

Technical Note

Not peer-reviewed version

Pre-feasibility Study and Design of a Multipurpose Reservoir

Mehari Gebreyohannes Hiben * and Admasu Gebeyehu Awoke

Posted Date: 30 November 2023

doi: 10.20944/preprints202311.1944.v1

Keywords: Hydropower; Irrigation; water supply; pre-feasibility

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Technical Note

Pre-Feasibility Study and Design of a Multipurpose Reservoir: A Case of H Project

Mehari Gebreyohannes Hiben 1,2,* and Admasu Gebeyehu Awoke 1

- School of Civil and Environmental Engineering, Addis Ababa University, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia
- ² MG Water Resources consultancy Firm, Mekelle, Tigray, Ethiopia
- * Correspondence: hiben123@gmail.com; Tel.: +2966-223-562

Abstract: This is a technical note to discuss that numerous initiatives are underway to reach the aim, including the building of multifunctional reservoirs, planning of water supply and sanitation infrastructure, irrigation, and hydropower development for the H project. The key data provided for this work included rainfall data, flow data, catchment area, base population for water delivery, and so on. This report especially covers the preliminary analysis and design of water supply, irrigation, and hydropower development for the project, which is carried out in compliance with the scope of works for the stochastic hydrological feasibility study. To carry out this job, the major data provided were rainfall data, flow data, catchment area, base population for water delivery, and so on. This paper details the preliminary analysis and design of water supply, irrigation, and hydropower development for the project, which was completed in compliance with the scope of works for the stochastic hydrological feasibility study. The project's goal is to suggest and construct a cost-effective water supply system, irrigation, and hydropower development in order to offer dependable, adequate, and safe water to the H project from a defined water source. The investigation works have specific objectives such as assessing potential water source alternatives for water supply, selecting an appropriate size for the reservoir that can meet all water demand, assessing and selecting suitable irrigation development and hydropower potential, and preliminary study and design of all reservoir components and appurtenant structures.

Keywords: hydropower; irrigation; water supply; pre-feasibility

1. Introduction

1.1. General

The main purpose of this project is to enable us work and make exercise on multipurpose reservoir planning. And, this project is undertaken and worked according to the specific guidelines and science of water science and engineering in the study and design of a multipurpose reservoirs.

1.2. Project background

In order to achieve the target several activities are undergoing with the development of multipurpose reservoir planning of the water supply and sanitation infrastructure, irrigation and hydropower development for H project. To undertake this, work the main data given was rainfall data, flow data, catchment area, base population for water supply and so on.

This report presents specifically preliminary study and design of water supply, irrigation and hydropower development for the project, which is carried out in accordance with the scope of works given by our professor. The preliminary study and design is therefore to investigate scenarios, alternatives, and prepare the document of water supply, irrigation and hydropower infrastructures for the provision of the assignment.

This report, as required in the assignment, contains: project background, water sources assessment, selection of suitable hydropower potential, and irrigation sizing, design criteria, descriptions of the proposed scheme, preliminary design of water supply components.

1.3. Project objective

The objective of the project is to recommend and design cost effective water supply system, irrigation and hydropower development; to supply reliable, sufficient and safe water from defined water source to the H project. Specific objectives of the investigation works are;

- To assess potential water source alternatives for water supply
- Selecting appropriate size for the reservoir which could satisfy all water demand
- Assess and select suitable irrigation development and hydropower potential.
- Preliminary study and design of all components of the reservoir and appurtenant structures

1.4. The scope of the project

The scope of the project generally focuses on preliminary study and design of water supply, irrigation and hydropower development components from water sources potential and the water balance output.

1.5. Limitations of the study

There are some data limitations encountered during the study and preliminary studies including;

- Longest path, rigidity/slope of the catchment
- Lack of topographic data as with required scale and accuracy.

2. Approaches and materials used in the study

2.1. Materials Used

The following materials were used during the study, these are spreadsheet models are developed for all works as follows

- Filling missing data
- Flood frequency analyses
- Catchment yield calculation
- Flood routing
- Water balance and demand analyses
- Estimation of hydropower potential and irrigation sizing

2.2. Approaches used

2.2.1. Field Work

Since this assignment is worked out from the given data so, no any fieldwork is undertaken.

2.2.2. Office/ Desk Work

In the office/desk work different activities have been carried on including;

- Identification of secondary data requirement of the project area.
- Collection of relevant secondary data
- Review of previous studies conducted, relevant documents pertaining to the assignment.
- Identify potential water sources for water supply, irrigation & hydropower
- Summarizing, analysis, interpretation of collected data, Conduct preliminary design of water supply, irrigation & hydropower.

2.2.3. Results of Field and Desk work

After performing intensive office work, outputs and result of the different aspects of water supply system: reservoirs options, hydropower potential, and spillway appurtenant structures are identified and presented below. The design will be based on the Federal Ministry of Water Resource Design guideline, different design reports, text books and field work conducted in similar projects to collect important data for the design work.

2.2.4. Stakeholder consultation

Stakeholders like for such mega projects are critical in making stakeholder consultation. The aim was to get ideas and views, how they understood the proposed project and consider their feedback and say towards successful selection, design and implementation of the project. Presentation of the preliminary phase of study with client representatives in project office will be significant to consider additional water source options.

3. Project Description

3.1. Location

The project H is a multipurpose reservoir for water supply, hydropower and irrigation development located in X and Y Coordinate.

3.2. Accessibility

The accessibility of the project is unknown.

3.3. Climate

Before undertaking any analyses of climate data homogeneity, consistency and normality test of climate data are mandatory[1]. The climatic condition of the project area has warm climatic condition. The project areas mean rainfall series estimated from 50 years' (1951-2000) record of stations. These estimations revealed that the annual average rainfall over the project is estimated to be **1284 mm**.

3.4. Estimation of stream flow missing data

The main purposes of this part of study are to evaluate missing stream flow data using several interpolation methods which are arithmetic average (AA) method, normal ratio (NR) method, inversed distance (ID) method, and coefficient of correlation (CC) method[2]. However, if the data are still missing and information from surrounding stations cannot be utilized due to a lack of data, the mean for the same day and month but in a different year is used to estimate the missing values on that specific day. To assess missing values at the target station using information from surrounding stations, the analysis would be separated into four or more distinct percentages, such as 5%, 10%, 15%, and 20%, to reflect various types of missing data [2]. However, just 20% (10 years' worth of missing data from 50 years) is considered for this experiment. Additionally, the Mean Absolute Error (MAE), Correlation Coefficient (R), and Root Mean Square Error (RMSE) tests are used to compare the effectiveness of various strategies [2].

3.4.1. Estimation Methodology

There are two primary subsections in this section. We'll talk about missing data estimation techniques in the first subsection. The target and a few carefully chosen nearby stations were included in the analysis. In the meanwhile, the second part will cover evaluating the effectiveness of the employed techniques. The target station contains all of the data in the first part. Next, data at the target station are taken to be missing in order to evaluate the estimating techniques. The target station's missing stream flow and rainfall data are compared to the actual records using interpolation techniques.

3.4.2. Interpolation methods

(i) Arithmetic Average Method

The arithmetic average (AA) Two major subsections comprises this section. The first topic will provide techniques for estimating missing data. A study was conducted with a target and a few carefully chosen nearby stations. The second subsection will include evaluating the effectiveness of the employed techniques in the interim. The target station possesses the entire collection of data in the first segment. Afterwards, data at the target station are taken to be missing in order to evaluate the estimating techniques [3, 4].. The missing stream flow and rainfall data at the target station are compared to the real records using interpolation techniques.

$$P_t = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 Equation for AAM.....Equation 3-1

Where xi is the observed data at ith neighboring stations or the date of the same date with various years, n is the number of nearby stations or number of years, and pt is the predicted value of the missing data at the t target station/date.

(ii) Normal Ratio Method

The target station's and its surrounding station's ratio mean of accessible data is the basis for the weighting of the normal ratio (NR) approach. This approach is applied if any nearby stations have data on typical annual rainfall and stream flow that surpasses ten percent of the station under consideration [5, 6]. Given by is the estimated missing value.

$$P_t = \frac{1}{n} \sum_{i=1}^{n} \frac{N_t}{N_i} x_i$$
 Equation for NRM.....Equation 3-2

Where N_t is the annual rainfall and stream flow amount at the target station and N_i is the annual rainfall and stream flow amount at the i^{th} nearby station.

(iii) Inverse Distance Method

The approach that is most frequently used to estimate missing data is the inverse distance (ID) method. The target station's distance from the neighboring station is the basis for this strategy. Compared to further stations, the nearby stations have a stronger correlation with the target station[5, 6]. Given by is the estimated missing value.

$$\mathbf{P_t} = \frac{\sum_{i=1}^{n} \frac{x_i}{d_{it}}}{\sum_{i=1}^{n} \frac{1}{d_{it}}}$$
 Equation for IDM.....Equation 3-3

where dit is the distance between target station and the ith nearby station.

(iv) Coefficient of Correlation Method

correlation coefficient (CC) Using this strategy, the correlation coefficient is employed as the weighting value instead of the distance [7]. Given by is the estimated missing value [8].

$$P_t = \frac{\sum_{i=1}^{n} x_i r_{it}}{\sum_{i=1}^{n} r_{it}} \quad \text{Equation for CCM}......Equation 3-4}$$

where r_{it} is the correlation coefficient of daily time series data between the target station and the i^{th} nearby station.

3.4.3. Performance of the estimation methods

Three performance criteria are applied in this study [9]. To assess spatial interpolation techniques, statistics such as the correlation coefficient (R), mean absolute errors (MAE), and root mean square errors (RMSE) are computed. The difference between the estimation values and the matching observed values is measured by the error. Better results will be shown by RMSE and MAE, which show lower values. Meanwhile, correlation coefficient indicates the strength of the relationship between observations and estimates which the higher positive coefficients estimate the best results.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{x}_i - x_i|$$
 Equation for MAEEquation 3-6

$$\mathbf{R} = \frac{\sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}})(\hat{\mathbf{x}}_i - \overline{\mathbf{x}})}{\sqrt{\sum_{i=1}^{n} (\mathbf{x} - \overline{\mathbf{x}})^2 \sum_{i=1}^{n} (\hat{\mathbf{x}}_i - \overline{\mathbf{x}})^2}} \quad \text{Equation for } \mathbf{R}.....\mathbf{Equation 3-7}$$

where x_i is the observed rainfall and stream flow at nearby station, x_i is the estimated value and is the number of nearby station.

3.4.4. Results and discussion of estimation methods

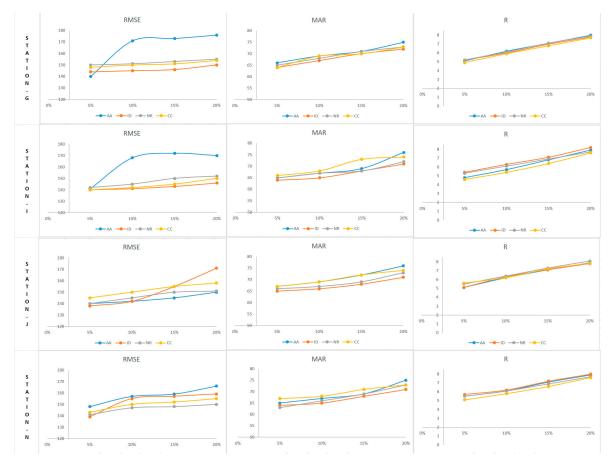

We shall touch on the analysis's findings in this part. We tried each of the four interpolation techniques on a single percentage at 20 percent. The table below, Table 3-1, presents the findings of the approaches' overall performance. The comparison of flow data estimating techniques is presented in Table 3-1. For G, I, and J stations, the ID approach is proven to be the most effective. NR is the most effective approach for N station. Additionally, it is demonstrated that for all stations that produced the lowest RMSE, the CC technique is the second-best approach. Additionally, Table 3-2 just compares the estimating techniques with four distinct percentages of missing values—that is, five, ten, fifteen, and twenty percent.

Table 3-1. Comparison of estimation methods based on RMSE, MAE and R with 20% missing value for stream flow data.

Clatian	M-(1 1	RMSE	MAR	R
Station	Method		20%	
	AA	176	75	8.0
C	ID	150	72	7.8
G	NR	155	73	7.9
	CC	154	73	7.7
	AA	170	76	7.9
т	ID	146	71	8.2
I	NR	152	72	7.7
	CC	150	74	7.6
	AA	171	76	7.9
т.	ID	151	71	7.8
J	NR	158	73	8.1
	CC	152	74	7.83
	AA	166	75	7.9
NI	ID	159	71	8
N	NR	150	73	7.7
	CC	155	73	7.6

Table 3-2. Comparison of estimation methods based on RMSE, MAE and R with four different percentages of missing values for stream flow data.

Ctation	Method		RN	ISE			MAR				R			
Station	Method	5%	10%	15%	20%	5%	10%	15%	20%	5%	10%	15%	20%	
	AA	140	171	173	176	66	69	71	75	5.1	6.2	7.1	8.00	
G	ID	144	145	146	150	64	67	70	72	5.2	6	7	7.80	
٥	NR	150	151	153	155	65	68	71	73	5.2	6.1	7.1	7.90	
	CC	148	150	151	154	64	69	70	73	4.9	5.9	6.8	7.70	
	AA	141	168	172	170	65	67	69	76	4.8	5.7	6.8	7.90	
	ID	140	141	143	146	64	65	68	71	5.4	6.3	7.1	8.20	
'	NR	142	145	150	152	65	67	68	72	5.3	6.1	6.9	7.70	
	CC	140	142	145	150	66	68	73	74	4.6	5.4	6.4	7.60	
	AA	138	142	155	171	67	69	72	76	5.1	6.2	7.1	7.90	
	ID	140	145	150	151	65	66	68	71	5.1	6.3	7.1	7.80	
,	NR	145	150	155	158	66	67	69	73	5.5	6.4	7.3	8.10	
	CC	142	146	149	152	67	69	72	74	5.6	6.2	7.2	7.83	
	AA	148	157	159	166	65	67	69	75	5.5	6.1	7.1	7.90	
N	ID	139	155	157	159	64	65	68	71	5.7	6.2	7.2	8.00	
I N	NR	141	147	148	150	63	66	69	73	5.5	6.1	6.9	7.70	
	CC	143	150	152	155	67	68	71	73	5.1	5.8	6.6	7.60	

Figure 3-1. Comparison of RMSE, MAE and R method with various percentages of missing values for G. I, J and N Stations.

4. Water Demand, Sources and Storage

4.1. Water Demand of the Project

The design basis for the sizing of any water resource planning is first of all an estimate of the amount of water expected to be used by the project [10]. Accurate estimate of water demand is a basic consideration to the sizing of storage facilities, this involves consideration of a number of factors depending on the nature of the project [11].

The water demand required for the development of water supply, irrigation and hydropower has been fixed and estimated by the following procedures.

Based on client provision the project water supply demand is estimated to be 100lit/day/cap and crop water and irrigation requirement is given below in Table 4-1 and for the hydropower it is to be decided at later stage after analyses.

Table 4-1. Crop water and irrigation requirement of different crops (m³/ha).

Crop	Planting Date	Growing period (days)	Seasonal Etc/m3/ha	Irrigation req/m3/ha
Onion	01-Feb	95	4624	4226
Tomato	01-Jan	145	7421	6649
Wheat	15-Jan	130	6083	5445

4.2. Surface Water Sources

The project must have water source with sufficient capacity and reliably to full fill the water demand.

4.2.1. General site selection criteria for the reservoir

The following factors should be kept in mind while selecting the site for a reservoir[12-15]:

- The reservoir site should be such that the leakage of water through the ground is minimum
- Sites having permeable rocks reduce the water tightness of the reservoir. The rocks which allow
 less passage of water include shales, slates, schists, gneiss, and crystalline igneous rocks such as
 granite.
- A suitable site for the darn must exist. The dam should be founded on sound watertight rock base, and percolation below the dam should be minimum. The cost of the dam depends on the suitability of a site and is often a controlling factor in the site selection.
- The reservoir basin should have a narrow opening in the valley so that the length of the dam is the least possible.
- The cost of the real estate for the reservoir, including road, railway, rehabilitation and resettlement etc. must be as small as possible.
- The topography of the reservoir site should be such that, it has adequate storage capacity without submerging excessive land and other properties.
- The site should be such that a deep reservoir is formed. A deep reservoir is preferable to a shallow one because of the lower cost of the land submerged per unit of capacity, less evaporation losses due to reduction in the water spread area, and less likelihood of weed growth.
- The reservoir site should be such that it avoids or excludes water from those tributaries which have a high concentration of sediments in water.

4.3. Elevation-Area-Capacity Curves

According the given formula Reservoir surface area=6H^{1,5} [16] is used to produce the capacity curve shown in Figure 4-1 below. Thus, a curve may be drawn with elevation on the Y-axis and area on the X-axis. Such a curve for a reservoir is shown in following figures. The contour plan also shows the water spread corresponding to the maximum water level in the reservoir. This information is used to determine the area likely to come under submergence.

The reservoir capacity or the volume of storage corresponding to a given water level may be calculated by the trapezoidal formula [17]. Thus, if A1 and A2 are the areas between two successive contours, and h is the contour interval, the intermediate storage volume V can be calculated using the formula:

$$V = (A1 + A2) *h/2$$

The total reservoir capacity at a given elevation is computed by adding the incremental volumes up to that elevation. The storage volumes corresponding to various water-surface elevations may be

calculated and a curve, called capacity curve, may be plotted between elevation and storage as shown in the following tables and figures for this option.

