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Abstract 

Spatial metabolomics is a rapidly advancing field offering powerful insights into metabolic 
heterogeneity in biological tissues. However, its widespread adoption is hindered by fragmented 
tools and the lack of comprehensive, open-source GUI software covering the full analytical 
workflow (quality control, preprocessing, identification, pattern, and differential analysis). To 
address this, we developed SManalyst, an open-source, integrated web-based platform. SManalyst 
consolidates core functionalities, including multi-dimensional data quality assessment (background 
consistency, noise, intensity, missing values), a comprehensive metabolite annotation scoring 
system (mass accuracy, isotopic similarity, adduct evidence), and dual-dimension spatial pattern 
discovery (metabolite co-expression and pixel clustering). It also offers flexible differential analysis 
(cluster- or user-defined regions). With its intuitive GUI and modular workflow, SManalyst 
significantly lowers the analysis barrier. Tested with a mouse brain dataset, SManalyst efficiently 
handles large-scale data (e.g., >14,000 pixels, >3,000 ion peaks), effectively filling a critical gap in 
integrated analytical solutions for spatial metabolomics. The platform is freely accessible at 
https://metax.genomics.cn/app/smanalyst. 

Keywords: spatial metabolomics; metabolite annotation; web-based platform; quality control; 
spatial pattern discovery; differential analysis 

 

1. Introduction 

Spatial metabolomics is a rapidly advancing interdisciplinary field that integrates metabolite 
information with its spatial distribution within tissue samples, offering a powerful approach to 
elucidate the heterogeneity of metabolic processes in complex biological systems [1–3]. Mass 
Spectrometry Imaging (MSI) techniques, such as Matrix-Assisted Laser Desorption/Ionization 
(MALDI) [1,4] Desorption Electrospray Ionization (DESI)[5] and Secondary Ion Mass Spectrometry 
(SIMS) [6], are core technologies driving this field’s development. However, the inherent complexity 
and vastness of spatial metabolomics data [7], pose significant challenges in areas like data 
preprocessing, quality control, metabolite annotation, and statistical analysis [8,9]. Therefore, 
developing user-friendly, functionally comprehensive data analysis platforms is crucial for fully 
leveraging the scientific potential of this technology and advancing the field. 

Despite some progress in certain aspects of spatial metabolomics data analysis, particularly in 
peak detection and extraction, existing tools still show notable deficiencies in crucial downstream 
analytical processes, including systematic data preprocessing, comprehensive quality control, and in-
depth statistical analysis [17,18]. Table 1 summarizes the functional features of currently used 
software. While mainstream open-source tools like Cardinal [10], SmartGate [19] can perform basic 
data preprocessing, visualization, and clustering, they generally lack robust data quality control 
modules and powerful metabolite annotation capabilities. Conversely, some more feature-rich tools, 
such as MSImage [20], MSiReader [12], are commercial softwares. Furthermore, although specialized 
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tools exist for specific stages like data preprocessing [21–23], visualization [24,25], pattern analysis 
[26,27], or identification [13,28], their fragmented functionalities significantly raise the barrier to 
entry, especially for researchers without a strong computational background. These limitations of 
current open-source tools severely impede the field’s progress, highlighting an urgent need for an 
open-source platform that integrates core functionalities such as data quality control, preprocessing, 
statistical analysis, and metabolite annotation. 

Table 1. Comparison of Common Spatial Metabolomics Software. 

