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Abstract: Surface water distribution extracted from remote sensing data has been used in water 
resource assessment, coastal management, and environmental change studies. Traditional manual 
methods for extracting water bodies cannot satisfy the requirements for mass processing of remote 
sensing data; therefore, accurate automated extraction of such water bodies has remained a 
challenge. The histogram bimodal method (HBM) is a frequently used objective tool for threshold 
selection in image segmentation. The threshold is determined by seeking twin peaks, and the valley 
values between them; however, automatically calculating the threshold is difficult because complex 
surfaces and image noise which lead to not perfect twin peaks (single or multiple peaks). We 
developed an operational automated water extraction method, the modified histogram bimodal 
method (MHBM). The MHBM defines the threshold range of water extraction through mass static 
data; therefore, it does not require the identification of twin histogram peaks. It then seeks the 
minimum values in the threshold range to achieve automated threshold. We calibrated the MHBM 
for many lakes in China using Landsat 8 Operational Land Imager (OLI) images, for which the 
relative error (RE) and squared correlation coefficient (R2) for threshold accuracy were found to be 
2.1% and 0.96, respectively. The RE and root-mean-square error (RMSE) for the area accuracy of 
MHBM were 0.59% and 7.4 km2. The results show that the MHBM could easily be applied to mass 
time-series remote sensing data to calculate water thresholds within water index images and 
successfully extract the spatial distribution of large water bodies automatically. 

Keywords: automated water extraction; landsat 8 Operational Land Imager (OLI); modified 
histogram bimodal method (MHBM); remote sensing 

1. Introduction

Surface water is a critical resource that is impacted by changes in land cover/use, climate, and 
the environment on a global scale. Changes in surface water can cause droughts, floods, and 
pollution. Monitoring surface water distribution using remote sensing is critical, and has the added 
advantages of low cost, high speed and frequency, wide cover, and low impact from surface 
conditions. Surface water distributions extracted using remote sensing data have been used in water 
resources assessments, coastal management, and studies of environmental change [1, 2]. 

Water extraction using remote sensing techniques first began forty years ago [3]. Since then, 
numerous studies have developed indices and algorithms of water extraction. Water surfaces appear 
dark in near-infrared radiation (NIR) because of strong absorption by the water. In contrast, land 
appears white because NIR is strongly reflected by terrestrial vegetation and dry soil. Therefore, 
initially, single-band methods based on NIR were used for water extraction [3–5]. However, surface 
terrains can be complex and other surface features can behave in a manner similar to water, resulting 
in errors. Then, the normalized difference vegetation index (NDVI) was used to enhance water 
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features by introducing red band (R) data to NIR techniques [6–8]. While NDVI can delineate more 
effectively between water and non-water objects, and especially vegetation, it only suppresses non-
water features, but does not eliminate them completely [9]. Therefore, other studies introduced the 
green (G) band instead red band, resulting in the formation of the normalized difference water index 
(NDWI) [9]. The NDWI aims to enhance water features using the high reflectance of water in the 
green band, and low reflectance in the NIR band. However, the NDWI cannot efficiently suppress 
signals from built-up areas; moreover, water features are still interspersed with noise from other 
features [10]. To rectify this problem, the NDWI was modified to form the modification of normalized 
difference water index (MNDWI) [10], which utilizes shortwave infrared radiation (SWIR) that has a 
lower reflectance from water than NIR.  

Despite the improvements [11], all of these indices require a threshold to discriminate water 
from land, and subjective and static threshold values can lead to over- or underestimation of surface 
water area [12]. Threshold values usually vary with viewing angle, satellite attitude, illumination, 
atmospheric conditions, and environmental noise in the images obtained [13,14]; therefore, 
identifying an appropriate threshold is challenging and time consuming [2]. For this reason, 
automated water extraction methods have increasingly been considered. Feyisa et al. [2] introduced 
a multiple-band index (the automated water extraction index; AWEI) to increase the accuracy and 
robustness of water extraction. However, the suggested threshold value of 0.0 is only more robust 
than NDWI and MNDWI, it still changes in different images, which hinders automated water 
extraction. 