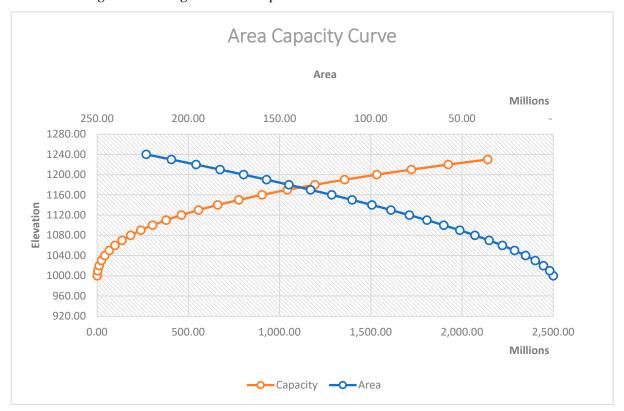


Figure 4-1. Elevation-Area-Capacity Curve for Dam Site.

Table 4-2. Summary of Computed reservoir storage capacity.

S/N	Dam Site	Reservoir Capacity, Mm ³
1	Dam Site H	1,357.11

4.4. Downstream release estimation

In order to compute the water balance for further design analyses Q_{95} is tabulated from the given data for downstream release from the flow duration curve developed[18, 19] and shown in Figure 4-2 and tabulated in Table 4-3 below.

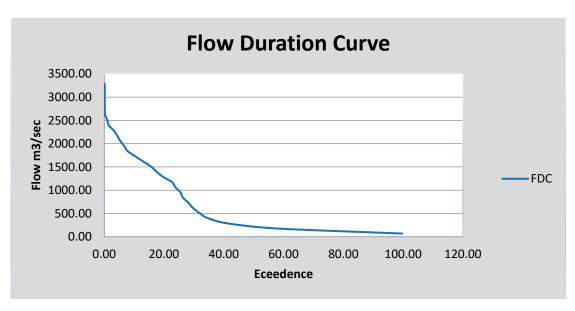


Table 4-3. Q95 for downstream release.

Q 70	Q_{80}	\mathbf{Q}_{95}
147.49	121.49	82.50
Monthly Volume	etric water requirements for downstream release in m ³ Q ₉₅	213,839,358.75

5. Population and Water Supply Demand Estimation

5.1. Population

5.1.1. General

A water supply scheme includes huge and costly structures, which cannot be replaced or increased in their capacities easily and conveniently[20]. Hence all scenarios affecting the water supply system should have to be thoroughly accessed before the system is designed. One of the scenarios that have great impact on estimating the water demand of a particular project is the projection of the population sizes [21]. Hence, the planning of any water supply system has to be based on the forecast of population size, population growth rate and distribution.

There are a number of factors that should be taken in to consideration in projecting the future population size of a project, some of which are fertility, mortality, economic activity in and around the project town, availability of natural resources, and status of the town in the region, i.e. its political and economic significance, relative location of the town with respect to main highways and availability of reliable urban infrastructure facilities and etc [22].

5.1.2. Base Population

The use of a reliable base population figure is very important for optimizing the project costs and sustaining the project's service year. Over and under estimation of the populations could result in a higher investment cost and a lower service run period respectively. Hence it is very important to initially get a realistic base population figures not to come with the above-mentioned problems. This design has taken the base population of 5 million given for this exercise.

5.1.3. Population Projection

The Central Statistical Authority has established an annual growth rates for population projection from 1995 up to the year 2030. Hence, in projecting the future population sizes of the town and the rural, the country level CSA's growth rates as presented in the table below have been used. The projected populations using the base populations presented above; and in this report the annual population growth rate is fixed in three scenarios low, medium and high variant. The growth rates presented below are shown in the table and chart presented underneath. For water supply design projects, the medium annual growth rate scenario is adopted.

Table 5-1. Fertility Rate Set by CSA for Urban Population and For Projections.

Years	Low variants	Medium variants	High variant	Average	Remark
1995-2000	6.53	6.72	6.95	6.7	
2001-2005	5.28	5.97	6.72	6.0	
2006-2010	4.76	5.42	6.27	5.5	
2011-2015	4.24	4.86	5.75	5.0	
2016-2020	3.8	4.29	5.22	4.4	
2021-2025	3.36	3.73	4.69	3.9	
2025-2030	2.92	3.24	4.2	3.5	

ç

Table 5-2. Projected Populations of the given project.

Year	H project	Rural	Total
2020	5,000,000	0	5,000,000
2021	5,271,000	0	5,271,000
2022	5,556,688	0	5,556,688
2023	5,857,861	0	5,857,861
2024	6,045,183	0	6,045,183
2025	6,338,978	0	6,338,978
2026	6,647,053	0	6,647,053
2027	6,970,100	0	6,970,100
2028	7,308,846	0	7,308,846
2029	7,664,056	0	7,664,056
2030	8,036,529	0	8,036,529

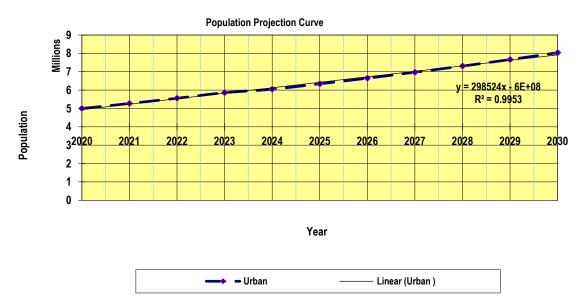


Figure 5-1. Population Projection Curve for H project.

5.2. Water Demand

Development of reliable water demand is not a straight forward process, but requires detailed socio-economic survey in the supply area, as the potential consumers ability and willingness to pay for the water depends of the tariff, which again depends of the number of people using the improved water supply. The process to develop the demand is hence iterative.

5.2.1. Domestic Water Demand

The Domestic water demand is the daily water requirement for use by human being for different domestic purposes like drinking, cooking, bathing, cleaning, gardening and etc. The domestic water demand required by human being could be supplied or obtained through different modes of services depending on the economic level and facilities owned by the individual.

2.2.1.1. Modes and Level of Services

In a conventional water supply system, there are five modes of services in which an individual could be served. These are:

- House Tap Users [23]
- Yard Tap Users (YTU)

- Neighbor Hood Tap Users (NTU)
- Traditional Sources Users (TSU)

However, in most water supply system feasibility studies for urban centers here in Ethiopia, the modes of services are generally stick to the first three classical modes of services because of their simplicity from the viewpoint of service giving institutions. Hence, for this project, it is assumed all the public to be served by one of the first three modes of services described above.

In estimating the future water demand, it is determined all the rural peoples to be served by public taps as their economic condition doesn't allow them to use either of the other two modes of services. For the case of this assignment, it is assumed all the three modes of service to prevail and serve the dwellers of the town.

Hence, using the three modes of services namely: Yard Connection, House Connection, and Public Tap and their respective per capita water consumption are described based on the design criteria (willingness and affordability to pay) as stated below: the future water requirement of the town will be estimated in the proceeding section.

Public Tap users 100litter/day
 Yard Connection 100litter/day
 House Connection 100litter/day

5.2.1.2. Growth Rate of Domestic Water Demand

It is evident that as the socioeconomic condition and the living standard of the people improves; their water consumption will increase depending on their mode of service. The demand of the public tap users will increase very little as the distance involved for fetching water will not encourage the collection of more water and the collection time is limited to day time only, as a result the growth rate has been limited here to 1% per annum. For HCU and YCU, the water demand growth rate per annum could be as high as 2% as it is stated in the design criteria.

Using the above assumptions, the projected per capita water demand for the three demand categories over the expected design period is given in the table hereunder.

5.2.1.3. Projected Level of Service

The percentage of population to be served by each demand category will vary with time. The variation is caused by changes in living standards, improvement of the Service level and the capacity of the water supply service.

Although the standard approach of projecting would normally involves a detail analysis of past consumption trends by consumers group to which alternative economic development scenarios would be applied to produce future consumption levels, this approach requires detail information on the present consumption pattern and future economic development scenarios, which is difficult to get for H town with limited water supply system in the past. However, for this exercise estimation of percentages of each demand category is assumed.

As per the assumption from the willingness and affordability to pay, 50% of the population needs to be served by public taps, 40% of the population need to be served by yard tap connection and 10% needs to be served house connection.

Table 5-3. Percentage of Population by Mode of Services in the (2007).

Mode of Service	Percentage of population
House Tap Users	10.00
Yard Tap Users	40.00
Public Tap Users	50.00
Total	100.00

The percentage of population to be served by each demand category is therefore, estimated taking the condition stated above as well as to consider the impact of increasing tariff rate on demand for the future; and assuming that the percentage for the yard taps users and the house tap users will increase gradually during the project service period while that of the public tap users will reduce as people shift to the next demand category. This is because of the expectation that the economic and living standard of the town will increase in the future. Those who previously using public tap will shift their mode of service to either yard connection or house connection.

Demand Year Category 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 47% 44.% 39.% 36.7% **PTU** 50% 41.5% 34.5% 32.4% 30.5% 28.6% **YCU** 40% 41% 41.4% 41% 40.2% 38.4% 35.6% 31.7% 26.5% 19.7% **HCU** 10% 12 % 14.4% 17.3% 20.74% 24.9% 29.8% 43% 35.8% 51.6% **Total** 100% 100% 100% 100% 100.% 100% 100% 100% 100% 100%

Table 5-4. Percentages of Population Served by each demand Category (%).

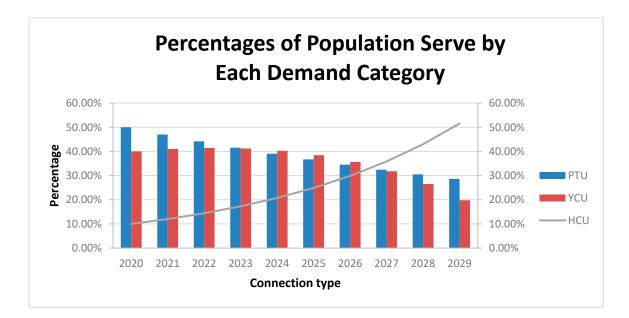


Figure 5-2. Percentage of population served by each demand category.

5.2.1.4. Projected Per capita Average Domestic Water Demand

The projected per capita average domestic water for a particular year is obtained by multiplying the per capita demand in each category for the year under consideration obtained from Table 4-5 with the corresponding population figure for the same year obtained from Table 4-3 and summing the results for all the demand categories. The proceeding tables show the projected per capita average domestic water demand for H project.

Table 5-5. Projected Average per capita Domestic Water Demand for H project town.

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Demand (1/c/d)	100.0	101.5	103.1	104.8	106.6	108.5	110.4	112.4	114.5	116.6

5.2.1.5. Climatic Grouping

In addition to the already discussed factors which influence the quantity of water consumption, climatic of the area is also directly related to the consumption and for this reason, the design criteria consider three climatic group[24, 25]. Hence to consider climatic conditions, factors are adopted and

applied to the average demands obtained from Table 4-8. The climatic grouping and corresponding factors are shown in Table 4-9 below.

Table 5-6. Climatic Grouping.

Group	Mean annual Precipitation	Factor
A	<600	1.1
В	601-900	1.0
С	>900	0.9

From the hydro-metrological data, H project has a mean annual rainfall of 1248 mm. Therefore, a climatic adjustment factor of 0.9 is used to adjust the per capita average domestic water demand.

5.2.1.6. Socio-Economic Adjustment Factor

The Socio-economic condition of a town also plays a role in determining the water consumption of an individual town. The design criteria provide for this in the form of categories for the various degrees of development. It is however difficult to quantify many aspects of development and consequently the classification of particular town is made relatively to the others.

Hence, the socioeconomic adjustment factor is determined based on the degree of the development of the particular town under study. The determination of the degree of the existing development and future potential of the town depend on personal judgment due to difficult conditions in quantifying them in short time. The town of H project for this exercise i.e. town under normal Ethiopian condition is assumed. Therefore, socioeconomic adjustment factor of 1.00 is adopted. Table 4-10 below shows the factors of socioeconomic grouping.

Table 5-7. Socio-Economic Grouping Factor.

Group	Description	Factor
A	Towns enjoying high living standard and with very high potential for development	1.10
В	Towns having a very high potential for development but lower living standard at present	1.05
С	Towns under normal Ethiopian Condition	1.00
D	Advanced Rural town	0.90

Applying the climatic and socio-economic adjustment factors to the average domestic water demand calculated in Table 4-8 above, the adjusted average daily domestic water demand for H project town is shown in the Table 4-11 below.

Table 5-8. Adjusted Average Daily per Capita Demand for H project Town.

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Average per capita demand l/c/d	100.00	101.53	103.14	104.84	106.61	108.46	110.39	112.39	114.46	116.60
Climatic adjustment factor	1	1	1	1	1	1	1	1	1	1
Socio-economic adjustment factor	1	1	1	1	1	1	1	1	1	1
Adjusted per capita demands l/c/d	100.00	101.53	103.14	104.84	106.61	108.46	110.39	112.39	114.46	116.60

Table 5-9 here under shows summary of population projection; percentages of population served by different modes of service, water demand determination and its growth in the expected service year of the new system are also indicate the calculated adjusted average domestic water demand.

Year 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 Population 5,000,000 5,271,000 5,556,688 5,857,861 6,045,183 6,338,978 6,647,053 6,970,100 7,308,846 7,664,056 8,036,529 Mode of Service in % 50.00% 47.00% 44.18% 41.53% 39.04% 36.70% 34.49% 32.42% 30.48% 40.00% 41.00% 41.42% 41.19% 40.23% 38.42% 35.65% 19.75% 31.74% 26.52% 17.28% 35.83% 43.00% HTU 10.00% 12.00% 14.40% 20.74% 24.88% 29.86% 51.60% Population By Mode of Service PTU 2,635,500 2,611,643 2,588,003 2,510,516 2,474,575 2,439,149 2,404,231 2,369,812 2,335,885 2,302,445 2,108,400 2,278,242 2,426,326 2,490,059 2,549,952 2,553,904 2,484,608 2,320,143 2,032,767 1.587.412 HTU 527,100 666,803 843.532 1,044,608 1,314,451 2,081,26 4.146.673 Per capita Demand (I/c/d) 42.79 34.76 33.00 31.33 50.00 47.47 45.07 40.62 38.57 36.62 PTU YTU 40.00 41.82 43.09 43.71 40.14 43.54 42.42 36.46 31.08 23.61 HTU 10.00 12.24 14.98 18.34 22.45 27.47 33.63 41.16 50.38 61.66 Demand By Modes of Service (m³/d) 107418.9 94070.7 88032.2 72144.3 PTU 131775.0 123974.7 116636.2 100523.5 82381.3 77093.1 111031.3 YTU 84336.0 95276.1 104558.6 108845.5 108338.0 99742.0 84602.2 63171.0 37472.5 HTU 5271.0 8161.7 12637.6 19155.7 29503.3 45440.4 69986.6 107792.2 166019.8 255701.1 Total Domestic Water Demand (m³/d) 221382.0 227412.5 233832.3 235420.0 241058.1 247849.2 257760.8 274775.7 306283.9 365317.9 Climatic Adjustment Factor Socioeconomic Adjustment 1 Factor Adjusted Domestic Water 247849.2 221382.0 227412.5 233832.3 235420.0 241058.1 257760.8 274775.7 365317.9 306283.9 Demand 2562.29 2724.77 2632.09 2706.39 2790.02 2868.62 2983.34 3180.27 3544.95 4228.22 (I/s)

Table 5-9. Adjusted Domestic Water Demand for H project Town.

5.2.2. Public Water Demand

The Water required for schools, hospitals, hotels, public facilities, parks, offices, commercial establishments, military camps, small-scale industries and etc. are included in this demand category. Public demand is usually expressed as a percentage of the average day domestic demand.

The general situation related to the public demand is that it is high at the initial stage of the service installation and gradually reduces as the number of connections increase. It is also understood that the percentage of public demand is high in smaller towns as compared to large towns where there could be high number of domestic connections.

The studies in towns having metered water supply system shows that the public water demand ranges between 10 to 20% of domestic consumption depending on the size of the town, type and extents of commercial, economic and industrial activities[26]. For this town, it is considered adequate to assume public demand to be 10% of domestic demand. Table 4-13 below presents the estimated public water demand.

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Domestic Water Demand	221382.0	227412.5	233832.3	235420.0	241058.1	247849.2	257760.8	274775.7	306283.9	365317.9
(m³/d)	22.002.0	227 112.0	200002.0	200 12010	21100011	20.0.2	201100.0	2	000200.0	00001110
(l/s)	2562.29	2632.09	2706.39	2724.77	2790.02	2868.62	2983.34	3180.27	3544.95	4228.22
Public Water Demand (m ³ /d)										
(10% of Domestic Water	22138.2	22741.2	23383.2	23542.0	24105.8	24784.9	25776.1	27477.6	30628.4	36531.8
Demand)										
(l/s)	256 23	263 21	270 64	272 48	279 00	286 86	298 33	318 03	354.50	422 82

Table 5-10. Public Water Demand as % of Domestic Water Demand.

5.2.3. Livestock Water Demand

As it is well known, the H project town a town Therefore, the inclusion of the livestock water demand is not obligatory.

