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Abstract: This article investigates the potential for carbon reduction in urban parks in Shangqiu City using
high-resolution remote sensing imagery. The aim is to guide modern urban carbon neutrality strategies. The
carbon reduction potential is estimated based on the mitigation of the urban heat island effect by park greenery,
which reduces energy consumption. The parks are regarded as cool island centers, and 100 cooling gradients
are gradually formed outward until the temperature reaches that of impermeable urban surfaces. The energy
saved by the parks in mitigating the heat island effect is statistically calculated as the carbon reduction potential
of urban park greenery. Additionally, this article classifies the sample parks into different categories and selects
26 landscape metrics to analyze their relationship with carbon-saving potential and driving factors.
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1. Introduction

Changes in urban land cover have caused dramatic alterations in local urban microclimates,
leading to a series of ecological issues. As urbanization continues to accelerate, extreme weather
events and the urban heat island (UHI) effect have become hot topics among academics. The UHI
effect refers to the phenomenon in which urban areas have significantly higher temperatures than
adjacent rural areas. Although the theory was proposed early on, it remains a topic of great interest
in the academic community, with many unresolved issues even after extensive research into its causes
and mitigation strategies [1]. Some studies suggest that the UHI effect leads to the formation of local
air circulation within cities, carrying air pollutants to higher altitudes and posing serious threats to
human health [2]. In addition, a strong UHI effect can greatly impact the comfort of urban living
conditions [3]. Especially in summer, the UHI effect is particularly pronounced, increasing the use of
air conditioning and leading to higher energy consumption and carbon emissions. Therefore,
reducing the UHI effect is a crucial component in achieving urban carbon neutrality.

Urban park green spaces have a significant impact on mitigating the urban heat island effect
[4,5]. Many scholars have recognized the positive role of urban parks in offsetting this effect and
creating "cool islands" within cities [6]. There are several reasons for this. First, vegetation can provide
shade, reducing direct solar radiation on the ground and decreasing the absorption of heat radiation
by the ground. Second, through the transpiration of plants and their low albedo, some of the solar
radiation can be absorbed. Finally, blue-green infrastructure, including urban green spaces, can
effectively reduce the surface temperature of adjacent areas by directing airflow within the city.
Therefore, enhancing the "cool island" effect within urban areas is considered an effective way to
mitigate the heat effect [7].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In the past, most studies on urban green spaces have focused on their direct carbon sequestration
capacity, which increases as vegetation biomass increases [8]. For example, in Xi'an, urban green
spaces have an annual fixed carbon amount of 0.19 t C ha [9], while in Beijing, Changchun, and
Harbin the average carbon densities are 7.8 t C ha [10], 8.7 t C ha' [11], and 7.7 t C ha' [12],
respectively. However, other studies have pointed out that the role of vegetation in reducing energy
consumption in urban areas and bringing about carbon emission reductions cannot be ignored
[13,14]. An empirical study showed that park green space has great potential to reduce carbon
emissions and could save 23.7+1.6 t CO2 in the Yangtze River Economic Belt region [13]. Therefore,
it is critical to understand the potential carbon emission reduction capacity through reducing thermal
environmental pressure. However, the potential carbon emission reduction capacity of urban green
spaces has received limited attention, especially in central China.

This study examines the potential for reducing carbon emissions in urban parks in Shanggqiu, a
city in Central China. Our objective is to provide guidance for urban development and construction,
from the perspective of urban ecology and environmental economics. Specifically, we aim to answer
the following research questions: 1) What is the magnitude and spatial distribution of carbon saving
potential in Shanggqiu's urban parks? 2) What are the landscape factors driving spatial heterogeneity
in the carbon saving potential across different urban parks in Shangqiu?

2. Materials and Methods

2.1. Study Area

Shanggiu is located in the eastern Henan province of China between longitudes 114°49'~116°39'
E and latitudes 33°43'~34°52' N (Figure 1). It has a total area of 10,704 square kilometers and a
population of 7.723 million. It is a national civilized city, national health city, national garden city,
and national forest city, with tourist attractions like the ancient city of Shangqiu. The city's plains
account for 99.2% of its total area, with only 0.8% being hilly areas. Shanggqiu has a warm temperate
semi-humid continental monsoon climate with distinct four seasons, ample sunshine, and abundant
rainfall. The city has an annual average of 1944 hours of sunshine, an average annual temperature of
14.6°C, an average annual rainfall of 736.2 millimeters, and a frost-free period of about 211 days. Since
its establishment in 1997, Shangqiu has undergone rapid urbanization, with significant expansion of
construction and transportation land use. From 2000 to 2015, the city's construction land use
expanded rapidly, increasing by as much as 696.57 square kilometers, which accounted for 37.57% of
the total construction land use in 2000. This rapid urbanization has led to significant changes in the
city's landscape pattern, making it an ideal area to study the potential for carbon reduction in urban
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Figure 1. Location and land cover classification of Shangqiu City, Henan, China.
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2.2. Remote-Sensed Urban Park

