝛿𝑗𝑠𝛿𝑘𝑟𝛿𝑙𝑠𝐻(𝑝𝑟𝑠)

3
𝑠=1

3
𝑟=1               (65) 

𝛼𝑖𝑗𝑘𝑙
𝜀 = 𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛼𝑖𝑗𝑘𝑙

𝜎 (66) 

In which, 𝐻(𝑝𝑟𝑠) it is a threshold function with the variable prs assuming the following values 

[17]: 

𝑝𝑟𝑠 = {
1,
0,
  𝑖𝑓 𝑡ℎ𝑒 𝑟𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑜𝑟𝑘𝑠 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
   𝑖𝑓 𝑡ℎ𝑒 𝑟𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑜𝑟𝑘𝑠 𝑖𝑛 𝑠𝑒𝑟𝑖𝑒𝑠

 

In summary, this function is conditionally defined according to the physical behavior of that 

specific constituent of the composite. 

 Therefore, the stress and strain components are rearranged as tha set of equations below [17]: 

𝜎∗ = 𝛼𝜎𝜎 + 𝛼𝜀𝜀   
𝜎 = 𝛼𝜎𝜎∗ + 𝛼𝜀𝜀∗               (67) 
𝜀∗ = 𝛼𝜀𝜎 + 𝛼𝜎𝜀   
𝜀  = 𝛼𝜀𝜎∗ + 𝛼𝜎𝜀∗  
And combining equation (64) with the equations in (67), the secant constitutive relation can be 

described by [17]: 

𝜎∗ = 𝐶∗𝜀∗ − 𝜎𝑝∗     (68) 

In which, 𝐶∗ = (𝛼𝜎𝐶 + 𝛼𝜀)(𝛼𝜀𝐶 + 𝛼𝜎)−1 and 𝜎𝑝∗ = (𝐶∗𝛼𝜎 − 𝛼𝜀)𝜀𝑝 [17]. 
 Finally, Toledo et al [17] describe the constitutive model for a simple composite, in which the 

principal directions and the tensors 𝛼𝜎 and 𝛼𝜀 are coincident for all constituents, then: 𝜀𝑐 = 𝜀
∗ , 

where c indicates an arbitrary constituent material. Additionally, considering that the inelastic strains 

of the composite in the directions in which the material works in series are given by the sum of the 

inelastic strains of the constituents weighted by the volume fraction of each one, we have in the secant 

equation of the composite (likewise to 68): 

𝐶∗ = ∑𝑘𝑐𝐶𝑐
∗            (69) 

𝜎𝑝∗ = ∑𝑘𝑐𝜎𝑐
𝑝∗
= 𝑘𝑐(𝐶𝑐

∗𝛼𝜎 − 𝛼𝜀)𝜀𝑐
𝑝                (70) 

In which the authors consider 𝑘𝑐  as the volume fraction of a generic constituent [17].  

 Thomason's analysis [18] sought to determine micromechanical parameters, shear strength at 

the interface, fiber orientation factor and stresses in the fiber at failure of the composite by 

macromechanical tests on the composite. Next, it’s highlighted the use of data obtained 

experimentally by the researcher in the Kelly-Tyson method in order to predict the ultimate tensile 

strength, among other characteristics, considering a polymer composite reinforced with discrete 

fibers aligned in the direction of loading. Conclusively, this work shows that the macromechanical 

model used agrees, to a good approximation, with predictions made using other modeling. 

 Drago and Pindera [19] carried out a micro-macromechanical research where effective elastic 

constants for two types of unidirectional composites are analyzed and compared using the finite 

element method with three sets of boundary conditions. The study is based on the concepts of 

periodic microstructural structure for heterogeneous materials (representative unit cell) and 

statistically homogeneous or macroscopically homogeneous materials at an appropriate scale (RVE - 

representative volume element). The numerical analysis of unit cells with increasing numbers of 

inclusions in square arrays quantified the convergence of the apparent engineering moduli generated 

under homogeneous boundary conditions in relation to the values obtained under periodic boundary 

conditions. 