Both supervised and unsupervised classification procedures have frequently been applied to 
identify and classify water features in remote sensing images [15]. Supervised classification includes 
systems such as maximum-likelihood classification [16], decision trees [17, 18], artificial neural 
networks, and support vector machines and fuzzy clustering method (FCM) [19, 20]. Unsupervised 
classification methods include isodata [21] and k-mean clustering [22]. However, while supervised 
methods require a priori knowledge about the number of classes and the spectral characteristic of 
each class in the retrieved images, unsupervised methods are not stable because surface features vary 
in different images, preventing the application of these methods over large areas [12]. Computer 
graphics technology has also been used to extract water distributions in some automated methods, 
including tasseled cap wetness, boundary tracing [23], principal components analysis [24,25], 
morphological segmentation [15,26], end member extraction [27], and others [28]. However, these 
methods have common complex weaknesses that lead to instabilities and difficulties in mass data 
processing. 

Automated extraction of water bodies remains a challenge; however, satellite sensors are being 
launched increasingly currently, and there has been an explosive growth of image data. Remote 
sensing data is generally automatically processed; therefore, we developed an automated water 
extraction method (the modified histogram bimodal method; MHBM) for simple and fast water 
extraction. The MHBM was applied to Landsat 8 Operational Land Imager (OLI) images to evaluate 
its performance. 

2. Materials and Methods 

2.1. Modified histogram bimodal method (MHBM) 

The histogram bimodal method (HBM) is often used for threshold selection in image 
segmentation of land and water bodies [29, 30]. In this method, the valley values between the two 
peaks are used as the threshold for image segmentation (Figure 1). However, it is difficult to 
automatically find two peaks using a computer because complex surfaces and image noise usually 
result in single or multi-peak retrieval and not perfect twin peaks, resulting in non-determinacy of 
the threshold. In view of these problems, we modified the HBM to automatically calculate the 
threshold through an automated water extraction method (the MHBM). In the MHBM, the threshold 
range (R) is defined from mass valley values obtained through visual interpretation, with the mean 
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value of the valley defined as the initial threshold (Ti). Furthermore, we seek the minimum value in 
the threshold range and not twin peaks and valleys to avoid non-determinacy. 

Figure 1. Diagram of the modified histogram bimodal method (MHBM). (a) Scene captured by the 
Landsat 8 Operational Land Imager (OLI). (b) Normalized difference water index (NDWI) image. (c) 
Histogram prepared using NDWI data from within the red line in (b). The blue line in (b) denotes the 
lake shoreline, and the red line is drawn through a dilation of the blue line. PLand and PWater denote the 
peaks of land and water, respectively. Tl and Tr denote the left and right edges of the threshold range, 
respectively, and Ti denotes the initial threshold. R denotes the length of the threshold range. 

To get the best results, we restricted the data in our histograms to those from the areas around 
water bodies and not from the full image. First, we extracted the rough distribution of a water body 
using Ti, and then the area was dilated for certain circles forming the statistical area of the histogram 
(Figure 1b). The dilated area was approximately two times that of the water area, allowing the 
formation of perfect twin peaks and a histogram of the water index (or single band reflectance) for 
the dilated area (Figure 1c). A Rayleigh scattering correction was required to ensure stable threshold 
results. Using this approach, we were able to calculate the dynamic threshold automatically, which 
verified that the MHBM could be used for automated water extraction. 

2.2. Water extraction procedure based on MHBM 
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To achieve automated water extraction, we designed a workflow based on the MHBM (Figure 
2), which included Rayleigh scattering correction, threshold statistics, preliminary water extraction, 
water mask dilation, and accurate water distribution extraction. 

(6) Accurate water extraction

Water mask imagesPrecise thresholds

(4) Preliminary water extraction

(3) Threshold statistics

(2) Water index caculation

(1) Rayleigh scattering correction

Remote sensing images

Reflectance images by Rayleigh scattering correction

Water index images: NDWI, MNDWI, AWEI and so on

Initial thresholds

Threshold ranges

Rough distribution of water

(5) Water area dilation

Study area 
through dilation 

Water index images 
in the dilation area

 

Figure 2. Flow chart showing the water extraction procedure based on the modified histogram 
bimodal method (MHBM). 