Category Specific Comparison Item 

SM
analyst 

C
ardinal [10]  

M
assIm

ager[11]  

M
SiR

eader[12]  

M
ETA

SPA
C

E[13]  

M
ulti-M

SIProcessor[14]  

M
2aia[15]  

Sm
artG

ate[16]  

Visualization 

Single-ion Imaging ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

Colocalization Analysis ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 

Multi-ion Imaging ✅ ❌ ❌ ✅ ❌ ❌ ❌ ❌ 

Quality Control 

Background Consistency ✅ ❌ ❌ ❌ ❌ ✅ ❌ ❌ 

Intensity ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

Missing Values ✅ ❌ ❌ ✅ ✅ ❌ ❌ ❌ 

Noise Ions ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 

Pattern Analysis 
Pixel Clustering Patterns ✅ ✅ ✅ ✅ ❌ ✅ ✅ ✅ 

Ion Spatial Expression Patterns ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 

Differential 

Analysis 

Differential Analysis Based on 

Manual Region Selection 
✅ ✅ ✅ ✅ ❌ ✅ ❌ ❌ 

Differential Analysis Based on 

Clustered Regions 
✅ ❌ ❌ ❌ ❌ ❌ ❌ ✅ 

Metabolite 

Identification 

Isotope Recognition ✅ ❌ ✅ ✅ ✅ ❌ ✅ ❌ 

Adduct Ion Recognition ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 

Identification Result Scoring ✅ ❌ ✅ ✅ ✅ ❌ ❌ ❌ 

Others 

Open Source ✅ ✅ ❌ ❌ ✅ ✅ ✅ ✅ 

Graphical User Interface (GUI) ✅ ❌ ✅ ✅ ✅ ✅ ✅ ✅ 

Year of Last Update 2025 2023 2024 2018 2016 2023 2021 2023 

To address these challenges, we developed SManalyst (Spatial Metabolomics Data Analyst), an 
innovative open-source spatial metabolomics analysis software implemented in R. SManalyst 
provides a complete analytical workflow, spanning from data visualization and rigorous quality 
control to diverse statistical analysis and in-depth metabolite annotation. Its core features include: (1) 
a systematic data quality control module that comprehensively assesses dataset quality across 
multiple dimensions, such as background signal consistency, noise ion proportion, ion intensity 
distribution, and missing value patterns; (2) a comprehensive metabolite annotation and scoring 
system that assigns reliability scores to identification results by combining multiple lines of evidence, 
including mass matching precision, adduct ion forms, and isotopic distribution matching. (3) multi-
dimensional pattern discovery capabilities that support exploring expression patterns based on both 
spatial pixel clustering and metabolite molecular spatial expression profiles; (4) flexible differential 
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analysis strategies, allowing users to delineate regions of interest (ROIs) manually or automatically 
generate them based on clustering results for differential metabolite analysis; and By integrating 
these advanced functionalities into an open-source platform, SManalyst significantly enhances the 
efficiency and depth of spatial metabolomics data analysis, empowering researchers to delve deeper 
into metabolic regulatory mechanisms within the tissue microenvironment and accelerate scientific 
discovery. The software also offers an intuitive user interface and extensive documentation, ensuring 
its ease of use and accessibility. 

2. Materials and Methods 

2.1. Workflow of SManalyst 

The SManalyst analysis workflow is illustrated in Figure 1A. It commences with the uploading 
of compliant spatial metabolomics data, as detailed in Section 2.2. Upon upload, the system performs 
a comprehensive data quality assessment, encompassing background region spectral consistency 
(QC1), noise ion ratio (QC2), pixel and ion median intensity distribution (QC3), and missing value 
patterns (QC4), with specific methodologies described in Section 2.3. Based on these quality control 
results, the software executes crucial data preprocessing steps, involving the removal of pixels 
identified as background and ions determined to be noise. The preprocessed data then proceeds to 
the metabolite annotation module (Section 2.4), where isotopic peaks and adduct ions are first 
identified. Subsequently, these are matched against a selected metabolite database, and the matching 
results are comprehensively scored based on mass accuracy, isotopic peak similarity, and adduct 
form presence. Following identification, the data enters the core analysis module, which includes 
pattern analysis and differential analysis. The pattern analysis module offers two dimensions: at the 
metabolite level, it identifies metabolic ion clusters exhibiting similar spatial expression patterns; at 
the spatial pixel level, it integrates four clustering algorithms to group pixels, thereby discovering 
tissue regions with similar molecular characteristics (Section 2.5). Differential analysis supports two 
strategies: first, it enables comparisons between groups defined by pixel clustering results; second, it 
allows users to manually delineate multiple regions of interest (ROIs) on the tissue imaging map, 
assign group labels, and then perform inter-group comparisons (Section 2.6). Users can also conduct 
exploratory data visualization (Section 2.7), including single-ion imaging, multi-ion imaging, and ion 
co-localization analysis. 