5.2.4. Industrial Water Demand

The establishment of an industry is very rare at H project and hence the industrial water demand is not accounted. Even if there could be some industrial development in the future, which is beyond cottage industries, it has to develop its own water supply system not to compete with the new system and impose a higher tariff rate for the customers. Industries, which require water only for domestic use, could take water from the town system and this demand has already been covered under the public water demand.

5.2.5. Water Requirement for Fire Fighting

No extra capacity for firefighting to be considered in small to medium size towns. In case of fire, water required shall be met by stopping supply to consumers for the required time.

5.2.6. Unaccounted for Water [27]

All the water that goes in the distribution pipe does not reach the consumer. Some portion of this is wasted in the pipelines due to defective pipe joints, cracked and broken pipes, faulty valve and fittings. Some consumer keep open their taps or public taps even when they are not using the water and allow continuous wastage of water which also includes illegal connection, unmetered usages such as flushing, firefighting, cleaning the system and overflow from components of the water supply system and etc.

To calculate the future distribution loss it is considered appropriate to relate the percentage of losses to both the age of the distribution system and to the percentage of the total pipeline length, which made up the new distribution system. Water loss relationship curve, which had been adopted by Alexander GIBB'S in 12 towns' water supply study and from the records of the Water Service office of the town, is utilized in this study to estimate the future water loss of the system. Accordingly, the loss coefficients used for the entire design horizons of the system are presented in the table below.

Table 5-11. Water Losses Coefficient.

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
% of losses	20%	21%	21%	22%	22%	23%	23%	24%	24%	25%

5.2.7. Average Day Demand

The average day water demand is the sum of adjusted domestic water demand, non-domestic water demand and system water loss. The values calculated in the previous sections are summarized and added to estimate the total average day water demand of the project as shown in the Table 4-15 hereunder.

Table 5-12. Summary of Average Day Water Demand.

Description					Ye	ar				
Description	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
A- Domestic Demand, X Town										
(m3/d)	221382.00	227412.47	233832.31	235420.04	241058.09	247849.18	257760.77	274775.73	306283.93	365317.86
C- Public Water Demand	22138.20	22741.25	23383.23	23542.00	24105.81	24784.92	25776.08	27477.57	30628.39	36531.79
=10%*A (m ³ /d)										
E- Losses coefficient	20%	21%	21%	22%	22%	23%	23%	24%	24%	25%
F- Loss=(A+C)*E (m ³ /d)	48704.04	51281.51	54047.41	55774.76	58538.27	61692.09	65763.16	71856.84	82098.99	100371.03
G- Average Day										
Demand=A+C+E	292224.24	301435.22	311262.95	314736.81	323702.17	334326.18	349300.01	374110.15	419011.32	502220.68
(m3/day), X										
(l/s)	3382.23	3488.83	3602.58	3642.79	3746.55	3869.52	4042.82	4329.98	4849.67	5812.74

^{*}Note: it is assumed major loss to occur in the distribution pipeline only.

The rate of water demand keeps changing from season to season, from day to day and from hour to hour. In hot season, more water is consumed for drinking, bathing and washing clothes than in wet season. The consumption of water is high at weekends and holidays than on normal days, and also more water is required in morning and evening than early in the afternoon and late at night. Therefore, to account these fluctuating water demands, it is necessary to step up the average day demand by certain factor to get the maximum day demand and the peak hour demand. These scaled up water demand figure are used to design the capacities of pumping station, rising main and distribution network.

5.2.8.1. Maximum Day Water Demand

The maximum day water demand is the highest demand of any one 24-hour period over any specified year. If there is sufficient water and enough daily consumption record, it is possible to assume a realistic maximizing factor, however, since there is no any conventional water supply system in the past, the maximizing coefficient are taken from the design guideline of Cost effective Water Supply and Sanitation Project, and are presented on Table 4-16 below.

 Population
 Maximum Daily coefficient (Cd max.)

 0-50,000
 1.2

 50,000-100,000
 1.15

 >100,0000
 1.1

Table 5-13. Maximum Day Factor.

From Table 5-13 and the calculated average day water demand, the maximum daily coefficient to be adopted for H project town and the calculated maximum day demand is presented on Table 5-14 below.

Year	Average Day water Demand	Maximum Day Coefficient (Cd	Maximum Da	ay Demand
rear	(m³/d)	max.)	m³/d	1/s
2020	292224.24	1.2	350669.09	4058.67
2021	301435.22	1.2	361722.27	4186.60
2022	311262.95	1.2	373515.54	4323.10
2023	314736.81	1.2	377684.17	4371.34
2024	323702.17	1.2	388442.60	4495.86
2025	334326.18	1.2	401191.42	4643.42
2026	349300.01	1.2	419160.01	4851.39
2027	374110.15	1.2	448932.18	5195.97
2028	419011.32	1.2	502813.58	5819.60
2029	502220.68	1.2	602664.81	6975.29

Table 5-14. Maximum Day Water Demand for H project Town.

5.2.8.2. Peak Hour Demand

The peak hour demand is the highest demand in any one hour over the year. It represents the diurnal variation in water demand resulting from behavioral patterns of the local population.

The size, mode of service and social activities of the town significantly influence the peak hour demand. Further, studies show that the peak hour factor is greater for smaller population than bigger population. A peaking factor suiting the town is selected from the design criteria correlating peaking factor with number of population as stated in the table below.

Town Population	Peak Hour Factors
0-10,000	2.5-3.0
10,001 - 50,000	2.0-2.2
50,001-100,000	1.8
>100,000	1.6

Hence, since the population of H project town is in the range of >100,000 up to the end of the design period, a peaking factor of 1.6 is adopted to estimate the peak hour demand of the town.

5.2.9. Summary of Water Demand

The calculated water demands are summarized in the form tables and Charts as shown hereunder.

Table 5-16. Summary of Water Demand.

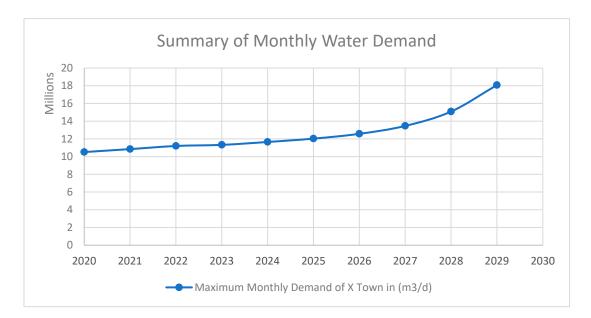

Description					Ye	ar				
Description	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Population	5,271,000	5,556,688	5,857,861	6,045,183	6,338,978	6,647,053	6,970,100	7,308,846	7,664,056	8,036,529
Domestic Water Demand (m ³ /d)	221382.00	227412.47	233832.31	235420.04	241058.09	247849.18	257760.77	274775.73	306283.93	365317.86
Public Water Demand (m ³ /d)	22138.20	22741.25	23383.23	23542.00	24105.81	24784.92	25776.08	27477.57	30628.39	36531.79
Losses (m ³ /d)	48704.04	51281.51	54047.41	55774.76	58538.27	61692.09	65763.16	71856.84	82098.99	100371.03
Demand(m ³ /d)	292224.24	301435.22	311262.95	314736.81	323702.17	334326.18	349300.01	374110.15	419011.32	502220.68
(l/s)	3382.23	3488.83	3602.58	3642.79	3746.55	3869.52	4042.82	4329.98	4849.67	5812.74
Maximum Day Factor	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Maximum Day Demand (m ³ /d)	350669.09	361722.27	373515.54	377684.17	388442.60	401191.42	419160.01	448932.18	502813.58	602664.81
(l/s)	4058.67	4186.60	4323.10	4371.34	4495.86	4643.42	4851.39	5195.97	5819.60	6975.29
Peak Hour Factor	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Peak Hour Demand m ³ /d)	730560.60	753588.06	778157.38	786842.02	809255.43	835815.46	873250.02	935275.37	1047528.30	1255551.69
(l/s)	8455.56	8722.08	9006.45	9106.97	9366.38	9673.79	10107.06	10824.95	12124.17	14531.85

Table 5-17. Summary of Total Water Demands.

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Maximum Day Demand of X	350669.09	361722.27	373515.54	377684.17	388442.60	401191.42	419160.01	448932.18	502813.58	602664.81
Town in (m3/d)	330009.09	301122.21	373313.34	311004.11	300442.00	401131.42	413100.01	440332.10	302013.30	002004.01
(l/s)	4058.67	4186.60	4323.10	4371.34	4495.86	4643.42	4851.39	5195.97	5819.60	6975.29
Total Design Water Demand	350669.09	361722.27	373515.54	377684.17	388442.60	401191.42	419160.01	448932.18	502813.58	602664.81
(m³/d)	330009.09	301122.21	373313.34	3//004.1/	300442.00	401191.42	419100.01	440932.10	302013.30	002004.01
(l/s)	4058.67	4186.60	4323.10	4371.34	4495.86	4643.42	4851.39	5195.97	5819.60	6975.29

Table 5-18. Summary of Total Monthly Water Demands.

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Maximum Monthly Demand of	10520072.64	10851668	11205466.3	11330525	11653278.1	12035742 6	12574800.3	13467965.3	15084407.5	18079944.4
X Town in (m3/d)	10320072.04	10031000	11203400.3	11000020	11033270.1	12033742.0	12374000.3	13407 303.3	13004407.3	10073344.4

Figure 5-3. Summary of monthly water demand. NB: This monthly water demand analyses at the end of first phase of water supply system at year 2030 will be used for water balance analyses this project.

6. Irrigation Potential Estimation and Water Demand Analyses

The irrigation potential for this assignment is estimated from the water balance analyses tabulated in table below as per the give data in Table 4-2.

The first step is to calculate the water requirement of the given data by summing up the loss (Etc m3/ha) and the irrigation requirements in to daily bases as shown in table below[9]. Then after, the daily irrigation water requirement will be tabulated again in to total monthly water demand per hectare analyses as shown in table. Therefore, finally the irrigation potential is set by try and error / goal seek approach in excel to estimate the total irrigable command area. Accordingly, the irrigable area is estimated to be 23,500ha as tabulated in water balance analyses.

Table 6-1. Summary of Total Water Demand for all Crops per hectare.

S/N	Crop	Planting Date	Growing period (days)	, ,	Irrigation water req. in the specified month(m3/ha)
	Onion	01-Feb	30	93.16	2794.74
1	Onion	March	30	93.16	2794.74
1	Onion	April	30	93.16	2794.74
	Onion	May	5	93.16	465.79
	Tomato	01-Jan	30	97.03	2911.03
	Tomato	Feb	30	97.03	2911.03
2	Tomato	March	30	97.03	2911.03
•	Tomato	April	30	97.03	2911.03
<u>.</u>	Tomato	May	25	97.03	2425.86
	Wheat	15-Jan	15	88.68	1330.15
•	Wheat	Feb	30	88.68	2660.31
3	Wheat	March	30	88.68	2660.31
•	Wheat	April	30	88.68	2660.31
	Wheat	May	25	88.68	2216.92
	To	otal water irriga	tion requirement per h	ectare	34,448.00

Table 6-2. Summary of Total Monthly Water Demand for all Crops for the optimum hectare.

S/N	Month	Planting Date	Irrigation water req. per month (m3/ha)	Irrigation water req. for 23,500 ha
1	Jan	Jan	4,241.19	99,667,925.73
2	Feb	Feb	8,366.08	196,602,856.90
3	March	March	8,366.08	196,602,856.90
4	April	April	8,366.08	196,602,856.90
5	May	May	120,051,503.56	
Tot	al Projec	t Monthly Irrig	809,528,000.00	

Table 6-3. Runoff coefficient calculator.

61,276.00	Km ²	Author:								
0.22		Calculated Runoff cof. by goal seek								
1,284.00	mm	from the given data using rational formula $Q_{m3} = CP_{mm}A \sim C = Q_{m3}/P_{mm}$								
17,096.000	Mm ³	tormula	$Q_{m3} = CP_n$	_{nm} A ~ C=	Q_{m3}/P_{mm}					
1,000.00	m ³ /km ² /vear									
50.00	years									
3,063,800,000.00	m ³									

Table 6-4. Water Balance Sheet.

Month	75% dep.	Runoff	Monthly inflow	Base	Monthly base	Total volume in	Reservoir	Evaporation	loss	seepage loss	D/S release	Irrigation Req.	Total	Water supply	Net storage	
	rainfall	coeff.	volume	Flow	flow volume	the reservoir	area	penman evap.	monthly Loss		per month	per month/ha	Irrigation Req.	Req. per month.	Volume	RE MA
	(mm)		m ³	lit/sec	m ³	m ³	m ²	m/month	m ³	m ³	m ³	m ³	for 23,500ha	m 3	m ³	RK
															66,626,454.71	DS
Jun	18.1	0.22	244,001,032.00	0.00	0.00	310,627,486.71	320,299,985.63	0.100	32,029,998.56	709,895.29	213,129,463.46		0.00	18,079,944.35	47,388,080.34	BDS
Jul	45.6	0.22	614,720,832.00	0.00	0.00	662,108,912.34	680,463,002.48	0.100	68,046,300.25	709,895.29	213,129,463.46		0.00	18,079,944.35	362,853,204.29	ok
Aug	71.2	0.22	959,827,264.00	0.00	0.00	1,322,680,468.29	1,357,350,675.85	0.100	135,735,067.59	709,895.29	213,129,463.46		0.00	18,079,944.35	955,735,992.89	ok
Sep	93.4	0.22	1,259,099,248.00	0.00	0.00	1,357,106,445.03	1,392,626,974.22	0.100	139,262,697.42	709,895.29	213,129,463.46		0.00	18,079,944.35	986,634,339.80	ok
Oct	100.1	0.22	1,349,420,072.00	0.00	0.00	1,357,106,445.03	1,392,626,974.22	0.100	139,262,697.42	709,895.29	213,129,463.46		0.00	18,079,944.35	986,634,339.80	ok
Nov	142.8	0.22	1,925,046,816.00	0.00	0.00	1,357,106,445.03	1,392,626,974.22	0.100	139,262,697.42	709,895.29	213,129,463.46		0.00	18,079,944.35	986,634,339.80	ok
Dec	277.0	0.22	3,734,159,440.00	0.00	0.00	1,357,106,445.03	1,392,626,974.22	0.100	139,262,697.42	709,895.29	213,129,463.46		0.00	18,079,944.35	986,634,339.80	ok
Jan	289.1	0.22	3,897,276,152.00	0.00	0.00	1,357,106,445.03	1,392,626,974.22	0.100	139,262,697.42	709,895.29	213,129,463.46	4,241.19	99,667,925.73	18,079,944.35	886,966,414.07	ok
Feb	190.8	0.22	2,572,121,376.00	0.00	0.00	1,357,106,445.03	1,392,626,974.22	0.100	139,262,697.42	709,895.29	213,129,463.46	8,366.08	196,602,856.90	18,079,944.35	790,031,482.89	ok
Mar	30.2	0.22	407,117,744.00	0.00	0.00	1,197,149,226.89	1,228,718,812.80	0.100	122,871,881.28	709,895.29	213,129,463.46	8,366.08	196,602,856.90	18,079,944.35	646,465,080.90	ok
Apr	17.2	0.22	231,868,384.00	0.00	0.00	878,333,464.90	902,028,301.49	0.100	90,202,830.15	709,895.29	213,129,463.46	8,366.08	196,602,856.90	18,079,944.35	360,318,370.05	ok
May	8.5	0.22	114,586,120.00	0.00	0.00	474,904,490.05	488,634,630.95	0.100	48,863,463.09	709,895.29	213,129,463.46	5,108.57	120,051,503.56	18,079,944.35	74,780,115.58	ok
	1284.00		17,309,244,480.00		-				1,333,325,725.45	8,518,743.54	2,557,553,561.46		809,528,000.00	216,959,332.22		

NB: Here the calculation of catchment yield using the given monthly rainfall data as shown in Table 6-4 and the calculated C=0.22, as shown in Table 6-3 gives a catchment yield = 17,309,244,480 m³ which is almost the similar with the given annual catchment yield 17,096,000,000 m³.

Table 6-5. Reservoir Characteristics.

Res capacity, Cs	1,357,106,445.03	
Total in flow	17,309,244,480.00	
Sum of outflow(including losses	1,558,803,801.20	
Dead storage	66,626,454.71	
Total sum	1,625,430,255.92	Ok
Surplus	-268,323,810.89	

Asus:

If total inflow is > sum of all outflows including loses and dead storage

7. Hydropower Potential and Energy Generation

7.1. Energy of Hydropower

7.1.1. Hydropower Generation

The waters of lakes, reservoirs located at high elevation and water flowing in a river all provide potential energy or kinetic energy[28]. The energy produced by water is termed water power. Power generation methods which produce electric energy by using water power are called hydropower generation.

7.1.2. Electric Power Output

Hydro power plants are equipped with turbines and generators which are turned by water power to generate electric power[29]. Here, the water power is first converted into mechanical energy then into electric energy. In this form of energy conversion process, there is a certain amount of energy loss due to the turbine and generator. The power output is expressed by the following equation.

