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Abstract 

The goal of the study presented in this work is to analyze all recent advances in the context of the 

computing continuum and meta–operating systems (meta-OSs). The term continuum includes a 

variety of diverse hardware and computing elements as well as network protocols, ranging from 

lightweight internet of things (IoT) components to more complex edge or cloud servers. To this end, 

the rapid penetration of IoT technology in modern era networks along with associated applications 

poses new challenges towards efficient application deployment over heterogeneous network 

infrastructures. These challenges involve among others the interconnection of a vast number of IoT 

devices and protocols, proper resource management, as well as threat protection and privacy 

preservation. Hence, unified access mechanisms, data management policies and security protocols 

are required across the continuum to support the vision of seamless connectivity and diverse device 

integration. This task becomes even more important as discussions on sixth generation (6G) networks 

are already taking place, which they are envisaged to coexist with IoT applications. Therefore, in this 

work the most significant technological approaches to satisfy the aforementioned challenges and 

requirements are presented and analyzed. To this end, a proposed architectural approach is also 

presented and discussed which takes into consideration all key players and components in the 

continuum. In the same context, indicative use cases and scenarios that are leveraged from a meta-

OS in the computing continuum are discussed as well. Finally, open issues and related challenges are 

also discussed. 

Keywords: meta-Operating Systems; cloud continuum; machine learning; Internet of Things; security 

and privacy 

 

1. Introduction 

The rapid growth of the number of interconnected devices on the internet (Internet of Things – 

IoT) has posed new challenges on the design and implementation of flexible network architectures 

that can handle both a vast number of IoT components (i.e., proper access and resource management 

protocols) as well as associated security threats [1,2]. In the early years of IoT technology, data 

generated in the IoT devices was forwarded directly to the cloud domain via classical network 

infrastructure. However, this strategy can impose certain limitations, mainly related to the increased 

round trip time in cases of delay sensitive and latency critical applications. Moreover, technological 
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advances in the IoT domain have made feasible the deployment of advanced services and 

applications that do not simply rely on data gathering and processing from the IoT network but 

actively participate in process optimization. Typical examples include automation sensors in 

industrial 4.0 scenarios as well as smart building sensors. Hence, the need for reduced latency is 

inextricably combined with the ability to perform time consuming calculations at the edge of the 

network [3,4].  

Over the last decade, a new architectural approach has emerged, leveraging the so-called IoT-

Edge-Cloud (IEC) paradigm [5,6]. In this context, edge servers located near the IoT devices process 

related data and perform time consuming calculations, depending on their computational capacity. 

The outcomes of these calculations (i.e., encryption procedures, optimization of key performance 

indicators, training of a machine learning – ML model or creation of blockchains) are send directly to 

the IoT devices, without the need for central cloud processing and long round-trip times. To this end, 

the cloud domain either receives corresponding results at a later stage, or it is directly involved in 

cases of high complexity calculations. Hence, mean response times can be significantly reduced with 

respect to centralized cloud domain processing. All devices that constitute this complex IoT, edge 

and cloud ecosystem, are also referred to as the computing continuum. In comparison to single 

vendor clouds or hybrid clouds centrally managed, heterogeneous IoT devices, data, network, edge 

and cloud components are significantly more complex to manage, since the continuum integrates a 

variety of diverse hardware and software elements. To this end, the addition of new devices and 

protocols can be a scalability-challenging task. The continuum needs to be efficiently managed to 

optimally meet the application demands during service execution, by not only bringing computation 

closer to where the data is produced, but also by placing and formatting the data to optimize the 

execution, both for real-time services and non-real time data analytics [7,8]. 

In this context, a high-level view of the IEC concept is depicted in Figure 1. The lower layer 

includes IoT devices as well as user equipment. All these items generate a vast amount of 

heterogeneous data that needs to be stored and processed accordingly in a secure and privacy 

preserving way. Moving a step forward, the next layer includes the on-premise layer. To this end, 

processing nodes with improved computational capacity are located within the premise, e.g. a 

stadium, an enterprise or a smart home. This can be highly beneficial in industrial scenarios for 

example, where on one hand sensitive data remains within the facilities of the enterprise and on the 

other hand latency times can be significantly improved. In the far and near edge layer, high 

computing nodes that are in close or far proximity to the cloud servers gather data and train advanced 

ML algorithms and in general perform time consuming calculations. In this context, certain tasks that 

require high computational power can be offloaded from the on-premise servers. In the cloud 

domain, a two-fold process is carried out: a) ML model aggregation and update from the individual 

models that were constructed in the previous layers and b) large scale data processing that was not 

made feasible in the previous steps due to limited resources. 

As the concept of IEC systems is gradually developing, various research efforts have dealt with 

operating systems and policy configurations than span across this continuum. To this end, diverse 

challenges are dealt with, such as access to continuum, flexible usage of resources and optimum 

resource management, performance improvement, threat prediction and mitigation, etc. [9,10]. In the 

same context, intelligent edge computing and ML are also two promising approaches that can 

leverage the deployment of the continuum in lightweight devices [11,12]. All the aforementioned 

topics may represent highly demanding tasks, not only due to the continuum being intrinsically 

heterogeneous, volatile, distributed and increasingly cognitive, but also due to emerging requests to 

be open und collaborative. A holistic approach towards the solutioning of this technological trend in 

future systems can be achieved by architecting, designing and implementing the continuum as 

extensible, open, secure, adaptable, artificial intelligence (AI)-powered as well as highly performant 

and technology agnostic. 

The goal of the study presented in this work is to analyze all recent developments in the context 

of meta-OSs and the computing continuum. In this context, various recent works are presented and 
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analyzed, with respect to the aforementioned challenges and proposed technological solutions. 

Moving a step forward, a high-level architectural view of a meta-OS system is presented as well, 

along with indicative use cases and scenarios. 