 
Figure 1. SManalyst Software Workflow. Overall workflow (A); Metabolite annotation workflow (B). 
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2.2. Implemention of SManalyst 

SManalyst is a web-based graphical user interface (GUI) application developed using the R 
Shiny framework, providing a platform for spatial metabolomics analysis. Users can access its online 
version via a web browser (https://metax.genomics.cn/app/SManalyst, accessed 16 September 2025). 
This version is deployed on a cloud server equipped with 128 CPU cores and 1000GB of RAM, 
enabling users to directly upload their data or utilize built-in example datasets for analysis. The 
interface is designed with user-friendliness as a core principle, employing an intuitive, step-by-step 
workflow to guide users through analytical tasks. For users requiring local deployment, the source 
code for SManalyst v1.0 is open source on GitHub (https://github.com/mzlab-research/SManalyst.git, 
accessed 16 September 2025), facilitating independent installation and extension. SManalyst requires 
input data in a Feature Matrix format. The first two columns of this matrix must represent the X and 
Y spatial coordinates for each pixel, respectively. Subsequent columns correspond to different m/z 
values (i.e., detected ion peaks), with the numerical values within the matrix cells representing the 
intensity of the corresponding ion at that pixel (Supplementary Figure S1). This standardized format 
ensures SManalyst’s compatibility with data generated from various spatial mass spectrometry 
imaging platforms. Detailed guidelines on how to correctly format input data are available in the 
software’s tutorial panel (Supplementary Figure S2). 

2.3. Data Processing and Quality Assessment 

Upon data upload (Supplementary Figure S3), data quality control is initiated. SManalyst’s data 
processing and quality assessment workflow inherits methodologies from our previously developed 
quality control software, SMQVP [29]. Initially, based on the total intensity distribution map of pixels, 
users can interactively delineate pixel sets representing tissue regions and background regions. The 
software then visualizes the spectra of the selected background regions to compare spectral 
consistency across different background areas and calculates the correlation coefficients between 
spectra to evaluate the spatial consistency of background signals (QC1, Supplementary Figure S4). 
Next, the average expression levels of each ion in tissue regions versus background regions are 
compared, ions enriched in tissue (Fold Change > 1) are identified, and a total intensity map of pixels 
is generated based on these ions. Users can set an intensity threshold, according to which the software 
classifies all pixels as “tissue” or “background” and automatically removes pixels categorized as 
background (Supplementary Figure S5). 

Noise ion identification employs spatial statistical methods. The quadrat test from the spatstat 
package[27] is used to assess whether each ion’s spatial distribution conforms to Complete Spatial 
Randomness (CSR). A “noise score” (defined as the negative logarithm base 10 of the test’s p-value) 
is calculated for each ion. Ions with a noise score below a user-defined threshold are identified as 
potential noise ions. The proportion of identified noise ions among all ions constitutes the QC2 metric 
(Supplementary Figure S6). These noise ions will be removed in subsequent analyses. 

QC3 evaluates signal intensity distribution by generating a spatial distribution map displaying 
the median ion intensity of each pixel within the sample and a spectral distribution map illustrating 
the overall pattern of median intensities across all ions (Supplementary Figure S7). QC4 focuses on 
the issue of missing values, calculating and visualizing two key metrics: (1) the pixel missing ratio 
(the proportion of undetected ions in each pixel); and (2) the ion missing ratio (the proportion of 
pixels where each ion was undetected). This helps to identify areas or ions with sparse data coverage 
(Supplementary Figure S7). 