P=09.8QHe

Where

P: Power output (kW)

 ϱ : Water density = 1,000kg/m³ (at 4 $^{\circ}$ C, elevation 0m and 1atm)

9.8: Approximate value of free fall acceleration/sec²)

Q: Power discharge (m³/sec)

He: Effective head (m)

η: Combined efficiency of turbine and generator

The MW unit is also used to express the power output. 1,000 kilowatt (kW) is equal to 1 megawatt (MW.

Maximum output1, rated output, firm output, and firm peak output are used to express the performance of the power plant.

7.1.3. Energy Generation

Power output (P) is the magnitude of the electric power generated. The electric energy generated by continuous operation of P (kW) for T (hours) is termed generated energy and is expressed by kilowatt hour (kWh).

The following Table 7-1 shows the discharge taken from water balance analyses. Therefore, according to the topography condition the following discharges can be used for hydropower development plant. However, for the illustration of this example only downstream release for power generation is taken.

Table 7-1. Outlet discharges for multipurpose reservoir of the project .

S/N	Description	Discharge in m³/sec
1	Qd/s release	82.23
2	Qirr	25.32
3	Q_{ws}	6.98
4	Total	114.52

Hence, according the above formula and the tabulated data in Table 7-1 the design is calculated as follows:

$$KW = 9.81 \times Q \times H \times \eta$$

Where,

Q = quantity of water flowing through the hydraulic turbine in cubic meters per second. Discharge (quantity of water) flowing in a stream and available for power generation has daily and seasonal variation. Optimum discharge for power generation is determined on the basis of energy generation cost.

 H_e = Net available head in meters (gross head – losses)

H_d = net head resulting between river-bed and reservoir level =2000m

 $H_e = 150 + H_d = 350 m$

 η = overall efficiency of the hydro power plant. For general estimation purposes, η is normally taken as 0.85, a hydropower station has a gross head of He = 150 +H_d meter. Head loss in water conductor system is neglected for this exercise. Optimum discharge in m³ is 82.23 cubic meter per second.

 $KW = 9.81 \times 82.23 \times 350 \times 0.85$

KW = 239,974.16

MW = 240

Energy generation E = average power x 24 x 365 in (MWh) units= 2,102,400.00

Accordingly 3 units of 3 x 80 MW can be installed.

8. Frequency Analyses and Flood Routing

8.1. Introduction

Flood routing is the technique of determining the flood hydrograph at a section of a river by utilizing the data of flood flow at one or more upstream sections [30]. The hydrologic analysis of problems such as flood forecasting, flood protection, reservoir design and spillway design invariably include flood routing. In these applications two broad categories of routing can be recognized. These are reservoir routing and channel routing. In reservoir routing the effect of a flood wave entering a reservoir is studied. In channel routing the change in the shape of a hydrograph as it travels down a channel is studied. In this project a flood frequency analyses and reservoir routing is undertaken to see the behaviour of the reservoir while incoming the design flood (peak flood) under certain return period 100, 500 and 1000 years return period[31].

The term flood routing refers to procedures to determine the outflow hydrograph at a point downstream in a river (or reservoir) as a function of the inflow hydrograph at a point upstream. As flood waves travel downstream they are attenuated and delayed. That is, the peak flow of the hydrograph decreases and the time base of the hydrograph increases. Again design flood is the flood discharge adopted for the design of a structure after careful consideration of economic and hydrologic factors. As the magnitude of the design flood increases, the capital cost of the structure also increases but the probability of annual damages will decrease.

8.2. Reservoir routing

Let I and Q be the inflow into and outflow from a reservoir, and S the storage in the reservoir, the continuity equation in the differential form for the reservoir[32] is given by

$$I - Q = \frac{dS}{dt} \dots Equation 8-1$$

Alternatively, the same can be written as

$$\overline{I}\Delta t - \overline{Q}\Delta t = \Delta S \dots Equation 8-2$$

$$\left(\frac{I_1+I_2}{2}\right)\Delta t - \left(\frac{Q_1+Q_2}{2}\right)\Delta t = S_2 - S_1$$
Equation 8-3

8.3. Design flood

Flood is the unusual high stage of a river due to runoff from rainfall and or melting of snow in quantities too great to be confined in the normal water surface elevations of the river or stream, as the result of unusual meteorological combination[33]. The maximum flood that any structure can safely pass is called the 'Design flood' and is selected after consideration of economic and hydrologic factors. The design flood is related to the project feature and may be arrived by considering the cost of constructing the structure to provide flood control and the flood control benefits arising directly by prevention of damage to structures downstream, disruption communication, loss of life and property, damage to crops and under -utilization of land. The design flood is usually selected after making a cost-benefit analysis and exercising engineering judgment. In general the methods used in the estimation of the design flood can be grouped as below.

- (i) Increasing the observed maximum flood by a certain percentage
- (ii) Envelope curves
- (ììì) Empirical flood formulae
- (iv) Rational method
- (v) Unit hydrograph application
- (vì) Frequency analysis (or Statistical methods)

8.4. Frequency analyses

In this project frequency analysis will be used to determine the design flood. The analyses makes use of the observed data in the past to predict the future flood events along with their probabilities or return periods. It is based on the assumption that combination of the numerous factors which produce floods are a matter of pure chance and therefore are subject to analysis according to the mathematical theory of probability.

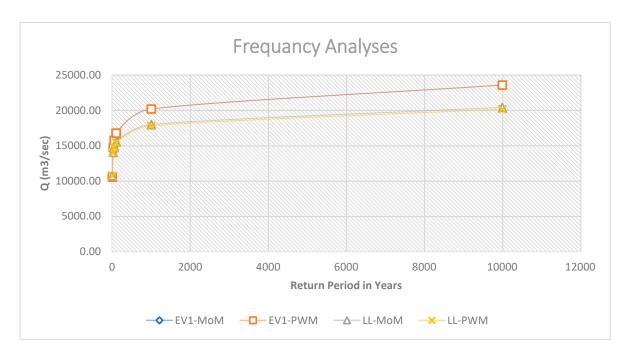


Figure 8-1. Flood frequency analyses of different statistical distributions.

8.5. Flood routing calculation

Table and Figure 8-1 shows the relationship between head, discharge and storage of the reservoir above NPL for the analyses of reservoir routing of Table 8-6.

ELEVATION	TOTAL VOLUME	Cumahamaa IIaad	Charraga (M	1-Li	O(m3	26/11
ELEVATION	TOTAL VOLUME	Surcharge Head,	Storage(M	cumulative	Q(m ³	2S/Δt
(masl)	(MMC)	H(m)	MC)	Storage(MMC)	/s)	+Q
1200.00	1357.11	0	0.00	0.00	0	0
1210.00	1533.22	10	176.11	176.11	1075	43271 5
1220.00	1722.37	20	189.15	365.26	3041	89828 7
1230.00	1924.87	30	202.50	567.76	5587	13971 56
1240.00	2141.02	40	216.15	783.91	8601	19299 48

Table 8-1. Reservoir characteristics above NPL.

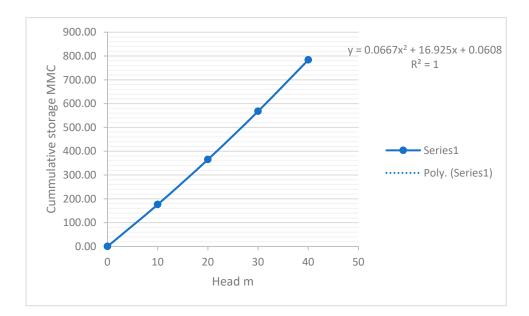


Figure 8-2. Stage Vs cumulative storage relationship.

Because of data limitation on the project Tc is calculated from the Empirical formula below.

$$T_{\rm c} = 0.0418 A^{0.324}$$

where:

 T_c = time of concentration, h

A = the drainage area, acre

According the above formula a table below is tabulated to calculate Tc and other important parameters as stated below to develop the input hydrograph for flood routing propose. The flow to be routed is also taken from the frequency analyses result of the 1000 and 10000 return period just to see how the damping effect of the reservoir will behave.

Table 8-2. Parameters calculation table.

Step	Parameter	Unit	Value
1	Catchment Area	Km ²	61276.00
2	Length of main		
	water course	m	
3	Time of concentration, Tc	hr	8.86
4	Rain fall excess duration	hr	
	D = Tc/6	hr	1.00
5	Time to peak, Tp	hr	
	Tp = 0.6 Tc + 0.5 D	hr	5.82
6	Time to base, Tb	hr	
	Tb = 2.67 Tp	hr	15.53
7			
	Peak rate of discharge created by 1mm runoff		
	excess on whole of the catchment, Tp	m³/sec/mm	
	p = (0.21* A) / Tp		2211.96
8	Lag time, tı	la u	
	$t_1 = 0.6 T_c$	hr	5.32

 Table 8-3. Time of incremental Hydrograph.

Time of incremental hydrograph								
Time of beginning	Time to Peak	Time to End						
hr								
0.00	5.8	15.5						
1.00	6.8	16.5						
2.00	7.8	17.5						
3.00	8.8	18.5						
4.00	9.8	19.5						
5.00	10.8	20.5						

 Table 8-4. Inflow hydrograph plotting table.

Ingramantal run off to dayalan t	Time of	Time to	Time to	
incremental fun off to develop t	Incremental run off to develop the complex hydrograph —			
Tr (Years)	Qp (m³/sec)		hrs	
0	0.00	0.00	5.82	15.53
25	4530.90	1.00	6.82	16.53
50	4850.42	2.00	7.82	17.53
100	5167.59	3.00	8.82	18.53
1000	6215.60	4.00	9.82	19.53
10000	7261.76	5.00	10.82	20.53

Table 8-5. Ordinate of Input hydrograph.

(hr)	Ordinate of Hydrograph (m³/Sec)										
	1	2	3	4	5	6	7				
0	0.00						0.00				
1.00	0.00	0.00					0.00				
2.00	0.00	940.52	0.00				940.52				
3.00	0.00	1881.04	1006.84	0.00			2887.88				
4.00	0.00	2821.56	2013.69	1072.68	0.00		5907.93				
5.00	0.00	3762.07	3020.53	2145.36	1290.23	0.00	10218.20				
5.82	0.00	4530.90	3843.58	3022.23	2344.92	1232.21	14973.84				
6.82	0.00	4064.52	4850.42	4094.91	3635.15	2739.60	19384.60				
7.82	0.00	3598.15	4351.16	5167.59	4925.37	4246.99	22289.26				
8.82	0.00	3131.77	3851.89	4635.68	6215.60	5754.37	23589.32				
9.82	0.00	2665.40	3352.63	4103.77	5575.82	7261.76	22959.37				
10.82	0.00	2199.02	2853.36	3571.86	4936.03	6514.29	20074.57				
15.53		0.00	499.26	1063.82	1919.35	2989.87	6472.31				
16.53			0.00	531.91	1279.57	2242.41	4053.89				
17.53				0.00	639.78	1494.94	2134.72				
18.53					0.00	747.47	747.47				
19.53						0.00	0.00				

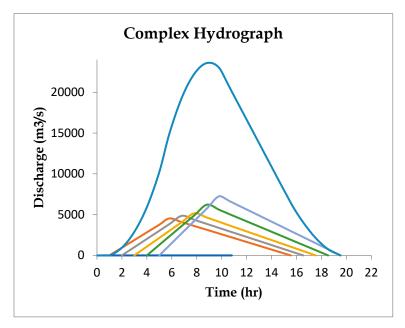


Figure 8-3. Inflow Hydrograph.

Table 8-6. Reservoir routing tables.

					0		
2) Establish the Q-G relation 3) Carry out the routing according to equation 4) Compute Q from the Q-G relation 5 Spillway crest length = 300.000 Cd = 1.70 dt <=Tp/6 0.22667 0.236 Base flow = R 0.000 Y=S = 0.0667x2 + 16.925x + 0.0608 H Q S G LogQ LogG (m) (m³/sec) (m³) (m³/sec) 1 LogQ LogG 1 2 3 4 5 6 60.800.00	FLOOD	ROUTING					
2) Establish the Q-G relation 3) Carry out the routing according to equation 4) Compute Q from the Q-G relation							
2) Establish the Q-G relation 3) Carry out the routing according to equation 4) Compute Q from the Q-G relation	1) Inspec	ct the inflow hyd	rograph and select	a routing interval	: Δt<(1/6) time to peak		
4) Compute Q from the Q-G relation Spillway crest length = 300.00 Cd = 1.70 dt <=Tp/6 0.22667 0.23 Base flow = R 0.00 V=S = 0.0667x2 + 16.925x + 0.0608		•			•		
4) Compute Q from the Q-G relation Spillway crest length = 300.00 Cd = 1.70 dt <=Tp/6 0.22667 0.23 Base flow = R 0.000 Y=S = 0.0667x2 + 16.925x + 0.0608 W (m³/sec) (m³) (m³/sec) LogQ LogG 1 2 3 4 5 6 -	3) Carry	out the routing a	according to equati	on		$G_{i+1} = G_i + I_{m,i} - G_i$	Q_i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4) Comp	ute Q from the Q)-G relation				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ength =	300.00	
H Q S G LogQ LogG							-
H Q S G LogQ LogG 1 2 3 4 5 6 0.10 16.13 1,753,967.00 2,157.53 1.21 3.33 0.50 180.31 8,539,975.00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00							+
H Q S G LogQ LogG 1 2 3 4 5 6 0.10 16.13 1,753,967.00 2,157.53 1.21 3.33 0.50 180.31 8,539,975.00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00				Base flow =	R	0.00	
H Q S G LogQ LogG 1 2 3 4 5 6 0.10 16.13 1,753,967.00 2,157.53 1.21 3.33 0.50 180.31 8,539,975.00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00					V 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
(m) (m³/sec) (m³) (m³/sec) LogQ 1 2 3 4 5 6 - - 60,800.00 - - - - 0.10 16.13 1,753,967.00 2,157.53 1.21 3.33 0.50 180.31 8,539,975.00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 79,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751					Y=5 = 0.066/x2 + 16.5	125x + 0.0608	
1 2 3 4 5 6 0.10 16.13 1,753,967.00 2,157.53 1.21 3.33 0.50 180.31 8,539,975.00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43					LogQ	LogG	
- - 60,800,00 - - - - 0.10 16.13 1,753,967,00 2,157.53 1.21 3.33 0.50 180.31 8,539,975,00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.50			` ′		_		
0.10 16.13 1,753,967.00 2,157.53 1.21 3.33 0.50 180.31 8,539,975.00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.70 </td <td>1</td> <td>2</td> <td>_</td> <td>4</td> <td>5</td> <td>6</td> <td></td>	1	2	_	4	5	6	
0.50 180.31 8,539,975.00 10,555.81 2.26 4.02 0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5	-	-			-	-	
0.90 435.45 15,347,327.00 19,025.72 2.64 4.28 1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 <							
1.30 755.94 22,176,023.00 27,554.47 2.88 4.44 1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09							
1.70 1,130.43 29,026,063.00 36,136.37 3.05 4.56 2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13							
2.10 1,552.03 35,897,447.00 44,767.98 3.19 4.65 2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15							
2.50 2,015.95 42,790,175.00 53,446.92 3.30 4.73 2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
2.90 2,518.65 49,704,247.00 62,171.39 3.40 4.79 3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21							
3.30 3,057.32 56,639,663.00 70,940.01 3.49 4.85 3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
3.70 3,629.72 63,596,423.00 79,751.65 3.56 4.90 4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
4.10 4,233.95 70,574,527.00 88,605.37 3.63 4.95 4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
4.50 4,868.43 77,573,975.00 97,500.36 3.69 4.99 4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
4.90 5,531.77 84,594,767.00 106,435.94 3.74 5.03 5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							-
5.30 6,222.77 91,636,903.00 115,411.51 3.79 5.06 5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
5.70 6,940.37 98,700,383.00 124,426.54 3.84 5.09 6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
6.10 7,683.60 105,785,207.00 133,480.54 3.89 5.13 6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
6.50 8,451.62 112,891,375.00 142,573.09 3.93 5.15 6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
6.90 9,243.66 120,018,887.00 151,703.80 3.97 5.18 7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
7.30 10,058.99 127,167,743.00 160,872.32 4.00 5.21 7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							
7.70 10,896.98 134,337,943.00 170,078.32 4.04 5.23 b							1
			1			+	b
0.10 11,757.05 11,020,707.00 175,521.51 4.07 5.25 a	8.10	11,757.03	141,529,487.00	179,321.51	4.07		a

Summary result :-			
Qd =	4914.56	h	0.840
He =	4.528		0.040
Discharge reduction =	79.17%	a	0.252

where :-	G = Si/dT + Qi/2				
	Im=1/2*(Ii+Ii)				
Step 2:-	Obtain a relatio	n between (2) &(4)) using regration	analysis	
		$Q=aG^b$			
Step 3:					
Time, T	Inflow, I	0	Q	Im-Q	G
(hrs)	(m ³ /sec)	(m^3/sec)	(m^3/sec)	(m ³ /sec)	(m ³ /sec)
1	2	3	4	5	6
0.00	0.00	0.00	0.00	0.000	0.000
1.00	0.00	470.26	0.00	470.259	0.000
2.00	940.52	1914.20	44.36	1869.840	470.259
3.00	2887.88	4397.90	170.82	4227.086	2340.100
4.00	5907.93	8063.06	406.51	7656.552	6567.186
5.00	10218.20	12596.02	778.17	11817.842	14223.737
5.82	14973.84	17179.22	1293.49	15885.730	26041.580
6.82	19384.60	20836.93	1929.94	18906.986	41927.309
7.82	22289.26	22939.29	2638.56	20300.731	60834.295
8.82	23589.32	23274.34	3360.81	19913.536	81135.026
9.82	22959.37	21516.97	4041.43	17475.542	101048.562
10.82	20074.57	13273.44	4621.06	8652.377	118524.104
15.53	6472.31	5263.10	4902.90	360.204	127176.481
16.53	4053.89	3094.30	4914.56	-1820.258	127536.685
17.53	2134.72	1441.10	4855.56	-3414.464	125716.427
18.53	747.47	747.23	4744.51	-3997.276	122301.963
19.53	747.00	373.50	4613.88	-4240.375	118304.687

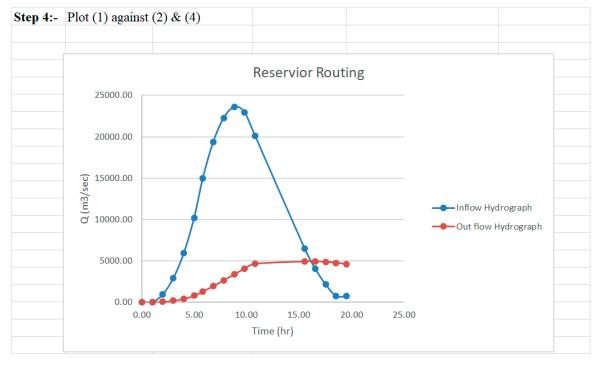


Figure 8-4. Routed hydrograph.

