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Abstract

The goal of the study presented in this work is to analyze all recent advances in the context of the
computing continuum and meta—operating systems (meta-OSs). The term continuum includes a
variety of diverse hardware and computing elements as well as network protocols, ranging from
lightweight internet of things (IoT) components to more complex edge or cloud servers. To this end,
the rapid penetration of IoT technology in modern era networks along with associated applications
poses new challenges towards efficient application deployment over heterogeneous network
infrastructures. These challenges involve among others the interconnection of a vast number of IoT
devices and protocols, proper resource management, as well as threat protection and privacy
preservation. Hence, unified access mechanisms, data management policies and security protocols
are required across the continuum to support the vision of seamless connectivity and diverse device
integration. This task becomes even more important as discussions on sixth generation (6G) networks
are already taking place, which they are envisaged to coexist with IoT applications. Therefore, in this
work the most significant technological approaches to satisfy the aforementioned challenges and
requirements are presented and analyzed. To this end, a proposed architectural approach is also
presented and discussed which takes into consideration all key players and components in the
continuum. In the same context, indicative use cases and scenarios that are leveraged from a meta-
OS in the computing continuum are discussed as well. Finally, open issues and related challenges are
also discussed.

Keywords: meta-Operating Systems; cloud continuum; machine learning; Internet of Things; security
and privacy

1. Introduction

The rapid growth of the number of interconnected devices on the internet (Internet of Things —
IoT) has posed new challenges on the design and implementation of flexible network architectures
that can handle both a vast number of IoT components (i.e., proper access and resource management
protocols) as well as associated security threats [1,2]. In the early years of IoT technology, data
generated in the IoT devices was forwarded directly to the cloud domain via classical network
infrastructure. However, this strategy can impose certain limitations, mainly related to the increased
round trip time in cases of delay sensitive and latency critical applications. Moreover, technological
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advances in the IoT domain have made feasible the deployment of advanced services and
applications that do not simply rely on data gathering and processing from the IoT network but
actively participate in process optimization. Typical examples include automation sensors in
industrial 4.0 scenarios as well as smart building sensors. Hence, the need for reduced latency is
inextricably combined with the ability to perform time consuming calculations at the edge of the
network [3,4].

Over the last decade, a new architectural approach has emerged, leveraging the so-called IoT-
Edge-Cloud (IEC) paradigm [5,6]. In this context, edge servers located near the IoT devices process
related data and perform time consuming calculations, depending on their computational capacity.
The outcomes of these calculations (i.e., encryption procedures, optimization of key performance
indicators, training of a machine learning — ML model or creation of blockchains) are send directly to
the IoT devices, without the need for central cloud processing and long round-trip times. To this end,
the cloud domain either receives corresponding results at a later stage, or it is directly involved in
cases of high complexity calculations. Hence, mean response times can be significantly reduced with
respect to centralized cloud domain processing. All devices that constitute this complex IoT, edge
and cloud ecosystem, are also referred to as the computing continuum. In comparison to single
vendor clouds or hybrid clouds centrally managed, heterogeneous IoT devices, data, network, edge
and cloud components are significantly more complex to manage, since the continuum integrates a
variety of diverse hardware and software elements. To this end, the addition of new devices and
protocols can be a scalability-challenging task. The continuum needs to be efficiently managed to
optimally meet the application demands during service execution, by not only bringing computation
closer to where the data is produced, but also by placing and formatting the data to optimize the
execution, both for real-time services and non-real time data analytics [7,8].

In this context, a high-level view of the IEC concept is depicted in Figure 1. The lower layer
includes IoT devices as well as user equipment. All these items generate a vast amount of
heterogeneous data that needs to be stored and processed accordingly in a secure and privacy
preserving way. Moving a step forward, the next layer includes the on-premise layer. To this end,
processing nodes with improved computational capacity are located within the premise, e.g. a
stadium, an enterprise or a smart home. This can be highly beneficial in industrial scenarios for
example, where on one hand sensitive data remains within the facilities of the enterprise and on the
other hand latency times can be significantly improved. In the far and near edge layer, high
computing nodes that are in close or far proximity to the cloud servers gather data and train advanced
ML algorithms and in general perform time consuming calculations. In this context, certain tasks that
require high computational power can be offloaded from the on-premise servers. In the cloud
domain, a two-fold process is carried out: a) ML model aggregation and update from the individual
models that were constructed in the previous layers and b) large scale data processing that was not
made feasible in the previous steps due to limited resources.

As the concept of IEC systems is gradually developing, various research efforts have dealt with
operating systems and policy configurations than span across this continuum. To this end, diverse
challenges are dealt with, such as access to continuum, flexible usage of resources and optimum
resource management, performance improvement, threat prediction and mitigation, etc. [9,10]. In the
same context, intelligent edge computing and ML are also two promising approaches that can
leverage the deployment of the continuum in lightweight devices [11,12]. All the aforementioned
topics may represent highly demanding tasks, not only due to the continuum being intrinsically
heterogeneous, volatile, distributed and increasingly cognitive, but also due to emerging requests to
be open und collaborative. A holistic approach towards the solutioning of this technological trend in
future systems can be achieved by architecting, designing and implementing the continuum as
extensible, open, secure, adaptable, artificial intelligence (Al)-powered as well as highly performant
and technology agnostic.