The rest of this work is organized as follows: In the remaining part of the introductory section, 

related surveys are discussed with respect to their key outcomes. Afterwards, the contribution of our 

work is highlighted as well. In Section 2, key enabling technologies as well as associated challenges 

in the computing continuum and meta-OSs systems are described. These include ML, security by 

design, coexistence with sixth generation (6G) networks as well as data management strategies. 

Moving forward, in Section 3 all recent developments are presented with emphasis on data access 

and management protocols, security mechanisms and proposed architectures. In Section 4 a 

discussion takes place on the key findings of the presented works. Based on this discussion, open 

issues and future directions are identified. In the same context, a high-level approach of a proposed 

architectural concept is presented, as previously mentioned. Indicative use cases are described in 

Section 5. These include process optimization in industrial 4.0 environments, efficient load 

forecasting in smart grid applications, smart cities as well as optimization of key parameters in 

railways and in general in critical infrastructures. Finally, concluding remarks are highlighted in 

Section 6. A schematic overview of the structure of our work for illustration purposes is depicted in 

Figure 2. 

1.1. Related Surveys 

In this subsection, indicative recent related survey papers are presented with respect to their key 

outcomes. To this end, in [13] a survey is provided for cloud-edge workload orchestration at the edge. 

The orchestration of workloads can be a quite challenging task, due to the heterogeneity of computing 

equipment in edge scenarios. As the authors correctly point out, a potential solution lies in the 

creation of lightweight versions of Kubernetes. Another promising approach is the use of KubeEdge 

[14], that is specifically designed for edge applications, instead of trying to reduce the size of 

Kubernetes. However, as the authors indicate, containers can have certain disadvantages that are 

mainly associated with large image size and non-robust security. Hence, an alternate approach 

includes the virtualization of workloads. 

In [5], a survey on IEC systems is provided, which focuses on key enabling technologies as well 

as on the presentation of all recent works on the field. In the same context, limitations and open 

challenges are discussed as well. To this end, indicative use cases are also presented that are leveraged 

from the IEC concept. In [15], all latest architectural approaches in computing continuum systems are 

described. In particular, this work focuses on AI for applications deployed at the edge as well as for 

efficient AI techniques to manage the workload in the edge of the computing continuum. 
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Figure 1. The IoT–Edge-Cloud concept disaggregated in five computing tiers. 

In [16], the general architecture of distributed computing systems (DCS) is presented. In the 

same context, the authors describe various potential applications as well that are based on DCSs. 

These include among others industry automation, transportation systems, mobile robots, smart cities 

and health care. In [17], this survey paper analyses all recent trends of computing continuum systems. 

In this regard, potential use cases include highly mobile self-driving vehicles, holographic streaming 

services (Telepresence), ultra-reliable industrial IoT as well as urgent computing. In the same context, 
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various open issues are also discussed, that include among others proper resource allocation and 

management, simulation tools for large scale performance evaluation, the integration of mobility in 

the continuum as well as programming distributed applications. 

Finally, the survey in [18] focuses on the applications of software defined networking (SDN) as 

well as network function virtualization (NFV) in the management, orchestration and load balancing 

of workloads in cloud/edge orientations. Various challenges are also identified, such as distributed 

architectures, dynamic offloading of resources, security and privacy, intelligent orchestration and 

work management. The key outcomes of each survey presented are also depicted in Table 1, where 

open issues and limitations are highlighted as well. To this end, the main points of our work are 

indicated as well. 

Table 1. Indicative related surveys. 

Paper Year Key Directions Limitations and Open Issues 

[5] 2023 IoT-Edge-Cloud Systems 

Focus is on IEC systems and not on 

access or data management  

architectures in the continuum 

[13] 2023 Cloud Edge orchestration at the edge 

Evaluation of containerization or 

virtualization in real world  

scenarios 

[15] 2024 AI on the edge 

Cloud – Edge orchestration 

Hardware integration to support 

advanced AI/ML applications 

[16] 2023 
Architecture of distributed computing  

systems 

Learning Models 

Intelligent protocols for  

effective resource management 

[17] 2025 
Recent trends in computing continuum  

systems 

Flexible resource allocation 

Mobility in the continuum 

[18] 2025 SDN and NFV in cloud edge orientations 
Performance evaluation in real 

world orientations 

Our work - 
Architectural approaches of meta-OSs for 

the computing continuum 
- 

1.2. Contributions of This Work 

In the works that were presented in the previous subsection, emphasis was provided on different 

parts of the cloud computing continuum (i.e., AI/ML deployments, containerization, virtualization, 

IEC and DCC architectures, NFV and SDN solutions, etc.). Therefore, unlike other similar works in 

literature, our work tries to cover all individual aspects in the context of meta-OSs in the computing 

continuum. These include among others the presentation of the most important key enabling 

technologies, as well as all related research efforts in data management, security and privacy, as well 

as resource optimization via ML. To this end, emphasis is given on the analysis of various European 

Union-funded projects. Therefore, the main contributions of our work can be summarized as follows: 

• Investigation into all recent trends in architectural approaches on the integration of meta-

OSs with the computing continuum. 

• Emphasis on key enabling technologies such as security by design, coexistence with 6G 

networks, data management, as well as advanced AI/ML approaches that leverage response times 

and provide optimum resource management. 

• A reference architectural approach is presented that takes into account all major players in 

the computing continuum and their interactions. 

• Indicative use cases are presented as well that benefit from the cloud computing continuum. 

• Finally, open issues are also identified to trigger further research activities. 
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Figure 2. Structure of the present work. 

2. Key Driving Factors  

Meta-OSs and the computing continuum face numerous challenges that need to be dealt with, 

as described in the introductory section. The interconnection of numerous diverse devices on one 

hand necessitates common access and data management protocols and on the other hand brings to 

front more robust security and privacy protection mechanisms, since the attack landscape is now 

significantly increased compared to previous generations of wireless networks. To this end, various 

key enabling factors can be identified, such as efficient AI/ML approaches for proper resource 

optimization as well as security and privacy protection, security by design, coexistence with 6G 

networks as well as data management. 