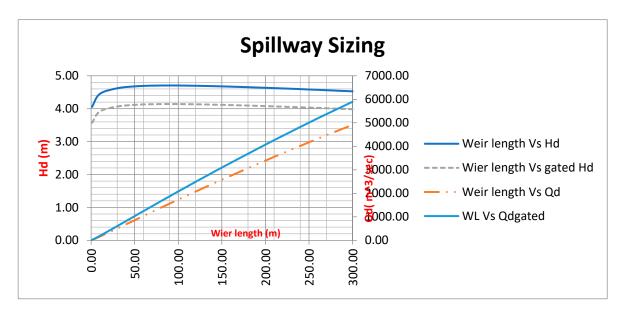


Figure 8-5. Optimum spillway sizing graph.

The above Figure 8-5 shows how to size the spillway of the project, however since we don't have the cost data of the project we cannot be sure to select the optimum one. But, for this this case we can choose the size of the spillway by looking H_d and the design flood magnitude. And, for this exercise it's routed for 300m spillway width, the point wher H_d & Q_d crossed each other. At this stage the damping effect of the reservoir is 79.1% and the design flood of the spillway is selected 4915m³/sec.

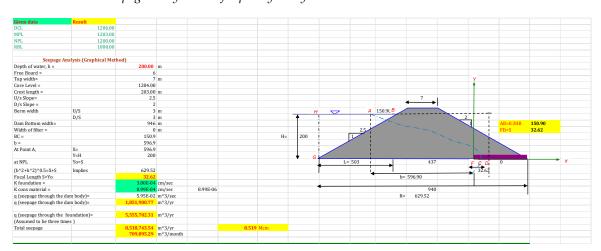
9. Conclusions and Recommendation

In conclusion this is a technical note prepared to assist junior young engineers with practical example, and is recommended for those who are engaged in the study and design of stochastic hydrology, spillway, dam, irrigation, water supply and hydropower projects.

10.1. Annex 10-1 Consistency Test

			Method of least square								
	T=return period		Method of least square								
	N=no.samples										
Year	2/	Rank		(07.1)	T (NI.1)/	(T/T-1)	1 (T/T 1)	V 1 1 (T/T 1)	X^2	X*Y	Y^2
1951	m3/sec 4913	(m) 1	order 26665	0.0196	T=(N+1)/m 51.0000	1.0200	0.0086	Y=loglog (T/T-1) -2.0655	24137569.000	-10147.766	4.266
1952		2		0.0196	25.5000		0.0036	-1.7601	31618129.000	-9897.030	_
1952		3		0.0592	17.0000		0.0174	-1.5796	36264484.000	-9897.030 -9512.150	-
1954		4		0.0388	12.7500		0.0263	-1.4501	39363076.000	-9097.993	2.103
1955		5		0.0784	10.2000		0.0333	-1.3486		-8698.485	
1956	-	6		0.0980	8.5000		0.0544	-1.2647	43414921.000	-8333.367	1.600
1957	6647	7		0.1176	7.2857	1.1591	0.0641	-1.1930		-7930.027	1.423
1958		8		0.1569	6.3750			-1.1302		-7948.498	
1959		9		0.1765	5.6667		0.0843	-1.0741	49533444.000	-7559.268	
1960		10		0.1961	5.1000		0.0948	-1.0233		-7531.152	_
1961	7561	11	13949	0.2157	4.6364		0.1055	-0.9767	57168721.000	-7384.871	0.954
1962		12		0.2353	4.2500		0.1055	-0.9337	59059225.000	-7175.126	0.934
1963		13	13186	0.2549	3.9231	1.3421	0.1103	-0.8935	60047001.000	-6923.846	0.798
1964		14	12853	0.2745	3.6429		0.1394	-0.8558		-6801.325	0.732
1965		15		0.2941	3.4000		0.1513	-0.8203	65302561.000	-6628.472	0.732
1966		16	12240	0.2741	3.1875		0.1635	-0.7865	66357316.000	-6406.638	0.619
1967	8146	17	11872	0.3333	3.0000		0.1761	-0.7543		-6144.220	0.569
1968		18	11592	0.3529	2.8333		0.1761	-0.7234	66357316.000	-5892.890	0.523
1969		19	11231	0.3725	2.6842		0.2024	-0.6937	67667076.000	-5706.756	0.323
1970		20	10827	0.3723	2.5500		0.2024	-0.6651	68492176.000	-5504.593	0.442
1971	8296	21	10516	0.3922	2.4286		0.2162	-0.6374		-5288.080	_
1971		22	10093	0.4118	2.3182		0.2304	-0.6374		-5266.060	0.373
1973		23	9751	0.4514	2.2174		0.2432	-0.5843	70744921.000	-4914.873	0.341
1973		24	9408	0.4510	2.1250		0.2604	-0.5588	70744921.000	-4914.873 -4708.164	0.341
				0.4708							0.312
1975 1976		25		0.4902	2.0400		0.2926 0.3096	-0.5337	75446596.000	-4635.982 -4584.956	0.259
1976	9408	26 27	8686	0.5098	1.9615 1.8889			-0.5092		-4562.652	0.239
			8426					-0.4850		-4362.632 -4496.399	
1978 1979		28 29	8411	0.5490	1.8214		0.3458	-0.4611	95082001.000		
1979			8296	0.5686 0.5882	1.7586		0.3651	-0.4375		-4416.007	0.191
and the same of th	10827	30	8296		1.7000	10.0000	0.3854		110586256.000	-4355.135 -4232.237	0.172
1981 1982	11231	31	8276	0.6078	1.6452 1.5938		0.4065		117223929.000		0.153
1982		32		0.6275 0.6471	1.5958		0.4288 0.4523	-0.3677	126135361.000 134374464.000	-4129.958 -3994.321	0.135
1983	11872	34	8146				0.4525		140944384.000	-3994.321	_
1984		35	8146	0.6667 0.6863	1.5000 1.4571	3.1875	0.5035		149817600.000	-3648.052	0.103
1986	12570	36	8146 8081	0.7059	1.43/1	3.4000	0.5315		158004900.000	-3450.640	0.039
1987		37	7947	0.7059	1.3784		0.5614		165199609.000	-3430.040	_
1988		38	7749	0.7253	1.3421	3.9231	0.5936		173870596.000	-2986.451	0.051
1988		39	7/49	0.7451	1.3421			-0.2265		-2986.451	_
1989		40	7561	0.7843	1.3077		0.6284		194574601.000	-2737.030	0.041
1990	14291	41	7360	0.7843	1.2439		0.7076	-0.1764		-2460.744	0.031
1991		41	7380	0.8039	1.2439		0.7533		223143844.000	-2146.944	0.023
1992		43	7033	0.8431	1.1860		0.7555		238733401.000	-1459.882	0.013
1993		43	6647	0.8431	1.1591	7.2857	0.8625		254785444.000	-1459.882	0.009
1994		45	6589	0.8824	1.1333		0.9294	-0.0843		-1023.637	0.004
1995		46	6450	0.8824	1.1333	10.2000	1.0086	0.0037	305340676.000	-540.976 64.986	0.001
1996	17908	46	6450	0.9020	1.1087	12.7500	1.1055		320696464.000	780.122	0.000
1997		48	6022	0.9216	1.0851				332405824.000	1642.039	0.002
1998									390220516.000		
2000				0.9808					711022225.000	6196.374	
2000	20003	_	4913	0.9804	1.0200	51.0000	1./0/6	0.2324	/11022223.000	0190.574	0.054
	. 50					1	1				
Consistency check											
Mean x	10727.6		- 1.100			interceptor	A=	0.620294726	slope	B=	-0
st.dev s	4393.890583 50)	σ -1*100 Xmean \sqrt{n}	100	/	Correlation	-0.9819618				
Consistency (k)	0.058	3		לUT ≤	%	Correlation	-0.7017018				
			Xmean√n			V-	-0.0001138	_x +	0.620294726		
K<0.1 =ok	ok!						-0.0001138	× '	0.020294726		

10.2. Annex 10-2 Outliers test


Testing outliers of maximum discharge data (data screening)										
							Outlier			
s.no	year 1071	rainfall	y=logx	(y-Y)^2	(y-Y)^3	higher	lower			
1	1951	4913	3.6913	0.0950	-0.0293		ok			
2	1952	5623	3.7500	0.0623	-0.0155		ok			
3	1953	6022	3.7797	0.0483	-0.0106		ok			
4	1954	6274	3.7975	0.0408	-0.0082	ok	ok			
5	1955	6450	3.8096	0.0361	-0.0069	ok	ok			
6	1956	6589	3.8188	0.0326	-0.0059	ok	ok			
7	1957	6647	3.8226	0.0313	-0.0055	ok	ok			
8	1958	7033	3.8471	0.0232	-0.0035	ok	ok			
9	1959	7038	3.8474	0.0231	-0.0035	ok	ok			
10	1960	7360	3.8669	0.0176	-0.0023	ok	ok			
11	1961	7561	3.8786	0.0146	-0.0018	ok	ok			
12	1962	7685	3.8856	0.0130	-0.0015		ok			
13	1963	7749	3.8892	0.0122	-0.0013		ok			
14	1964	7947	3.9002	0.0099	-0.0010		ok			
15	1965	8081		0.0099						
		50.5	3.9075		-0.0008		ok .			
16	1966	8146	3.9109	0.0078	-0.0007		ok .			
17	1967	8146	3.9109	0.0078		ok	ok			
18	1968	8146	3.9109	0.0078	-0.0007	ok	ok			
19	1969	8226	3.9152	0.0071	-0.0006	ok	ok			
20	1970	8276	3.9178	0.0067	-0.0005	ok	ok			
21	1971	8296	3.9189	0.0065	-0.0005	ok	ok			
22	1972	8296	3.9189	0.0065	-0.0005	ok	ok			
23	1973	8411	3.9248	0.0056	-0.0004	ok	ok			
24	1974	8426	3.9256	0.0055	-0.0004	ok	ok			
25	1975	8686	3.9388	0.0037	-0.0002		ok			
26	1976	9005	3.9545	0.0020	-0.0001		ok			
27	1977	9408	3.9735	0.0020	0.0000		ok			
		9751								
28	1978		3.9890	0.0001	0.0000		ok .			
29	1979	10093	4.0040	0.0000	0.0000		ok			
30	1980	10516	4.0219	0.0005	0.0000		ok			
31	1981	10827	4.0345	0.0012	0.0000	ok	ok			
32	1982	11231	4.0504	0.0026	0.0001	ok	ok			
33	1983	11592	4.0642	0.0042	0.0003	ok	ok			
34	1984	11872	4.0745	0.0056	0.0004	ok	ok			
35	1985	12240	4.0878	0.0078	0.0007	ok	ok			
36	1986	12570	4.0993	0.0100	0.0010	ok	ok			
37	1987	12853	4.1090	0.0120	0.0013	ok	ok			
38	1988	13186	4.1201	0.0145	0.0018	ok	ok			
39	1989	\$750,000 PM 5		0.0177	0.0023		ok			
40	1990	13949		0.0210	0.0031		ok			
41	1991	14291	4.1551	0.0242	0.0031	ion	ok			
42	1992	14938		0.0306	0.0053					
43	1992	15451					ok			
			4.1890	0.0359	0.0068		ok .			
44	1994	15962	4.2031	0.0414	0.0084		ok			
45	1995	17018		0.0536	0.0124		ok			
46	1996	17474		0.0590	0.0143		ok			
47	1997	17908	4.2530	0.0643	0.0163	ok	ok			
48	1998	18232	4.2608	0.0683	0.0178	ok	ok			
49	1999	19754	4.2957	0.0877	0.0260	ok	ok			
50	2000	26665	4.4259	0.1819	0.0775	higher	ok			
		Total	199.9750	1.2801	0.0967					
		n	50							
outlier		Discharge	Mean Y	3.9995						
high	4.344		St. Deviation	0.1616						
low	3.655		Coeff. Skew	0.487						
-511	3.033	4514	COCII. OREW	0.40/						

Total
1
4393.
I

10.4. Annex 10-4 Flood frequency analyses sheet

Date	Flows(m3/s)									
1951	107	max	min		Classes			PLOTTING POSITION		
1951	66	3337	15		Upper	Lower		(m/N+1)*100	Q (m3/s)	Exceedenc
1951	42				3337	3226.267	1	0.166389351	3281.633	0.166389
1951	38				3226.267	3115.533	1	0.166389351	3170.9	0.166389
1951	60				3115.533	3004.8	1	0.166389351	3060.167	0.166389
1951	233	Range	3322		3004.8	2894.067	1	0.166389351	2949.433	0.166389
1951	1690	Interval	110.7333		2894.067	2783.333	1	0.166389351	2838.7	0.166389
1951	2371	Number(N)	600		2783.333	2672.6	1	0.166389351	2727.967	0.166389
1951	1358				2672.6	2561.867	2	0.332778702	2617.233	0.332779
1951	678				2561.867	2451.133	6	0.998336106	2506.5	0.998336
1951	293				2451.133	2340.4	9	1.49750416	2395.767	1.497504
1951	163				2340.4	2229.667	19	3.161397671	2285.033	3.161398
1952	116				2229.667	2118.933	26	4.326123128	2174.3	4.326123
1952	71	Q70	Q80	Q95	2118.933	2008.2	32	5.324459235	2063.567	5.324459
1952	48	147.4907	121.4943	82.49975	2008.2	1897.467	40	6.655574043	1952.833	6.655574
1952	52				1897.467	1786.733	47	7.820299501	1842.1	7.8203
1952	146				1786.733	1676	62	10.31613977	1731.367	10.31614
1952	354				1676	1565.267	78	12.97836938	1620.633	12.97837
1952	1973				1565.267	1454.533	94	15.640599	1509.9	15.6406
1952	2503				1454.533	1343.8	105	17.47088186	1399.167	17.47088
1952	1679				1343.8	1233.067	118	19.63394343	1288.433	19.63394
1952	730				1233.067	1122.333	136	22.62895175	1177.7	22.62895
1952	299				1122.333	1011.6	143	23.7936772	1066.967	23.79368
1952	171				1011.6	900.8667	153	25.45757072	956.2333	25.45757
1953	132				900.8667	790.1333	158	26.28951747	845.5	26.28952
1953	106				790.1333	679.4	169	28.11980033	734.7667	28.1198
1953	62				679.4	568.6667	178	29.61730449	624.0333	29.6173
1953	61				568.6667	457.9333	191	31.78036606	513.3	31.78037
1953	71				457.9333	347.2	208	34.60898502	402.5667	34.60899
1953	207				347.2	236.4667	246	40.93178037	291.8333	40.93178
1953	1643				236.4667	125.7333	343	57.07154742	181.1	57.07155
1953	2172				125.7333	15	599	99.6672213	70.36667	99.66722