The goal of the study presented in this work is to analyze all recent developments in the context
of meta-OSs and the computing continuum. In this context, various recent works are presented and
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analyzed, with respect to the aforementioned challenges and proposed technological solutions.
Moving a step forward, a high-level architectural view of a meta-OS system is presented as well,
along with indicative use cases and scenarios.

The rest of this work is organized as follows: In the remaining part of the introductory section,
related surveys are discussed with respect to their key outcomes. Afterwards, the contribution of our
work is highlighted as well. In Section 2, key enabling technologies as well as associated challenges
in the computing continuum and meta-OSs systems are described. These include ML, security by
design, coexistence with sixth generation (6G) networks as well as data management strategies.
Moving forward, in Section 3 all recent developments are presented with emphasis on data access
and management protocols, security mechanisms and proposed architectures. In Section 4 a
discussion takes place on the key findings of the presented works. Based on this discussion, open
issues and future directions are identified. In the same context, a high-level approach of a proposed
architectural concept is presented, as previously mentioned. Indicative use cases are described in
Section 5. These include process optimization in industrial 4.0 environments, efficient load
forecasting in smart grid applications, smart cities as well as optimization of key parameters in
railways and in general in critical infrastructures. Finally, concluding remarks are highlighted in
Section 6. A schematic overview of the structure of our work for illustration purposes is depicted in
Figure 2.

1.1. Related Surveys

In this subsection, indicative recent related survey papers are presented with respect to their key
outcomes. To this end, in [13] a survey is provided for cloud-edge workload orchestration at the edge.
The orchestration of workloads can be a quite challenging task, due to the heterogeneity of computing
equipment in edge scenarios. As the authors correctly point out, a potential solution lies in the
creation of lightweight versions of Kubernetes. Another promising approach is the use of KubeEdge
[14], that is specifically designed for edge applications, instead of trying to reduce the size of
Kubernetes. However, as the authors indicate, containers can have certain disadvantages that are
mainly associated with large image size and non-robust security. Hence, an alternate approach
includes the virtualization of workloads.

In [5], a survey on IEC systems is provided, which focuses on key enabling technologies as well
as on the presentation of all recent works on the field. In the same context, limitations and open
challenges are discussed as well. To this end, indicative use cases are also presented that are leveraged
from the IEC concept. In [15], all latest architectural approaches in computing continuum systems are
described. In particular, this work focuses on Al for applications deployed at the edge as well as for
efficient Al techniques to manage the workload in the edge of the computing continuum.
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Figure 1. The IoT-Edge-Cloud concept disaggregated in five computing tiers.

In [16], the general architecture of distributed computing systems (DCS) is presented. In the
same context, the authors describe various potential applications as well that are based on DCSs.
These include among others industry automation, transportation systems, mobile robots, smart cities
and health care. In [17], this survey paper analyses all recent trends of computing continuum systems.
In this regard, potential use cases include highly mobile self-driving vehicles, holographic streaming
services (Telepresence), ultra-reliable industrial IoT as well as urgent computing. In the same context,
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various open issues are also discussed, that include among others proper resource allocation and
management, simulation tools for large scale performance evaluation, the integration of mobility in
the continuum as well as programming distributed applications.

Finally, the survey in [18] focuses on the applications of software defined networking (SDN) as
well as network function virtualization (NFV) in the management, orchestration and load balancing
of workloads in cloud/edge orientations. Various challenges are also identified, such as distributed
architectures, dynamic offloading of resources, security and privacy, intelligent orchestration and
work management. The key outcomes of each survey presented are also depicted in Table 1, where
open issues and limitations are highlighted as well. To this end, the main points of our work are
indicated as well.

Table 1. Indicative related surveys.

Paper Year Key Directions Limitations and Open Issues

Focus is on IEC systems and not on
[5] 2023 IoT-Edge-Cloud Systems access or data management
architectures in the continuum

Evaluation of containerization or
[13] 2023 Cloud Edge orchestration at the edge virtualization in real world
scenarios

Cloud — Edge orchestration
[15] 2024 Al on the edge Hardware integration to support
advanced AI/ML applications

Learning Model
Architecture of distributed computing carniiig voce’s

[16] 2023 Intelligent protocols for
systems .
effective resource management
[17] 2025 Recent trends in computing continuum Flexible resource allocation
systems Mobility in the continuum
Perf luation i 1
[18] 2025 SDN and NFV in cloud edge orientations eriormance eYa ua .1on mrea
world orientations
Our work Architectural approaches of meta-OSs for

the computing continuum

1.2. Contributions of This Work

In the works that were presented in the previous subsection, emphasis was provided on different
parts of the cloud computing continuum (i.e., AI/ML deployments, containerization, virtualization,
IEC and DCC architectures, NFV and SDN solutions, etc.). Therefore, unlike other similar works in
literature, our work tries to cover all individual aspects in the context of meta-OSs in the computing
continuum. These include among others the presentation of the most important key enabling
technologies, as well as all related research efforts in data management, security and privacy, as well
as resource optimization via ML. To this end, emphasis is given on the analysis of various European
Union-funded projects. Therefore, the main contributions of our work can be summarized as follows:

e Investigation into all recent trends in architectural approaches on the integration of meta-
OSs with the computing continuum.