To ensure a stable threshold, an accurate atmospheric correction of the remote sensing images 
was required; however, accurate atmospheric correction is challenging [31]. Reflectance values after 
Rayleigh scattering correction (ρrc) satisfy water extraction and are often used in water color remote 
sensing [32, 33]. Therefore, we used ρrc to calculate water indices (i.e., NDWI, MNDWI, and AWEI; 
Table 1) replaced surface reflectance (ρo) though accurate atmospheric correction. The top of 
atmosphere reflectance (ρTOA) can be expressed as the linear sum of the contribution from Rayleigh 
scattering (ρr), aerosol scattering in the atmosphere (ρa), and diffuse transmittance to the sensor (ρo) 
using Eq. 1 [34]: 

ρ்ை஺=ρr+ρa+tρo (1)

where t is the diffuse transmittance of the atmosphere (considering only gas molecules). We 
simulated ρr using the Second Simulation of a Satellite Signal in the Solar Spectrum-Vector (6SV) to 
obtained reflectance after the Rayleigh scattering correction, which included aerosols scattering 
reflectance and surface reflectance: 

ρrc=ρ்ை஺ − ρ௥ (2)

Table 1. Water index expressions. 

Water 
index1 

Expression Wave length Reference 
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NDWI NDWI = (G-NIR)/(G+NIR) G: Green band radiation 
NIR: Near-infrared radiation  

SWIR: Shortwave infrared radiation 
SWIR1: Shortwave infrared 

radiation 
SWIR2: Shortwave infrared 

radiation 

[7] 
MNDWI MNDWI = (G-SWIR)/(G+SWIR) [8] 

AWEI 
AWEI = 4*(G-SWIR1) − 
(0.25*NIR+2.75*SWIR2) 

[12] 

1 NDWI: normalized difference water index. MNDWI: modification of normalized difference water index. 
AWEI: automated water extraction index. 

From correcting Rayleigh scattering and converting to reflectance, to delineation of water 
distribution, MHBM follows four steps:  

1) Threshold statistics: Threshold statistics are necessary when calibrating the threshold range 
and initial threshold for data of a new sensor (Figure 2). However, this step can be skipped when the 
threshold range and the initial threshold are already known for the sensor of interest. The optimal 
thresholds were defined as the minimum valley value occurring between the twin peaks of a given 
histogram, which was based on the image statistics derived from water areas with a 1.5 times dilation 
buffer. For adequate representativeness, threshold statistics were calculated using mass images that 
included many typical water body types. The minimum and maximum valley values were defined 
as the left and right edges of the threshold (Tl and Tr), respectively. The length between Tl and Tr was 
the threshold range (R), and the mean of the valley values was defined as the initial threshold (Ti) for 
preliminary water extraction. We obtained thresholds of NDWI, MNDWI, and AWEI for 18 water 
bodies within each of the 152 Landsat 8 OLI images. The 152 thresholds of each water index formed 
a threshold range (Table 2). The statistical threshold results of this study could be used by other 
researchers for delineating other water bodies. 

Table 2. Statistics of water index expressions1. 

Water index2 Tl Tr R SD Ti 
NDWI −0.184 0.228 0.412 0.099 0.020 

MNDWI 0.104 0.427 0.323 0.084 0.277 
AWEI −0.295 0.083 0.378 0.098 −0.099 

1 Tl, Tr, and Ti: left edge, right edge, and initial threshold ranges, respectively. R: threshold range between Tl 
and Tr. SD: Standard deviation. 

2 NDWI: normalized difference water index. MNDWI: modification of normalized difference water index. 
AWEI: automated water extraction index. 

2) Preliminary water extraction: We extracted water bodies using Ti to obtain a rough water 
distribution mask. The purpose of this step was to identify the general location and distribution of 
water bodies, and not to represent accurate shorelines.  

3) Water area dilation: To obtain well-defined twin peaks in the histograms, we dilated the 
preliminary water masks by1.5 times to obtain work areas. The water index images were then masked 
to isolate the work areas. In the masked water index images (work areas), the number of water pixels 
and number of non-water pixels were equal, and the histogram peaks of water and non-water, along 
with the valley between the two peaks, were distinct.  

4) Accurate water extraction: The minimum values of threshold ranges in the histograms are 
easily processed and represent precise thresholds for accurate water extraction. The use of threshold 
ranges ensured stability and correctness of selected thresholds, even in non-ideal histograms. For 
instance, if several minima or a range of minima occurred within the threshold range, the medium 
position minima was selected as the precise threshold. For every water body within an image, an 
exclusive threshold (dynamic threshold: Td) for image segmentation was obtained using the above 
described method, and automated water extraction was accomplished successfully. 
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2.3. Accuracy assessment 

