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Abstract: Surface water distribution extracted from remote sensing data has been used in water
resource assessment, coastal management, and environmental change studies. Traditional manual
methods for extracting water bodies cannot satisfy the requirements for mass processing of remote
sensing data; therefore, accurate automated extraction of such water bodies has remained a
challenge. The histogram bimodal method (HBM) is a frequently used objective tool for threshold
selection in image segmentation. The threshold is determined by seeking twin peaks, and the valley
values between them; however, automatically calculating the threshold is difficult because complex
surfaces and image noise which lead to not perfect twin peaks (single or multiple peaks). We
developed an operational automated water extraction method, the modified histogram bimodal
method (MHBM). The MHBM defines the threshold range of water extraction through mass static
data; therefore, it does not require the identification of twin histogram peaks. It then seeks the
minimum values in the threshold range to achieve automated threshold. We calibrated the MHBM
for many lakes in China using Landsat 8 Operational Land Imager (OLI) images, for which the
relative error (RE) and squared correlation coefficient (R?) for threshold accuracy were found to be
2.1% and 0.96, respectively. The RE and root-mean-square error (RMSE) for the area accuracy of
MHBM were 0.59% and 7.4 km?. The results show that the MHBM could easily be applied to mass
time-series remote sensing data to calculate water thresholds within water index images and
successfully extract the spatial distribution of large water bodies automatically.

Keywords: automated water extraction; landsat 8 Operational Land Imager (OLI); modified
histogram bimodal method (MHBM); remote sensing

1. Introduction

Surface water is a critical resource that is impacted by changes in land cover/use, climate, and
the environment on a global scale. Changes in surface water can cause droughts, floods, and
pollution. Monitoring surface water distribution using remote sensing is critical, and has the added
advantages of low cost, high speed and frequency, wide cover, and low impact from surface
conditions. Surface water distributions extracted using remote sensing data have been used in water
resources assessments, coastal management, and studies of environmental change [1, 2].

Water extraction using remote sensing techniques first began forty years ago [3]. Since then,
numerous studies have developed indices and algorithms of water extraction. Water surfaces appear
dark in near-infrared radiation (NIR) because of strong absorption by the water. In contrast, land
appears white because NIR is strongly reflected by terrestrial vegetation and dry soil. Therefore,
initially, single-band methods based on NIR were used for water extraction [3-5]. However, surface
terrains can be complex and other surface features can behave in a manner similar to water, resulting
in errors. Then, the normalized difference vegetation index (NDVI) was used to enhance water
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features by introducing red band (R) data to NIR techniques [6-8]. While NDVI can delineate more
effectively between water and non-water objects, and especially vegetation, it only suppresses non-
water features, but does not eliminate them completely [9]. Therefore, other studies introduced the
green (G) band instead red band, resulting in the formation of the normalized difference water index
(NDWI) [9]. The NDWTI aims to enhance water features using the high reflectance of water in the
green band, and low reflectance in the NIR band. However, the NDWI cannot efficiently suppress
signals from built-up areas; moreover, water features are still interspersed with noise from other
features [10]. To rectify this problem, the NDWI was modified to form the modification of normalized
difference water index (MNDWI) [10], which utilizes shortwave infrared radiation (SWIR) that has a
lower reflectance from water than NIR.

Despite the improvements [11], all of these indices require a threshold to discriminate water
from land, and subjective and static threshold values can lead to over- or underestimation of surface
water area [12]. Threshold values usually vary with viewing angle, satellite attitude, illumination,
atmospheric conditions, and environmental noise in the images obtained [13,14]; therefore,
identifying an appropriate threshold is challenging and time consuming [2]. For this reason,
automated water extraction methods have increasingly been considered. Feyisa et al. [2] introduced
a multiple-band index (the automated water extraction index; AWEI) to increase the accuracy and
robustness of water extraction. However, the suggested threshold value of 0.0 is only more robust
than NDWI and MNDW], it still changes in different images, which hinders automated water
extraction.

