

Review

Not peer-reviewed version

Enhancing Food Safety: Adapting to Microbial Responses Under Diverse Environmental Stressors

[Imran Mohammad](#) , Mohammad Rizwan Ansari , MD Nadeem Bari , Mohammed Sarosh Khan ,
[Mohammad Azhar Kamal](#) ^{*} , Mohammad Anwar

Posted Date: 14 March 2025

doi: 10.20944/preprints202503.1062.v1

Keywords: microbial adaptation; genetic adaptations; microbial ecology; biotechnology; industrial processes; extreme environments; drug development

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Enhancing Food Safety: Adapting to Microbial Responses Under Diverse Environmental Stressors

Imran Mohammad ¹, Mohammed Sarosh Khan ¹, Mohammad Rizwan Ansari ¹,
Mohammad Azhar Kamal ^{2,*}, MD. Nadeem Bari ¹ and Mohammad Anwar ³

¹ Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdul Aziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia

² Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia

³ Shadan College of Allied Health Sciences. Hyderabad. India

* Correspondence: **First author** Imran Mohammad - i.mohammad@psau.edu.sa, **Second author** Dr. Mohammed Sarosh Khan - mo.khan@psau.edu.sa, **Third author** Mohammad Rizwan Ansari - mr.ansari@psau.edu.sa, **Fifth author (Corresponding)** Mohammad Azhar Kamal - ma.kamal@psau.edu.sa **Fifth author MD Nadeem Bari** - nadeembari273@gmail.com **Sixth author** Mohammad Anwar - anwarphd.2010@gmail.com

Abstract: This comprehensive review explores the critical role of microbial adaptation in enhancing food safety by responding to diverse environmental stressors—an essential aspect of microbial ecology with profound implications for biotechnology, environmental management, and public health. We examine the intricate mechanisms underlying microbial adaptation, including genetic modifications such as mutation and horizontal gene transfer, as well as phenotypic plasticity and epigenetic regulation, which enable microorganisms to thrive under adverse conditions. Case studies illustrate microbial resilience in extreme environments, shedding light on their sophisticated adaptive strategies. Additionally, we discuss the practical applications of microbial adaptation in biotechnological domains, including bioremediation, industrial processes, and its emerging contributions to drug development. By addressing future research directions and challenges, this review underscores the necessity of advancing our understanding of microbial-environment interactions to inform innovative strategies for food safety and broader scientific applications.

Keywords: microbial adaptation; genetic adaptations; microbial ecology; biotechnology; industrial processes; extreme environments; drug development

Highlights:

A. Introduction to Microbial Adaptation:

- Microorganisms dynamically adjust to environmental changes.
- Adaptability seen across bacteria, fungi, viruses, and protists.

B. Factors Driving Microbial Adaptation:

- Various stressors including temperature, osmotic stress, pH changes, toxins, and pollutants.
- Dependency on nutrient availability.
- Host-associated adaptation and genetic variation.

C. Implications for Biotechnology and Environmental Management:

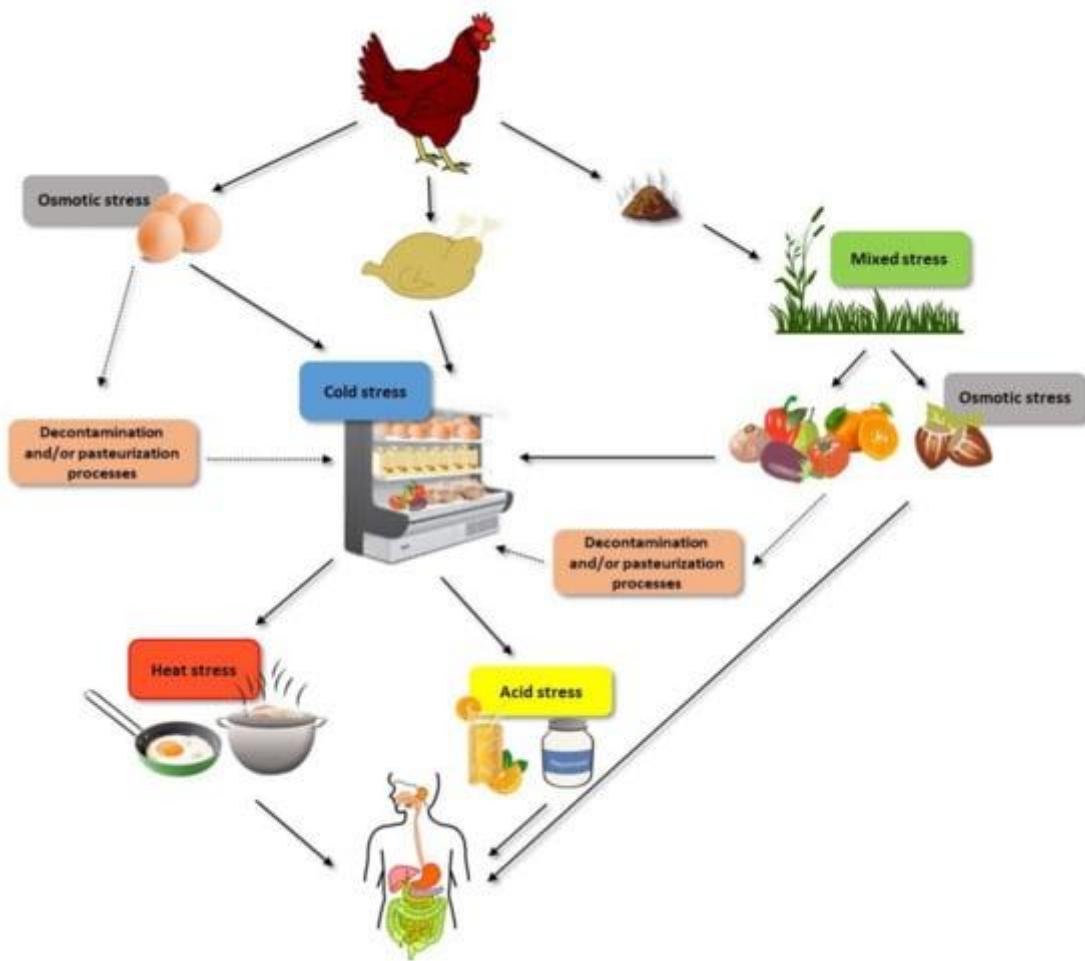
- Applications in bioremediation, industrial fermentation, and bioprospecting.
- Potential for drug development and precision medicine.

D. Incidence Studies of Microbial Adaptation:

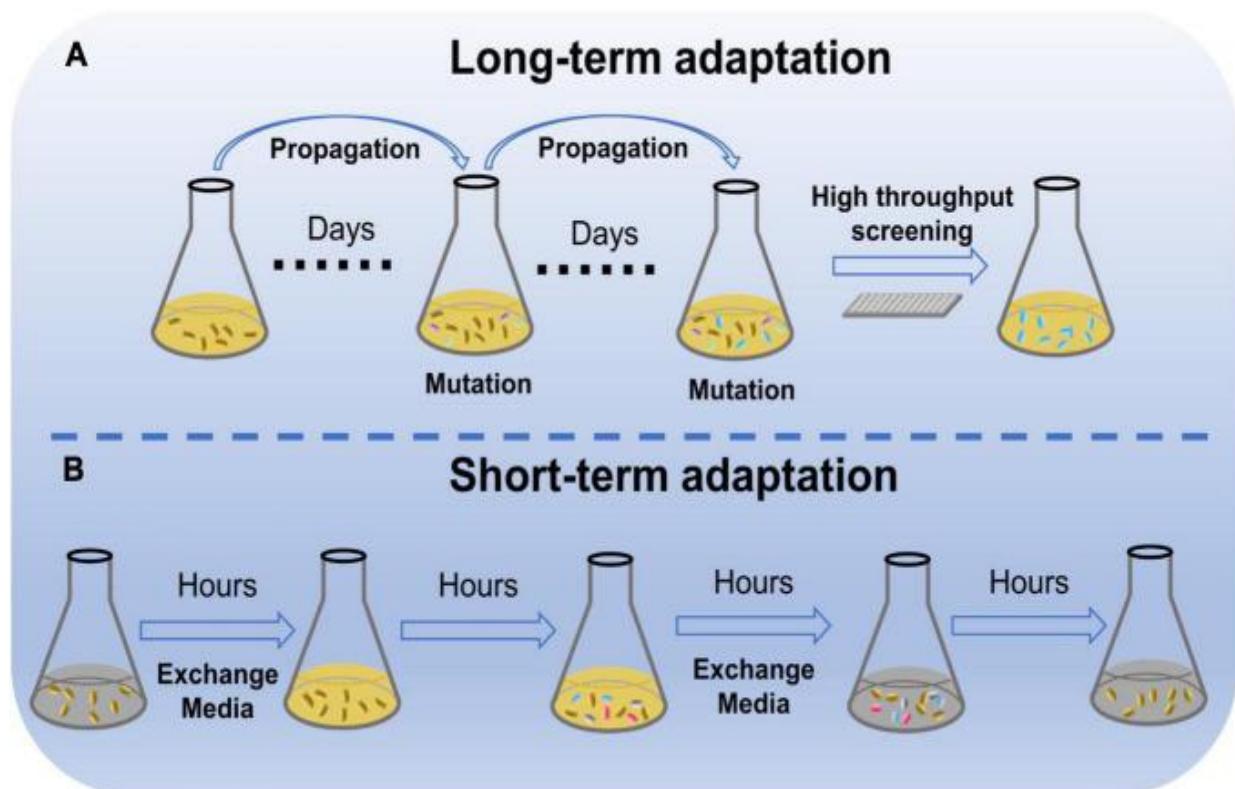
- Case studies on bacterial adaptation to extreme environments, anthropogenic disturbances, and engineered systems.

- Fungal and archaeal adaptation to chemical stress and osmotic stress, respectively.

E. Future Directions and Challenges:


- Emerging environmental stressors like climate change and urbanization.
- Unexplored mechanisms of microbial adaptation including microbial dark matter and non-genetic determinants.
- Technological advancements for studying adaptation such as omics approaches, single-cell analysis, and CRISPR-based tools.