We evaluated the MHBM accuracy of the automated dynamic threshold calculation using 
relative error (RE) and the squared correlation coefficient (R2); furthermore, we also evaluated the 
area accuracy of the extracted area of water using the MHBM in comparison to the initial threshold 
and a static threshold (0.0) using RE and the root-mean-square error (RMSE):  

RE=
1
N෍|Xi-Yi|

Z

n

i=1

×100% (3)

 RMSE=ඨ 1
N෍ሺXi-Yiሻ2

n

i=1

 (4)

for threshold accuracy, X is the dynamic threshold of the MHBM (Td), Y is the optimal threshold, Z 
the interval of the threshold ranges (R) of NDWI, MNDWI, and AWEI, respectively, and N is the 
number of images and water bodies. The dynamic threshold, X, is derived through automatic 
calculation by the computer using the MHBM method. The optimal threshold, Y, is the minimum 
valley value between the two peaks (i.e., water and non-water peaks) of the histogram derived from 
statistics of preliminary water masks dilated by 1.5 times and defined by visual interpretation.  For 
area accuracy, X is the water area using different thresholds (Td, Ti, and T0), Y is the water area using 
the optimal threshold, Z is same as Y, and N is the number of images and water bodies. 

2.4. Application to Landsat 8 OLI data 

Landsat satellites have been providing multispectral images of the Earth continuously since the 
early 1970s. A unique more than 40-year data record of the Earth's land surface now exists [34]. 
Landsat 8 is the latest satellite in this series. This unique retrospective portrait of the Earth's surface 
has been widely used for water management. However, automated water extraction from time-series 
OLI mass data is difficult, but needed. Therefore, Landsat 8 OLI images were used to test thresholds, 
accuracy, and the robustness of the MHBM. The study areas included several lakes, rivers, and 
reservoirs in different environmental conditions, including cities, plains, hills, mountains, and 
highlands (Figure 3). The data covered ten provinces of China, including Beijing, Tianjin, Hebei, 
Henan, Jiangsu, Shanghai, Anhui, Jiangxi, Hunan, Yunnan, Qinghai, and Tibet. Water bodies 
included turbid rivers, clear lakes, ephemeral lakes, eutrophic lakes, clear reservoirs, and eutrophic 
reservoirs. The total numbers of water bodies and images were 18 and 152, respectively. 
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Figure 3. Shorelines (a–r) and location map (s) of 18 water bodies extracted using the modified 
histogram bimodal method (MHBM). Blue lines denote shorelines. Backgrounds are true color images 
where red, green, and blue are the 3, 2 and 1 bands of the Landsat 8 Operational Land Imager (OLI) 
sensor, respectively. 

3. Results 

3.1. Accuracy of the MHBM 

3.1.1. Threshold accuracy 

The MHBM yielded the greatest accuracy when the dilation size was 150% (Figure 4). Most 
dynamic thresholds were equal to the optimal thresholds, and the fitting trends had high R2 and 
slopes near 1.0. Furthermore, the RE was also low (under 3%) for all three water indices. These 
findings confirm that the MHBM is able to establish optimal thresholds for most situations.  
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The MNDWI had the lowest RE and highest R2. The threshold accuracy of the NDWI was slightly 
lower than that of the MNDWI, while that of the AWEI was slightly lower than that of the NDWI. 
However, even the AWEI attained high accuracy. These results show that the MHBM has good 
threshold accuracy when using any of the three water indices, but particularly when using MNDWI. 

 

Figure 4. Threshold accuracy of the modified histogram bimodal method (MHBM) with 150% dilation 
for (a) the modification of normalized difference water index (MNDWI), (b) the normalized difference 
water index (NDWI), and (c) the automated water extraction index (AWEI). 

3.1.2. Area accuracy 

Table 3 presents the area accuracies of water extraction by the three different thresholds: 
dynamic threshold (Td) of the MHBM, static threshold 0.0 (T0) and initial threshold (Ti). For RMSE, 
the water extraction area accuracy by T0 was lowest, with RMSE up to 40 km2 (Table 3). Water 
extraction area accuracy by Ti was higher than T0, with RMSE more than 20 km2; however, the MHBM 
using Td had the highest area accuracy compared with Ti and T0, with a minimum RMSE of just 7 km2. 
The trend was similar for RE, with the MHBM using Td much lower than when using Ti and T0, having 
a mean RE value of ~0.6%. These results show that the MHBM using MNDWI and the dynamic 
threshold has the highest accuracy (i.e., RE of the threshold and area accuracies as low as 2.1% and 
0.59%, respectively). 

