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Abstract

Spatial metabolomics is a rapidly advancing field offering powerful insights into metabolic
heterogeneity in biological tissues. However, its widespread adoption is hindered by fragmented
tools and the lack of comprehensive, open-source GUI software covering the full analytical
workflow (quality control, preprocessing, identification, pattern, and differential analysis). To
address this, we developed SManalyst, an open-source, integrated web-based platform. SManalyst
consolidates core functionalities, including multi-dimensional data quality assessment (background
consistency, noise, intensity, missing values), a comprehensive metabolite annotation scoring
system (mass accuracy, isotopic similarity, adduct evidence), and dual-dimension spatial pattern
discovery (metabolite co-expression and pixel clustering). It also offers flexible differential analysis
(cluster- or user-defined regions). With its intuitive GUI and modular workflow, SManalyst
significantly lowers the analysis barrier. Tested with a mouse brain dataset, SManalyst efficiently
handles large-scale data (e.g., >14,000 pixels, >3,000 ion peaks), effectively filling a critical gap in
integrated analytical solutions for spatial metabolomics. The platform is freely accessible at
https://metax.genomics.cn/app/smanalyst.

Keywords: spatial metabolomics; metabolite annotation; web-based platform; quality control;
spatial pattern discovery; differential analysis

1. Introduction

Spatial metabolomics is a rapidly advancing interdisciplinary field that integrates metabolite
information with its spatial distribution within tissue samples, offering a powerful approach to
elucidate the heterogeneity of metabolic processes in complex biological systems [1-3]. Mass
Spectrometry Imaging (MSI) techniques, such as Matrix-Assisted Laser Desorption/lonization
(MALDI) [1,4] Desorption Electrospray lonization (DESI)[5] and Secondary Ion Mass Spectrometry
(SIMS) [6], are core technologies driving this field’s development. However, the inherent complexity
and vastness of spatial metabolomics data [7], pose significant challenges in areas like data
preprocessing, quality control, metabolite annotation, and statistical analysis [8,9]. Therefore,
developing user-friendly, functionally comprehensive data analysis platforms is crucial for fully
leveraging the scientific potential of this technology and advancing the field.

Despite some progress in certain aspects of spatial metabolomics data analysis, particularly in
peak detection and extraction, existing tools still show notable deficiencies in crucial downstream
analytical processes, including systematic data preprocessing, comprehensive quality control, and in-
depth statistical analysis [17,18]. Table 1 summarizes the functional features of currently used
software. While mainstream open-source tools like Cardinal [10], SmartGate [19] can perform basic
data preprocessing, visualization, and clustering, they generally lack robust data quality control
modules and powerful metabolite annotation capabilities. Conversely, some more feature-rich tools,
such as MSImage [20], MSiReader [12], are commercial softwares. Furthermore, although specialized
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tools exist for specific stages like data preprocessing [21-23], visualization [24,25], pattern analysis
[26,27], or identification [13,28], their fragmented functionalities significantly raise the barrier to
entry, especially for researchers without a strong computational background. These limitations of
current open-source tools severely impede the field’s progress, highlighting an urgent need for an
open-source platform that integrates core functionalities such as data quality control, preprocessing,
statistical analysis, and metabolite annotation.

Table 1. Comparison of Common Spatial Metabolomics Software.
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To address these challenges, we developed SManalyst (Spatial Metabolomics Data Analyst), an
innovative open-source spatial metabolomics analysis software implemented in R. SManalyst
provides a complete analytical workflow, spanning from data visualization and rigorous quality
control to diverse statistical analysis and in-depth metabolite annotation. Its core features include: (1)
a systematic data quality control module that comprehensively assesses dataset quality across
multiple dimensions, such as background signal consistency, noise ion proportion, ion intensity
distribution, and missing value patterns; (2) a comprehensive metabolite annotation and scoring
system that assigns reliability scores to identification results by combining multiple lines of evidence,
including mass matching precision, adduct ion forms, and isotopic distribution matching. (3) multi-
dimensional pattern discovery capabilities that support exploring expression patterns based on both
spatial pixel clustering and metabolite molecular spatial expression profiles; (4) flexible differential
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analysis strategies, allowing users to delineate regions of interest (ROIs) manually or automatically
generate them based on clustering results for differential metabolite analysis; and By integrating
these advanced functionalities into an open-source platform, SManalyst significantly enhances the
efficiency and depth of spatial metabolomics data analysis, empowering researchers to delve deeper
into metabolic regulatory mechanisms within the tissue microenvironment and accelerate scientific
discovery. The software also offers an intuitive user interface and extensive documentation, ensuring
its ease of use and accessibility.