2.2. Advances and Recent Researches 

 In recent studies involving macromechanical modeling for laminated composites, can be 

initially mentioned the Korkeai et al [20] research, which proposes a modeling for the buckling of an 

elliptical laminated composite shell subjected to axial compression and shear loading, whose solution 
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is obtained numerically using the finite strip method. The elliptical cylinder of elastic laminated 

composite has N laminae, where the position of each point of the cylindrical shell is indicated in the 

local coordinate system (x, θ, z), with 𝑥 ∈ [0, 𝐿], 𝜃 ∈ [0,2𝜋], 𝑧 ∈ [−
ℎ

2
,
ℎ

2
] and the mathematical model 

used in [20] to describe the macromechanics of this laminated structure is presented as follows:  

{
 
 

 
 

𝑁𝑥
𝑁𝜃
𝑁𝑥𝜃
𝑀𝑥
𝑀𝜃
𝑀𝑥𝜃
𝑄𝜃
𝑄𝑥 }
 
 

 
 

= ∫

{
 
 

 
 

𝜎𝑥
𝜎𝜃
𝜎𝑥𝜃
𝑧𝜎𝑥
𝑧𝜎𝜃
𝑧𝜎𝑥𝜃
𝜎𝜃𝑧
𝜎𝑧𝑥 }

 
 

 
 

𝑑𝑧
ℎ/2

−ℎ/2
=

[
 
 
 
 
 
 
 
𝐴11
𝐴12
𝐴16
𝐵11
𝐵12
𝐵16
0
0

𝐴12
𝐴22
𝐴26
𝐵12
𝐴12
𝐴12
0
0

𝐴16
𝐴26
𝐴66
𝐵16
𝐴12
𝐴12
0
0

𝐵11
𝐵12
𝐵16
𝐷11
𝐷12
𝐷16
0
0

𝐵12
𝐵22
𝐵26
𝐷12
𝐷22
𝐷26
0
0

𝐵16
𝐵26
𝐵66
𝐷16
𝐷26
𝐷66
0
0

0
0
0
0
0
0
𝐴44
𝐴45

0
0
0
0
0
0
𝐴45
𝐴55]

 
 
 
 
 
 
 

{
 
 

 
 

𝜀𝑥
𝜀𝜃
𝛾𝑥𝜃
𝑘𝑥

𝑘𝜃
𝑘𝑥𝜃
𝛾𝜃𝑧
𝛾𝑧𝑥}
 
 

 
 

       (71) 

Where, [N] is the force/length vector for membrane loading, [M] is the vector of bending and 

twisting moments per unit length, [Q] is the vector containing the shear components along of 

thickness, 𝐴𝑖𝑗 , 𝐵𝑖𝑗and 𝐷𝑖𝑗  are the membrane, flexo-membrane and flexural stiffness tensors, 

respectively, as already seen at the beginning of the previous section. From the conclusions described 

by the authors, the fact of the arrangement of laminae (0, 90, 90, 0)s presented a higher critical load 

than the unidirectional modes (0)8 and (90)8 and (0,90)2s stands out [20]. 

 Still within this context of buckling analyzes of cylindrical shells made of laminated composites, 

Li et al [21] developed a research with the purpose of predicting failure due to instability in 

multiphase shells subjected to the submarine environment. 

 According to the authors of the sudy [21], the analytical solutions obtained for the critical 

pressure, based on the equilibrium equations of bending stresses state in the elastic regime, have been 

validated by comparison with experimental data. As a differential for the research, the authors 

propose the consideration of geometric imperfections generated during the loading process. This is 

done by correcting the stiffness coefficients of the analytical model. According to the final conclusion, 

the determined analytical solutions can provide a practical and efficient way for the critical pressure 

evaluation of buckling within the considered project scenarios [21] 

 At the scale of the laminae, Aoki et al [22] proposed a mesoscale modeling based on continuum 

damage mechanics, loading and unloading tests, as well as simulation to evaluate the effects of layer 

thicknesses on the evolution of damage in laminated carbon fiber composite. Based on the concept of 

elastic strain energy of damaged materials, the authors describe the constitutive relation given by the 

matrix equation below: 

 

{
  
 

  
 
𝜀11
𝑒

𝜀22
𝑒

𝜀33
𝑒

𝛾23
𝑒

𝛾31
𝑒

𝛾12
𝑒 }
  
 

  
 

=

[
 
 
 
 
 
 
 
 
 
 

1

𝐸1
0(1−𝑑11)

−
𝜈12

𝐸1
0  

 
1 

𝐸2
0(1−𝑑22)

−
𝜈13

𝐸1
0  0

−
𝜈23

𝐸2
0  

0
 

0
 

   
0
 

0
 

               0         
 
 

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦        

1

𝐸3
0 0

  
1

𝐺23
0

  
0
 

              
 0
 
       

   
 

0      0

  

1

𝐺13   
0 0

 
1

𝐺12
0 (1−𝑑12) ]

 
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12}
 
 

 
 

              (72) 

 

Where, 𝑑11, 𝑑22, 𝑑12 are called damage variables described as: 

𝑑11 = {
0, 𝑠𝑒 𝑌11 < 𝑌11

𝑆

1, 𝑠𝑒 𝑌11 ≥ 𝑌11
𝑆               (73) 

𝑑12 = 𝑓1(𝑌12 + 𝑏2𝑌22) + 𝑓2(√𝑌12 + 𝑏2𝑌22) + 𝑓3                 (74) 