The Split Window algorithm is a commonly used method in the field of land surface temperature
(LST) remote sensing retrieval. It uses the ratio of reflectance in two spectral bands to remove
atmospheric effects and obtain the land surface radiation temperature, which is then converted to
LST using thermal radiation principles [15,16]. This algorithm applies to remote sensing image data
of different resolutions and spectral bands and has the advantages of high accuracy and strong
operability [17]. In this study, the original data was obtained from Landsat 8 image data set with a
spatial resolution of 30 meters. All remote sensing images of cloudless and sunny days were selected
from the summers of 2020-2021 (Table 1).

Table 1. Information on remotely sensed data for Shanggqiu.

Satellite Path/Row Peirod(Year-Month-Day)
Landsat 122/36 2020-08-28
Landsat 122/36 2020-09-04
Landsat 122/36 2021-06-28
Landsat 122/36 2021-07-30
Landsat 122/36 2021-09-16

GEF-2 —— 2021-08-10

The radiative transfer equation is expressed as follows:
Ly=[e-B(Ts) + (1 —¢)- L] -t+L; (1)

The radiative transfer equation used in the Split-Window algorithm for calculating land surface
temperature (LST). LA represents the thermal radiation intensity of wavelength A received by the
satellite sensor, ¢ is the land surface emissivity, B(Ts) is the radiation brightness received by a
blackbody with temperature Ts, and its unit is W-m2-sr’-um. 1 is the atmospheric transmissivity,
and L1 and L] are the upwelling and downwelling atmospheric radiances obtained from NASA [18].
This equation, based on the principles of thermal radiation, considers the effects of the atmosphere
on radiation and can be used to retrieve land surface temperature from satellite data. It is a crucial
component of the Split-Window algorithm.

Later, we used the GF-2 image (Table 1) and the method of Object-based Image classification to
interpret the land use in the study area. To improve the accuracy of interpretation, we optimized the
samples based on auxiliary data and combined manual corrections by researchers to modify the parts
with significant deviation, maximizing the accuracy of land use data. We divided the land use into
five categories: forest (including trees and shrubs), grass, bare land (including sandy and soil
surfaces), water bodies (including ponds, streams, etc.), and impervious surfaces (including
buildings, squares, and other facilities).

Based on high-resolution remote sensing images, the 118 parks in Shangqiu City can be classified
according to different features and classification standards. Firstly, according to the nature of the
park and the urban land classification standard (CJJ/T85-2017), parks can be classified into
community parks, small parks, specific parks, and comprehensive parks. Secondly, according to the
size of the park's area, it can be divided into miniature parks (less than 2 hectares), small parks (2-5
hectares), medium parks (5-10 hectares), medium-large parks (10-50 hectares) and large parks (more
than 50 hectares). Thirdly, the presence of water bodies within the park is also a classification criterion
that can divide parks into those with and without water bodies. Through these classification criteria,
we can have a more comprehensive understanding of the distribution and characteristics of parks in
Shanggqiu City.

2.3. Landscape Metrics

Landscape indices are statistical measures used to describe and quantify landscape patterns.
They are commonly used to analyze the impact of different land use types and landscape
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characteristics on ecosystems, including biodiversity, ecosystem services, and landscape
functionality. In this study, a set of landscape indices was selected based on the classification criteria
of Fragstats 4.2 software, including:

Patch Density (PD), Number of Patches (NP), Patch Area Fraction (PAFRAC), Mean Patch Area
(PARA_MN), Mean Fragment Shape Index (FRAC_MN), Mean Patch Shape Index (SHAPE_MN),
Mean Patch Area (AREA_MN), Largest Patch Index (LSI), Aggregation Index (Al), Cohesion Index
(COHESION), Interspersion and Juxtaposition Index (IJI), Simpson's Evenness Index (SHEI),
Simpson's Diversity Index (SHDI), Simpson's Dominance Index (SIDI), Percentage of Forest, Grass,
Impervious surfaces and water(PLAND_Forest, PLAND_Grass, PLAND_Imper, and
PLAND_Water).

These indices were selected to investigate the effect of landscape patterns on land surface
temperature. They represent the fragmentation, connectivity, and diversity of the landscape within
the study area.