2. Materials and Methods

2.1. Workflow of SManalyst

The SManalyst analysis workflow is illustrated in Figure 1A. It commences with the uploading
of compliant spatial metabolomics data, as detailed in Section 2.2. Upon upload, the system performs
a comprehensive data quality assessment, encompassing background region spectral consistency
(QC1), noise ion ratio (QC2), pixel and ion median intensity distribution (QC3), and missing value
patterns (QC4), with specific methodologies described in Section 2.3. Based on these quality control
results, the software executes crucial data preprocessing steps, involving the removal of pixels
identified as background and ions determined to be noise. The preprocessed data then proceeds to
the metabolite annotation module (Section 2.4), where isotopic peaks and adduct ions are first
identified. Subsequently, these are matched against a selected metabolite database, and the matching
results are comprehensively scored based on mass accuracy, isotopic peak similarity, and adduct
form presence. Following identification, the data enters the core analysis module, which includes
pattern analysis and differential analysis. The pattern analysis module offers two dimensions: at the
metabolite level, it identifies metabolic ion clusters exhibiting similar spatial expression patterns; at
the spatial pixel level, it integrates four clustering algorithms to group pixels, thereby discovering
tissue regions with similar molecular characteristics (Section 2.5). Differential analysis supports two
strategies: first, it enables comparisons between groups defined by pixel clustering results; second, it
allows users to manually delineate multiple regions of interest (ROIs) on the tissue imaging map,
assign group labels, and then perform inter-group comparisons (Section 2.6). Users can also conduct
exploratory data visualization (Section 2.7), including single-ion imaging, multi-ion imaging, and ion
co-localization analysis.
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Figure 1. SManalyst Software Workflow. Overall workflow (A); Metabolite annotation workflow (B).
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2.2. Implemention of SManalyst

SManalyst is a web-based graphical user interface (GUI) application developed using the R
Shiny framework, providing a platform for spatial metabolomics analysis. Users can access its online
version via a web browser (https://metax.genomics.cn/app/SManalyst, accessed 16 September 2025).
This version is deployed on a cloud server equipped with 128 CPU cores and 1000GB of RAM,
enabling users to directly upload their data or utilize built-in example datasets for analysis. The
interface is designed with user-friendliness as a core principle, employing an intuitive, step-by-step
workflow to guide users through analytical tasks. For users requiring local deployment, the source
code for SManalyst v1.0 is open source on GitHub (https://github.com/mzlab-research/SManalyst.git,
accessed 16 September 2025), facilitating independent installation and extension. SManalyst requires
input data in a Feature Matrix format. The first two columns of this matrix must represent the X and
Y spatial coordinates for each pixel, respectively. Subsequent columns correspond to different m/z
values (i.e., detected ion peaks), with the numerical values within the matrix cells representing the
intensity of the corresponding ion at that pixel (Supplementary Figure S1). This standardized format
ensures SManalyst’s compatibility with data generated from various spatial mass spectrometry
imaging platforms. Detailed guidelines on how to correctly format input data are available in the
software’s tutorial panel (Supplementary Figure S2).

2.3. Data Processing and Quality Assessment

Upon data upload (Supplementary Figure S3), data quality control is initiated. SManalyst’s data
processing and quality assessment workflow inherits methodologies from our previously developed
quality control software, SMQVP [29]. Initially, based on the total intensity distribution map of pixels,
users can interactively delineate pixel sets representing tissue regions and background regions. The
software then visualizes the spectra of the selected background regions to compare spectral
consistency across different background areas and calculates the correlation coefficients between
spectra to evaluate the spatial consistency of background signals (QC1, Supplementary Figure 54).
Next, the average expression levels of each ion in tissue regions versus background regions are
compared, ions enriched in tissue (Fold Change > 1) are identified, and a total intensity map of pixels
is generated based on these ions. Users can set an intensity threshold, according to which the software
classifies all pixels as “tissue” or “background” and automatically removes pixels categorized as
background (Supplementary Figure S5).

