
Article

Not peer-reviewed version

A New EWMA Control Chart for Monitoring Multinomial Proportions

[Su-Fen Yang](#) *, [Shengjin Gan](#) , [Li-Pang Chen](#)

Posted Date: 6 June 2023

doi: 10.20944/preprints202306.0397/v1

Keywords: Control chart; Multinomial distribution; specification limits; Pearson χ^2 statistic

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article

A New EWMA Control Chart for Monitoring Multinomial Proportions

Gan Shengjin ^{1,2}, Su-Fen Yang ^{1,*} and Li-Pang Chen ¹

¹ Department of Statistics, National Chengchi University, Taiwan

² Fujian Polytechnic Normal University, Fuqing, China

* Correspondence: yang@mail2.nccu.tw (S.-F.Y.)

Abstract: Control charts have been widely used for monitoring process quality in manufacturing and play an important role in triggering a signal in time when detecting a change in process quality. Many control charts in literature assume that the in-control distribution of the univariate or multivariate process data is continuous and not categorical. This research develops two exponentially weighted moving average (EWMA) proportion control charts for monitoring a process with multinomial proportions when considering both large and small sample sizes. For a large sample size, the charting statistic depends on the well-known Pearson χ^2 statistic, and the control limit of the EWMA proportion chart is determined by an asymptotical chi-square distribution. For a small sample size, we derive the exact mean and variance of the Pearson χ^2 statistic. Hence, the exact EWMA proportion chart is determined. The proportion chart can also be applied to monitor the distribution-free continuous multivariate process as long as each categorical proportion associated with specification limits of each quality variable is known or estimated. Lastly, we investigate the detection performance of the proposed EWMA proportion chart by numerical analyses. Real data analysis demonstrates the beneficial application of the proposed EWMA proportion charts.

Keywords: control chart; multinomial distribution; specification limits; Pearson χ^2 statistic

1. Introduction

Process control plays a critical role in fostering sustainable practices within industries. It establishes a connection and enables the attainment of secure and efficient process operation and energy systems. Sustainability encompasses the integration of economic, social, and environmental systems, necessitating a well-rounded approach to resource management [1–3]. From the standpoint of process control, several factors contribute to sustainable practices, including the minimization of raw material costs, reduction of product and material scrap/waste expenses, optimization of capital costs, enhancement of process and energy efficiency, mitigation of carbon and water footprints, and maximization of eco-efficiency and process safety. Therefore, process control plays a pivotal role in offering sustainability solutions by developing and implementing efficient technology (refer to Daoutidis et al., [4]). In other words, the practice of sustainability introduces new operational challenges in the development of process control methods. Control charts serve as effective tools in process control, aiming to enhance the quality and yield of products/parts while reducing scrap/waste of raw materials, minimizing carbon and water footprints, and increasing profits/eco-efficiency and energy efficiency of products.

Among statistical process control tools, control charts are effective tools for monitoring and improving the manufacturing or service process quality. Compared to many process controls with continuous quality variables, less attention has been paid to control charts designed with categorical quality characteristic. The more well-known charts for monitoring two-categorical process units are p, c, np and u charts for monitoring fraction nonconforming and defects (for detail, see Montgomery [5], Reynolds et al. [6,7] and Qiu [8]). However, only considering two categories is not sufficient to

characterize the situation of process control. For example, an item can be classified into the three grades of best, better, or good and not just nonconforming and conforming grades. Consequently, the study of process control for categorical data following a multinomial distribution satisfies the requirement of this type process control.

Up until now, many control charts monitoring multinomial-proportion process are constructed based on Pearson's chi-square statistic, but its variant heavily depends on a large sample size (e.g., Marcucci [9]; Nelson [10]). The asymptotic chi-square distribution of Pearson's chi-square statistic is specifically known for an infinite sample size. When the sample size is small, it is not appropriate to adopt the asymptotic chi-square distribution of Pearson's chi-square statistic to construct the multinomial-proportion control chart because the calculated average run length (ARL) of the asymptotic control charts may seriously deviate from the pre-specified ARL. It thus leads to an over- or under-adjustment of the process.

We note that many papers of multinomial-proportion control charts are designed based on the asymptotic distribution of Pearson's chi-square statistic even when the sample size is small, for example, see Crosier [11] and Qiu [12]. Moreover, Ryan et al. [13] established the multinomial-proportion CUSUM chart that relies on pre-specified out-of-control multinomial proportions, which consequently lead to worse detecting performance compared to multiple one-sided Bernoulli CUSUM charts. Li et al. [14] followed the idea of Qiu [12] by proposing an EWMA-type control chart for monitoring the proportions of a multivariate binomial distribution under a large sample size. Huang et al. [15,16] and Lee et al. [17] extended the control chart in Li et al. [14] to monitor the multinomial-proportion process with a large sample size.

From the papers mentioned above, we find that monitoring the multinomial-proportion process with a small sample size has not been discussed. Though the exact distribution of Pearson's chi-square statistic is difficult to know, we may derive its exact mean and variance whether the sample size is small or large. According the results, we thus provide an exact EWMA-proportion control chart to monitor the multinomial-proportion process. The control limit of the proposed exact control chart can be determined and implemented not only for a small sample size, but also for a large sample size and even an individual. So far, the literature has not yet discussed the exact EWMA-proportion control chart.

In this study, we have devised a novel, efficient, and accurate method for monitoring and controlling a multinomial-proportion process. The proposed method holds the potential to provide multiple sustainability solutions across industries.

This rest of the paper is organized as follows. Section 2 derives the exact means and variances of Pearson's chi-square statistic under in-control process proportions and studies the properties of Pearson's chi-square statistic. Section 3 constructs the exact and asymptotic EWMA-proportion charts and determine their control limits by satisfying the pre-specified ARL0 and considering small and large sample sizes. Section 4 evaluates and compares the out-of-control proportions' detection performance of the proposed exact and asymptotic EWMA-proportion charts. Section 5 shows how the proposed exact EWMA-proportion chart can be applied to monitor the identify proportions of all categories of a distribution-free continuous multivariate process using a real example of semiconductor data obtained from UCI database. Finally, we offer conclusions of the study.

2. Investigation of the property of Pearson χ^2 statistic for correlated quality variables following a multinomial distribution

We first denote $X=(X_1, X_2, \dots, X_m)$ as the count vector of m categories in n independent trials, where X_i is the count number of the i -th category, $i=1, 2, \dots, m$. Let $X=(X_1, X_2, \dots, X_m)$ with the associated in-control proportion vector be $p_0=(p_{0,1}, p_{0,2}, \dots, p_{0,m})$, where $p_{0,i}$, $i=1, \dots, m$, is the in-control proportion of the i -th category, and $\sum_{i=1}^m p_{0,i} = 1$. Next, X follows a multinomial distribution with probability mass function

$$p(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m) = \frac{n!}{x_1! x_2! \dots x_m!} p_{0,1}^{x_1} p_{0,2}^{x_2} \dots p_{0,m}^{x_m},$$

$$\sum_{i=1}^m x_i = n$$

where

To know whether there is a change in the in-control proportion vector $p_0, p_{0,i}, i=1,\dots,m$, a natural idea is to adopt the Pearson chi-square statistic to make a test. The in-control Pearson chi-square statistic is:

$$\chi^2 = \sum_{i=1}^m \frac{(X_i - e_{0,i})^2}{e_{0,i}}, \quad (1)$$

where $e_{0,i} = np_{0,i}$ being the in control expected number of the i th category.

We now study the in-control distribution of the Pearson chi-square statistic and derive its exact mean and variance by considering various sample size and in-control proportion vector. When n is large enough, the Pearson chi-square statistic χ^2 follows an asymptotical chi-square distribution with degree of freedom (df) $m-1$; that is, $\chi^2 \sim \chi^2(m-1)$. This is a well-known asymptotical distribution. When n is small, the distribution of Pearson chi-square statistic does not follow the $\chi^2(m-1)$ distribution. Hence, it is better to know the distribution of the Pearson chi-square statistic for a small sample size. However, it is impossible to know the exact distribution of the Pearson chi-square statistic, but we may derive its exact mean and variance as follows.

It is easy to derive the in-control mean of Pearson chi-square statistics χ^2 given the in-control proportion as follows.

$$\begin{aligned} E(\chi^2) &= \sum_{i=1}^m \frac{p_{0,i}(1-p_{0,i})}{p_{0,i}} = \sum_{i=1}^m (1-p_{0,i}) \\ &= m-1. \end{aligned}$$

As our best knowledge, the variance of the Pearson chi-square statistic has not been derived. We derive the in-control exact variance of Pearson chi-square statistic χ^2 as follows.

$$Var(\chi^2) = \sum_{i=1}^m \frac{1}{np_{0,i}} - \frac{m^2 + 2m - 2}{n} + 2(m-1) \quad (2)$$

The Appendix presents the derivation process. From (2), we find the variance value differs along with sample size n given m and p_0 , that is, the variance value is not fixed for various n .