Table 3. Accuracy of modified histogram bimodal method (MHBM) 1. 

Accuracy index 2 Threshold 3 MNDWI NDWI AWEI 

RE (%) 
T0 2.82 3.54 4.80 
Ti 2.74 1.91 2.38 
Td 0.59 0.61 0.61 

RMSE (km2) 
T0 44.5 24.5 44.4 
Ti 28.1 25.2 23.6 
Td 7.4 11.9 7.2 

1 N DWI: normalized difference water index. MNDWI: modification of normalized difference water index. 
AWEI: automated water extraction index. 

2 RE: relative accuracy. RMSE: root mean square error. 
3 Td: dynamic threshold. T0: static threshold (0.0). Ti: initial threshold 

3.2. Comparisons with other classification methods 

To verify the performance of the MHBM, we selected two automatic water extraction methods: 
MMFCM [20] and K-means [22]. MMFCM is the combination of a modified fuzzy clustering method 
(MFCM) algorithm and the modified normalized difference water index (MNDWI) [20]. K-means is 
a conventional classification method [22]. An additional ten images were used for independent 
accuracy assessment. The result of a comparison between the three water extraction methods 
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indicated that the relative error of the MHBM was the lowest, followed by the MMFCM, and then K-
means (Table 4). 

Table 4. Comparison of MHBM with other classification methods: MMFCM and K-means 1. 

Accuracy index 2 MHBM MMFCM K-means 
RE (%) 0.11 2.04 8.56 

RMSE (km2) 0.09 1.59 8.09 
1 MHBM: Modified Histogram Bimodal Method. MMFCM: an automatic water extraction method combining a 
modified fuzzy clustering method (MFCM) algorithm with the modified Normalized Difference Water Index 

(MNDWI). K-means: K-means clustering method. 
2 RE: relative accuracy. RMSE: root mean square error. 

We selected several examples to analyze the performance of the MHBM, MMFCM, and K-means 
water extraction methods (Figure 5). For example, Figure 5 shows three typical water bodies. 
Guanting Reservoir, is an area with shallow water and bottoms similar to the surrounding soil. The 
K-means method extracted portions of this shallow water as “no water,” causing many errors and 
punctuated shorelines on the water map. The shorelines produced by the MHBM and MMFCM, 
however, were smooth, with the MHBM results being more accurate (Figure 5b and b’). All the three 
methods yielded accurate results for Miyun Reservoir, which possessed high quality of water (Figure 
5c and c’). At Yuqiao Reservoir, there were grass and algae present at the border of the water body. 
As a result, the K-means method again produced water distributions with complex spots and curves. 
The shoreline produced by the MMFCM has been a shift from land to water, while the MHBM 
produced the most accurate shoreline results (Figure 5d and d’). Compared with the two alternate 
classification methods, the MHBM showed greater accuracy and more stable performance 
throughout the delineation of different typical water body types. Moreover, the MHBM has the 
advantage of simplicity over many other automatic water extraction methods, because it does not 
require additional auxiliary data such as a DEM. The MHBM is thus easy to use and can be easily 
reproduced by other operators. 
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Figure 5. Examples of water body extraction results within a sample Landsat 8 OLI true color image 
(a), at sub-regions Guanting (b), Miyun (c), and Yuqiao (d) Reservoirs, using MHBM (red line), 
MMFCM (blue line), and K-means (green line) methods. (b’), (c’), and (d’) are more detailed local 
views of each sub-region, displayed in false color (RGB: 5, 4, 3). 