2.4. Quantification of UPSs” Carbon Saving Potential

This section aims to estimate the carbon emission reduction potential of urban green spaces by
calculating the carbon emission reduction resulting from the alleviation of the urban heat island effect
in city parks. Following the previous study [13,14], we calculate the carbon saving intensity (CSI) and
the carbon emission reduction efficiency (CSE):

N
H
1
CSI=k-p-a- fo Z§(Si +Siu1 +/SiSie1)) ATdh 2
i=0

CSE=CSI+S§S (3)

Among them, k represents the specific heat at constant pressure, with a value of 1004.68 J kg1
°C- 1, o represents the air density (1.2923 kg- m~ %), a is the conversion coefficient of energy
consumption into carbon emissions from coal-fired power generation (841 g/3.6 M]). h represents
the vertical influence range (H=70m). AT is the temperature difference between adjacent buffer zones,
Siand Si+1 are the base areas and S is the park area.

2.5. Correlation between UPSs” Carbon Saving Potential and Landscape Metrics

This article proposes a method for studying the correlation between the carbon-saving intensity
of urban parks and their influencing factors. The method uses various statistical analysis methods,
including the Shapiro-Wilk test, analysis of variance (ANOVA), independent sample t-test, Pearson
correlation analysis, and stepwise multiple linear regression. First, the Shapiro-Wilk test is used to
ensure that the sampled data set conforms to a normal distribution. Then, ANOVA and independent
sample t-tests are used to analyze whether there are significant differences in the carbon-saving
intensity of urban parks under different park classifications. In this process, the average carbon-
saving intensity of different parks is taken as the dependent variable, and park classification
calibration is taken as the factor. Pearson correlation analysis is used to determine whether there is a
statistically significant correlation between various landscape indices and carbon saving intensity, as
well as if the correlation is obvious. Stepwise multiple linear regression is used to establish the
relationship between carbon saving intensity and landscape patterns, the best-fitting model is
selected, and the significance of the coefficients is determined based on regression statistics (R2, p-
value). This study analyzes landscape indices that can explain the intensity of carbon saving and
proposes strategies for addressing urban heat island effects based on these indices. To eliminate the
influence of collinearity between independent factors, the variance inflation factor (VIF) is used to
assess the model, and independent variables with collinearity are removed to obtain the final
regression model. In conclusion, this method provides a comprehensive way to analyze factors that
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influence carbon-saving intensity in urban parks and can be used to propose strategies for achieving
carbon neutralization.

3. Results

3.1. Spatial Heterogeneity of Carbon Saving Potential in Different Urban Parks

For CSI, Shangqiu City Park Green Space (538 ha) can reduce a total of 300.57 t CO2 emissions.
Specifically, in the parks of Shangqiu, the CSI distribution range is 0.04~18.93 t, and on average, each
park can save 2.55 + 0.31 t CO:z emissions for the city because of its contribution to the mitigation of
surface heat effects, of which the canal ribbon park has the highest CSI, reaching 18.93 t CO2. Among
the parks divided according to different classification criteria, special parks (3.42 t), parks larger than
10 ha (6.94 t), and parks with water bodies (4.71 t) had the largest CSI average in their respective
classifications. From the efficiency perspective, the CSE distribution in Shangqiu City was 16.34~0.04
t CO2 ha', and the average CSE was 1.79 + 0.29 t CO2 ha'. Among them, the average CSE of
amusement parks (2.03 t CO2 ha), parks less than 2ha (2.83 t CO2 ha'), and anhydrous parks (2.04 t
CO:z ha') had larger CSE, while smaller parks showed larger CSE and the CSE of Chinese Fatong
Square (0.10 ha) was the highest (16.34 t CO:z ha). Fig.2 shows the results of the analysis of the
difference between CSI and CSE in different classifications of parks, and there are certain differences
in the performance of CSI in different types of parks, but the CSE of each park does not show
significant differences, and this difference is not reflected in all park classifications. According to the
classification of different areas, the CSI of parks less than 2 ha is significantly lower than that of parks
with an area of 5-10 ha and parks larger than 10 ha, the CSI of parks with an area of 2-5 ha is
significantly lower than that of parks with an area greater than 5ha, and the CSI of parks with an area
greater than 10 ha is significantly larger. Among the parks classified according to whether the park
contains water bodies, the CSI of water-bearing parks is significantly higher than that of non-water-
bearing parks.
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Figure 2. Park category differences between CSI and CSE. a, b, ¢, d, represent significant differences
determined by Fisher’s least significant difference (LSD) tests (p < 0.05) on different seasons for
different park types.