Both supervised and unsupervised classification procedures have frequently been applied to
identify and classify water features in remote sensing images [15]. Supervised classification includes
systems such as maximum-likelihood classification [16], decision trees [17, 18], artificial neural
networks, and support vector machines and fuzzy clustering method (FCM) [19, 20]. Unsupervised
classification methods include isodata [21] and k-mean clustering [22]. However, while supervised
methods require a priori knowledge about the number of classes and the spectral characteristic of
each class in the retrieved images, unsupervised methods are not stable because surface features vary
in different images, preventing the application of these methods over large areas [12]. Computer
graphics technology has also been used to extract water distributions in some automated methods,
including tasseled cap wetness, boundary tracing [23], principal components analysis [24,25],
morphological segmentation [15,26], end member extraction [27], and others [28]. However, these
methods have common complex weaknesses that lead to instabilities and difficulties in mass data
processing.

Automated extraction of water bodies remains a challenge; however, satellite sensors are being
launched increasingly currently, and there has been an explosive growth of image data. Remote
sensing data is generally automatically processed; therefore, we developed an automated water
extraction method (the modified histogram bimodal method; MHBM) for simple and fast water
extraction. The MHBM was applied to Landsat 8 Operational Land Imager (OLI) images to evaluate
its performance.

2. Materials and Methods

2.1. Modified histogram bimodal method (MHBM)

The histogram bimodal method (HBM) is often used for threshold selection in image
segmentation of land and water bodies [29, 30]. In this method, the valley values between the two
peaks are used as the threshold for image segmentation (Figure 1). However, it is difficult to
automatically find two peaks using a computer because complex surfaces and image noise usually
result in single or multi-peak retrieval and not perfect twin peaks, resulting in non-determinacy of
the threshold. In view of these problems, we modified the HBM to automatically calculate the
threshold through an automated water extraction method (the MHBM). In the MHBM, the threshold
range (R) is defined from mass valley values obtained through visual interpretation, with the mean
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value of the valley defined as the initial threshold (Ti). Furthermore, we seek the minimum value in
the threshold range and not twin peaks and valleys to avoid non-determinacy.
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Figure 1. Diagram of the modified histogram bimodal method (MHBM). (a) Scene captured by the
Landsat 8 Operational Land Imager (OLI). (b) Normalized difference water index (NDWI) image. (c)
Histogram prepared using NDWI data from within the red line in (b). The blue line in (b) denotes the
lake shoreline, and the red line is drawn through a dilation of the blue line. Prus and Pwaer denote the
peaks of land and water, respectively. Ti and Tr denote the left and right edges of the threshold range,
respectively, and T: denotes the initial threshold. R denotes the length of the threshold range.

To get the best results, we restricted the data in our histograms to those from the areas around
water bodies and not from the full image. First, we extracted the rough distribution of a water body
using Ti, and then the area was dilated for certain circles forming the statistical area of the histogram
(Figure 1b). The dilated area was approximately two times that of the water area, allowing the
formation of perfect twin peaks and a histogram of the water index (or single band reflectance) for
the dilated area (Figure 1c). A Rayleigh scattering correction was required to ensure stable threshold
results. Using this approach, we were able to calculate the dynamic threshold automatically, which
verified that the MHBM could be used for automated water extraction.

2.2. Water extraction procedure based on MHBM
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To achieve automated water extraction, we designed a workflow based on the MHBM (Figure
2), which included Rayleigh scattering correction, threshold statistics, preliminary water extraction,
water mask dilation, and accurate water distribution extraction.
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Figure 2. Flow chart showing the water extraction procedure based on the modified histogram
bimodal method (MHBM).

To ensure a stable threshold, an accurate atmospheric correction of the remote sensing images
was required; however, accurate atmospheric correction is challenging [31]. Reflectance values after
Rayleigh scattering correction (pr) satisfy water extraction and are often used in water color remote
sensing [32, 33]. Therefore, we used pr to calculate water indices (i.e., NDWI, MNDWI, and AWEL
Table 1) replaced surface reflectance (po) though accurate atmospheric correction. The top of
atmosphere reflectance (proa) can be expressed as the linear sum of the contribution from Rayleigh
scattering (pr), aerosol scattering in the atmosphere (p.), and diffuse transmittance to the sensor (p»)
using Eq. 1 [34]:

pTOA=pr+pa+tpo (1)

where t is the diffuse transmittance of the atmosphere (considering only gas molecules). We
simulated pr using the Second Simulation of a Satellite Signal in the Solar Spectrum-Vector (65V) to
obtained reflectance after the Rayleigh scattering correction, which included aerosols scattering
reflectance and surface reflectance:

Pr™Proa ~ Pr 2)

Table 1. Water index expressions.