Feng et al. [1] developed an automated method for mapping inland surface water bodies, which 
has been applied to the roughly 9000 Landsat scenes of the GLS 2000 data collection to produce a 
global, 30-m resolution inland surface water body dataset (GIW) [35] for circa-2000. This GIW dataset 
has been adopted by the Global Land Cover Facility (GLCF). In the present study, we modified the 
MHBM to adapt to Landsat 7 ETM+ images and applied the modified method to three ETM+ images 
(1999/08/11: path 122, row 32; 1999/07/01: path 123, row 32; and 2000/05/07: path 124, row 32). The 
results of the MHBM and GIW were then compared (Figure 6). The relative error between MHBM 
and GIW was 5.03% which indicates that the two products have very similar shorelines (Figure 6(a), 
(b), (b’), (c), (c’), (d), (d’), (d”), and (e)). However, there are slight differences in the smaller details. 
The total area of inland surface water bodies in the MHBM product is greater than that of the GIW 
(Figure 6(a’), 6(a”) and (e’)). Field investigation and spectral analysis indicate that these additional 
areas are water and water grasses mixture. Therefore a primary difference is that MHBM tends to 
distinguish water and water grasses mixture as water, while GIW tends to distinguish it as land. 
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Figure 6. Comparison of MHBM and GIW applied to several water bodies. The red and blue lines are 
the shorelines extracted by MHBM and GIW.  (a), (b), (c), (d), and (e) are Landsat 7 ETM+ true color 
images (RGB: 3, 2, 1) of Guanting, Miyun, and Yuqiao Reservoirs. (a’), (a”), (b’), (c’), (d’), (d”), and (e’) 
are more detailed local views of each reservoir, displayed in false color (RGB: 4, 3, 2). The image 
acquisition dates of (a), (b), and (c) were 1999/07/01 (path 123, row 32); of (d) was 2000/05/07 (path 
124, row 32); and of (e) was 1999/08/11 (path 122, row 32). 

3.3. Water distribution 

We extracted water bodies in all of the 18 study areas (Figure 3), which reflects the good performance 
of the MHBM. Despite differences in environmental conditions and water qualities, the shorelines 
were all accurate and clear. 

4. Discussion 

4.1. Dynamic thresholds 

The main indicator of the good performance of the MHBM using the dynamic threshold was 
that different thresholds for different water bodies were observed within single images. For example, 
the Guanting, Yuqiao, and Miyun Reservoirs yielded different thresholds, which reflected their 
differing surface environments, water qualities, atmospheric conditions, and image-forming 
conditions (Figure 7). The threshold values for the Guanting and Miyun Reservoirs were much lower 
than the initial threshold (i.e., 0.277), while for Yuqiao Reservoir, the values were similar. Moreover, 
the dynamic threshold was calculated automatically, removing the effects of human intervention and 
improving accuracy and objectivity in water extraction. 
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Figure 7. High performance image of the modified histogram bimodal method (MHBM). Different 
identified water bodies correspond to different thresholds. 

4.2. Dilation size 

Dilation size determined the shapes of the histograms. In the histogram of the MNDWI, the left 
peak represented non-water and the right peak represented water bodies. Balance between the two 
peaks results in more accurate automatic calculations of thresholds. The water peaks for five dilation 
sizes were invariant (Figure 8(c)); however, the peaks for non-water gradually increased with 
increasing dilation size (50–250%.), until their heights at 100% and 150% dilation were close to the 
water peaks. Therefore, in complex surface environments, multiple surface features could cause non-
water peaks to be flatter than a single object, and the height of two peaks at 150% dilation may be 
much more in balance. 
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Figure 8. True color and (b) modified histogram bimodal method (MHBM) image of an identified 
water body. (c) Histograms for the five dilation sizes (~50–250%) of the MHBM. 

We investigated the threshold accuracy at five dilation sizes (Figure 9) and found that while RE 
initially decreased with increasing dilation (50–150%), it subsequently increased with increasing 
dilation (150–250%). In contrast, while R2 increased as dilation increased from 50% to 150%, it 
decreased between 150% and 250% dilation. Therefore, 150% is the most appropriate dilation size for 
use with the MHBM. 

Figure 9. Thresholds accuracy of the five modified histogram bimodal method (MHBM) dilation sizes 
(~50–250%) for (a) relative error (RE), and (b) R2. 
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4.3. Optimal water index 

MNDWI had the smallest threshold range (R) and standard deviation (SD) compared with 
AWEI and NDWI (Table 2). Low R values provided a narrow threshold range that allowed for the 
precise identification of thresholds, while the small SD showed that thresholds were close to the 
initial threshold. Therefore, MNDWI is the optimal water index for automated water extraction using 
OLI images because the stable thresholds generated ensure low error in preliminary water extraction. 

The distance between the water peak and non-water peak (Dw-nw) determines the possibility of 
distinguishing water from other objects (Figure 10). The Dw-nw of MNDWI was the widest among the 
three water indices, showing that water pixels were most easily distinguished using MNDWI. 
Compared with NDWI and AWEI, the curve in the MNDWI histogram was flatter and the value 
between Tl and Tr was smallest; therefore, the accuracy of water extraction was high for any value 
within the threshold range. These results indicate that MNDWI is a highly accurate and stable index; 
however, for the sensors with absent SWIR bands, NDWI would also produce accurate results when 
applied to the MHBM. 

