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Abstract: Control charts have been widely used for monitoring process quality in manufacturing 

and play an important role in triggering a signal in time when detecting a change in process quality. 

Many control charts in literature assume that the in-control distribution of the univariate or 

multivariate process data is continuous and not categorical. This research develops two 

exponentially weighted moving average (EWMA) proportion control charts for monitoring a 

process with multinomial proportions when considering both large and small sample sizes. For a 

large sample size , the charting statistic depends on the well-known Pearson 𝜒𝜒2 statistic, and the 

control limit of the EWMA proportion chart is determined by an asymptotical chi-square 

distribution. For a small sample size, we derive the exact mean and variance of the Pearson 𝜒𝜒2 

statistic. Hence, the exact EWMA proportion chart is determined. The proportion chart can also be 

applied to monitor the distribution-free continuous multivariate process as long as each categorical 

proportion associated with specification limits of each quality variable is known or estimated. 

Lastly, we investigate the detection performance of the proposed EWMA proportion chart by 

numerical analyses.  Real data analysis demonstrates the beneficial application of the proposed 

EWMA proportion charts. 

Keywords: control chart; multinomial distribution; specification limits; Pearson 𝜒𝜒2 statistic 

 

1. Introduction 

Process control plays a critical role in fostering sustainable practices within industries. It 

establishes a connection and enables the attainment of secure and efficient process operation and 

energy systems. Sustainability encompasses the integration of economic, social, and environmental 

systems, necessitating a well-rounded approach to resource management [1–3]. From the standpoint 

of process control, several factors contribute to sustainable practices, including the minimization of 

raw material costs, reduction of product and material scrap/waste expenses, optimization of capital 

costs, enhancement of process and energy efficiency, mitigation of carbon and water footprints, and 

maximization of eco-efficiency and process safety. Therefore, process control plays a pivotal role in 

offering sustainability solutions be developing and implementing efficient technology (refer to 

Daoutidis et al., [4]). In other words, the practice of sustainability introduces new operational 

challenges in the development of process control methods. Control charts serve as effective tools in 

process control, aiming to enhance the quality and yield of products/parts while reducing 

scrap/waste of raw materials, minimizing carbon and water footprints, and increasing profits/eco-

efficiency and energy efficiency of products.  

Among statistical process control tools, control chars are effective tools for monitoring and 

improving the manufacturing or service process quality. Compared to many process controls with 

continuous quality variables, less attention has been paid to control charts designed with categorical 

quality characteristic. The more well-known charts for monitoring two-categorical process units are 

p, c, np and u charts for monitoring fraction nonconforming and defects (for detail, see Montgomery 

[5], Reynolds et al. [6,7] and Qiu [8]). However, only considering two categories is not sufficient to 
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characterize the situation of process control. For example, an item can be classified into the three 

grades of best, better, or good and not just nonconforming and conforming grades. Consequently, 

the study of process control for categorical data following a multinomial distribution satisfies the 

requirement of this type process control.   

Up until now, many control charts monitoring multinomial-proportion process are constructed 

based on Pearson’s chi-square statistic, but its variant heavily depends on a large sample size (e.g., 

Marcucci [9]; Nelson [10]). The asymptotic chi-square distribution of Pearson’s chi-square statistic is 

specifically known for an infinite sample size. When the sample size is small, it is not appropriate to 

adopt the asymptotic chi-square distribution of Pearson’s chi-square statistic to construct the 

multinomial-proportion control chart because the calculated average run length (ARL) of the 

asymptotic control charts may seriously deviate from the pre-specified ARL. It thus leads to an over- 

or under-adjustment of the process.  

We note that many papers of multinomial-proportion control charts are designed based on the 

asymptotic distribution of Pearson’s chi-square statistic even when the sample size is small, for 

example, see Crosier [11] and Qiu [12]. Moreover, Ryan et al. [13] established the multinomial-

proportion CUSUM chart that relies on pre-specified out-of–control multinomial proportions, which 

consequently lead to worse detecting performance compared to multiple one-sided Bernoulli 

CUSUM charts. Li et al. [14] followed the idea of Qiu [12] by proposing an EWMA-type control chart 

for monitoring the proportions of a multivariate binomial distribution under a large sample size.  

Huang et al. [15,16] and Lee et al. [17] extended the control chart in Li et al. [14] to monitor the 

multinomial-proportion process with a large sample size.   

Form the papers mentioned above, we find that monitoring the multinomial-proportion process 

with a small sample size has not been discussed. Though the exact distribution of Pearson’s chi-

square statistic is difficult to know, we may derive its exact mean and variance whether the sample 

size is small or large. According the results, we thus provide an exact EWMA-proportion control 

chart to monitor the multinomial-proportion process. The control limit of the proposed exact control 

chart can be determined and implemented not only for a small sample size, but also for a large sample 

size and even an individual. So far, the literature has not yet discussed the exact EWMA-proportion 

control chart.  

In this study, we have devised a novel, efficient, and accurate method for monitoring and 

controlling a multinomial-proportion process. The proposed method holds the potential to provide 

multiple sustainability solutions across industries. 

This rest of the paper is organized as follows. Section 2 derives the exact means and variances of 

Pearson’s chi-square statistic under in-control process proportions and studies the properties of 

Pearson’s chi-square statistic. Section 3 constructs the exact and asymptotic EWMA-proportion charts 

and determine their control limits by satisfying the pre-specified ARL0 and considering small and 

large sample sizes. Section 4 evaluates and compares the out-of-control proportions’ detection 

performance of the proposed exact and asymptotic EWMA-proportion charts. Section 5 shows how 

the proposed exact EWMA-proportion chart can be applied to monitor the identify proportions of all 

categories of a distribution-free continuous multivariate process using a real example of 

semiconductor data obtained from UCI database. Finally, we offer conclusions of the study. 

2. Investigation of the property of Pearson 𝝌𝝌𝟐𝟐 statistic for correlated quality variables following 

a multinomial distribution 

We first denote X=(X1, X2, …, Xm) as the count vector of m categories in n independent trials, 

where Xi is the count number of the i-th category, i=1, 2,…, m. Let X=(X1, X2, …, Xm) with the associated 

in-control proportion vector be p0=( p0, 1, p0, 2 , …, p0, m ), where p0, i, i=1,…,m, is the in-control proportion 

of the i-th category, and
0,

1

1
m

i

i

p
=

=∑ .  Next, X follows a multinomial distribution with probability mass 

function 
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To know whether there is a change in the in-control proportion vector p0, p0, i, i=1,…,m, a natural 

idea is to adopt the Pearson chi-square statistic to make a test. The in-control Pearson chi-square 

statistic is: 

2

0,2

1 0,

( )
,

m
i i

i i

X e

e
χ

=

−
=∑  (1) 

where 
0. 0,i ie np=  being the in control expected number of the ith category.  

We now study the in-control distribution of the Pearson chi-square statistic and derive its exact 

mean and variance by considering various sample size and in-control proportion vector. When n is 

large enough, the Pearson chi-square statistic 
2χ follows an asymptotical chi-square distribution 

with degree of freedom (df) m-1 ; that is, 
2χ ~ 2 ( 1)mχ − .  This is a well- known asymptotical 

distribution. When n  is small, the distribution of Pearson chi-square statistic does not follow the
2 ( 1)mχ − distribution.  Hence, it is better to know the distribution of the Pearson chi-square 

statistic for a small sample size.  However, it is impossible to know the exact distribution of the 

Pearson chi-square statistic, but we may derive its exact mean and variance as follows.  