3.2. Spatial Changes in Landscape Metrics

In the study area, the park area was distributed in 0.03~357.00 ha, and the proportion of various
landscapes in the park was different, from large to small, they were woodland (59.42%), grassland
(23.09%), impervious surface (22.20%) and water body (12.34%). We selected 15 landscape pattern
indexes to explore the differences in surface landscape patterns of various parks, and on the whole,
Shanggqiu City Park has a high degree of fragmentation, a high degree of aggregation, and landscape
diversity, but the shape of various landscape patches is more complex. In different types of parks,
there are certain differences in landscape indicators (Figure 3). The analysis of the differences in the
landscape pattern indices of different parks shows that the landscape indices do not show significant
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differences when the parks are divided according to the park category, and among the parks with
different areas, the Al, SHDI, and COHESION of parks with an area of less than 2ha are significantly
larger than those with an area greater than 2ha, and COHESION is the opposite. Parks with an area
greater than 5 ha SHAPE_MN are significantly larger than parks with an area of less than 2ha, LSI
and NP are significantly larger than parks with an area of less than 5ha in parks with an area of 5-
10ha, and LSI, NP, and PLAND_Imper are significantly smaller in parks with an area of less than 2ha.
LSI, NP, SPLIT, AREA_MN increased significantly with the increase of park area when the park area
was less than 10ha, and on the contrary, PD decreased significantly with the increase of area when
the area was greater than 2ha. In waterless parks and water-bearing parks, the values of Al, LPI,
COHESION, PD, and PLAND_Forest in waterless parks were significantly greater than those in
waterless parks, while SHDI, SPLIT, AREA_MN, LSI, and NP were the opposite, and the values in
waterless parks were significantly larger.
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Figure 3. Park category differences of landscape patterns. a, b, ¢, d, represent significant differences
determined by Fisher’s least significant difference (LSD) tests (p < 0.05) on different seasons for
different park types.

3.3. The Relationship between the Carbon Saving Potential and Landscape Driving Factors in Different
Urban Parks

There were similarities and differences in the correlation results between various park landscape
indexes and CSI (Figure 4). On the whole, CSI was significantly positively correlated with SPLIT, I]I,
AREA_MN, LSI, NP, and PLAND_Water, and significantly negatively correlated with LPI and
PLAND_Imper. Among the different types of parks, the CSI of AREA_MN and general parks (-0.952)
and community parks (-0.869) showed a strong and significant positive correlation, while
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PLAND_imper was the opposite. The CSI of the garden was positively correlated with NP, IJI, and
SPLIT, but negatively correlated with LPI. The CSI of special parks showed a significantly strong
positive correlation with AREA_MN (0.952), NP (0.92), and PLAND_water (0.905), while it showed
a significantly strong negative correlation with FRAC_MN (-0.989), and the CSI of comprehensive
parks showed a correlation with the most landscape index, among which there was a strong positive
correlation with AREA_MN (0.952) and CONTAG (0.856) and a strong positive correlation with
PLAND_Imper (- 0.957), PLAND_Grass (-0.818) showed a strong negative correlation. Among parks
of different sizes, the number of landscape indices associated with CSI was slightly smaller than in
the other two categories, but the correlation between them was strongest. The CSI of 2-5ha parks was
significantly positively correlated with SHEI (0.995), SHDI (0.995), and PLAND_Grass (0.998), the CSI
and AREA_MN of parks with an area greater than 2ha showed a significant positive correlation, and
the CSI of parks with an area greater than 10ha showed a different correlation from other parks, and
the CSI was significantly positively correlated with NP (0.717) and PLAND_Water (0.813). It was
significantly negatively correlated with PLAND_imper (-0.591). In the classification according to
whether the park has a water body, there are more landscape pattern indices related to CSI, and the
correlation between anhydrous parks and waterless parks and landscape pattern indexes is similar,
and there are significant positive correlations with SPLIT, AREA_MN, LSI, and NP, among which
the positive correlation between CSI and NP in waterless parks is the strongest (0.733), while the
negative correlation between anhydrous parks and LPI is the strongest (-0.385). The difference is that
the significant correlation between IJI (0.37), PLAND_Water (0.644), and PLAND_Imper (-0.348) and
waterless parks is not reflected in waterless parks.
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Figure 4. Heatmaps of correlation coefficients between landscape patterns and CSI in different types
of parks.

Figure 5 shows the correlation between CSE and landscape pattern index of various parks in
Shanggqiu City, and the results show that the correlation between CSE and landscape pattern index is
similar to the CSI trend overall, both in parks classified by category, the most relevant landscape
pattern index, followed by parks classified according to water bodies, and the correlation between
CSE and landscape pattern in parks classified by area is weak. The difference is that the landscape
pattern index related to CSE of various parks is completely different from CSI, and AI, COHESION,
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and park CSE are significantly negatively correlated, while PARA_MN and PD are significantly
positively correlated with park CSE. Among different types of parks, the landscape pattern indexes
related to CSE of community parks were SHEI (0.809), SHDI (0.809), PARA_MN (0.831), and
PLAND_Grass (0.945), respectively, and all showed positive correlations. In contrast, CSE in
integrated parks was only negatively correlated with PLAND_Grass significantly (-0.836). CSE WAS
SIGNIFICANTLY NEGATIVELY CORRELATED WITH AI AND COHESION IN AMUSEMENT
PARKS AND SPECIAL PARKS, AND POSITIVELY CORRELATED WITH PARA_MN AND PD, and
this correlation was stronger in special parks. In addition, SHAPE_MN (-0.458), AREA_MN (-0.466),
and amusement park CSE were significantly negatively correlated, while special park CSE and LSI
were negatively correlated and positively correlated with PLAND_Imper (0.986). Among the parks
with different areas, park CSEs less than 2 ha were positively correlated with NP (0.85), and park
CSEs with 5-10 ha also showed a positive correlation with AREA_MN (0.734). Among watered parks
and waterless parks, the correlation between landscape pattern index and CSE was more consistent,
significantly negatively correlated with Al and COHESION, and this correlation was stronger in
water-bearing parks, and the significant positive correlation with PD was stronger in waterless parks,
and the difference was reflected in the significant positive correlation between CSE and PARA_MN
(0.406) in waterless parks, while CSE in waterless parks was positively correlated with PLAND_Grass