Water Expression Wave length Reference
index!
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NDWI NDWI = (G-NIR)/(G+NIR) G: Green band radiation [7]
MNDWI MNDWI = (G-SWIR)/(G+SWIR) NIR: Near-infrared radiation [8]
SWIR: Shortwave infrared radiation
SWIR1: Shortwave infrared
AWEI = 4*(G-SWIR1) - o
AWEI radiation [12]
(0.25*NIR+2.75*SWIR2) )
SWIR2: Shortwave infrared
radiation

1 NDWI: normalized difference water index. MNDWI: modification of normalized difference water index.
AWEI: automated water extraction index.

From correcting Rayleigh scattering and converting to reflectance, to delineation of water
distribution, MHBM follows four steps:

1) Threshold statistics: Threshold statistics are necessary when calibrating the threshold range
and initial threshold for data of a new sensor (Figure 2). However, this step can be skipped when the
threshold range and the initial threshold are already known for the sensor of interest. The optimal
thresholds were defined as the minimum valley value occurring between the twin peaks of a given
histogram, which was based on the image statistics derived from water areas with a 1.5 times dilation
buffer. For adequate representativeness, threshold statistics were calculated using mass images that
included many typical water body types. The minimum and maximum valley values were defined
as the left and right edges of the threshold (T: and T+), respectively. The length between T: and Tr was
the threshold range (R), and the mean of the valley values was defined as the initial threshold (Ti) for
preliminary water extraction. We obtained thresholds of NDWI, MNDWI, and AWEI for 18 water
bodies within each of the 152 Landsat 8 OLI images. The 152 thresholds of each water index formed
a threshold range (Table 2). The statistical threshold results of this study could be used by other
researchers for delineating other water bodies.

Table 2. Statistics of water index expressions’.

Water index? T: T: R SD T:
NDWI -0.184 0.228 0.412 0.099 0.020
MNDWI 0.104 0.427 0.323 0.084 0.277
AWEI -0.295 0.083 0.378 0.098 -0.099

1Ty, Tr, and Ti: left edge, right edge, and initial threshold ranges, respectively. R: threshold range between Ti
and T+ SD: Standard deviation.
2 NDWI: normalized difference water index. MNDWI: modification of normalized difference water index.
AWEI: automated water extraction index.

2) Preliminary water extraction: We extracted water bodies using Ti to obtain a rough water
distribution mask. The purpose of this step was to identify the general location and distribution of
water bodies, and not to represent accurate shorelines.

3) Water area dilation: To obtain well-defined twin peaks in the histograms, we dilated the
preliminary water masks by1.5 times to obtain work areas. The water index images were then masked
to isolate the work areas. In the masked water index images (work areas), the number of water pixels
and number of non-water pixels were equal, and the histogram peaks of water and non-water, along
with the valley between the two peaks, were distinct.

4) Accurate water extraction: The minimum values of threshold ranges in the histograms are
easily processed and represent precise thresholds for accurate water extraction. The use of threshold
ranges ensured stability and correctness of selected thresholds, even in non-ideal histograms. For
instance, if several minima or a range of minima occurred within the threshold range, the medium
position minima was selected as the precise threshold. For every water body within an image, an
exclusive threshold (dynamic threshold: Ts) for image segmentation was obtained using the above
described method, and automated water extraction was accomplished successfully.
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2.3. Accuracy assessment

We evaluated the MHBM accuracy of the automated dynamic threshold calculation using
relative error (RE) and the squared correlation coefficient (R2); furthermore, we also evaluated the
area accuracy of the extracted area of water using the MHBM in comparison to the initial threshold
and a static threshold (0.0) using RE and the root-mean-square error (RMSE):

RE 1Zn:|xi'Yil 100% 3
= — X o
N2z 3)

1 n
RMSE= /N;(xi-yi)z (4)

for threshold accuracy, X is the dynamic threshold of the MHBM (T4), Y is the optimal threshold, Z
the interval of the threshold ranges (R) of NDWI, MNDWI, and AWEI, respectively, and N is the
number of images and water bodies. The dynamic threshold, X, is derived through automatic
calculation by the computer using the MHBM method. The optimal threshold, Y, is the minimum
valley value between the two peaks (i.e., water and non-water peaks) of the histogram derived from
statistics of preliminary water masks dilated by 1.5 times and defined by visual interpretation. For
area accuracy, X is the water area using different thresholds (T4, T, and To), Y is the water area using
the optimal threshold, Z is same as Y, and N is the number of images and water bodies.

