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Abstract: Control charts have been widely used for monitoring process quality in manufacturing
and play an important role in triggering a signal in time when detecting a change in process quality.
Many control charts in literature assume that the in-control distribution of the univariate or
multivariate process data is continuous and not categorical. This research develops two
exponentially weighted moving average (EWMA) proportion control charts for monitoring a
process with multinomial proportions when considering both large and small sample sizes. For a
large sample size , the charting statistic depends on the well-known Pearson y? statistic, and the
control limit of the EWMA proportion chart is determined by an asymptotical chi-square
distribution. For a small sample size, we derive the exact mean and variance of the Pearson y?
statistic. Hence, the exact EWMA proportion chart is determined. The proportion chart can also be
applied to monitor the distribution-free continuous multivariate process as long as each categorical
proportion associated with specification limits of each quality variable is known or estimated.
Lastly, we investigate the detection performance of the proposed EWMA proportion chart by
numerical analyses. Real data analysis demonstrates the beneficial application of the proposed
EWMA proportion charts.

Keywords: control chart; multinomial distribution; specification limits; Pearson x? statistic

1. Introduction

Process control plays a critical role in fostering sustainable practices within industries. It
establishes a connection and enables the attainment of secure and efficient process operation and
energy systems. Sustainability encompasses the integration of economic, social, and environmental
systems, necessitating a well-rounded approach to resource management [1-3]. From the standpoint
of process control, several factors contribute to sustainable practices, including the minimization of
raw material costs, reduction of product and material scrap/waste expenses, optimization of capital
costs, enhancement of process and energy efficiency, mitigation of carbon and water footprints, and
maximization of eco-efficiency and process safety. Therefore, process control plays a pivotal role in
offering sustainability solutions be developing and implementing efficient technology (refer to
Daoutidis et al.,, [4]). In other words, the practice of sustainability introduces new operational
challenges in the development of process control methods. Control charts serve as effective tools in
process control, aiming to enhance the quality and yield of products/parts while reducing
scrap/waste of raw materials, minimizing carbon and water footprints, and increasing profits/eco-
efficiency and energy efficiency of products.

Among statistical process control tools, control chars are effective tools for monitoring and
improving the manufacturing or service process quality. Compared to many process controls with
continuous quality variables, less attention has been paid to control charts designed with categorical
quality characteristic. The more well-known charts for monitoring two-categorical process units are
p, ¢, np and u charts for monitoring fraction nonconforming and defects (for detail, see Montgomery
[5], Reynolds et al. [6,7] and Qiu [8]). However, only considering two categories is not sufficient to
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characterize the situation of process control. For example, an item can be classified into the three
grades of best, better, or good and not just nonconforming and conforming grades. Consequently,
the study of process control for categorical data following a multinomial distribution satisfies the
requirement of this type process control.

Up until now, many control charts monitoring multinomial-proportion process are constructed
based on Pearson’s chi-square statistic, but its variant heavily depends on a large sample size (e.g.,
Marcucci [9]; Nelson [10]). The asymptotic chi-square distribution of Pearson’s chi-square statistic is
specifically known for an infinite sample size. When the sample size is small, it is not appropriate to
adopt the asymptotic chi-square distribution of Pearson’s chi-square statistic to construct the
multinomial-proportion control chart because the calculated average run length (ARL) of the
asymptotic control charts may seriously deviate from the pre-specified ARL. It thus leads to an over-
or under-adjustment of the process.

We note that many papers of multinomial-proportion control charts are designed based on the
asymptotic distribution of Pearson’s chi-square statistic even when the sample size is small, for
example, see Crosier [11] and Qiu [12]. Moreover, Ryan et al. [13] established the multinomial-
proportion CUSUM chart that relies on pre-specified out-of-control multinomial proportions, which
consequently lead to worse detecting performance compared to multiple one-sided Bernoulli
CUSUM charts. Li et al. [14] followed the idea of Qiu [12] by proposing an EWMA-type control chart
for monitoring the proportions of a multivariate binomial distribution under a large sample size.
Huang et al. [15,16] and Lee et al. [17] extended the control chart in Li et al. [14] to monitor the
multinomial-proportion process with a large sample size.

Form the papers mentioned above, we find that monitoring the multinomial-proportion process
with a small sample size has not been discussed. Though the exact distribution of Pearson’s chi-
square statistic is difficult to know, we may derive its exact mean and variance whether the sample
size is small or large. According the results, we thus provide an exact EWMA-proportion control
chart to monitor the multinomial-proportion process. The control limit of the proposed exact control
chart can be determined and implemented not only for a small sample size, but also for a large sample
size and even an individual. So far, the literature has not yet discussed the exact EWMA-proportion
control chart.

In this study, we have devised a novel, efficient, and accurate method for monitoring and
controlling a multinomial-proportion process. The proposed method holds the potential to provide
multiple sustainability solutions across industries.

This rest of the paper is organized as follows. Section 2 derives the exact means and variances of
Pearson’s chi-square statistic under in-control process proportions and studies the properties of
Pearson’s chi-square statistic. Section 3 constructs the exact and asymptotic EWMA-proportion charts
and determine their control limits by satisfying the pre-specified ARLO and considering small and
large sample sizes. Section 4 evaluates and compares the out-of-control proportions’ detection
performance of the proposed exact and asymptotic EWMA-proportion charts. Section 5 shows how
the proposed exact EWMA-proportion chart can be applied to monitor the identify proportions of all
categories of a distribution-free continuous multivariate process using a real example of
semiconductor data obtained from UCI database. Finally, we offer conclusions of the study.

2. Investigation of the property of Pearson y? statistic for correlated quality variables following
a multinomial distribution

We first denote X=(X1, X», ..., Xm) as the count vector of m categories in n independent trials,
where Xi is the count number of the i-th category, i=1, 2,..., m. Let X=(X1, X2, ..., Xm) with the associated
in-control proportion vector be po=(po,1, po,2, ..., po,m ), where po,i, i=1,...,m, is the in-control proportion

of the i-th category, and i p,; =1- Next, X follows a multinomial distribution with probability mass
i=l

function


https://doi.org/10.20944/preprints202306.0397.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 doi:10.20944/preprints202306.0397.v1

— — — — M o2 L e
pX, =x,X,=x,,....X, =x,)= x 1 PoiPo2 " Pomo
-

Zx-n

where =

To know whether there is a change in the in-control proportion vector po, po,i, i=1,...,m, a natural
idea is to adopt the Pearson chi-square statistic to make a test. The in-control Pearson chi-square
statistic is:

(X _eo,)2

= M

where ¢, =np,, being the in control expected number of the ith category.

We now study the in-control distribution of the Pearson chi-square statistic and derive its exact
mean and variance by considering various sample size and in-control proportion vector. When 7 is

large enough, the Pearson chi-square statistic }(2 follows an asymptotical chi-square distribution

with degree of freedom (df) m-1 ; that is, ;( ~ z*(m—-1). This is a well- known asymptotical
distribution. When 7 is small, the distribution of Pearson chi-square statistic does not follow the
7 (m—1) distribution. Hence, it is better to know the distribution of the Pearson chi-square

statistic for a small sample size. However, it is impossible to know the exact distribution of the
Pearson chi-square statistic, but we may derive its exact mean and variance as follows.