1. Introduction to Microbial Adaptation:


Microbial adaptation constitutes a fundamental process wherein microorganisms dynamically adjust to alterations in their surrounding environment. These adaptable entities, including bacteria, fungi, viruses, and protists, demonstrate a remarkable ability to acclimate and flourish amidst diverse and often challenging conditions. This adaptive prowess proves indispensable for their survival, proliferation, and enduring presence across a spectrum of ecological niches, encompassing natural habitats, industrial settings, and even within host organisms (Toft and Andersson 2010). The adaptive arsenal of microbes encompasses an array of mechanisms, spanning genetic mutations, gene regulation, and horizontal gene transfer, thereby affording microorganisms the capability to progressively acclimate to novel environments over extended periods. Adaptation manifests on varied temporal scales, ranging from swift adjustments through phenotypic plasticity to protracted evolutionary shifts (Goel 2009).

Microbial adaptation involves both short-term and long-term mechanisms that enable microorganisms to survive and thrive in changing environments. Short-term adaptations are rapid and reversible changes, such as altering gene expression, protein modification, and metabolic flexibility, allowing microbes to quickly respond to environmental fluctuations. For example, as shown in **Figure 1 and Figure 2**, bacteria can rapidly adjust their metabolic pathways depending on nutrient availability. Long-term adaptations involve genetic changes through mutation, horizontal gene transfer, and genetic recombination, leading to permanent evolutionary changes that provide sustained advantages. These processes allow microbes to develop traits like antibiotic resistance and enhanced biofilm formation, ensuring their survival and proliferation in diverse conditions.

Recognizing that microbial growth is frequently impeded by environmental stresses, bolstering stress resistance emerges as a strategic imperative for enhancing cell growth and increasing product yields. Extensive efforts have been dedicated to elucidating stress-specific resistance mechanisms in microbial cells (Hosseini et al. 2015). However, the current literature lacks a comprehensive synthesis of these mechanisms and their relevance in the production of industrially significant chemicals. Herein, we provide a coherent overview of recent advancements in understanding resistance mechanisms to various environmental stresses, including oxidative stress, hyperosmotic stress, thermal stress, acid stress, and organic solvent stress. Additionally, we explore the applications of stress-resistant mechanisms in producing diverse biomolecules and valuable chemicals (Hyde et al. 2016). Finally, we discuss prospects for identifying stress-resistant mechanisms through systems biology and further engineering these elements using synthetic biology to enhance productivity.

Figure 1. Examples of the different stresses that non-Thyphoidal Salmonella cells can face before being ingested with food (Guillén et al. Foods, 2021).

Figure 2. Microbial stress adaptation. **(A)** Schematic diagram of long-term adaptation of microorganisms to their environment. **(B)** Schematic diagram of short-term adaptation of microorganisms to their environment (Tan et al. *Frontiers in Microbiology* 2022).

1.1. Significance of Understanding Microbial Adaptation to Environmental Stress

1.1.1. Biotechnological Applications

Microbial adaptation underpins numerous biotechnological processes, including industrial fermentation, bioremediation, agro-food, and pharmaceuticals, paper, Testile and biofuel production. A nuanced comprehension of microbial adaptation mechanisms facilitates the optimization of these processes, engendering heightened efficiency and productivity (Smidt, et al., 2023).

White biotechnology, commonly referred to as the application of biotechnology in industrial settings, relies heavily on biocatalysts, including enzymes and microorganisms. These biocatalysts play a pivotal role in driving technological advancements within the burgeoning bioeconomy. They are already widely utilized across various sectors such as chemicals, agro-food, and pharmaceuticals, contributing to the production of a diverse array of products ranging from antibiotics to advanced polymers. This review offers a comprehensive and global perspective on the synergistic relationship between biotechnology fields operating at both the enzyme and microorganism levels. It highlights state-of-the-art approaches aimed at enhancing the industrial viability of biocatalysts, with a particular focus on their application within the biorefinery sector (Heux et al. 2015).

1.1.2. Human Health

The continual adaptation of pathogenic microorganisms to environmental stressors precipitates the emergence of antibiotic resistance and heightened virulence, underscoring the imperative of understanding microbial adaptation. Such insights inform the development of strategies to combat infectious diseases and mitigate the proliferation of drug-resistant pathogens, thus safeguarding public health (Zhang et al. 2020).

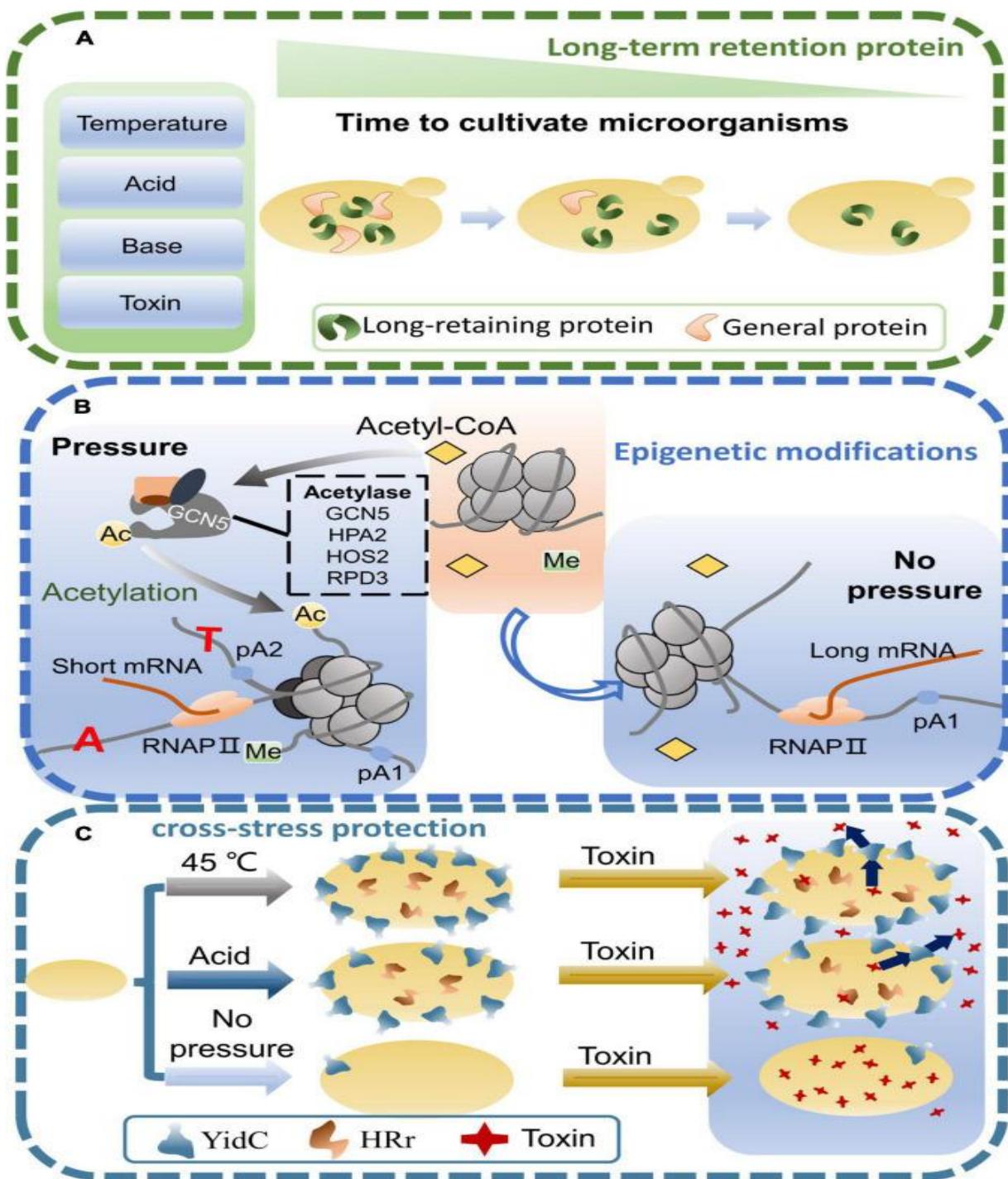
Antibiotics, as biologically active compounds, pose a significant concern due to their potential toxic effects in aquatic ecosystems. Their widespread presence across various environmental settings, coupled with the absence of specific regulations for monitoring, underscores their status as contaminants of growing apprehension. Recognizing this, the European Commission has instituted a Watch List of substances, antibiotics included, urging Member States to gather data on antibiotic concentrations in the environment. This initiative aims to determine whether these substances warrant prioritized monitoring. Notably, fluoroquinolones, ciprofloxacin, amoxicillin, azithromycin, clarithromycin, and erythromycin features are well known and mentioned so many previous studies. Antibiotics are typically administered in aquaculture settings either through feed supplementation or immersion via closed containers (Pepi and Focardi 2021).

1.1.3. Environmental Sustainability

Microbial adaptation constitutes a essential of ecosystem functioning, exerting profound influences on processes such as nutrient cycling, decomposition, and soil fertility. Investigating microbial adaptation furnishes predictive insights into the response of microbial communities to environmental perturbations, thereby facilitating informed ecosystem management and conservation endeavors (Lu and Jiang 2023).

And specially forestry are essential part of ecosystems with insightful ecological significance, playing vital roles in preserving biodiversity, cycling carbon, regulating climate, maintaining hydrological balance, protecting soil, preventing erosion, providing resources, fostering eco-tourism, and enriching culture. These values not only shape the ecosystems themselves but also intricately intertwine with human society's development and well-being. However, the escalating global temperatures are revealing the increasingly apparent impacts of climate change on forests, posing formidable challenges (Mulder et al. 2011). Consequently, there has been a surge in global research

attention toward understanding the multifaceted effects of climate change on forest ecosystems. This paper aims to offer a comprehensive review of the latest advancements in this field, exploring how climate change influences the structure, functionality, and biodiversity of forest ecosystems. The insights presented herein provide valuable guidance toward achieving sustainable development objectives (Losapio et al. 2024).