It is easy to derive the in-control mean of Pearson chi-square statistics 
2χ  given the in-control 

proportion as follows. 

0, 0,2

1 0,

(1 )
( )

m
i i

i i

p p
E

p
χ

=

−
=∑ 0,

1

(1 )
m

i

i

p
=

= −∑
 

1m= − . 

 

As our best knowledge, the variance of the Pearson chi-square statistic has not been derived. We 

derive the in-control exact variance of Pearson chi-square statistic 
2χ  as follows. 

2
2

1 0,

1 2 2
( ) 2( 1)

m

i i

m m
Var m

np n
χ

=

+ −
= − + −∑

 

(2) 

The Appendix presents the derivation process. From (2), we find the variance value differs along 

with sample size n given m and p0, that is, the variance value is not fixed for various n.  

To investigate how the mean and variance change under different n and in-control proportion 

vectors, without loss of generality, we consider two scenarios of in-control proportion vectors. The 

two scenarios of in-control proportion vectors, each with four proportions for four categories are as 

follows. 

Scenario (1): The in-control four proportions are the same, 

0 (0.25,0.25,0.25,0.25)p = . 

Scenario (2): The in-control four proportions are not all the same, 

0 (0.1,0.1,0.4,0.4)p =
. 

Table 1 shows the calculated exact means and variances under different n and two scenarios of 

in-control proportion vectors. We find the following results in Table 1:  

(i) Under scenario (1), the exact means are all fixed at 3 whether n is small or large. However, the 

exact variance increases when n increases but converges to 5.999 when n is equal to 6000. 

(ii) Under scenario (2), the exact mean are all fixed at 3 whether n is small or large. However, the 

exact variance decreases when n increases but converges to 6.0 when n is equal to 6000. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0397.v1

https://doi.org/10.20944/preprints202306.0397.v1


 4 

 

Table 1. The exact mean and variance of the Pearson chi-square statistic for various n under scenarios 

(1) and (2) with in-control proportion vectors. 

n 
Scenario (1) Scenario (2) 

2( )E χ  2( )Var χ  2( )E χ  2( )Var χ  

1 3.000 0.000 3.000 9.000 

2 3.000 3.000 3.000 7.500 

3 3.000 4.000 3.000 7.000 

4 3.000 4.500 3.000 6.750 

5 3.000 4.800 3.000 6.600 

6 3.000 5.000 3.000 6.500 

7 3.000 5.143 3.000 6.429 

8 3.000 5.250 3.000 6.375 

9 3.000 5.333 3.000 6.333 

10 3.000 5.400 3.000 6.300 

11 3.000 5.455 3.000 6.273 

12 3.000 5.500 3.000 6.250 

13 3.000 5.538 3.000 6.231 

14 3.000 5.571 3.000 6.214 

15 3.000 5.600 3.000 6.200 

16 3.000 5.625 3.000 6.188 

17 3.000 5.647 3.000 6.176 

18 3.000 5.667 3.000 6.167 

19 3.000 5.684 3.000 6.158 

20 3.000 5.700 3.000 6.150 

50 3.000 5.880 3.000 6.060 

100 3.000 5.940 3.000 6.030 

200 3.000 5.970 3.000 6.015 

400 3.000 5.985 3.000 6.008 

600 3.000 5.990 3.000 6.005 

800 3.000 5.993 3.000 6.004 

1000 3.000 5.994 3.000 6.003 

2000 3.000 5.997 3.000 6.002 

4000 3.000 5.999 3.000 6.001 

5000 3.000 5.999 3.000 6.000 

6000 3.000 5.999 3.000 6.000 

We can see that the change behavior of the exact variance for increasing n is different in scenarios 

(1) and (2). 

The above results present clear evidence telling us that the variance of the Pearson chi-square 

statistic is not fixed for a small sample size. However, the variance converges to 2m when the sample 

size is large enough. 

From Table 1, we can construct the exact EWMA-proportion control chart whether n is small or 

large. 

3. A Pearson 𝝌𝝌𝟐𝟐 statistic-based EWMA chart for monitoring the multinomial proportions 

In statistical process control, sample size is usually small and not large. When n is not large 

enough, the distribution of Pearson chi-square statistic does not follow the well-known
2 ( 1)mχ −

distribution. The resulting variances of the Pearson chi-square statistic for various n in Section 2 

exhibit this situation. Hence, it is not appropriate to adopt the 2 ( 1)mχ − distribution to construct the 
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EWMA-
2χ control chart to monitor the multinomial-proportion process. The misuse of the EWMA-

2χ control chart results in worse out-of-control detection performance.  

We are able to derive the exact mean and variance of the Pearson chi-square statistic whether 

the sample size is small or not in Section 2, although it is impossible to know the distribution of the 

Pearson chi-square statistic. Based on the derived mean and variance, we may construct the exact 

EWMA-proportion control chart to monitor the changes in proportion vector of the multinomial 

quality variables for a small sample size. When sample size n is large enough, the in-control Pearson 

chi-square statistic is approximately distributed as 2 ( 1)mχ − distribution with df m-1. Thus, the 

monitoring statistic is independent of the original multinomial distribution and sample size n. Hence, 

we construct the asymptotic EWMA-proportion control chart. The detection performance of the two 

proposed EWMA-proportion control charts is then compared. 

3.1. The exact multinomial-proportion control chart 

With the derived exact mean and variance of the in-control Pearson chi-square statistic, we may 

construct an exact EWMA-proportion control chart with the upper control limit (UCL), center line 

(CL) and lower control limit (LCL) as follows; see (4), for various sample size. In other words, the 

EWMA-proportion control chart has the control limit depending the value of n given the m categories. 

Here, we let LCL be zero since the out-of-control proportion vector leads to an increase in the value 

of the Pearson chi-square statistic. 

We let the EWMA chart with monitoring statistic 2
t

EWMA
χ

 at time t be the weighted average 

of the Pearson chi-square statistic 
2χ at time t: 

2 2
1

2 (1 )
t t

tEWMA EWMA
χ χ

λχ λ
−

= + −
, t=1, 2,…, 

(3) 

where (0,1)λ∈ is a smooth parameter.  

The in-control mean and variance of monitoring statistic 2
t

EWMA
χ

at time t are 

2( ) 1
t

E EWMA m
χ

= −
, and

2

2
2

1 0

1 2 2
( ) 2( 1) (1 (1 ) ) / (2 )

t

m
t

i i

m m
Var EWMA m

np nχ
λ λ λ

=

 + −
= − + − − − − 
 
∑

, 

respectively. 

We let 
2

0t

EWMA
χ = =m-1. 

The control limits of the exact EWMA-proportion control chart are consequently: 

2
2

1 0

1 2 2
1 2( 1) (1 (1 ) ) / (2 ),

= 1,

0,

m
t

t n

i i

t

t

m m
UCL m L m

np n

CL m

LCL

λ λ λ
=

 + −
= − + − + − − − − 

 
−

=

∑

 

(4) 

where the coefficient Ln should be chosen to satisfy the specified ARL0. 

To determine Ln satisfying a specified ARL0, we use the Monte Carlo method and following Yang 

et al. [18]. The Markov chain procedure is applied to calculate Ln, by satisfying a specified ARL0. 