2.1. Machine Learning 

A challenging research field in the design of the computing continuum systems is the use of 

appropriate ML approaches both for threat prediction and mitigation as well as for resource 

optimization. In the latter case, the goal is to select the appropriate architectural layer (i.e., IoT, edge, 

cloud) and corresponding device where a certain task will be executed. This decision is based on 

numerous factors, such as task complexity, delay tolerance, energy consumption, etc. Hence, to this 

end, an efficient ML approach that can adapt to dynamic network orientations is deep reinforcement 

learning (DRL) [19,20]. In this context, a mobile agent interacts with the environment and selects the 

appropriate action for the task under consideration, according to a policy that maximizes overall 

reward. Depending on the outcomes of this action, either positive or negative rewards are given to 

the mobile agent. After a sufficient number of training rounds, near optimum decision goals can be 

achieved with the help of neural networks (NNs) that can be trained according to various pairs of 

potential states and actions. In this context, a quite popular approach is Q-learning, where the agent 

keeps a score of quality values that are updated after each system transition. To this end, the new q-

value is based on the previous q-value and the received reward properly weighted. 

A schematic overview of this approach is depicted in Figure 3. To this end, various data are 

gathered from the IoT devices, the edge controllers and the cloud and are sent to the DRL agent. 
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These data are related to distinct operational factors, such as historical load, task features as well as 

current load in the participating devices. The aforementioned approach can be easily applied in 

Federated Learning (FL) scenarios as well [21]. As depicted in Figure 4, multiple participating nodes 

that represent either IoT, edge or cloud domains train locally an ML model, based on the data 

collected from their surrounding environment. Afterwards, ML model parameters, such as weights 

in case of NN training, are send to the master ML server for model aggregation and update. At this 

stage, model inference can take place as well. The master server, after processing and aggregating all 

parameters, sends the updated weights to the participating nodes. Therefore, on one hand 

computational burden is divided among the participating nodes, and on the other hand no sensitive 

data is transmitted. Hence, privacy sensitive applications, such as e-health can now be deployed more 

easily. 

 

Figure 3. Deep reinforcement learning approach in IoT–Edge–Cloud systems for a given agent 𝑛 ∈ ℰ. EA: Edge 

Agent; ℰ is the set of DRL edge agents. 

 

Figure 4. Federated Learning in the computing continuum with local training steps performed at edge layers 

and model aggregation implemented at the cloud. 

2.2. Security by Design  
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Another challenging research field in the management of the computing continuum is the 

provision of security by design during application execution. Since this continuum integrates various 

resource constrained IoT devices, not all of them have the capability to execute advanced security 

protocols. Hence, various associated security challenges can be identified, such as protecting against 

unauthorized access, ensuring data security and isolation in a multitenant environment as well as 

securing virtual machines (VMs) [22,23].  

The use of virtualized network elements, open interfaces and disaggregation that are extremely 

important in the cloud computing era, can pose several security challenges. Unlike for example fifth 

generation (5G) networks, where security solutions across all devices and base stations are configured 

with universal settings for certain types of attacks, it is apparent that such an approach cannot be 

applied in an integrated IEC infrastructure. In this case, the high diversity in service and application 

provision, connected devices and associated protocols in heterogeneous networks as well as the 

various physical layer encoding and transmission techniques, render a highly complex environment 

with different requirements and settings. Since each scenario may have unique security requirements 

and energy availability, the selection and configuration of security strategies need to be optimized in 

an adaptive and dynamic manner. As it will be also discussed in the following subsection, cloud 

computing continuum is envisaged to coexist with 6G networks to support advanced services and 

applications. The security attacks in 6G networks are polymorphic in nature and sophisticated, using 

previously unseen custom code, able to communicate with external command and control entities to 

update their functionality or even implement themselves entirely from code fragments that they 

intelligently harvest from benign programs, scripts and software blocks already present in the 

security system in place [24,25]. Therefore, on one hand it is important to have strong security 

mechanisms in the computing continuum domain, such as the zero trust concept [26], and on the 

other hand to effectively design ML approaches that can create the appropriate intents in due time 

for a variety of potential attacks. 

2.3. Coexistence with 6G Networks 

It is expected that the 6G concept will be based on a holistic integration of broadband networks 

and lightweight IoT devices that can leverage various cutting-edge applications in the real world. 

Hence, the underlying infrastructure of the computing continuum as well as meta-OSs should be able 

to adapt to 6G network protocols, and in particular the ones that are related to proper resource 

management and security. Typical advanced applications include among others autonomous 

driving, where high precision sensors are mounted on vehicles, e-health applications with wearable 

sensors and IoT devices as well as industrial robotic applications [27,28]. In the same context, another 

promising novelty of 6G networks will be the subnetwork concept, where a network component in 

the edge acts as a serving access point (AP) in case where connection with the main core network is 

lost [29,30]. Therefore, in this case, efficient task offloading and reduced latency computations in the 

edge/cloud domain are of utmost importance, to support critical applications. Moreover, as also 

referred in the previous subsection, in the case of 6G networks an increased attack landscape should 

now be dealt with. Hence, efficient network monitoring is required for threat prediction and 

mitigation via the creation of appropriate intents. 

Finally, in the framework of 6G networks, a promising architectural approach that has emerged 

over the last years is the organic concept [31]. To this end, the long-term vision is to support the ability 

of 6G networks to dynamically adapt their resources according to user needs and traffic demands, 

within the available infrastructure resources. Hence, more flexible resource management can be 

supported, by leveraging the well-known concept of service-based architecture (SBA) of 5G 

networks. Hence, the meta-OS in the computing continuum should provide the appropriate 

mechanisms for dynamic device onboarding and detachment from different segments of the network, 

flexible data gathering, as well as ML model adjustment. 