Figure 10. True color water body image and the associated images and histograms derived using (b 
and e) the normalized difference water index (NDWI), (c and f) the modification of normalized 
difference water index (MNDWI), and (d and g) the automated water extraction index (AWEI). Tl, Tr, 
and Ti denote the left edge, right edge, and initial threshold range, respectively. The right peaks of the 
histograms are water peaks and the left peaks are non-water peaks. 
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All water indices (including NDWI, AWEI, and even MNDWI) have inherent defects, such as 
classification errors caused by cloud shadows, topographic shadows, and building shadows. The 
MHBM implements an automatic threshold value to extract water bodies from common water 
indices. It does not attempt to modify the indices to avoid their inherent defects. Therefore, in this 
study, MNDWI fits MHBM; however, its inherent defects were still present within the results. 

4.4. Initial threshold and optimal threshold 

The initial threshold was derived from the statistics of finite samples. In exceptional cases, the 
initial threshold can be too large to extract valid water area, or so small that the land is extracted as 
water. Only optimal preliminary water masks can provide good twin peaks and valleys as precise as 
dynamic thresholds. Vector shorelines of water distribution could be used to generate preliminary 
water masks instead of using those extracted using the initial threshold. Furthermore, vector 
shorelines could provide the locations and approximate distributions of water bodies. However, the 
vector approach could only be used for extracting known water bodies. For extracting unknown 
water bodies, preliminary water masks must be extracted by the initial threshold approach. 
Additionally, the dynamic threshold may not be optimal at the limits of the threshold range; however, 
when it is limited within a specific threshold range, it can be used to extract water within an 
acceptable level of accuracy. 

4.5. Water area 

For the MHBM, drawing the histogram is an important step. The histogram requires a certain 
number of pixels to achieve well-defined twin peaks. We simulated the histograms of different sized 
areas of pixels (from 100 to 5000), based on the Gaussian function (Figure 11). While areas of the 100, 
300, and 500 pixels produced histogram curves that were hackly (uneven and jagged), areas of 1000 
pixels resulted in smooth histogram curves. Furthermore, areas of 2000 and 5000 pixels produced 
very smooth curves and perfect twin peaks. A Landsat 8 OLI image pixel is 0.009 km2 (30 × 30 m), 
and 1000 pixels is ~ 0.9 km2. Therefore, the MHBM is most effective on water bodies that have an area 
of greater than 1000 pixels, or 0.9 km2 in Landsat 8 OLI images, and is invalid for small water bodies 
such as small ponds and narrow streams. 

Figure 11. Histograms derived by Gaussian function simulation from areas containing of varying size. 

5. Conclusions  
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In this study, we developed a Modified Histogram Bimodal Method (MHBM) for automatic 
water extraction, focusing on the calculation dynamic threshold. Rayleigh scattering correction and 
water area dilation contributed to the generation of suitable twin peaks. The method of dynamic 
threshold calculation seeks minimum values as precise thresholds within threshold ranges instead of 
finding valleys between twin peaks. Through the above two modifications, MHBM could calculate 
the dynamic threshold automatically, eliminating the requirement of human experience and 
providing highly accurate automatic water extraction. MHBM requires some prior knowledge for 
different sensors. For instance, MNDWI is an optimal index for Landsat 8 OLI images and the most 
suitable dilation size is 150%; the threshold ranges of MNDWI, NDWI, and AWEI are 0.104–0.427, -
0.184–0.228, and -0.295–0.083, respectively, and the initial thresholds of MNDWI, NDWI, and AWEI 
are 0.277, 0.02, and -0.099, respectively. 

We tested the MHBM method based on MNDWI using 152 scenes of Landsat 8 OLI images in 
18 water areas. For MHBM, the RE and R2 for threshold accuracy were 2.1% and 0.962, and the RE 
and RMSE for area accuracy were 0.59% and 7.4 km2, respectively. Using dynamic thresholds in 
MHBM yielded the highest accuracy for both threshold and area when compared to a static threshold 
of 0.0, the initial threshold method, MMFCM, K-means, and GIW methods. Therefore, MHBM could 
easily be applied to mass time-series remote sensing data to calculate water thresholds within water 
index images and successfully extract the spatial distribution of large water bodies automatically. 
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