Based on the Monte Carlo procedure, Table 2 lists the resulting Ln of the exact EWMA-proportion 

control charts with specified ARL0=370.4 for various combinations of setting n and λ  under the 

aforementioned two scenarios with in-control proportion vectors. We find that the Ln value increases 

slowly as n increases and converges to 2.416 or 2.417 when n is equal 6000 under scenario (1) or (2). 
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Table 2. The coefficient (Ln) of UCL with specified ARL0=370.4 for various n and two scenarios of in-

control proportion vectors. 

n 
Ln 

Scenario (1) Scenario (2) 

1 - 2.414 

2 2.382 2.605 

3 2.377 2.600 

4 2.388 2.550 

5 2.401 2.537 

6 2.388 2.525 

7 2.394 2.513 

8 2.398 2.501 

9 2.403 2.492 

10 2.395 2.489 

11 2.404 2.485 

12 2.409 2.474 

13 2.403 2.471 

14 2.403 2.467 

15 2.409 2.468 

16 2.407 2.464 

17 2.406 2.456 

18 2.408 2.452 

19 2.408 2.454 

20 2.406 2.453 

50 2.413 2.430 

100 2.414 2.423 

200 2.416 2.419 

400 2.418 2.419 

600 2.419 2.419 

800 2.419 2.420 

1000 2.419 2.420 

2000 2.418 2.419 

4000 2.416 2.418 

5000 2.416 2.417 

6000 2.416 2.417 

3.2. The asymptotic multinomial-proportion control chart 

When n is large enough, the Pearson chi-square statistic 2χ follows an asymptotical chi-square 

distribution with df m-1 for an in-control process, that is, 2χ ~ 2 ( 1)mχ − with mean m-1 and variance 

2(m-1). Thus, the monitoring statistic is independent of the original multinomial distribution and 

sample size n.  

Based on the in-control asymptotical chi-square distribution, we may establish an EWMA 

multinomial-proportion control chart to monitor whether the proportion vector changes or not.   

We let the EWMA chart with monitoring statistic 2
t

EWMA
χ

at time t  be 

2 2
1

2 (1 )
t t

tEWMA EWMA
χ χ

λχ λ
−

= + − ,  t =1, 2,…,  (5) 

where 2
0

EWMA
χ

=
2( )E χ =m-1, and (0,1)λ∈ is a smooth parameter.  
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The mean and variance of monitoring statistic 2
t

EWMA
χ

at time t  are 2( ) 1
t

E EWMA m
χ

= −  

and 2

2( ) 2( 1) (1 (1 ) ) / (2 )
t

tVar EWMA m
χ

λ λ λ= − − − − , respectively. We may find that the mean 

and variance of the monitoring statistic 2
t

EWMA
χ

are independent on n. 

Hence, the dynamic control limits of the EWMA-
2χ control chart are constructed as  

21 2( 1) (1 (1 ) ) / (2 ),

= 1,

0,

t

t

t

t

UCL m L m

CL m

LCL

λ λ λ= − + − − − −

−

=

 (6) 

where L is a coefficient of UCL, and should be chosen to achieve a specified ARL0. 

To determine L satisfying a specified ARL0, we refer to the Markov chain method in Lucas & 

Saccucci [19] or Chandrasekaran et al. [20]. We describe the ARL0 calculation procedure as follows.  

Step 1. For a given L , at time t , the region (0, ]tUCL is partitioned into k (e.g. 101k = ) subsets

or state  ,  1, 2, ,iA i k=  , where ( ( 1) / ,  ( ) / ]i t tA UCL i k UCL i k= − . 

Step 2. Denote the transition probability matrix with transition probabilities ,

t

i jp , from state iA

to state jA  at time t , as ,( ) , 2t

t i j k kB p t×= ≥ , where 

2

, 1( ( 1) ( ( ) / (1 ) ( 0.5) / ) / )t

i j t tp p m UCL j k UCL i kχ λ λ−= − ≤ − − − −
 

2

1( ( 1) ( ( 1) / (1 ) ( 0.5) / ) / )t tp m UCL j k UCL i kχ λ λ−− ≤ − − − −
. 

 

For 1t = ,
1

1 ,( )i j k kB p ×=  ,where 

1 2

, 1 1( ( 1) ( ( ) / (1 ) ( 0.5) / ) / )i jp p m UCL j k UCL i kχ λ λ= − ≤ − − − −
 

2

1 1( ( 1) ( ( 1) / (1 ) ( 0.5) / ) / )p m UCL j k UCL i kχ λ λ− ≤ − − − −
. 

 

Step 3.
0 1 1 2 1 2 3 1 2 3 1( ) ( 2 3 )T

n nARL L p Q BQ B B Q nB B B B Q−= + + + + +   , where 

( )1t k tQ I B= − , 1  is a column vector of ones, and the initial state probability is 

(0, ,1, ,0)Tp =  
. 

To obtain the coefficient of the UCL, L , of the asymptotical control chart we next adopt the 

bisection algorithm. The calculation procedure is described as follows. 

Step 1. For a given in-control
0ARL , consider an interval 1 2[ , ]L L of L such that 

0 1 0 0 2( ) ( )ARL L ARL ARL L< < ,  

and a threshold error 0ε > (e.g., 0.5ε = ), where 0 1( )ARL L and 0 2( )ARL L are computed by
 
the 

above-mentioned procedure. 

Step 2. Let 

1 2( ) / 2middleL L L= +
.  

Step 3. If 

0 0 0 1 0( ( ) )( ( ) ) 0middleARL L ARL ARL L ARL− − ≤ ,   

then  

1 middleL L=
,  

else  

2 middleL L=
.  
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Step 4. Repeat step 2 and step 3 until  

0 0| ( ) |middleARL L ARL ε− ≤ .  

Hence,  

middleL L=
.  

Based on the Markov chain method and bisection algorithm described above, the calculated 

coefficient (L) of the UCL with specified ARL0=370.4 under scenario (1) or (2) is 2.416. The result is 

obvious since L is a fixed value and independent of sample size n. 

3.3. Comparison of the exact and asymptotic multinomial-proportion control charts 

The resulting L and 
nL  of the exact and asymptotic EWMA-proportion control charts for the 

two scenarios show that Ln converges to L (=2.416) when n (≥6000) is large enough.  However, when 

n is not large enough, Ln and L exhibit much difference. This is evidence that it is incorrect to adopt 

the asymptotic EWMA-proportion control chart to monitor the multinomial proportion vector when 

n is small or not large enough. Hence, the exact EWMA-proportion control chart is recommended for 

small and not large enough n. 

4. Detection performance measurement of the proposed exact and asymptotic EWMA-proportion 

control charts 

Without loss of generality, to measure the out-of-control detection performance of the proposed 

exact and asymptotic EWMA-proportion charts, we consider the following two scenarios with six out-

of-control proportion vectors for setting n=2(1)20, 50, 100(100), 0.05λ =  and ARL0=370.  

Scenario (1) has in-control proportion vector, 
0 (0.25,0.25,0.25,0.25)p = , and six out-of-control 

proportion vectors as follows. The six out-of-control proportion vectors are:  

1 (0.2,0.3,0.25,0.25)p = ,
2 (0.1,0.4,0.25,0.25),p = 3 =(0.05,0.45,0.25,0.25),  p  

4 =(0.2,0.2,0.35,0.25),p  
5 (0.1,0.1,0.55,0.25)p = , and

6 =(0.05,0.05,0.65,0.25)p . 
 

Scenario (2) with in-control proportion vector, 
0 (0.1,0.1,0.4,0.4)p = , and six out-of-control 

proportion vectors runs as follows. The six out-of-control proportion vectors are: 

1 (0.15,0.05,0.4,0.4)p = ,
2 (0.2,0,0.4,0.4),p = 3 (0.25,0.25,0.1,0.4)p = ,

4 =(0.2,0.2,0.35,0.25)p ,
5 =(0.15,0.15,0.3,0.4)p , and 

6 (0.25,0.25,0.25,0.25)p = . 
 