2.4. Data Management 
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An efficient data management solution should address the requirements of heterogeneous and 

changing infrastructures by supporting dynamic and flexible data federation between devices, 

enabling the integration of data from independent and volatile sources within a single application. It 

will also enable the execution of parts of a service within the data platform to increase performance 

and favour privacy and will facilitate the development of services to be deployed on the continuum 

by abstracting data distribution, communication and management details across the different layers 

of the infrastructure. 

In [32] for example, a Message Queuing Telemetry Transport (MQTT) broker has been used for 

the communication of devices in the IEC continuum. The key features of MQTT are minimal network 

bandwidth usage, efficient message delivery, and support for a range of quality of service (QoS) levels 

to ensure message reliability. As the authors point out, although MQTT helps in reducing system 

vulnerabilities and facilitating compliance with data privacy requirements, there are still various 

open issues to be addressed with. These include integration with emerging technologies, such as FL, 

DevOps, and more adaptive security policies for dynamic IoT environments. 

Another important issue that should also be considered in the design of an efficient data 

management system is legislative measures governing data sharing and privacy [33]. Hence, data 

protection laws should be considered in the new ecosystem via the integration of modules that enable 

compliance with data protection regulations while transferring the data across the continuum. 

A schematic overview of the most important key driving factors in the design of computing 

continuum systems is also depicted in Figure 5, for illustration purposes. 

 

Figure 5. Key driving factors in the computing continuum. 

3. Related Works 

In this section, various recent works in the context of meta-OSs and the computing continuum 

are discussed. In [34], and in the context of the EU-funded project FLUIDOS [35], an AI driven 

approach is presented, to optimize resource allocation during application execution. To this end, a 

user may ask for the execution of a specific workflow, that is passed by the Operator API to the 

corresponding ML component. This component is trained using previous experience from similar 

user requirements. Consequently, this workload is translated to an equivalent set of resources to be 

committed during service execution. Performance evaluation took place with the help of two well-

known datasets and results were compared against the baseline approach (brute-force). In all cases, 

resource allocation times were significantly reduced.  
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In [36], the NebulOuS architectural vision is presented and described, for secure and optimal 

application provisioning [37]. In this context, a model driven approach is presented, where a user 

first describes an application and the required resources using a well-defined application model. In 

the same context, admin users also advertise their resources using NebulOuS. Hence, the continuum 

also acts as a gateway where different entities make use of heterogeneous resources. AI-driven threat 

detection and mitigation is also supported. In [38], the work presented by the authors is based on the 

EU-funded project NEMO [39]. To this end, the NEMO approach is based on the Artificial Intelligence 

of Things (AIoT) - an integration of AI with the physical world. AIoT devices can potentially act as 

semi-autonomous devices, thus reducing overall network burden as well as latency times. NEMO 

introduces an open-source meta-OS, that tries to leverage a variety of novel cutting-edge 

technologies, such as transfer learning (TL) and FL. The concept of AIoT can be highly beneficial in 

various time sensitive applications, such as in the immediate termination of wind turbines in cases of 

high-speed winds, shutting down machines in latency demanding industrial 4.0 scenarios as well as 

helping autonomous vehicles to avoid fatal collisions.  

In [40], the concept of IoT Computing Continuum, or IoTinuum is introduced. To this end, 

multiple computing servers are distributed across the IoT continuum to leverage latency critical 

calculations. Hence, depending on the application, some sensors may forward data directly to the 

cloud or others to use the processing nodes. In this context, the IoTinuum is composed of 6-stages: 

The S1-thing, which includes all physical layer components, such as sensors and actuators, the S2-

Mist stage that includes all low power computing nodes in close proximity to the S1-devices, the S3-

Fog stage that includes high computing nodes that can be located far away from sensor nodes and 

the S4-Cloudlet that is composed of a reduced set of servers running as a micro datacentre closer to 

the cloud. Finally, the architectural approach also consists of the S5-Cloud and S6-App, where the 

later one includes all smart applications. In this context, two use cases are analysed, and in particular 

smart drone delivery as well as smart structural monitoring. In [41], the concept of 6G Computing 

Continuum (6GCC) is introduced, where a realistic testbed has been used. To this end, a large-scale 

cell free AP network is evaluated, for large scale highly demanding computations. 

In [42], a domain-agnostic approach is presented, capable of supporting heterogeneous devices 

in various network environments. The key advantages of this approach are among others a peer-to-

peer continuum instead of a hierarchical one, dynamic orchestration of resources, distributed and 

decentralized learning instead of centralized approaches, as well as context-aware solutions. To this 

end, various application scenarios are presented as well, such as smart charging stations for electric 

vehicles, energy reduction towards carbon-neutral manufacturing processes, just-in-time arrival for 

vessels, as well as green driving for reduced fuel consumption and decreased vehicle emission.  

In [43], a novel DRL approach is discussed, for task offloading in cloud-edge continuum (CEC) 

systems. Based on this framework, autonomous decisions can be made based on local conditions 

while dynamically adapting to changing network environments. In this context, task latency and 

drop rates are optimized, where DRL agents are employed at each edge server. Performance 

evaluation indicates that significant improvements were achieved compared to baseline methods. As 

the authors correctly point out, future directions include the extension of this framework to dynamic 

environments, as well as the creation of a parallel framework to enable fast decision procedures in 

the IoT devices. The work in [44] presents an optimization framework for smart homes energy 

consumption based on FL. A key novelty of the presented approach is that FL aggregation is not 

based on simple averaging of the produced models. Instead, newly created data contribute more on 

the produced global model. The results demonstrate that the proposed method performs similarly or 

better than other models in terms of prediction error. The last two cited works have been carried out 

in the context of the EU-funded ICOS project [45].  

