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Abstract: This article investigates the potential for carbon reduction in urban parks in Shangqiu City using 
high-resolution remote sensing imagery. The aim is to guide modern urban carbon neutrality strategies. The 
carbon reduction potential is estimated based on the mitigation of the urban heat island effect by park greenery, 
which reduces energy consumption. The parks are regarded as cool island centers, and 100 cooling gradients 
are gradually formed outward until the temperature reaches that of impermeable urban surfaces. The energy 
saved by the parks in mitigating the heat island effect is statistically calculated as the carbon reduction potential 
of urban park greenery. Additionally, this article classifies the sample parks into different categories and selects 
26 landscape metrics to analyze their relationship with carbon-saving potential and driving factors. 

Keywords: urban park; carbon saving potential; high spatial resolution; Shangqiu 
 

1. Introduction 

Changes in urban land cover have caused dramatic alterations in local urban microclimates, 
leading to a series of ecological issues. As urbanization continues to accelerate, extreme weather 
events and the urban heat island (UHI) effect have become hot topics among academics. The UHI 
effect refers to the phenomenon in which urban areas have significantly higher temperatures than 
adjacent rural areas. Although the theory was proposed early on, it remains a topic of great interest 
in the academic community, with many unresolved issues even after extensive research into its causes 
and mitigation strategies [1]. Some studies suggest that the UHI effect leads to the formation of local 
air circulation within cities, carrying air pollutants to higher altitudes and posing serious threats to 
human health [2]. In addition, a strong UHI effect can greatly impact the comfort of urban living 
conditions [3]. Especially in summer, the UHI effect is particularly pronounced, increasing the use of 
air conditioning and leading to higher energy consumption and carbon emissions. Therefore, 
reducing the UHI effect is a crucial component in achieving urban carbon neutrality. 

Urban park green spaces have a significant impact on mitigating the urban heat island effect 
[4,5]. Many scholars have recognized the positive role of urban parks in offsetting this effect and 
creating "cool islands" within cities [6]. There are several reasons for this. First, vegetation can provide 
shade, reducing direct solar radiation on the ground and decreasing the absorption of heat radiation 
by the ground. Second, through the transpiration of plants and their low albedo, some of the solar 
radiation can be absorbed. Finally, blue-green infrastructure, including urban green spaces, can 
effectively reduce the surface temperature of adjacent areas by directing airflow within the city. 
Therefore, enhancing the "cool island" effect within urban areas is considered an effective way to 
mitigate the heat effect [7]. 
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In the past, most studies on urban green spaces have focused on their direct carbon sequestration 
capacity, which increases as vegetation biomass increases [8]. For example, in Xi'an, urban green 
spaces have an annual fixed carbon amount of 0.19 t C ha-1 [9], while in Beijing, Changchun, and 
Harbin the average carbon densities are 7.8 t C ha-1 [10], 8.7 t C ha-1 [11], and 7.7 t C ha-1 [12], 
respectively. However, other studies have pointed out that the role of vegetation in reducing energy 
consumption in urban areas and bringing about carbon emission reductions cannot be ignored 
[13,14]. An empirical study showed that park green space has great potential to reduce carbon 
emissions and could save 23.7±1.6 t CO2 in the Yangtze River Economic Belt region [13]. Therefore, 
it is critical to understand the potential carbon emission reduction capacity through reducing thermal 
environmental pressure. However, the potential carbon emission reduction capacity of urban green 
spaces has received limited attention, especially in central China. 

This study examines the potential for reducing carbon emissions in urban parks in Shangqiu, a 
city in Central China. Our objective is to provide guidance for urban development and construction, 
from the perspective of urban ecology and environmental economics. Specifically, we aim to answer 
the following research questions: 1) What is the magnitude and spatial distribution of carbon saving 
potential in Shangqiu's urban parks? 2) What are the landscape factors driving spatial heterogeneity 
in the carbon saving potential across different urban parks in Shangqiu? 

2. Materials and Methods 

2.1. Study Area 

Shangqiu is located in the eastern Henan province of China between longitudes 114°49'~116°39' 
E and latitudes 33°43'~34°52' N (Figure 1). It has a total area of 10,704 square kilometers and a 
population of 7.723 million. It is a national civilized city, national health city, national garden city, 
and national forest city, with tourist attractions like the ancient city of Shangqiu. The city's plains 
account for 99.2% of its total area, with only 0.8% being hilly areas. Shangqiu has a warm temperate 
semi-humid continental monsoon climate with distinct four seasons, ample sunshine, and abundant 
rainfall. The city has an annual average of 1944 hours of sunshine, an average annual temperature of 
14.6℃, an average annual rainfall of 736.2 millimeters, and a frost-free period of about 211 days. Since 
its establishment in 1997, Shangqiu has undergone rapid urbanization, with significant expansion of 
construction and transportation land use. From 2000 to 2015, the city's construction land use 
expanded rapidly, increasing by as much as 696.57 square kilometers, which accounted for 37.57% of 
the total construction land use in 2000. This rapid urbanization has led to significant changes in the 
city's landscape pattern, making it an ideal area to study the potential for carbon reduction in urban 
areas. 

 

Figure 1. Location and land cover classification of Shangqiu City, Henan, China. 
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2.2. Remote-Sensed Urban Park 

The Split Window algorithm is a commonly used method in the field of land surface temperature 
(LST) remote sensing retrieval. It uses the ratio of reflectance in two spectral bands to remove 
atmospheric effects and obtain the land surface radiation temperature, which is then converted to 
LST using thermal radiation principles [15,16]. This algorithm applies to remote sensing image data 
of different resolutions and spectral bands and has the advantages of high accuracy and strong 
operability [17]. In this study, the original data was obtained from Landsat 8 image data set with a 
spatial resolution of 30 meters. All remote sensing images of cloudless and sunny days were selected 
from the summers of 2020-2021 (Table 1).  

Table 1. Information on remotely sensed data for Shangqiu. 

Satellite Path/Row Peirod(Year-Month-Day) 

Landsat 122/36 2020-08-28 

Landsat 122/36 2020-09-04 

Landsat 122/36 2021-06-28 

Landsat 122/36 2021-07-30 

Landsat 122/36 2021-09-16 

GF-2 —— 2021-08-10 
The radiative transfer equation is expressed as follows: 𝐿λ = [ε · B(𝑇𝑆) + (1 − ε) · 𝐿↓] · τ + 𝐿↑ (1) 

The radiative transfer equation used in the Split-Window algorithm for calculating land surface 
temperature (LST). Lλ represents the thermal radiation intensity of wavelength λ received by the 
satellite sensor, ε is the land surface emissivity, B(Ts) is the radiation brightness received by a 
blackbody with temperature Ts, and its unit is W·m-2·sr-1·μm-1. τ is the atmospheric transmissivity, 
and L↑ and L↓ are the upwelling and downwelling atmospheric radiances obtained from NASA [18]. 
This equation, based on the principles of thermal radiation, considers the effects of the atmosphere 
on radiation and can be used to retrieve land surface temperature from satellite data. It is a crucial 
component of the Split-Window algorithm. 