4.1. Detection performance of the proposed exact EWMA-proportion chart 

Applying the calculated control limit coefficient,
nL , of the proposed exact chart and the given 

scenarios (1) and (2) with the six out-of-control proportion vectors and sample size, we can calculate 

out-of-control average run length (ARL1). A smaller ARL1 indicates better detection performance of 

a control chart. ARL1 is always a popular detection performance index in the study of statistical 

process control.  

The resulting Tables 3 and 4 illustrate the calculated ARL1 (first row) and SDRL (standard 

deviation of run length; second row) of the proposed exact chart for various n and Scenarios (1) and 

(2), respectively. We find the following results in Tables 3 and 4.  

(i) For detecting any out-of-control proportion vector, ARL1 decreases when n increases 

(ii) The larger the difference is between p0 and pi, the smaller is ARL1 under each n. The result is 

reasonable. 
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Table 3. ARLs of the proposed exact control chart for various n under Scenario (1) with the six out-

of-control proportion vectors. 

n   0p  1p  2p  3p  4p  5p  6p  

2 
369.956 

402.099 

321.682 

351.861 

121.808 

130.346 

65.69 

69.036 

243.704 

264.746 

32.476 

32.604 

13.582 

12.771 

3 
372.065 

416.056 

287.588 

323.047 

69.136 

75.999 

32.504 

34.156 

183.376 

205.704 

14.306 

15.077 

5.923 

5.942 

4 
369.232 

393.303 

261.716 

278.589 

47.22 

47.005 

21.347 

19.678 

144.94 

153.794 

9.817 

8.761 

4.451 

3.444 

5 
370.177 

405.62 

238.209 

263.725 

32.446 

33.244 

14.187 

13.570 

114.307 

125.545 

6.370 

6.160 

2.813 

2.369 

6 
368.793 

394.082 

218.664 

232.241 

25.131 

23.899 

11.102 

9.574 

95.834 

100.353 

5.307 

4.421 

2.577 

1.693 

7 
374.458 

398.754 

203.78 

217.25 

20.065 

18.688 

8.840 

7.366 

81.281 

84.604 

4.339 

3.463 

2.127 

1.325 

8 
369.532 

399.416 

185.235 

197.368 

16.036 

14.924 

6.974 

5.832 

67.638 

70.737 

3.475 

2.815 

1.737 

1.051 

9 
367.247 

395.453 

170.07 

184.802 

13.245 

12.332 

5.749 

4.824 

57.69 

60.603 

2.899 

2.343 

1.487 

0.846 

10 
370.275 

396.203 

158.746 

167.584 

11.551 

10.17 

5.181 

3.947 

50.98 

52.264 

2.762 

1.965 

1.509 

0.754 

11 
370.45 

400.534 

146.869 

157.557 

9.862 

8.811 

4.438 

3.391 

44.622 

45.979 

2.359 

1.715 

1.350 

0.635 

12 
368.108 

398.165 

135.948 

146.166 

8.451 

7.626 

3.764 

2.968 

39.605 

41.012 

2.106 

1.503 

1.215 

0.504 

13 
370.74 

398.013 

127.254 

134.882 

7.674 

6.678 

3.482 

2.524 

35.619 

36.202 

1.973 

1.331 

1.195 

0.461 

14 
369.888 

396.682 

119.23 

125.792 

6.936 

5.874 

3.178 

2.246 

32.176 

32.313 

1.887 

1.183 

1.170 

0.418 

15 
371.409 

399.734 

110.564 

117.402 

6.162 

5.318 

2.785 

2.025 

29.037 

29.353 

1.697 

1.058 

1.110 

0.341 

16 
368.316 

396.15 

103.902 

110.434 

5.658 

4.771 

2.643 

1.791 

26.366 

26.366 

1.619 

0.957 

1.086 

0.3 

17 
372.261 

398.352 

97.635 

102.595 

5.25 

4.308 

2.476 

1.609 

24.342 

24.132 

1.557 

0.875 

1.074 

0.274 

18 
368.65 

397.644 

92.06 

97.515 

4.764 

3.962 

2.225 

1.466 

22.313 

22.202 

1.458 

0.801 

1.050 

0.225 

19 
369.787 

396.360 

86.608 

91.298 

4.394 

3.594 

2.102 

1.345 

20.668 

20.551 

1.402 

0.726 

1.035 

0.189 

20 
368.262 

395.554 

81.618 

85.676 

4.127 

3.323 

2.004 

1.236 

19.156 

18.807 

1.359 

0.675 

1.03 

0.173 

50 
370.723 

398.263 

24.540 

24.130 

1.476 

0.778 

1.045 

0.211 

5.338 

4.713 

1.008 

0.675 

1.000 

0.001 

100 
370.097 

398.439 

9.079 

8.360 

1.041 

0.203 

1.000 

0.009 

2.309 

1.678 

1.000 

0.002 

1.000 

0.000 

200 
371.126 

400.019 

3.564 

2.916 

1.000 

0.011 

1.000 

0.000 

1.286 

0.587 

1.000 

0.000 

1.000 

0.000 

400 
369.493 

398.541 

1.692 

1.028 

1.000 

0.000 

1.000 

0.000 

1.021 

0.143 

1.000 

0.000 

1.000 

0.000 

600 
370.632 

398.363 

1.256 

0.542 

1.000 

0.000 

1.000 

0.000 

1.001 

0.033 

1.000 

0.000 

1.000 

0.000 

800 369.187 1.101 1.000 1.000 1.000 1.000 1.000 
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397.229 0.324 0.000 0.000 0.007 0.000 0.000 

1000 
369.751 

398.334 

1.038 

0.196 

1.000 

0.000 

1.000 

0.000 

1.000 

0.001 

1.000 

0.000 

1.000 

0.000 

2000 
369.708 

398.510 

1.000 

0.013 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

4000 
369.557 

397.351 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

5000 
369.657 

398.279 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

6000 
369.736 

398.101 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

Table 4. ARLs of the proposed exact control chart for various n under Scenario (2) with the six out-

of-control proportion vectors. 