In [46], a novel concept of self-distributing systems (SDSs) is presented and evaluated. To this 

end, code mitigation of an application can take place in various resources of the computing 

continuum. Performance is evaluated against other baseline approaches as well as with respect to 

serverless computing. In this context, an agent which is located on top of the proposed four-layered 
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architectural approach performs DRL to extract the optimum subset of resources for code mitigation. 

As the authors indicate, scalability of this approach as well as evaluation in more complex scenarios 

is a challenging research field for further research.  

In [47], a novel symbiotic computing model is introduced, where all participating members in 

the cloud continuum may share common resources for task improvement. To this end, two 

approaches are considered, non-cooperative and cooperative resource pricing. In [48], a discussion 

takes place on containerization and virtualization approaches, in the cloud computing continuum. 

On one hand, containers can be deployed more easily in lightweight IoT devices, however they are 

more vulnerable in security attacks. On the other hand, VMs can offer complete isolation during 

application execution at the cost of increased hardware requirements. In [49], the problem of 

optimum planning in multi-area, multi-service and multi-tier edge cloud computing environments 

is investigated. To this end, an optimization problem is formulated and solved based on matrix 

adaptation.  

In [50], two novel reference architectures are presented: one for edge–cloud computing models 

and the other for edge–cloud communication technologies. In the same context, indicative use cases 

are presented as well. In [51], and in the context of the project NEMO, the open-source framework is 

described. To this end, various key functionalities such as security, AI, service and data management, 

meta-orchestration and resource management are provided as open-source components. In [52], 

security in the continuum is leveraged with the help of physical unclonable functions (PUFs). These 

kinds of functions are generated using the unique digital identifiers derived from the inherent 

variability in the manufacturing process of integrated circuits, as a way to enhance security 

mechanisms at minimal overhead cost [53]. Therefore, in this work a lightweight PUF generation 

method is introduced, that can be applied even in cases where only one of the two involved parties 

can support PUFs. In the same context, a security as a service (SaS) framework is introduced, based 

on the Chef software [54]. 

In [55] the Ratio1 meta-OS is presented. The key features include decentralized ML as well as 

device authentication. As the authors point out, large-scale meta-OS deployments along with more 

advanced privacy policies can trigger further research activities. In [56] an interconnection 

framework is presented that can leverage seamless operation of large IoT deployments. This 

framework uses the Sirius tool and Acceleo, where a smartphone-centric gateway application is used 

as a mediator to connect devices and sensors within an IoT environment. Finally, in [57], the 

COGNIFOG concept is presented [58], which is an open-source framework that tries to leverage 

decentralized ML and decision making and distributed computing. To this end, container-based 

virtualization is favoured, which is a lightweight and secure alternative that also supports the 

microservice concept. 

All the aforementioned works along with their key directions, limitations and open issues are 

presented in Table 2 as well. 

Table 2. Related works. 

Paper Year Key Directions Limitations and Open Issues 

[34] 2024 

Presentation of the FLUIDOS Project 

AI optimization during application  

execution 

Deployment in real-world  

scenarios 

[36] 2023 Presentation of the NebulOus project 
Performance evaluation in real 

world scenarios 

[38] 2024 

Presentation of the NEMO Project 

Open-source components for various  

features (e.g. AI, security, service and data management) 

Performance evaluation in large 

scale scenarios 

[40] 2024 Six proposed stages of the IoT Computing Continuum 
Integration of programmable  

network stages 

[41] 2022 6G Computing Continuum Integration of the computing  
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continuum with 6G architectural 

approaches 

[42] 2022 Presentation of the RAMOS concept Context aware machine learning 

[43] 2024 
Task offloading in IoT Cloud Edge  

scenarios via DRL 

Extension in dynamic topologies 

Additional performance metrics 

during optimization 

[44] 2023 Federated learning in IoT scenarios 
Evaluation in additional real-world 

scenarios 

[46] 2023 
Application resources distribution in the computing  

continuum 

Evaluation of the SDS approach in 

more complex scenarios 

Scalability 

[47] 2025 
Resource pricing in computing  

continuum 

More diverse user behavior  

scenarios 

[48] 2024 Virtualization vs. Containerization in the cloud continuum 

Performance evaluation of bigger 

hardware architectures for Edge or 

Cloud 

Security issues in both approaches 

[49] 2025 Edge-Cloud Continuum Planning Integration of AI techniques 

[50] 2024 
Edge cloud computing and  

communication 

Efficient communication  

technologies for the different parts 

of the continuum 

[51] 2024 Open-source framework of NEMO project 
Performance evaluation in large 

scale scenarios 

[52] 2023 Physical Unclonable Functions Evaluation in realistic scenarios 

[55] 2025 
Ratio1 meta-OS 

Decentralized ML and device authentication 

Additional privacy policies 

Broader cross-chain 

interoperability 

[56] 2023 Large scale interconnection of IoT devices 

Only one smartphone was used for 

performance evaluation 

Additional testing with diverse IoT 

devices 

[57] 2025 The COGNIFOG framework 

Orchestration intelligence 

Decentralized, privacy-preserving 

AI training at the edge 

4. Discussion - Open Issues and Key Challenges 

From the discussion of the previous section various open issues and key challenges can be 

identified in the context of the computing continuum. A key outcome of the presented works is that 

performance evaluation in realistic scenarios is still a challenging issue. All approaches so far are 

based on publicly available datasets or on limited network topologies and testbeds. Another key 

aspect that was also highlighted is to effectively interconnect a vast number of heterogeneous devices 

and protocols via secure open access interfaces. The seamless support of highly demanding 

applications necessitates proper resource management, which is made feasible only via efficient ML 

approaches. However, the IEC continuum is a highly dynamic environment, where new elements are 

constantly added/removed from the network; hence constant updates of the ML models are required. 

Τo this end, and in order to avoid frequent retraining of the derived models, TL can be highly 

beneficial [59]: The obtained knowledge from another task and dataset (even one not strongly related 

to the source task or dataset) is transferred to the task under consideration to reduce learning costs. 