1.1.4. Climate Change

Given their sensitivity to environmental fluctuations, microorganisms serve as sentinel indicators of climate change while actively contributing to climate regulation. A comprehensive understanding of microbial adaptation dynamics affords valuable insights into ecosystem resilience and the ramifications of climate change on biodiversity and ecosystem services, thereby informing adaptive strategies (Tiedje et al. 2022). The tough challenge of climate change stands as humanity's most pressing concern. Microbes play a dual role in this global issue, both producing and consuming three significant greenhouse gases: carbon dioxide, methane, and nitrous oxide. Moreover, certain microbial species contribute to human, animal, and plant diseases, which may be exacerbated by the changing climate (Toft and Andersson 2010). Therefore, concerted microbial research efforts are imperative to mitigate the escalating warming trends and the subsequent cascading impacts, including heatwaves, droughts, and intensified storms. In this discourse, we provide a concise overview of current knowledge regarding microbial responses to climate change across three primary ecosystems: terrestrial, oceanic, and urban. Furthermore, we propose avenues for novel research endeavors aimed at curbing microbial greenhouse gas emissions and alleviating the pathogenic effects of microbes (Hosseini et al. 2015).

2. Factors Driving Microbial Adaptation

Microbial adaptation is intricately shaped by a myriad of factors, encompassing environmental stressors, genetic variation, ecological interactions, and evolutionary dynamics. Understanding these drivers provides valuable insights into the mechanisms underpinning microbial resilience and adaptive responses across diverse habitats and conditions (An et al. 2020)(Tan et al. 2022).

The utilization of cell factories of microbial for chemical production is widespread in industries and Villages as home made alcohol. Despite the advancements brought by synthetic biology in enhancing these factories, adaptation remains a crucial strategy for augmenting their complex properties. Stress tolerance enhancement in microbial cell factories heavily relies on adaptation (**Figure 3**). This process entails gradual alterations in microorganisms within stressful environments to bolster their tolerance (Thorwall et al. 2020). Microorganisms employ various mechanisms during adaptation to enhance their utilization of non-preferred substrates and stress tolerance, thereby augmenting their capacity for growth and survival.

Figure 3. Mechanisms of microbial stress adaptation. **(A)** When microorganisms are subjected to environmental stress, the long-retaining proteins are produced to protect the cells for a long time. **(B)** Effects of environmental stress on microbial epigenetic modifications. When microorganisms are stimulated by external environmental stress, epigenetic modifications are altered, affecting transcription and translation processes. **(C)** Microorganisms are adapted to a stressful environment, resulting in cross protection against stress. Growth advantages can also be shown when switching to other stressful environments (Tan et al. *Frontiers in Microbiology* 2022).

2.1. Natural and Synthetic Microbial Stressors

In the dominion of microbiology, understanding microbial adaptation emerges as definitive, given the numerous environmental stressors that microbes encounter. These stressors, ranging from temperature extremes to fluctuations in osmotic pressure, pH levels, and exposure to toxins (Figure

3), pose significant threats to microbial survival and cellular processes. The comprehension of microbial adaptation extends its relevance across a broad spectrum of disciplines, including microbiology, ecology, biotechnology, and medicine. Microbes exhibit remarkable resilience in navigating these challenges, deploying intricate adaptive mechanisms to ensure their functionality and survival in dynamically changing environments (Feckler et al. 2018).

2.1.1. Temperature Variations

Temperature exerts a profound influence on microbial physiology and metabolism, serving as a critical determinant of microbial distribution and activity across ecosystems. Microbes exhibit remarkable adaptations to temperature gradients, enabling survival in extreme thermal environments such as hydrothermal vents, permafrost, and thermal springs. Temperature-driven adaptations encompass alterations in membrane fluidity, enzyme kinetics, and heat shock protein expression, facilitating thermal tolerance and metabolic flexibility (Yang et al. 2021).

2.1.2. Osmotic Stress

Osmotic stress arises from disparities in solute concentrations, imposing challenges to microbial cell integrity and water balance. Microbes adeptly adapt to osmotic fluctuations encountered in diverse habitats, including hypersaline environments, desiccated soils, and marine ecosystems. Osmoadaptation mechanisms encompass the synthesis of compatible solutes, osmoprotectants, and osmoregulatory systems, facilitating cellular osmotic balance and stress mitigation (Csonka 1989).

The bacterial cell's cytoplasm, a densely packed cellular region, holds significant osmotic potential. This characteristic, combined with the semipermeable nature of the cytoplasmic membrane and the semi-elasticity of the cell wall, leads to osmotically induced water influx. This influx creates turgor pressure, a vital hydrostatic force crucial for the cell's growth and viability (Bremer and Kramer 2019).

2.1.3. pH Changes

pH serves as a fundamental environmental parameter influencing microbial growth, metabolism, and community structure. Microbes demonstrate remarkable adaptations to acidic, neutral, and alkaline pH regimes prevalent in terrestrial, aquatic, and extreme environments. pH-adaptive strategies encompass alterations in membrane permeability, proton pumps, and pH homeostasis mechanisms, enabling microbial survival and proliferation in pH-challenging habitats (S. Liu et al. 2015).

2.1.4. Toxins and Pollutants

For over 70 years, antibiotics have served as indispensable tools in combating bacterial infections, safeguarding countless lives and revolutionizing medicinal practices. Beyond their primary role in disease treatment, these small yet potent bioactive compounds have found application in various other medical contexts. However, despite their monumental contributions to human health, the global proliferation of multidrug-resistant (MDR) bacteria poses a mounting challenge. The escalating prevalence of these resilient pathogens underscores the urgent need for innovative strategies to preserve the efficacy of antibiotics and sustain our ability to combat infectious diseases effectively (Uddin et al. 2021).

In parallel, pesticides play a crucial role in modern agriculture, facilitating enhanced crop yields and ensuring food security. With the continual introduction of novel active ingredients boasting improved efficiencies, pesticide production and consumption have surged worldwide. Yet, alongside their benefits, improper pesticide application and storage practices frequently result in environmental contamination, affecting plant tissues, air, water, and soil. This contamination can induce the development of tolerance, resistance, or persistence in target organisms and even stimulate microbiomes within these environments to evolve mechanisms for pesticide degradation.

Consequently, the management of pesticide use and its environmental impact remains a critical concern for agricultural sustainability and ecosystem health (Ramakrishnan et al. 2019).

2.2. *Dependancy on Nutrient Availability*

Nutrient availability constitutes a pivotal determinant of microbial growth, diversity, and ecosystem functioning. Microbial populations exhibit dynamic adaptations to fluctuations in carbon, nitrogen, phosphorus, and micronutrient availability encountered in terrestrial, aquatic, and host-associated environments. Adaptive responses encompass metabolic reprogramming, nutrient scavenging, and symbiotic interactions, enabling microbial exploitation of diverse nutritional resources and niche colonization (Li et al. 2017).

2.2.1. Chemical Stressors

Microbes encounter a plethora of chemical stressors, including toxic metals, organic pollutants, antimicrobial agents, and xenobiotic compounds, in natural, industrial, and anthropogenic environments. Microbial populations evolve diverse mechanisms to detoxify, sequester, or metabolize toxic substances, encompassing metal resistance genes, xenobiotic degradation pathways, and antibiotic resistance mechanisms. Chemical stress adaptation confers microbial resilience to contaminated habitats and industrial processes, with implications for bioremediation, public health, and environmental sustainability (Abee and Wouters 1999).

Microbes adapt to fluctuations in nutrient availability by adjusting metabolic pathways, scavenging mechanisms, and nutrient uptake systems. Carbon sources: Microbes utilize a diverse range of carbon sources, including sugars, organic acids, and hydrocarbons, and adapt their metabolic machinery accordingly. Nitrogen, phosphorus, and sulfur sources: Microbes employ various strategies to acquire essential nutrients like nitrogen, phosphorus, and sulfur from the environment, especially in nutrient-limited conditions (Garcia-Pausas and Paterson 2011).

2.3. *Host-Associated Adaptation:*

Pathogenic microbes adapt to host environments to establish infection and evade host immune responses.

Commensal and symbiotic microbes adapt to niches within host organisms, forming mutualistic relationships that benefit both microbe and host. Gut microbiota, for example, adapt to the dynamic conditions of the gastrointestinal tract, influenced by factors such as diet, immune responses, and microbial competition (Olive and Sassetti 2016).

2.4. *Genetic Variation and Evolution*

Microbes exhibit high genetic diversity due to rapid mutation rates, horizontal gene transfer, and genetic recombination. Selection pressures in various environments drive the evolution of adaptive traits in microbial populations. Evolutionary processes such as natural selection, genetic drift, and gene flow shape microbial adaptation over time (Boyce 2022).

2.4.1. Mutation and Genetic Diversity

Microbial populations harbor extensive genetic diversity, driven by mutation, recombination, and horizontal gene transfer, facilitating adaptive evolution in response to environmental selection pressures. Mutational mechanisms, including point mutations, insertions, deletions, and genome rearrangements, generate genetic variants with altered phenotypic traits, enabling microbial adaptation to changing environments (Martinez and Baquero 2000).

2.4.2. Horizontal Gene Transfer (HGT)

Horizontal gene transfer serves as a major driver of microbial adaptation, enabling the acquisition and dissemination of adaptive traits across phylogenetic boundaries. Mechanisms of

HGT, including conjugation, transduction, and transformation, mediate the exchange of genetic material encoding antibiotic resistance, metabolic pathways, and virulence factors, shaping microbial community dynamics and adaptive potential (Elena and Lenski 2003).

2.4.3. Selection Pressures and Evolutionary Dynamics

Microbial populations undergo continual selection pressures in response to environmental fluctuations, driving the evolution of adaptive traits over evolutionary timescales. Natural selection, genetic drift, and gene flow shape microbial adaptation, leading to the emergence of genetic variants with enhanced fitness and ecological success. Evolutionary dynamics underpin microbial diversification, speciation, and niche specialization, influencing ecosystem resilience and stability (Drake 1991).

2.5. Ecological Interactions

2.5.1. Microbial Interactions and Community Dynamics

Microbial adaptation is influenced by interactions within microbial communities, encompassing competition, cooperation, predation, and symbiosis. Competitive interactions drive niche partitioning, resource utilization, and microbial diversity, shaping community structure and ecosystem functioning. Cooperative interactions, such as mutualism and syntrophy, facilitate resource sharing, metabolic cooperation, and niche expansion, enhancing microbial fitness and adaptive capacity (Rodriguez-Verdugo et al. 2019).