It is easy to derive the in-control mean of Pearson chi-square statistics ¥ 2 given the in-control
proportion as follows.
p 0,i ( — P 0, l
E(x)= Z = Z (1=py,)
:m—L
As our best knowledge, the variance of the Pearson chi-square statistic has not been derived. We
derive the in-control exact variance of Pearson chi-square statistic y ? as follows.
m2 +2m-2

Var(y*) = ZI: , p +2(m—1) 2)

The Appendix presents the derivation process. From (2), we find the variance value differs along
with sample size n given m and po, that is, the variance value is not fixed for various n.

To investigate how the mean and variance change under different n and in-control proportion
vectors, without loss of generality, we consider two scenarios of in-control proportion vectors. The
two scenarios of in-control proportion vectors, each with four proportions for four categories are as
follows.

Scenario (1): The in-control four proportions are the same,

P, =(0.25,0.25,0.25,0.25)

Scenario (2): The in-control four proportions are not all the same,
D, =(0.1,0.1,0.4,0.4)

Table 1 shows the calculated exact means and variances under different n and two scenarios of
in-control proportion vectors. We find the following results in Table 1:

(i) Under scenario (1), the exact means are all fixed at 3 whether 7 is small or large. However, the
exact variance increases when n increases but converges to 5.999 when 7 is equal to 6000.

(if) Under scenario (2), the exact mean are all fixed at 3 whether # is small or large. However, the
exact variance decreases when 7 increases but converges to 6.0 when 7 is equal to 6000.
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Table 1. The exact mean and variance of the Pearson chi-square statistic for various n under scenarios
(1) and (2) with in-control proportion vectors.
Scenario (1) Scenario (2)

! EZ) Var(x’) Ez) Var(z’)
1 3.000 0.000 3.000 9.000
2 3.000 3.000 3.000 7.500
3 3.000 4.000 3.000 7.000
4 3.000 4.500 3.000 6.750
5 3.000 4.800 3.000 6.600
6 3.000 5.000 3.000 6.500
7 3.000 5.143 3.000 6.429
8 3.000 5.250 3.000 6.375
9 3.000 5.333 3.000 6.333
10 3.000 5.400 3.000 6.300
11 3.000 5.455 3.000 6.273
12 3.000 5.500 3.000 6.250
13 3.000 5.538 3.000 6.231
14 3.000 5.571 3.000 6.214
15 3.000 5.600 3.000 6.200
16 3.000 5.625 3.000 6.188
17 3.000 5.647 3.000 6.176
18 3.000 5.667 3.000 6.167
19 3.000 5.684 3.000 6.158
20 3.000 5.700 3.000 6.150
50 3.000 5.880 3.000 6.060
100 3.000 5.940 3.000 6.030
200 3.000 5.970 3.000 6.015
400 3.000 5.985 3.000 6.008
600 3.000 5.990 3.000 6.005
800 3.000 5.993 3.000 6.004
1000 3.000 5.994 3.000 6.003
2000 3.000 5.997 3.000 6.002
4000 3.000 5.999 3.000 6.001
5000 3.000 5.999 3.000 6.000
6000 3.000 5.999 3.000 6.000

We can see that the change behavior of the exact variance for increasing n is different in scenarios
(1) and (2).

The above results present clear evidence telling us that the variance of the Pearson chi-square
statistic is not fixed for a small sample size. However, the variance converges to 2m when the sample
size is large enough.

From Table 1, we can construct the exact EWMA-proportion control chart whether 7 is small or
large.

3. A Pearson x? statistic-based EWMA chart for monitoring the multinomial proportions

In statistical process control, sample size is usually small and not large. When # is not large
enough, the distribution of Pearson chi-square statistic does not follow the well-known y (m —1)

distribution. The resulting variances of the Pearson chi-square statistic for various n in Section 2
exhibit this situation. Hence, it is not appropriate to adopt the y*(m —1) distribution to construct the
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EWMA- y ? control chart to monitor the multinomial-proportion process. The misuse of the EWMA-

4 ? control chart results in worse out-of-control detection performance.

We are able to derive the exact mean and variance of the Pearson chi-square statistic whether
the sample size is small or not in Section 2, although it is impossible to know the distribution of the
Pearson chi-square statistic. Based on the derived mean and variance, we may construct the exact
EWMA-proportion control chart to monitor the changes in proportion vector of the multinomial
quality variables for a small sample size. When sample size n is large enough, the in-control Pearson
chi-square statistic is approximately distributed as y*(m—1) distribution with df m-1. Thus, the
monitoring statistic is independent of the original multinomial distribution and sample size n. Hence,
we construct the asymptotic EWMA-proportion control chart. The detection performance of the two
proposed EWMA-proportion control charts is then compared.

3.1. The exact multinomial-proportion control chart

With the derived exact mean and variance of the in-control Pearson chi-square statistic, we may
construct an exact EWMA-proportion control chart with the upper control limit (UCL), center line
(CL) and lower control limit (LCL) as follows; see (4), for various sample size. In other words, the
EWMA-proportion control chart has the control limit depending the value of n given the m categories.
Here, we let LCL be zero since the out-of-control proportion vector leads to an increase in the value
of the Pearson chi-square statistic.

We let the EWMA chart with monitoring statistic £ WMA}({2 at time t be the weighted average

of the Pearson chi-square statistic ;(2 at time t:

— 2 -
EWMA, =27} + (1= DEWMA. o

where A € (0,1) is a smooth parameter.

The in-control mean and variance of monitoring statistic £ WMAZ2 at time t are

Zm: 1 _M+2(m—l)]ﬂ(l—(l—ﬂ)h)/(z_ﬁ)
n

Var(E WMAZ2 )= [

E(EWMAZ,Z )=m-1 and i=1 NPy, ’
respectively.
We let 70 =m-1.

The control limits of the exact EWMA-proportion control chart are consequently:

i=1 MPy;

m 2 _
UCLt:m—1+Ln\/(Z L _m +2m 2+2(m—1)jﬂ(1—(l—/1)2’)/(2—/1),
n
4)
CL=m-1,
LCL, =0,

where the coefficient L. should be chosen to satisfy the specified ARLo.
To determine L satisfying a specified ARLo, we use the Monte Carlo method and following Yang
et al. [18]. The Markov chain procedure is applied to calculate L, by satisfying a specified ARLo.
Based on the Monte Carlo procedure, Table 2 lists the resulting L. of the exact EWMA-proportion
control charts with specified ARL0=370.4 for various combinations of setting n and A under the
aforementioned two scenarios with in-control proportion vectors. We find that the L. value increases
slowly as n increases and converges to 2.416 or 2.417 when n is equal 6000 under scenario (1) or (2).
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Table 2. The coefficient (L) of UCL with specified ARL0=370.4 for various n and two scenarios of in-
control proportion vectors.