𝑑22 = {
𝑏3𝑑12;  𝑖𝑓 𝐺 < 𝐺𝐶

𝑑22
𝑖𝑛𝑖 + (1 − 𝑑22

𝑖𝑛𝑖)𝑑22
𝑐;  𝑖𝑓 𝐺 ≥ 𝐺𝐶𝑤𝑖𝑡ℎ 𝑑22

𝑖𝑛𝑖 = 𝑏3𝑑12 𝑖𝑛 𝐺 ≥ 𝐺
𝐶  𝑒 𝜌 = 0

 (75) 

In which, 𝑌11, 𝑌11
𝑆 , (𝑌12 + 𝑏2𝑌22) are the so-called thermodynamic forces in the fiber direction, 

their critical value and the equivalent, 𝑏2, 𝑏3 the parameters are coupling parameters and 𝑓1, 𝑓2, 𝑓3 

are material parameters, 𝑑22
𝑖𝑛𝑖 is the accumulated diffuse damage before crack nucleation, 𝑑22

𝑐 is 
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the damage variable for transverse cracks , 𝐺 is the rate of energy released due to the emergence of 

a new transverse crack and redistribution of diffuse damage along the lamina thickness, 𝐺𝐶  is the 

degraded fracture toughness, ρ is the crack density (can be obtained by equality between the energy 

rate released and fracture toughness degraded). The way to calculate these variables, as well as the 

model for plastic strains can also be seen in [22]. 

 Aoki et al [22] confirmed through experiments that discrete damages (transverse cracks) are 

dependent on the layer thickness, neverthless, the evolution of damage in the lamina compliance 

tensor caused mainly by diffuse damage is independent of it. The mesoscale simulation combining 

finite elements and the proposed model revealed its limitation in accurately predicting delamination 

effects occurring in experiments with thin-layer composites [22]. 

 Ud Din et al [23] use a plane stress version of Puck’s failure theory as an indicator of the 

initiation of interlaminar meso-damage in order to predict the mechanical behavior of laminated 

polymer matrix composites. As described in [23], the first sources of nonlinearities are the irreversible 

strains observed in softer polymer matrices and, subsequently, there is the damage accumulation 

(micro voids, cracks, decohesion between fibers and matrices, among others). These authors also 

mention the fact that most models based on continuum damage mechanics do not consider 

inelasticity caused by microdamage (𝜀𝑑 ), only that due to irreversible strains in the matrix (𝜀𝑝). 

Therefore, the total strain vector can be represented by [23][54]: 

𝜀 = 𝜀𝑒 + 𝜀𝑝 + 𝜀𝑑           (76) 

 Considering the previous conceptual observations, it is developed in [23] a coupled anisotropic 

damage/plasticity modeling for the material. In damage mechanics, conceptually, all 

microdamage/void is homogenized over the continuum and an updated and less resistant version of 

the material is considered. In this continuum, unless cracks and microdamage occur, the equations 

of the analyzed physical fields are smooth and also continuous [23], then, the effective stress vector, 

𝜎̃, is written over a reduced effective area (due to microdamages and voids) as a function of the 

Cauchy stress vector, σ, and the so-called damage effect tensor, M(d) according to equation (77). 

𝜎̃ = 𝑀(𝑑)σ               (77) 

𝑀(𝑑) =

[
 
 
 
 

1

1−𝑑1
0 0

0
1

1−𝑑2
0

0 0
1

1−𝑑21]
 
 
 
 

         (78) 

Where, 𝑑1 = (1 − 𝑑1
𝑇)(1 − 𝑑1

𝐶)𝑑2 = (1 − 𝑑2
𝑇)(1 − 𝑑2

𝐶) and 𝑑21 are, as already indicated in this 

work, the damage variables in the principal directions of the material and in-plane shear, constitute 

state variables that increase proportional to the applied load and due to the irreversibility of the 

damage. The upper indexes T and C distinguish tensile and compressive interactions, respectively 

[23][54]. 

 Consecutively, the authors described in [23] the version of Puck's theory for plane stress states, 

the damage progression criterion and the phenomenological plastic model. According to Puck's 

conditions, there are two criteria for fiber failure in tension and compression (fE,FFT, fE,FFC) and three 

failure modes associated with mesoscopic transverse cracks along the thickness of a lamina (IFF 

initiation), which come from both the coalescence of microcracks in the matrix and the separation 

between fibers and matrices at the interfaces. The set of equations (79)-(83) expresses these failure 

exposure factors, fE [23]: 

𝑓𝐸,𝐹𝐹,𝑇 =
1

𝑋𝑇
[𝜎11̃ − (𝜈21 −

𝐸11

𝐸11𝑓
𝜈𝑓21) 𝜎22̃] = 1; 𝜎11̃ ≥ 0   (79) 