To investigate how the mean and variance change under different n and in-control proportion vectors, without loss of generality, we consider two scenarios of in-control proportion vectors. The two scenarios of in-control proportion vectors, each with four proportions for four categories are as follows.

Scenario (1): The in-control four proportions are the same,
 $p_0 = (0.25, 0.25, 0.25, 0.25)$.

Scenario (2): The in-control four proportions are not all the same,
 $p_0 = (0.1, 0.1, 0.4, 0.4)$.

Table 1 shows the calculated exact means and variances under different n and two scenarios of in-control proportion vectors. We find the following results in Table 1:

- (i) Under scenario (1), the exact means are all fixed at 3 whether n is small or large. However, the exact variance increases when n increases but converges to 5.999 when n is equal to 6000.
- (ii) Under scenario (2), the exact mean are all fixed at 3 whether n is small or large. However, the exact variance decreases when n increases but converges to 6.0 when n is equal to 6000.

Table 1. The exact mean and variance of the Pearson chi-square statistic for various n under scenarios (1) and (2) with in-control proportion vectors.

n	Scenario (1)		Scenario (2)	
	$E(\chi^2)$	$Var(\chi^2)$	$E(\chi^2)$	$Var(\chi^2)$
1	3.000	0.000	3.000	9.000
2	3.000	3.000	3.000	7.500
3	3.000	4.000	3.000	7.000
4	3.000	4.500	3.000	6.750
5	3.000	4.800	3.000	6.600
6	3.000	5.000	3.000	6.500
7	3.000	5.143	3.000	6.429
8	3.000	5.250	3.000	6.375
9	3.000	5.333	3.000	6.333
10	3.000	5.400	3.000	6.300
11	3.000	5.455	3.000	6.273
12	3.000	5.500	3.000	6.250
13	3.000	5.538	3.000	6.231
14	3.000	5.571	3.000	6.214
15	3.000	5.600	3.000	6.200
16	3.000	5.625	3.000	6.188
17	3.000	5.647	3.000	6.176
18	3.000	5.667	3.000	6.167
19	3.000	5.684	3.000	6.158
20	3.000	5.700	3.000	6.150
50	3.000	5.880	3.000	6.060
100	3.000	5.940	3.000	6.030
200	3.000	5.970	3.000	6.015
400	3.000	5.985	3.000	6.008
600	3.000	5.990	3.000	6.005
800	3.000	5.993	3.000	6.004
1000	3.000	5.994	3.000	6.003
2000	3.000	5.997	3.000	6.002
4000	3.000	5.999	3.000	6.001
5000	3.000	5.999	3.000	6.000
6000	3.000	5.999	3.000	6.000

We can see that the change behavior of the exact variance for increasing n is different in scenarios (1) and (2).

The above results present clear evidence telling us that the variance of the Pearson chi-square statistic is not fixed for a small sample size. However, the variance converges to $2m$ when the sample size is large enough.

From Table 1, we can construct the exact EWMA-proportion control chart whether n is small or large.

3. A Pearson χ^2 statistic-based EWMA chart for monitoring the multinomial proportions

In statistical process control, sample size is usually small and not large. When n is not large enough, the distribution of Pearson chi-square statistic does not follow the well-known $\chi^2(m-1)$ distribution. The resulting variances of the Pearson chi-square statistic for various n in Section 2 exhibit this situation. Hence, it is not appropriate to adopt the $\chi^2(m-1)$ distribution to construct the

EWMA- χ^2 control chart to monitor the multinomial-proportion process. The misuse of the EWMA- χ^2 control chart results in worse out-of-control detection performance.

We are able to derive the exact mean and variance of the Pearson chi-square statistic whether the sample size is small or not in Section 2, although it is impossible to know the distribution of the Pearson chi-square statistic. Based on the derived mean and variance, we may construct the exact EWMA-proportion control chart to monitor the changes in proportion vector of the multinomial quality variables for a small sample size. When sample size n is large enough, the in-control Pearson chi-square statistic is approximately distributed as $\chi^2(m-1)$ distribution with df $m-1$. Thus, the monitoring statistic is independent of the original multinomial distribution and sample size n . Hence, we construct the asymptotic EWMA-proportion control chart. The detection performance of the two proposed EWMA-proportion control charts is then compared.

3.1. The exact multinomial-proportion control chart

With the derived exact mean and variance of the in-control Pearson chi-square statistic, we may construct an exact EWMA-proportion control chart with the upper control limit (UCL), center line (CL) and lower control limit (LCL) as follows; see (4), for various sample size. In other words, the EWMA-proportion control chart has the control limit depending the value of n given the m categories. Here, we let LCL be zero since the out-of-control proportion vector leads to an increase in the value of the Pearson chi-square statistic.

We let the EWMA chart with monitoring statistic $EWMA_{\chi_t^2}$ at time t be the weighted average of the Pearson chi-square statistic χ^2 at time t :

$$EWMA_{\chi_t^2} = \lambda \chi_t^2 + (1-\lambda) EWMA_{\chi_{t-1}^2}, \quad t=1, 2, \dots, \quad (3)$$

where $\lambda \in (0,1)$ is a smooth parameter.

The in-control mean and variance of monitoring statistic $EWMA_{\chi_t^2}$ at time t are $E(EWMA_{\chi_t^2}) = m-1$, and $Var(EWMA_{\chi_t^2}) = \left(\sum_{i=1}^m \frac{1}{np_{0i}} - \frac{m^2 + 2m - 2}{n} + 2(m-1) \right) \lambda(1 - (1-\lambda)^{2t}) / (2-\lambda)$, respectively.

We let $EWMA_{\chi_{t=0}^2} = m-1$.

The control limits of the exact EWMA-proportion control chart are consequently:

$$\begin{aligned} UCL_t &= m-1 + L_n \sqrt{\left(\sum_{i=1}^m \frac{1}{np_{0i}} - \frac{m^2 + 2m - 2}{n} + 2(m-1) \right) \lambda(1 - (1-\lambda)^{2t}) / (2-\lambda)}, \\ CL_t &= m-1, \\ LCL_t &= 0, \end{aligned} \quad (4)$$

where the coefficient L_n should be chosen to satisfy the specified ARL_0 .

To determine L_n satisfying a specified ARL_0 , we use the Monte Carlo method and following Yang et al. [18]. The Markov chain procedure is applied to calculate L_n , by satisfying a specified ARL_0 .

Based on the Monte Carlo procedure, Table 2 lists the resulting L_n of the exact EWMA-proportion control charts with specified $ARL_0=370.4$ for various combinations of setting n and λ under the aforementioned two scenarios with in-control proportion vectors. We find that the L_n value increases slowly as n increases and converges to 2.416 or 2.417 when n is equal 6000 under scenario (1) or (2).

Table 2. The coefficient (L_n) of UCL with specified $ARL_0=370.4$ for various n and two scenarios of in-control proportion vectors.

n	L_n	
	Scenario (1)	Scenario (2)
1	-	2.414
2	2.382	2.605
3	2.377	2.600
4	2.388	2.550
5	2.401	2.537
6	2.388	2.525
7	2.394	2.513
8	2.398	2.501
9	2.403	2.492
10	2.395	2.489
11	2.404	2.485
12	2.409	2.474
13	2.403	2.471
14	2.403	2.467
15	2.409	2.468
16	2.407	2.464
17	2.406	2.456
18	2.408	2.452
19	2.408	2.454
20	2.406	2.453
50	2.413	2.430
100	2.414	2.423
200	2.416	2.419
400	2.418	2.419
600	2.419	2.419
800	2.419	2.420
1000	2.419	2.420
2000	2.418	2.419
4000	2.416	2.418
5000	2.416	2.417
6000	2.416	2.417

3.2. The asymptotic multinomial-proportion control chart

When n is large enough, the Pearson chi-square statistic χ^2 follows an asymptotical chi-square distribution with $df = m-1$ for an in-control process, that is, $\chi^2 \sim \chi^2(m-1)$ with mean $m-1$ and variance $2(m-1)$. Thus, the monitoring statistic is independent of the original multinomial distribution and sample size n .

Based on the in-control asymptotical chi-square distribution, we may establish an EWMA multinomial-proportion control chart to monitor whether the proportion vector changes or not.