L

" Scenario (1) Scenario (2)
1 - 2.414
2 2.382 2.605
3 2.377 2.600
4 2.388 2.550
5 2.401 2.537
6 2.388 2.525
7 2.394 2.513
8 2.398 2.501
9 2.403 2.492
10 2.395 2.489
11 2.404 2.485
12 2.409 2.474
13 2.403 2471
14 2.403 2.467
15 2.409 2.468
16 2.407 2.464
17 2.406 2.456
18 2.408 2.452
19 2.408 2.454
20 2.406 2.453
50 2413 2.430
100 2414 2.423
200 2.416 2.419
400 2.418 2.419
600 2.419 2.419
800 2.419 2.420
1000 2.419 2.420
2000 2.418 2.419
4000 2.416 2.418
5000 2416 2417
6000 2416 2417

3.2. The asymptotic multinomial-proportion control chart

When 7 is large enough, the Pearson chi-square statistic y* follows an asymptotical chi-square
distribution with df m-1 for an in-control process, thatis, y*~ y*(m—1) with mean m-1 and variance
2(m-1). Thus, the monitoring statistic is independent of the original multinomial distribution and
sample size n.

Based on the in-control asymptotical chi-square distribution, we may establish an EWMA
multinomial-proportion control chart to monitor whether the proportion vector changes or not.

We let the EWMA chart with monitoring statistic £ WMAZ[2 at time ¢ be

EWMA , =y’ +(1-A)EWMA , , 1-1,2,..., )

where E WMA}(2 =E(y*)=m-1,and A € (0,1) is a smooth parameter.
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The mean and variance of monitoring statistic £ WMAZ2 at time ¢ are E(E WMAZ2 )=m-1
and Var(E WMAZZ) =2m-DA(1-(1-21)*")/(2—A), respectively. We may find that the mean
and variance of the monitoring statistic £ WMAI2 are independent on #.

Hence, the dynamic control limits of the EWMA- ¥ ? control chart are constructed as

UCL, =m—1+L\2(m-DA(1—-(1-2)*)/ (2= 1),
CL=m—1, (6)
LCL, =0,

where L is a coefficient of UCL, and should be chosen to achieve a specified ARLo.
To determine L satisfying a specified ARLo, we refer to the Markov chain method in Lucas &
Saccucci [19] or Chandrasekaran et al. [20]. We describe the ARLo calculation procedure as follows.

Step 1. Foragiven L, attime?, the region (0,UCL, ]is partitioned into k (e.g. k =101) subsets
orstate 4, , i=12,...,k, where 4 =(UCL,(i-1)/ k, UCL,(i)/k].

Step 2. Denote the transition probability matrix with transition probabilities p, ", from state 4,
tostate 4, attime ¢,as B, = (P, ')yt =2, where

P = p(x*(m=1)<(UCL(j)/ k—(1-A)UCL,_ (i-0.5)/k)/ A)—
p(x*(m-1)< (UCL,(j-1)/k=(1-2)UCL_,(i-0.5)/ k) / )

For t=1,B =(p,,)py ~where

pu1 =p(x (m-1)<(UCL,(j)/ k—(1-2)UCL,(i-0.5)/ k)/ 1) -
p(x*(m=1)<(UCL,(j-1)/k—(1-A)UCL,(i-0.5)/k)/ 2) .

Step 3. ARL,(L)=p'(Q,+2BQ,+3B,B,Q,+---+nBB,B,---B,_Q, +---) , where
O=,-B)l , 1 is a column vector of ones, and the initial state probability is
p=(0,---,1,---,0)"

To obtain the coefficient of the UCL, L, of the asymptotical control chart we next adopt the

bisection algorithm. The calculation procedure is described as follows.
Step 1. For a given in-control ARL,,, consider an interval[L,, L, ] of L such that

ARL, (L)< ARL, < ARL,(L,),

and a threshold error & >0 (e.g., £ =0.5), where ARL (L,) and ARL,(L,) are computed by the

above-mentioned procedure.

Step 2. Let
Lygae =(L+1,)/ 2.
Step 3. If
(ARLy(L,..,.)— ARL,)(ARL (L)~ ARL,) <0,
then
L=Ly
else

Ly = Liaae )
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Step 4. Repeat step 2 and step 3 until
| ARLy (L, ;44.) — ARL, [< & .

Hence,

L = Lmiddle .

Based on the Markov chain method and bisection algorithm described above, the calculated
coefficient (L) of the UCL with specified ARLc=370.4 under scenario (1) or (2) is 2.416. The result is
obvious since L is a fixed value and independent of sample size n.

3.3. Comparison of the exact and asymptotic multinomial-proportion control charts

The resulting L and [, of the exact and asymptotic EWMA-proportion control charts for the

two scenarios show that L» converges to L (=2.416) when n (>6000) is large enough. However, when
n is not large enough, L» and L exhibit much difference. This is evidence that it is incorrect to adopt
the asymptotic EWMA-proportion control chart to monitor the multinomial proportion vector when
n is small or not large enough. Hence, the exact EWMA-proportion control chart is recommended for
small and not large enough n.

4. Detection performance measurement of the proposed exact and asymptotic EWMA-proportion
control charts

Without loss of generality, to measure the out-of-control detection performance of the proposed
exact and asymptotic EWMA-proportion charts, we consider the following two scenarios with six out-
of-control proportion vectors for setting #=2(1)20, 50, 100(100), A=0.05 and ARL0o=370.

Scenario (1) has in-control proportion vector, p, =(0.25,0.25,0.25,0.25), and six out-of-control
proportion vectors as follows. The six out-of-control proportion vectors are:

p,=(0.2,0.3,0.25,0.25) ’ P, =(0.1,0.4,0.25,0.25), p,=(0.05,0.45,0.25,0.25),

2,=(0.2,0.2,0.35,0.25), ps =(0.1,0.1,0.55,0.25), and p,=(0.05,0.05,0.65,0.25) .
Scenario (2) with in-control proportion vector, p,=(0.1,0.1,0.4,0.4) , and six out-of-control

proportion vectors runs as follows. The six out-of-control proportion vectors are:

p,=(0.15,0.05,04,04) ,  p,=(0.2,0,04,04), p,=(0250250.104) ,
2,=(0.2,0.2,0.35,0.25), p,=(0.15,0.15,0.3,0.4), and p, =(0.25,0.25,0.25,0.25).

4.1. Detection performance of the proposed exact EWMA-proportion chart

Applying the calculated control limit coefficient, L , of the proposed exact chart and the given

scenarios (1) and (2) with the six out-of-control proportion vectors and sample size, we can calculate
out-of-control average run length (ARL1). A smaller ARL: indicates better detection performance of
a control chart. ARL: is always a popular detection performance index in the study of statistical
process control.

The resulting Tables 3 and 4 illustrate the calculated ARL: (first row) and SDRL (standard
deviation of run length; second row) of the proposed exact chart for various n and Scenarios (1) and
(2), respectively. We find the following results in Tables 3 and 4.