Later, we used the GF-2 image (Table 1) and the method of Object-based Image classification to 
interpret the land use in the study area. To improve the accuracy of interpretation, we optimized the 
samples based on auxiliary data and combined manual corrections by researchers to modify the parts 
with significant deviation, maximizing the accuracy of land use data. We divided the land use into 
five categories: forest (including trees and shrubs), grass, bare land (including sandy and soil 
surfaces), water bodies (including ponds, streams, etc.), and impervious surfaces (including 
buildings, squares, and other facilities).  

Based on high-resolution remote sensing images, the 118 parks in Shangqiu City can be classified 
according to different features and classification standards. Firstly, according to the nature of the 
park and the urban land classification standard (CJJ/T85-2017), parks can be classified into 
community parks, small parks, specific parks, and comprehensive parks. Secondly, according to the 
size of the park's area, it can be divided into miniature parks (less than 2 hectares), small parks (2-5 
hectares), medium parks (5-10 hectares), medium-large parks (10-50 hectares) and large parks (more 
than 50 hectares). Thirdly, the presence of water bodies within the park is also a classification criterion 
that can divide parks into those with and without water bodies. Through these classification criteria, 
we can have a more comprehensive understanding of the distribution and characteristics of parks in 
Shangqiu City. 

2.3. Landscape Metrics 

Landscape indices are statistical measures used to describe and quantify landscape patterns. 
They are commonly used to analyze the impact of different land use types and landscape 
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characteristics on ecosystems, including biodiversity, ecosystem services, and landscape 
functionality. In this study, a set of landscape indices was selected based on the classification criteria 
of Fragstats 4.2 software, including:  

Patch Density (PD), Number of Patches (NP), Patch Area Fraction (PAFRAC), Mean Patch Area 
(PARA_MN), Mean Fragment Shape Index (FRAC_MN), Mean Patch Shape Index (SHAPE_MN), 
Mean Patch Area (AREA_MN), Largest Patch Index (LSI), Aggregation Index (AI), Cohesion Index 
(COHESION), Interspersion and Juxtaposition Index (IJI), Simpson's Evenness Index (SHEI), 
Simpson's Diversity Index (SHDI), Simpson's Dominance Index (SIDI), Percentage of Forest, Grass, 
Impervious surfaces and water(PLAND_Forest, PLAND_Grass, PLAND_Imper, and 
PLAND_Water). 

These indices were selected to investigate the effect of landscape patterns on land surface 
temperature. They represent the fragmentation, connectivity, and diversity of the landscape within 
the study area. 

2.4. Quantification of UPSs’ Carbon Saving Potential 

This section aims to estimate the carbon emission reduction potential of urban green spaces by 
calculating the carbon emission reduction resulting from the alleviation of the urban heat island effect 
in city parks. Following the previous study [13,14], we calculate the carbon saving intensity (CSI) and 
the carbon emission reduction efficiency (CSE): 𝐶𝑆𝐼 = 𝑘 · ρ · a · ∫ ∑ 13 (𝑆𝑖 + 𝑆𝑖+1 + √𝑆𝑖𝑆𝑖+1𝑁

𝑖=0
𝐻

0 )) ΔTdh (2) 

𝐶𝑆𝐸 = 𝐶𝑆𝐼 ÷ 𝑆 (3) 

Among them, k represents the specific heat at constant pressure, with a value of 1004.68 J kg− 1 
◦C− 1, ρ represents the air density (1.2923 kg· m− 3), a is the conversion coefficient of energy 
consumption into carbon emissions from coal-fired power generation (841 g/3.6 MJ). ℎ represents 
the vertical influence range (H=70m). ΔT is the temperature difference between adjacent buffer zones, 
Si and Si+1 are the base areas and S is the park area. 

2.5. Correlation between UPSs’ Carbon Saving Potential and Landscape Metrics 

This article proposes a method for studying the correlation between the carbon-saving intensity 
of urban parks and their influencing factors. The method uses various statistical analysis methods, 
including the Shapiro-Wilk test, analysis of variance (ANOVA), independent sample t-test, Pearson 
correlation analysis, and stepwise multiple linear regression. First, the Shapiro-Wilk test is used to 
ensure that the sampled data set conforms to a normal distribution. Then, ANOVA and independent 
sample t-tests are used to analyze whether there are significant differences in the carbon-saving 
intensity of urban parks under different park classifications. In this process, the average carbon-
saving intensity of different parks is taken as the dependent variable, and park classification 
calibration is taken as the factor. Pearson correlation analysis is used to determine whether there is a 
statistically significant correlation between various landscape indices and carbon saving intensity, as 
well as if the correlation is obvious. Stepwise multiple linear regression is used to establish the 
relationship between carbon saving intensity and landscape patterns, the best-fitting model is 
selected, and the significance of the coefficients is determined based on regression statistics (R2, p-
value). This study analyzes landscape indices that can explain the intensity of carbon saving and 
proposes strategies for addressing urban heat island effects based on these indices. To eliminate the 
influence of collinearity between independent factors, the variance inflation factor (VIF) is used to 
assess the model, and independent variables with collinearity are removed to obtain the final 
regression model. In conclusion, this method provides a comprehensive way to analyze factors that 
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influence carbon-saving intensity in urban parks and can be used to propose strategies for achieving 
carbon neutralization. 