We let the EWMA chart with monitoring statistic $EWMA_{\chi^2_t}$ at time t be

$$EWMA_{\chi^2_t} = \lambda \chi^2_t + (1-\lambda) EWMA_{\chi^2_{t-1}}, \quad t=1, 2, \dots, \quad (5)$$

where $EWMA_{\chi^2_0} = E(\chi^2) = m-1$, and $\lambda \in (0,1)$ is a smooth parameter.

The mean and variance of monitoring statistic $EWMA_{\chi^2_t}$ at time t are $E(EMWA_{\chi^2_t}) = m - 1$ and $Var(EMWA_{\chi^2_t}) = 2(m-1)\lambda(1-(1-\lambda)^{2t})/(2-\lambda)$, respectively. We may find that the mean and variance of the monitoring statistic $EWMA_{\chi^2_t}$ are independent on n .

Hence, the dynamic control limits of the EWMA- χ^2 control chart are constructed as

$$\begin{aligned} UCL_t &= m - 1 + L\sqrt{2(m-1)\lambda(1-(1-\lambda)^{2t})/(2-\lambda)}, \\ CL_t &= m - 1, \\ LCL_t &= 0, \end{aligned} \quad (6)$$

where L is a coefficient of UCL, and should be chosen to achieve a specified ARL_0 .

To determine L satisfying a specified ARL_0 , we refer to the Markov chain method in Lucas & Saccucci [19] or Chandrasekaran et al. [20]. We describe the ARL_0 calculation procedure as follows.

Step 1. For a given L , at time t , the region $(0, UCL_t]$ is partitioned into k (e.g. $k = 101$) subsets or state A_i , $i = 1, 2, \dots, k$, where $A_i = (UCL_t(i-1)/k, UCL_t(i)/k]$.

Step 2. Denote the transition probability matrix with transition probabilities $p_{i,j}^t$, from state A_i to state A_j at time t , as $B_t = (p_{i,j}^t)_{k \times k}$, $t \geq 2$, where

$$\begin{aligned} p_{i,j}^t &= p(\chi^2(m-1) \leq (UCL_t(j)/k - (1-\lambda)UCL_{t-1}(i-0.5)/k)/\lambda) - \\ &\quad p(\chi^2(m-1) \leq (UCL_t(j-1)/k - (1-\lambda)UCL_{t-1}(i-0.5)/k)/\lambda). \end{aligned}$$

For $t = 1$, $B_1 = (p_{i,j}^1)_{k \times k}$, where

$$\begin{aligned} p_{i,j}^1 &= p(\chi^2(m-1) \leq (UCL_1(j)/k - (1-\lambda)UCL_1(i-0.5)/k)/\lambda) - \\ &\quad p(\chi^2(m-1) \leq (UCL_1(j-1)/k - (1-\lambda)UCL_1(i-0.5)/k)/\lambda). \end{aligned}$$

Step 3. $ARL_0(L) = p^T(Q_1 + 2B_1Q_2 + 3B_1B_2Q_3 + \dots + nB_1B_2B_3 \dots B_{n-1}Q_n + \dots)$, where $Q_t = (I_k - B_t)1$, 1 is a column vector of ones, and the initial state probability is $p = (0, \dots, 1, \dots, 0)^T$.

To obtain the coefficient of the UCL, L , of the asymptotical control chart we next adopt the bisection algorithm. The calculation procedure is described as follows.

Step 1. For a given in-control ARL_0 , consider an interval $[L_1, L_2]$ of L such that

$$ARL_0(L_1) < ARL_0 < ARL_0(L_2),$$

and a threshold error $\varepsilon > 0$ (e.g., $\varepsilon = 0.5$), where $ARL_0(L_1)$ and $ARL_0(L_2)$ are computed by the above-mentioned procedure.

Step 2. Let

$$L_{middle} = (L_1 + L_2)/2.$$

Step 3. If

$$(ARL_0(L_{middle}) - ARL_0)(ARL_0(L_1) - ARL_0) \leq 0,$$

then

$$L_1 = L_{middle},$$

else

$$L_2 = L_{middle}.$$

Step 4. Repeat step 2 and step 3 until

$$|ARL_0(L_{middle}) - ARL_0| \leq \varepsilon.$$

Hence,

$$L = L_{middle}.$$

Based on the Markov chain method and bisection algorithm described above, the calculated coefficient (L) of the UCL with specified $ARL_0=370.4$ under scenario (1) or (2) is 2.416. The result is obvious since L is a fixed value and independent of sample size n .

3.3. Comparison of the exact and asymptotic multinomial-proportion control charts

The resulting L and L_n of the exact and asymptotic EWMA-proportion control charts for the two scenarios show that L_n converges to L ($=2.416$) when n (≥ 6000) is large enough. However, when n is not large enough, L_n and L exhibit much difference. This is evidence that it is incorrect to adopt the asymptotic EWMA-proportion control chart to monitor the multinomial proportion vector when n is small or not large enough. Hence, the exact EWMA-proportion control chart is recommended for small and not large enough n .

4. Detection performance measurement of the proposed exact and asymptotic EWMA-proportion control charts

Without loss of generality, to measure the out-of-control detection performance of the proposed exact and asymptotic EWMA-proportion charts, we consider the following two scenarios with six out-of-control proportion vectors for setting $n=2(1)20, 50, 100(100)$, $\lambda = 0.05$ and $ARL_0=370$.

Scenario (1) has in-control proportion vector, $p_0 = (0.25, 0.25, 0.25, 0.25)$, and six out-of-control proportion vectors as follows. The six out-of-control proportion vectors are:

$$p_1 = (0.2, 0.3, 0.25, 0.25), \quad p_2 = (0.1, 0.4, 0.25, 0.25), \quad p_3 = (0.05, 0.45, 0.25, 0.25), \\ p_4 = (0.2, 0.2, 0.35, 0.25), \quad p_5 = (0.1, 0.1, 0.55, 0.25), \quad \text{and} \quad p_6 = (0.05, 0.05, 0.65, 0.25).$$

Scenario (2) with in-control proportion vector, $p_0 = (0.1, 0.1, 0.4, 0.4)$, and six out-of-control proportion vectors runs as follows. The six out-of-control proportion vectors are:

$$p_1 = (0.15, 0.05, 0.4, 0.4), \quad p_2 = (0.2, 0, 0.4, 0.4), \quad p_3 = (0.25, 0.25, 0.1, 0.4), \\ p_4 = (0.2, 0.2, 0.35, 0.25), \quad p_5 = (0.15, 0.15, 0.3, 0.4), \quad \text{and} \quad p_6 = (0.25, 0.25, 0.25, 0.25).$$

4.1. Detection performance of the proposed exact EWMA-proportion chart

Applying the calculated control limit coefficient, L_n , of the proposed exact chart and the given scenarios (1) and (2) with the six out-of-control proportion vectors and sample size, we can calculate out-of-control average run length (ARL_1). A smaller ARL_1 indicates better detection performance of a control chart. ARL_1 is always a popular detection performance index in the study of statistical process control.

The resulting Tables 3 and 4 illustrate the calculated ARL_1 (first row) and $SDRL$ (standard deviation of run length; second row) of the proposed exact chart for various n and Scenarios (1) and (2), respectively. We find the following results in Tables 3 and 4.

- (i) For detecting any out-of-control proportion vector, ARL_1 decreases when n increases
- (ii) The larger the difference is between p_0 and p_i , the smaller is ARL_1 under each n . The result is reasonable.