2.4. Application to Landsat 8 OLI data

Landsat satellites have been providing multispectral images of the Earth continuously since the
early 1970s. A unique more than 40-year data record of the Earth's land surface now exists [34].
Landsat 8 is the latest satellite in this series. This unique retrospective portrait of the Earth's surface
has been widely used for water management. However, automated water extraction from time-series
OLI mass data is difficult, but needed. Therefore, Landsat 8 OLI images were used to test thresholds,
accuracy, and the robustness of the MHBM. The study areas included several lakes, rivers, and
reservoirs in different environmental conditions, including cities, plains, hills, mountains, and
highlands (Figure 3). The data covered ten provinces of China, including Beijing, Tianjin, Hebei,
Henan, Jiangsu, Shanghai, Anhui, Jiangxi, Hunan, Yunnan, Qinghai, and Tibet. Water bodies
included turbid rivers, clear lakes, ephemeral lakes, eutrophic lakes, clear reservoirs, and eutrophic
reservoirs. The total numbers of water bodies and images were 18 and 152, respectively.
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Figure 3. Shorelines (a-r) and location map (s) of 18 water bodies extracted using the modified
histogram bimodal method (MHBM). Blue lines denote shorelines. Backgrounds are true color images
where red, green, and blue are the 3, 2 and 1 bands of the Landsat 8 Operational Land Imager (OLI)

sensor, respectively.
3. Results
3.1. Accuracy of the MHBM

3.1.1. Threshold accuracy

The MHBM yielded the greatest accuracy when the dilation size was 150% (Figure 4). Most
dynamic thresholds were equal to the optimal thresholds, and the fitting trends had high R? and
slopes near 1.0. Furthermore, the RE was also low (under 3%) for all three water indices. These
findings confirm that the MHBM is able to establish optimal thresholds for most situations.
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The MNDWT had the lowest RE and highest R2. The threshold accuracy of the NDWI was slightly
lower than that of the MNDWI, while that of the AWEI was slightly lower than that of the NDWI.
However, even the AWEI attained high accuracy. These results show that the MHBM has good
threshold accuracy when using any of the three water indices, but particularly when using MNDWI.
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Figure 4. Threshold accuracy of the modified histogram bimodal method (MHBM) with 150% dilation
for (a) the modification of normalized difference water index (MNDWI), (b) the normalized difference
water index (NDWI), and (c) the automated water extraction index (AWEI).

3.1.2. Area accuracy

Table 3 presents the area accuracies of water extraction by the three different thresholds:
dynamic threshold (T4) of the MHBM, static threshold 0.0 (To) and initial threshold (Ti). For RMSE,
the water extraction area accuracy by To was lowest, with RMSE up to 40 km? (Table 3). Water
extraction area accuracy by T: was higher than To, with RMSE more than 20 km? however, the MHBM
using Ta had the highest area accuracy compared with Ti and To, with a minimum RMSE of just 7 km?2.
The trend was similar for RE, with the MHBM using T: much lower than when using Ti and To, having
a mean RE value of ~0.6%. These results show that the MHBM using MNDWTI and the dynamic
threshold has the highest accuracy (i.e., RE of the threshold and area accuracies as low as 2.1% and
0.59%, respectively).

Table 3. Accuracy of modified histogram bimodal method (MHBM) 1.

Accuracy index? Threshold? MNDWI NDWI AWEI

To 2.82 3.54 4.80

RE (%) Ti 274 191 2.38

Ta 0.59 0.61 0.61

To 44.5 24.5 44.4

RMSE (km?) Ti 28.1 25.2 23.6
Ta 74 11.9 7.2

1N DWI: normalized difference water index. MNDWI: modification of normalized difference water index.
AWEI: automated water extraction index.
2 RE: relative accuracy. RMSE: root mean square error.
3 Ta: dynamic threshold. To: static threshold (0.0). T: initial threshold

3.2. Comparisons with other classification methods

To verify the performance of the MHBM, we selected two automatic water extraction methods:
MMFCM [20] and K-means [22]. MMFCM is the combination of a modified fuzzy clustering method
(MFCM) algorithm and the modified normalized difference water index (MNDWTI) [20]. K-means is
a conventional classification method [22]. An additional ten images were used for independent
accuracy assessment. The result of a comparison between the three water extraction methods
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indicated that the relative error of the MHBM was the lowest, followed by the MMFCM, and then K-
means (Table 4).