n  0p  1p  2p  3p  4p  5p  6p  

1 
369.314 

395.079 

371.081 

394.476 

370.828 

394.501 

9.320 

7.951 

17.190 

15.914 

45.580 

45.433 

9.318 

7.973 

2 
368.283 

400.411 

258.404 

283.917 

123.075 

138.227 

7.802 

6.934 

15.158 

14.77 

42.878 

44.518 

8.120 

7.384 

3 
369.013 

405.564 

207.565 

229.87 

74.424 

83.969 

4.972 

4.754 

11.054 

11.299 

34.678 

36.799 

5.396 

5.359 

4 
368.84 

390.956 

173.702 

185.024 

51.568 

54.552 

4.441 

3.391 

9.838 

9.003 

31.085 

30.668 

4.930 

4.078 

5 
370.999 

395.305 

144.832 

157.049 

36.937 

38.928 

3.570 

2.746 

8.096 

7.597 

26.724 

26.895 

3.966 

3.395 

6 
370.222 

398.943 

123.071 

133.663 

27.592 

28.795 

2.904 

2.217 

6.842 

6.532 

23.593 

23.916 

3.302 

2.841 

7 
368.671 

398.112 

107.071 

114.893 

21.611 

22.220 

2.494 

1.823 

6.081 

5.613 

21.262 

21.481 

2.97 

2.394 

8 
370.126 

395.952 

93.134 

99.214 

17.970 

17.581 

2.167 

1.546 

5.363 

4.940 

19.289 

19.300 

2.592 

2.081 

9 
370.868 

396.084 

81.428 

86.31 

14.823 

14.296 

2.029 

1.318 

4.915 

4.388 

17.743 

17.596 

2.446 

1.829 

10 
369.12 

398.684 

71.317 

76.376 

12.402 

11.947 

1.789 

1.151 

4.354 

3.959 

16.071 

16.203 

2.139 

1.630 

11 
370.757 

398.2 

63.001 

67.485 

10.537 

10.107 

1.671 

1.004 

4.013 

3.569 

14.954 

14.947 

2.026 

1.454 

12 
368.926 

396.388 

57.18 

59.868 

9.521 

8.605 

1.595 

0.889 

3.802 

3.222 

14.066 

13.791 

1.960 

1.306 

13 
371.755 

398.458 

51.611 

53.654 

8.408 

7.491 

1.449 

0.792 

3.475 

2.966 

12.98 

12.832 

1.782 

1.19 

14 
369.361 

398.027 

46.467 

48.400 

7.471 

6.571 

1.406 

0.715 

3.292 

2.725 

12.146 

11.953 

1.741 

1.096 

15 
366.476 

398.999 

42.014 

43.662 

6.654 

5.823 

1.331 

0.641 

3.002 

2.526 

11.312 

11.217 

1.599 

0.998 

16 
369.623 

398.93 

38.371 

39.606 

5.875 

1.197 

1.268 

0.57 

2.852 

2.342 

10.702 

10.512 

1.536 

0.915 

17 
372.149 

397.024 

35.721 

36.112 

5.585 

4.611 

1.249 

0.531 

2.783 

2.171 

10.282 

9.860 

1.537 

0.862 

18 
369.494 

397.07 

32.851 

33.070 

5.151 

4.163 

1.215 

0.486 

2.634 

2.03 

9.769 

9.296 

1.461 

0.794 

19 369.044 30.160 4.714 1.185 2.441 9.156 1.369 
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398.317 30.550 3.802 0.442 1.907 8.822 0.726 

20 
369.159 

399.616 

27.988 

28.106 

4.392 

3.473 

1.159 

0.410 

2.365 

1.797 

8.657 

8.356 

1.365 

0.690 

50 
370.314 

397.494 

7.236 

6.396 

1.420 

0.618 

1.000 

0.025 

1.242 

0.532 

3.407 

2.825 

1.019 

0.136 

100 
369.737 

398.007 

2.819 

2.120 

1.000 

0.000 

1.000 

0.000 

1.018 

0.135 

1.757 

1.119 

1.000 

0.007 

200 
369.376 

397.284 

1.405 

0.709 

1.000 

0.000 

1.000 

0.000 

1.000 

0.007 

1.141 

0.391 

1.000 

0.000 

400 
370.64 

399.136 

1.031 

0.170 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.005 

0.069 

1.000 

0.000 

600 
370.225 

398.276 

1.002 

0.041 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.009 

1.000 

0.000 

800 
370.060 

397.990 

1.000 

0.008 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.001 

1.000 

0.000 

1000 
369.657 

398.683 

1.000 

0.001 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

2000 
370.317 

398.111 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

4000 
370.794 

399.123 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

5000 
370.790 

399.038 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

6000 
369.862 

398.246 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

4.2. Detection performance of the asymptotic EWMA-proportion chart 

Applying the calculated control limit coefficient, L, of the asymptotic chart and the given 

scenarios (1) and (2) with the six out-of-control proportion vectors, we can calculate ARL1. 

The resulting Table 5 (scenario (1)) and Table 6 (scenario (2)) illustrate the calculated ARL1 (first 

row) and SDRL (second row) of the asymptotic chart, respectively. 

Table 5. ARLs of the asymptotic control chart under various n for scenario (1) with the six out-of-

control proportion vectors. 

n  0p  1p  2p  3p  4p  5p  6p  

2 
3880.926 

3896.139 

3123.472 

3131.111 

720.986 

713.365 

280.329 

267.982 

2074.137 

2077.971 

100.033 

87.278 

32.574 

23.585 

3 
1078.071 

1157.757 

791.313 

852.399 

135.773 

143.038 

54.859 

54.858 

449.865 

486.158 

21.522 

20.860 

8.127 

7.673 

4 
757.384 

789.150 

509.243 

530.552 

69.903 

67.986 

29.123 

25.865 

255.223 

264.734 

12.387 

10.735 

5.275 

4.127 

5 
648.207 

671.590 

398.79 

412.093 

44.919 

41.702 

18.887 

15.778 

178.058 

181.867 

8.516 

6.820 

3.906 

2.517 

6 
569.374 

600.160 

321.301 

338.397 

30.593 

28.619 

12.860 

10.987 

129.408 

134.551 

5.840 

4.960 

2.674 

1.853 

7 
535.804 

565.679 

277.828 

292.373 

23.219 

21.278 

9.835 

8.174 

102.369 

105.892 

4.649 

3.783 

2.184 

1.425 

8 
506.336 

538.152 

241.435 

255.351 

18.239 

16.578 

7.768 

6.409 

82.654 

85.335 

3.753 

3.033 

1.818 

1.155 

9 
483.561 

518.434 

212.767 

227.899 

14.599 

13.408 

6.212 

5.205 

68.121 

71.033 

3.058 

2.507 

1.524 

0.909 

10 476.051 194.730 12.641 5.506 59.056 2.837 1.515 
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503.278 204.614 11.060 4.240 59.678 2.081 0.774 