Table 3. ARLs of the proposed exact control chart for various n under Scenario (1) with the six out-of-control proportion vectors.

n	p_0	p_1	p_2	p_3	p_4	p_5	p_6
2	369.956	321.682	121.808	65.69	243.704	32.476	13.582
	402.099	351.861	130.346	69.036	264.746	32.604	12.771
3	372.065	287.588	69.136	32.504	183.376	14.306	5.923
	416.056	323.047	75.999	34.156	205.704	15.077	5.942
4	369.232	261.716	47.22	21.347	144.94	9.817	4.451
	393.303	278.589	47.005	19.678	153.794	8.761	3.444
5	370.177	238.209	32.446	14.187	114.307	6.370	2.813
	405.62	263.725	33.244	13.570	125.545	6.160	2.369
6	368.793	218.664	25.131	11.102	95.834	5.307	2.577
	394.082	232.241	23.899	9.574	100.353	4.421	1.693
7	374.458	203.78	20.065	8.840	81.281	4.339	2.127
	398.754	217.25	18.688	7.366	84.604	3.463	1.325
8	369.532	185.235	16.036	6.974	67.638	3.475	1.737
	399.416	197.368	14.924	5.832	70.737	2.815	1.051
9	367.247	170.07	13.245	5.749	57.69	2.899	1.487
	395.453	184.802	12.332	4.824	60.603	2.343	0.846
10	370.275	158.746	11.551	5.181	50.98	2.762	1.509
	396.203	167.584	10.17	3.947	52.264	1.965	0.754
11	370.45	146.869	9.862	4.438	44.622	2.359	1.350
	400.534	157.557	8.811	3.391	45.979	1.715	0.635
12	368.108	135.948	8.451	3.764	39.605	2.106	1.215
	398.165	146.166	7.626	2.968	41.012	1.503	0.504
13	370.74	127.254	7.674	3.482	35.619	1.973	1.195
	398.013	134.882	6.678	2.524	36.202	1.331	0.461
14	369.888	119.23	6.936	3.178	32.176	1.887	1.170
	396.682	125.792	5.874	2.246	32.313	1.183	0.418
15	371.409	110.564	6.162	2.785	29.037	1.697	1.110
	399.734	117.402	5.318	2.025	29.353	1.058	0.341
16	368.316	103.902	5.658	2.643	26.366	1.619	1.086
	396.15	110.434	4.771	1.791	26.366	0.957	0.3
17	372.261	97.635	5.25	2.476	24.342	1.557	1.074
	398.352	102.595	4.308	1.609	24.132	0.875	0.274
18	368.65	92.06	4.764	2.225	22.313	1.458	1.050
	397.644	97.515	3.962	1.466	22.202	0.801	0.225
19	369.787	86.608	4.394	2.102	20.668	1.402	1.035
	396.360	91.298	3.594	1.345	20.551	0.726	0.189
20	368.262	81.618	4.127	2.004	19.156	1.359	1.03
	395.554	85.676	3.323	1.236	18.807	0.675	0.173
50	370.723	24.540	1.476	1.045	5.338	1.008	1.000
	398.263	24.130	0.778	0.211	4.713	0.675	0.001
100	370.097	9.079	1.041	1.000	2.309	1.000	1.000
	398.439	8.360	0.203	0.009	1.678	0.002	0.000
200	371.126	3.564	1.000	1.000	1.286	1.000	1.000
	400.019	2.916	0.011	0.000	0.587	0.000	0.000
400	369.493	1.692	1.000	1.000	1.021	1.000	1.000
	398.541	1.028	0.000	0.000	0.143	0.000	0.000
600	370.632	1.256	1.000	1.000	1.001	1.000	1.000
	398.363	0.542	0.000	0.000	0.033	0.000	0.000
800	369.187	1.101	1.000	1.000	1.000	1.000	1.000

	397.229	0.324	0.000	0.000	0.007	0.000	0.000
1000	369.751	1.038	1.000	1.000	1.000	1.000	1.000
	398.334	0.196	0.000	0.000	0.001	0.000	0.000
	369.708	1.000	1.000	1.000	1.000	1.000	1.000
2000	398.510	0.013	0.000	0.000	0.000	0.000	0.000
	369.557	1.000	1.000	1.000	1.000	1.000	1.000
4000	397.351	0.000	0.000	0.000	0.000	0.000	0.000
	369.657	1.000	1.000	1.000	1.000	1.000	1.000
	398.279	0.000	0.000	0.000	0.000	0.000	0.000
5000	369.736	1.000	1.000	1.000	1.000	1.000	1.000
	398.101	0.000	0.000	0.000	0.000	0.000	0.000

Table 4. ARLs of the proposed exact control chart for various n under Scenario (2) with the six out-of-control proportion vectors.

n	p_0	p_1	p_2	p_3	p_4	p_5	p_6
1	369.314	371.081	370.828	9.320	17.190	45.580	9.318
	395.079	394.476	394.501	7.951	15.914	45.433	7.973
2	368.283	258.404	123.075	7.802	15.158	42.878	8.120
	400.411	283.917	138.227	6.934	14.77	44.518	7.384
3	369.013	207.565	74.424	4.972	11.054	34.678	5.396
	405.564	229.87	83.969	4.754	11.299	36.799	5.359
4	368.84	173.702	51.568	4.441	9.838	31.085	4.930
	390.956	185.024	54.552	3.391	9.003	30.668	4.078
5	370.999	144.832	36.937	3.570	8.096	26.724	3.966
	395.305	157.049	38.928	2.746	7.597	26.895	3.395
6	370.222	123.071	27.592	2.904	6.842	23.593	3.302
	398.943	133.663	28.795	2.217	6.532	23.916	2.841
7	368.671	107.071	21.611	2.494	6.081	21.262	2.97
	398.112	114.893	22.220	1.823	5.613	21.481	2.394
8	370.126	93.134	17.970	2.167	5.363	19.289	2.592
	395.952	99.214	17.581	1.546	4.940	19.300	2.081
9	370.868	81.428	14.823	2.029	4.915	17.743	2.446
	396.084	86.31	14.296	1.318	4.388	17.596	1.829
10	369.12	71.317	12.402	1.789	4.354	16.071	2.139
	398.684	76.376	11.947	1.151	3.959	16.203	1.630
11	370.757	63.001	10.537	1.671	4.013	14.954	2.026
	398.2	67.485	10.107	1.004	3.569	14.947	1.454
12	368.926	57.18	9.521	1.595	3.802	14.066	1.960
	396.388	59.868	8.605	0.889	3.222	13.791	1.306
13	371.755	51.611	8.408	1.449	3.475	12.98	1.782
	398.458	53.654	7.491	0.792	2.966	12.832	1.19
14	369.361	46.467	7.471	1.406	3.292	12.146	1.741
	398.027	48.400	6.571	0.715	2.725	11.953	1.096
15	366.476	42.014	6.654	1.331	3.002	11.312	1.599
	398.999	43.662	5.823	0.641	2.526	11.217	0.998
16	369.623	38.371	5.875	1.268	2.852	10.702	1.536
	398.93	39.606	1.197	0.57	2.342	10.512	0.915
17	372.149	35.721	5.585	1.249	2.783	10.282	1.537
	397.024	36.112	4.611	0.531	2.171	9.860	0.862
18	369.494	32.851	5.151	1.215	2.634	9.769	1.461
	397.07	33.070	4.163	0.486	2.03	9.296	0.794
19	369.044	30.160	4.714	1.185	2.441	9.156	1.369

	398.317	30.550	3.802	0.442	1.907	8.822	0.726
20	369.159	27.988	4.392	1.159	2.365	8.657	1.365
	399.616	28.106	3.473	0.410	1.797	8.356	0.690
	370.314	7.236	1.420	1.000	1.242	3.407	1.019
50	397.494	6.396	0.618	0.025	0.532	2.825	0.136
	369.737	2.819	1.000	1.000	1.018	1.757	1.000
100	398.007	2.120	0.000	0.000	0.135	1.119	0.007
	369.376	1.405	1.000	1.000	1.000	1.141	1.000
200	397.284	0.709	0.000	0.000	0.007	0.391	0.000
	370.64	1.031	1.000	1.000	1.000	1.005	1.000
400	399.136	0.170	0.000	0.000	0.000	0.069	0.000
	370.225	1.002	1.000	1.000	1.000	1.000	1.000
600	398.276	0.041	0.000	0.000	0.000	0.009	0.000
	370.060	1.000	1.000	1.000	1.000	1.000	1.000
800	397.990	0.008	0.000	0.000	0.000	0.001	0.000
	369.657	1.000	1.000	1.000	1.000	1.000	1.000
1000	398.683	0.001	0.000	0.000	0.000	0.000	0.000
	370.317	1.000	1.000	1.000	1.000	1.000	1.000
2000	398.111	0.000	0.000	0.000	0.000	0.000	0.000
	370.794	1.000	1.000	1.000	1.000	1.000	1.000
4000	399.123	0.000	0.000	0.000	0.000	0.000	0.000
	370.790	1.000	1.000	1.000	1.000	1.000	1.000
5000	399.038	0.000	0.000	0.000	0.000	0.000	0.000
	369.862	1.000	1.000	1.000	1.000	1.000	1.000
6000	398.246	0.000	0.000	0.000	0.000	0.000	0.000

4.2. Detection performance of the asymptotic EWMA-proportion chart

Applying the calculated control limit coefficient, L , of the asymptotic chart and the given scenarios (1) and (2) with the six out-of-control proportion vectors, we can calculate ARL₁.

The resulting Table 5 (scenario (1)) and Table 6 (scenario (2)) illustrate the calculated ARL₁ (first row) and SDRL (second row) of the asymptotic chart, respectively.