10.5. Annex 10-5 Seepage analyses and frequency analyses tables

						Probability of	Probability of	Return		
D 1 ()	_					occurance	Eceedence p(y)=1-	1		OT 0. W
Rank (m)		M2	M3	M4	m	F(y)=(m/n+1)	F(y)	T(y)=1/P(y)	YT=-ln(-ln(1-(1/T)))	
1	4913	33809107.99	-1.96585E+11	1.14306E+15	2	0.02	0.9804	1.02	-0.232378561	7981.68
2	5623 6022	26056532.79 22142294.91	-1.33007E+11 -1.04192E+11	6.78943E+14 4.90281E+14	3	0.04 0.06		1.04 1.06		8267.47 8464.58
4	6274		-88332784938	3.93395E+14	4	0.08				8622.36
5	6450		-78268737742	3.34799E+14	5	0.10		1.11		8757.56
6	6589	17127678.87	-70883926679	2.93357E+14	6	0.12	0.8824	1.13		8878.05
7	6647	16650969.91	-67945281791	2.77255E+14	7	0.14		1.16		8988.21
8	7033	13649773.59	-50429907528	1.86316E+14	8	0.16		1.19		9090.79
9	7038	13612852.99	-50225437891	1.8531E+14	9	0.18	0.8235	1.21	0.123016082	9187.60
10	7360	11340460.35	-38189680668	1.28606E+14	10	0.20	0.8039	1.24	0.150230481	9279.94
11	7561	10027102.23	-31751420849	1.00543E+14	11	0.22	0.7843	1.28	0.176410046	9368.77
12	7685	9257171.354	-28165499274	8.56952E+13	12	0.24	0.7647	1.31		9454.83
13	7749	8871819.674	-26425247207	7.87092E+13	13	0.25	0.7451	1.34		9538.69
14	7947	7731513.914	-21497938328	5.97763E+13	14	0.27	0.7255	1.38		9620.84
15	8081	7004279.834	-18537246836	4.90599E+13	15	0.29	0.7059	1.42		9701.66
16	8146	6664452.034	-17204682792	4.44149E+13	16	0.31	0.6863	1.46		9781.50
17	8146	6664452.034	-17204682792	4.44149E+13	17 18	0.33 0.35	0.6667 0.6471	1.50 1.55		9860.66
18 19	8146 8226	6664452.034 6257802.434		4.44149E+13	19	0.35	0.6471	1.55		9939.39 10017.95
20	8276	6010146.434		3.91601E+13 3.61219E+13	20	0.37	0.6273	1.65		10017.95
20	8276	5912484.034		3.49575E+13	20	0.39	0.5882	1.70		10096.57
22	8296			3.49575E+13	22	0.41	0.5686	1.76		10173.43
23	8411	5366450.234		2.87988E+13	23	0.45	0.5490	1.82		10234.81
24	8426	5297178.434	-12191773996	2.80601E+13	24	0.47	0.5294	1.89		10415.80
25	8686	4167967.234	-8509155185	1.7372E+13	25	0.49	0.5098	1.96		10497.85
26	9005	2967212.954	-5111202345	8.80435E+12	26	0.51	0.4902	2.04		10581.23
27	9408	1741238.594	-2297668799	3.03191E+12	27	0.53	0.4706	2.13		10666.18
28	9751	953669.4336	-931315422.1	9.09485E+11	28	0.55	0.4510	2.22	0.584338766	10752.95
29	10093	402666.3936	-255515986.7	1.6214E+11	29	0.57	0.4314	2.32	0.610528814	10841.82
30	10516	44757.6336	-9468924.964	2003245765	30	0.59	0.4118	2.43	0.63742532	10933.09
31	10827	9888.3136	983293.9044	97778745.85	31	0.61	0.3922	2.55	0.665127272	11027.09
32	11231	253451.8336	127597791.1	64237831955	32	0.63	0.3725	2.68	0.693746155	11124.19
33	11592	747256.5136	645958420.6	5.58392E+11	33	0.65	0.3529	2.83	0.723408992	11224.85
34	11872	1309742.914	1498922180	1.71543E+12	34	0.67	0.3333	3.00	0.754262201	11329.54
35	12240	2287474.754	3459668316	5.23254E+12	35	0.69	0.3137	3.19	0.786476581	11438.85
36	12570	3394585.154	6254319470	1.15232E+13	36	0.71	0.2941	3.40	0.820253867	11553.46
37	12853	4517495.194	9601664984	2.04078E+13	37	0.73		3.64		11674.19
38	13186		14858632468	3.65291E+13	38	0.75	0.2549	3.92		11802.05
39	13565	8051065.754	22844416012	6.48197E+13	39	0.76		4.25		11938.25
40	13949	10377675.67	33431059522	1.07696E+14	40	0.78		4.64		12084.33
41	14291	12698104.63	45248933976	1.61242E+14	41	0.80		5.10		12242.28
42	14938	17727804.99	74641859257	3.14275E+14	42	0.82	0.1765	5.67	1.07406484	12414.69
43	15451	22310885.43	1.05384E+11	4.97776E+14	43	0.84	0.1569	6.38		12605.07
44 45	15962 17018	27399362.11 39569635.39	1.4342E+11 2.4891E+11	7.50725E+14 1.56576E+15	44 45	0.86 0.88		7.29 8.50		12818.34 13061.68
46	17474	45514452.67	3.07061E+11	2.07157E+15	45	0.88	0.1176 0.0980	10.20		13346.25
47	17908	51558718.59	3.70214E+11	2.6583E+15	40	0.90	0.0784	12.75		13690.68
48		56316619.71		3.17156E+15		0.94				
49				6.63844E+15	49	0.96		25.50		14742.53
50				6.4517E+16		0.98				15778.79
	Sum	946007448.3		8.74459E+16	2	0.04				10539.36
		18920147.97		3.95525E+13	25	0.49				14714.97
					50	0.98				15752.55
MEAN	10727.56				100	0.99		100		16782.47
STDEV	4357.724				1000	1.00		1000		20185.65
μ	8279.50				10000	1.00	0.0001	10000	4.362193973	23582.82
δ	18977194									
α	3396.5									
β	8766.584					25000.00				
	оМ		VM							
α'	3393.19	12	2361.293852			20000.00				
β'	8770.182	α'	7844.048388				V			
μ'1	10728.78	β'	6199.852119			<u>e</u> 15000.00	-			
μ'2	18920148					is Tit				
Cs	1.36					₹10000.00	•			Series1
Ck	5.31									
CV	0.41					5000.00				
						0.00				
						-2000	0 2000 4000	6000 800	0 10000 12000	
							Axi	Title		

						Probability of	Probability of	Return	VT- 100/ 100/4				standared
		142-/V V\12	142-/V V\42	MAA-(V V\A2	Rank (m)	occurance	Eceedence P(Y)=1-F(y)	period	YT=-LOG(-LOG(1-	QT=β+αΥt	KT	ΩΤ=μ+δΚΤ	error squer ST2
	Q _{MP (m3/sec)}	M2=(X-Xavg)^2	M3=(X-Xavg)^2	M4=(X-Xavg)^2	Kank (m)	F(y)=(m/n+1)	() ())	T(y)=1/P(y)	(1/T)))	-4- P			
2	4913 5623	33809107.99	-1.96585E+11	1.14306E+15	2	0.019608	0.9804 0.9608	1.020	-0.232378561		-0.63118556 -0.56551423		
3	6022	26056532.79 22142294.91	-1.33007E+11 -1.04192E+11	6.78943E+14 4.90281E+14	3	0.039216	0.9412	1.063	-0.148152143 -0.09006359	8256.78 8464.58			244712.012 248266.5264
4	6274	19834196.67	-88332784938	3.93395E+14	4	0.078431	0.9216	1.085	-0.043562748	8622.36		8619.794834	252013.0777
5	6450	18297519.55	-78268737742	3.34799E+14	5	0.098039	0.9020			8757.56			255860.6805
6	6589	17127678.87	-70883926679	2.93357E+14	6	0.117647	0.8824			8878.05	-0.42521452	8875.817034	259785.2703
7	6647	16650969.91	-67945281791	2.77255E+14	7	0.137255	0.8627	1.159		8988.21			
8	7033	13649773.59	-50429907528	1.86316E+14	8	0.156863	0.8431	1.186	0.094484646	9090.79	-0.37633032	9088.840855	267855.7383
9	7038	13612852.99	-50225437891	1.8531E+14	9	0.176471	0.8235	1.214	0.123016082	9187.60	-0.35408436	9185.78261	272010.6588
10	7360	11340460.35	-38189680668	1.28606E+14	10	0.196078	0.8039	1.244	0.150230481	9279.94	-0.33286529	9278.249442	276254.8693
11	7561	10027102.23	-31751420849	1.00543E+14	11	0.215686	0.7843		0.176410046	9368.77	-0.31245309	9367.200203	280596.6815
12	7685	9257171.354	-28165499274	8.56952E+13	12	0.235294	0.7647	1.308		9454.83	-0.29267878		285044.9963
13	7749	8871819.674	-26425247207	7.87092E+13	13	0.254902	0.7451			9538.69	-0.27340849		289609.2399
14	7947	7731513.914		5.97763E+13	14	0.274510							
15	8081	7004279.834			15	0.294118			0.274513959			9700.529567	
16	8146	6664452.034	-17204682792	4.44149E+13	16	0.313725	0.6863	1.457	0.298043488	9781.50			304100.404
17	8146	6664452.034	-17204682792	4.44149E+13	17	0.333333	0.6667	1.500	0.321371236			9859.73735	
18	8146	6664452.034		4.44149E+13	18	0.352941	0.6471	1.545	0.344575649	9939.39			
19 20	8226 8276	6257802.434		3.91601E+13	19 20	0.372549	0.6275 0.6078	1.594 1.645	0.367728436				320036.0522
20	8276	6010146.434 5912484.034	-14734234591 -14376559677	3.61219E+13 3.49575E+13	21	0.392157 0.411765	0.5882	1.700	0.390896524 0.414143643	10096.57 10175.45			
22	8296	5912484.034	-14376559677	3.49575E+13	22	0.411763	0.5686	1.759		10173.43			337802.7635
23	8411	5366450.234		2.87988E+13	23	0.451373			0.461121839				
24	8426	5297178.434			24	0.470588	0.5294			10415.80			
25	8686	4167967.234	-8509155185	1.7372E+13	25	0.490196	0.5098	1.962	0.509156732	10497.85			
26	9005	2967212.954	-5111202345	8.80435E+12	26	0.509804	0.4902	2.040	0.533730386				
27	9408	1741238.594	-2297668799	3.03191E+12	27	0.529412	0.4706	2.125	0.558766244	10666.18	-0.01432996	10666.33848	372951.2017
28	9751	953669.4336	-931315422.1	9.09485E+11	28	0.549020	0.4510	2.217	0.584338766	10752.95	0.00560894	10753.22668	381060.7908
29	10093	402666.3936	-255515986.7	1.6214E+11	29	0.568627	0.4314	2.318	0.610528814			10842.21306	389617.3872
30	10516	44757.6336		2003245765	30	0.588235	0.4118	2.429	0.63742532	10933.09		10933.59978	398669.3408
31	10827	9888.3136		97778745.85	31	0.607843			0.665127272				
32	11231	253451.8336		64237831955	32	0.627451		2.684	0.693746155				
33	11592	747256.5136	645958420.6	5.58392E+11	33	0.647059	0.3529	2.833	0.723408992	11224.85		11225.748	
34	11872	1309742.914	1498922180	1.71543E+12	34	0.666667	0.3333	3.000	0.754262201	11329.54	0.13809824		441101.9682
35	12240	2287474.754	3459668316	5.23254E+12	35	0.686275	0.3137	3.188	0.786476581	11438.85			
36 37	12570	3394585.154	6254319470	1.15232E+13	36 37	0.705882	0.2941	3.400	0.820253867	11553.46			467304.136
38	12853 13186	4517495.194 6043927.234	9601664984 14858632468	2.04078E+13	38	0.725490	0.2745 0.2549	3.643 3.923	0.855835524		0.21729496		482101.554 498282.7419
39	13565	8051065.754	22844416012	3.65291E+13 6.48197E+13	39	0.745098	0.2349	4.250	0.893514755 0.933653314	11938.25	0.24667345		516098,7965
40	13949	10377675.67	33431059522	1.07696E+14	40	0.784314		4.230		12084.33			
41	14291	12698104.63			41	0.803922	0.1961						
42	14938	17727804.99	74641859257	3.14275E+14	42	0.823529	0.1765		1.07406484	12414.69			
43	15451	22310885.43	1.05384E+11	4.97776E+14	43	0.843137	0.1569	6.375	1.130171708				
44	15962	27399362.11	1.4342E+11	7.50725E+14	44	0.862745	0.1373						645616.953
45	17018	39569635.39		1.56576E+15	45	0.882353	0.1176						
46	17474	45514452.67	3.07061E+11	2.07157E+15	46	0.901961	0.0980			13346.25			
47	17908	51558718.59	3.70214E+11	2.6583E+15	47	0.921569	0.0784		1.450110429		0.6806511		
48	18232	56316619.71		3.17156E+15	48	0.941176							
49	19754	81476619.07	7.35444E+11	6.63844E+15	49	0.960784	0.0392	25.500	1.760097781	14742.53	0.92234824	14748.12344	1015621.314
50	26665	254001993.8			50	0.98				15778.79			
		946007448.3	5.43688E+12	8.74459E+16	2	0.04	0.96	2.000	0.52	10539.36	-0.04347204	10539.34534	361534.3925
		18920147.97	1.1558E+11	3.95525E+13	25	0.49		25.000		14712.75			1008987.12
					50	0.98		50.000		15749.32			
MEAN	10727.56				100	0.99	0.01	100.000	2.36				
STDEV	4357.723886 8279.50				1000	1.00							
μ					10000	1.00	0.0001	10000.000	4.36	23571.94	2.95120264	23589.31073	4241337.464
δ	18977194.45							n 1 1 111					
							Probability of	Probability of		standared			
								Eceedence		Error			
	3396.5					Poturn period T			QT=β+αYt	ST^2			
	8766.584					Return period T		p(y)=1-F(y) 0.96		361534.3925			
	MoM		PWM			25		0.51	14718.30				
α'	3393.190492	I2	2361.024356			50		0.02	15756.25				
β'	8770.181661	α'	3406.238129			100		0.02					
μ'1	10728.78449	β'	8761.425874			1000							
μ'2	18920147.97					10000							
	230274.8343												
VAR α'	185348.2141												
VAR β'	256249.8356												
VOV(α'β')	52663.8546												

	Decending										
Rank	order Q(monteray)				return period,	Probability of					standare d error
m	m3/s	M2	M3	M4	Tr=(n+1)/m	pex=1/Tr	F	QT	KT	δ	SE^2
1	26665	254001993.754	4048141535328.370	64517012830803900.000	51.0	0.02	0.98	14845.4	0.937166359	1.304847	
2	19754	81476619.074	735443813470.706	6638439455664520.000	25.5	0.04	0.96	14094.5	0.766275872	1.21233	568085.2
3	18232	56316619.714	422624693643.529	3171561655966240.000	17.0	0.06	0.94	13646.0	0.664202863	1.163156	522935.8
4	17908	51558718.594	370214285338.229	2658301463014030.000	12.8	0.08	0.92	13321.0	0.590242023	1.1308	494246.9
5	17474	45514452.674	307060524095.282	2071565402177380.000	10.2	0.10	0.90	13063.5	0.531633594		
6		39569635.394	248910417265.317	1565756045182440.000	8.5	0.12	0.88	12848.5	0.482691264		
7	15962	27399362.114	143420317021.912	750725044232179.000		0.14	0.86	12662.5	0.440379233		
8	15451	22310885.434	105384128692.484	497775608831225.000	6.4	0.16	0.84	12497.8	0.402882999		
9	14938	17727804.994	74641859257.253	314275069891109.000		0.18	0.82	12349.0	0.369029852		
10		12698104.634	45248933975.556	161241861285854.000		0.20	0.80	12212.8	0.338016807		
11	13949	10377675.674	33431059521.962	107696152386429.000	4.6	0.22	0.78	12086.5	0.309268873		
12	13565	8051065.754	22844416011.895	64819659768790.800		0.24	0.76	11968.2	0.282359232		
13		6043927.234	14858632468.172	36529056405051.800		0.25	0.75	11856.6	0.256961456		
14	12853	4517495.194	9601664984.285	20407762824199.100		0.27	0.73	11750.5	0.23281945		
15		3394585.154	6254319470.399	11523208365041.500		0.29	0.71	11649.1	0.209727767		
16		2287474.754	3459668316.335	5232540748357.390		0.31	0.69	11551.5	0.187518253		
17		1309742.914	1498922180.040	1715426499725.420		0.33	0.67	11457.2	0.166050716		
18		747256.514	645958420.616	558392297117.628		0.35	0.65	11365.6	0.145206223		
19		253451.834	127597791.108	64237831955.202		0.37	0.63	11276.3	0.124882175		
20		9888.314	983293.904	97778745.852		0.39	0.61	11188.9	0.10498859		
21	10516	44757.634	-9468924.964	2003245765.472		0.41	0.59	11103.0	0.085445244		
22	10093	402666.394	-255515986.723	162140224534.830		0.43	0.57	11018.3	0.066179409		387875.3
23	9751	953669.434	-931315422.076	909485388582.943	2.2	0.45	0.55	10934.6	0.047124025		
24		1741238.594	-2297668798.571	3031911839842.100		0.47	0.53	10851.5	0.028216168		
25		2967212.954	-5111202345.353	8804352712011.620		0.49	0.51	10768.8	0.009395735		
26		4167967.234	-8509155185.428	17371950860363.200		0.51	0.49	10686.3	-0.009395735		
27	8426	5297178.434	-12191773995.636	28060099357396.900		0.53	0.47	10603.6	-0.028216168		
28		5366450.234	-12431703953.148	28798788109705.500		0.55	0.45	10520.5	-0.047124025		
29		5912484.034	-14376559676.740	34957467447574.900		0.57	0.43	10436.8	-0.066179409		387875.3
30		5912484.034	-14376559676.740	34957467447574.900		0.59	0.41	10352.1	-0.085445244		
31	8276	6010146.434	-14734234590.756	36121860153314.800		0.61	0.39	10266.3	-0.10498859		
32	8226	6257802.434	-15654268255.796	39160091297970.000		0.63	0.37	10178.8	-0.124882175		
33	8146	6664452.034	-17204682791.860	44414920908155.100		0.65	0.35	10089.5	-0.145206223		
34	8146	6664452.034	-17204682791.860	44414920908155.100		0.67	0.33	9998.0	-0.166050716		
35	8146	6664452.034	-17204682791.860	44414920908155.100		0.69	0.31	9903.6	-0.187518253		
36		7004279.834	-18537246836.412	49059935987375.600		0.71	0.29	9806.0	-0.209727767		
37	7947	7731513.914	-21497938327.600	59776307396190.300		0.73	0.27	9704.6	-0.23281945		
38		8871819.674	-26425247206.998	78709184320876.000		0.75	0.25	9598.5	-0.256961456		
39		9257171.354	-28165499273.609	85695221469912.400		0.76	0.24	9486.9	-0.282359232		
40		10027102.234	-31751420848.828	100542779203066.000		0.78	0.22	9368.7	-0.309268873		
41	7360	11340460.354	-38189680668.369	128606041031573.000		0.80	0.20	9242.4	-0.338016807		
42	7038	13612852.994	-50225437891.067	185309766625364.000		0.82	0.18	9106.1	-0.369029852		
43		13649773.594	-50429907527.971	186316319156540.000		0.84	0.16	8957.3	-0.402882999		
44	6647	16650969.914	-67945281790.640	277254799063612.000		0.86	0.14	8792.6	-0.440379233		
45		17127678.874	-70883926679.126	293357383597164.000		0.88	0.12	8606.7	-0.482691264		
46		18297519.554	-78268737741.697	334799221814374.000		0.90	0.10	8391.6	-0.531633594		
47	6274	19834196.674	-88332784937.678	393395357687045.000		0.92	0.08	8134.1	-0.590242023		494246.9
48		22142294.914	-104191897253.640	490281224040836.000	1.1	0.94	0.06	7809.1	-0.664202863		
49		26056532.794	-133007135036.899	678942901223952.000	1.0	0.96	0.04	7360.6	-0.766275872		568085.2
50	4913	33809107.994	-196585086975.267	1143055783322910.000	1.0	0.98	0.02	6609.8	-0.937166359	1.304847	658098.2
					2.0	0.50	0.50	10727.6			
					25.00	0.04	0.96	14072.79	0.76		
					50.00	0.02	0.98	14824.10	0.93		
					100.00	0.01	0.99	15564.40	1.10		
					1000.00	0.00	1.00	17997.63	1.65		
	ample	04000	F.40.00000	0744500555555	10000.00	0.00	1.00	20422.28	2.21		
mean	10727.56		5436883026364.040	87445885578704100.000	Acres de la 1		£ N.4				
VaR	14308786.26	19306274.456	115579996308.759	1977626229797730.000			r ivioment				
STDEV	3529.08				r1	r2					
SKEW	0.78				1.31421E-12						
Cv	0.33			T		SE 701.0					
				2							
C-	4.50			25							
Ck	1.36			50							
Ck	5.31			100							
Cv	0.41			1000							
!1	Method of Me			10000	2.5	1552.3					
μ'1	10727.56					M	of log Logict's dist	ıtian .			
μ'2	134386818 19306274.46				N44		of log Logistic distrib				
μ2					M1	M2	m3	M4			
а	2423.707558							1977626229797730.000			
-	Quantiles Estin	netion			μ'1=M1	μ'2	μ2	a 2422 707550			
T	QT 10727.56		40707 50		10727.56			2423.707558			
2			10727.56		Cs	Ck	Cv				
25					1.362536348	5.305692135	0.409506435				
50											
100											
1000											
10000	20422.28497										