2.5.2. Host-Microbe Interactions

Microbial adaptation is shaped by interactions with host organisms across diverse symbiotic, commensal, and pathogenic associations. Host-associated microbes adapt to host-specific environments, physiological conditions, and immune responses, influencing microbial colonization, virulence, and disease outcomes. Coevolutionary dynamics between hosts and microbes drive the emergence of host-adapted strains, immune evasion strategies, and microbial symbioses, with implications for human health, agriculture, and ecological resilience (Rodriguez-Verdugo et al. 2019).

2.6. Anthropogenic Influences

2.6.1. Environmental Perturbations and Anthropogenic Stressors

Human activities exert profound impacts on microbial communities and ecosystems, altering environmental conditions, nutrient cycles, and microbial habitats. Anthropogenic stressors, including pollution, habitat destruction, climate change, and antimicrobial use, impose selective pressures on microbial populations, driving adaptive responses and ecological shifts. Microbial adaptation to anthropogenic stressors influences ecosystem services, public health, and environmental sustainability, underscoring the interconnectedness of human and microbial systems (Valliere et al. 2020).

2.6.2. Biotechnological Applications and Engineered Microbes

Microbial adaptation is harnessed in biotechnological applications, spanning industrial processes, bioremediation, agriculture, and medicine. Engineered microbes with enhanced stress tolerance, metabolic capabilities, and bioactive properties are developed for diverse biotechnological purposes, including biofuel production, enzyme synthesis, bioremediation of contaminated sites, and microbial-based therapies. Understanding microbial adaptation informs the design and optimization of biotechnological systems, enhancing efficiency, sustainability, and innovation in bioprocess engineering (Calero and Nikel 2019).

Microbial adaptation arises from the interplay of environmental stressors, genetic variation, ecological interactions, and anthropogenic influences, driving the resilience, diversity, and adaptive potential of microbial communities across diverse habitats and ecosystems. A holistic understanding of these factors is essential for elucidating microbial responses to environmental change, guiding ecosystem management, and harnessing microbial diversity for biotechnological innovation and sustainability (Schimel et al. 2007).

2.6.3. Mechanisms of Microbial Adaptation

Microbial adaptation is driven by an array of sophisticated mechanisms that enable microorganisms to dynamically respond to environmental changes. These mechanisms encompass intricate processes at the genetic, molecular, and cellular levels, orchestrating adaptive responses that promote survival and proliferation in challenging conditions (Mitchell et al. 2009).

Some microorganisms inhabit environments characterized by erratic fluctuations, while others occupy more predictable habitats, allowing them to prepare for impending environmental changes. Analogous to classical Pavlovian conditioning, microorganisms may have evolved the ability to anticipate environmental stimuli by adapting to their temporal sequence. In this study, we provide evidence supporting the phenomenon of environmental change anticipation in two model microorganisms, *Escherichia coli* and *Saccharomyces cerevisiae*. Our findings demonstrate that anticipation represents an adaptive trait, as pre-exposure to a stimulus occurring early in the ecological sequence enhances the organism's fitness when subsequently faced with a second stimulus (Bohnert et al. 1995). Furthermore, our laboratory evolution experiment reveals a loss of the conditioned response in *E. coli* strains repeatedly exposed solely to the initial stimulus.

3. Implications for Biotechnology and Environmental Management:

Microbial adaptation is not merely a concept but a dynamic force driving the forefront of biotechnological advancements and reshaping the paradigms of environmental stewardship. By tapping into the intricate mechanisms of microbial adaptation, we unlock a myriad of potential solutions to complex environmental issues while revolutionizing industrial processes. This approach not only offers practical solutions to mitigate environmental challenges but also holds the key to unlocking unprecedented levels of efficiency, sustainability, and innovation across diverse industrial sectors.

3.1. Bioremediation Strategies

Bioremediation harnesses the metabolic versatility and adaptive resilience of microorganisms to mitigate environmental pollution and restore contaminated ecosystems. Microbes play pivotal roles in degrading diverse pollutants, including hydrocarbons, heavy metals, pesticides, and industrial chemicals. Understanding microbial adaptation mechanisms is instrumental in designing tailored bioremediation strategies for specific contaminants and environmental contexts (Joshi et al. 2024).

3.1.1. Adaptive Microbial Syndicates

Formulating microbial consortia comprising diverse microbial species with complementary metabolic capabilities enhances bioremediation efficacy. Communities of microbial life exert significant influence on system regulation and stability across a spectrum of ecological scales, from the minutest niche to the global arena (Smidt et al., 2023). Yet, our understanding of interaction patterns and external factors governing the dynamics of natural microbial communities remains limited due to the constraints of laboratory studies focused on single or few species assemblies. However, the integration of microfluidic technologies with advancements in the fabrication of functional and stimuli-responsive materials has opened pathways to creating artificial microbial environments (Joshi et al. 2024). These environments serve as habitats for both natural and multispecies synthetic consortia, offering opportunities for detailed investigations and the

exploration of microbial community dynamics. Moreover, they facilitate the training and directed evolution of microbial communities, allowing researchers to study states of equilibrium and disturbance, as well as the effects of modulated stimuli and spontaneous response triggers. These consortia exhibit synergistic interactions and adaptive responses, enabling efficient degradation of complex pollutant mixtures (Wondraczek et al. 2019).

3.1.2. Engineered Biodegradation Pathways

Genetic engineering techniques enable the modification of microbial metabolic pathways to enhance pollutant degradation efficiency and broaden substrate specificity. Rational design of microbial strains equipped with specialized enzymes facilitates targeted degradation of recalcitrant contaminants. Facing formidable environmental challenges, environmental biotechnology emerges as a pivotal tool to mitigate or eradicate pollution. Recent years have witnessed a surge in attention towards environmental pollution in China, prompting a comprehensive review of biodegradation research within the nation (Yong and Zhong 2010). This review encompasses advancements such as the isolation of extremophilic microorganisms capable of degrading pollutants under extreme conditions, as well as investigations into genes and enzymes integral to biodegradation pathways. Moreover, biodegradation engineering stands out as a promising and robust platform, integrating genetic engineering, process engineering, and signal transduction engineering. Furthermore, the integration of pollutant remediation with the generation of renewable bioenergy sources by microorganisms presents an enticing prospect (Pan et al. 2023).

3.1.3. In Situ Bioremediation Technologies

Application of in situ bioremediation approaches, such as bioaugmentation and biostimulation, relies on microbial adaptation to optimize pollutant degradation under field conditions. Manipulating environmental parameters, such as nutrient availability and oxygen levels, fosters microbial adaptation and enhances remediation performance (Maitra 2018).

In situ bioremediation, the treatment of contaminated soil directly at its location, offers several advantages over ex-situ methods. This approach eliminates the need for excavation equipment, making it more cost-effective and reducing the dispersal of dust and contaminants into the surrounding environment. However, there are drawbacks to consider. In situ bioremediation may require more time to achieve complete decontamination, as it relies on natural processes. Additionally, its effectiveness is limited in compacted soil and may be less controllable compared to ex-situ techniques (Council 1993).

3.2. Industrial Applications of Stress-Resistant Microorganisms

Stress-resistant microorganisms exhibit enhanced tolerance to adverse environmental conditions prevalent in industrial settings, offering immense potential for optimizing biotechnological processes and industrial production systems. The microbial biosynthesis of nanoparticles has emerged as a cost-effective and environmentally friendly alternative. This green approach offers numerous advantages, including high stability, water solubility, biocompatibility, rapid production rates, and low cost. Various microorganisms, such as *Candida glabrata*, *Schizosaccharomyces pombe*, *Fusarium oxysporum*, *Saccharomyces cerevisiae*, and *Escherichia coli*, have been harnessed for biosynthesizing cadmium-based quantum dots (QDs). Many reported procedures for QD biosynthesis rely on biological molecules with antioxidant properties, particularly metal-binding molecules rich in thiols. For example, in one notable instance, phytochelatins derived from *S. pombe* have been utilized to synthesize CdS QDs within *E. coli* (Gallardo et al. 2014).

3.2.1. Industrial Fermentation

Stress-resistant microbes are employed in industrial fermentation processes for the production of biofuels, pharmaceuticals, enzymes, and fine chemicals. Enhanced stress tolerance enables

microbes to thrive in harsh fermentation conditions, such as high temperature, acidity, and substrate inhibition. To standardize cocoa fermentation and minimize losses caused by cocoa bean variability, utilizing a microbial preparation containing pectinolytic strains as a starter culture proves beneficial. This study examines carbon metabolism, fermentative capacity, and the impact of environmental conditions on pectinase synthesis within four yeast strains known for their high pectinolytic activity and stress resilience. The strains exhibit a limited carbon metabolism profile, fermenting glucose and fructose exclusively, and demonstrate optimal growth when these carbon sources are present at 5% (Samagaci et al. 2015).

3.2.2. Bioprocessing Technologies

Stress-resistant microorganisms serve as robust biocatalysts in various bioprocessing technologies, including wastewater treatment, biogas production, and bioleaching. Their resilience to fluctuating environmental conditions enhances process reliability and efficiency, minimizing operational disruptions and resource wastage. Anaerobic co-digestion (AcoD) offers an opportunity to leverage excess digestion capacity in existing wastewater treatment plants (WWTPs) for the production of surplus biogas, surpassing the plant's internal energy needs. Industry reports and peer-reviewed literature demonstrate numerous instances where WWTPs have transitioned into net energy producers through AcoD, prompting the exploration of alternative high-value uses for surplus biogas. An emerging global trend involves upgrading biogas to biomethane, a versatile energy source suitable for applications such as town gas or transportation fuel (Nguyen et al. 2021).

3.2.3. Biopolymer Production

Microbial production of biopolymers, such as polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS), relies on stress-resistant microbial strains capable of withstanding adverse growth conditions prevalent in industrial bioreactors. These biopolymers find diverse applications in bioplastics, food additives, and pharmaceutical formulations. Diverse pathways drive the synthesis of biopolymers sourced from nature. These polymers can either be chemically synthesized from biological constituents or harvested from living organisms. Microorganisms, in particular, stand out as prominent producers of biopolymers, offering scalability benefits over plant-derived alternatives. To optimize the production of microbial biopolymers, advancements in genetic engineering techniques are leveraged to engineer growth conditions at the medium level, thus facilitating enhanced production yields (Verma et al. 2020).