Table 5. ARLs of the asymptotic control chart under various n for scenario (1) with the six out-of-control proportion vectors.

n	p_0	p_1	p_2	p_3	p_4	p_5	p_6
2	3880.926	3123.472	720.986	280.329	2074.137	100.033	32.574
	3896.139	3131.111	713.365	267.982	2077.971	87.278	23.585
3	1078.071	791.313	135.773	54.859	449.865	21.522	8.127
	1157.757	852.399	143.038	54.858	486.158	20.860	7.673
4	757.384	509.243	69.903	29.123	255.223	12.387	5.275
	789.150	530.552	67.986	25.865	264.734	10.735	4.127
5	648.207	398.79	44.919	18.887	178.058	8.516	3.906
	671.590	412.093	41.702	15.778	181.867	6.820	2.517
6	569.374	321.301	30.593	12.860	129.408	5.840	2.674
	600.160	338.397	28.619	10.987	134.551	4.960	1.853
7	535.804	277.828	23.219	9.835	102.369	4.649	2.184
	565.679	292.373	21.278	8.174	105.892	3.783	1.425
8	506.336	241.435	18.239	7.768	82.654	3.753	1.818
	538.152	255.351	16.578	6.409	85.335	3.033	1.155
9	483.561	212.767	14.599	6.212	68.121	3.058	1.524
	518.434	227.899	13.408	5.205	71.033	2.507	0.909
10	476.051	194.730	12.641	5.506	59.056	2.837	1.515

	503.278	204.614	11.060	4.240	59.678	2.081	0.774
11	458.735	173.615	10.581	4.643	50.003	2.415	1.356
	490.911	184.745	9.367	3.601	51.157	1.800	0.653
	455.017	160.708	9.410	4.172	44.605	2.298	1.322
12	481.168	168.485	8.035	3.048	44.578	1.549	0.577
	446.672	146.102	8.163	3.641	38.955	2.015	1.200
13	476.889	154.694	7.040	2.673	39.251	1.383	0.475
	439.888	134.735	7.318	3.300	34.911	1.919	1.173
14	468.259	141.612	6.176	2.341	34.699	1.230	0.427
	437.203	125.143	6.589	3.032	31.407	1.775	1.134
15	465.765	131.462	5.493	2.066	31.184	1.100	0.372
	428.399	115.217	5.884	2.715	28.267	1.636	1.086
16	458.844	121.453	4.944	1.867	28.076	0.989	0.302
	425.681	107.603	5.423	2.523	25.919	1.573	1.073
17	454.903	112.808	4.465	1.674	25.447	0.902	0.274
	420.922	100.071	4.913	2.287	23.522	1.465	1.050
18	451.455	105.644	4.088	1.532	23.301	0.815	0.228
	417.849	93.837	4.547	2.148	21.729	1.411	1.036
19	448.075	98.522	3.733	1.394	21.368	0.745	0.192
	416.766	88.216	4.277	2.062	20.240	1.385	1.035
20	445.050	92.002	3.407	1.270	19.673	0.692	0.187
	386.868	25.082	1.480	1.044	5.391	1.008	1.000
50	415.975	24.631	0.785	0.21	4.773	0.090	0.000
	378.202	9.145	9.082	1.000	2.319	1.000	1.000
100	406.259	8.405	0.204	0.009	1.688	0.002	0.000
	374.087	3.575	1.000	1.000	1.288	1.000	1.000
200	403.003	2.921	0.011	0.000	0.590	0.000	0.000
	370.638	1.692	1.000	1.000	1.020	1.000	1.000
400	399.267	1.028	0.000	0.000	0.143	0.000	0.000
	369.798	1.256	1.000	1.000	1.001	1.000	1.000
600	398.157	0.543	0.000	0.000	0.032	0.000	0.000
	369.017	1.100	1.000	1.000	1.000	1.000	1.000
800	397.659	0.323	0.000	0.000	0.005	0.000	0.000
	368.672	1.038	1.000	1.000	1.000	1.000	1.000
1000	397.161	0.197	0.000	0.000	0.002	0.000	0.000
	369.183	1.000	1.000	1.000	1.000	1.000	1.000
2000	398.185	0.013	0.000	0.000	0.000	0.000	0.000
	369.313	1.000	1.000	1.000	1.000	1.000	1.000
4000	398.385	0.000	0.000	0.000	0.000	0.000	0.000
	369.596	1.000	1.000	1.000	1.000	1.000	1.000
5000	398.369	0.000	0.000	0.000	0.000	0.000	0.000
	369.646	1.000	1.000	1.000	1.000	1.000	1.000
6000	397.875	0.000	0.000	0.000	0.000	0.000	0.000

Table 6. ARLs of the asymptotic control chart under various n for scenario (2) with the six out-of-control proportion vectors.

n	p_0	p_1	p_2	p_3	p_4	p_5	p_6
1	149.100	149.131	149.435	5.099	9.434	23.891	5.091
	190.427	190.656	190.444	6.226	11.788	30.444	6.220
2	211.107	156.108	81.979	6.891	12.582	31.619	7.071
	232.441	174.418	94.030	5.926	12.043	32.925	6.270
3	234.377	141.543	56.129	4.239	9.132	26.670	4.632

	261.884	160.014	64.268	4.098	9.570	28.990	4.644
4	254.595	128.980	42.294	3.612	8.095	24.825	4.000
	278.088	140.884	45.288	3.110	8.012	25.974	3.723
	270.693	114.659	31.555	3.292	7.366	23.010	3.731
5	292.512	124.793	33.353	2.500	6.881	23.390	3.122
	278.487	100.133	24.204	2.654	6.237	20.532	3.071
6	305.263	110.100	25.650	2.071	6.021	21.291	2.669
	287.245	88.690	19.511	2.287	5.416	18.594	2.658
7	315.190	97.624	20.162	1.712	5.256	19.448	2.267
	297.024	80.086	16.506	2.091	5.043	17.515	2.494
8	320.759	85.897	16.214	1.454	4.642	17.787	1.970
	300.812	70.928	13.705	1.919	4.657	16.204	2.369
9	326.830	76.427	13.386	1.251	4.157	16.357	1.746
	306.108	63.493	11.661	1.724	4.157	14.883	2.087
10	331.928	68.176	11.222	1.097	3.778	15.099	1.564
	309.943	56.698	9.940	1.580	3.788	13.764	1.934
11	337.242	60.932	9.547	0.959	3.422	14.016	1.400
	316.717	52.133	9.015	1.539	3.694	13.238	1.936
12	342.484	55.010	8.221	0.860	3.120	13.089	1.271
	320.280	47.283	7.963	1.435	3.361	12.291	1.753
13	346.034	49.674	7.166	0.762	2.858	12.203	1.151
	321.785	42.931	7.119	1.360	3.138	11.508	1.672
14	348.787	44.946	6.303	0.683	2.637	11.437	1.055
	324.025	39.232	6.411	1.324	2.937	10.800	1.583
15	351.660	40.889	5.595	0.623	2.449	10.737	0.971
	326.148	35.968	5.705	1.262	2.775	10.223	1.510
16	353.893	37.359	5.013	0.559	2.274	10.121	0.890
	329.612	33.574	5.438	1.232	2.665	9.756	1.474
17	356.022	34.347	4.462	0.514	2.118	9.515	0.830
	331.238	31.008	4.978	1.189	2.541	9.284	1.432
18	357.644	31.556	4.048	0.463	1.986	9.023	0.774
	331.958	28.646	4.585	1.165	2.400	8.792	1.360
19	359.795	29.015	3.687	0.426	1.866	8.556	0.712
	333.886	26.651	4.261	1.147	2.318	8.365	1.350
20	361.667	26.966	3.367	0.395	1.751	8.096	0.675
	355.057	7.161	1.417	1.001	1.241	3.38	1.019
50	381.753	6.34	0.611	0.025	0.529	2.797	0.137
	362.178	2.801	1.000	1.000	1.018	1.751	1.000
100	391.087	2.107	0.000	0.000	0.134	1.113	0.007
	366.135	1.404	1.000	1.000	1.000	1.140	1.000
200	393.971	0.708	0.000	0.000	0.007	0.390	0.000
	367.412	1.031	1.000	1.000	1.000	1.005	1.000
400	396.169	0.177	0.000	0.000	0.000	0.000	0.000
	367.196	1.002	1.000	1.000	1.000	1.000	1.000
600	396.301	0.042	0.000	0.000	0.000	0.009	0.000
	367.608	1.000	1.000	1.000	1.000	1.000	1.000
800	396.326	0.008	0.000	0.000	0.000	0.001	0.000
	367.333	1.000	1.000	1.000	1.000	1.000	1.000
1000	395.985	0.000	0.000	0.000	0.000	0.000	0.000
	367.691	1.000	1.000	1.000	1.000	1.000	1.000
2000	396.363	0.000	0.000	0.000	0.000	0.000	0.000
	368.637	1.000	1.000	1.000	1.000	1.000	1.000