2	7
o	/

1 4913 0.013 4849.131 4786.092297 4723.873097 63.869 0.830297 0.010794 2 5523 0.033 5437.441 5258.005847 5084.491267 185.559 6.123447 0.202074 3 600.583798 5114.352857 319.166 16.9158 0.896537 4 6 6274 0.073 5815.998 5391.430146 4997.855745 485.002 33.43415 2.440693 5 6 6589 0.113 5844.443 5184.002941 4998.256575 744.557 84.13494 9.507248 7 7 6647 0.133 5762.949 4966.476783 4331.945371 884.051 117.5788 15.63798 8 7033 0.153 5956.951 5045.537497 4723.57026 1076.049 164.6355 25.18923 9 7038 0.173 5820.426 4813.492302 3980.758134 1217.574 210.6403 36.44077 10 7360 0.193 599.52 4793.1924 4386.1664 124.048 274.1526 52.91146 11 7561 0.213 5950.507 4683.049009 3685.55957 1610.493 343.035 73.06646 12 7685 0.233 5894.395 4221.00965 3467.60774 1790.605 417.211 97.21015 13 7749 0.253 5788.503 4324.011741 3230.036771 1960.497 496.0057 125.4895 15 8081 0.293 5712.267 4039.27969 2855.70979 2367.573 693.4526 0.233 5433.382 3624.065794 2417.25188 93.3018 300.7995 18 8146 0.333 570.462 3409.88914 2406.262827 2875.538 105.063 3863.159 18 8226 0.373 5157.702 3233.879154 2027.64223 3068.298 1144.475 426.8892 20 8226 0.393 5023.523 2049.28934 1850.15342 225.4869 115.693 3493.536 267.072744 1512.230246 3959.168 1555.409 673.492 23 8411 0.453 4600.817 2516.46899 3176.085834 3810.18 175.013 4836.9752 2879.7144 17.212 20 8296 0.413 4869.752 2858.54424 1677.965577 3426.248 115.04 583.479 122.2 8296 0.433 4703.832 2667.072744 1512.230246 3599.168 1555.409 673.492 23 8411 0.453 4600.817 2516.46899 3176.08893 4301.505 358.3179 223 8411 0.453 4600.817 2516.46899 3176.08893 4301.505 358.3179 238.318 248 248.26 0.473 4440.502 230.144554 123.25618 3955.498 1885.141 891.6715 225 8686 0.493 4403.802 223.277614 1310.992 4282.198 2111.124 1040.784 11872 0.663 402242 1395.5869 318.6869 3176.083 4280.12 1231 0.633 412.777 1512.692159 555.1580024 7109.223 4500.138 248.587 31 1362.77 0.633 3439.535 2051.781312 883.84523 5878.248 313.185 1386.073 3150.073 382.444 1590.09 1621.548993 31.555 3448.699 31.1555 3489.99 31.555 0.773 3079.55 698.90885 158.670	
GOZZ	
4 65274 0.073 5815.998 59301.4301.64 4997.8557.45 458.002 33.43415 2.44.0693 5 64550 0.093 5850.15 3930.60805 4812.620047 599.85 55.78605 5.188103 7 6647 0.133 5762.949 4996.476783 4331.94371 884.051 117.7588 15.63798 8 7033 0.173 5820.426 4813.492302 3980.758134 1217.574 210.6403 36.44077 10 7360 0.193 5939.52 4793.19264 3868.10646 1420.48 274.1526 52.91146 11 7561 0.213 5950.507 4883.04909 3865.55957 161.493 343.035 730.6646 12 7685 0.233 5894.395 4521.000965 3467.60774 1790.605 417.211 97.21015 13 7749 0.273 5777.469 2002.1993 3053.5991 3104.931 592.267 161.693 15 8081 0.293 5713.267 <td></td>	
5 6450 0.093 585.0.15 5306.08605 4812.620047 599.85 55.78605 5.188103 6 6589 0.113 5844.443 5184.020941 4598.226575 744.557 84.13494 9.507248 7 6647 0.133 5762.949 4996.476783 4331.945371 884.051 117.5788 15.63798 8 7033 0.173 5820.426 481.349302 3807.58134 1217.578 40.64635 25.18923 10 7360 0.193 599.52 4793.19264 3868.10646 1420.48 274.1526 52.91146 11 7561 0.213 5950.507 4683.049009 3685.59957 1610.493 343.035 73.06640 122.41160 33.373.73.06646 120.48 274.1526 52.91146 13 7749 0.253 5788.503 324.011741 320.036771 196.0497 496.0057 125.4895 15 8081 0.293 5713.627 3039.27989 2855,770797 2367.733 592.828 <td></td>	
6	
Texas	
8	
9	
10	
11 7561 0.213 5950.507 4683.049009 3685.55957 1610.493 343.035 73.06646 12 7685 0.233 5894.395 4521.000965 3467.60774 1790.605 417.211 97.21015 13 7749 0.253 5788.503 4324.011741 320.036771 1960.497 496.0057 125.4895 14 7947 0.273 5788.503 4324.011741 320.036771 1960.497 496.0057 125.4895 14 7947 0.273 5777.469 4200.219963 3053.559913 2169.531 592.282 161.693 15 8081 0.293 5713.267 4039.279769 2855.77079 2367.733 693.7458 203.2675 16 8146 0.313 5596.302 3844.659474 2611.281059 2549.698 798.0555 249.7914 17 8146 0.333 5433.382 3624.065794 2417.251885 2712.618 903.3018 300.7995 18 8146 0.353 5270.462 3409.988914 2206.26287 2875.538 1015.065 388.3179 19 8226 0.373 5157.702 3233.879154 0207.62223 00.8276 0.393 5023.532 3049.283924 1850.915342 3252.468 1278.22 502.3404 12 8296 0.433 4869.752 2858.544424 1677.965577 3426.248 1415.04 584.4117 22 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.00 673.492 23 8411 0.453 4600.817 2516.646899 1376.605854 3810.183 1726.013 781.8838 124 8426 0.473 4403.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 4403.802 2322.277614 1131.9929 4282.198 2111.2404.784 1400.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.593 4280.012 1741.964884 708.9797078 6235.988 391.382 1898.821 31 10827 0.613 4381.317 11 108	
12 7685 0.233 5894.395 4521.000965 3467.60774 1790.605 417.211 97.21015 13 7749 0.273 5788.503 4324.011741 3230.036771 1960.497 496.0057 1258.4895 14 7947 0.273 5777.469 4200.219963 3053.559913 2169.531 592.282 161.693 15 8081 0.293 5713.267 4039.279769 2855.770797 2367.733 693.7458 203.2675 16 8146 0.313 5596.302 3844.659474 2641.281059 2549.698 798.0555 249.7914 17 8146 0.333 5370.462 3409.988914 2206.262827 2875.538 1015.065 358.3179 18 8146 0.333 5270.462 3409.988914 2206.262827 2875.538 1015.065 358.3179 19 8226 0.373 5157.702 3233.879154 2027.64223 3068.298 1144.475 426.8892 20 8276 0.393 5023.532 3049.283924 1850.915342 3252.468 1278.22 502.3404 21 8296 0.413 4869.752 2858.544424 1677.965577 3426.248 1415.04 584.4117 22 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 673.492 23 8411 0.453 4600.817 2516.646899 1376.605854 3810.183 1726.013 781.8838 24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 403.802 2232.727614 1131.9929 4282.198 2111.124 1040.784 26 9005 0.513 4385.435 2135.708455 1040.089234 4619.565 2369.837 1215.726 27 9406 0.533 4393.536 2051.781312 983.818172 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.906889 592.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1888.821 30 10516 0.593 4380.012 1741.964884 478.396544 7569.576 4942.933 322.7735 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 11231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 288.821 33 11592 0.653 4382.144 1269.461088 415.1137758 7989.856 5377.173 3618.837 34 11872 0.673 3882.144 1269.461088 415.1137758 7989.856 5377.173 3618.837 35 12240 0.693 3757.68 1153.60776 354.1575823 8482.32 5878.248 4073.626 36 12570 0.713 3607.59 1035.37833 297.1535807 8962.41 6390.078 650.49 40 13949 0.793 2887.443 597.700701 123.7240451 11061.56 8771.815 6955.604 41 14291 0.813 2672.417 499.741979 39.45155007 11618.58 9445.908 7679.523 42 14938 0.833 1809.66 1446.605882 69.57318229 12443.35 10365.31	
14 7947 0.273 5777.469 4200.219963 3053.559913 2169.531 592.282 161.693 15 8081 0.293 5713.267 4039.279769 2855.770797 2367.733 693.7458 202.675 16 8146 0.313 5963.02 3844.659474 2417.251885 2712.618 903.3018 300.7995 18 8146 0.333 5470.462 3409.988914 2206.262827 2875.538 1015.065 358.3179 19 8226 0.373 5157.702 3233.879154 2207.64223 3068.298 1144.475 426.8892 20 8276 0.393 5023.532 3049.283924 1850.915342 2352.468 1278.22 523.404 21 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 787.492 23 8411 0.453 4600.817 2516.646899 1376.605884 3810.181 1726.013 781.8838 24 8426 0.473 <t< td=""><td></td></t<>	
15	
16 8146 0.313 5596.302 3844.659474 2641.281059 2549.698 798.0555 249.7914 17 8146 0.333 5433.382 3624.065794 2417.251885 2712.618 903.3018 300.7995 19 8226 0.373 5157.702 3233.87915 2027.64223 3068.298 1144.475 426.8892 20 8276 0.393 5023.532 3049.283924 1850.915342 3252.468 1278.22 502.3404 21 8296 0.413 4869.752 2858.544424 1677.965577 3426.248 1415.04 584.4117 22 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 673.492 23 8411 0.453 4603.802 2327.27614 1131.992 4282.198 1111.214 1040.784 24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493	
17 8146 0.333 5433.382 3624.065794 2417.251885 2712.618 903.3018 300.7995 18 8146 0.353 5270.462 3409.988914 2206.262827 2875.538 1015.065 588.3179 19 8226 0.373 5157.702 3233.879154 2027.64223 3068.298 1144.475 426.8892 20 8276 0.393 5023.532 3049.283924 1850.915342 3252.468 1278.22 502.3404 21 8296 0.433 4807.832 2667.072744 1512.230246 3592.168 1555.09 673.492 23 8411 0.453 4600.817 2516.646899 1376.60589 13726.013 781.8838 24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 4403.802 2327.27614 1131.9929 4282.198 2111.124 1040.784 26 9005 0.513 4393.536 <t< td=""><td></td></t<>	
18 8146 0.353 5270.462 3409.988914 2206.262827 2875.538 1015.065 358.3179 19 8226 0.373 5157.702 3233.879154 2027.64223 3068.298 1144.475 426.8892 20 8276 0.393 5023.532 3049.283924 1850.915342 3252.468 1278.22 502.3404 21 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 673.492 23 8411 0.453 4600.817 2516.646899 1376.605854 3810.183 1726.013 781.8838 24 8426 0.473 4405.02 2302.144554 1233.25618 3955.498 2111.124 1040.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.079 1424.554 28 9751 0.553	
19 8226 0.373 5157.702 3233.879154 2027.64223 3068.298 1144.475 426.8892 20 8276 0.393 5023.532 3049.283924 1850.915342 3252.468 1278.22 502.3404 21 8296 0.413 4869.752 2858.544424 1677.965577 3426.248 115.04 584.4117 22 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 673.492 23 8411 0.453 4600.817 2516.646899 1376.605854 3810.183 1726.013 781.8838 24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 4403.802 2232.727614 1131.9929 4282.198 2111.124 1040.784 266 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.593 4280.012 1741.964884 708.970708 6235.988 5697.941 2192.879 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 11231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 2848.587 33 11592 0.653 4022.424 1395.781128 484.3360514 7569.576 4942.993 3227.735 34 11872 0.673 3882.144 1269.461088 415.113775 8798.955 5377.173 3618.837 35 12240 0.693 3757.68 1153.60776 354.1575823 8482.32 5878.248 4073.626 36 12570 0.713 3607.59 1035.7833 297.1535807 8962.41 6390.198 4556.211 37 12853 0.733 3431.751 916.277517 244.646097 9421.249 6905.776 5061.933 38 13186 0.753 3256.942 804.464674 198.7027745 9929.058 7476.581 5629.865 39 13565 0.773 3079.255 698.990885 158.6709309 10485.75 8105.481 6.955.37 40 13949 0.793 2887.443 597.700701 123.7240451 11061.56 8771.815 6956.049 41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 44 15962 0.873 3272.773 338.80659 49.0804587 13179.7 11570.99 12118.89 466 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1189.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.27448 18.89290936 17375.1 16565.87 13596.74	
20 8276 0.393 5023.532 3049.283924 1850.915342 3252.468 1278.22 502.3404 21 8296 0.413 4869.752 2858.544424 1677.965577 3426.248 1415.04 584.4117 22 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 673.492 23 8411 0.453 4600.817 2516.646899 1376.605843 8130.183 1726.013 781.8838 24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 4403.802 2323.727614 1131.9929 4282.198 2111.124 1040.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 121.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 <	
21 8296 0.413 4869.752 2858.544424 1677.965577 3426.248 1415.04 584.4117 22 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 673.492 23 8411 0.453 4600.817 2516.646899 1376.605854 3810.183 1726.013 781.8838 24 8426 0.473 440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 4403.802 2327.727614 1131.9929 4282.198 2111.124 1040.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4380.011 1741.964884 708.9707078 6235.983 3691.941 1690.015 30 10516 0.593	
22 8296 0.433 4703.832 2667.072744 1512.230246 3592.168 1555.409 673.492 23 8411 0.453 4600.817 2516.646899 1376.605854 3810.183 1726.013 781.8838 24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1811.124 1040.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.593 4280.012 1741.96484 708.9797078 6235.988 3697.941 2192.879 31 10827 0.613	
23 8411 0.453 4600.817 2516.646899 1376.605854 3810.183 1726.013 781.8838 24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 4403.802 2232.727614 1131.9929 4282.198 2111.124 1040.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.993 4280.012 1741.964884 708.9797078 6235.988 3697.941 2192.879 31 10827 0.653	
24 8426 0.473 4440.502 2340.144554 1233.25618 3985.498 1885.141 891.6715 25 8686 0.493 4403.802 2232.727614 1131.9929 4282.198 2111.124 1040.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1888.821 30 10516 0.593 4280.012 1741.964884 708.9797078 6235.988 3697.941 2192.879 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 11231 0.633	
25 8686 0.493 4403.802 2232.727614 1131.9929 4282.198 2111.124 1040.784 26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.288 3313.825 1898.821 30 10516 0.593 4280.012 1741.964884 708.9797078 6235.988 3697.941 2192.879 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 11231 0.633 4121.777 1512.692159 555.158024 7109.223 4500.138 2848.587 33 11592 0.653	
26 9005 0.513 4385.435 2135.706845 1040.089234 4619.565 2369.837 1215.726 27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.593 4280.012 1741.964884 708.9797078 6235.988 3697.941 2192.879 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 111231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 2848.587 33 11572 0.653 4022.424 1395.781128 484.3360514 7569.576 4942.933 3227.735 34 11872 0.673 </td <td></td>	
27 9408 0.533 4393.536 2051.781312 958.1818727 5014.464 2672.709 1424.554 28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.593 4280.012 1741.964884 708.9797078 6235.988 3697.941 2192.879 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 11231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 2848.587 33 11592 0.653 4022.424 1395.781128 484.3360514 7569.576 4942.933 3227.735 34 11872 0.673 3882.144 1269.461088 415.1137758 7989.856 5377.173 3618.837 35 12240 0.693 </td <td></td>	
28 9751 0.553 4358.697 1948.337559 870.9068889 5392.303 2981.944 1649.015 29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.593 4280.012 1741.964884 708.9797078 6235.988 3697.941 2192.879 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.51 4068.451 2493.96 32 11231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 2848.587 33 11592 0.653 4022.424 1395.781128 484.3360514 7569.576 4942.933 3227.735 34 11872 0.673 3882.144 1269.461088 415.1137758 7989.856 5377.173 3618.837 35 12240 0.693 3757.68 1153.60776 354.1575823 8482.32 5878.248 4073.626 36 12570 0.713	
29 10093 0.573 4309.711 1840.246597 785.7852969 5783.289 3313.825 1898.821 30 10516 0.593 4280.012 1741.964884 708.9797078 6235.988 3697.941 2192.879 31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 11231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 2848.587 33 11592 0.653 4022.424 1395.781128 484.3360514 7569.576 4942.933 3227.735 34 11872 0.673 3882.144 1269.461088 415.113778 7898.856 5377.173 3618.837 35 12240 0.693 3757.68 1153.60776 354.1575823 8482.32 5878.248 4073.626 36 12570 0.713 3607.59 1035.37833 297.153807 8962.41 6390.198 4556.211 37 12853 0.733	
30	
31 10827 0.613 4190.049 1621.548963 627.5394487 6636.951 4068.451 2493.96 32 11231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 2848.587 33 11592 0.653 4022.424 1395.781128 484.3360514 7569.576 4942.933 3227.735 34 11872 0.673 3882.144 1269.461088 415.1137758 7989.856 5377.173 3618.837 35 12240 0.693 3757.68 1153.60776 354.1575823 8482.32 5878.248 4073.626 36 12570 0.713 3607.59 1035.37833 297.1535807 8962.41 630.198 4556.211 37 12853 0.733 3431.751 916.277517 244.646097 9421.249 6905.776 5061.933 38 13186 0.753 3256.942 804.464674 198.702745 9929.058 7476.581 5629.865 39 13565 0.773	
32 11231 0.633 4121.777 1512.692159 555.1580224 7109.223 4500.138 2848.587 33 11592 0.653 4022.424 1395.781128 484.3360514 7569.576 4942.933 3227.735 34 11872 0.673 3882.144 1269.461088 415.1137758 7989.856 5377.173 3618.837 35 12240 0.693 3757.68 1153.60776 354.1575823 8482.32 5878.248 4073.626 36 12570 0.713 3607.59 1035.37833 297.1535807 8962.41 6390.198 456.211 37 12853 0.733 3431.751 916.277517 244.646097 9421.249 6905.776 5061.933 38 13186 0.753 3256.942 804.464674 198.7027745 9929.058 7476.581 5629.865 39 13565 0.773 3079.255 698.990885 158.6709309 10485.75 8105.481 6265.537 40 13949 0.793	
34 11872 0.673 3882.144 1269.461088 415.1137758 7989.856 5377.173 3618.837 35 12240 0.693 3757.68 1153.60776 354.1575823 8482.32 5878.248 4073.626 36 12570 0.713 3607.59 1035.37833 297.1535807 8962.41 6390.198 4556.211 37 12853 0.733 3431.751 916.277517 244.646097 9421.249 6905.776 5061.933 38 13186 0.753 3256.942 804.464674 198.7027745 9929.058 7476.581 5629.865 39 13565 0.773 3079.255 698.990885 158.6709309 10485.75 8105.481 6265.537 40 13949 0.793 2887.443 597.700701 123.7240451 11061.56 8771.815 6956.049 41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 42 14938 0.833	
35	
36 12570 0.713 3607.59 1035.37833 297.1535807 8962.41 6390.198 4556.211 37 12853 0.733 3431.751 916.277517 244.646097 9421.249 6905.776 5061.933 38 13186 0.753 3256.942 804.464674 198.7027745 9929.058 7476.581 5629.865 39 13565 0.773 3079.255 698.990885 158.6709309 10485.75 8105.481 6265.537 40 13949 0.793 2887.443 597.700701 123.7240451 1061.56 8771.815 6956.049 41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 42 14938 0.833 2494.646 416.605882 69.57318229 12443.35 10365.31 8634.306 43 15451 0.853 2271.297 333.880659 49.08045687 13179.7 11242.29 9589.671 44 15962 0.873	
37 12853 0.733 3431.751 916.277517 244.646097 9421.249 6905.776 5061.933 38 13186 0.753 3256.942 804.464674 198.7027745 9929.058 7476.581 5629.865 39 13565 0.773 3079.255 698.990885 158.6709309 10485.75 8105.481 6265.537 40 13949 0.793 2887.443 597.700701 123.7240451 11061.56 8771.815 6956.049 41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 42 14938 0.833 2494.646 416.605882 69.57318229 12443.35 10365.31 8634.306 43 15451 0.853 2271.297 333.880659 49.08045687 13179.7 11242.29 989.671 44 15962 0.873 2027.174 257.451098 32.69628945 13934.83 12165.1 10620.14 45 17018 0.893	
38 13186 0.753 3256.942 804.464674 198.7027745 9929.058 7476.581 5629.865 39 13565 0.773 3079.255 698.990885 158.6709309 10485.75 8105.481 6265.537 40 13949 0.793 2887.443 597.700701 123.7240451 11061.56 8771.815 6956.049 41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 42 14938 0.833 2494.646 416.605882 69.57318229 12443.35 10365.31 8634.306 43 15451 0.853 2271.297 333.880659 49.08045687 13179.7 11242.29 989.671 44 15962 0.873 2027.174 257.451098 32.69628945 13394.83 12165.1 10620.14 45 17018 0.893 1820.926 194.839082 20.84778177 15197.07 13570.99 12118.89 46 17474 0.913	
39 13565 0.773 3079.255 698.990885 158.6709309 10485.75 8105.481 6265.537 40 13949 0.793 2887.443 597.700701 123.7240451 11061.56 8771.815 6956.049 41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 42 14938 0.833 2494.646 416.605882 69.57318229 12443.35 10365.31 8634.306 43 15451 0.853 2271.297 333.880659 49.08045687 1317.97 11242.29 9589.671 44 15962 0.873 2027.174 257.451098 32.69628945 13394.83 12165.1 10620.14 45 17018 0.893 1820.926 194.839082 20.84778177 15197.07 13570.99 12118.89 46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933	
40 13949 0.793 2887.443 597.700701 123.7240451 11061.56 8771.815 6956.049 41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 42 14938 0.833 2494.646 416.605882 69.57318229 12443.35 10365.31 8634.306 43 15451 0.853 2271.297 333.880659 49.08045687 13179.7 11242.29 9589.671 44 15962 0.873 2027.174 257.451098 32.69628945 13934.83 12165.1 10620.14 45 17018 0.893 1820.926 194.839082 20.84778177 15197.07 13570.99 12118.89 46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
41 14291 0.813 2672.417 499.741979 93.45175007 11618.58 9445.908 7679.523 42 14938 0.833 2494.646 416.605882 69.57318229 12443.35 10365.31 8634.306 43 15451 0.853 2271.297 333.880659 49.08045687 13179.7 11242.29 9589.671 44 15962 0.873 2027.174 257.451098 32.69628945 13934.83 12165.1 10620.14 45 17018 0.893 1820.926 194.839082 20.84778177 1597.07 13570.99 12118.89 46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
42 14938 0.833 2494.646 416.605882 69.57318229 12443.35 10365.31 8634.306 43 15451 0.853 2271.297 333.880659 49.08045687 13179.7 11242.29 9589.671 44 15962 0.873 2027.174 257.451098 32.69628945 13934.83 12165.1 10620.14 45 17018 0.893 1820.926 194.839082 20.84778177 15197.07 13570.99 12118.89 46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95 </td <td></td>	
43 15451 0.853 2271.297 333.880659 49.08045687 13179.7 11242.29 9589.671 44 15962 0.873 2027.174 257.451098 32.69628945 13934.83 12165.1 10620.14 45 17018 0.893 1820.926 194.839082 20.84778177 15197.07 13570.99 12118.89 46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
44 15962 0.873 2027.174 257.451098 32.69628945 13934.83 12165.1 10620.14 45 17018 0.893 1820.926 194.839082 20.84778177 15197.07 13570.99 12118.89 46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
45 17018 0.893 1820.926 194.839082 20.84778177 15197.07 13570.99 12118.89 46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
46 17474 0.913 1520.238 132.260706 11.50668142 15953.76 14565.78 13298.56 47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
47 17908 0.933 1199.836 80.389012 5.386063804 16708.16 15588.72 14544.27 48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
48 18232 0.953 856.904 40.274488 1.892900936 17375.1 16558.47 15780.22 49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
49 19754 0.973 533.358 14.400666 0.388817982 19220.64 18701.68 18196.74 50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
50 26665 0.993 186.655 1.306585 0.009146095 26478.35 26293 26108.95	
Mean=a0=b0 10727.56	
	727.56
	61.481
	5.0741
	5.1514
α0 10727.56	
τ 0.220132 a' 2361.48 2361.481	
τ3 0.2774 m' 10727.56	
τ4 0.230795	
Quantile estimation	
Probabilit	
y of	
Exceedan	
0.5 2 0.5 10727.6 0.000 334595.7 0.04 25 0.96 13986.9 0.761 485618.8	
0.04 25 0.96 13986.9 0.761 485618.8 0.02 50 0.98 14718.9 0.932 561074	
0.02 50 0.98 14/18.9 0.932 561074 0.01 100 0.99 15440.2 1.101 650324.8	
0.001 100 0.99 17811.0 1.655 1047891	
0.0001 1000 0.9999 20173.4 2.206 1603015	
20002	
Var(a') 79198.79	
Var(m') 334595.65	
cov(a',m') 0.00	
Parameter m α	
MOM 10727.56 2423.708	
PWM 10727.56 2361.48	