𝑓𝐸,𝐹𝐹,𝐶 =
1

𝑋𝐶
[𝜎11̃ − (𝜈21 −

𝐸11

𝐸11𝑓
𝜈𝑓21𝑚𝜎𝑓) 𝜎22̃] = 1; 𝜎11̃ < 0(80) 

𝑓𝐸,𝐼𝐹𝐹,𝑇 = √(
𝜎21̃

𝑆21
)
2

+ (1 − 𝑝𝜈𝑝
+ 𝑌𝑇

𝑆21
)
2

(
𝜎22̃

𝑌𝑇
)
2

+ 𝑝𝜈𝑝
+ 𝜎22̃

𝑆21
= 1; 𝜎22̃ ≥ 0 (mode A)            (81) 

𝑓𝐸,𝐼𝐹𝐹,𝐶 =
1

𝑆21
(√𝜎21̃

2 + (𝑝𝜈𝑝
− 𝜎22̃

 )
2
+ (𝑝𝜈𝑝

− 𝜎22̃
 )) = 1; 𝜎22̃ < 0 (mode B)(82) 

𝑓𝐸,𝐼𝐹𝐹,𝐶 = [(
𝜎21̃

2(1+𝑝𝜈𝜈
− )𝑆21

)
2

+ (
𝜎22̃

𝑌𝐶
)
2

]
𝑌𝐶

(−𝜎22̃)
= 1; 𝜎22̃ < 0 (mode C)         (83) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 September 2024                   doi:10.20944/preprints202404.0826.v2

https://doi.org/10.20944/preprints202404.0826.v2


 14 

 

In which, 𝑝𝜈𝑝
+ , 𝑝𝜈𝑝

− , 𝑝𝜈𝜈
−  the slope points quantify the increase in strength to fracture due to 

friction in transverse compression, 𝑋𝑇 , 𝑋𝐶 , 𝑌𝑇 , 𝑌𝐶 , 𝑆21 are due to stregnth in the direction of the fibers, 

transversal to them and shear in the plane, 𝑚𝜎𝑓 it is a stress intensification factor associated with the 

distinct effects of modulus of elasticity of fiber and matrix, mode A is under transverse tension, mode 

B is under transverse compression and mode C is under transverse compression of higher magnitude 

[23]. 

 The researchers of [23] formulate the state variables based on Puck's theory to develop the 

damage evolution criteria as described below: 

𝑑1
𝑗
= 1 −

1

𝑓𝐸,𝐹𝐹,𝑗
𝑒[𝐴1

𝑗
(1−𝑓𝐸,𝐹𝐹,𝑗)];  𝐴1

𝑗
=

2𝐿𝐶(𝑋𝑗)
2

2𝐸11𝜓11
𝑗
−𝐿𝐶(𝑋𝑗)

2  ; 𝑗 = 𝑇, 𝐶             (84) 

𝑑2
𝑗
= 1 −

1

𝑓𝐸,𝐼𝐹𝐹,𝑗
𝑒[𝐴2

𝑗
(1−𝑓𝐸,𝐼𝐹𝐹,𝑗)];  𝐴1

𝑗
=

2𝐿𝐶(𝑌𝑗)
2

2𝐸22𝜓22
𝑗
−𝐿𝐶(𝑌𝑗)

2  ; 𝑗 = 𝑇, 𝐶            (85) 

𝑑21
𝑗
= 1 −

1

𝑓𝐸,𝐹𝐹,𝑗
𝑒[𝐴21

 (1−𝑓𝐸,𝐼𝐹𝐹,𝑗)];  𝐴21
 =

2𝐿𝐶(𝑆21)
2

2𝐺21𝜓21
 −𝐿𝐶(𝑆21)

2  ; 𝑗 = 𝑇, 𝐶       (86) 

Where, 𝜓11
𝑗
, 𝜓22

𝑗
, 𝜓21

  are the rates of energy released and Lc is the so-called length of the 

characteristic element and depends on the size of the mesh that is used to discretize the domain and 

numerically solve the problem [23]. 

 To the plasticity modeling is used in [23] the model given by equation (87), which couples this 

inelastic phenomenon to Puck's theory: 

𝑓(𝜎̃, 𝑝) = √
3

2
(𝜎̃22

2 + 2𝑎𝜎̃12
2 ) − 𝜎𝑦̅̅ ̅(𝑝); 𝜎𝑦̅̅ ̅(𝑝) = 𝛽(𝑝)𝛼           (87) 

 

Where 𝜎𝑦̅̅ ̅(𝑝) is the yield limit as a function of the accumulated equivalent plastic strain, a is a 

coupling parameter between transverse and in-plane shear plasticity, 𝛽 and 𝛼 are the coefficient 

and exponent of the hardening law, respectively [23]. After incremental numerical modeling, the 

researchers from [23] implement the models using computational tools and compare the theoretical 

results obtained with data previously available in the specific literature, verifying a good congruence 

between them. 