3. Results 

3.1. Spatial Heterogeneity of Carbon Saving Potential in Different Urban Parks 

For CSI, Shangqiu City Park Green Space (538 ha) can reduce a total of 300.57 t CO2 emissions. 
Specifically, in the parks of Shangqiu, the CSI distribution range is 0.04~18.93 t, and on average, each 
park can save 2.55 ± 0.31 t CO2 emissions for the city because of its contribution to the mitigation of 
surface heat effects, of which the canal ribbon park has the highest CSI, reaching 18.93 t CO2. Among 
the parks divided according to different classification criteria, special parks (3.42 t), parks larger than 
10 ha (6.94 t), and parks with water bodies (4.71 t) had the largest CSI average in their respective 
classifications. From the efficiency perspective, the CSE distribution in Shangqiu City was 16.34~0.04 
t CO2 ha-1, and the average CSE was 1.79 ± 0.29 t CO2 ha-1. Among them, the average CSE of 
amusement parks (2.03 t CO2 ha-1), parks less than 2ha (2.83 t CO2 ha-1), and anhydrous parks (2.04 t 
CO2 ha-1) had larger CSE, while smaller parks showed larger CSE and the CSE of Chinese Fatong 
Square (0.10 ha) was the highest (16.34 t CO2 ha-1). Fig.2 shows the results of the analysis of the 
difference between CSI and CSE in different classifications of parks, and there are certain differences 
in the performance of CSI in different types of parks, but the CSE of each park does not show 
significant differences, and this difference is not reflected in all park classifications. According to the 
classification of different areas, the CSI of parks less than 2 ha is significantly lower than that of parks 
with an area of 5-10 ha and parks larger than 10 ha, the CSI of parks with an area of 2-5 ha is 
significantly lower than that of parks with an area greater than 5ha, and the CSI of parks with an area 
greater than 10 ha is significantly larger. Among the parks classified according to whether the park 
contains water bodies, the CSI of water-bearing parks is significantly higher than that of non-water-
bearing parks. 

 

Figure 2. Park category differences between CSI and CSE. a, b, c, d, represent significant differences 
determined by Fisher’s least significant difference (LSD) tests (p < 0.05) on different seasons for 
different park types. 

3.2. Spatial Changes in Landscape Metrics 

In the study area, the park area was distributed in 0.03~357.00 ha, and the proportion of various 
landscapes in the park was different, from large to small, they were woodland (59.42%), grassland 
(23.09%), impervious surface (22.20%) and water body (12.34%). We selected 15 landscape pattern 
indexes to explore the differences in surface landscape patterns of various parks, and on the whole, 
Shangqiu City Park has a high degree of fragmentation, a high degree of aggregation, and landscape 
diversity, but the shape of various landscape patches is more complex. In different types of parks, 
there are certain differences in landscape indicators (Figure 3). The analysis of the differences in the 
landscape pattern indices of different parks shows that the landscape indices do not show significant 
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differences when the parks are divided according to the park category, and among the parks with 
different areas, the AI, SHDI, and COHESION of parks with an area of less than 2ha are significantly 
larger than those with an area greater than 2ha, and COHESION is the opposite. Parks with an area 
greater than 5 ha SHAPE_MN are significantly larger than parks with an area of less than 2ha, LSI 
and NP are significantly larger than parks with an area of less than 5ha in parks with an area of 5-
10ha, and LSI, NP, and PLAND_Imper are significantly smaller in parks with an area of less than 2ha. 
LSI, NP, SPLIT, AREA_MN increased significantly with the increase of park area when the park area 
was less than 10ha, and on the contrary, PD decreased significantly with the increase of area when 
the area was greater than 2ha. In waterless parks and water-bearing parks, the values of AI, LPI, 
COHESION, PD, and PLAND_Forest in waterless parks were significantly greater than those in 
waterless parks, while SHDI, SPLIT, AREA_MN, LSI, and NP were the opposite, and the values in 
waterless parks were significantly larger. 

 

Figure 3. Park category differences of landscape patterns. a, b, c, d, represent significant differences 
determined by Fisher’s least significant difference (LSD) tests (p < 0.05) on different seasons for 
different park types. 

3.3. The Relationship between the Carbon Saving Potential and Landscape Driving Factors in Different 

Urban Parks 

There were similarities and differences in the correlation results between various park landscape 
indexes and CSI (Figure 4). On the whole, CSI was significantly positively correlated with SPLIT, IJI, 
AREA_MN, LSI, NP, and PLAND_Water, and significantly negatively correlated with LPI and 
PLAND_Imper. Among the different types of parks, the CSI of AREA_MN and general parks (-0.952) 
and community parks (-0.869) showed a strong and significant positive correlation, while 
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PLAND_imper was the opposite. The CSI of the garden was positively correlated with NP, IJI, and 
SPLIT, but negatively correlated with LPI. The CSI of special parks showed a significantly strong 
positive correlation with AREA_MN (0.952), NP (0.92), and PLAND_water (0.905), while it showed 
a significantly strong negative correlation with FRAC_MN (-0.989), and the CSI of comprehensive 
parks showed a correlation with the most landscape index, among which there was a strong positive 
correlation with AREA_MN (0.952) and CONTAG (0.856) and a strong positive correlation with 
PLAND_Imper (- 0.957), PLAND_Grass (-0.818) showed a strong negative correlation. Among parks 
of different sizes, the number of landscape indices associated with CSI was slightly smaller than in 
the other two categories, but the correlation between them was strongest. The CSI of 2-5ha parks was 
significantly positively correlated with SHEI (0.995), SHDI (0.995), and PLAND_Grass (0.998), the CSI 
and AREA_MN of parks with an area greater than 2ha showed a significant positive correlation, and 
the CSI of parks with an area greater than 10ha showed a different correlation from other parks, and 
the CSI was significantly positively correlated with NP (0.717) and PLAND_Water (0.813). It was 
significantly negatively correlated with PLAND_imper (-0.591). In the classification according to 
whether the park has a water body, there are more landscape pattern indices related to CSI, and the 
correlation between anhydrous parks and waterless parks and landscape pattern indexes is similar, 
and there are significant positive correlations with SPLIT, AREA_MN, LSI, and NP, among which 
the positive correlation between CSI and NP in waterless parks is the strongest (0.733), while the 
negative correlation between anhydrous parks and LPI is the strongest (-0.385). The difference is that 
the significant correlation between IJI (0.37), PLAND_Water (0.644), and PLAND_Imper (-0.348) and 
waterless parks is not reflected in waterless parks. 

 

Figure 4. Heatmaps of correlation coefficients between landscape patterns and CSI in different types 
of parks. 