Table 4. Comparison of MHBM with other classification methods: MMFCM and K-means .

Accuracy index? MHBM MMFCM K-means
RE (%) 0.11 2.04 8.56
RMSE (km?) 0.09 1.59 8.09

! MHBM: Modified Histogram Bimodal Method. MMFCM: an automatic water extraction method combining a
modified fuzzy clustering method (MFCM) algorithm with the modified Normalized Difference Water Index
(MNDWI). K-means: K-means clustering method.

2 RE: relative accuracy. RMSE: root mean square error.

We selected several examples to analyze the performance of the MHBM, MMFCM, and K-means
water extraction methods (Figure 5). For example, Figure 5 shows three typical water bodies.
Guanting Reservoir, is an area with shallow water and bottoms similar to the surrounding soil. The
K-means method extracted portions of this shallow water as “no water,” causing many errors and
punctuated shorelines on the water map. The shorelines produced by the MHBM and MMFCM,
however, were smooth, with the MHBM results being more accurate (Figure 5b and b’). All the three
methods yielded accurate results for Miyun Reservoir, which possessed high quality of water (Figure
5c and ¢’). At Yugiao Reservoir, there were grass and algae present at the border of the water body.
As a result, the K-means method again produced water distributions with complex spots and curves.
The shoreline produced by the MMFCM has been a shift from land to water, while the MHBM
produced the most accurate shoreline results (Figure 5d and d’). Compared with the two alternate
classification methods, the MHBM showed greater accuracy and more stable performance
throughout the delineation of different typical water body types. Moreover, the MHBM has the
advantage of simplicity over many other automatic water extraction methods, because it does not
require additional auxiliary data such as a DEM. The MHBM is thus easy to use and can be easily
reproduced by other operators.
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Figure 5. Examples of water body extraction results within a sample Landsat 8 OLI true color image
(a), at sub-regions Guanting (b), Miyun (c), and Yugqiao (d) Reservoirs, using MHBM (red line),
MMECM (blue line), and K-means (green line) methods. (b’), (¢’), and (d’) are more detailed local
views of each sub-region, displayed in false color (RGB: 5, 4, 3).

Feng et al. [1] developed an automated method for mapping inland surface water bodies, which
has been applied to the roughly 9000 Landsat scenes of the GLS 2000 data collection to produce a
global, 30-m resolution inland surface water body dataset (GIW) [35] for circa-2000. This GIW dataset
has been adopted by the Global Land Cover Facility (GLCEF). In the present study, we modified the
MHBM to adapt to Landsat 7 ETM+ images and applied the modified method to three ETM+ images
(1999/08/11: path 122, row 32; 1999/07/01: path 123, row 32; and 2000/05/07: path 124, row 32). The
results of the MHBM and GIW were then compared (Figure 6). The relative error between MHBM
and GIW was 5.03% which indicates that the two products have very similar shorelines (Figure 6(a),
(b), (b"), (c), (<), (d), (d’), (d”), and (e)). However, there are slight differences in the smaller details.
The total area of inland surface water bodies in the MHBM product is greater than that of the GIW
(Figure 6(a’), 6(a”) and (e”)). Field investigation and spectral analysis indicate that these additional
areas are water and water grasses mixture. Therefore a primary difference is that MHBM tends to
distinguish water and water grasses mixture as water, while GIW tends to distinguish it as land.


http://dx.doi.org/10.20944/preprints201612.0141.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2016 d0i:10.20944/preprints201612.0141.v1

115°35'0"E  115°40'0"E  115°45'0"E  115°50'0"E  115°35'0"E 116°50'0"
S B W N ey
??t " e - | A

0N

40°5'0"N  40°0

115°35'0"E  115°40'0"E  115°45'0"E 117°30'0"E 117°35'0"E
Legend [ |GIW [__|MHBM

Figure 6. Comparison of MHBM and GIW applied to several water bodies. The red and blue lines are
the shorelines extracted by MHBM and GIW. (a), (b), (c), (d), and (e) are Landsat 7 ETM+ true color
images (RGB: 3, 2, 1) of Guanting, Miyun, and Yugiao Reservoirs. (a’), (a”), (b"), (¢'), (d'), (d”), and (¢”)
are more detailed local views of each reservoir, displayed in false color (RGB: 4, 3, 2). The image
acquisition dates of (a), (b), and (c) were 1999/07/01 (path 123, row 32); of (d) was 2000/05/07 (path
124, row 32); and of (e) was 1999/08/11 (path 122, row 32).