Noise ion identification employs spatial statistical methods. The quadrat test from the spatstat
package[27] is used to assess whether each ion’s spatial distribution conforms to Complete Spatial
Randomness (CSR). A “noise score” (defined as the negative logarithm base 10 of the test’s p-value)
is calculated for each ion. Ions with a noise score below a user-defined threshold are identified as
potential noise ions. The proportion of identified noise ions among all ions constitutes the QC2 metric
(Supplementary Figure S6). These noise ions will be removed in subsequent analyses.

QC3 evaluates signal intensity distribution by generating a spatial distribution map displaying
the median ion intensity of each pixel within the sample and a spectral distribution map illustrating
the overall pattern of median intensities across all ions (Supplementary Figure S7). QC4 focuses on
the issue of missing values, calculating and visualizing two key metrics: (1) the pixel missing ratio
(the proportion of undetected ions in each pixel); and (2) the ion missing ratio (the proportion of
pixels where each ion was undetected). This helps to identify areas or ions with sparse data coverage
(Supplementary Figure 57).

2.4. Metabolite Annotation

SManalyst’s metabolite annotation workflow (Figure 1B) comprises two core steps: 1) ion peak
relationship identification and 2) database matching and scoring. First, the software identifies
isotopic peaks and adduct ions within the m/z list. For isotopic identification, the isotopologues
function from the MetaboCoreUtils package [30] searches for peak pairs conforming to theoretical
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isotopic mass differences within a user-specified mass error tolerance (ppm). The moran_bv function
from the spdep package [31] then further calculates the spatial correlation of these candidate peak
pairs across spatial pixels; if the correlation exceeds a user-defined threshold, they are confirmed as
true isotopic peaks (Supplementary Figure S8). Non-monoisotopic peaks are removed and adduct
ion identification is performed on the remaining monoisotopic ions. This involves an initial screening
for ion pairs matching predefined common adduct mass differences, followed by calculation of their
spatial correlation, with final confirmation of adduct ion pairs based on a correlation threshold. For
identified isotopic and adduct ion pairs, users can select any pair for visualization (Supplementary
Figure S8).

In the database matching phase, the first step is to define the metabolite database. Users can
upload their own databases according to SManalyst’s format requirements (specific format details
are in Supplementary Figure S9), typically LC-MS/MS annotation results from the same sample type
as the spatial metabolomics data. SManalyst also incorporates built-in open-source metabolite
databases such as HMDB [32], KEGG [33] and LIPIDMAPS [34] for selection. Regarding database
selection, we recommend prioritizing self-built databases derived from identical sample types; in the
absence of such, public open-source databases can be used. The matching process differentiates based
on whether an ion has a clearly identified adduct form: for ions with a clear adduct form, the
calculated neutral mass is directly matched against molecular masses in the database; for ions
without a clearly identified adduct form, the neutral mass is calculated sequentially according to a
user-specified list of possible adduct forms with mz2mass function in MetaboCoreUltils package [30]
and then matched against the database. The check_ded function from the enviPat package [35] is
used to check the possibility of the matched molecular formula’s adduct form, eliminating impossible
identification results (e.g., a molecule like C7H3F5, lacking oxygen, cannot have an adduct form like
[M+H-H20O]+). For ions with isotopic peaks, the isopattern function from the enviPat package
calculates the theoretical isotopic pattern for the matched molecular formula, and then the
msentropy_similarity method from the msentropy package [36] calculates the similarity between the
theoretical and actual isotopic patterns. If an ion peak has multiple matching results, the software
retains all candidate results for user reference. All matching results are comprehensively scored based
on parent ion mass matching accuracy, isotopic peak distribution similarity, and the presence of a
clear adduct form. Finally, the number and proportion of ions with identification results, as well as
the distribution of m/z values corresponding to multiple identification results, are summarized
(Supplementary Figure 510).