Figure 5 shows the correlation between CSE and landscape pattern index of various parks in 
Shangqiu City, and the results show that the correlation between CSE and landscape pattern index is 
similar to the CSI trend overall, both in parks classified by category, the most relevant landscape 
pattern index, followed by parks classified according to water bodies, and the correlation between 
CSE and landscape pattern in parks classified by area is weak. The difference is that the landscape 
pattern index related to CSE of various parks is completely different from CSI, and AI, COHESION, 
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and park CSE are significantly negatively correlated, while PARA_MN and PD are significantly 
positively correlated with park CSE. Among different types of parks, the landscape pattern indexes 
related to CSE of community parks were SHEI (0.809), SHDI (0.809), PARA_MN (0.831), and 
PLAND_Grass (0.945), respectively, and all showed positive correlations. In contrast, CSE in 
integrated parks was only negatively correlated with PLAND_Grass significantly (-0.836). CSE WAS 
SIGNIFICANTLY NEGATIVELY CORRELATED WITH AI AND COHESION IN AMUSEMENT 
PARKS AND SPECIAL PARKS, AND POSITIVELY CORRELATED WITH PARA_MN AND PD, and 
this correlation was stronger in special parks. In addition, SHAPE_MN (-0.458), AREA_MN (-0.466), 
and amusement park CSE were significantly negatively correlated, while special park CSE and LSI 
were negatively correlated and positively correlated with PLAND_Imper (0.986). Among the parks 
with different areas, park CSEs less than 2 ha were positively correlated with NP (0.85), and park 
CSEs with 5-10 ha also showed a positive correlation with AREA_MN (0.734). Among watered parks 
and waterless parks, the correlation between landscape pattern index and CSE was more consistent, 
significantly negatively correlated with AI and COHESION, and this correlation was stronger in 
water-bearing parks, and the significant positive correlation with PD was stronger in waterless parks, 
and the difference was reflected in the significant positive correlation between CSE and PARA_MN 
(0.406) in waterless parks, while CSE in waterless parks was positively correlated with PLAND_Grass 
(0.292). 

 

Figure 5. Heatmaps of correlation coefficients between landscape patterns and CSE in different types 
of parks. 

3.4. Identify the Landscape-Driving Factors 

For all the landscape pattern variables examined in our study, the direction and magnitude of 
their impact on park CSI and CSE were generally different (Figures 6 and 7). Moreover, the specific 
influencing factors are different from the direction and degree of their influence on CSI and CSE to 
different park categories, and the overall changes of CSI and CSE in different parks have a high 
degree of explanation. The fragmentation index has a more common effect on the changes of CSI and 
CSE in various parks, while the degree of explanatory degree of diversity index on CSI and CSE 
changes is significantly higher than that of other factors. The overall interpretation rate of CSI of 
various landscape pattern indexes can reach 83%, of which NP contributed the largest 52% of the 
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interpretation rate, followed by AREA_MN (17.39%), PD (9.41), and FRAC_MN (4.2%). Among the 
different types of parks, the regression model of CSI for comprehensive parks was the best, with a 
goodness-of-fit of 99%, and the fitting degree of the model for special parks was also high, 98.03%. 
Among them PLAND_Imper contributed the highest explanation rate (88.7%) for the CSI of the 
comprehensive park, PARA_MN contributed 10.3% of the explanation rate, the largest contributor in 
the regression model of the special park was FRAC_MN (94.7%), and SPLIT also explained a small 
part of the CSI change. The CSI model fit was slightly weak, but the influencing factors were relatively 
balanced, and SPLIT contributed 51.8% of the explanation rate and PLAND_Forest contributed 
11.8%. In parks with different areas, except for parks with an area of less than 2ha, the park model 
with a smaller area has a higher fit and clearer influencing factors. The park regression model of 2-
5ha had the highest goodness-of-fit (98.6%), and the vast majority of explanatory degrees were 
contributed by PLAND_Grass (97.8%), while SHDI explained the model only 0.8%. For 5-10ha parks, 
two variables, AREA_MN and LSI, were introduced into the regression model, with explanatory rates 
of 75.5% and 22.2%, respectively. Among the parks with an area greater than 10 ha, the interpretation 
of CSI was PLAND_Water (63.7%), AREA_MN (13.82%), and NP (5.36%), respectively. Compared 
with the above classification, the CSI driving factors of the anhydrous park and watery park are 
scattered, and the four influencing factors are introduced into the waterless park regression model, 
which is FRAC_MN (4.16%), AREA_MN (17.39%), PD (9.41%), and NP (52%), and the overall model 
goodness-of-fit reached 83%. The goodness-of-fit of the CSI regression model for anhydrous parks 
was 50.5%, of which SPLIT contributed 40.4% of the explanatory degrees. 

 

Figure 6. Stepwise regression diagram of landscape pattern and CSI in different parks. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0137.v1

https://doi.org/10.20944/preprints202306.0137.v1


 10 

 

 

Figure 7. Stepwise regression diagram of landscape pattern and CSE in different parks. 

The results of CSE stepwise regression in various parks (Figure 7) showed that compared with 
the CSI regression model, the CSE model introduced fewer variables and the overall explanatory rate 
was not high. All parks were included in the model, and the model introduced COHESION as the 
only explanatory variable, with an explanatory rate of 44.2%. Among the different types of parks, 
community parks also introduced PLAND_Grass as the only explanatory variable, but the 
explanatory degree reached 85.7%, and PD in amusement parks and special parks were the most 
explanatory landscape pattern indicators, with 93.1% and 96.8% explanatory degrees, respectively. 
The goodness-of-fit of the amusement park CSE regression model was 97.7%, and in addition to PD 
AREA_MN and PLAND_imper also contributed 3.99% and 0.78% of the explanatory degrees, 
respectively, IJI was also introduced into the special park CSE model to provide an explanatory rate 
of 0.2%. Classified by area, none of the factors were introduced into the regression model due to 
confounding factors. COHESION and PD were introduced as the only explanatory variables in the 
regression model of the anhydrous park and watery park, and the goodness-of-fit was 44.2% and 
43.1%, respectively. 

4. Discussion 

4.1. The Carbon-Saving Potential of Urban Parks 

The results showed that the average CSE of Shangqiu City Park was 1.79 ± 0.29 t CO2 ha-1, which 
was higher than the previous CSE study of the Yangtze River Economic Belt City Park in China (1.08 
± 0.03 t CO2 ha-1). First, studying the size difference of the region may be one of the reasons for the 
difference in CSE. The study area is a city-level city in Henan Province, with a total of 118 parks. The 
previous study area included 1,510 parks in 26 cities, spanning 11 provinces in China. A higher 
number of parks studied directly means greater differences in size between parks, many types of 
parks, and more complex basic information about parks. So it's understandable that the average CSE 
for 1510 parks is lower than the average CSE for 118 parks. On the other hand, the size of the study 
area will cause differences in the results of urban LST results, and may also indirectly affect the 
calculation results of CSI and CSE. For example, a study of Bangkok, Jakarta, and Manila showed 
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that LST studies presented different results at different spatial resolutions, and proposed that 210 
m×210 m is an optimal characteristic area or land climate footprint that can be used for examining 
any meteorological. climatic, or environmental issues in urban areas or for landscape and urban 
planning [19]. The results for the 960 m scale and the 240 m scale are completely different [20]. It is 
worth noting that the previous research results also show that the average CSE of small urban parks 
is generally high, which is partly consistent with the results of this study.  