11 
458.735 

490.911 

173.615 

184.745 

10.581 

9.367 

4.643 

3.601 

50.003 

51.157 

2.415 

1.800 

1.356 

0.653 

12 
455.017 

481.168 

160.708 

168.485 

9.410 

8.035 

4.172 

3.048 

44.605 

44.578 

2.298 

1.549 

1.322 

0.577 

13 
446.672 

476.889 

146.102 

154.694 

8.163 

7.040 

3.641 

2.673 

38.955 

39.251 

2.015 

1.383 

1.200 

0.475 

14 
439.888 

468.259 

134.735 

141.612 

7.318 

6.176 

3.300 

2.341 

34.911 

34.699 

1.919 

1.230 

1.173 

0.427 

15 
437.203 

465.765 

125.143 

131.462 

6.589 

5.493 

3.032 

2.066 

31.407 

31.184 

1.775 

1.100 

1.134 

0.372 

16 
428.399 

458.844 

115.217 

121.453 

5.884 

4.944 

2.715 

1.867 

28.267 

28.076 

1.636 

0.989 

1.086 

0.302 

17 
425.681 

454.903 

107.603 

112.808 

5.423 

4.465 

2.523 

1.674 

25.919 

25.447 

1.573 

0.902 

1.073 

0.274 

18 
420.922 

451.455 

100.071 

105.644 

4.913 

4.088 

2.287 

1.532 

23.522 

23.301 

1.465 

0.815 

1.050 

0.228 

19 
417.849 

448.075 

93.837 

98.522 

4.547 

3.733 

2.148 

1.394 

21.729 

21.368 

1.411 

0.745 

1.036 

0.192 

20 
416.766 

445.050 

88.216 

92.002 

4.277 

3.407 

2.062 

1.270 

20.240 

19.673 

1.385 

0.692 

1.035 

0.187 

50 
386.868 

415.975 

25.082 

24.631 

1.480 

0.785 

1.044 

0.21 

5.391 

4.773 

1.008 

0.090 

1.000 

0.000 

100 
378.202 

406.259 

9.145 

8.405 

9.082 

0.204 

1.000 

0.009 

2.319 

1.688 

1.000 

0.002 

1.000 

0.000 

200 
374.087 

403.003 

3.575 

2.921 

1.000 

0.011 

1.000 

0.000 

1.288 

0.590 

1.000 

0.000 

1.000 

0.000 

400 
370.638 

399.267 

1.692 

1.028 

1.000 

0.000 

1.000 

0.000 

1.020 

0.143 

1.000 

0.000 

1.000 

0.000 

600 
369.798 

398.157 

1.256 

0.543 

1.000 

0.000 

1.000 

0.000 

1.001 

0.032 

1.000 

0.000 

1.000 

0.000 

800 
369.017 

397.659 

1.100 

0.323 

1.000 

0.000 

1.000 

0.000 

1.000 

0.005 

1.000 

0.000 

1.000 

0.000 

1000 
368.672 

397.161 

1.038 

0.197 

1.000 

0.000 

1.000 

0.000 

1.000 

0.002 

1.000 

0.000 

1.000 

0.000 

2000 
369.183 

398.185 

1.000 

0.013 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

4000 
369.313 

398.385 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

5000 
369.596 

398.369 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

6000 
369.646 

397.875 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

Table 6. ARLs of the asymptotic control chart under various n for scenario (2) with the six out-of-

control proportion vectors. 

n  0p  1p  2p  3p  4p  5p  6p  

 1 
149.100 

190.427 

149.131 

190.656 

149.435 

190.444 

5.099 

6.226 

9.434 

11.788 

23.891 

30.444 

5.091 

6.220 

2 
211.107 

232.441 

156.108 

174.418 

81.979 

94.030 

6.891 

5.926 

12.582 

12.043 

31.619 

32.925 

7.071 

6.270 

3 234.377 141.543 56.129 4.239 9.132 26.670 4.632 
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261.884 160.014 64.268 4.098 9.570 28.990 4.644 

4 
254.595 

278.088 

128.980 

140.884 

42.294 

45.288 

3.612 

3.110 

8.095 

8.012 

24.825 

25.974 

4.000 

3.723 

5 
270.693 

292.512 

114.659 

124.793 

31.555 

33.353 

3.292 

2.500 

7.366 

6.881 

23.010 

23.390 

3.731 

3.122 

6 
278.487 

305.263 

100.133 

110.100 

24.204 

25.650 

2.654 

2.071 

6.237 

6.021 

20.532 

21.291 

3.071 

2.669 

7 
287.245 

315.190 

88.690 

97.624 

19.511 

20.162 

2.287 

1.712 

5.416 

5.256 

18.594 

19.448 

2.658 

2.267 

8 
297.024 

320.759 

80.086 

85.897 

16.506 

16.214 

2.091 

1.454 

5.043 

4.642 

17.515 

17.787 

2.494 

1.970 

9 
300.812 

326.830 

70.928 

76.427 

13.705 

13.386 

1.919 

1.251 

4.657 

4.157 

16.204 

16.357 

2.369 

1.746 

10 
306.108 

331.928 

63.493 

68.176 

11.661 

11.222 

1.724 

1.097 

4.157 

3.778 

14.883 

15.099 

2.087 

1.564 

11 
309.943 

337.242 

56.698 

60.932 

9.940 

9.547 

1.580 

0.959 

3.788 

3.422 

13.764 

14.016 

1.934 

1.400 

12 
316.717 

342.484 

52.133 

55.010 

9.015 

8.221 

1.539 

0.860 

3.694 

3.120 

13.238 

13.089 

1.936 

1.271 

13 
320.280 

346.034 

47.283 

49.674 

7.963 

7.166 

1.435 

0.762 

3.361 

2.858 

12.291 

12.203 

1.753 

1.151 

14 
321.785 

348.787 

42.931 

44.946 

7.119 

6.303 

1.360 

0.683 

3.138 

2.637 

11.508 

11.437 

1.672 

1.055 

15 
324.025 

351.660 

39.232 

40.889 

6.411 

5.595 

1.324 

0.623 

2.937 

2.449 

10.800 

10.737 

1.583 

0.971 

16 
326.148 

353.893 

35.968 

37.359 

5.705 

5.013 

1.262 

0.559 

2.775 

2.274 

10.223 

10.121 

1.510 

0.890 

17 
329.612 

356.022 

33.574 

34.347 

5.438 

4.462 

1.232 

0.514 

2.665 

2.118 

9.756 

9.515 

1.474 

0.830 

18 
331.238 

357.644 

31.008 

31.556 

4.978 

4.048 

1.189 

0.463 

2.541 

1.986 

9.284 

9.023 

1.432 

0.774 

19 
331.958 

359.795 

28.646 

29.015 

4.585 

3.687 

1.165 

0.426 

2.400 

1.866 

8.792 

8.556 

1.360 

0.712 

20 
333.886 

361.667 

26.651 

26.966 

4.261 

3.367 

1.147 

0.395 

2.318 

1.751 

8.365 

8.096 

1.350 

0.675 

50 
355.057 

381.753 

7.161 

6.34 

1.417 

0.611 

1.001 

0.025 

1.241 

0.529 

3.38 

2.797 

1.019 

0.137 

100 
362.178 

391.087 

2.801 

2.107 

1.000 

0.000 

1.000 

0.000 

1.018 

0.134 

1.751 

1.113 

1.000 

0.007 

200 
366.135 

393.971 

1.404 

0.708 

1.000 

0.000 

1.000 

0.000 

1.000 

0.007 

1.140 

0.390 

1.000 

0.000 

400 
367.412 

396.169 

1.031 

0.177 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.005 

0.000 

1.000 

0.000 

600 
367.196 

396.301 

1.002 

0.042 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.009 

1.000 

0.000 

800 
367.608 

396.326 

1.000 

0.008 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.001 

1.000 

0.000 

1000 
367.333 

395.985 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

2000 
367.691 

396.363 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

4000 368.637 1.000 1.000 1.000 1.000 1.000 1.000 
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397.286 0.000 0.000 0.000 0.000 0.000 0.000 

5000 
368.955 

397.586 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

6000 
370.236 

399.095 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

1.000 

0.000 

We find the following results in Tables 5 and 6:  

(i) Most ARL0s are far away from the specified 370.4 for small n. In Table 5, we find many ARL0s are 

larger than the specified 370.4 for n <400 and some ARL1s are larger than the specified 370.4 for 

very small n. However, in Table 6, we find all ARL0s are smaller than the specified 370.4 for n< 

6000.  These results indicate that the proposed asymptotic control chart is not in-control robust, 

it becomes ARL biased, and its detection performance is worse for small n. 

(ii) When n is large (n ≥400 for scenario (1) or n = 6000 for scenario (2)), the calculated ARL0 close to 

the specified ARL0, and ARL1 decreases when n increases for detecting any out-of-control 

proportion vector. 

(iii) The larger the difference is between p0 and pi, i= 1, 2, …, 6, the smaller is ARL1 under each n.  

All those phenomena indicate the asymptotic control chart should be adopted in process control 

by taking n ≥ 400 or 6000 in scenario (1) or (2) for the correcting control process; otherwise, the 

detection performance of the asymptotic control chart would be worse and result in an incorrect 

process adjustment. 