(i) For detecting any out-of-control proportion vector, ARL: decreases when # increases

(ii) The larger the difference is between po and pi, the smaller is ARL: under each n. The result is
reasonable.


https://doi.org/10.20944/preprints202306.0397.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 doi:10.20944/preprints202306.0397.v1

Table 3. ARLs of the proposed exact control chart for various n under Scenario (1) with the six out-
of-control proportion vectors.

n Py P P, P Py Ps Ps
5 369.956 321.682 121.808 65.69 243.704 32.476 13.582
402.099 351.861 130.346 69.036 264.746 32.604 12.771
3 372.065 287.588 69.136 32.504 183.376 14.306 5.923
416.056 323.047 75.999 34.156 205.704 15.077 5.942
4 369.232 261.716 47.22 21.347 144.94 9.817 4.451
393.303 278.589 47.005 19.678 153.794 8.761 3.444
5 370.177 238.209 32.446 14.187 114.307 6.370 2.813
405.62 263.725 33.244 13.570 125.545 6.160 2.369
6 368.793 218.664 25.131 11.102 95.834 5.307 2.577
394.082 232.241 23.899 9.574 100.353 4.421 1.693
7 374.458 203.78 20.065 8.840 81.281 4.339 2.127
398.754 217.25 18.688 7.366 84.604 3.463 1.325
3 369.532 185.235 16.036 6.974 67.638 3.475 1.737
399.416 197.368 14.924 5.832 70.737 2.815 1.051
9 367.247 170.07 13.245 5.749 57.69 2.899 1.487
395.453 184.802 12.332 4.824 60.603 2.343 0.846
10 370.275 158.746 11.551 5.181 50.98 2.762 1.509
396.203 167.584 10.17 3.947 52.264 1.965 0.754
1 370.45 146.869 9.862 4.438 44.622 2.359 1.350
400.534 157.557 8.811 3.391 45.979 1.715 0.635
1 368.108 135.948 8.451 3.764 39.605 2.106 1.215
398.165 146.166 7.626 2.968 41.012 1.503 0.504
13 370.74 127.254 7.674 3.482 35.619 1.973 1.195
398.013 134.882 6.678 2.524 36.202 1.331 0.461
14 369.888 119.23 6.936 3.178 32.176 1.887 1.170
396.682 125.792 5.874 2.246 32.313 1.183 0.418
15 371.409 110.564 6.162 2.785 29.037 1.697 1.110
399.734 117.402 5.318 2.025 29.353 1.058 0.341
16 368.316 103.902 5.658 2.643 26.366 1.619 1.086
396.15 110.434 4.771 1.791 26.366 0.957 0.3
17 372.261 97.635 5.25 2.476 24.342 1.557 1.074
398.352 102.595 4.308 1.609 24.132 0.875 0.274
18 368.65 92.06 4.764 2.225 22.313 1.458 1.050
397.644 97.515 3.962 1.466 22.202 0.801 0.225
19 369.787 86.608 4.394 2.102 20.668 1.402 1.035
396.360 91.298 3.594 1.345 20.551 0.726 0.189
20 368.262 81.618 4.127 2.004 19.156 1.359 1.03
395.554 85.676 3.323 1.236 18.807 0.675 0.173
50 370.723 24.540 1.476 1.045 5.338 1.008 1.000
398.263 24.130 0.778 0.211 4.713 0.675 0.001
100 370.097 9.079 1.041 1.000 2.309 1.000 1.000
398.439 8.360 0.203 0.009 1.678 0.002 0.000
200 371.126 3.564 1.000 1.000 1.286 1.000 1.000
400.019 2916 0.011 0.000 0.587 0.000 0.000
400 369.493 1.692 1.000 1.000 1.021 1.000 1.000
398.541 1.028 0.000 0.000 0.143 0.000 0.000
600 370.632 1.256 1.000 1.000 1.001 1.000 1.000
398.363 0.542 0.000 0.000 0.033 0.000 0.000

800 369.187 1.101 1.000 1.000 1.000 1.000 1.000
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397.229 0.324 0.000 0.000 0.007 0.000 0.000
1000 369.751 1.038 1.000 1.000 1.000 1.000 1.000
398.334 0.196 0.000 0.000 0.001 0.000 0.000
2000 369.708 1.000 1.000 1.000 1.000 1.000 1.000
398.510 0.013 0.000 0.000 0.000 0.000 0.000
4000 369.557 1.000 1.000 1.000 1.000 1.000 1.000
397.351 0.000 0.000 0.000 0.000 0.000 0.000
5000 369.657 1.000 1.000 1.000 1.000 1.000 1.000
398.279 0.000 0.000 0.000 0.000 0.000 0.000
6000 369.736 1.000 1.000 1.000 1.000 1.000 1.000
398.101 0.000 0.000 0.000 0.000 0.000 0.000
Table 4. ARLs of the proposed exact control chart for various n under Scenario (2) with the six out-
of-control proportion vectors.
n Po b P, P Py Ps Ps

1 369.314 371.081 370.828 9.320 17.190 45.580 9.318
395.079 394.476 394.501 7.951 15.914 45.433 7.973
5 368.283 258.404 123.075 7.802 15.158 42.878 8.120
400.411 283.917 138.227 6.934 14.77 44.518 7.384
3 369.013 207.565 74.424 4.972 11.054 34.678 5.396
405.564 229.87 83.969 4.754 11.299 36.799 5.359
4 368.84 173.702 51.568 4.441 9.838 31.085 4.930
390.956 185.024 54.552 3.391 9.003 30.668 4.078
5 370.999 144.832 36.937 3.570 8.096 26.724 3.966
395.305 157.049 38.928 2.746 7.597 26.895 3.395

6 370.222 123.071 27.592 2.904 6.842 23.593 3.302
398.943 133.663 28.795 2.217 6.532 23.916 2.841

7 368.671 107.071 21.611 2.494 6.081 21.262 2.97
398.112 114.893 22.220 1.823 5.613 21.481 2.394

3 370.126 93.134 17.970 2.167 5.363 19.289 2.592
395.952 99.214 17.581 1.546 4.940 19.300 2.081

9 370.868 81.428 14.823 2.029 4.915 17.743 2.446
396.084 86.31 14.296 1.318 4.388 17.596 1.829

10 369.12 71.317 12.402 1.789 4.354 16.071 2.139
398.684 76.376 11.947 1.151 3.959 16.203 1.630

1 370.757 63.001 10.537 1.671 4.013 14.954 2.026
398.2 67.485 10.107 1.004 3.569 14.947 1.454

1 368.926 57.18 9.521 1.595 3.802 14.066 1.960
396.388 59.868 8.605 0.889 3.222 13.791 1.306

13 371.755 51.611 8.408 1.449 3.475 12.98 1.782
398.458 53.654 7.491 0.792 2.966 12.832 1.19

14 369.361 46.467 7471 1.406 3.292 12.146 1.741
398.027 48.400 6.571 0.715 2.725 11.953 1.096

15 366.476 42.014 6.654 1.331 3.002 11.312 1.599
398.999 43.662 5.823 0.641 2.526 11.217 0.998

16 369.623 38.371 5.875 1.268 2.852 10.702 1.536
398.93 39.606 1.197 0.57 2.342 10.512 0.915

17 372.149 35.721 5.585 1.249 2.783 10.282 1.537
397.024 36.112 4.611 0.531 2171 9.860 0.862

18 369.494 32.851 5.151 1.215 2.634 9.769 1.461
397.07 33.070 4.163 0.486 2.03 9.296 0.794

19 369.044 30.160 4.714 1.185 2.441 9.156 1.369
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398.317 30.550 3.802 0.442 1.907 8.822 0.726

20 369.159 27.988 4.392 1.159 2.365 8.657 1.365
399.616 28.106 3.473 0.410 1.797 8.356 0.690