In the same context, the increased number of devices and associated protocols poses new challenges 

in the design and implementation of efficient security algorithms, since threat landscape is 

significantly increased. Hence, ML model training is now a multi-dimensional task, since apart from 

resource optimization the creation of intents for network recovery after attacks is also of utmost 
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importance. However, a trained ML model that provides near optimum results for the first task (i.e., 

resource optimization) might not be the ideal one for threat mitigation and vice versa.  

Therefore, based on the previous discussion, various key challenges can be identified as well, 

which are summarized below: 

• ML model deployment on lightweight IoT devices. In the IEC continuum, the goal is to 

offline train an appropriate ML model either at the edge or in the cloud and then deploy it on the IoT 

device. However, not all IoT devices have the processing capability to run hardware consuming ML 

models. Hence, appropriate tiny ML models can be deployed that can effectively run in small IoT 

devices [60]. In the same context, as previously mentioned, different models may provide near 

optimum results for different tasks. In this case, ML repositories in edge and or cloud servers are 

created and ML model deployment in lightweight IoT devices might occur for more than one trained 

model, which unavoidably poses additional computational requirements. 

• As also mentioned in the key challenges section, the integration of computing continuum 

implementations with 6G architecture is a challenging research field, as it will allow the seamless 

integration and coexistence of various cutting-edge technologies. However, as the landscape of 

connected devices increases, security concerns may become a major issue, as previously mentioned. 

Flexible network architectures allow the identification of multiple types of attacks [61]. To this end, 

either predictive or mitigation actions can be supported both for well-known as well as for zero-day 

attacks, with the help of additional emerging technologies, such as digital twins. In the same context, 

distributed computing systems are expected to play a key role in this direction, as the deployment of 

advanced ML algorithms as well as the support of highly demanding computational applications, 

such as blockchain technology and encryption [62], cannot be fulfilled by lightweight IoT devices. 

• The implementation of the zero-trust context. To this end, constant authentication of all 

involved devices takes place, which might significantly increase signaling burden in the network. 

• When FL is employed for faster ML training times as well as for privacy protection, a key 

issue that may rise is non identical data distribution and severe heterogeneity of the produced 

datasets (data heterogeneity). This is especially the case in large scale network orientations with 

diverse elements. In this case, either subsets of training nodes are formulated, or TL is employed to 

further improve ML training latency [63]. 

• Different policy configurations in various network segments: As stated in the 

corresponding section, various network and cloud/edge providers may coexist in the computing 

cloud continuum. In this case, different access and usage policies may pose significant difficulties in 

proper resource management. 

• As the concept of computing continuum spans across IEC environments, the choice among 

containerization and virtualization is a challenging debate. To this end, each technology has certain 

advantages/disadvantages which should be carefully examined, as previously mentioned. For 

example, although virtualized environments provide isolation and security which are extremely 

important in edge applications, they introduce significant overhead which can have an impact on the 

performance of lightweight devices. On the other hand, containers, while more resource-efficient, 

may pose challenges related to security and orchestration in diverse and distributed edge 

environments. 

Based on the above discussion, a high-level view of a proposed architectural approach is 

depicted in Figure 6. To this end, various key players can be identified, such as the end user, the 

network provider, the cloud provider, the edge computing platform provider, the IoT provider, the 

application developer, and the application integrator. The different roles are analyzed in more detail 

below: 

• Network Provider (NP): The NP is providing the network and connectivity resources that 

allows the interconnection of cloud with near edge and far edge locations as well as the provisioning 

of the required resources supporting gateways and remote devices connectivity. Within the cloud 

continuum there can be multiple NPs depending on the footprint of the infrastructure and the 

administrative domains. 
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• Cloud Provider (CP): The CP is provisioning the cloud resources responsible for hosting 

the application components. Commonly, the CP operates on large cloud infrastructures (e.g., Hyper 

scalars), providing points of presence (PoPs) of local interest for allowing fast connectivity, low 

latency, load balancing and close to the devices resource availability.  

• Edge Computing Platform Provider (ECPP): Similarly, the ECPP is providing cloud 

resources at the edge (near or far) of the infrastructure, capable of hosting less resource demanding 

application’s components coupled with specific hardware (HW) acceleration capabilities suitable for 

AI/ML workloads. It is assumed that the ECPP infrastructure topology allows for reaching large 

and/or dense IoT deployments.  

• IoT Provider (IoTP): IoT provider is the actor providing the IoT infrastructure that is being 

deployed across the continuum. This infrastructure may include devices that allow deployment of 

continuum controllers or/and agents. Moreover, in the case that the capability to deploy the 

continuum is restricted either due to processing resources limitations or because of access to the HW 

device OS, appropriate APIs are exploited. The IoTP through the continuum is gaining the ability to 

open the infrastructure to multiple vertical applications, since all operate on the common continuum 

software. 

• The Application Developer (AppDev) and the Application Integrator (AppInt) can be seen 

as distinguishing roles played by the same actor or different, depending on the complexity of the 

ecosystem. The first one is developing application components, enhancing functionality and 

operation. The latter one is integrating application components that may arrive even from different 

developers, so that a full-blown application is created and modelled/described in a compatible to the 

continuum model. In this context the AppInt is experienced with the presented data model, 

descriptor, and operation specificities. Consequently, the AppDev depends on the Application 

Integrator to formulate the application descriptors in a way that is comprehensible by the continuum 

in order to be deployed over an instance.  