2.4. Metabolite Annotation 

SManalyst’s metabolite annotation workflow (Figure 1B) comprises two core steps: 1) ion peak 
relationship identification and 2) database matching and scoring. First, the software identifies 
isotopic peaks and adduct ions within the m/z list. For isotopic identification, the isotopologues 
function from the MetaboCoreUtils package [30] searches for peak pairs conforming to theoretical 
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isotopic mass differences within a user-specified mass error tolerance (ppm). The moran_bv function 
from the spdep package [31] then further calculates the spatial correlation of these candidate peak 
pairs across spatial pixels; if the correlation exceeds a user-defined threshold, they are confirmed as 
true isotopic peaks (Supplementary Figure S8). Non-monoisotopic peaks are removed and adduct 
ion identification is performed on the remaining monoisotopic ions. This involves an initial screening 
for ion pairs matching predefined common adduct mass differences, followed by calculation of their 
spatial correlation, with final confirmation of adduct ion pairs based on a correlation threshold. For 
identified isotopic and adduct ion pairs, users can select any pair for visualization (Supplementary 
Figure S8). 

In the database matching phase, the first step is to define the metabolite database. Users can 
upload their own databases according to SManalyst’s format requirements (specific format details 
are in Supplementary Figure S9), typically LC-MS/MS annotation results from the same sample type 
as the spatial metabolomics data. SManalyst also incorporates built-in open-source metabolite 
databases such as HMDB [32], KEGG [33] and LIPIDMAPS [34] for selection. Regarding database 
selection, we recommend prioritizing self-built databases derived from identical sample types; in the 
absence of such, public open-source databases can be used. The matching process differentiates based 
on whether an ion has a clearly identified adduct form: for ions with a clear adduct form, the 
calculated neutral mass is directly matched against molecular masses in the database; for ions 
without a clearly identified adduct form, the neutral mass is calculated sequentially according to a 
user-specified list of possible adduct forms with mz2mass function in MetaboCoreUtils package [30] 
and then matched against the database. The check_ded function from the enviPat package [35] is 
used to check the possibility of the matched molecular formula’s adduct form, eliminating impossible 
identification results (e.g., a molecule like C7H3F5, lacking oxygen, cannot have an adduct form like 
[M+H-H2O]+). For ions with isotopic peaks, the isopattern function from the enviPat package 
calculates the theoretical isotopic pattern for the matched molecular formula, and then the 
msentropy_similarity method from the msentropy package [36] calculates the similarity between the 
theoretical and actual isotopic patterns. If an ion peak has multiple matching results, the software 
retains all candidate results for user reference. All matching results are comprehensively scored based 
on parent ion mass matching accuracy, isotopic peak distribution similarity, and the presence of a 
clear adduct form. Finally, the number and proportion of ions with identification results, as well as 
the distribution of m/z values corresponding to multiple identification results, are summarized 
(Supplementary Figure S10). 

2.5. Pattern Analysis 

SManalyst’s pattern analysis module offers two complementary strategies to reveal spatial 
structures within the data. The first strategy operates at the metabolite dimension, utilizing the 
SpaGene [37] algorithm for spatial expression pattern clustering analysis of metabolic ions 
(Supplementary Figure S11). This analysis identifies clusters of metabolic ions exhibiting highly 
similar spatial expression patterns and outputs a list of specific ions contained within each cluster, 
aiding in the discovery of functionally related metabolite groups. The second strategy operates at the 
spatial pixel dimension, integrating four clustering methods based on the Seurat package [38,39]: 
Seurat-LV (original Louvain algorithm), Seurat-LM (Louvain algorithm with multilevel refinement), 
Seurat-SLM (Smart Local Moving algorithm), and UMAP-kmeans (Supplementary Figure S12). Users 
can select any of these algorithms to cluster pixels, aiming to group adjacent pixels with similar 
overall metabolic profiles into the same category, thereby revealing potential functionally 
heterogeneous regions within the tissue sample. 