3.3. Potential for Drug Development

Microbial adaptation mechanisms offer valuable insights for drug development efforts aimed at combating infectious diseases, antimicrobial resistance, and emerging pathogens. Understanding how microbes evolve resistance to antimicrobial agents informs the design of novel therapeutics and treatment strategies to mitigate the spread of drug-resistant infections. The rise and dissemination of drug-resistant pathogens, coupled with our struggles to devise novel antimicrobials to combat resistance, have spurred scientists to explore alternative targets for drug development. Among these targets, cellular bioenergetics emerges as a promising avenue, particularly in the quest for new anti-tuberculosis medications, as evidenced by the entry of numerous novel compounds into clinical trials. Within this review, we delve into the bioenergetics of diverse bacterial pathogens, showcasing the adaptability of electron donor and acceptor utilization, as well as the modular nature of electron transport chain components in bacteria (Cook et al. 2014).

3.3.1. Antibiotic Discovery

Exploration of microbial adaptation mechanisms in antibiotic-producing microorganisms unveils novel biosynthetic pathways and antimicrobial compounds with therapeutic potential. Screening microbial biodiversity for natural product discovery identifies bioactive molecules capable

of overcoming antibiotic resistance mechanisms. The amalgamation of antibiotics presents a promising avenue for enhancing treatment efficacy and mitigating resistance evolution. When antibiotics are merged, their impact on cellular function can either be augmented or diminished, resulting in synergistic or antagonistic interactions. Recent research has shed light on the underlying mechanisms of these interactions by elucidating the collective effects of antibiotics on cell physiology (Bollenbach 2015).

3.3.2. Targeting Virulence Factors

Disruption of microbial virulence factors essential for pathogenesis represents a promising approach for developing alternative antimicrobial therapies. Understanding microbial adaptation in host-pathogen interactions elucidates vulnerabilities exploitable for therapeutic intervention, such as inhibiting quorum sensing or biofilm formation. The global public health challenge of diminishing antimicrobial efficacy necessitates urgent improvement of our arsenal against infectious diseases. With a noticeable scarcity in new antibacterial drugs, exploring alternative sources for prototype compounds becomes imperative. Plants offer a promising avenue due to their natural production of a diverse array of secondary metabolites, serving as a robust chemical defense against microorganisms in the environment. Therefore, leveraging plant species as a reservoir of potential antimicrobial agents holds considerable promise in addressing this pressing issue (Silva et al. 2016).

3.3.3. Precision Antimicrobial Therapy

Tailoring antimicrobial therapies based on microbial adaptation profiles and genomic signatures enables precision medicine approaches for treating drug-resistant infections. Personalized treatment regimens account for individual microbial susceptibility patterns and adaptability dynamics, optimizing therapeutic outcomes while minimizing collateral damage to beneficial microbiota. The escalating prevalence of infections attributable to multidrug-resistant pathogens underscores the imperative of adopting a 'patient-centered' approach to antimicrobial therapies. Within this context, the implementation of therapeutic drug monitoring (TDM) for emerging antimicrobial agents holds promise as a valuable strategy. However, to maximize their clinical utility, expert interpretation of TDM results is essential (Gatti and Pea 2023).

4. Future Directions and Challenges

The path of microbial adaptation investigation is boosted by a twofold imperious: to confront emerging challenges and harness technological advancements for a comprehensive understanding of the intricate mechanisms governing microbial responses to environmental stressors. As the landscape of environmental stressors continues to evolve rapidly, driven by anthropogenic activities, climatic shifts, and emerging ecological perturbations, researchers are tasked with deciphering how microorganisms acclimate and evolve in response to these dynamic forces. This research trajectory encompasses a multidisciplinary approach, integrating insights from genomics, metagenomics, transcriptomics, proteomics, metabolomics, and single-cell analysis to illuminate the molecular underpinnings of microbial adaptation. Furthermore, advancements in computational biology, machine learning, and predictive modeling empower researchers to discern complex patterns in microbial adaptation dynamics and forecast microbial responses to environmental changes with unprecedented precision. Moreover, CRISPR-based genome editing technologies and high-throughput cultivation platforms offer powerful tools for manipulating microbial genomes and characterizing adaptive phenotypes across diverse microbial taxa. As researchers navigate this ever-expanding frontier of microbial adaptation research, they are not only poised to unravel the fundamental principles governing microbial resilience and adaptation but also to pioneer transformative solutions for mitigating environmental challenges, advancing biotechnological innovation, and safeguarding human and environmental health.

4.1. Emerging Environmental Stressors

The landscape of environmental stressors confronting microbial communities is continually evolving, spurred by anthropogenic activities, climatic shifts, and emerging ecological perturbations. Understanding and mitigating the impacts of these novel stressors represent pressing imperatives for microbial adaptation research (Benedetti et al. 2022).

4.1.1. Climate Change-Induced Stressors

Rapid climate change is heralding unprecedented shifts in temperature regimes, precipitation patterns, and habitat availability, imposing novel selective pressures on microbial populations. Investigating how microorganisms acclimate and evolve in response to these climatic upheavals is paramount for predicting ecosystem dynamics and safeguarding biodiversity (Aggarwal et al. 2022).

4.1.2. Pollutant and Contaminant Dynamics

The proliferation of synthetic chemicals, pharmaceuticals, and industrial pollutants introduces novel stressors into microbial habitats, exerting profound ecological and health ramifications. Charting the adaptive trajectories of microbial communities in response to these contaminants is crucial for devising targeted remediation strategies and mitigating environmental pollution (Subedi et al. 2015).

4.1.3. Urbanization and Habitat Fragmentation

Urban expansion and habitat fragmentation pose unprecedented challenges to microbial communities, disrupting ecological connectivity, and altering microbial diversity and function. Unraveling the adaptive strategies employed by urban-adapted microbes is essential for managing urban ecosystems and mitigating the ecological consequences of urbanization (Riley et al. 2003).

4.2. Unexplored Mechanisms of Microbial Adaptation

While significant strides have been made in elucidating microbial adaptation mechanisms, vast swathes of microbial diversity remain enigmatic, underscoring the need to probe hitherto unexplored facets of microbial adaptation (Seufferheld et al. 2008).

4.2.1. Microbial Dark Matter

The microbial dark matter, comprising uncultured and genetically uncharacterized microbial taxa, represents a vast reservoir of untapped adaptive potential. Unlocking the genomic and physiological attributes of these elusive microbes holds the key to unveiling novel adaptation mechanisms and expanding our understanding of microbial biodiversity (Selden et al. 2016).

4.2.2. Microbial Interactions and Community Dynamics

Microbial adaptation is intricately intertwined with interspecies interactions and community dynamics, yet our comprehension of these complex networks remains rudimentary. Investigating how microbial communities coalesce, compete, and coevolve in response to environmental stressors promises to yield profound insights into ecosystem resilience and stability (van Vliet et al. 2022).

4.2.3. Non-Genetic Determinants of Adaptation

Beyond genetic variation, microbial adaptation is shaped by a myriad of non-genetic factors, including epigenetic modifications, post-transcriptional regulation, and phenotypic plasticity. Unraveling the contributions of these non-genetic determinants to microbial adaptation represents a frontier of inquiry with far-reaching implications for evolutionary biology and biotechnology (Frankel et al. 2014)[76].

4.3. Technological Advancements for Studying Adaptation

Advancements in analytical techniques, computational tools, and high-throughput methodologies are revolutionizing our capacity to probe microbial adaptation dynamics with unprecedented resolution and scope (Postollec et al. 2011).

4.3.1. Omics Approaches

Genomics, metagenomics, transcriptomics, proteomics, and metabolomics empower comprehensive profiling of microbial communities and their adaptive responses to environmental perturbations. Integrating multi-omics datasets enables holistic elucidation of adaptation mechanisms and ecological interactions within microbial ecosystems (Sharma et al. 2022).

4.3.2. Single-Cell Analysis

Single-cell technologies afford unparalleled insights into microbial heterogeneity and phenotypic diversity, enabling the dissection of adaptive responses at the individual cell level. Leveraging single-cell omics approaches illuminates rare and transient adaptation events, shedding light on elusive microbial adaptation strategies (Wu and Tzanakakis 2013).

4.3.3. Machine Learning and Predictive Modeling

Machine learning algorithms and predictive modeling frameworks harness big data analytics to decipher complex patterns in microbial adaptation dynamics. By discerning predictive features of adaptive phenotypes, these computational tools facilitate the design of targeted interventions and the forecasting of microbial responses to environmental changes. The advent of next-generation sequencing technologies has transformed the study of the human microbiome, propelling it into a rapidly expanding research field. This technological advancement has democratized access to high-throughput sequencing, leading to a wealth of microbiome data that offer unprecedented insights into human health and disease (Wang et al. 2021).

4.3.4. CRISPR-Based Tools for Genetic Manipulation

CRISPR-based genome editing technologies enable precise manipulation of microbial genomes, facilitating functional characterization of genes and regulatory elements underlying adaptation. CRISPR-enabled high-throughput screening platforms expedite the discovery of adaptive genetic variants and elucidation of gene function in diverse microbial taxa (Donohoue et al. 2018).

4.3.5. Microfluidics and High-Throughput Cultivation

Microfluidic devices and high-throughput cultivation platforms streamline the cultivation and characterization of diverse microbial isolates under controlled environmental conditions. These technologies expedite the identification of adaptive phenotypes, niche-specific adaptations, and biotechnologically relevant traits across microbial taxa (Hegab et al. 2013).

5. Conclusion

In this comprehensive review, we have delved into the pivotal role of microbial adaptation to diverse environmental stressors, highlighting its significance within microbial ecology and its wide-ranging implications across biotechnology, environmental management, and public health. By exploring the mechanisms underlying microbial adaptation—such as genetic adaptations (mutation and horizontal gene transfer), phenotypic plasticity, and epigenetic modifications—we have elucidated how microorganisms thrive in challenging conditions (**Table 1**). The case studies provided underscore the remarkable resilience of microbes in extreme environments and offer valuable insights into their adaptive strategies.