(0.292).
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Figure 5. Heatmaps of correlation coefficients between landscape patterns and CSE in different types
of parks.

3.4. Identify the Landscape-Driving Factors

For all the landscape pattern variables examined in our study, the direction and magnitude of
their impact on park CSI and CSE were generally different (Figures 6 and 7). Moreover, the specific
influencing factors are different from the direction and degree of their influence on CSI and CSE to
different park categories, and the overall changes of CSI and CSE in different parks have a high
degree of explanation. The fragmentation index has a more common effect on the changes of CSI and
CSE in various parks, while the degree of explanatory degree of diversity index on CSI and CSE
changes is significantly higher than that of other factors. The overall interpretation rate of CSI of
various landscape pattern indexes can reach 83%, of which NP contributed the largest 52% of the
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interpretation rate, followed by AREA_MN (17.39%), PD (9.41), and FRAC_MN (4.2%). Among the
different types of parks, the regression model of CSI for comprehensive parks was the best, with a
goodness-of-fit of 99%, and the fitting degree of the model for special parks was also high, 98.03%.
Among them PLAND_Imper contributed the highest explanation rate (88.7%) for the CSI of the
comprehensive park, PARA_MN contributed 10.3% of the explanation rate, the largest contributor in
the regression model of the special park was FRAC_MN (94.7%), and SPLIT also explained a small
part of the CSI change. The CSI model fit was slightly weak, but the influencing factors were relatively
balanced, and SPLIT contributed 51.8% of the explanation rate and PLAND_Forest contributed
11.8%. In parks with different areas, except for parks with an area of less than 2ha, the park model
with a smaller area has a higher fit and clearer influencing factors. The park regression model of 2-
S5ha had the highest goodness-of-fit (98.6%), and the vast majority of explanatory degrees were
contributed by PLAND_Grass (97.8%), while SHDI explained the model only 0.8%. For 5-10ha parks,
two variables, AREA_MN and LSI, were introduced into the regression model, with explanatory rates
of 75.5% and 22.2%, respectively. Among the parks with an area greater than 10 ha, the interpretation
of CSI was PLAND_Water (63.7%), AREA_MN (13.82%), and NP (5.36%), respectively. Compared
with the above classification, the CSI driving factors of the anhydrous park and watery park are
scattered, and the four influencing factors are introduced into the waterless park regression model,
which is FRAC_MN (4.16%), AREA_MN (17.39%), PD (9.41%), and NP (52%), and the overall model
goodness-of-fit reached 83%. The goodness-of-fit of the CSI regression model for anhydrous parks
was 50.5%, of which SPLIT contributed 40.4% of the explanatory degrees.
Al
SHEI ~
SHDI 0.8
SPLIT - 518 3.33 404
COHESION -+
1JI
CONTAG -
PARA_MN -~ 10.3
FRAC_MN - 4.2 4.16
SHAPE_MN
AREA_MN 17.39 7 13.82(17.39 10.06
LSI H 222
LPI H
PD - 9.41 9.41
NP - 52 5.36 | 52
PLAND_Grass - 97.8
PLAND water - 63.7
PLAND_imper 88.7
PLAND_Forest - 11.8
Total

100.00

80,00

60.00

Figure 6. Stepwise regression diagram of landscape pattern and CSI in different parks.
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Figure 7. Stepwise regression diagram of landscape pattern and CSE in different parks.

The results of CSE stepwise regression in various parks (Figure 7) showed that compared with
the CSI regression model, the CSE model introduced fewer variables and the overall explanatory rate
was not high. All parks were included in the model, and the model introduced COHESION as the
only explanatory variable, with an explanatory rate of 44.2%. Among the different types of parks,
community parks also introduced PLAND_Grass as the only explanatory variable, but the
explanatory degree reached 85.7%, and PD in amusement parks and special parks were the most
explanatory landscape pattern indicators, with 93.1% and 96.8% explanatory degrees, respectively.
The goodness-of-fit of the amusement park CSE regression model was 97.7%, and in addition to PD
AREA_MN and PLAND_imper also contributed 3.99% and 0.78% of the explanatory degrees,
respectively, IJI was also introduced into the special park CSE model to provide an explanatory rate
of 0.2%. Classified by area, none of the factors were introduced into the regression model due to
confounding factors. COHESION and PD were introduced as the only explanatory variables in the
regression model of the anhydrous park and watery park, and the goodness-of-fit was 44.2% and
43.1%, respectively.