2.6. Differential Analysis 

SManalyst supports two flexible strategies for differential metabolite analysis. The first strategy 
is based on the pixel clustering results from Section 2.5. Users can assign the clustered spatial regions 
to different biological groups, and the software then compares the expression differences of each 
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metabolic ion between these groups (Supplementary Figure S12). The second strategy is based on 
user-defined regions of interest (ROIs). Users can interactively delineate multiple spatial regions 
directly on the tissue imaging map and assign group labels to these regions, after which the software 
performs inter-group comparisons (Supplementary Figure S13). Both differential analysis strategies 
utilize Seurat’s[38,39]FindMarkers function to identify differentially expressed metabolites: all pixels 
belonging to the same group are treated as “samples” for that group, and the average expression fold 
change and significance of difference for each metabolic ion between groups are calculated. After 
analysis, users can online select differential ions of interest and instantly view their spatial 
distribution maps, facilitating result validation and biological interpretation. 

2.7. Data Visualization 

SManalyst also supports various forms of visualization exploration, including generating spatial 
distribution maps for single ions (single-ion imaging), simultaneously visualizing 2-3 ions (by 
mapping their intensity values to RGB color channels to create composite pseudocolor images), and 
performing ion co-localization analysis (for selected ions, the software automatically calculates and 
displays images of the six ions with the strongest positive and negative spatial expression 
correlations, respectively) (Supplementary Figure S14). These visualization features provide users 
with insights into the spatial distribution characteristics of their data. 

2.8. Test Data 

To demonstrate SManalyst’s functionality and performance, this study utilized spatial 
metabolomics data of a 7-week-old male mouse brain coronal section collected using the AFAD-ESI 
platform [5] (positive ion mode) (anatomical structures shown in Figure 2A H&E staining results). 
Data acquisition parameters included: spray solvent of acetonitrile and water (80:20 v/v), AFADESI 
extraction gas flow rate of 45 L/min. Spatial resolution was 100 micrometers, and mass spectrometry 
detection was performed using a Q Exactive mass spectrometer (Thermo Fisher) with a primary 
resolution of 70,000. Raw data were processed using Cardinal [10] software, ultimately generating a 
feature matrix containing 14,260 spatial pixels and 3,044 unique ion peaks as analytical input. For 
reproducibility, this example peak table matrix is available via SManalyst’s tutorial panel. 

To support ion peak annotation in spatial metabolomics, we obtained LC-MS/MS annotation 
results from an adjacent mouse brain slice by collecting untargeted metabolomics data using the 
following method: 25 mg of mouse brain was weighed, precipitant (methanol: acetonitrile: water = 
2:2:1) was added. After tissue homogenization, precipitation occurred at -20°C, and the supernatant 
was collected by centrifugation and freeze-dried. It was then reconstituted with 50% methanol, and 
the supernatant was collected after centrifugation for analysis. Chromatographic separation was 
performed using an ACQUITY UPLC system (Waters) with a BEH C18 column (1.7 μm, 2.1×100 mm). 
Mobile phase: for positive ion mode, water/methanol containing 0.1% formic acid; for negative ion 
mode, water/95% methanol containing 10 mM ammonium formate. Gradient elution (0–12 min: 2–
98% organic phase) was used, with a flow rate of 0.35 mL/min, column temperature of 45°C, and 
injection volume of 5 μL. Mass spectrometry detection was performed using a Q Exactive mass 
spectrometer (Thermo Fisher), with spray voltages of 3.80/3.20 kV for positive modes. Primary MS 
resolution was 70,000, secondary resolution was 17,500, and stepped collision energy (20/40/60 eV) 
was applied. Data were processed with Compound Discoverer 3.3 (parent ion mass deviation < 5 
ppm), and metabolites were identified through a combined approach using the BGI Metabolome 
Database, mzCloud, and HMDB, KEGG, and LIPIDMAPS databases. 
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Figure 2. Mouse brain spatial metabolomics data quality control. H&E staining image (A); Selection of 
background and tissue regions (B); QC2: Noise ion distribution (C); QC1: Background region consistency: 

spectra of background regions (D); QC1: correlation of background spectra (E); QC3: m/z intensity distribution 
(F); Pixel intensity distribution (G); QC4: m/z missing rate distribution (H); QC4: Pixel missing value 

distribution (I). 