Second, the climate type of the study area is also responsible for the difference in CSE. Previous 
results on the Yangtze River Economic Belt showed that the average CSE of parks with humid 
subtropical climates was higher than that of parks located in humid subtropical monsoon climates. 
The climate of Shangqiu City is a temperate monsoon climate, and the difference in climatic 
characteristics is more obvious. Different climatic characteristics lead to different LST research results 
and indirectly lead to different CSEs [21,22]. 

Third, studying differences in regional economic development, population density, and 
urbanization levels will also lead to differences in the average CSE of parks. Several studies have 
pointed out that economic development, population growth, and urbanization are important causes 
of rising surface temperature [23]. Higher levels of urbanization mean more natural features such as 
vegetation and water bodies that have been replaced by impervious materials and buildings [24]. 
Economic activity and population agglomeration consume large amounts of fossil fuel resources and 
exacerbate the urban thermal environment [25]. Compared to Shangqiu City, the Yangtze River 
Economic Belt, the former study area, has the most prosperous and dense urbanization performance 
in China, which also means a denser population [26]. In contrast, Shangqiu City, Henan Province, 
located in central China, is lower than the Yangtze River Economic Belt in terms of economy, 
population density, and urbanization level. This directly leads to the different urban heat island 
effects between the two, and also indirectly leads to the difference in the average CSE of the park.  

Fourth, Shangqiu City's emphasis on park construction has also greatly increased the average 
CSE of the park. Shangqiu City was awarded the honorary title of "National Garden City" as early as 
2010. Shangqiu City takes the "14th Five-Year Plan for Urban Renewal and Urban and Rural Habitat 
Environment Construction of Shangqiu City" as the program, intending to build a green city and 
ecological city. Continuously strengthen the urban landscaping construction in Shangqiu City, 
continue to pay attention to the incremental quality improvement of park green space, and improve 
the carbon emission reduction capacity of Shangqiu City Park.  

In addition, this study shows that the annual CSE of the park green space in Shangqiu City is 
154.8 t CO2 ha-1 year-1. Another result of our ongoing study shows that the annual average Carbon 
Serum in Zhengzhou Parkland is 19.07 t CO2 ha-1 year-1. Another study based on the rate of major 
Chinese cities showed that the average annual carbon sequestration of green infrastructure in 
Zhengzhou was 10.52 t CO2 ha-1 year-1 [27]. This study shows that the carbon emission reduction 
efficiency of Shangqiu City is 8~14 times that of carbon sequestration in the green space of the two 
Zhengzhou parks. This strongly indicates that the cooling effect of the park's green space leads to 
significant carbon reduction. 

4.2. Effects of Landscape Patterns on the Carbon Saving Potential 

In general, the impact of the park's landscape pattern on the park's carbon reduction potential is 
significant. The park's carbon reduction capacity is equivalent to the park's cooling and energy-saving 
effects. This result is therefore consistent with previous studies confirming the cooling effect of 
landscape patterns on parks [22,28–31]. Specifically, the main drivers of CSI in Shangqiu City Park 
are NP, AREA_MN, and PD. In other words, the number of park patches and the degree of landscape 
fragmentation (characterized by AREA_MN and PD) significantly affected the park CSI. For the 
number of patches (NP), it can be interpreted that a smaller, more plaque in the park can play a role 
in cooling energy saving and carbon reduction. A study of 197 water bodies in Beijing showed that 
tiny lakes and ponds play an important role in cooling. Therefore, it is suggested that decomposing 
parks with large water areas into smaller ones can improve the cooling effect of parks, and the same 
applies to park carbon reduction [32]. The impact on landscape fragmentation depends on the type 
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of land use. For example, the AREA_MN of impervious surface panel blocks has an increasing effect 
on LST, while plant plaques have the opposite effect. Today's increased urbanization has led to the 
fragmentation of impervious surfaces and patches of green space, resulting in the fragmentation of 
the urban landscape pattern. By reducing the fragmentation of the urban landscape, urban LST can 
be lowered and the carbon reduction potential of parks can be increased [31]. 

In addition, the impact of the PLAND index on the CSI and CSE of Shangqiu City parks was 
shown in different categories of parks, including PLAND_Grass, PLAND_Water, PLAND_Imper, 
and PLAND_Forest. This result is supported by many LST studies [20,33,34]. Even if the study area 
is different from the meteorological environment, the enhancement effect of PLAND_Imper on park 
LST and the cooling effect of PLAND_Grass, LAND_Forest, and PLAND_Water on LST due to high 
reflectivity, transpiration, providing shade to reduce cooling and its specific heat capacity have been 
widely demonstrated [35–38]. As a park's carbon reduction potential, which is closely related to the 
park's cooling and energy-saving effects, it will also be affected by the PLAND index.  

But contrary to Hao Hou's index that Shape_MN is the best-performing cooling effect [29], 
Shape_MN does not affect Shangqiu City's CSI. This inconsistency is normal in LST studies. Different 
study areas and different climatic conditions significantly affect the performance of landscape 
indicators [20,39,40]. Therefore, when exploring the relationship between landscape patterns and the 
effects of park cooling energy saving and carbon emission reduction, it is necessary to refer to the 
natural environmental factors of the study area [39–41]. 

4.3. Implications for Urban Planning and Management 

This study explores the impact of landscape patterns on CSI and CSE of different types of urban 
park green space, the specific relationship, and its potential value in reducing carbon emissions from 
the perspective of carbon emission reduction caused by the cooling effect of green space. Rapid 
urbanization has caused an imbalance in land resource distribution, leading to the need for rational 
allocation of the internal landscape pattern of parks. This is important in maximizing the cooling 
effect of urban green spaces and achieving the strongest carbon emission reduction efficiency in the 
context of carbon neutrality in China. The study focuses on several parks and green spaces in the 
study area to understand the impact of the internal landscape pattern on the efficiency and intensity 
of urban carbon emission reduction at the regional scale. This will provide guidance and suggestions 
for upgrading and renovating urban parks. Previous research shows that landscape pattern change 
greatly affects the surface thermal environment of urban parks and reduces carbon emissions. Urban 
planners can explore the strongest mode of urban park green space to reduce carbon emissions by 
updating and transforming the urban park landscape pattern through design. 