 In a recent study, Fuga and Donadon [24] suggested a novel model for predicting progressive 

damage in laminated composites considering structural behaviors under static loading and fatigue. 

The static modeling carried out is based on orthotropic constitutive relations coupled to stiffness 

tensor degradation laws, see equation (88) below: 

 

[

𝜎11
𝜎22
𝜎12
] =

1

1 − 𝜈12𝜈21
[

(1 − 𝑑11)𝐸1 √(1 − 𝑑11)(1 − 𝑑22)𝜈12𝐸2 0

√(1 − 𝑑11)(1 − 𝑑22)𝜈21𝐸1 (1 − 𝑑22)𝐸2 0

0 0 (1 − 𝜈12𝜈21)(1 − 𝑑12)𝐺12

] 

× [

𝜀11
𝜀22
𝛾12
]      (88)  

 As stated by the authors of the research [24], an elasto-plastic constitutive behavior is exhibited 

by composites subjected to shear loads, which can be modeled through a shear modulus as a function 

of shear strain (𝐺12(𝛾12)). In the approach in question, the researchers consider Mode II of fracture 

(in-plane shear) is insignificant, then, 𝑑12 = 0 and it can be assumed that the stress-strain relation of 

the material is linear for shear [24]. 

 Considering that the released rate of critical strain energy of the material is given by the area 

under the tension-separation curve for a given failure mode and the infinitesimal strain tensor, the 

relationship between the damage variables, dii, and the normal strains associated with the current 

maximum opening displacements, damage initiation and failure have been determined in [24]. 

 The hypotheses that cracks propagate only following the opening mode, that the direction of 

crack propagation can be determined independently from the behaviors in directions 1 and 2 of the 

lamina plane and that the evolution of crack length is governed by the given Paris law by equation 

(89) are adopted in modeling damage in continuum under fatigue mechanism [24]. 
𝑑𝑎

𝑑𝑁
= 𝐶 (

∆𝐺

𝐺𝑐
)
𝑚

                (89) 
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 After writing the crack lengths aii as a function of the fatigue and static damage variables 𝐷𝐹  

and 𝐷𝑆 , respectively, and the lengths of the continuum , Ljj, the authors obtain [24].   

[

𝑑𝐷11
𝐹

𝑑𝑁

𝑑𝐷22
𝐹

𝑑𝑁

] =

[
 
 
 
 1−𝐷11

𝑆

𝐿22
𝐶11 ((1 − 𝑅

2)
𝐺11
𝑚𝑎𝑥

𝐺11
𝑐 )

𝑚11

1−𝐷22
𝑆

𝐿11
𝐶22 ((1 − 𝑅

2)
𝐺22
𝑚𝑎𝑥

𝐺22
𝑐 )

𝑚22

]
 
 
 
 

                   (90) 

In which, N is the number of fatigue cycles, mii, Cii, Gcii are the parameters of the Paris law in the 

appropriate directions, R is the ratio between the maximum and minimum loads, Gii
max  is the 

released rate of strain energy in each direction . Based on the comparison of theoretical results 

obtained with experimental data from post-implementation literature, the authors believe that these 

models (static and fatigue) bring improvements to damage predictions in laminated composites 

subjected to these two structural stress mechanisms [24].  

 An overview of the so-called layerwise theories is provided by Liew et al [25]. In this research, 

a comparison is made with the theory of three-dimensional elasticity and the equivalent single-layer 

theories. Such theories have been highlighted in the modeling and numerical solution of plates and 

shells made of laminated composites in recent decades. Three-dimensional analyzes based on 

elasticity theory consider the composite structure without any special layered configuration are 

highly computationally expensive [25]. 

 The equivalent single layer (ESL) theories constituted by classical laminate theory, first-order 

and higher-order shear deformation theories reduce a three-dimensional problem to two-

dimensional form and it is precisely this basic simplification that does not make them able of 

satisfying the fields of continuous displacements required and defined by parts (zig-zag continuity), 

in addition to not representing transverse stress fields with a good approximation [25]. 

 In order to overcome the aforementioned limitations, more refined theories such as zig-zag and 

layerwise theories have been proposed. The fundamental idea behind zig-zag theories is the 

consideration of the displacement field being a superposition of a first-order, second-order or higher 

order global field with a local zig-zag function. However, transverse stress fields cannot be accurately 

obtained through the direct solution of the constitutive equations [25]. 