3. Results and Discussion 

To systematically evaluate SManalyst’s analytical capabilities and integrated workflow, we used 
a spatial metabolomics dataset of mouse brain coronal sections for demonstration. This section 
sequentially showcases the tool’s performance in core aspects, including data preprocessing and 
quality control, metabolite annotation, spatial pattern discovery, and differential analysis and 
visualization. 

3.1. Data Quality Control and Preprocessing 

SManalyst developed a multi-dimensional visualization strategy to comprehensively assess data 
quality and completeness. The workflow begins with evaluating background signal stability. Using 
the software’s lasso tool, multiple background and tissue regions were selected (Figure 2B). Visual 
comparison of the mass spectra (Figure 2D) revealed high similarity across different background 
regions, with no signs of polymer contaminants. Further quantitative analysis using a spectral 
similarity heatmap (Figure 2E) showed correlation coefficients above 0.99 among background 
regions, confirming high consistency in background areas and stability of the instrument during data 
acquisition. For precise removal of background pixels, SManalyst first identifies ions significantly 
enriched in tissue regions (tissue/background Fold Change > 1) and constructs a total intensity image 
of pixels based on these ions. By setting a total ion intensity threshold of 107.45, background pixels 
were clearly identified and effectively removed (Supplementary Figure S5). 
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A core aspect of quality control is identifying and filtering noise ions (i.e., ions with random 
spatial distributions). The noise score distribution for all ions is shown in Figure 2C. To validate the 
effectiveness of the noise score, we visualized the spatial distribution of representative ions near the 
noise threshold. Results showed that ions with a score of approximately 10 lacked any recognizable 
spatial patterns, consistent with noise characteristics (Supplementary Figure S15A); whereas ions 
with scores of 30 and 50 exhibited clear, non-random spatial aggregation patterns (Supplementary 
Figure S15B,C). Based on this observation, we set the noise score threshold at 30, successfully filtering 
out randomly distributed noise ions and ultimately retaining 61% of ions for downstream in-depth 
analysis (Supplementary Figure S6). 

Further quality control focused on the overall characteristics and completeness of the data. 
Visualization of ion intensity distribution (Figure 2F) and pixel total intensity distribution (Figure 
2G) revealed that the total pixel cumulative intensity reached approximately 7×10⁷, with generally 
high individual ion intensities (>10⁴). However, signal intensity decreased in the high m/z region (> 
800), possibly related to lower abundance of lipid metabolites. Finally, QC4 assessed the distribution 
of missing values within the dataset. At the pixel level, the missing rate for most pixels was below 
10% (Figure 2H). At the ion level, the missing rate for most ions across the entire dataset was below 
5% (Figure 2I). This information provides crucial insights for understanding data limitations and 
guiding subsequent analysis strategies. 

3.2. Metabolite Annotation 

Metabolite annotation forms the foundation for subsequent biological interpretation. The first 
step in metabolite annotation is the identification of isotopic peaks and adduct ions in the mass 
spectrometry data. Identified isotopic peaks accounted for 5.92% of the total ion peaks 
(Supplementary Figure S8). Figure 3A displays a typical isotopic peak cluster, where the 
monoisotopic intensity is higher than non-monoisotopic peaks, and their spatial distributions are 
similar. Figure 3C further shows that high-intensity ions generally possess isotopic peak clusters. For 
adduct ion identification, we considered common adduct forms ([M+H]⁺, [M+K]⁺, [M+Na]⁺, 
[M+NH4]⁺, [M+H-H2O]⁺), identifying adduct ions comprising 4.19% of the total ions (Supplementary 
Figure S8). Figure 3B illustrates a typical adduct ion peak, while Figure 3D shows the distribution of 
ion numbers with different adduct forms. Besides [M+H]⁺, the proportions of [M+Na]⁺ and [M+NH4]⁺ 
were also relatively high, a pattern consistent with typical spatial metabolomics data [40]. 