The results showed that the CSI and CSE of the park differed with the change in landscape 
pattern, and this difference was manifested in different types of parks. Overall, FRAC_MN, 
PLAND_Forest, PLAND_Grass, and NP were all significant influencing factors with positive effects 
on CSI and CSE. This indicates that parks with a larger proportion of trees and ground cover plants, 
as well as more complex patch shapes, have a better potential for carbon saving. These findings are 
consistent with previous research in the field of the thermal environment [42–44]. The proportion of 
water in parks has a significant positive impact on CSI, as water bodies have a high specific heat 
capacity. Small lakes or ponds, in particular, play an important role in carbon emission reduction 
[45]. Parks with water, special parks, and parks larger than 10 hectares show significant carbon 
reduction effects. Therefore, water design and transformation should be the focus of upgrading and 
renovation in the aforementioned types of parks. Our research results indicate that changes in various 
landscape patterns in different types of parks have varying degrees of impact on carbon emission 
reduction. This paper proposes targeted park improvement and update suggestions for park 
categories with relatively low carbon emission reduction in the study area. These include 
reorganizing landscapes and changing the area and location of different landscape types. Suggestions 
for transforming different types of park green spaces with weaker carbon emission reduction capacity 
were also proposed to adjust the density of patches and the shape of parks, to accurately promote the 
carbon emission reduction of park green spaces in Shangqiu. 
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The diversity index has a significant positive impact on the CSE of the integrated park, and the 
increase in PLAND_Imper can bring about a significant decrease in CSI. Therefore, when 
transforming comprehensive parks, the focus should be on reducing the proportion of impervious 
surface area in the park and increasing the diversity of landscape patches. This can include 
introducing a variety of plant communities into a single green space and adding small water bodies, 
such as fountains and pools, to waterless parks. The CSI of LSI amusement park has a significant 
negative impact, and the complexity of the park boundary provides an opportunity for energy 
exchange between the park and the surrounding area, thereby increasing the cooling effect of the 
park to a certain extent [46], so the design and transformation of the park should focus on the change 
of the shape of the park boundary. The increase of AREA_MN and PLAND_Grass can significantly 
improve the carbon emission reduction capacity of parks and community parks with an area of 2-5 
ha [47], so attention should be paid to improving the cover of surface grassland in the renovation of 
such parks, to enhance the carbon storage of vegetation and thus improve the carbon emission 
reduction capacity of parks. For parks with an area of 2-5 ha, it is also possible to improve the carbon-
saving capacity of the park by increasing the type of landscape patch. In the waterless park, PD, 
SPLIT, and AREA_MN all showed a significant positive relationship with carbon emission reduction 
capacity, which indicates that the degree of plate fragmentation has the most significant impact on 
the sewage park, so attention should be paid to dividing the internal patches of the park to make 
them as dispersed as possible to achieve greater carbon emission reduction efficiency. 

4.4. Limitations and Future Research Directions 

In this paper, 19 landscape pattern indicators were selected to comprehensively describe the 
morphology, patch characteristics, fragmentation degree, and aggregation degree of the park, and 
the selected variables explained the changes in CSI (83%) and CSE (44.2%). However, our study has 
some limitations in some aspects, and the influence mechanism of landscape patterns on CSI and CSE 
of urban parks and green spaces needs further study. First of all, it should be recognized that this 
study is based on a 2D plane, and the impact of landscape changes in the vertical 3D range, including 
green amount, water depth, and other factors on CSI and CSE, needs to be refined and improved in 
future studies, and the specific configuration of plant communities in the park, the physiological and 
ecological indicators of vegetation and the vertical and planar structure of surrounding features and 
other factors that have a potential impact on the cooling effect of urban park green space are included 
in the research of carbon emission reduction and park enhancement strategy of urban parks. 
Comprehensively consider the impact of influencing factors on carbon emission reduction from 
various perspectives.  

Secondly, the research on the carbon emission reduction effect of urban parks in this paper is 
based on surface temperature. Due to the difficulty in acquiring high-quality continuous 
meteorological data, this paper relied only on remote sensing images of cloudless and sunny summer 
days in 2020-2021 to measure the carbon emission reduction of urban park green spaces. Actual 
results may be biased due to this limitation. Future research should explore higher precision surface 
temperature data combined with field survey data to supplement remote sensing images. It should 
also introduce multi-source data from seasonal changes in surface temperature, daily dynamic 
changes, interannual changes, urban and rural changes, and other multi-temporal and spatial 
perspectives to explore the changes in land surface temperature and its impact on carbon emission 
reduction efficiency in a comprehensive manner. This approach will clarify the specific impact of 
landscape pattern index, urban park CSI and CSE, and pay attention to the practical significance and 
practical effect of research. It will also promote the combination of research results and urban 
construction strategies, and conduct in-depth research on the carbon emission reduction effect of 
urban green spaces in practice. 

5. Conclusions 

Currently, there is extensive research on mitigating the surface heat island effect in urban parks 
in the context of carbon neutrality. However, it is of significant importance to quantify the carbon 
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emission reduction resulting from the mitigation of urban park thermal effects, as it contributes to 
achieving urban carbon neutrality goals. Additionally, it is crucial to quantitatively analyze the 
influence of urban park landscape patterns on carbon emission reduction intensity and efficiency. In 
this study, we estimated the carbon emission reduction intensity and efficiency of 118 urban parks 
located in Shangqiu City, Henan Province. The average CSI was found to be 2.55 ± 0.31 t CO2, and 
the CSE was 1.79 ± 0.29 t CO2 per hectare across all studied parks. Consequently, a total carbon 
emission reduction of 300.57 t CO2 was achieved. Parks larger than 10 hectares and parks with water 
features exhibited higher carbon emission reduction intensity, indicating that the landscape layout of 
these parks is more conducive to carbon reduction compared to other park types. Among all park 
categories, the proportion of trees, herbs, and water bodies significantly influenced carbon 
conservation. Furthermore, the concentration of landscape patches, including cohesion, split, and 
aggregation index (AI), played a crucial role in the CSI and CSE of urban parks. Increased 
fragmentation also led to a stronger carbon emission reduction effect. Based on these findings, we 
propose a series of strategic suggestions for the renovation and improvement of different park types, 
aiming to enhance the carbon emission reduction intensity of urban park green spaces through 
landscape pattern transformations at the regional scale. These suggestions provide theoretical 
support and practical guidance for urban planning, renovation, and renewal efforts, contributing to 
carbon emission reduction, mitigation of the urban thermal environment, and enhancement of 
ecological benefits in the Central Plains region. Ultimately, this research promotes the acceleration of 
the carbon neutrality process in the Central Plains. 