 According to research [25], layerwise theories can be classified in two ways: those based only 

on displacement variables and those called mixed, with displacement and transverse stress variables. 

The first group considers independent displacement fields in each layer and imposes compatibility 

conditions on the interfaces among layers. The second form of modeling works by satisfying 

displacement fields and interlayer transverse stresses using the variational principle. For comparative 

purposes, illustrations of displacement field modeling through equivalent single layer theories, zig-

zag theories and, finally, layerwise theories can be seen in the reference [25]. 

 In the search for improving computational mechanical analyzes on laminates, the study [26] 

works with a three-dimensional modeling for rectangular plates subjected to generic boundary 

conditions based on the strong sampling surfaces formulation (SaS formulation) and the extended 

differential quadrature method (EDQ). The first approach consists of choosing, within the n layers, In 

(𝛺(𝑛)1, 𝛺(𝑛)2, … , 𝛺(𝑛)I𝑛) sampling surfaces parallel to the middle surface of the laminate and located 

at the so-called Chebyshev polynomial nodes. The coordinates of the sampling surfaces of the n layers 

can be expressed as [26]: 

𝑧(𝑛)i𝑛 =
1

2
(𝑧[𝑛−1] + 𝑧[𝑛]) −

1

2
ℎ𝑛 cos (𝜋

2𝑖𝑛−1

2𝐼𝑛
)        (93) 

ℎ𝑛 = 𝑧
[𝑛] − 𝑧[𝑛−1]          (94) 

In which, 𝑧[𝑛−1] and 𝑧[𝑛] are the coordinates of the interfaces 𝛺[𝑛−1] and 𝛺[𝑛], respectively, in 

is the index that identifies any quantity in relation to the sampling surfaces of the n layers and varies 

from 1 to In. In this formulation, the total number of sampling surfaces is given by : 𝑁𝑆𝑎𝑆 = ∑ 𝐼𝑛𝑛  [26]. 

 The fields of displacement, strain, stress and the constitutive relation of the sampling surfaces 

are determined by [26]: 

𝑢𝑖
(𝑛)i𝑛 = 𝑢𝑖

(𝑛)(𝑧(𝑛)i𝑛)                   (93) 

𝜀𝑖𝑗
(𝑛)i𝑛 = 𝜀𝑖𝑗

(𝑛)(𝑧(𝑛)i𝑛)                 (94) 

𝜎𝑖𝑗
(𝑛)i𝑛 = 𝜎𝑖𝑗

(𝑛)(𝑧(𝑛)i𝑛)                 (95) 
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𝜎𝑖𝑗
(𝑛)i𝑛 = 𝐶𝑖𝑗𝑘𝑙

𝑛 𝜀𝑘𝑙
(𝑛)i𝑛                   (96) 

 The continuity of the proposal modeling done in [26] is based on the extended differential 

quadrature method, which is used by employing the Chebyshev-Gauss-Lobatto mesh in a 

rectangular domain [26] to solve numerically, through interpolations based on Lagrange polynomial 

functions, the boundary value problem originated from equations (93)-(96). Therefore, the authors of 

the research [26] were able to conclude that such techniques used in numerical modeling facilitate 

their computational implementation, given that they use only first-order derivatives in the balance 

equations. 

 Concerning the multiscale analyses, some recent studies propose micro-macromechanical 

modeling to describe structural behaviors related to laminated composites. In [27], researchers 

develop creep modeling in polymer matrix composites using a nonlinear viscoelastic constitutive 

model (Sawant model) based on the Shapery integral (equation 97), in order to examine the effects of 

stress and temperature on the time-dependent behavior that these materials present. 

𝜀𝑖𝑗(𝑡) = ∫ 𝑆𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝑑𝜎𝑘𝑙(𝜏)

𝑑𝜏

𝑡

0
𝑑𝜏                (97) 

In which, in a more general case, the compliance tensor is a function of time, stress and 

temperature, then [27]: 
𝑆𝑖𝑗𝑘𝑙(𝑡, 𝜎, 𝑇) = 𝑆𝑖𝑗𝑘𝑙(0, 𝜎, 𝑇) + 𝛥𝑆𝑖𝑗𝑘𝑙(𝑡, 𝜎, 𝑇)            (98) 
Substituting (98) into (97), can be written: 

𝜀𝑖𝑗(𝑡, 𝜎, 𝑇) = ∫ [𝑆𝑖𝑗𝑘𝑙(0, 𝜎, 𝑇) + 𝛥𝑆𝑖𝑗𝑘𝑙(𝑡, 𝜎, 𝑇) ]
𝑑𝜎𝑘𝑙(𝜏)

𝑑𝜏

𝑡

0
𝑑𝜏 = 𝑆𝑖𝑗𝑘𝑙(0, 𝜎, 𝑇)𝜎𝑘𝑙(0) +

∫ 𝛥𝑆𝑖𝑗𝑘𝑙(𝑡, 𝜎, 𝑇)
𝑑𝜎𝑘𝑙(𝜏)

𝑑𝜏

𝑡

0
       (99) 

 After adding nonlinear parameters to equation (99), the authors of the research [27] present the 

algorithms used to study creep in isotropic and orthotropic materials, in which the components of 

the compliance tensors are determined incrementally and iteratively through the model of the 

Prony’s series [27]. 