Abbreviation

H project means Hiben Project

References

- Hiben MG, Awoke AG, Ashenafi AAJJoG, Cartography. Homogeneity and change point detection of hydroclimatic variables: A case study of the Ghba River Subbasin, Ethiopia. Journal of Geography & Cartography. 2023;6:2010.
- 2. Hiben MG, Awoke AG, Ashenafi AAJJoAWE, Research. Estimation of rainfall and streamflow missing data under uncertainty for Nile basin headwaters: the case of Ghba catchments. Journal of Applied Water Engineering & Research. 2023:1-15.
- 3. Sattari M-T, Rezazadeh-Joudi A, Kusiak AJHR. Assessment of different methods for estimation of missing data in precipitation studies. 2017;48:1032-44.
- 4. Jahan F, Sinha NC, Rahman M, Mondal M, Haque S, Islam MAJT, et al. Comparison of missing value estimation techniques in rainfall data of Bangladesh. 2019;136:1115-31.
- 5. Ismail WW, Zin WZW, Ibrahim WJMJFAS. Estimation of rainfall and stream flow missing data for Terengganu, Malaysia by using interpolation technique methods. 2017;13:214-8.
- 6. Teegavarapu RS, Chandramouli VJJoh. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. 2005;312:191-206.
- 7. Kizza M, Westerberg I, Rodhe A, Ntale HKJJoH. Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. 2012;464:401-11.
- 8. Maleika WJAG. Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. 2020;12:397-407.
- 9. Hiben MG, Awoke AG, Ashenafi AAJAJoG, ISSN RP. Assessment of Hydrological and Water management Models for Ghba Subbasin, Ethiopia. J African Journal of Geography. 2023;10:001-7.
- 10. Loucks DP, Van Beek E. Water resource systems planning and management: An introduction to methods, models, and applications: Springer; 2017.
- 11. Ghaffour N, Missimer TM, Amy GLJD. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. 2013;309:197-207.
- 12. Gosschalk EM. Reservoir engineering: guidelines for practice: Thomas Telford; 2002.
- 13. Padmavathy A, Raj KG, Yogarajan N, Thangavel P, Chandrasekhar MJAiSR. Checkdam site selection using GIS approach. 1993;13:123-7.
- 14. Sherard JLJJotSM, Division f. Earthquake considerations in earth dam design. 1967;93:377-401.
- 15. Thiyagarajan SR, Emadi H, Hussain A, Patange P, Watson MJJoES. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. 2022;51:104490.
- 16. Tunji LAQ, Sempewo JI, Mbatya WJJoAWE, Research. Development of a water surface area-storage capacity relationship for Namodope Reservoir, Uganda. 2020;8:183-93.
- 17. Irvem AJIJNES. Application of GIS to determine storage volume and surface area of reservoirs: the case study of Buyuk Karacay dam. 2011;5:39-43.
- 18. Kim J, Lee J, Park J, Kim S, Kim S. Improvement of downstream flow by modifying SWAT reservoir operation considering irrigation water and environmental flow from agricultural reservoirs in South Korea. Water. 2021;13:2543.
- 19. Abebe WB, Tilahun SA, Moges MM, Wondie A, Dersseh MG, McClain MEJED. Environmental flow assessment and implications on sustainability of aquatic ecosystems in Ethiopia: A literature review on global and national evidences. 2022:100758.
- 20. Alegre H, Baptista JM, Cabrera Jr E, Cubillo F, Duarte P, Hirner W, et al. Performance indicators for water supply services: IWA publishing; 2016.
- 21. Rosegrant MW, Cai XJWI. Global water demand and supply projections: part 2. Results and prospects to 2025. 2002;27:170-82.
- 22. Smith SK, Tayman J, Swanson DA. A practitioner's guide to state and local population projections: Springer; 2013.
- Alemayehu T, Mebrahtu G, Hadera A, Bekele DNJSWRM. Assessment of the impact of landfill leachate on groundwater and surrounding surface water: a case study of Mekelle city, Northern Ethiopia. 2019;5:1641-9
- 24. Hiben MG, Awoke AG, Ashenafi AA. Assessment of Future Water Demand for Resilient Water Allocation under Socioeconomic and Climate Change Scenarios, a Case of Ghba Subbasin, Northern Ethiopia. Preprints. 2023.
- 25. Hiben MG, Awoke AG, Ashenafi AA. Hydroclimatic Variability, Characterization, and Long Term Spacio-Temporal Trend Analysis of the Ghba River Subbasin, Ethiopia. Advances in Meteorology. 2022;2022:3594641.

- 26. Hiben MG, Gebeyehu AA, Adugna AA, Shang Y. Estimation of Current Water Use over the Complex Topography of the Nile Basin Headwaters: The Case of Ghba Subbasin, Ethiopia. Advances in Civil Engineering. 2022;2022:1-14.
- 27. Hailu R, Tolossa D, Alemu GJSWRM. Water security: stakeholders' arena in the Awash River Basin of Ethiopia. 2019;5:513-31.
- 28. Guseva S, Casper P, Sachs T, Spank U, Lorke AJW. Energy flux paths in lakes and reservoirs. 2021;13:3270.
- 29. Asanov M, Safaraliev MK, Zhabudaev TZ, Asanova S, Kokin S, Dmitriev S, et al. Algorithm for calculation and selection of micro hydropower plant taking into account hydrological parameters of small watercourses mountain rivers of Central Asia. 2021;46:37109-19.
- 30. Fenton JDJJoH. Flood routing methods. 2019;570:251-64.
- 31. Tarpanelli A, Barbetta S, Brocca L, Moramarco TJRS. River discharge estimation by using altimetry data and simplified flood routing modeling. 2013;5:4145-62.
- 32. Ahmed T, McKinney P. Advanced reservoir engineering: Elsevier; 2011.
- 33. Hiben MG, Di Baldassarre G, Van Griensven AJEJoWS, Technology. Can We Model Floodplain Inundation Patterns in Data-Scarce Areas? 2020;3:111-29.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.