4. Discussion

4.1. The Carbon-Saving Potential of Urban Parks

The results showed that the average CSE of Shanggqiu City Park was 1.79 + 0.29 t CO:z ha!, which
was higher than the previous CSE study of the Yangtze River Economic Belt City Park in China (1.08
+0.03 t CO:z ha''). First, studying the size difference of the region may be one of the reasons for the
difference in CSE. The study area is a city-level city in Henan Province, with a total of 118 parks. The
previous study area included 1,510 parks in 26 cities, spanning 11 provinces in China. A higher
number of parks studied directly means greater differences in size between parks, many types of
parks, and more complex basic information about parks. So it's understandable that the average CSE
for 1510 parks is lower than the average CSE for 118 parks. On the other hand, the size of the study
area will cause differences in the results of urban LST results, and may also indirectly affect the
calculation results of CSI and CSE. For example, a study of Bangkok, Jakarta, and Manila showed
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that LST studies presented different results at different spatial resolutions, and proposed that 210
mx210 m is an optimal characteristic area or land climate footprint that can be used for examining
any meteorological. climatic, or environmental issues in urban areas or for landscape and urban
planning [19]. The results for the 960 m scale and the 240 m scale are completely different [20]. It is
worth noting that the previous research results also show that the average CSE of small urban parks
is generally high, which is partly consistent with the results of this study.

Second, the climate type of the study area is also responsible for the difference in CSE. Previous
results on the Yangtze River Economic Belt showed that the average CSE of parks with humid
subtropical climates was higher than that of parks located in humid subtropical monsoon climates.
The climate of Shanggiu City is a temperate monsoon climate, and the difference in climatic
characteristics is more obvious. Different climatic characteristics lead to different LST research results
and indirectly lead to different CSEs [21,22].

Third, studying differences in regional economic development, population density, and
urbanization levels will also lead to differences in the average CSE of parks. Several studies have
pointed out that economic development, population growth, and urbanization are important causes
of rising surface temperature [23]. Higher levels of urbanization mean more natural features such as
vegetation and water bodies that have been replaced by impervious materials and buildings [24].
Economic activity and population agglomeration consume large amounts of fossil fuel resources and
exacerbate the urban thermal environment [25]. Compared to Shangqiu City, the Yangtze River
Economic Belt, the former study area, has the most prosperous and dense urbanization performance
in China, which also means a denser population [26]. In contrast, Shangqiu City, Henan Province,
located in central China, is lower than the Yangtze River Economic Belt in terms of economy,
population density, and urbanization level. This directly leads to the different urban heat island
effects between the two, and also indirectly leads to the difference in the average CSE of the park.

Fourth, Shangqiu City's emphasis on park construction has also greatly increased the average
CSE of the park. Shangqiu City was awarded the honorary title of "National Garden City" as early as
2010. Shanggqiu City takes the "14th Five-Year Plan for Urban Renewal and Urban and Rural Habitat
Environment Construction of Shanggqiu City" as the program, intending to build a green city and
ecological city. Continuously strengthen the urban landscaping construction in Shangqiu City,
continue to pay attention to the incremental quality improvement of park green space, and improve
the carbon emission reduction capacity of Shangqiu City Park.

In addition, this study shows that the annual CSE of the park green space in Shanggqiu City is
154.8 t CO2 ha' year!. Another result of our ongoing study shows that the annual average Carbon
Serum in Zhengzhou Parkland is 19.07 t CO2 ha! year'. Another study based on the rate of major
Chinese cities showed that the average annual carbon sequestration of green infrastructure in
Zhengzhou was 10.52 t CO:z ha' year! [27]. This study shows that the carbon emission reduction
efficiency of Shanggqiu City is 8~14 times that of carbon sequestration in the green space of the two
Zhengzhou parks. This strongly indicates that the cooling effect of the park's green space leads to
significant carbon reduction.