	397.286	0.000	0.000	0.000	0.000	0.000	0.000
5000	368.955	1.000	1.000	1.000	1.000	1.000	1.000
	397.586	0.000	0.000	0.000	0.000	0.000	0.000
6000	370.236	1.000	1.000	1.000	1.000	1.000	1.000
	399.095	0.000	0.000	0.000	0.000	0.000	0.000

We find the following results in Tables 5 and 6:

- (i) Most ARL₀s are far away from the specified 370.4 for small n . In Table 5, we find many ARL₀s are larger than the specified 370.4 for $n < 400$ and some ARL₁s are larger than the specified 370.4 for very small n . However, in Table 6, we find all ARL₀s are smaller than the specified 370.4 for $n < 6000$. These results indicate that the proposed asymptotic control chart is not in-control robust, it becomes ARL biased, and its detection performance is worse for small n .
- (ii) When n is large ($n \geq 400$ for scenario (1) or $n = 6000$ for scenario (2)), the calculated ARL₀ close to the specified ARL₀, and ARL₁ decreases when n increases for detecting any out-of-control proportion vector.
- (iii) The larger the difference is between p_0 and p_i , $i = 1, 2, \dots, 6$, the smaller is ARL₁ under each n .

All those phenomena indicate the asymptotic control chart should be adopted in process control by taking $n \geq 400$ or 6000 in scenario (1) or (2) for the correcting control process; otherwise, the detection performance of the asymptotic control chart would be worse and result in an incorrect process adjustment.

Compare the resulting Tables 3-6, we find that the two charts do have almost the same in-control and out-of-control process control performances for $n \geq 6000$. However, the exact EWMA-proportion chart offers correct results compared to the asymptotic control chart, especially for small n . Hence, the proposed exact EWMA-proportion chart is recommended whether the sample size is small or not.

5. Monitoring under-specification proportions of a continuous multivariate process using the proposed EWMA-proportion chart and its application

The proposed exact EWMA-proportion chart not only can be applied to monitor the proportion vector of a multinomial process, but also the proportion vector of multiple categories in a distribution-free or an unknown distributed continuous multivariate process.

In this section we give an example to describe how to apply our proposed exact chart to monitor the proportion vector of four categories in a distribution-free or an unknown distributed continuous bivariate process. We adopt a semiconductor manufacturing data-set that can be found in a data depository maintained by the University of California, Irvine (McCann and Johnston [21]). The data-set spans from July 2008 to October 2008 and contains 591 continuous quality variables. Each variable has 1567 observations, including 1463 in-control observations and 104 out-of-control observations.

To demonstrate the detecting performance of the proposed exact chart, we select 2 of the 591 continuous correlated quality variables, $X = (X_3, X_{12})^T$. Based on the respective specifications of X_3 and X_{12} , they can be classified into four categories. The four categories are: (1) X_3 and X_{12} are all under specifications, (2) X_3 is under specification, but X_{12} is not, (3) X_3 and X_{12} are all out of specifications, and (4) X_3 is out of specification, but X_{12} is under specification. By examining the 1463 in-control population observations, we classify their categories and obtain the proportion vector of the four categories as $p_0 = (0.4, 0.08, 0.07, 0.45)$. For the 104 out-of-control population observations, the proportion vector of the four categories is $p_1 = (0.00, 0.00, 0.2167, 0.7833)$. To demonstrate the detecting performance of the proposed exact chart, we take the first 100 in-control observations and the first 60 out-of-control observations, respectively. We let the sample size be five, and so there are 20 in-control samples and 12 out-of-control samples. To monitor the process proportion vector, we construct the exact control chart applying the aforementioned method.

From (4) we know that the control limit of the proposed exact control chart is variable when sampling time changes. Hence, for each sampling time t we list UCL_t , the number of observations in each category (n_{ij}), the in-control statistic value (χ_t^2), and charting statistic value ($EWMA_{\chi_t^2}$) for the 20 in-control subgroup data. The results are illustrated in Table 7. We then plot the in-control $EWMA_{\chi_t^2}$ values in the constructed exact control chart; see Figure 1. We find all $EWMA_{\chi_t^2}$ values fall within UCL_t demonstrating that the first 20 samples are all from the population with the in-control proportion vector. Furthermore, we calculate n_{ij} , the out-of-control statistic value (χ_t^2) and charting statistic value ($EWMA_{\chi_t^2}$) using the 12 out-of-control subgroup data. The results appear in Table 8. We plot the out-of-control $EWMA_{\chi_t^2}$ values in the constructed exact control chart; see Figure 2. We find that the first $EWMA_{\chi_t^2}$ value falls outside of UCL_t , and ten out of the twelve $EWMA_{\chi_t^2}$ values give signals. It demonstrates that the proposed exact control chart performs well in detecting the out-of-control proportion vector.

Table 7. The in-control statistics and UCL of the exact control chart.

Number t	n_{11}	n_{12}	n_{21}	n_{22}	χ_t^2	$EWMA_{\chi_t^2}$	UCL_t
1	4	0	0	1	3.084	3.004	3.363
2	3	0	0	2	1.146	2.911	3.500
3	4	0	0	1	3.084	2.92	3.598
4	2	2	0	1	7.37	3.142	3.674
5	1	2	0	2	7.337	3.352	3.735
6	2	0	0	3	1.091	3.239	3.787
7	3	0	0	2	1.146	3.134	3.831
8	1	1	1	2	2.694	3.112	3.869
9	1	0	1	3	2.519	3.083	3.901
10	0	2	0	3	9.186	3.388	3.930
11	4	0	0	1	3.084	3.373	3.955
12	1	1	1	2	2.694	3.339	3.977
13	2	0	1	2	1.622	3.253	3.999
14	1	0	0	4	2.918	3.236	4.017
15	5	0	0	0	6.905	3.42	4.032
16	2	0	0	3	1.091	3.303	4.046
17	1	0	1	3	2.519	3.264	4.058
18	3	0	1	1	2.608	3.231	4.069
19	2	0	1	2	1.622	3.151	4.078
20	0	0	0	5	6.628	3.325	4.087

Table 8. The out-of-control statistics of the exact EWMA control chart.

sampling time t	n_{11}	n_{12}	n_{21}	n_{22}	χ_t^2	$EWMA_{\chi_t^2}$
1	0	0	2	3	10.615	3.381
2	0	0	1	4	5.299	3.477
3	0	0	1	4	5.299	3.568
4	0	0	2	3	10.615	3.92
5	0	0	2	3	10.615	4.255
6	0	0	2	3	10.615	4.573
7	0	0	0	5	6.628	4.676
8	0	0	2	3	10.615	4.973

9	0	0	1	4	5.299	4.989
10	0	0	0	5	6.628	5.071
11	0	0	0	5	6.628	5.149
12	0	0	0	5	6.628	5.223

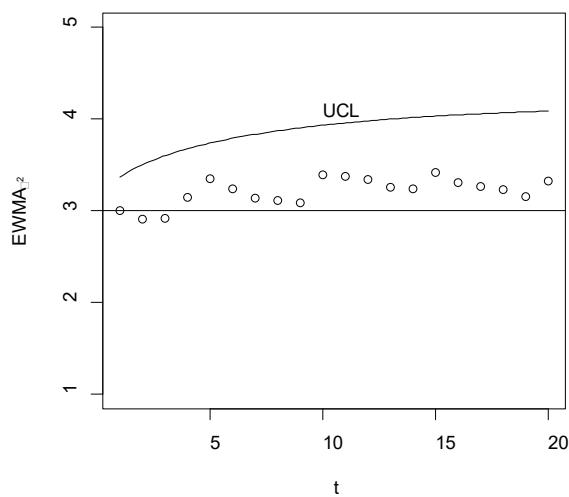
EWMA_{χ²} chart for IC data

Figure 1. The in-control charting statistics on the exact EWMA-proportion control chart.