 

Figure 6. High-level schema of the proposed Meta-OS-enabled computing continuum framework. 
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Hence, as it becomes apparent from the previous discussion, the computing continuum should 

provide a unified access mechanism to all the aforementioned key players. In the same context, as 

previously mentioned, a variety of ML models should be trained and updated, either for resource 

optimization or for threat mitigation. In parallel, security by design should be also supported. Hence, 

three main modules can be identified, and in particular the Data Management Module (DMM), the 

Intelligence Module (IM) and the Security Module (SM). DMM is responsible for managing all data 

required and exchanged in the continuum, as well as the efficient execution of data-based 

applications and services used in the continuum. Its main functionalities include: a) Data distribution 

across the continuum, taking advantage of the entire available infrastructure, b) Smart data 

placement and dynamic adaptation to changes in the infrastructure during operation: devices joining 

or leaving, reorganizations, etc., c) Seamless access to data in the continuum, regardless of the location 

(device or cloud) or nature of resource (in motion or at-rest), by providing an integrated data platform 

spanning the whole continuum and d) Minimization of data transfers to improve performance and 

trust, by exploiting near-data processing in various types of devices. 

The IM provides the functionalities to train, test, use, maintain and update analytics and ML 

models in the continuum, with the goal of supporting and augmenting the operations and 

performance of the security and privacy modules by considering specific policies in the use of data 

and models, with special emphasis on trustworthiness including: 

• Intelligence Layer Coordination: Coordination enables optimization and predictive 

analytics and ML models and its use across the continuum. This will include policies for the use, 

share and update of models across the edge-cloud continuum, including FL strategies. 

• Data Processing: Data processing and storage in formats and databases optimized for the 

application of analytics tasks depending on the resources available of the hosting device in the 

continuum. 

• AI Analytics: A library of optimized ML algorithms for training and testing of predictive 

and optimization models, including deep learning, adaptive machine learning and reinforcement 

learning libraries optimized to operate in constrained devices.  

• AI Models Marketplace: A collection of pre-trained analytics and ML models to be reused, 

updated, refined (e.g., TL) and combined to foster the application of new AI techniques in the 

different layers of the computing continuum meta-OS. To this end, a challenging task is to provide 

the functionality to train and compress these models for operation in constrained devices (e.g., 

pruning unused branches in trees or simplifying NN architectures).  

• Trustworthy AI: Provide specific algorithms to analyze the datasets and develop models 

conforming to policies for privacy and trustworthiness. Functionality for models to be trained in a FL 

fashion to ensure data protection in datasets containing user-specific data will be provided as well as 

explainable AI algorithms to provide reassurance of output of models to the different layers of the 

continuum. 

Finally, the SM provides several related functionalities, such as i) Federated Identity 

Management; ii) Authentication, Authorization and Audit capabilities; iii) Detection of security 

issues and mitigation mechanisms (e.g. self-healing); iv) Support for compliance frameworks; v) 

Trust and privacy. 

5. Potential Use Cases 

In this subsection various potential use cases are presented, that could be leveraged from the 

computing continuum and cloud operating systems. These include predictive maintenance in 

industrial 4.0 applications, load forecasting, smart cities as well as critical infrastructure monitoring. 

For each use case, a reference architecture is discussed along with signaling requirements. 

5.1. Predictive Maintenance in Industrial 4.0 Scenarios 

A challenging use case is the predictive maintenance in advanced industrial 4.0 scenarios as well 

as the provision of immediate responses in latency critical applications. To this end, various IoT 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2025 doi:10.20944/preprints202512.0281.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202512.0281.v1
http://creativecommons.org/licenses/by/4.0/


 16 of 23 

 

devices are placed in key components of the manufacturing process that constantly collect and 

process data. These data are send to an edge server that is located in the premises of the industry, as 

shown in Figure 1. To this end, the interconnection of a vast number of heterogeneous hardware 

components on one hand and data analysis for effective ML training on the other hand can be made 

feasible only via the computing continuum. In this case, data analysis targets two actions: a) 

predictive maintenance of specific components and b) immediate termination of a process, in case 

this is crucial. For example, in a wind park it is critical for this termination to happen in a predefined 

time frame, especially in the case of severe wind flows that can damage the machine. In the same 

context, these edge servers that collect local data can train ML models, as previously mentioned. 

However, in the case of similar industrial premises, on site edge servers can locally train an ML 

model, which can be aggregated in a FL fashion way after collecting all parameters from all premises. 

Although FL ensures privacy by design since only model parameters are exchanged, communication 

among the premises can be leveraged with the use of private networks [64]. 

5.2. Load Forecasting in Smart Grid Environments 

In load forecasting in the smart grid energy sector the goal is to collect data from various IoT 

sensors spread across the grid topology and perform accurate load forecasting. These sensors can be 

placed in production units, renewable energy sources, as well as in households. The aim is to 

periodically send data to edge servers that collect them and perform accurate load forecasting. As in 

the previous scenario of predictive maintenance, the goal is to securely interconnect a vast number 

of interconnected devices that can be spread over large geographical areas. In advanced scenarios, 

household energy consumption can be measured via IoT measurement devices where with the use 

of appropriate applications a user can be informed on the actual amount of data under consumption 

as well as on the predicted data in predefined time intervals. Depending on latency tolerance, ML 

model training can take place either on local edge servers or in the cloud domain, especially in cases 

of long-term production planning. 

A typical use case for example is depicted in Figure 7, where concentrators collect data generated 

from smart meters in households. In the operation center, proper IoT data are collected from various 

modules, such as the geographical information system (GIS) that matches consumed energy with 

specific households, the data management system (DMS) for load forecasting, the consumer 

information system (CIS) that provides billing information as well as the operational management 

system (OMS) that informs the central management system for potential outages. 

 

Figure 7. A dispersed communication structural design for Smart Grid based on IoT. 

5.3. Smart Cities 
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In the concept of smart cities, the goal is to place various IoT sensors and measure key 

performance metrics, such as traffic, air quality, people density, etc [65]. Hence, data generated from 

a variety of sensors should be properly collected to optimize various parameters directly related to 

the well-being of citizens, such as the time of arrival of transportation, management of traffic in roads, 

light density, etc. This concept is also applied in smart buildings, where various operations such as 

central heating and cooling, air quality, etc. are managed by on site edge servers [66]. As it becomes 

apparent from the above, a full deployment of the smart city concept presumes the integration of 

multiple IoT heterogeneous sensors. Hence, data management, communication procedures as well 

as data integration for efficient ML model training can be quite challenging tasks. To this end, a full 

layered approach as the one presented in Figure 1 would be the best choice for this scenario. Such an 

approach can also leverage the deployment of advanced services and applications in 6G scenarios 

within smart cities, such as autonomous driving. 