During the data identification phase, LC-MS/MS annotation results from mouse brain 
(comprising 1269 metabolites with identification levels 1–3) were selected as a self-built library for 
metabolite annotation (Supplementary Figure S10). By matching the neutral mass of spatial 
metabolomics ions with the self-built library and integrating similarity scores for isotopic distribution 
and adduct information for comprehensive scoring, we successfully identified 669 ions (Figure 3E). 
Among these, 374 ions had a single annotation result, 148 ions had two annotation results, and 147 
ions had three or more annotation results (Figure 3F). 

3.3. Spatial Pattern Discovery 

Elucidating the spatial distribution patterns of metabolites within tissues is a core objective of 
spatial metabolomics. SManalyst achieves this through two analytical modules. First, metabolite 
spatial co-expression pattern analysis revealed eight major metabolite spatial expression patterns 
within mouse brain tissue (Figure 3A, Supplementary Figure S11). These patterns clearly 
demonstrate the synergistic enrichment and regional specificity of metabolites in different brain 
regions. For instance, Pattern 4 showed high expression primarily in the cerebral cortex and low 
expression in the midbrain; Pattern 5 was complementary to Pattern 6; Pattern 8 was similar to 
Pattern 4 but lower in the Entorhinal area; and Pattern 7 displayed unique enrichment characteristics 
in the tissue edge regions. These synergistic or complementary metabolite expression patterns 
strongly suggest specific metabolic network activities in different functional brain regions. 
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Figure 3. Spatial metabolomics ion annotation. Typical identified isotopic peak pairs (A); Overall isotopic peak 

distribution (B); Typical identified adduct ion pairs (C); Overall distribution of adduct ion forms (D); 
Proportion of ion peaks with annotation results (E); Distribution of one-to-many matching results for ion peaks 

(F). 

Second, the UMAP-kmeans algorithm identified 25 spatially heterogeneous categories at the 
pixel level (Figure 3B). Comparison of the clustering results with the Allen Mouse Brain Atlas [41] 
revealed high consistency with known anatomical structures. Major anatomical divisions, such as the 
cerebral cortex, hippocampus, midbrain, hindbrain, and fiber tracts, were clearly mapped in the 
clustering results. However, some fine nuclear structures, like the Periaqueductal gray and Superior 
colliculus, were grouped together in cluster 1 and could not be distinguished. 

3.4. Spatial Differential Analysis 

Identifying region-specific metabolites is crucial for a deeper understanding of brain region 
function. SManalyst provides flexible analytical tools for this purpose, supporting spatial metabolic 
differential analysis based on clustering results or manually defined regions of interest (ROI). To 
explore metabolic feature differentiation between different functional systems, we compared the 
midbrain (MB), composed of clusters 6, and 1, with the hippocampal region (HIP), composed of 
clusters 23 and 12 (Figure 4C, Supplementary Figure S12). HIP plays a central role in cognitive 
functions such as spatial memory and navigation learning, while the selected MB regions primarily 
involve MBmot for motor output and coordination, and MBsen for sensory signal reception and 
processing. Differential results (Figure 4D) showed that 76 metabolites were significantly 
upregulated in the MB group, with 27 annotated and 17 uniquely annotated; while 82 metabolites 
were significantly upregulated in the HIP group, with 29 annotated and 16 uniquely annotated. 
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Figure 4. Spatial pattern identification and differential analysis of mouse brain data. Metabolite spatial 

expression patterns (A); Pixel clustering patterns (B); Selection of comparison regions based on clustering 
results (C); Differential volcano plot (D); Functional enrichment analysis for differential results (E). 