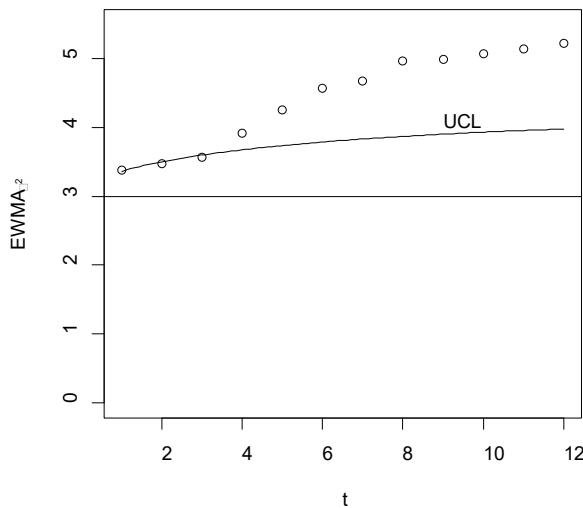
EWMA_{χ²} chart for OC data

Figure 2. The out-of-control charting statistics on the exact EWMA-proportion control chart.

6. Conclusions

This research has developed the exact and asymptotic EWMA-proportion control charts to monitor the multinomial proportions process. Based on the derived in-control exact mean and variance of the chi-square statistic, we calculate the control limits of the exact EWMA-proportion control chart for various small and large sample sizes using the Monte Carlo method. Based on the asymptotic chi-square distribution with $df = m-1$, we calculate the control limits of the asymptotic EWMA-proportion control chart for a large enough sample size using the Markov chain method.

From numerical analyses, we find that their control limits with the same preset in-control ARL and detecting out-of-control ability are nearly the same when the sample size is large enough, e.g., $n \geq 6000$ for scenarios (1) and (2). For small and not very large sample size, the exact EWMA-proportion control chart is in-control robust but the asymptotic control chart's in-control ARL is more or less than the preset $ALR_0=370.4$. Thus, we strongly suggest to adopt the proposed exact control chart to monitor a multinomial proportions process. Moreover, the proposed exact EWMA proportion chart can be adopted to monitor the change in proportions of categories of a distribution-free or unknown continuous distributed multivariate process. A numerical example utilizing semiconductor manufacturing data was discussed to illustrate the application of the proposed exact EWMA proportion chart. The real numerical example shows good detection performance of the proposed chart.

In this study, we have developed a novel, efficient, and exact EWMA proportion chart for monitoring a multinomial-proportion process. The proposed method holds the potential to provide multiple sustainability solutions across industries. We thus recommend the application of the proposed exact EWMA proportion chart not only for monitoring the multinomial proportions of a multinomial process, but also that of a distribution-free or an unknown continuous distributed multivariate process.

Author Contributions: Conceptualization, S.-F.Y., and L.-P.C.; methodology, S.-F.Y., and J.-S.G.; software, J.-S.G.; validation, S.-F.Y.; formal analysis, J.-S.G.; resources, S.-F.Y., and L.-P.C.; data curation, S.-F.Y., and J.-S.G.; writing—original draft preparation, S.-F.Y., and J.-S.G.; writing—review and editing, S.-F.Y.; visualization, S.-F.Y., and J.-S.G.; supervision, S.-F.Y., and L.-P.C.; funding acquisition, S.-F.Y., and J.-S.G. All authors have read and agreed to the published version of the manuscript.

Funding: The work was funded by National Science and Technology Council (NSTC 110-2118-M-004-001-MY2), Taiwan.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: This study received complete support from Department of Statistics, National Chengchi University, Taiwan, National Science and Technology Council, Taiwan, and Fujian Polytechnic Normal University, Fuqing, China

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

$X = (X_1, X_2, \dots, X_m)^T$ is a multinomial distribution associated with size n and probability vector $p_0 = (p_{0,1}, p_{0,2}, \dots, p_{0,m})$. Thus X 's probability density function (pdf) is

$$p(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m) = \frac{n!}{x_1! x_2! \dots x_m!} p_{0,1}^{x_1} p_{0,2}^{x_2} \dots p_{0,m}^{x_m},$$

where $\sum_{i=1}^m x_i = n$, $\sum_{i=1}^m p_{0,i} = 1$. The marginal pdf of X_i , $i = 1, 2, \dots, m$ is

$$p(X_i = x_i) = \frac{n!}{x_i! (n - x_i)!} p_{0,i}^{x_i} (1 - p_{0,i})^{n - x_i}.$$

We then have $E(X_i) = np_{0,i}$, $Var(X_i) = np_{0,i}(1 - p_{0,i})$. Hence, we get:

$$\begin{aligned}
p(X_j = x_j | X_i = x_i) &= p(X_j = x_j, X_i = x_i) / p(X_i = x_i) \\
&= \frac{(n/x_j! x_i!(n-x_i-x_j)!) p_{0,i}^{x_i} p_{0,j}^{x_j} (1-p_{0,i}-p_{0,j})^{n-x_i-x_j}}{(n/x_i!(n-x_i)!) p_{0,i}^{x_i} (1-p_{0,i})^{n-x_i}} \\
&= \frac{(n-x_i)!}{x_j!(n-x_i-x_j)!} \left(\frac{p_{0,j}}{1-p_{0,i}} \right)^{x_j} \left(1 - \frac{p_{0,j}}{1-p_{0,i}} \right)^{n-x_i-x_j}.
\end{aligned}$$

We immediately see that $X_j | X_i = x_i$ follows a $\text{binomial}(n-x_i, \frac{p_{0,j}}{1-p_{0,i}})$ distribution.

Now the following assertion (a) now holds.

$$(a) \quad E(X_i - np_{0,i})^4 = np_{0,i}(1-p_{0,i})(1+3p_{0,i}^2 - 3p_{0,i}) + 3n^2 p_{0,i}^2 (1-p_{0,i})^2 - 3np_{0,i}^2 (1-p_{0,i})^2.$$

Proof: Suppose that $X_{i1}, X_{i2}, \dots, X_{in}$ are i.i.d. $\text{Bernoulli}(p_{0,i})$ and then

$$\begin{aligned}
X_i = \sum_{j=1}^n X_{ij} &\sim \text{binomial}(n, p_{0,i}) \\
E(X_i - np_{0,i})^4 &= E \left(\sum_{j=1}^n (X_{ij} - p_{0,i}) \right)^4 \\
&= E \left(\sum_{j_1} \sum_{j_2} \sum_{j_3} \sum_{j_4} (X_{ij_1} - p_{0,i})(X_{ij_2} - p_{0,i})(X_{ij_3} - p_{0,i})(X_{ij_4} - p_{0,i}) \right) \\
&= \sum_{j=1}^n E(X_{ij} - p_{0,i})^4 + 3 \sum_{j_1=1}^n \sum_{j_2 \neq j_1} E(X_{ij_1} - p_{0,i})^2 E(X_{ij_2} - p_{0,i})^2 \\
&= n[p_{0,i}^4 (1-p_{0,i}) + (1-p_{0,i})^4 p_{0,i}] + 3n(n-1)p_{0,i}^2 (1-p_{0,i})^2.
\end{aligned}$$

Under a similar discussion to $E(X_i - np_{0,i})^4$, we can obtain that

$$(b) \quad E(X_i - np_{0,i})^3 = \sum_{j=1}^n E(X_{ij} - p_{0,i})^3 = n[(1-p_{0,i})^3 p_{0,i} - p_{0,i}^3 (1-p_{0,i})].$$

Thus, we have:

$$\begin{aligned}
\sum_{i=1}^m \frac{E(X_i - np_{0,i})^4}{n^2 p_{0,i}^2} &= \sum_{i=1}^m \frac{1}{np_{0,i}} - \frac{4m-6}{n} - \frac{3 \sum_{i=1}^m p_{0,i}^2}{n} + 3 \sum_{i=1}^m (1-p_{0,i})^2 - 3 \sum_{i=1}^m \frac{(1-p_{0,i})^2}{n} \\
&= \sum_{i=1}^m \frac{1}{np_{0,i}} - \frac{4m-6}{n} - \frac{3 \sum_{i=1}^m p_{0,i}^2}{n} + 3m-6 + 3 \sum_{i=1}^m p_{0,i}^2 - \frac{3m-6+3 \sum_{i=1}^m p_{0,i}^2}{n} \\
&= \sum_{i=1}^m \frac{1}{np_{0,i}} - \frac{7m-12+6 \sum_{i=1}^m p_{0,i}^2}{n} + \sum_{i=1}^m 3p_{0,i}^2 + 3m-6.
\end{aligned}$$