 Based on this, a micromechanical approach assuming the concept of a representative volume 

element (RVE), with a viscoelastic matrix and elastic unidirectional fibers with angles of 0° and 90° 

in relation to the loading, was shown to be able of determining the creep behavior of the composite 

with good approximation in relation to experimental data used. However, as this micro-analytical 

method is not suitable for various fiber orientations, a macromechanical experimental approach 

(considering 0°, 45° and 90° fiber orientations at different stress levels and temperatures) and a 

numerical approach assuming multidirectional laminates were conducted. Therefore, it was 

concluded that for low stress levels (linear viscoelastic behavior) the results of the experiment and 

numerical macromechanical modeling in glass fiber/vinylester laminates have good congruence, 

being slightly distinct as the stress levels rise and the non-linear parameters become more significant 

[27].  

 A theoretical interesting study is the multiscale analysis of research [28], which sought to 

improve low-velocity composite impact performance using shape memory alloy inclusions. The 

effective properties for the laminate are determined analytically by the VSPKc micromechanical 

model. The stresses that indicate the relevant strength to the evaluation of the damage caused by the 

impact can be calculated analytically using [28]: 

𝜎11
𝑡 = [𝑉𝑓 + (

𝐸𝑚

𝐸1
𝑓) (1 − 𝑉𝑓)] 0.92𝜎𝑡

𝑓 (100) 

𝜎11
𝑐 = [𝑉𝑓 + (

𝐸𝑚

𝐸1
𝑓) (1 − 𝑉𝑓)] 0.8𝜎𝑐

𝑓          (101) 

𝜎22
𝑡 =

1

(1+𝜈𝑚)(1−2𝛽)𝑔𝑡(𝑉𝑓)
√(

6𝐸𝑚

(1−2𝜈𝑚)
) 𝑢𝜈

𝑐                  (102) 

𝜎22
𝑐 =

𝜎𝑖

𝑔𝑖𝑐(𝑉𝑓)
(

2

(1−𝛽)
)(103) 

𝜎12
𝑆 =

𝜎𝑆
𝑚

2
[
(𝐺12
𝑓
+𝐺𝑚)+(𝐺12

𝑓
−𝐺𝑚)𝑉𝑓

𝐺12
𝑓 ]  (104) 

𝜎23
𝑆 = 𝜎𝑆

𝑚    (105) 
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Where, 𝑢𝜈
𝑐  is the critical expansion energy density of the matrix, 𝜎𝑖 is the interface strength, 

𝛽 = (𝐺𝑚 − 𝐺23
𝑓
)𝑔𝑡(𝑉𝑓) and 𝑔𝑖𝑐(𝑉𝑓), are polynomial functions of the volume fraction of fibers defined 

in [28]. 

 Hence, the authors of this research carry out three different macromechanical numerical 

analyzes are developed in ANSYS, two of them with inclusions of shape memory alloys (included in 

parallel and in series with the upper layers of the composite), finally, the authors' conclusion about a 

63% reduction in average damage obtained with the addition 𝑉𝑆𝑀𝐴 = 10%  of shape memory alloy 

in series in the 𝑉𝑓 = 70%  glass fiber reinforced polymer composite [28].  

 A micro-macromechanical modeling for creep was proposed in [29], in which a stress analysis 

model was developed on a global scale, a study of long-term creep for the pure resin and a stress 

analysis at a micromechanical scale in order to extend the behavior to the resin creep to the laminate, 

updating the constitutive relations in each layer of the laminate. 

 The macroscopic stress analysis was carried out using finite elements in ABAQUS based on 

values of effective elastic constants determined from micromechanical models such as the rule of 

mixture, the semi-empirical Halpin-Tsai and Chamis models. Regarding the analysis of stresses at 

the micromechanical level, the authors of [29] worked with two approaches: one to evaluate the 

degradation of the elastic creep constants and the other accounting for the elastic and creep strains 

separately, in both modeling the rule of the mixture was used. In conclusive words, the research [29] 

found a satisfactory correspondence among the results of the suggested theoretical modeling and 

those was experimentally verified during long-term creep tests with polymer laminated composite 

pipes. 