Pathway enrichment analysis of uniquely identified differential metabolites using 
Metaboanalyst [42] revealed that these metabolic features were highly consistent with regional 
functions. Metabolites upregulated in HIP (e.g., taurine and sphingolipids) were enriched in 
pathways such as taurine metabolism, sphingolipid metabolism, and glycerophospholipid 
metabolism. These pathways are involved in neuroprotection, antioxidant stress, and cell membrane 
stability, which aligns with the cognitive functional demands of the HIP. Conversely, metabolites 
upregulated in MBmot and MBsen (e.g., glycerophospholipids and linoleic acid derivatives) were 
enriched in pathways such as glycerophospholipid metabolism, linoleic acid metabolism, and 
pyruvate metabolism. These pathways emphasize energy production and cell membrane fluidity, 
consistent with the high energy consumption in motor regions and rapid signal transmission in 
sensory regions. Overall, the enrichment patterns of metabolites and pathways validated the 
biological basis of regional functions. 

In addition to automated region selection based on clustering, SManalyst also supports manual 
definition of specific anatomical regions for targeted research. For example, by manually outlining 
the entorhinal cortex and primary visual cortex (Supplementary Figure S13: Primary visual cortex: 
regions 1 and 2; Entorhinal cortex: regions 3 and 4) and performing differential analysis, we 
successfully identified 9 significantly upregulated metabolites in the entorhinal cortex and 20 
significantly upregulated metabolites in the primary visual cortex. This integrated analytical 
workflow fully demonstrates SManalyst’s powerful utility in flexibly addressing scientific research 
questions within a single environment. 

4. Conclusions 

SManalyst, as an innovative open-source platform, offers the first complete solution for spatial 
metabolomics research, integrating data quality control, preprocessing, spatial pattern analysis, 
differential comparison, and metabolite annotation. It effectively addresses analytical bottlenecks in 
this field caused by fragmented tools and a lack of standardized workflows. Its core value lies in: 
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pioneering a multi-dimensional systematic data quality assessment and visualization; providing 
metabolite annotation based on multi-evidence scoring; and offering complementary perspectives for 
spatial heterogeneity analysis by integrating metabolite spatial expression pattern analysis with pixel 
clustering, which, combined with flexible differential analysis strategies, enhances analytical depth 
and reliability. Compared to existing tools that focus on single steps, SManalyst seamlessly connects 
key analytical steps through a user-friendly web interface, significantly improving analytical 
efficiency and accessibility, especially benefiting researchers without computational backgrounds. 
The open-source nature of the tool ensures its extensibility and potential for community-driven 
development. Future versions will focus on integrating more clustering algorithms and pattern 
recognition methods, addressing batch effects in multi-section analysis, and incorporating more 
suitable differential analysis methods and MS/MS spectral annotation capabilities to continuously 
meet the evolving analytical needs of the spatial metabolomics field. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. Figure S1: Data Upload Format Requirements for SManalyst Software; Figure S2: 
SManalyst Tutorial Interface; Figure S3: Data Upload and Visualization Interface; Figure S4: QC1. Background 
Region Consistency Interface; Figure S5: Process1. Background Pixel Removal Interface; Figure S6: QC2. Noise 
Ion Proportion Interface; Figure S7: QC3&4. Signal Intensity and Missing Value Assessment Interface; Figure S8: 
Isotope Peak and Adduct Ion Peak Identification Interface; Figure S9: Format Requirements for Uploading 
Custom Library Files; Figure S10: Metabolite Identification Interface; Figure S11: Metabolite Spatial Pattern 
Analysis Interface; Figure S12: Spatial Metabolic Clustering and Cluster-Based Differential Analysis Interface; 
Figure S13: Differential Metabolic Analysis Interface Based on Manual Selection; Figure S14: Visualization 
Interface; Figure S15: Spatial Distribution of Ions Under Different Noise Scores. Imaging of Ions with Noise 
Scores of 10 (A), 30 (B), and 50 (C). 
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Abbreviations 

The following abbreviations are used in this manuscript: 

SManalyst Spatial Metabolomics Data Analyst 
AFADESI Air Flow-Assisted Desorption Electrospray Ionization 
GUI Graphical User Interface 
ROI Region of Interest 
HIP Hippocampus 
MB Midbrain 
H&E Hematoxylin and Eosin 
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