For $i \neq j$, we get

$$\begin{aligned}
& E(X_i - np_{0,i})^2(X_j - np_{0,j})^2 = E\{(X_i - np_{0,i})^2 E[(X_j - np_{0,j})^2 | X_i]\} \\
& = E\{(X_i - np_{0,i})^2[(E(X_j | X_i) - np_{0,j})^2 + Var(X_j | X_i)]\} \\
& = E\left\{(X_i - np_{0,i})^2 \left[\frac{(X_i - np_{0,i})^2 p_{0,j}^2}{(1 - p_{0,i})^2} + (n - X_i) \frac{p_{0,j}}{1 - p_{0,i}} \left(1 - \frac{p_{0,j}}{1 - p_{0,i}} \right) \right] \right\} \\
& = \frac{p_{0,j}^2}{(1 - p_{0,i})^2} E(X_i - np_{0,i})^4 - \frac{p_{0,j}}{1 - p_{0,i}} \left(1 - \frac{p_{0,j}}{1 - p_{0,i}} \right) E(X_i - np_{0,i})^3 + np_{0,j} \left(1 - \frac{p_{0,j}}{1 - p_{0,i}} \right) E(X_i - np_{0,i})^2 \\
& = \frac{p_{0,j}^2}{(1 - p_{0,i})^2} \left[np_{0,i} (1 - p_{0,i}) (1 + 3p_{0,i}^2 - 3p_{0,i}) + 3n^2 p_{0,i}^2 (1 - p_{0,i})^2 - 3np_{0,i}^2 (1 - p_{0,i})^2 \right] - \\
& \quad \frac{p_{0,j}}{1 - p_{0,i}} \left(1 - \frac{p_{0,j}}{1 - p_{0,i}} \right) n [(1 - p_{0,i})^3 p_{0,i} - p_{0,i}^3 (1 - p_{0,i})] + n^2 p_{0,i} p_{0,j} (1 - p_{0,i}) \left(1 - \frac{p_{0,j}}{1 - p_{0,i}} \right).
\end{aligned}$$

Next, we have:

$$\begin{aligned}
& \sum_{i=1}^m \sum_{j \neq i} \frac{E(X_i - np_{0,i})^2 (X_j - np_{0,j})^2}{n^2 p_{0,i} p_{0,j}} \\
& = \sum_{i=1}^m \sum_{j \neq i} \frac{p_{0,j}}{n(1 - p_{0,i})} \left[(1 + 3p_{0,i}^2 - 3p_{0,i}) - 3p_{0,i}(1 - p_{0,i}) \right] + \\
& \quad \sum_{i=1}^m \sum_{j \neq i} 3p_{0,i} p_{0,j} - \sum_{i=1}^m \sum_{j \neq i} \frac{1}{n} \left(1 - \frac{p_{0,j}}{1 - p_{0,i}} \right) [(1 - p_{0,i})^2 - p_{0,i}^2] + \sum_{i=1}^m \sum_{j \neq i} (1 - p_{0,i}) \left(1 - \frac{p_{0,j}}{1 - p_{0,i}} \right) \\
& = \sum_{i=1}^m \frac{1}{n} \left[(1 + 3p_{0,i}^2 - 3p_{0,i}) - 3p_{0,i}(1 - p_{0,i}) \right] + \sum_{i=1}^m 3p_{0,i}(1 - p_{0,i}) - \\
& \quad \sum_{i=1}^m \frac{1}{n} (m-2)(1 - 2p_{0,i}) + \sum_{i=1}^m (1 - p_{0,i})(m-2) \\
& = \frac{m-6 + 6 \sum_{i=1}^m p_{0,i}^2}{n} + 3 - \sum_{i=1}^m 3p_{0,i}^2 - \frac{1}{n} (m-2)^2 + (m-1)(m-2).
\end{aligned}$$

$$\text{Furthermore, } \sum_{i=1}^m \frac{E(X_i - np_{0,i})^2}{np_{0,i}} = \sum_{i=1}^m (1 - p_{0,i}) = m-1.$$

Hence, we have:

$$\begin{aligned}
 Var\left(\sum_{i=1}^m \frac{E(X_i - np_{0,i})^2}{np_{0,i}}\right) &= \sum_{i=1}^m \frac{E(X_i - np_{0,i})^4}{n^2 p_{0,i}^2} + \sum_{i=1}^m \sum_{j \neq i} \frac{E(X_i - np_{0,i})^2 (X_j - np_{0,j})^2}{n^2 p_{0,i} p_{0,j}} - \left(\sum_{i=1}^m \frac{E(X_i - np_{0,i})^2}{np_{0,i}}\right)^2 \\
 &= \sum_{i=1}^m \frac{1}{np_{0,i}} - \frac{7m-12+6\sum_{i=1}^m p_{0,i}^2}{n} + \sum_{i=1}^m 3p_{0,i}^2 + 3m-6 + \frac{m-6+6\sum_{i=1}^m p_{0,i}^2}{n} + \\
 &\quad 3 - \sum_{i=1}^m 3p_{0,i}^2 - \frac{1}{n}(m-2)^2 + (m-1)(m-2) - (m-1)^2 \\
 &= \sum_{i=1}^m \frac{1}{np_{0,i}} - \frac{m^2 + 2m - 2}{n} + 2(m-1).
 \end{aligned}$$

As

$$n \rightarrow \infty, Var\left(\sum_{i=1}^m \frac{E(X_i - np_{0,i})^2}{np_{0,i}}\right) \rightarrow 2(m-1) = Var(\chi^2(m-1)).$$

References

1. Sikdar, S.K. Sustainable development and sustainability metrics, *AIChE J.*, 2003, 49(8), 1928–1932.
2. Bakshi, B.R. & Fiksel, J. The quest for sustainability: challenges for processsystems engineering, *AIChE J.*, 2003, 49(6), 1350–1358.
3. Cabezas, H. Pawlowski, C.W., Mayer, A.L. & Hoagland, N. Sustainable systemstheory: ecological and other aspects, *J. Clean. Prod.*, 2005, 13(5), 455–467.
4. Daoutidis, P. Zachar, M. & Jogwar, S.S. Sustainability and process control: A survey and perspective, *J. process control*, 2016, 44, 184–206.
5. Montgomery, D. C. *Introduction to statistical quality control*, 8nd ed.; John Wiley & Sons, Inc.: USA, 2019.
6. Reynolds, M. R., & Stoumbos, Z. G. The SPRT chart for monitoring a proportion. *IIE Trans.* 1998, 30(6), 545–561.
7. Reynolds, M. R., & Stoumbos, Z. G. (2001). Monitoring a proportion using CUSUM and SPRT control charts. In *Frontiers in Statistical Quality Control 6* (pp.155-175). Physica, Heidelberg.
8. Qiu, P. Distribution-free multivariate process control based on log-linear modeling. *IIE Trans.* 2008, 40(7), 664–677.
9. Marcucci, M. Monitoring multinomial processes. *J. Qual. Technol.* 1985, 17(2), 86-91.
10. Nelson, L.S. A chi-square control chart for several proportions. *J. Qual. Technol.* 1987, 19(4), 229-231.
11. Crosier, R. B.. Multivariate generalizations of cumulative sum quality-control schemes. *Technometrics*. 1988, 30(3), 291-303.
12. Qiu, P. *Introduction to statistical process control*, 1st ed.; Chapman and Hall/CRC press: New York, 2013.
13. Ryan, A. G., Wells, L. J., & Woodall, W. H. . Methods for monitoring multiple proportions when inspecting continuously. *J. Qual. Technol.* 2011, 43(3), 237-248.
14. Li, J., Tsung, F., & Zou, C. . Multivariate binomial/multinomial control chart. *IIE Transactions*, 2014, 46(5), 526-542.
15. Huang, W., Reynolds Jr, M. R., & Wang, S.. A binomial GLR control chart for monitoring a proportion. *J. Qual. Technol.* 2012, 44(3), 192-208.
16. Huang, W., Wang, S., & Reynolds Jr, M. R.. A generalized likelihood ratio chart for monitoring Bernoulli processes. *Qual. Reliab. Eng. Int.* 2013, 29(5), 665-679.
17. Lee, J., Peng, Y., Wang, N., & Reynolds Jr, M. R.. A GLR control chart for monitoring a multinomial process. *Qual. Reliab. Eng. Int.* 2017, 33(8), 1773-1782.
18. Yang, S.-F., Chen, L.-P., and Lin, J.-K.. Adjustment of measurement error effects on dispersion control chart with distribution-free quality variable. *Sustainability*. 2023, 15(4337), 1-19.
19. Lucas, J. M., & Saccucci, M. S.. Exponentially weighted moving average control schemes: properties and enhancements. *Technometrics*. 1990, 32(1), 1-12.

20. Chandrasekaran, S., English, J. R., & Disney, R. L.. Modeling and analysis of EWMA control schemes with variance-adjusted control limits. *IIE transactions*.1995, 27(3), 282-290.
21. McCann, M.; Johnston, A. UCI Machine Learning Repository. Available online: <https://archive.ics.uci.edu/ml/datasets/SECOM>.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.