Microbial adaptation stands as a cornerstone of microbial ecology, influencing the dynamics of ecosystems, industrial processes, and human health. Through this review, several key findings have emerged, shedding light on the intricate mechanisms and implications of microbial adaptation to various environmental stresses. Understanding these mechanisms is crucial for leveraging microbial capabilities in biotechnological applications, including bioremediation and industrial processes, as well as their potential contributions to drug development.

Finally, we discussed the future directions and challenges in understanding microbial adaptation, emphasizing the ongoing necessity for research. Continued investigation is essential to unravel the intricate interplay between microorganisms and their environment, which will further enhance our ability to leverage microbial adaptation for scientific and practical advancements. This knowledge will be instrumental in developing innovative strategies for environmental management, improving industrial processes, and advancing public health initiatives.

Table 1. Stress adaptation presented in table with their stress, organism, and approach with references.

S.No.	Stress	Organism	Approach	Reference
1	Oxidative	<i>Escherichia coli</i>	Overexpression of Dps, a DNA-binding protein that protects against oxidative stress	(Choi et al. 2000)
		<i>Saccharomyces cerevisiae</i>	Expression of a glutamate Decarboxylase homolog to enhance stress resistance	(Coleman et al. 2001)
		<i>Lactococcus lactis</i>	Introduction of glutathione Biosynthetic capability through genetic modification	(Fu et al. 2006)
		<i>Candida utilis</i>	Control of dissolved oxygen levels in the environment to mitigate oxidative stress	(Liang, Du, & Chen, 2008)
		<i>Candida utilis</i>	Addition of H ₂ O ₂ , a known oxidative stress inducer, to study stress response mechanisms	(G. Liang et al. 2008)
		<i>Candida infirmominiatum</i>	Addition of glycine betaine, a compatible solute, to enhance stress tolerance	(J. Liu et al. 2011)
2	Hyperosmotic	<i>Escherichia coli</i>	Overproduction of trehalose, a compatible solute, to counteract osmotic stress	(Purvis et al. 2005)
		<i>Lactococcus lactis</i>	Expression of DnaK, a chaperone protein, to assist in protein folding under stress	(Abdullah-Al-Mahin et al. 2010)
		<i>Torulaspora glabrata</i>	Addition of proline, an osmoprotectant, to alleviate hyperosmotic stress	(Xu et al. 2010)

		<i>Candida glabrata</i>	Accumulation of arginine, an osmoprotectant, to enhance stress resistance	(Xu et al. 2011)
		<i>Escherichia coli</i>	Expression of IrrE, a radiation resistance protein, to confer osmotic stress tolerance	(Ma et al. 2011)
3	Thermal	<i>Kluyveromyces marxianus</i>	Induction of mutation in response to thermal stress	(Ballesteros et al. 1993)
		<i>Lactococcus lactis</i> , and <i>Lactococcus paracasei</i>	Overproduction of GroESL, a chaperonin complex, to assist in protein folding under heat stress	(Compan and Touati 1993)
		<i>Saccharomyces cerevisiae</i>	Application of evolutionary engineering methods to develop thermotolerant strains	(Cakar et al. 2005)
		<i>Saccharomyces cerevisiae</i>	Utilization of genome shuffling techniques to enhance thermal stress resistance	(Shi et al. 2009)
4	Acid	<i>Propionibacterium acidipropionici</i>	Execution of adaptive growth strategies to advance acid stress resistance	(Y. Zhu et al. 2010)
		<i>Propionibacterium acidipropionici</i>	Implementation of adaptive evolution strategies to improve acid stress resistance	(L. Zhu et al. 2012)
		<i>Propionibacterium acidipropionici</i>	Utilization of genome shuffling techniques to enhance acid stress resistance	(Guan et al. 2012)
		<i>Lactobacillus casei</i>	Application of metabolic engineering approaches to develop acid-tolerant strains	(Y. Zhang et al. 2010)
		<i>Pediococcus jensenii</i>	Implementation of metabolic engineering strategies targeting acid resistance elements	(Guan et al. 2016)
5	Organic solvent	<i>Saccharomyces cerevisiae</i>	Utilization of transcription machinery engineering to enhance solvent tolerance	(Alper et al. 2006)
		<i>Saccharomyces cerevisiae</i>	Overexpression of TRP1-5 and TAT2 genes to improve solvent tolerance	(Hirasawa et al. 2007)
		<i>Saccharomyces cerevisiae</i>	Deletion of URA7 and GAL6 genes to enhance solvent tolerance	(Yazawa et al. 2007)

		Escherichia coli	Overproduction of GroESL, a chaperonin complex, to enhance solvent tolerance	(Zingaro and Papoutsakis 2013)
		Corynebacterium glutamicum	Implementation of adaptive evolution strategies to enhance solvent tolerance	(Oide et al. 2015)

5.1. Recap of Key Findings

5.1.1. Adaptability of Microorganisms

Microorganisms exhibit remarkable adaptability, enabling them to thrive across diverse environmental conditions, from extreme temperatures to varying pH levels and exposure to toxins (Table 1). This adaptability is foundational to their survival and proliferation in a wide range of habitats.

5.1.2. Mechanisms of Microbial Adaptation

The mechanisms of microbial adaptation are multifaceted, encompassing genetic mutations, phenotypic plasticity, epigenetic modifications, genetic regulation, horizontal gene transfer, and evolutionary dynamics. These mechanisms collectively underscore the resilience and versatility of microbial life.

5.1.3. Implications for Biotechnology and Environmental Management

Understanding microbial adaptation holds significant implications for biotechnological applications, disease management, environmental sustainability, and climate change mitigation. This knowledge can drive advancements in these fields by harnessing microbial capabilities for practical benefits.

5.1.4. Applications in Bioremediation and Industry

Microbial adaptation is integral to bioremediation strategies, industrial fermentation processes, and the development of novel antimicrobial agents, vaccines, and therapeutic interventions. By leveraging the adaptive traits of microorganisms, these applications can be optimized to address various environmental and health challenges.

5.2. Summary of Implications

5.2.1. Biotechnological Advancements

Biotechnological advancements rely heavily on microbial adaptation. Insights into adaptive mechanisms drive the development of robust microbial strains for industrial applications, including biofuel production, bioremediation, and pharmaceutical manufacturing. Understanding these mechanisms is crucial for optimizing microbial performance and enhancing the efficiency of these processes.

5.2.2. Human Health and Disease Management

In the realm of human health, understanding microbial adaptation dynamics is critical for combating infectious diseases, particularly in the face of escalating antibiotic resistance and the emergence of novel pathogens. Insights gleaned from studying microbial adaptation inform the design of targeted therapeutic strategies and public health interventions, contributing to improved disease management and prevention.

5.2.3. Environmental Sustainability

Environmental sustainability hinges on microbial adaptation, as microbial communities play pivotal roles in nutrient cycling, pollutant degradation, and ecosystem resilience. Harnessing microbial adaptation holds promise for mitigating the impacts of climate change, preserving biodiversity, and restoring degraded ecosystems. This understanding can guide strategies for environmental management and conservation.

5.3. Suggestions for Further Research

5.3.1. Emerging Environmental Stressors

Investigating the role of microbial adaptation in response to emerging environmental stressors, such as microplastics, nanomaterials, and pharmaceutical contaminants, presents a fertile ground for future research endeavors. Understanding these interactions will be essential for developing effective mitigation strategies.

5.3.2. Host-Microbe Interactions

Exploring the interplay between microbial adaptation and host-microbe interactions within complex ecosystems, including the human microbiome, soil microbiome, and aquatic environments, offers insights into microbial community dynamics and ecosystem functioning. This research can inform the management of microbial communities for health and environmental benefits.

5.3.3. Molecular Mechanisms of Adaptation

Advancing our understanding of microbial adaptation mechanisms at the molecular level, including the role of epigenetic modifications, non-coding RNAs, and microbial communication networks, holds promise for uncovering novel targets for biotechnological innovation and therapeutic intervention. Detailed molecular studies can lead to breakthroughs in microbial engineering and treatment strategies.

5.3.4. Integrative Approaches

Integrating multi-omics approaches, computational modeling, and ecological niche modeling can provide a comprehensive understanding of microbial adaptation dynamics across spatial and temporal scales. These integrative approaches will aid in predictive modeling and management strategies for diverse ecosystems and microbial communities, enhancing our ability to respond to environmental changes and challenges.

Conflict of Interests: The authors declare that there is no conflict of interests related to this article

Acknowledgement: The authors are grateful to the Deanship of Scientific Research, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia for its support and encouragement in conducting the research and publishing this report.

References

1. Abdullah-Al-Mahin, S. S., Higashi, C., Matsumoto, S., & Sonomoto, K. (2010). Improvement of multiple-stress tolerance and lactic acid production in *lactococcus lactis* NZ9000 under conditions of thermal stress by heterologous expression of *escherichia coli* dnaK. *Applied and Environmental Microbiology*, 76(13), 4277-4285.
2. Abee, T., & Wouters, J. A. (1999). Microbial stress response in minimal processing. *International Journal of Food Microbiology*, 50(1-2), 65-91.