50 370.314 7.236 1.420 1.000 1.242 3.407 1.019
397.494 6.396 0.618 0.025 0.532 2.825 0.136

100 369.737 2.819 1.000 1.000 1.018 1.757 1.000
398.007 2.120 0.000 0.000 0.135 1.119 0.007

200 369.376 1.405 1.000 1.000 1.000 1.141 1.000
397.284 0.709 0.000 0.000 0.007 0.391 0.000

400 370.64 1.031 1.000 1.000 1.000 1.005 1.000
399.136 0.170 0.000 0.000 0.000 0.069 0.000

600 370.225 1.002 1.000 1.000 1.000 1.000 1.000
398.276 0.041 0.000 0.000 0.000 0.009 0.000

800 370.060 1.000 1.000 1.000 1.000 1.000 1.000
397.990 0.008 0.000 0.000 0.000 0.001 0.000

1000 369.657 1.000 1.000 1.000 1.000 1.000 1.000
398.683 0.001 0.000 0.000 0.000 0.000 0.000

2000 370.317 1.000 1.000 1.000 1.000 1.000 1.000
398.111 0.000 0.000 0.000 0.000 0.000 0.000

4000 370.794 1.000 1.000 1.000 1.000 1.000 1.000
399.123 0.000 0.000 0.000 0.000 0.000 0.000

5000 370.790 1.000 1.000 1.000 1.000 1.000 1.000
399.038 0.000 0.000 0.000 0.000 0.000 0.000

6000 369.862 1.000 1.000 1.000 1.000 1.000 1.000
398.246 0.000 0.000 0.000 0.000 0.000 0.000

4.2. Detection performance of the asymptotic EWMA-proportion chart

Applying the calculated control limit coefficient, L, of the asymptotic chart and the given
scenarios (1) and (2) with the six out-of-control proportion vectors, we can calculate ARL:.

The resulting Table 5 (scenario (1)) and Table 6 (scenario (2)) illustrate the calculated ARL: (first
row) and SDRL (second row) of the asymptotic chart, respectively.

Table 5. ARLs of the asymptotic control chart under various n for scenario (1) with the six out-of-
control proportion vectors.

n Po b P, b Py Ps Ps
5 3880.926 3123.472 720.986 280.329 2074.137 100.033 32.574
3896.139 3131.111 713.365 267.982 2077.971 87.278 23.585
3 1078.071 791.313 135.773 54.859 449.865 21.522 8.127
1157.757 852.399 143.038 54.858 486.158 20.860 7.673
4 757.384 509.243 69.903 29.123 255.223 12.387 5.275
789.150 530.552 67.986 25.865 264.734 10.735 4.127
5 648.207 398.79 44919 18.887 178.058 8.516 3.906
671.590 412.093 41.702 15.778 181.867 6.820 2.517
6 569.374 321.301 30.593 12.860 129.408 5.840 2.674
600.160 338.397 28.619 10.987 134.551 4.960 1.853
7 535.804 277.828 23.219 9.835 102.369 4.649 2.184
565.679 292.373 21.278 8.174 105.892 3.783 1.425
3 506.336 241.435 18.239 7.768 82.654 3.753 1.818
538.152 255.351 16.578 6.409 85.335 3.033 1.155
9 483.561 212.767 14.599 6.212 68.121 3.058 1.524
518.434 227.899 13.408 5.205 71.033 2.507 0.909

10 476.051 194.730 12.641 5.506 59.056 2.837 1.515
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503.278 204.614 11.060 4.240 59.678 2.081 0.774
1 458.735 173.615 10.581 4.643 50.003 2415 1.356
490.911 184.745 9.367 3.601 51.157 1.800 0.653
12 455.017 160.708 9.410 4.172 44.605 2.298 1.322
481.168 168.485 8.035 3.048 44.578 1.549 0.577
13 446.672 146.102 8.163 3.641 38.955 2.015 1.200
476.889 154.694 7.040 2.673 39.251 1.383 0.475
14 439.888 134.735 7.318 3.300 34.911 1.919 1.173
468.259 141.612 6.176 2.341 34.699 1.230 0.427
15 437.203 125.143 6.589 3.032 31.407 1.775 1.134
465.765 131.462 5.493 2.066 31.184 1.100 0.372
16 428.399 115.217 5.884 2.715 28.267 1.636 1.086
458.844 121.453 4.944 1.867 28.076 0.989 0.302
17 425.681 107.603 5.423 2.523 25.919 1.573 1.073
454.903 112.808 4.465 1.674 25.447 0.902 0.274
18 420.922 100.071 4913 2.287 23.522 1.465 1.050
451.455 105.644 4.088 1.532 23.301 0.815 0.228
19 417.849 93.837 4.547 2.148 21.729 1.411 1.036
448.075 98.522 3.733 1.394 21.368 0.745 0.192
20 416.766 88.216 4.277 2.062 20.240 1.385 1.035
445.050 92.002 3.407 1.270 19.673 0.692 0.187
50 386.868 25.082 1.480 1.044 5.391 1.008 1.000
415.975 24.631 0.785 0.21 4.773 0.090 0.000
100 378.202 9.145 9.082 1.000 2.319 1.000 1.000
406.259 8.405 0.204 0.009 1.688 0.002 0.000
200 374.087 3.575 1.000 1.000 1.288 1.000 1.000
403.003 2.921 0.011 0.000 0.590 0.000 0.000
400 370.638 1.692 1.000 1.000 1.020 1.000 1.000
399.267 1.028 0.000 0.000 0.143 0.000 0.000
600 369.798 1.256 1.000 1.000 1.001 1.000 1.000
398.157 0.543 0.000 0.000 0.032 0.000 0.000
300 369.017 1.100 1.000 1.000 1.000 1.000 1.000
397.659 0.323 0.000 0.000 0.005 0.000 0.000
1000 368.672 1.038 1.000 1.000 1.000 1.000 1.000
397.161 0.197 0.000 0.000 0.002 0.000 0.000
2000 369.183 1.000 1.000 1.000 1.000 1.000 1.000
398.185 0.013 0.000 0.000 0.000 0.000 0.000
4000 369.313 1.000 1.000 1.000 1.000 1.000 1.000
398.385 0.000 0.000 0.000 0.000 0.000 0.000
5000 369.596 1.000 1.000 1.000 1.000 1.000 1.000
398.369 0.000 0.000 0.000 0.000 0.000 0.000
6000 369.646 1.000 1.000 1.000 1.000 1.000 1.000
397.875 0.000 0.000 0.000 0.000 0.000 0.000
Table 6. ARLs of the asymptotic control chart under various n for scenario (2) with the six out-of-
control proportion vectors.
n Py b P, b Py Ps Ps

1 149.100 149.131 149.435 5.099 9.434 23.891 5.091

190.427 190.656 190.444 6.226 11.788 30.444 6.220

5 211.107 156.108 81.979 6.891 12.582 31.619 7.071

232.441 174.418 94.030 5.926 12.043 32.925 6.270

3 234.377 141.543 56.129 4.239 9.132 26.670 4.632
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261.884 160.014 64.268 4.098 9.570 28.990 4.644

4 254.595 128.980 42.294 3.612 8.095 24.825 4.000
278.088 140.884 45.288 3.110 8.012 25.974 3.723