3.3. Water distribution

We extracted water bodies in all of the 18 study areas (Figure 3), which reflects the good performance
of the MHBM. Despite differences in environmental conditions and water qualities, the shorelines
were all accurate and clear.

4. Discussion

4.1. Dynamic thresholds

The main indicator of the good performance of the MHBM using the dynamic threshold was
that different thresholds for different water bodies were observed within single images. For example,
the Guanting, Yuqiao, and Miyun Reservoirs yielded different thresholds, which reflected their
differing surface environments, water qualities, atmospheric conditions, and image-forming
conditions (Figure 7). The threshold values for the Guanting and Miyun Reservoirs were much lower
than the initial threshold (i.e., 0.277), while for Yuqiao Reservoir, the values were similar. Moreover,
the dynamic threshold was calculated automatically, removing the effects of human intervention and
improving accuracy and objectivity in water extraction.
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Figure 7. High performance image of the modified histogram bimodal method (MHBM). Different
identified water bodies correspond to different thresholds.

4.2. Dilation size

Dilation size determined the shapes of the histograms. In the histogram of the MNDWI, the left
peak represented non-water and the right peak represented water bodies. Balance between the two
peaks results in more accurate automatic calculations of thresholds. The water peaks for five dilation
sizes were invariant (Figure 8(c)); however, the peaks for non-water gradually increased with
increasing dilation size (50-250%.), until their heights at 100% and 150% dilation were close to the
water peaks. Therefore, in complex surface environments, multiple surface features could cause non-
water peaks to be flatter than a single object, and the height of two peaks at 150% dilation may be
much more in balance.
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Figure 8. True color and (b) modified histogram bimodal method (MHBM) image of an identified
water body. (c) Histograms for the five dilation sizes (~50-250%) of the MHBM.

We investigated the threshold accuracy at five dilation sizes (Figure 9) and found that while RE
initially decreased with increasing dilation (50-150%), it subsequently increased with increasing
dilation (150-250%). In contrast, while R? increased as dilation increased from 50% to 150%, it
decreased between 150% and 250% dilation. Therefore, 150% is the most appropriate dilation size for

use with the MHBM.
(a) -A-NDWI - (b)
A
24 e ~-MNDWI 0.95 A e
\ s /- ™~

10 \ o 0.90 1 / \ \v

- %

/
\

6 - A - ~ 0.80 y

/ rd

A7

P

Py,

\ \ -~ i
4 - \ / 07s 4 &

- e —a -+ NDWI

Tl lf]

< o 0.70 -

J - MNDWI
-
- AWEIL
0 - - - : 0.65 T : - -
50 100 150 200 250 50 100 150 200 250
Dilation Size (%) Dilation Size (%)

Figure 9. Thresholds accuracy of the five modified histogram bimodal method (MHBM) dilation sizes
(~50-250%) for (a) relative error (RE), and (b) R
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4.3. Optimal water index

MNDWTI had the smallest threshold range (R) and standard deviation (SD) compared with
AWEI and NDWI (Table 2). Low R values provided a narrow threshold range that allowed for the
precise identification of thresholds, while the small SD showed that thresholds were close to the
initial threshold. Therefore, MNDWI is the optimal water index for automated water extraction using
OLI images because the stable thresholds generated ensure low error in preliminary water extraction.