3. Addo-Bankas, O., Zhao, Y., Wei, T., & Stefanakis, A. (2024). From past to present: Tracing the evolution of treatment wetlands and prospects ahead. *Journal of Water Process Engineering*, 60
4. Aggarwal, A., Frey, H., McDowell, G., Drenkhan, F., Nusser, M., Racoviteanu, A., & Hoelzle, M. (2022). Adaptation to climate change induced water stress in major glacierized mountain regions. *Climate and Development*, 14(7), 665-677.
5. Akhtar, A. A., & Turner, D. P. (2022). The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. *Microbial Pathogenesis*, 171
6. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. *Science*, 314(5805), 1565-1568.
7. An, S. Q., Potnis, N., Dow, M., Vorholter, F. J., He, Y. Q., Becker, A., & Tang, J. L. (2020). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen xanthomonas. *FEMS Microbiology Reviews*, 44(1), 1-32.
8. Andersson, D. I., Balaban, N. Q., Baquero, F., Courvalin, P., Glaser, P., Gophna, U., . . . T?njum, T. (2020). Antibiotic resistance: Turning evolutionary principles into clinical reality. *FEMS Microbiology Reviews*, 44(2), 171-188.
9. Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. *Journal of Biotechnology*, 269, 16-34.
10. Ballesteros, I., Oliva, J. M., Ballesteros, M., & Carrasco, J. (1993). Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. *Applied Biochemistry and Biotechnology*, 39, 201-211.
11. Benedetti, M., Giuliani, M. E., Mezzelani, M., Nardi, A., Pittura, L., Gorbi, S., & Regoli, F. (2022). Emerging environmental stressors and oxidative pathways in marine organisms: Current knowledge on regulation mechanisms and functional effects. *Biocell*, 46(1), 37.
12. Bhatt, P., Gangola, S., Bhandari, G., Zhang, W., Maithani, D., Mishra, S., & Chen, S. (2021). New insights into the degradation of synthetic pollutants in contaminated environments. *Chemosphere*, 268
13. Bilal, M., Ji, L., Xu, Y., Xu, S., Lin, Y., Iqbal, H. M., & Cheng, H. (2022). Bioprospecting *kluyveromyces marxianus* as a robust host for industrial biotechnology. *Frontiers in Bioengineering and Biotechnology*, 10
14. Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. *The Plant Cell*, 7(7), 1099.
15. Bollenbach, T. (2015). Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution. *Current Opinion in Microbiology*, 27, 1-9.
16. Boyce, K. J. (2022). Mutators enhance adaptive micro-evolution in pathogenic microbes. *Microorganisms*, 10(2), 442.
17. Bremer, E., & Kramer, R. (2019). Responses of microorganisms to osmotic stress. *Annual Review of Microbiology*, 73, 313-334.
18. Cakar, Z. P., Seker, U. O., Tamerler, C., Sonderegger, M., & Sauer, U. (2005). Evolutionary engineering of multiple-stress resistant *saccharomyces cerevisiae*. *FEMS Yeast Research*, 5(6-7), 569-578.
19. Cho, J. S., Kim, G. B., Eun, H., Moon, C. W., & Lee, S. Y. (2022). Designing microbial cell factories for the production of chemicals. *Jacs Au*, 2(8), 1781-1799.
20. Choi, S. H., Baumler, D. J., & Kaspar, C. W. (2000). Contribution of dps to acid stress tolerance and oxidative stress tolerance in *escherichia coli* O157: H7. *Applied and Environmental Microbiology*, 66(9), 3911-3916.
21. Coleman, S. T., Fang, T. K., Rovinsky, S. A., Turano, F. J., & Moye-Rowley, W. S. (2001). Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in *saccharomyces cerevisiae*. *Journal of Biological Chemistry*, 276(1), 244-250.
22. Compan, I., & Touati, D. (1993). Interaction of six global transcription regulators in expression of manganese superoxide dismutase in *escherichia coli* K-12. *Journal of Bacteriology*, 175(6), 1687-1696.
23. Cook, G. M., Greening, C., Hards, K., & Berney, M. (2014). Energetics of pathogenic bacteria and opportunities for drug development. *Advances in Microbial Physiology*, 65, 1-62.
24. Council, N. R. (1993). *In situ bioremediation: When does it work?* National Academies Press.
25. Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. *Microbiological Reviews*, 53(1), 121-147.

26. Donohoue, P. D., Barrangou, R., & May, A. P. (2018a). Advances in industrial biotechnology using CRISPR-cas systems. *Trends in Biotechnology*, 36(2), 134-146.
27. Donohoue, P. D., Barrangou, R., & May, A. P. (2018b). Advances in industrial biotechnology using CRISPR-cas systems. *Trends in Biotechnology*, 36(2), 134-146.
28. Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. *Proceedings of the National Academy of Science*, 88(16), 7160-7164.
29. Elena, S. F., & Lenski, R. E. (2003). Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. *Nature Reviews Genetics*, 4(6), 457-469.
30. Feckler, A., Goedkoop, W., Konschak, M., Bundschuh, R., Kenngott, K. G., Schulz, R., . . . Bundschuh, M. (2018). History matters: Heterotrophic microbial community structure and function adapt to multiple stressors. *Global Change Biology*, 24(2), e402-e415.
31. Frankel, N. W., Pontius, W., Dufour, Y. S., Long, J., Hernandez-Nunez, L., & Emonet, T. (2014). Adaptability of non-genetic diversity in bacterial chemotaxis. *Elife*, 3, e03526
32. Gallardo, C., Monras, J. P., Plaza, D. O., Collao, B., Saona, L. A., Duran-Toro, V., & Perez-Donoso, J. M. (2014). Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant antarctic bacteria. *Journal of Biotechnology*, 187, 108-115.
33. Garcia-Pausas, J., & Paterson, E. (2011). Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. *Soil Biology and Biochemistry*, 43(8), 1705-1713.
34. Gatti, M., & Pea, F. (2023). The expert clinical pharmacological advice program for tailoring on real-time antimicrobial therapies with emerging TDM candidates in special populations: How the ugly duckling turned into a swan. *Expert Review of Clinical Pharmacology*, 16(11), 1035-1051.
35. Goel, R. (2009). *Metagenomics-A tool for identification and characterization of uncultivable microbial diversity* HS Tripathi.
36. Grifoni, M., Franchi, E., Fusini, D., Vociante, M., Barbaferri, M., Pedron, F., . . . Petruzzelli, G. (2022). Soil remediation: Towards a resilient and adaptive approach to deal with the ever-changing environmental challenges. *Environments*, 9(2), 18.
37. Guan, N., Li, J., Shin, H. D., Du, G., Chen, J., & Liu, L. (2016). Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of propionibacterium jensenii. *Biotechnology and Bioengineering*, 3(6), 1294-1304.
38. Guan, N., Liu, L., Zhuge, X., Xu, Q., Li, J., Du, G., & Chen, J. (2012). Genome shuffling improves acid tolerance of propionibacterium acidipropionici and propionic acid production. *Adv Chem Res*, 15, 143-152.
39. Guillén, S., Nadal, L., Álvarez, I., Mañas, P., & Cebrián, G. (2021). Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. *Foods*, 10(3), 617. <https://doi.org/10.3390/foods10030617>
40. Hegab, H. M., ElMekawy, A., & Stakenborg, T. (2013). Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. *Biomicrofluidics*, 7(2)
41. Heux, S., Meynil-Salles, I., O'Donohue, M. J., & Dumon, C. (2015). White biotechnology: State of the art strategies for the development of biocatalysts for biorefining. *Biotechnology Advances*, 33(8), 1653-1670.
42. Hirasawa, T., Yoshikawa, K., Nakakura, Y., Nagahisa, K., Furusawa, C., Kataura, Y., . . . Shioya, S. (2007). Identification of target genes conferring ethanol stress tolerance to saccharomyces cerevisiae based on DNA microarray data analysis. *Journal of Biotechnology*, 131(1), 34-44.
43. Hyde, E. D., Seyfaee, A., Neville, F., & Moreno-Atanasio, R. (2016). Colloidal silica particle synthesis and future industrial manufacturing pathways: A review. *Industrial & Engineering Chemistry Research*, 55(33), 8891-8913.
44. Joshi, S. S., Jadhav, M. P. K., Chourasia, N. K., Jadhav, M. P. J., Pathade, K. N., & K., K. (2024). Bioremediation strategies for soil and water pollution harnessing the power of microorganisms. *Migration Letters*, 21(S8), 1-20.
45. Keasling, J., Garcia Martin, H., Lee, T. S., Mukhopadhyay, A., Singer, S. W., & Sundstrom, E. (2021). Microbial production of advanced biofuels. *Nature Reviews Microbiology*, 19(11), 701-715.

46. Li, F., Chen, L., Zhang, J., Yin, J., & Huang, S. (2017). Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. *Frontiers in Microbiology*, 8, 187.

47. Liang, G. B., Du, G. C., & Chen, J. (2008a). A novel strategy of enhanced glutathione production in high cell density cultivation of *candida utilis*?cysteine addition combined with dissolved oxygen controlling. *Enzyme and Microbial Technology*, 42(3), 284-289.

48. Liang, G., Liao, X., Du, G., & Chen, J. (2008b). Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of *candida utilis*. *Journal of Applied Microbiology*, 105(5), 1432-1440.

49. Liu, J., Wisniewski, M., Droby, S., Vero, S., Tian, S., & Hershkovitz, V. (2011). Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast *cystofilobasidium infirmominiatum*. *International Journal of Food Microbiology*, 146(1), 76-83.

50. Liu, S., Ren, H., Shen, L., Lou, L., Tian, G., Zheng, P., & Hu, B. (2015). pH levels drive bacterial community structure in sediments of the qiantang river as determined by 454 pyrosequencing. *Frontiers in Microbiology*, 6, 285.

51. Losapio, G., Genes, L., Knight, C. J., McFadden, T. N., & Pavan, L. (2024). Monitoring and modelling the effects of ecosystem engineers on ecosystem functioning. *Functional Ecology*, 38(1), 8-21.

52. Lu, X., & Jiang, Y. (2023). Advancements in studying the effects of climate change on forest ecosystems. *Advances in Resources Research*, 3(4), 151-177.

53. Ma, R., Zhang, Y., Hong, H., Lu, W., Lin, M., Chen, M., & Zhang, W. (2011). Improved osmotic tolerance and ethanol production of ethanologenic *escherichia coli* by IrrE, a global regulator of radiation-resistance of *deinococcus radiodurans*. *Current Microbiology*, 62, 659-664.

54. Maitra, S. (2018). *In situ bioremediation?an overview* Responsibility of Life Science Informatics Publications.

55. Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. *Antimicrobial Agents and Chemotherapy*, 44(7), 1771-1777.

56. Mitchell, A., Romano, G. H., Groisman, B., Yona, A., Dekel, E., Kupiec, M., & Pilpel, Y. (2009). Adaptive prediction of environmental changes by microorganisms. *Nature*, 460(7252), 220-224.