5 270.693 114.659 31.555 3.292 7.366 23.010 3.731
292.512 124.793 33.353 2.500 6.881 23.390 3.122

6 278.487 100.133 24.204 2.654 6.237 20.532 3.071
305.263 110.100 25.650 2.071 6.021 21.291 2.669

7 287.245 88.690 19.511 2.287 5.416 18.594 2.658
315.190 97.624 20.162 1.712 5.256 19.448 2.267

8 297.024 80.086 16.506 2.091 5.043 17.515 2.494
320.759 85.897 16.214 1.454 4.642 17.787 1.970

9 300.812 70.928 13.705 1.919 4.657 16.204 2.369
326.830 76.427 13.386 1.251 4.157 16.357 1.746

10 306.108 63.493 11.661 1.724 4.157 14.883 2.087
331.928 68.176 11.222 1.097 3.778 15.099 1.564

1 309.943 56.698 9.940 1.580 3.788 13.764 1.934
337.242 60.932 9.547 0.959 3.422 14.016 1.400

1 316.717 52.133 9.015 1.539 3.694 13.238 1.936
342.484 55.010 8.221 0.860 3.120 13.089 1.271

13 320.280 47.283 7.963 1.435 3.361 12.291 1.753
346.034 49.674 7.166 0.762 2.858 12.203 1.151

14 321.785 42.931 7.119 1.360 3.138 11.508 1.672
348.787 44.946 6.303 0.683 2.637 11.437 1.055

15 324.025 39.232 6.411 1.324 2.937 10.800 1.583
351.660 40.889 5.595 0.623 2.449 10.737 0.971

16 326.148 35.968 5.705 1.262 2.775 10.223 1.510
353.893 37.359 5.013 0.559 2.274 10.121 0.890

17 329.612 33.574 5.438 1.232 2.665 9.756 1.474
356.022 34.347 4.462 0.514 2.118 9.515 0.830

18 331.238 31.008 4.978 1.189 2.541 9.284 1.432
357.644 31.556 4.048 0.463 1.986 9.023 0.774

19 331.958 28.646 4.585 1.165 2.400 8.792 1.360
359.795 29.015 3.687 0.426 1.866 8.556 0.712

20 333.886 26.651 4.261 1.147 2.318 8.365 1.350
361.667 26.966 3.367 0.395 1.751 8.096 0.675

50 355.057 7.161 1.417 1.001 1.241 3.38 1.019
381.753 6.34 0.611 0.025 0.529 2.797 0.137

100 362.178 2.801 1.000 1.000 1.018 1.751 1.000
391.087 2.107 0.000 0.000 0.134 1.113 0.007

200 366.135 1.404 1.000 1.000 1.000 1.140 1.000
393.971 0.708 0.000 0.000 0.007 0.390 0.000

400 367.412 1.031 1.000 1.000 1.000 1.005 1.000
396.169 0.177 0.000 0.000 0.000 0.000 0.000

600 367.196 1.002 1.000 1.000 1.000 1.000 1.000
396.301 0.042 0.000 0.000 0.000 0.009 0.000

300 367.608 1.000 1.000 1.000 1.000 1.000 1.000
396.326 0.008 0.000 0.000 0.000 0.001 0.000

1000 367.333 1.000 1.000 1.000 1.000 1.000 1.000
395.985 0.000 0.000 0.000 0.000 0.000 0.000

2000 367.691 1.000 1.000 1.000 1.000 1.000 1.000
396.363 0.000 0.000 0.000 0.000 0.000 0.000

4000 368.637 1.000 1.000 1.000 1.000 1.000 1.000
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397.286 0.000 0.000 0.000 0.000 0.000 0.000
5000 368.955 1.000 1.000 1.000 1.000 1.000 1.000
397.586 0.000 0.000 0.000 0.000 0.000 0.000
6000 370.236 1.000 1.000 1.000 1.000 1.000 1.000
399.095 0.000 0.000 0.000 0.000 0.000 0.000

We find the following results in Tables 5 and 6:

(i) Most ARLos are far away from the specified 370.4 for small n. In Table 5, we find many ARLos are
larger than the specified 370.4 for n <400 and some ARL:s are larger than the specified 370.4 for
very small n. However, in Table 6, we find all ARLos are smaller than the specified 370.4 for n<
6000. These results indicate that the proposed asymptotic control chart is not in-control robust,
it becomes ARL biased, and its detection performance is worse for small 7.

(ii) When n is large (n >400 for scenario (1) or n = 6000 for scenario (2)), the calculated ARLo close to
the specified ARLo, and ARL: decreases when n increases for detecting any out-of-control
proportion vector.

(iif) The larger the difference is between poand pi, i=1, 2, ..., 6, the smaller is ARL: under each n.

All those phenomena indicate the asymptotic control chart should be adopted in process control
by taking n >400 or 6000 in scenario (1) or (2) for the correcting control process; otherwise, the
detection performance of the asymptotic control chart would be worse and result in an incorrect
process adjustment.

Compare the resulting Tables 3-6, we find that the two charts do have almost the same in-control
and out-of-control process control performances for n>6000. However, the exact EWMA-proportion
chart offers correct results compared to the asymptotic control chart, especially for small n. Hence,
the proposed exact EWMA-proportion chart is recommended whether the sample size is small or not.

5. Monitoring under-specification proportions of a continuous multivariate process using the
proposed EWMA-proportion chart and its application

The proposed exact EWMA-proportion chart not only can be applied to monitor the proportion
vector of a multinomial process, but also the proportion vector of multiple categories in a
distribution-free or an unknown distributed continuous multivariate process.

In this section we give an example to describe how to apply our proposed exact chart to monitor
the proportion vector of four categories in a distribution-free or an unknown distributed continuous
bivariate process. We adopt a semiconductor manufacturing data-set that can be found in a data
depository maintained by the University of California, Irvine (McCann and Johnston [21]). The data-
set spans from July 2008 to October 2008 and contains 591 continuous quality variables. Each variable
has 1567 observations, including 1463 in-control observations and 104 out-of-control observations.

To demonstrate the detecting performance of the proposed exact chart, we select 2 of the 591
continuous correlated quality variables, X =(X3, X12)T. Based on the respective specifications of X3
and X12, they can be classified into four categories. The four categories are: (1) X3 and X12 are all
under specifications, (2) X3 is under specification, but X12 is not, (3) X3 and X12 are all out of
specifications, and (4) X3 is out of specification, but X12 is under specification. By examining the 1463
in-control population observations, we classify their categories and obtain the proportion vector of
the four categories as po=(0.4, 0.08, 0.07, 0.45). For the 104 out-of-control population observations, the
proportion vector of the four categories is p1=(0.00, 0.00, 0.2167, 0.7833). To demonstrate the detecting
performance of the proposed exact chart, we take the first 100 in-control observations and the first 60
out-of-control observations, respectively. We let the sample size be five, and so there are 20 in-control
samples and 12 out-of-control samples. To monitor the process proportion vector, we construct the
exact control chart applying the aforementioned method.
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From (4) we know that the control limit of the proposed exact control chart is variable when
sampling time changes. Hence, for each sampling time ¢ we list UCL,, the number of observations
in each category (ni), the in-control statistic value ( ;(tz ), and charting statistic value ( E WMAZ2 ) for

the 20 in-control subgroup data. The results are illustrated in Table 7. We then plot the in-control
E WMA}(2 values in the constructed exact control chart; see Figure 1. We find all F WMA}{2 values

fall within UCL, demonstrating that the first 20 samples are all from the population with the in-
control proportion vector. Furthermore, we calculate ni, the out-of-control statistic value ( )(tz ) and

charting statistic value ( £ WMA}(2 ) using the 12 out-of-control subgroup data. The results appear in
Table 8. We plot the out-of-control £ WMAZ2 values in the constructed exact control chart; see Figure
2. We find that the first £ WMA}{2 value falls outside of UCL,, and ten out of the twelve £ WMA}(2

values give signals. It demonstrates that the proposed exact control chart performs well in detecting
the out-of-control proportion vector.