2.5. Pattern Analysis

SManalyst’s pattern analysis module offers two complementary strategies to reveal spatial
structures within the data. The first strategy operates at the metabolite dimension, utilizing the
SpaGene [37] algorithm for spatial expression pattern clustering analysis of metabolic ions
(Supplementary Figure S11). This analysis identifies clusters of metabolic ions exhibiting highly
similar spatial expression patterns and outputs a list of specific ions contained within each cluster,
aiding in the discovery of functionally related metabolite groups. The second strategy operates at the
spatial pixel dimension, integrating four clustering methods based on the Seurat package [38,39]:
Seurat-LV (original Louvain algorithm), Seurat-LM (Louvain algorithm with multilevel refinement),
Seurat-SLM (Smart Local Moving algorithm), and UMAP-kmeans (Supplementary Figure S12). Users
can select any of these algorithms to cluster pixels, aiming to group adjacent pixels with similar
overall metabolic profiles into the same category, thereby revealing potential functionally
heterogeneous regions within the tissue sample.

2.6. Differential Analysis

SManalyst supports two flexible strategies for differential metabolite analysis. The first strategy
is based on the pixel clustering results from Section 2.5. Users can assign the clustered spatial regions
to different biological groups, and the software then compares the expression differences of each
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metabolic ion between these groups (Supplementary Figure 512). The second strategy is based on
user-defined regions of interest (ROIs). Users can interactively delineate multiple spatial regions
directly on the tissue imaging map and assign group labels to these regions, after which the software
performs inter-group comparisons (Supplementary Figure S13). Both differential analysis strategies
utilize Seurat’s[38,39]FindMarkers function to identify differentially expressed metabolites: all pixels
belonging to the same group are treated as “samples” for that group, and the average expression fold
change and significance of difference for each metabolic ion between groups are calculated. After
analysis, users can online select differential ions of interest and instantly view their spatial
distribution maps, facilitating result validation and biological interpretation.

2.7. Data Visualization

SManalyst also supports various forms of visualization exploration, including generating spatial
distribution maps for single ions (single-ion imaging), simultaneously visualizing 2-3 ions (by
mapping their intensity values to RGB color channels to create composite pseudocolor images), and
performing ion co-localization analysis (for selected ions, the software automatically calculates and
displays images of the six ions with the strongest positive and negative spatial expression
correlations, respectively) (Supplementary Figure S14). These visualization features provide users
with insights into the spatial distribution characteristics of their data.

2.8. Test Data

To demonstrate SManalyst’s functionality and performance, this study utilized spatial
metabolomics data of a 7-week-old male mouse brain coronal section collected using the AFAD-ESI
platform [5] (positive ion mode) (anatomical structures shown in Figure 2A H&E staining results).
Data acquisition parameters included: spray solvent of acetonitrile and water (80:20 v/v), AFADESI
extraction gas flow rate of 45 L/min. Spatial resolution was 100 micrometers, and mass spectrometry
detection was performed using a Q Exactive mass spectrometer (Thermo Fisher) with a primary
resolution of 70,000. Raw data were processed using Cardinal [10] software, ultimately generating a
feature matrix containing 14,260 spatial pixels and 3,044 unique ion peaks as analytical input. For
reproducibility, this example peak table matrix is available via SManalyst’s tutorial panel.