57. Mulder, C., Boit, A., Bonkowski, M., De Ruiter, P. C., Mancinelli, G., der Heijden, M. G., & Rutgers, M. (2011). A belowground perspective on dutch agroecosystems: How soil organisms interact to support ecosystem services. *Advances in ecological research* (pp. 277-357) Academic Press.

58. Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A., Pathak, N., Commault, A. S., & Nghiem, L. D. (2021). Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. *Science of the Total Environment*, 765

59. Oide, S., Gunji, W., Moteki, Y., Yamamoto, S., Suda, M., Jojima, T., & Inui, M. (2015). Thermal and solvent stress cross-tolerance conferred to *corynebacterium glutamicum* by adaptive laboratory evolution. *Applied and Environmental Microbiology*, 81(7), 2284-2298.

60. Olive, A. J., & Sassetti, C. M. (2016). Metabolic crosstalk between host and pathogen: Sensing, adapting and competing. *Nature Reviews Microbiology*, 14(4), 221-234.

61. Pan, J., Wang, G., Nong, J., & Xie, Q. (2023). Biodegradation of benzo (a) pyrene by a genetically engineered *bacillus licheniformis*: Degradation, metabolic pathway and toxicity analysis. *Chemical Engineering Journal*, 478

62. Pepi, M., & Focardi, S. (2021). Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the mediterranean area. *International Journal of Environmental Research and Public Health*, 18(11), 5723.

63. Postollec, F., Falentin, H., Pavan, S., Combrisson, J., & Sohier, D. (2011). Recent advances in quantitative PCR (qPCR) applications in food microbiology. *Food Microbiology*, 28(5), 848-861.

64. Purvis, J. E., Yomano, L. P., & Ingram, L. O. (2005). Enhanced trehalose production improves growth of *escherichia coli* under osmotic stress. *Applied and Environmental Microbiology*, 71(7), 3761-3769.

65. Rabbani, A., Zainith, S., Deb, V. K., Das, P., Bharti, P., Rawat, D. S., & Saxena, G. (2021). Microbial technologies for environmental remediation: Potential issues, challenges, and future prospects. *Microbe Mediated Remediation of Environmental Contaminants*, , 271-286.

66. Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Megharaj, M. (2019). Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? *Science of the Total Environment*, 654, 177-189.

67. Rello, J., Van Engelen, T. S. R., Alp, E., Calandra, T., Cattoir, V., Kern, W. V., . . . Wiersinga, W. J. (2018). Towards precision medicine in sepsis: A position paper from the european society of clinical microbiology and infectious diseases. *Clinical Microbiology and Infection*, 24(12), 1264-1272.

68. Riley, S. P., Sauvajot, R. M., Fuller, T. K., York, E. C., Kamradt, D. A., Bromley, C., & Wayne, R. K. (2003). Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern california. *Conservation Biology*, 17(2), 566-576.

69. Rodriguez, R. J., Redman, R. S., & Henson, J. M. (2004). The role of fungal symbioses in the adaptation of plants to high stress environments. *Mitigation and Adaptation Strategies for Global Change*, 9, 261-272.

70. Rodriguez-Verdugo, A., Vulin, C., & Ackermann, M. (2019). The rate of environmental fluctuations shapes ecological dynamics in a two-species microbial system. *Ecology Letters*, 22(5), 838-846.

71. Roebler, M., & Muller, V. (2001). Osmoadaptation in bacteria and archaea: Common principles and differences. *Environmental Microbiology*, 3(12), 743-754.

72. Samagaci, L., Ouattara, H. G., Goualie, B. G., & Niamke, S. L. (2015). Polyphasic analysis of pectinolytic and stress-resistant yeast strains isolated from ivorian cocoa fermentation. *Journal of Food Research*, 4(1), 124.

73. Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. *Ecology*, 88(6), 1386-1394.

74. Seufferheld, M. J., Alvarez, H. M., & Farias, M. E. (2008). Role of polyphosphates in microbial adaptation to extreme environments. *Applied and Environmental Microbiology*, 74(19), 5867-5874.

75. Sharma, P., Singh, S. P., Iqbal, H. M., & Tong, Y. W. (2022). Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. *Environmental Research*, 211

76. Shi, D. J., Wang, C. L., & Wang, K. M. (2009). Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of *saccharomyces cerevisiae*. *Journal of Industrial Microbiology and Biotechnology*, 36(1), 139-147.

77. Silva, L. N., Zimmer, K. R., Macedo, A. J., & Trentin, D. S. (2016). Plant natural products targeting bacterial virulence factors. *Chemical Reviews*, 116(16), 9162-9236.

78. Skoneczny, M., & Skoneczna, A. (2018). Response mechanisms to chemical and physical stresses in yeast and filamentous fungi. *Stress Response Mechanisms in Fungi: Theoretical and Practical Aspects*, , 35-85.

79. Soden, L., Lloyd, K., & Wrighton, K. (2016). The bright side of microbial dark matter: Lessons learned from the uncultivated majority. *Current Opinion in Microbiology*, 31, 217-226.

80. Subedi, B., Aguilar, L., Robinson, E. M., Hageman, K. J., Bjorklund, E., Sheesley, R. J., & Usenko, S. (2015). Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. *TrAC Trends in Analytical Chemistry*, 68, 119-132.

81. Tan, Y. S., Zhang, R. K., Liu, Z. H., Li, B. Z., & Yuan, Y. J. (2022). Microbial adaptation to enhance stress tolerance. *Frontiers in Microbiology*, 13

82. Thorwall, S., Schwartz, C., Chartron, J. W., & Wheeldon, I. (2020). Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. *Nature Chemical Biology*, 16(2), 113-121.

83. Tiedje, J. M., Bruns, M. A., Casadevall, A., Criddle, C. S., Eloë-Fadrosh, E., Karl, D. M., Zhou, J. (2022). Microbes and climate change: A research prospectus for the future. *Mbio*, 13(3), 800-822.

84. Toft, C., & Andersson, S. G. (2010). Evolutionary microbial genomics: Insights into bacterial host adaptation. *Nature Reviews Genetics*, 11(7), 465-475.

85. Trovao, M., Sch?ler, L. M., Machado, A., Bombo, G., Navalho, S., Barros, A., & Varela, J. (2022). Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. *Marine Drugs*, 20(7), 440.

86. Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. *Journal of Infection and Public Health*, 14(12), 1750-1766.

87. Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H., & Dixon, K. W. (2020). Preparing for the worst: Utilizing stress-tolerant soil microbial communities to aid ecological restoration in the anthropocene. *Ecological Solutions and Evidence*, 1(2), e12027.

88. Verma, M. L., Kumar, S., Jeslin, J., & Dubey, N. K. (2020). Microbial production of biopolymers with potential biotechnological applications. *Biopolymer-based formulations* (pp. 105-137) Elsevier.

89. Wang, Y., Bhattacharya, T., Jiang, Y., Qin, X., Wang, Y., Liu, Y., & Chen, L. (2021). A novel deep learning method for predictive modeling of microbiome data. *Briefings in Bioinformatics*, 22(3)

90. Wondraczek, L., Pohnert, G., Schacher, F. H., Kohler, A., Gottschaldt, M., Schubert, U. S., & Brakhage, A. A. (2019). Artificial microbial arenas: Materials for observing and manipulating microbial consortia. *Advanced Materials*, 31(24), 190028.

91. Wu, J., & Tzanakakis, E. S. (2013). Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches. *Biotechnology Advances*, 31(7), 1047-1062.

92. Xu, S., Zhou, J., Liu, L., & Chen, J. (2010). Proline enhances torulopsis glabrata growth during hyperosmotic stress. *Biotechnology and Bioprocess Engineering*, 15, 285-292.

93. Xu, S., Zhou, J., Liu, L., & Chen, J. (2011). Arginine: A novel compatible solute to protect candida glabrata against hyperosmotic stress. *Process Biochemistry*, 46(6), 1230-1235.

94. Yang, X., Li, Y., Niu, B., Chen, Q., Hu, Y., Yang, Y., . . . Zhang, G. (2021). Temperature and precipitation drive elevational patterns of microbial beta diversity in alpine grasslands. *Microbial Ecology*, , 1-13.

95. Yazawa, H., Iwahashi, H., & Uemura, H. (2007). Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of *saccharomyces cerevisiae*. *Yeast*, 24(7), 551-560.

96. Yong, Y. C., & Zhong, J. J. (2010). Recent advances in biodegradation in china: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. *Process Biochemistry*, 45(12), 1937-1943.

97. Zhang, C., Sun, R., & Xia, T. (2020). Adaption/resistance to antimicrobial nanoparticles: Will it be a problem? *Nano Today*, 34

98. Zhu, Y., Li, J., Tan, M., Liu, L., Jiang, L., Sun, J., & Chen, J. (2010). Optimization and scale-up of propionic acid production by propionic acid-tolerant *propionibacterium acidipropionici* with glycerol as the carbon source. *Bioresource Technology*, 101(22), 8902-8906.

99. Zingaro, K. A., & Papoutsakis, E. T. (2013). GroESL overexpression imparts *escherichia coli* tolerance to i-, n-, and 2-butanol, 1, 2, 4-butanetriol and ethanol with complex and unpredictable patterns. *Metabolic Engineering*, 15, 196-205.

100. Hosseini Nezhad, M., Hussain, A. M., & Britz, L. M. (2015). Stress responses in probiotic *Lactobacillus casei*. *Critical reviews in food science and nutrition*, 55(6), 740-749.

101. Koutsoumanis, K., Allende, A., Alvarez-Ordonez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Hilbert, F. (2021). Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food. *EFSA Panel on Biological Hazards (BIOHAZ)*.

102. Smidt, H., Bruijn, F. J., Cocolin, L. S., Sauer, M., Dowling, D. N., & Thomashow, L. (2023). Good microbes in medicine, food production, biotechnology, bioremediation, and agriculture (Vol. 303026).

103. van der Meer, J. R. (2006). Environmental pollution promotes selection of microbial degradation pathways 4. *Frontiers in Ecology and the Environment*, 4, 35-42.

104. van Vliet, S., Hauert, C., Fridberg, K., & Ackermann, M. (2022). Dal Co A (2022) Global dynamics of microbial communities emerge from local interaction rules. *PLoS Comput Biol*, 18(3), e1009877. doi:<https://doi.org/10.1371/journal.pcbi.1009877>.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.