4.2. Effects of Landscape Patterns on the Carbon Saving Potential

In general, the impact of the park's landscape pattern on the park's carbon reduction potential is
significant. The park's carbon reduction capacity is equivalent to the park's cooling and energy-saving
effects. This result is therefore consistent with previous studies confirming the cooling effect of
landscape patterns on parks [22,28-31]. Specifically, the main drivers of CSI in Shangqiu City Park
are NP, AREA_MN, and PD. In other words, the number of park patches and the degree of landscape
fragmentation (characterized by AREA_MN and PD) significantly affected the park CSL For the
number of patches (NP), it can be interpreted that a smaller, more plaque in the park can play a role
in cooling energy saving and carbon reduction. A study of 197 water bodies in Beijing showed that
tiny lakes and ponds play an important role in cooling. Therefore, it is suggested that decomposing
parks with large water areas into smaller ones can improve the cooling effect of parks, and the same
applies to park carbon reduction [32]. The impact on landscape fragmentation depends on the type
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of land use. For example, the AREA_MN of impervious surface panel blocks has an increasing effect
on LST, while plant plaques have the opposite effect. Today's increased urbanization has led to the
fragmentation of impervious surfaces and patches of green space, resulting in the fragmentation of
the urban landscape pattern. By reducing the fragmentation of the urban landscape, urban LST can
be lowered and the carbon reduction potential of parks can be increased [31].

In addition, the impact of the PLAND index on the CSI and CSE of Shanggqiu City parks was
shown in different categories of parks, including PLAND_Grass, PLAND_Water, PLAND_Imper,
and PLAND_Forest. This result is supported by many LST studies [20,33,34]. Even if the study area
is different from the meteorological environment, the enhancement effect of PLAND_Imper on park
LST and the cooling effect of PLAND_Grass, LAND_Forest, and PLAND_Water on LST due to high
reflectivity, transpiration, providing shade to reduce cooling and its specific heat capacity have been
widely demonstrated [35-38]. As a park's carbon reduction potential, which is closely related to the
park's cooling and energy-saving effects, it will also be affected by the PLAND index.

But contrary to Hao Hou's index that Shape_MN is the best-performing cooling effect [29],
Shape_MN does not affect Shanggqiu City's CSI. This inconsistency is normal in LST studies. Different
study areas and different climatic conditions significantly affect the performance of landscape
indicators [20,39,40]. Therefore, when exploring the relationship between landscape patterns and the
effects of park cooling energy saving and carbon emission reduction, it is necessary to refer to the
natural environmental factors of the study area [39-41].

4.3. Implications for Urban Planning and Management

This study explores the impact of landscape patterns on CSI and CSE of different types of urban
park green space, the specific relationship, and its potential value in reducing carbon emissions from
the perspective of carbon emission reduction caused by the cooling effect of green space. Rapid
urbanization has caused an imbalance in land resource distribution, leading to the need for rational
allocation of the internal landscape pattern of parks. This is important in maximizing the cooling
effect of urban green spaces and achieving the strongest carbon emission reduction efficiency in the
context of carbon neutrality in China. The study focuses on several parks and green spaces in the
study area to understand the impact of the internal landscape pattern on the efficiency and intensity
of urban carbon emission reduction at the regional scale. This will provide guidance and suggestions
for upgrading and renovating urban parks. Previous research shows that landscape pattern change
greatly affects the surface thermal environment of urban parks and reduces carbon emissions. Urban
planners can explore the strongest mode of urban park green space to reduce carbon emissions by
updating and transforming the urban park landscape pattern through design.

The results showed that the CSI and CSE of the park differed with the change in landscape
pattern, and this difference was manifested in different types of parks. Overall, FRAC_MN,
PLAND_Forest, PLAND_Grass, and NP were all significant influencing factors with positive effects
on CSI and CSE. This indicates that parks with a larger proportion of trees and ground cover plants,
as well as more complex patch shapes, have a better potential for carbon saving. These findings are
consistent with previous research in the field of the thermal environment [42-44]. The proportion of
water in parks has a significant positive impact on CSI, as water bodies have a high specific heat
capacity. Small lakes or ponds, in particular, play an important role in carbon emission reduction
[45]. Parks with water, special parks, and parks larger than 10 hectares show significant carbon
reduction effects. Therefore, water design and transformation should be the focus of upgrading and
renovation in the aforementioned types of parks. Our research results indicate that changes in various
landscape patterns in different types of parks have varying degrees of impact on carbon emission
reduction. This paper proposes targeted park improvement and update suggestions for park
categories with relatively low carbon emission reduction in the study area. These include
reorganizing landscapes and changing the area and location of different landscape types. Suggestions
for transforming different types of park green spaces with weaker carbon emission reduction capacity
were also proposed to adjust the density of patches and the shape of parks, to accurately promote the
carbon emission reduction of park green spaces in Shanggqiu.
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The diversity index has a significant positive impact on the CSE of the integrated park, and the
increase in PLAND_Imper can bring about a significant decrease in CSI. Therefore, when
transforming comprehensive parks, the focus should be on reducing the proportion of impervious
surface area in the park and increasing the diversity of landscape patches. This can include
introducing a variety of plant communities into a single green space and adding small water bodies,
such as fountains and pools, to waterless parks. The CSI of LSI amusement park has a significant
negative impact, and the complexity of the park boundary provides an opportunity for energy
exchange between the park and the surrounding area, thereby increasing the cooling effect of the
park to a certain extent [46], so the design and transformation of the park should focus on the change
of the shape of the park boundary. The increase of AREA_MN and PLAND_Grass can significantly
improve the carbon emission reduction capacity of parks and community parks with an area of 2-5
ha [47], so attention should be paid to improving the cover of surface grassland in the renovation of
such parks, to enhance the carbon storage of vegetation and thus improve the carbon emission
reduction capacity of parks. For parks with an area of 2-5 ha, it is also possible to improve the carbon-
saving capacity of the park by increasing the type of landscape patch. In the waterless park, PD,
SPLIT, and AREA_MN all showed a significant positive relationship with carbon emission reduction
capacity, which indicates that the degree of plate fragmentation has the most significant impact on
the sewage park, so attention should be paid to dividing the internal patches of the park to make
them as dispersed as possible to achieve greater carbon emission reduction efficiency.