To support ion peak annotation in spatial metabolomics, we obtained LC-MS/MS annotation
results from an adjacent mouse brain slice by collecting untargeted metabolomics data using the
following method: 25 mg of mouse brain was weighed, precipitant (methanol: acetonitrile: water =
2:2:1) was added. After tissue homogenization, precipitation occurred at -20°C, and the supernatant
was collected by centrifugation and freeze-dried. It was then reconstituted with 50% methanol, and
the supernatant was collected after centrifugation for analysis. Chromatographic separation was
performed using an ACQUITY UPLC system (Waters) with a BEH C18 column (1.7 pm, 2.1x100 mm).
Mobile phase: for positive ion mode, water/methanol containing 0.1% formic acid; for negative ion
mode, water/95% methanol containing 10 mM ammonium formate. Gradient elution (0-12 min: 2—
98% organic phase) was used, with a flow rate of 0.35 mL/min, column temperature of 45°C, and
injection volume of 5 puL. Mass spectrometry detection was performed using a Q Exactive mass
spectrometer (Thermo Fisher), with spray voltages of 3.80/3.20 kV for positive modes. Primary MS
resolution was 70,000, secondary resolution was 17,500, and stepped collision energy (20/40/60 eV)
was applied. Data were processed with Compound Discoverer 3.3 (parent ion mass deviation < 5
ppm), and metabolites were identified through a combined approach using the BGI Metabolome
Database, mzCloud, and HMDB, KEGG, and LIPIDMAPS databases.
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Figure 2. Mouse brain spatial metabolomics data quality control. H&E staining image (A); Selection of
background and tissue regions (B); QC2: Noise ion distribution (C); QC1: Background region consistency:
spectra of background regions (D); QC1: correlation of background spectra (E); QC3: m/z intensity distribution
(F); Pixel intensity distribution (G); QC4: m/z missing rate distribution (H); QC4: Pixel missing value
distribution (I).

3. Results and Discussion

To systematically evaluate SManalyst’s analytical capabilities and integrated workflow, we used
a spatial metabolomics dataset of mouse brain coronal sections for demonstration. This section
sequentially showcases the tool’s performance in core aspects, including data preprocessing and
quality control, metabolite annotation, spatial pattern discovery, and differential analysis and
visualization.

3.1. Data Quality Control and Preprocessing

SManalyst developed a multi-dimensional visualization strategy to comprehensively assess data
quality and completeness. The workflow begins with evaluating background signal stability. Using
the software’s lasso tool, multiple background and tissue regions were selected (Figure 2B). Visual
comparison of the mass spectra (Figure 2D) revealed high similarity across different background
regions, with no signs of polymer contaminants. Further quantitative analysis using a spectral
similarity heatmap (Figure 2E) showed correlation coefficients above 0.99 among background
regions, confirming high consistency in background areas and stability of the instrument during data
acquisition. For precise removal of background pixels, SManalyst first identifies ions significantly
enriched in tissue regions (tissue/background Fold Change > 1) and constructs a total intensity image
of pixels based on these ions. By setting a total ion intensity threshold of 107.45, background pixels
were clearly identified and effectively removed (Supplementary Figure S5).
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A core aspect of quality control is identifying and filtering noise ions (i.e., ions with random
spatial distributions). The noise score distribution for all ions is shown in Figure 2C. To validate the
effectiveness of the noise score, we visualized the spatial distribution of representative ions near the
noise threshold. Results showed that ions with a score of approximately 10 lacked any recognizable
spatial patterns, consistent with noise characteristics (Supplementary Figure S15A); whereas ions
with scores of 30 and 50 exhibited clear, non-random spatial aggregation patterns (Supplementary
Figure S15B,C). Based on this observation, we set the noise score threshold at 30, successfully filtering
out randomly distributed noise ions and ultimately retaining 61% of ions for downstream in-depth
analysis (Supplementary Figure S6).

Further quality control focused on the overall characteristics and completeness of the data.
Visualization of ion intensity distribution (Figure 2F) and pixel total intensity distribution (Figure
2G) revealed that the total pixel cumulative intensity reached approximately 7x107, with generally
high individual ion intensities (>10%). However, signal intensity decreased in the high m/z region (>
800), possibly related to lower abundance of lipid metabolites. Finally, QC4 assessed the distribution
of missing values within the dataset. At the pixel level, the missing rate for most pixels was below
10% (Figure 2H). At the ion level, the missing rate for most ions across the entire dataset was below
5% (Figure 2I). This information provides crucial insights for understanding data limitations and
guiding subsequent analysis strategies.