Table 7. The in-control statistics and UCL of the exact control chart.

Number s
t iy, oy Ny Ny, Xi EWMAle UCL,
1 4 0 0 1 3.084 3.004 3.363
2 3 0 0 2 1.146 2.911 3.500
3 4 0 0 1 3.084 2.92 3.598
4 2 2 0 1 7.37 3.142 3.674
5 1 2 0 2 7.337 3.352 3.735
6 2 0 0 3 1.091 3.239 3.787
7 3 0 0 2 1.146 3.134 3.831
8 1 1 1 2 2.694 3.112 3.869
9 1 0 1 3 2.519 3.083 3.901
10 0 2 0 3 9.186 3.388 3.930
11 4 0 0 1 3.084 3.373 3.955
12 1 1 1 2 2.694 3.339 3.977
13 2 0 1 2 1.622 3.253 3.999
14 1 0 0 4 2.918 3.236 4.017
15 5 0 0 0 6.905 3.42 4.032
16 2 0 0 3 1.091 3.303 4.046
17 1 0 1 3 2.519 3.264 4.058
18 3 0 1 1 2.608 3.231 4.069
19 2 0 1 2 1.622 3.151 4.078

20 0 0 0 5 6.628 3.325 4.087

Table 8. The out-of-control statistics of the exact EWMA control chart.

sampling time 2
P tg ny, n, Ny, Ny, Ve EWMA;(,Z
1 0 0 2 3 10.615 3.381
2 0 0 1 4 5.299 3.477
3 0 0 1 4 5.299 3.568
4 0 0 2 3 10.615 3.92
5 0 0 2 3 10.615 4.255
6 0 0 2 3 10.615 4.573
7 0 0 0 5 6.628 4.676
8 0 0 2 3 10.615 4.973


https://doi.org/10.20944/preprints202306.0397.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 doi:10.20944/preprints202306.0397.v1

16
9 0 0 1 4 5.299 4.989
10 0 0 0 5 6.628 5.071
11 0 0 0 5 6.628 5.149
12 0 0 0 5 6.628 5.223

EWMA 2 chart for IC data

EWMA :
3

Figure 1. The in-control charting statistics on the exact EWMA-proportion control chart.

EWMA 2 chart for OC data
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Figure 2. The out-of-control charting statistics on the exact EWMA-proportion control chart.

6. Conclusions

This research has developed the exact and asymptotic EWMA-proportion control charts to
monitor the multinomial proportions process. Based on the derived in-control exact mean and
variance of the chi-square statistic, we calculate the control limits of the exact EWMA-proportion
control chart for various small and large sample sizes using the Monte Carlo method. Based on the
asymptotic chi-square distribution with df m-1, we calculate the control limits of the asymptotic
EWMA-proportion control chart for a large enough sample size using the Markov chain method.
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From numerical analyses, we find that their control limits with the same preset in-control ARL
and detecting out-of-control ability are nearly the same when the sample size is large enough, e.g., n
>6000 for scenarios (1) and (2). For small and not very large sample size, the exact EWMA-proportion
control chart is in-control robust but the asymptotic control chart’s in-control ARL is more or less
than the preset ALR0=370.4. Thus, we strongly suggest to adopt the propose exact control chart to
monitor a multinomial proportions process. Moreover, the proposed exact EWMA proportion chart
can be adopted to monitor the change in proportions of categories of a distribution-free or unknown
continuous distributed multivariate process. A numerical example utilizing semiconductor
manufacturing data was discussed to illustrate the application of the proposed exact EWMA
proportion chart. The real numerical example shows good detection performance of the proposed
chart.

In this study, we have developed a novel, efficient, and exact EWMA proportion chart for
monitoring a multinomial-proportion process. The proposed method holds the potential to provide
multiple sustainability solutions across industries. We thus recommend the application of the
proposed exact EWMA proportion chart not only for monitoring the multinomial proportions of a
multinomial process, but also that of a distribution-free or an unknown continuous distributed
multivariate process.
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Appendix

X =(X,,X,,...,X,)" is a multinomial distribution associated with size 7 and probability
vector py =(Py> Poss--+» Pom) -Thus X ’s probability density function (pdf) is

n! X X- X,
p(X,=x,X,=x,,....,X,=x,)= 1 |p0}1p0,22.”p0,m
x1x, e x !

where le. = n,ZpO’l. =1. The marginal pdf of X,,i=1,2,...,m is
i=1 i=1

n X; n—x;
P(X,-:x,-): Po:[(l_po,i) '
x(n—x)!

We then have E(X,) = np,;,Var(X,) =np,;(1- p, ;). Hence, we get:
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p(Xj =X; | X, :xi):p(Xj =xj’Xi =x)/ p(X; =x,)
_ (Yx =, = x ) pgpy (1= Py, = 2o )
(nYx)(n—x))py,(1=p,.)"™

=)t (e Ve |
xj!(n—xi—xj)! l_po,i l_po’i

We immediately see that X, | X; = x; follows a binomial(n — x; ,i) distribution.
— Do,

Now the following assertion (a) now holds.

(a) E(Xi - npO,i)4 =npy; (1 - pO,i)(l+3p§,i - 3p0,i) + 3n2p§,i (1 - pi)2 - 3np§,i (1 - pO,i)2 )

Proof: Suppose that X, ,X},,...,X;, areiid Bernoulli(p,;)and then

XI;Z X, ~ binomial(n, p, ;)

J=1

4
E(Xi _npo,i)4 = E(Z(XU _po,i)]
=
:E(ZZZZ(X% _pO,i)(Xﬁz _posi)(Xijs _pO,i)(Xijzt _pO,i)J
b2 s

=Y E(X,—p,,)' +3>. > E(X, —p,,V E(X,, - p,,)
j=1

Q= h#)
:”[po,i4 (I- p(),i) +(1- pO,i)4 Do, 1+ 3n(n— l)p;,i (1- po,i)2~

Under a similar discussion to E(X, —np, )", we can obtain that

E(Xi - npo,i)3 :Z E(XU - pO,i)3 =n[(l- po,i)3 Do~ pg,i (I- pO,i)]
(b) z .
Thus, we have:

S 2
| am—g XM o

S 61 e B e siony
i=1 n2p§,i i=1 NPy ; h n i=1 o i=1 n
w1 a6 3> i, . 3m—-6+3) p;.
= —~ ———+3m-6+3>_ p;, - il
=1 NP, ; n n - n
. Tm—12+6 ps. .
= - — +» 3p., +3m—6.
Y, a M
For iij,weget
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E(X, _npO,i)z(Xj _npo,j)z = E{(X, _npo,i)zE[(Xj _npo,j)2 | X1}
= E{(X, _npo,[)z[(E(Xj |Xi)_np0,/)2 +Var(Xj | X1}
X. —np, .)? A A
O LA L RN A T PR
’ (l_pO,i) 1- Po, l_p(),i
2
= P ZE(Xi_npo,i)4_ Po, 1- Po, E(Xi_npo,t)3+np0,j 1- Po; E(Xi_npo,i)2
— Po,i — Po,i — Fo,i ~ Fo,i
(1-py,) 1-p 1-p I-p
2
Do
=——— [ np, (1= p, Y(1+3p;, =3p, )+ 30 py (1= py. ) =3npy, (1= py )’ |-
(1-py,)
Do, Po, Do
S 1= — | n[(1= po,)’ Py, — Doy (1= Py 1 Do, 2y, (1= po )| 1-——— |.
1- Do, 1- Do, 1- Po,;
Next, we have:
iZE(Xi_npo,i)z(Xj_npo,j)z
zl];éz WZPO,POJ
P, 2
_;;n(l )[(1+3p0,i_3p0,i)_3p0,i(1_p0,i):|+
3 - p"d - - Po
ZZ Po;iPo;j — ZZ_ [( pOz) _p01]+22( po; 1_—
i=1 j=#i ll];tt 0,i i=1 j#i pO,i

21 m
- Z;[(lﬁpii —3p0,i)—3p0,i(1—p0,i)]+Z3p0,i(1_po,i)_

i=1 i=1

M=
I |-

Il
—_

(m—2)(1- 2po)+2(1 Py, )(m—2)

i=1

m-6+6Y p. .
= = 13- Zspol——(m 2> +(m—-1)(m-2).
n i=1
m E(X, —n
Furthermore, z ( pOl Z(l Do) =m—1.
i=1 np,; i=1

Hence, we have:
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Var < E(Xi_np01)2 :i:E()(i_npo,i)4 +izE(Xi_npO,[)2(Xj_np0,j)2 B iE(Xi_npo,i)
i=1 np,; i=1 nng,i =1 j#i nzpo,ipo,,‘ i=1 np,,;
. Tm=12+6> py, m-6+6Y p,’
=> - S+ 3p,y, +3m—6+ il +
i=1 NPy n =1 n

3—i3p02,i —%(m—2)2 +(m=1)(m=2)—(m-1)

i=1

m 2 _
:Z 1 _m +2m 2+2(m—1).
i=1 NPy
As
n E(X. —np,.)*
n—0 yar ZM S Am—1y=Var(z*(m-1)).
i=1 np,;
References

1.  Sikdar, S.K. Sustainable development and sustainability metrics, AICKE J., 2003, 49(8), 1928-1932.
Bakshi, B.R. & Fiksel, J. The quest for sustainability: challenges for processsystems engineering, AIChE ].,
2003, 49(6) , 1350-1358.

3. Cabezas, H. Pawlowski, C.W., Mayer, A.L.& Hoagland, N. Sustainable systemstheory: ecological and other
aspects, J. Clean. Prod., 2005, 13(5), 455—467.

4. Daoutidis, P. Zachar, M. & Jogwar, S.S. Sustainability and process control: A survey and perspective, J.
process control, 2016, 44, 184-206.

5. Montgomery, D. C. Introduction to statistical quality control, 8¢ ed.; John Wiley & Sons, Inc.: USA, 2019.

6. Reynolds, M. R, & Stoumbos, Z. G. The SPRT chart for monitoring a proportion. IIE Trans.1998, 30(6), 545-
561.

7. Reynolds, M. R., & Stoumbos, Z. G. (2001). Monitoring a proportion using CUSUM and SPRT control
charts. In Frontiers in Statistical Quality Control 6 (pp.155-175). Physica, Heidelberg.

8. Qiu, P. Distribution-free multivariate process control based on log-linear modeling. IIE Trans.2008 ,40(7),
664- 677.

9. Marcucci, M. Monitoring multinomial processes. J. Qual. Technol,1985,17(2), 86-91.

10. Nelson, L.S. A chi-square control chart for several proportions. J. Qual. Technol.1987, 19(4), 229-231.

11. Crosier, R. B.. Multivariate generalizations of cumulative sum quality-control
schemes. Technometrics.1988, 30(3), 291-303.

12. Qiu, P. Introduction to statistical process control, 1+t ed.; Chapman and Hall/CRC press: New York, 2013.

13. Ryan, A. G, Wells, L.]., & Woodall, W. H. . Methods for monitoring multiple proportions when inspecting
continuously. J. Qual. Technol. 2011,43(3), 237-248.

14. Li, J, Tsung, F., & Zou, C. . Multivariate binomial/multinomial control chart. IIE Transactions, 2014, 46(5),
526-542.

15. Huang, W., Reynolds Jr, M. R,, & Wang, S.. A binomial GLR control chart for monitoring a proportion. J.
Qual. Technol.2012, 44(3), 192-208.

16. Huang, W., Wang, S., & Reynolds Jr, M. R.. A generalized likelihood ratio chart for monitoring Bernoulli
processes. Qual.Reliab. Eng. Int.2013, 29(5), 665-679.

17. Lee, ], Peng, Y., Wang, N., & Reynolds Jr, M. R.. A GLR control chart for monitoring a multinomial
process. Qual.Reliab. Eng. Int.2017, 33(8), 1773-1782.

18. Yang, S.-F., Chen, L.-P., and Lin, ].-K.. Adjustment of measurement error effects on dispersion control chart
with distribution-free quality variable. Sustainability.2023, 15(4337), 1-19.

19. Lucas, J. M., & Saccucci, M. S.. Exponentially weighted moving average control schemes: properties and
enhancements. Technometrics.1990, 32(1), 1-12.


https://doi.org/10.20944/preprints202306.0397.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 doi:10.20944/preprints202306.0397.v1

21

20. Chandrasekaran, S., English, J. R., & Disney, R. L.. Modeling and analysis of EWMA control schemes with
variance-adjusted control limits. IIE transactions.1995, 27(3), 282-290.

21. McCann, M. Johnston, A. UCI Machine Learning Repository. Available online:
https://archive.ics.uci.edu/ml/datasets/SECOM.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202306.0397.v1

	1. Introduction
	2. Investigation of the property of Pearson ,𝝌-𝟐. statistic for correlated quality variables following a multinomial distribution
	3. A Pearson ,𝝌-𝟐. statistic-based EWMA chart for monitoring the multinomial proportions
	3.1. The exact multinomial-proportion control chart
	3.2. The asymptotic multinomial-proportion control chart
	3.3. Comparison of the exact and asymptotic multinomial-proportion control charts

	4. Detection performance measurement of the proposed exact and asymptotic EWMA-proportion control charts
	4.1. Detection performance of the proposed exact EWMA-proportion chart
	4.2. Detection performance of the asymptotic EWMA-proportion chart

	5. Monitoring under-specification proportions of a continuous multivariate process using the proposed EWMA-proportion chart and its application
	6. Conclusions
	Appendix
	References