Author Contributions: Conceptualization, J.G. and S.G.; methodology, J.G., H.H. and S.G.; software, H.H. and 
S.G.; validation, J.G. and H.H.; formal analysis, S.G. and H.H.; investigation, S.G. and H.H.; resources, J.G. and 
S.G.; data curation, J.G., H.H. and S.G.; writing—original draft preparation, J.G., H.H. and S.G.; writing—review 
and editing, J.G., H.H. and S.G.; visualization, J.G. and S.G.; supervision, J.G. and S.G.; project administration, 
J.G. and H.H.; funding acquisition, J.G. and S.G. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This study was supported by the Social Science Fund of Tianjin of China grant (TJYY19-013), the Key 
Technology R&D Program of Henan Province (232102320190), and the Center for Blockchains and Electronic 
Markets funded by the Carlsberg Foundation under grant no. CF18-1112, and the Special Fund for Young Talents 
in Henan Agricultural University under grant no.30500930. 

References 

1.  Dudorova, N.V.; Belan, B.D. The Energy Model of Urban Heat Island. Atmosphere 2022, 13, 457, 
doi:10.3390/atmos13030457. 

2.  Stathopoulou, E.; Mihalakakou, G.; Santamouris, M.; Bagiorgas, H.S. On the impact of temperature on 
tropospheric ozone concentration levels in urban environments. J Earth Syst Sci 2008, 117, 227–236, 
doi:10.1007/s12040-008-0027-9. 

3.  Santamouris, M.; Kolokotsa, D. On the impact of urban overheating and extreme climatic conditions on 
housing, energy, comfort and environmental quality of vulnerable population in Europe. Energy and 

Buildings 2015, 98, 125–133, doi:10.1016/j.enbuild.2014.08.050. 
4.  O’Malley, C.; Piroozfar, P.; Farr, E.R.P.; Pomponi, F. Urban Heat Island (UHI) mitigating strategies: A case-

based comparative analysis. Sustainable Cities and Society 2015, 19, 222–235, doi:10.1016/j.scs.2015.05.009. 
5.  Chun, B.; Guldmann, J.-M. Spatial statistical analysis and simulation of the urban heat island in high-

density central cities. Landscape and Urban Planning 2014, 125, 76–88, doi:10.1016/j.landurbplan.2014.01.016. 
6.  Qian, Y.; Zhou, W.; Hu, X.; Fu, F. The Heterogeneity of Air Temperature in Urban Residential 

Neighborhoods and Its Relationship with the Surrounding Greenspace. Remote Sensing 2018, 10, 965, 
doi:10.3390/rs10060965. 

7.  Li, X.; Zhou, W. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: 
Extending understanding from local to the city scale. Urban Forestry & Urban Greening 2019, 41, 255–263, 
doi:10.1016/j.ufug.2019.04.008. 

8.  Huang, C.; Ye, X.; Deng, C.; Zhang, Z.; Wan, Z. Mapping Above-Ground Biomass by Integrating Optical 
and SAR Imagery: A Case Study of Xixi National Wetland Park, China. Remote Sensing 2016, 8, 647, 
doi:10.3390/rs8080647. 

9.  Yao, Z.; Liu, J.; Zhao, X.; Long, D.; Wang, L. Spatial dynamics of aboveground carbon stock in urban green 
space: a case study of Xi’an, China. J. Arid Land 2015, 7, 350–360, doi:10.1007/s40333-014-0082-9. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0137.v1

https://doi.org/10.20944/preprints202306.0137.v1


 15 

 

10.  Sun, Y.; Xie, S.; Zhao, S. Valuing urban green spaces in mitigating climate change: A city‐wide estimate of 
aboveground carbon stored in urban green spaces of China’s Capital. Glob Change Biol 2019, 25, 1717–1732, 
doi:10.1111/gcb.14566. 

11.  Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Shen, G.; Zhai, C. Changes in spatio-temporal patterns of urban forest 
and its above-ground carbon storage: Implication for urban CO2 emissions mitigation under China’s rapid 
urban expansion and greening. Environment International 2019, 129, 438–450, 
doi:10.1016/j.envint.2019.05.010. 

12.  Lv, H.; Wang, W.; He, X.; Xiao, L.; Zhou, W.; Zhang, B. Quantifying Tree and Soil Carbon Stocks in a 
Temperate Urban Forest in Northeast China. Forests 2016, 7, 200, doi:10.3390/f7090200. 

13.  Chen, M.; Jia, W.; Du, C.; Shi, M.; Henebry, G.M.; Wang, K. Carbon saving potential of urban parks due to 
heat mitigation in Yangtze River Economic Belt. Journal of Cleaner Production 2023, 385, 135713, 
doi:10.1016/j.jclepro.2022.135713. 

14.  Lin, W.; Wu, T.; Zhang, C.; Yu, T. Carbon savings resulting from the cooling effect of green areas: A case 
study in Beijing. Environmental Pollution 2011, 159, 2148–2154, doi:10.1016/j.envpol.2011.02.035. 

15.  Jiang, Y.; Lin, W. A Comparative Analysis of Retrieval Algorithms of Land Surface Temperature from 
Landsat-8 Data: A Case Study of Shanghai, China. Int. J. Environ. Res. Public Health 2021, 18, 5659, 
doi:10.3390/ijerph18115659. 

16.  Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface Temperature 
Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 
1840–1843, doi:10.1109/LGRS.2014.2312032. 

17.  Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: 
Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote 

Sens. 2020, 12, 294, doi:10.3390/rs12020294. 
18.  Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. 

Remote Sensing of Environment 2004, 90, 434–440, doi:10.1016/j.rse.2004.02.003. 
19.  Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface 

temperature: An urban heat island study in the megacities of Southeast Asia. Science of The Total 

Environment 2017, 577, 349–359, doi:10.1016/j.scitotenv.2016.10.195. 
20.  Du, C.; Song, P.; Wang, K.; Li, A.; Hu, Y.; Zhang, K.; Jia, X.; Feng, Y.; Wu, M.; Qu, K.; et al. Investigating the 

Trends and Drivers between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, 
China. Sustainability 2022, 14, 13845, doi:10.3390/su142113845. 

21.  Jia, W.; Zhao, S. Trends and drivers of land surface temperature along the urban-rural gradients in the 
largest urban agglomeration of China. Science of The Total Environment 2020, 711, 134579, 
doi:10.1016/j.scitotenv.2019.134579. 