3.2. Metabolite Annotation

Metabolite annotation forms the foundation for subsequent biological interpretation. The first
step in metabolite annotation is the identification of isotopic peaks and adduct ions in the mass
spectrometry data. Identified isotopic peaks accounted for 5.92% of the total ion peaks
(Supplementary Figure S8). Figure 3A displays a typical isotopic peak cluster, where the
monoisotopic intensity is higher than non-monoisotopic peaks, and their spatial distributions are
similar. Figure 3C further shows that high-intensity ions generally possess isotopic peak clusters. For
adduct ion identification, we considered common adduct forms ([M+H]*, [M+K]*, [M+Na]*,
[M+NH4]*, [M+H-H2QJ"), identifying adduct ions comprising 4.19% of the total ions (Supplementary
Figure S8). Figure 3B illustrates a typical adduct ion peak, while Figure 3D shows the distribution of
ion numbers with different adduct forms. Besides [M+H]*, the proportions of [M+Na]* and [M+NH4]*
were also relatively high, a pattern consistent with typical spatial metabolomics data [40].

During the data identification phase, LC-MS/MS annotation results from mouse brain
(comprising 1269 metabolites with identification levels 1-3) were selected as a self-built library for
metabolite annotation (Supplementary Figure S10). By matching the neutral mass of spatial
metabolomics ions with the self-built library and integrating similarity scores for isotopic distribution
and adduct information for comprehensive scoring, we successfully identified 669 ions (Figure 3E).
Among these, 374 ions had a single annotation result, 148 ions had two annotation results, and 147
ions had three or more annotation results (Figure 3F).

3.3. Spatial Pattern Discovery

Elucidating the spatial distribution patterns of metabolites within tissues is a core objective of
spatial metabolomics. SManalyst achieves this through two analytical modules. First, metabolite
spatial co-expression pattern analysis revealed eight major metabolite spatial expression patterns
within mouse brain tissue (Figure 3A, Supplementary Figure S11). These patterns clearly
demonstrate the synergistic enrichment and regional specificity of metabolites in different brain
regions. For instance, Pattern 4 showed high expression primarily in the cerebral cortex and low
expression in the midbrain; Pattern 5 was complementary to Pattern 6; Pattern 8 was similar to
Pattern 4 but lower in the Entorhinal area; and Pattern 7 displayed unique enrichment characteristics
in the tissue edge regions. These synergistic or complementary metabolite expression patterns
strongly suggest specific metabolic network activities in different functional brain regions.
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Figure 3. Spatial metabolomics ion annotation. Typical identified isotopic peak pairs (A); Overall isotopic peak
distribution (B); Typical identified adduct ion pairs (C); Overall distribution of adduct ion forms (D);
Proportion of ion peaks with annotation results (E); Distribution of one-to-many matching results for ion peaks
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Second, the UMAP-kmeans algorithm identified 25 spatially heterogeneous categories at the
pixel level (Figure 3B). Comparison of the clustering results with the Allen Mouse Brain Atlas [41]
revealed high consistency with known anatomical structures. Major anatomical divisions, such as the
cerebral cortex, hippocampus, midbrain, hindbrain, and fiber tracts, were clearly mapped in the
clustering results. However, some fine nuclear structures, like the Periaqueductal gray and Superior
colliculus, were grouped together in cluster 1 and could not be distinguished.

3.4. Spatial Differential Analysis

Identifying region-specific metabolites is crucial for a deeper understanding of brain region
function. SManalyst provides flexible analytical tools for this purpose, supporting spatial metabolic
differential analysis based on clustering results or manually defined regions of interest (ROI). To
explore metabolic feature differentiation between different functional systems, we compared the
midbrain (MB), composed of clusters 6, and 1, with the hippocampal region (HIP), composed of
clusters 23 and 12 (Figure 4C, Supplementary Figure 512). HIP plays a central role in cognitive
functions such as spatial memory and navigation learning, while the selected MB regions primarily
involve MBmot for motor output and coordination, and MBsen for sensory signal reception and
processing. Differential results (Figure 4D) showed that 76 metabolites were significantly
upregulated in the MB group, with 27 annotated and 17 uniquely annotated; while 82 metabolites
were significantly upregulated in the HIP group, with 29 annotated and 16 uniquely annotated.
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Figure 4. Spatial pattern identification and differential analysis of mouse brain data. Metabolite spatial
expression patterns (A); Pixel clustering patterns (B); Selection of comparison regions based on clustering

results (C); Differential volcano plot (D); Functional enrichment analysis for differential results (E).