Compare the resulting Tables 3-6, we find that the two charts do have almost the same in-control 

and out-of-control process control performances for n≥6000. However, the exact EWMA-proportion 

chart offers correct results compared to the asymptotic control chart, especially for small n. Hence, 

the proposed exact EWMA-proportion chart is recommended whether the sample size is small or not. 

5. Monitoring under-specification proportions of a continuous multivariate process using the 

proposed EWMA-proportion chart and its application 

The proposed exact EWMA-proportion chart not only can be applied to monitor the proportion 

vector of a multinomial process, but also the proportion vector of multiple categories in a 

distribution-free or an unknown distributed continuous multivariate process.  

In this section we give an example to describe how to apply our proposed exact chart to monitor 

the proportion vector of four categories in a distribution-free or an unknown distributed continuous 

bivariate process. We adopt a semiconductor manufacturing data-set that can be found in a data 

depository maintained by the University of California, Irvine (McCann and Johnston [21]). The data-

set spans from July 2008 to October 2008 and contains 591 continuous quality variables. Each variable 

has 1567 observations, including 1463 in-control observations and 104 out-of-control observations.  

To demonstrate the detecting performance of the proposed exact chart, we select 2 of the 591 

continuous correlated quality variables, X =(X3, X12)T. Based on the respective specifications of X3 

and X12, they can be classified into four categories. The four categories are: (1) X3 and X12 are all 

under specifications, (2) X3 is under specification, but X12 is not, (3) X3 and X12 are all out of 

specifications, and (4) X3 is out of specification, but X12 is under specification. By examining the 1463 

in-control population observations, we classify their categories and obtain the proportion vector of 

the four categories as p0=(0.4, 0.08, 0.07, 0.45). For the 104 out-of-control population observations, the 

proportion vector of the four categories is p1=(0.00, 0.00, 0.2167, 0.7833). To demonstrate the detecting 

performance of the proposed exact chart, we take the first 100 in-control observations and the first 60 

out-of-control observations, respectively. We let the sample size be five, and so there are 20 in-control 

samples and 12 out-of-control samples. To monitor the process proportion vector, we construct the 

exact control chart applying the aforementioned method.  
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From (4) we know that the control limit of the proposed exact control chart is variable when 

sampling time changes. Hence, for each sampling time t we list 
tUCL , the number of observations 

in each category (nij), the in-control statistic value (
2

tχ ), and charting statistic value ( 2
t

EWMA
χ

) for 

the 20 in-control subgroup data. The results are illustrated in Table 7. We then plot the in-control

2
t

EWMA
χ

values in the constructed exact control chart; see Figure 1. We find all 2
t

EWMA
χ

values 

fall within 
tUCL demonstrating that the first 20 samples are all from the population with the in-

control proportion vector. Furthermore, we calculate nij, the out-of-control statistic value (
2

tχ ) and 

charting statistic value ( 2
t

EWMA
χ

) using the 12 out-of-control subgroup data. The results appear in 

Table 8. We plot the out-of-control 2
t

EWMA
χ

values in the constructed exact control chart; see Figure 

2. We find that the first 2
t

EWMA
χ

value falls outside of 
tUCL , and ten out of the twelve 2

t

EWMA
χ

values give signals. It demonstrates that the proposed exact control chart performs well in detecting 

the out-of-control proportion vector. 

Table 7. The in-control statistics and UCL of the exact control chart. 

Number 

t   11n  
12n  

21n  
22n  2

tχ  2
t

EWMA
χ

 
tUCL  

1 4 0 0 1 3.084 3.004 3.363 

2 3 0 0 2 1.146 2.911 3.500 

3 4 0 0 1 3.084 2.92 3.598 

4 2 2 0 1 7.37 3.142 3.674 

5 1 2 0 2 7.337 3.352 3.735 

6 2 0 0 3 1.091 3.239 3.787 

7 3 0 0 2 1.146 3.134 3.831 

8 1 1 1 2 2.694 3.112 3.869 

9 1 0 1 3 2.519 3.083 3.901 

10 0 2 0 3 9.186 3.388 3.930 

11 4 0 0 1 3.084 3.373 3.955 

12 1 1 1 2 2.694 3.339 3.977 

13 2 0 1 2 1.622 3.253 3.999 

14 1 0 0 4 2.918 3.236 4.017 

15 5 0 0 0 6.905 3.42 4.032 

16 2 0 0 3 1.091 3.303 4.046 

17 1 0 1 3 2.519 3.264 4.058 

18 3 0 1 1 2.608 3.231 4.069 

19 2 0 1 2 1.622 3.151 4.078 

20 0 0 0 5 6.628 3.325 4.087 

Table 8. The out-of-control statistics of the exact EWMA control chart. 

sampling time  

t   11n  
12n  

21n  
22n  2

tχ  2
t

EWMA
χ

 

1 0 0 2 3 10.615 3.381 

2 0 0 1 4 5.299 3.477 

3 0 0 1 4 5.299 3.568 

4 0 0 2 3 10.615 3.92 

5 0 0 2 3 10.615 4.255 

6 0 0 2 3 10.615 4.573 

7 0 0 0 5 6.628 4.676 

8 0 0 2 3 10.615 4.973 
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9 0 0 1 4 5.299 4.989 

10 0 0 0 5 6.628 5.071 

11 0 0 0 5 6.628 5.149 

12 0 0 0 5 6.628 5.223 

 

Figure 1. The in-control charting statistics on the exact EWMA-proportion control chart. 

 

Figure 2. The out-of-control charting statistics on the exact EWMA-proportion control chart. 

6. Conclusions 

This research has developed the exact and asymptotic EWMA-proportion control charts to 

monitor the multinomial proportions process. Based on the derived in-control exact mean and 

variance of the chi-square statistic, we calculate the control limits of the exact EWMA-proportion 

control chart for various small and large sample sizes using the Monte Carlo method. Based on the 

asymptotic chi-square distribution with df m-1, we calculate the control limits of the asymptotic 

EWMA-proportion control chart for a large enough sample size using the Markov chain method.     
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From numerical analyses, we find that their control limits with the same preset in-control ARL 

and detecting out-of-control ability are nearly the same when the sample size is large enough, e.g., n

≥6000 for scenarios (1) and (2). For small and not very large sample size, the exact EWMA-proportion 

control chart is in-control robust but the asymptotic control chart’s in-control ARL is more or less 

than the preset ALR0=370.4. Thus, we strongly suggest to adopt the propose exact control chart to 

monitor a multinomial proportions process. Moreover, the proposed exact EWMA proportion chart 

can be adopted to monitor the change in proportions of categories of a distribution-free or unknown 

continuous distributed multivariate process. A numerical example utilizing semiconductor 

manufacturing data was discussed to illustrate the application of the proposed exact EWMA 

proportion chart. The real numerical example shows good detection performance of the proposed 

chart.  

In this study, we have developed a novel, efficient, and exact EWMA proportion chart for 

monitoring a multinomial-proportion process. The proposed method holds the potential to provide 

multiple sustainability solutions across industries. We thus recommend the application of the 

proposed exact EWMA proportion chart not only for monitoring the multinomial proportions of a 

multinomial process, but also that of a distribution-free or an unknown continuous distributed 

multivariate process. 
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Appendix 

1 2( , , , )TmX X X X=  is a multinomial distribution associated with size n and probability 

vector
0 0,1 0,2 0,( , , , )mp p p p=  .Thus X ’s probability density function (pdf) is 

1 2

1 1 2 2 0,1 0,2 0,

1 2

!
( , , , )

! ! !
mxx x

m m m

m

n
p X x X x X x p p p

x x x
= = = = 


, 

 

where 
0,

1 1

, 1
m m

i i

i i

x n p
= =

= =∑ ∑ . The marginal pdf of iX , 1, 2, ,i m=   is  

0, 0,

!
( ) (1 )

!( )!
i ix n x

i i i i

i i

n
p X x p p

x n x

−= = −
−

. 
 