4.4. Limitations and Future Research Directions

In this paper, 19 landscape pattern indicators were selected to comprehensively describe the
morphology, patch characteristics, fragmentation degree, and aggregation degree of the park, and
the selected variables explained the changes in CSI (83%) and CSE (44.2%). However, our study has
some limitations in some aspects, and the influence mechanism of landscape patterns on CSI and CSE
of urban parks and green spaces needs further study. First of all, it should be recognized that this
study is based on a 2D plane, and the impact of landscape changes in the vertical 3D range, including
green amount, water depth, and other factors on CSI and CSE, needs to be refined and improved in
future studies, and the specific configuration of plant communities in the park, the physiological and
ecological indicators of vegetation and the vertical and planar structure of surrounding features and
other factors that have a potential impact on the cooling effect of urban park green space are included
in the research of carbon emission reduction and park enhancement strategy of urban parks.
Comprehensively consider the impact of influencing factors on carbon emission reduction from
various perspectives.

Secondly, the research on the carbon emission reduction effect of urban parks in this paper is
based on surface temperature. Due to the difficulty in acquiring high-quality continuous
meteorological data, this paper relied only on remote sensing images of cloudless and sunny summer
days in 2020-2021 to measure the carbon emission reduction of urban park green spaces. Actual
results may be biased due to this limitation. Future research should explore higher precision surface
temperature data combined with field survey data to supplement remote sensing images. It should
also introduce multi-source data from seasonal changes in surface temperature, daily dynamic
changes, interannual changes, urban and rural changes, and other multi-temporal and spatial
perspectives to explore the changes in land surface temperature and its impact on carbon emission
reduction efficiency in a comprehensive manner. This approach will clarify the specific impact of
landscape pattern index, urban park CSI and CSE, and pay attention to the practical significance and
practical effect of research. It will also promote the combination of research results and urban
construction strategies, and conduct in-depth research on the carbon emission reduction effect of
urban green spaces in practice.

5. Conclusions

Currently, there is extensive research on mitigating the surface heat island effect in urban parks
in the context of carbon neutrality. However, it is of significant importance to quantify the carbon
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emission reduction resulting from the mitigation of urban park thermal effects, as it contributes to
achieving urban carbon neutrality goals. Additionally, it is crucial to quantitatively analyze the
influence of urban park landscape patterns on carbon emission reduction intensity and efficiency. In
this study, we estimated the carbon emission reduction intensity and efficiency of 118 urban parks
located in Shanggqiu City, Henan Province. The average CSI was found to be 2.55 + 0.31 t CO2, and
the CSE was 1.79 + 0.29 t CO2 per hectare across all studied parks. Consequently, a total carbon
emission reduction of 300.57 t CO2 was achieved. Parks larger than 10 hectares and parks with water
features exhibited higher carbon emission reduction intensity, indicating that the landscape layout of
these parks is more conducive to carbon reduction compared to other park types. Among all park
categories, the proportion of trees, herbs, and water bodies significantly influenced carbon
conservation. Furthermore, the concentration of landscape patches, including cohesion, split, and
aggregation index (Al), played a crucial role in the CSI and CSE of urban parks. Increased
fragmentation also led to a stronger carbon emission reduction effect. Based on these findings, we
propose a series of strategic suggestions for the renovation and improvement of different park types,
aiming to enhance the carbon emission reduction intensity of urban park green spaces through
landscape pattern transformations at the regional scale. These suggestions provide theoretical
support and practical guidance for urban planning, renovation, and renewal efforts, contributing to
carbon emission reduction, mitigation of the urban thermal environment, and enhancement of
ecological benefits in the Central Plains region. Ultimately, this research promotes the acceleration of
the carbon neutrality process in the Central Plains.
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