Pathway enrichment analysis of uniquely identified differential metabolites using
Metaboanalyst [42] revealed that these metabolic features were highly consistent with regional
functions. Metabolites upregulated in HIP (e.g., taurine and sphingolipids) were enriched in
pathways such as taurine metabolism, sphingolipid metabolism, and glycerophospholipid
metabolism. These pathways are involved in neuroprotection, antioxidant stress, and cell membrane
stability, which aligns with the cognitive functional demands of the HIP. Conversely, metabolites
upregulated in MBmot and MBsen (e.g., glycerophospholipids and linoleic acid derivatives) were
enriched in pathways such as glycerophospholipid metabolism, linoleic acid metabolism, and
pyruvate metabolism. These pathways emphasize energy production and cell membrane fluidity,
consistent with the high energy consumption in motor regions and rapid signal transmission in
sensory regions. Overall, the enrichment patterns of metabolites and pathways validated the
biological basis of regional functions.

In addition to automated region selection based on clustering, SManalyst also supports manual
definition of specific anatomical regions for targeted research. For example, by manually outlining
the entorhinal cortex and primary visual cortex (Supplementary Figure S13: Primary visual cortex:
regions 1 and 2; Entorhinal cortex: regions 3 and 4) and performing differential analysis, we
successfully identified 9 significantly upregulated metabolites in the entorhinal cortex and 20
significantly upregulated metabolites in the primary visual cortex. This integrated analytical
workflow fully demonstrates SManalyst’s powerful utility in flexibly addressing scientific research
questions within a single environment.

4. Conclusions

SManalyst, as an innovative open-source platform, offers the first complete solution for spatial
metabolomics research, integrating data quality control, preprocessing, spatial pattern analysis,
differential comparison, and metabolite annotation. It effectively addresses analytical bottlenecks in
this field caused by fragmented tools and a lack of standardized workflows. Its core value lies in:
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pioneering a multi-dimensional systematic data quality assessment and visualization; providing
metabolite annotation based on multi-evidence scoring; and offering complementary perspectives for
spatial heterogeneity analysis by integrating metabolite spatial expression pattern analysis with pixel
clustering, which, combined with flexible differential analysis strategies, enhances analytical depth
and reliability. Compared to existing tools that focus on single steps, SManalyst seamlessly connects
key analytical steps through a user-friendly web interface, significantly improving analytical
efficiency and accessibility, especially benefiting researchers without computational backgrounds.
The open-source nature of the tool ensures its extensibility and potential for community-driven
development. Future versions will focus on integrating more clustering algorithms and pattern
recognition methods, addressing batch effects in multi-section analysis, and incorporating more
suitable differential analysis methods and MS/MS spectral annotation capabilities to continuously
meet the evolving analytical needs of the spatial metabolomics field.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figure S1: Data Upload Format Requirements for SManalyst Software; Figure S2:
SManalyst Tutorial Interface; Figure S3: Data Upload and Visualization Interface; Figure S4: QC1. Background
Region Consistency Interface; Figure S5: Process1. Background Pixel Removal Interface; Figure S6: QC2. Noise
Ion Proportion Interface; Figure S7: QC3&4. Signal Intensity and Missing Value Assessment Interface; Figure S8:
Isotope Peak and Adduct Ion Peak Identification Interface; Figure S9: Format Requirements for Uploading
Custom Library Files; Figure 510: Metabolite Identification Interface; Figure S11: Metabolite Spatial Pattern
Analysis Interface; Figure S12: Spatial Metabolic Clustering and Cluster-Based Differential Analysis Interface;
Figure S13: Differential Metabolic Analysis Interface Based on Manual Selection; Figure S14: Visualization
Interface; Figure S15: Spatial Distribution of Ions Under Different Noise Scores. Imaging of Ions with Noise
Scores of 10 (A), 30 (B), and 50 (C).
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SManalyst ~ Spatial Metabolomics Data Analyst
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GUI Graphical User Interface
ROI Region of Interest

HIP Hippocampus

MB Midbrain

H&E Hematoxylin and Eosin
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