We then have 0, 0, 0,( ) , ( ) (1 ).i i i i iE X np Var X np p= = − Hence, we get: 
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0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

( | ) ( , ) / ( )

( ! ! !( )!) (1 )

( ! !( )!) (1 )

( )!
= 1 .

!( )! 1 1

j i ji

i i

j i j

j j i i j j i i i i
x n x xx

j i i j i j i j

x n x

i i i i
x n x x

j ji

j i j i i

p X x X x p X x X x p X x

n x x n x x p p p p

n x n x p p

p pn x

x n x x p p

− −

−

− −

= = = = = =
− − − −

=
− −

   −
−      − − − −     

 

We immediately see that |j i iX X x=  follows a
0,

0,

binomial( , )
1

j

i

i

p
n x

p
−

−
 distribution. 

Now the following assertion (a) now holds. 

(a) 
4 2 2 2 2 2 2

0, 0, 0, 0, 0, 0, 0, 0,( ) (1 )(1+3 3 ) 3 (1 ) 3 (1 )i i i i i i i i i iE X np np p p p n p p np p− = − − + − − −
. 

Proof: Suppose that 1 2, , ,i i inX X X are i.i.d 0,Bernoulli( )ip and then  

0,

1

= ~ binomial( , )
n

i ij i

j

X X n p
=
∑

, 

1 2 3 4

1 2 3 4

1 2

1 2 1

4

4

0, 0,

1

0, 0, 0, 0,

4 2 2

0, 0, 0,

1 =1

4 4

0, 0, 0, 0, 0,

( ) ( )

( )( )( )( )

= ( ) 3 ( ) ( )

= [ (1 ) (1 ) ] 3 ( 1)

n

i i ij i

j

ij i ij i ij i ij i

j j j j

n n

ij i ij i ij j

j j j j

i i i i

E X np E X p

E X p X p X p X p

E X p E X p E X p

n p p p p n n p

=

= ≠

 
− = − 

 
 

= − − − − 
 

− + − −

− + − + −

∑

∑∑∑∑

∑ ∑∑
2 2

0,(1 ) .i ip−  

 

Under a similar discussion to 
4

0,( )i iE X np− , we can obtain that  

(b) 

3 3 3 3

0, 0, 0, 0, 0, 0,

1

( ) = ( ) [(1 ) (1 )]
n

i i ij i i i i i

j

E X np E X p n p p p p
=

− − = − − −∑
. 

Thus, we have: 

2
4 20,

0, 0,21
0,2 2

1 1 1 10, 0,

2 2

0, 0,
21 1
0,

1 10,

2

0,
21
0,

1 10,

3
( ) (1 )1 4 6

3 (1 ) 3

3 3 6 3
1 4 6

= +3 6 3

7 12 6
1

3 3

m

im m m m
i i ii

i

i i i ii i
m m

i im m
i i

i

i ii
m

im m
i

i

i ii

p
E X np pm

p
n p np n n n

p m p
m

m p
np n n n

m p

p m
np n

=

= = = =

= =

= =

=

= =

− −−
= − − + − −

− +
−

− − − + −

− +
= − + +

∑
∑ ∑ ∑ ∑

∑ ∑
∑ ∑

∑
∑ ∑ 6.−

 

 

For i j≠ , we get 
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2 2 2 2

0, 0, 0, 0,

2 2

0, 0,

2 2

0, 0, 0, 0,2

0, 2

0, 0, 0,

2

0,

( ) ( ) {( ) [( ) | ]}

{( ) [( ( | ) ) ( | )]}

( )
( ) ( ) 1

(1 ) 1 1

(

i i j j i i j j i

i i j i j j i

i i j j j

i i i

i i i

j

E X np X np E X np E X np X

E X np E X X np Var X X

X np p p p
E X np n X

p p p

p

− − = − −

= − − +

   − = − + − −    − − −    

= 0, 0, 0,4 3 2

0, 0, 0, 0,2

0, 0, 0, 0,

2

0, 2 2 2 2 2 2

0, 0, 0, 0, 0, 0, 0, 0,2

0,

0, 0,

0,

( ) 1 ( ) 1 ( )
1 ) 1 1 1

(1 )(1+3 3 ) 3 (1 ) 3 (1 )
(1 )

1
1

j j j

i i i i j i i

i i i i

j

i i i i i i i i

i

j

i

p p p
E X np E X np np E X np

p p p p

p
np p p p n p p np p

p

p p

p

   
− − − − + − −      − − − −   

 = − − + − − − − −

−
−

0,3 3 2

0, 0, 0, 0, 0, 0, 0,

0, 0,

[(1 ) (1 )]+ (1 ) 1 .
1 1

j j

i i i i i j i

i i

p
n p p p p n p p p

p p

   
− − − − −      − −     

 

Next, we have: 

2 2

0, 0,

2
1 0, 0,

0, 2

0, 0, 0, 0,

1 0,

0, 0,2 2

0, 0, 0, 0, 0,

1 1 0, 0,

( ) ( )

(1+3 3 ) 3 (1 )
(1 )

1
3 1 [(1 ) ] (1 ) 1

1 1

m
i i j j

i j i i j
m

j

i i i i

i j i i

m m
j j

i j i i i

i j i i j i j ii i

E X np X np

n p p

p
p p p p

n p

p p
p p p p p

n p p

= ≠

= ≠

= ≠ = ≠ ≠

− −

 = − − − + −
   

− − − − + − −      − −   

∑∑

∑∑

∑∑ ∑∑ ∑
1

2

0, 0, 0, 0, 0, 0,

1 1

0, 0,

1 1

2

0,
2 21
0,

1

1
(1+3 3 ) 3 (1 ) 3 (1 )

1
( 2)(1 2 ) (1 )( 2)

6 6
1

3 3 ( 2) ( 1)( 2).

m

i

m m

i i i i i i

i i

m m

i i

i i

m

i m
i

i

i

p p p p p p
n

m p p m
n
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=

= =

= =

=

=

 = − − − + − − 

− − + − −

− +
= + − − − + − −

∑

∑ ∑

∑ ∑

∑
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Furthermore, 

2

0,

0,

1 10,

( )
= (1 ) 1

m m
i i

i

i ii

E X np
p m

np= =

−
− = −∑ ∑ .  

Hence, we have: 
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1 10,
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7 12 6 6 6
1

3 3 6

3

m m m m
i i j ji i i i i i
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i im m
i i
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i ii

E X np X npE X np E X np E X np
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np n p n p p np

m p m p
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np n n

= = = ≠ =
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  − −− − −
= + −    

  

− + − +
= − + + − + +

∑ ∑ ∑∑ ∑

∑ ∑
∑ ∑

2 2 2

0,

1

2
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1
3 ( 2) ( 1)( 2) ( 1)

1 2 2
2( 1).

m

i

i

m

i i

p m m m m
n

m m
m

np n

=

=

− − − + − − − −

+ −
= − + −

∑

∑

 

As  

n→∞ ,

2

0, 2

1 0,

( )
2( 1)= ( ( 1))

m
i i

i i

E X np
Var m Var m

np
χ

=

 −
→ − −  

 
∑ .  
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