 Li et al [30] developed a multiscale analysis based on Reddy's layerwise theory to discretize the 

macroscopic model of a laminated composite plate. At the mesoscopic scale, three-dimensional finite 

elements were used in the numerical analysis in order to stabilize it and, finally, micromechanical 

modeling was carried out based on the concept of unit cells (RUC) made up of fibers and matrix. The 

authors were able to conclude, at the end of the research, that the proposed modeling (after being 

used even in analyzes with fabric-reinforced laminates) is promising in comparison with direct 

simulation and other methods of homogenization of the structural composite domain [30]. 

 Alazwari and Rao [31] published an interesting recent study on micro- macromechanical 

modeling of laminated composites in the presence of uncertainty. According to these authors, 

fundamental parameters of this group of materials, such as the properties of the constituent phases, 

layer thicknesses, fiber orientation in each layer, as well as the loads requested by these structures 

have a certain level of variability and, consequently, the mechanical behavior of the material also 

have this characteristic. The uncertainty methods used in [31] were: the probabilistic approach, 

interval analysis and the universal grey system theory. 

 Briefly, the probabilistic approach considers each basic variable in the composite to be random, 

whose mean and standard deviation values are known., then, the response of each quantity is 

calculated within the lower and upper limits (μ - 3σ, μ + 3σ), respectively [31]. Lower and upper 

limits are also used in interval analysis, neverthless, in order to prevent computational calculations 

with these intervals from violating physical laws, a truncation parameter necessary for the maximum 

allowable variation is specified, which is determined from understanding the nature of the issue [31]. 

 Additionally, a text space is opened here for an explanation arising from the complementary 

study [32], in which a grey system is defined as one whose information is only partially known, in 

other words, the variable values of the system are not completely unknown (black box systems) and 

not fully known (white systems), i. e., there are uncertainties associated with all information. 

Therefore, this theory defines the so-called grey numbers, which are uncertain values within a 

continuous set, and can be expressed as follows [32]: 

𝑥 = [𝑥, 𝑥]; {𝑡𝑥≤𝑡≤𝑥}                   (106) 

Where, t represents information limited to the appropriate continuous range. 

 When developing analyzes simulating composites with different layer orientations in study 

[31], Alazwari and Rao have concluded that mathematical operations considering the concept of grey 

numbers were able to predict the uncertainties of the analyzed systems within realistic ranges for the 
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stress responses in the laminae with good accuracy and lower computational cost than the 

probabilistic approach (widely used in this context of composites) and that interval analysis, the latter 

being less economical, with large ranges of values and lower reliability to model uncertainty in the 

macromechanics of laminated composites. 

 Still considering the variables of laminated composites as random, Gholami et al [33] worked 

on a micro-macromechanical analysis aimed at the stochastic prediction of fatigue life for these 

multiphase materials. Initially, a deterministic modeling is carried out, coupling the continuum 

damage mechanics to the Bridging micromechanical model. 

 The elasto-plastic aproximmation of [33] uses three variables associated with damage to fibers, 

matrix and fiber/matrix. After calibrating the parameters of the proposed model using experimental 

data, it was implemented in ABAQUS through a subroutine, with numerical results confirming that 

modeling plastic strains makes fatigue life prediction more accurate, especially with regard to fatigue 

low cycle. As for the stochastic model, the random variables considered were: the volume fraction of 

fibers, critical damage parameters and the mechanical properties of materials, both of which are 

assumed to have a normal distribution. The probabilistic approach with mean and standard deviation 

was used to describe the mechanical behavior of the material and through Monte Carlo simulation, 

the authors obtained the results of this stochastic process. Finally, a statistical analysis showed that 

the mean fatigue life obtained theoretically is close to the experimental one [33].  

3. Final Remarks 

 Currently, in view of all the reading and analyses carried out on the specific literature, it can be 

concluded that global analyses, layerwise, as well as multiscale modeling are in leading edge of 

composite knowledge development. At the laminated structures scale, recent studies involving 

buckilng stand out. Regarding mesomechanics and analyzes related to more than one scale, 

continuum damage mechanics has been valued to quantify the progressive deterioration of the 

stiffness of laminae and composites, as well as the modeling of complex phenomena in the area, such 

as creep and fatigue. 

 In terms of trends and perspectives in macromechanics, it is expected that more studies 

involving buckling analyzes, three-dimensional modeling and related to failure criteria more 

sensitive to, for example, delamination may be suggested in the coming years. Related to meso and 

multiscale approaches, the phenomena of fatigue and creep, in addition to the development of more 

sophisticated micro-macromechanical models considering the variability of mechanical properties 

and other parameters influencing the physical response of polymer laminated composites (stochastic 

analyses) can be prioritized by researchers in academic works in the short future. 
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