The distance between the water peak and non-water peak (Dw-m) determines the possibility of
distinguishing water from other objects (Figure 10). The Duw-ww of MNDWI was the widest among the
three water indices, showing that water pixels were most easily distinguished using MNDWL
Compared with NDWI and AWEI, the curve in the MNDWTI histogram was flatter and the value
between Ti and Tr was smallest; therefore, the accuracy of water extraction was high for any value
within the threshold range. These results indicate that MNDWI is a highly accurate and stable index;
however, for the sensors with absent SWIR bands, NDWI would also produce accurate results when

applied to the MHBM.
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Figure 10. True color water body image and the associated images and histograms derived using (b
and e) the normalized difference water index (NDWI), (c and f) the modification of normalized
difference water index (MNDWI), and (d and g) the automated water extraction index (AWEI). T;, T,
and T: denote the left edge, right edge, and initial threshold range, respectively. The right peaks of the
histograms are water peaks and the left peaks are non-water peaks.
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All water indices (including NDWI, AWEIL and even MNDWI) have inherent defects, such as
classification errors caused by cloud shadows, topographic shadows, and building shadows. The
MHBM implements an automatic threshold value to extract water bodies from common water
indices. It does not attempt to modify the indices to avoid their inherent defects. Therefore, in this
study, MNDWI fits MHBM; however, its inherent defects were still present within the results.

4.4. Initial threshold and optimal threshold

The initial threshold was derived from the statistics of finite samples. In exceptional cases, the
initial threshold can be too large to extract valid water area, or so small that the land is extracted as
water. Only optimal preliminary water masks can provide good twin peaks and valleys as precise as
dynamic thresholds. Vector shorelines of water distribution could be used to generate preliminary
water masks instead of using those extracted using the initial threshold. Furthermore, vector
shorelines could provide the locations and approximate distributions of water bodies. However, the
vector approach could only be used for extracting known water bodies. For extracting unknown
water bodies, preliminary water masks must be extracted by the initial threshold approach.
Additionally, the dynamic threshold may not be optimal at the limits of the threshold range; however,
when it is limited within a specific threshold range, it can be used to extract water within an
acceptable level of accuracy.

4.5. Water area

For the MHBM, drawing the histogram is an important step. The histogram requires a certain
number of pixels to achieve well-defined twin peaks. We simulated the histograms of different sized
areas of pixels (from 100 to 5000), based on the Gaussian function (Figure 11). While areas of the 100,
300, and 500 pixels produced histogram curves that were hackly (uneven and jagged), areas of 1000
pixels resulted in smooth histogram curves. Furthermore, areas of 2000 and 5000 pixels produced
very smooth curves and perfect twin peaks. A Landsat 8 OLI image pixel is 0.009 km? (30 x 30 m),
and 1000 pixels is ~ 0.9 km?2. Therefore, the MHBM is most effective on water bodies that have an area
of greater than 1000 pixels, or 0.9 km? in Landsat 8 OLI images, and is invalid for small water bodies
such as small ponds and narrow streams.
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Figure 11. Histograms derived by Gaussian function simulation from areas containing of varying size.

5. Conclusions
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In this study, we developed a Modified Histogram Bimodal Method (MHBM) for automatic
water extraction, focusing on the calculation dynamic threshold. Rayleigh scattering correction and
water area dilation contributed to the generation of suitable twin peaks. The method of dynamic
threshold calculation seeks minimum values as precise thresholds within threshold ranges instead of
finding valleys between twin peaks. Through the above two modifications, MHBM could calculate
the dynamic threshold automatically, eliminating the requirement of human experience and
providing highly accurate automatic water extraction. MHBM requires some prior knowledge for
different sensors. For instance, MNDWI is an optimal index for Landsat 8 OLI images and the most
suitable dilation size is 150%; the threshold ranges of MNDWI, NDWI, and AWEI are 0.104-0.427, -
0.184-0.228, and -0.295-0.083, respectively, and the initial thresholds of MNDWI, NDWI, and AWEI
are 0.277, 0.02, and -0.099, respectively.

We tested the MHBM method based on MNDWI using 152 scenes of Landsat 8 OLI images in
18 water areas. For MHBM, the RE and R? for threshold accuracy were 2.1% and 0.962, and the RE
and RMSE for area accuracy were 0.59% and 7.4 km?, respectively. Using dynamic thresholds in
MHBM yielded the highest accuracy for both threshold and area when compared to a static threshold
of 0.0, the initial threshold method, MMFCM, K-means, and GIW methods. Therefore, MHBM could
easily be applied to mass time-series remote sensing data to calculate water thresholds within water
index images and successfully extract the spatial distribution of large water bodies automatically.
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