5.4. Infrastructure Monitoring 

In this use case scenario, various IoT sensors are deployed over large scale infrastructures to 

collect data and leverage predictive maintenance. In railway lines for example, the massive 

deployment of sensors along different parts of the infrastructure is essential for the optimization and 

improvement of service and safety. The increasing number of sensors and its specific, and typically 

siloed solutions, present an increasing complexity related to the management and operations of such 

solutions. 

Today, the railway monitoring process to improve the maintenance cycle is basic, and for most 

railway operators it is done preventively (once every fixed period) through a special train with 

sensors on its wheels which runs through the whole rail system. This special train can measure 

several key parameters of the railway system, such as the height difference and width between two 

lines, and thus identify where, potentially, corrections in the lines are needed. However, this 

measurement is only taken every once or twice a year; in the remaining months, nobody knows what 

happens (only physical inspections are available: very costly and uncommon), and moreover, there 

is no established procedure to evaluate the cost-effectiveness of the actions taken to address the 

identified rail line issues. In this context, digital technology, such as IoT, aims to minimize the 

monitoring and maintenance costs by gaining knowledge of the status of key aspects of the railway 

infrastructure in real-time: rail tracks levelling, tensions, and slope, surrounding areas settlements 

and falling elements, catenaries maintenance, cyber processes monitoring, etc. 

Hence, the main challenge to be addressed by this use case is related to the continuous 

monitoring of critical infrastructure on rail tracks to ensure safety and improve maintenance 

activities. In the same context, energy-efficient solutions for low-power IoT devices are required to 

guarantee safety operation monitoring in real time while ensuring a very long lifetime of the 

deployed technology in remote locations. The aforementioned concept can be applied in additional 

large-scale infrastructures as well. Two typical examples include large hydroelectric stations, where 

various sensors are deployed over the topology to measure key performance indicators, (e.g. water 

flow, resistance of the barrier, water quality, etc) as well as in large bridge infrastructures. In the latter 

case, cracks or malfunctionalities throughout the construction can be easily identified. 

A schematic overview of data exchange for various applications in the meta-OS computing 

continuum is shown in Figure 8. To this end, multiple IoT gateways gather related information from 

the physical sources and forward it to the continuum instances. For ease of abstraction, the DMM, 

AI/ML as well as the SM can be placed in an arbitrary module of the continuum, as introduced in 

Figure 1. Once data is received by the DMM, both the SM as well as the IM can process this 

information and either update the corresponding ML models or enforce threat detection and privacy 

policies. In this context, the compliance enforcement module will enable the detection of compliance 

problems and enforce infrastructural changes in order to enhance compliance based on the chosen 

target compliance framework. Privacy module will provide a set of primitives that could be used for 

data transformation, such as anonymisation, and encryption. The anomaly detection module either 
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receives updated ML models from the IM for threat detection or forwards corresponding data in 

cases of zero-day attacks. 

 

Figure 8. Use cases for interactions and data exchange in the meta-OS-enabled and AI-assisted computing 

continuum. 

6. Conclusions 

In this article all recent technological developments in the area of meta – OSs in the computing 

continuum were analyzed, with emphasis on the support of advanced services and applications. In 

the same context, several open issues and limitations were identified as well. As it becomes apparent, 

various key enabling technologies will support this context, such as advanced machine learning 

algorithms that properly collect data and perform large scale distributed optimization, as well as 

efficient and lightweight security mechanisms. However, as it became apparent from the discussion 

in this article, all adopted solutions should be based on open access frameworks, to facilitate 

interoperability of the connected devices and leverage scalability. In the same context, coexistence 

with the 6G networks is also a challenging issue, as IoT, edge and cloud devices should be in the 

position to support advanced services and applications. 

Hence, a cutting-edge research effort lies in the deployment of advanced ML approaches that 

can rapidly adapt to varying network conditions, leverage green computing calculations and at the 

same time minimize intent creation times for various threats. In this context, a high-level view of a 

proposed architectural approach was discussed as well, that facilitates the entry and communication 

of various entities of the continuum and at the same time leverages the creation and storage of 

advanced ML algorithms to be adopted per case. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

5G Fifth Generation 

6G Sixth Generation 

6GCC 6G Computing Continuum (6GCC) 

AI Artificial Intelligence 

AIoT Artificial Intelligence of Things (AIoT) 

AP Access Point 

API Application Programming Interface 

AppDev Application Developer 

AppInt Application Integrator 

CEC Cloud Edge Continuum 

CIS  Customer Information System 

CP Cloud Provider 

DCS Distributed Computing System 

DMM Data Management Module 

DMS Data Management System 

DRL Deep Reinforcement Learning 

ECPP Edge Cloud Platform Provider 

EU European Union 

GIS Geographical Information System 

FL Federated Learning 

HW Hardware 

IM Intelligence Module 

IoT Internet of Things 

IoTinuum IoT Computing Continuum 

IoTP IoT Provider 
IEC IoT Edge Cloud 

ML Machine Learning 

MQTT Message Queuing Telemetry Transport  

NFV Network Function Virtualization 

NN Neural Network 

NP Network Provider 

OS Operating System 

RL Reinforcement Learning 

PaaS Platform as a Service 

PoP Point of Presence 

PUF Physical Unclonable Function 

QoS Quality of Service 

SaS Security as a Service 

SBA Service Based Architecture 

SDN Software Defined Networking 

SDS Self-Distribution Systems 

TL Transfer Learning 
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