22.  Zhang, K.; Yun, G.; Song, P.; Wang, K.; Li, A.; Du, C.; Jia, X.; Feng, Y.; Wu, M.; Qu, K.; et al. Discover the 
Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study 
Using a Forest City, Luoyang, China as a Lens. International Journal of Environmental Research and Public 

Health 2023, 20, 3155, doi:10.3390/ijerph20043155. 
23.  Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and 

the Ecology of Cities. Science 2008, 319, 756–760, doi:10.1126/science.1150195. 
24.  Chang, Y.; Xiao, J.; Li, X.; Middel, A.; Zhang, Y.; Gu, Z.; Wu, Y.; He, S. Exploring diurnal thermal variations 

in urban local climate zones with ECOSTRESS land surface temperature data. Remote Sensing of Environment 
2021, 263, 112544, doi:10.1016/j.rse.2021.112544. 

25.  Sun, Y.; Zhang, X.; Ren, G.; Zwiers, F.W.; Hu, T. Contribution of urbanization to warming in China. Nature 

Clim Change 2016, 6, 706–709, doi:10.1038/nclimate2956. 
26.  Liu, J.; Tian, Y.; Huang, K.; Yi, T. Spatial-temporal differentiation of the coupling coordinated development 

of regional energy-economy-ecology system: A case study of the Yangtze River Economic Belt. Ecological 

Indicators 2021, 124, 107394, doi:10.1016/j.ecolind.2021.107394. 
27.  Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: 

A nationwide estimate. Cities 2015, 44, 112–120, doi:10.1016/j.cities.2015.01.005. 
28.  Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. 

Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban 
planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing 2014, 89, 59–
66, doi:10.1016/j.isprsjprs.2013.12.010. 

29.  Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An 
Urban Heat Island Study on Hangzhou. Urban Forestry & Urban Greening 2020, 53, 126719, 
doi:10.1016/j.ufug.2020.126719. 

30.  Effati, F.; Karimi, H.; Yavari, A. Investigating effects of land use and land cover patterns on land surface 
temperature using landscape metrics in the city of Tehran, Iran. Arab J Geosci 2021, 14, 1240, 
doi:10.1007/s12517-021-07433-4. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0137.v1

https://doi.org/10.20944/preprints202306.0137.v1


 16 

 

31.  Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface 
temperature in urban areas. Remote Sensing of Environment 2018, 215, 255–267, doi:10.1016/j.rse.2018.06.010. 

32.  Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landscape and Urban 

Planning 2012, 105, 27–33, doi:10.1016/j.landurbplan.2011.11.018. 
33.  Chen, A.; Yao, L.; Sun, R.; Chen, L. How many metrics are required to identify the effects of the landscape 

pattern on land surface temperature? Ecological Indicators 2014, 45, 424–433, 
doi:10.1016/j.ecolind.2014.05.002. 

34.  Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Lin, L.; Lin, L.; Liu, J. The Influence of Green Space Patterns on Land Surface 
Temperature in Different Seasons: A Case Study of Fuzhou City, China. Remote Sensing 2021, 13, 5114, 
doi:10.3390/rs13245114. 

35.  Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat 
island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting 
land surface temperatures. Landscape Ecol 2014, 29, 153–167, doi:10.1007/s10980-013-9950-5. 

36.  Cai, Q.; Li, E.; Jiang, R. Analysis of the Relationship Between Land Surface Temperature and Land Cover 
Changes Using Multi-temporal Satellite Data. Nature Environment and Pollution Technology 2017, 16, 8. 

37.  Yang, Q.; Huang, X.; Li, J. Assessing the relationship between surface urban heat islands and landscape 
patterns across climatic zones in China. Sci Rep 2017, 7, 9337, doi:10.1038/s41598-017-09628-w. 

38.  Shi, Y.; Liu, S.; Yan, W.; Zhao, S.; Ning, Y.; Peng, X.; Chen, W.; Chen, L.; Hu, X.; Fu, B.; et al. Influence of 
landscape features on urban land surface temperature: Scale and neighborhood effects. Science of The Total 

Environment 2021, 771, 145381, doi:10.1016/j.scitotenv.2021.145381. 
39.  Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and 

climate change on urban temperatures: a systematic review. Landscape Ecol 2017, 32, 1921–1935, 
doi:10.1007/s10980-017-0561-4. 

40.  Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, 
meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze 
River Delta Urban Agglomeration. Science of The Total Environment 2016, 571, 461–470, 
doi:10.1016/j.scitotenv.2016.07.012. 

41.  Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat 
islands. Nature 2014, 511, 216–219, doi:10.1038/nature13462. 

42.  Rakoto, P.Y.; Deilami, K.; Hurley, J.; Amati, M. Revisiting the cooling effects of urban greening: Planning 
implications of vegetation types and spatial configuration. Urban For. Urban Green. 2021, 64, 127266, 
doi:10.1016/j.ufug.2021.127266. 

43.  Xiang, Y.; Ye, Y.; Peng, C.; Teng, M.; Zhou, Z. Seasonal variations for combined effects of landscape metrics 
on land surface temperature (LST) and aerosol optical depth (AOD). Ecological Indicators 2022, 138, 108810, 
doi:10.1016/j.ecolind.2022.108810. 

44.  Xiao, R.; Cao, W.; Liu, Y.; Lu, B. The impacts of landscape patterns spatio-temporal changes on land surface 
temperature from a multi-scale perspective: A case study of the Yangtze River Delta. Science of The Total 

Environment 2022, 821, 153381, doi:10.1016/j.scitotenv.2022.153381. 
45.  Wang, X.; Cheng, H.; Xi, J.; Yang, G.; Zhao, Y. Relationship between Park Composition, Vegetation 

Characteristics and Cool Island Effect. Sustainability 2018, 10, 587, doi:10.3390/su10030587. 
46.  Chen, M.; Jia, W.; Du, C.; Shi, M.; Henebry, G.M.; Wang, K. Carbon saving potential of urban parks due to 

heat mitigation in Yangtze River Economic Belt. Journal of Cleaner Production 2023, 385, 135713, 
doi:10.1016/j.jclepro.2022.135713. 

47.  Zheng, J.; Tarin, M.W.K.; Chen, G.; Zhang, Q.; Deng, C. The characteristics of plant clusters influence on 
the cooling effect: A case study in a subtropical Island Park, China. Global Ecology and Conservation 2022, 34, 
e02055, doi:10.1016/j.gecco.2022.e02055. 

 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0137.v1

https://doi.org/10.20944/preprints202306.0137.v1