¢ Emphasis on key enabling technologies such as security by design, coexistence with 6G
networks, data management, as well as advanced AI/ML approaches that leverage response times
and provide optimum resource management.

e A reference architectural approach is presented that takes into account all major players in
the computing continuum and their interactions.

e Indicative use cases are presented as well that benefit from the cloud computing continuum.

e  TFinally, open issues are also identified to trigger further research activities.
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Figure 2. Structure of the present work.

2. Key Driving Factors

Meta-OSs and the computing continuum face numerous challenges that need to be dealt with,
as described in the introductory section. The interconnection of numerous diverse devices on one
hand necessitates common access and data management protocols and on the other hand brings to
front more robust security and privacy protection mechanisms, since the attack landscape is now
significantly increased compared to previous generations of wireless networks. To this end, various
key enabling factors can be identified, such as efficient AI/ML approaches for proper resource
optimization as well as security and privacy protection, security by design, coexistence with 6G
networks as well as data management.

2.1. Machine Learning

A challenging research field in the design of the computing continuum systems is the use of
appropriate ML approaches both for threat prediction and mitigation as well as for resource
optimization. In the latter case, the goal is to select the appropriate architectural layer (i.e., IoT, edge,
cloud) and corresponding device where a certain task will be executed. This decision is based on
numerous factors, such as task complexity, delay tolerance, energy consumption, etc. Hence, to this
end, an efficient ML approach that can adapt to dynamic network orientations is deep reinforcement
learning (DRL) [19,20]. In this context, a mobile agent interacts with the environment and selects the
appropriate action for the task under consideration, according to a policy that maximizes overall
reward. Depending on the outcomes of this action, either positive or negative rewards are given to
the mobile agent. After a sufficient number of training rounds, near optimum decision goals can be
achieved with the help of neural networks (NNs) that can be trained according to various pairs of
potential states and actions. In this context, a quite popular approach is Q-learning, where the agent
keeps a score of quality values that are updated after each system transition. To this end, the new g-
value is based on the previous g-value and the received reward properly weighted.

A schematic overview of this approach is depicted in Figure 3. To this end, various data are
gathered from the IoT devices, the edge controllers and the cloud and are sent to the DRL agent.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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These data are related to distinct operational factors, such as historical load, task features as well as
current load in the participating devices. The aforementioned approach can be easily applied in
Federated Learning (FL) scenarios as well [21]. As depicted in Figure 4, multiple participating nodes
that represent either IoT, edge or cloud domains train locally an ML model, based on the data
collected from their surrounding environment. Afterwards, ML model parameters, such as weights
in case of NN training, are send to the master ML server for model aggregation and update. At this
stage, model inference can take place as well. The master server, after processing and aggregating all
parameters, sends the updated weights to the participating nodes. Therefore, on one hand
computational burden is divided among the participating nodes, and on the other hand no sensitive

data is transmitted. Hence, privacy sensitive applications, such as e-health can now be deployed more
easily.

DRL Agent 0t Environment
& L { -I- ) Accumulation
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Figure 3. Deep reinforcement learning approach in IoT-Edge—Cloud systems for a given agent n € £. EA: Edge
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Figure 4. Federated Learning in the computing continuum with local training steps performed at edge layers
and model aggregation implemented at the cloud.

2.2. Security by Design
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Another challenging research field in the management of the computing continuum is the
provision of security by design during application execution. Since this continuum integrates various
resource constrained IoT devices, not all of them have the capability to execute advanced security
protocols. Hence, various associated security challenges can be identified, such as protecting against
unauthorized access, ensuring data security and isolation in a multitenant environment as well as
securing virtual machines (VMs) [22,23].

The use of virtualized network elements, open interfaces and disaggregation that are extremely
important in the cloud computing era, can pose several security challenges. Unlike for example fifth
generation (5G) networks, where security solutions across all devices and base stations are configured
with universal settings for certain types of attacks, it is apparent that such an approach cannot be
applied in an integrated IEC infrastructure. In this case, the high diversity in service and application
provision, connected devices and associated protocols in heterogeneous networks as well as the
various physical layer encoding and transmission techniques, render a highly complex environment
with different requirements and settings. Since each scenario may have unique security requirements
and energy availability, the selection and configuration of security strategies need to be optimized in
an adaptive and dynamic manner. As it will be also discussed in the following subsection, cloud
computing continuum is envisaged to coexist with 6G networks to support advanced services and
applications. The security attacks in 6G networks are polymorphic in nature and sophisticated, using
previously unseen custom code, able to communicate with external command and control entities to
update their functionality or even implement themselves entirely from code fragments that they
intelligently harvest from benign programs, scripts and software blocks already present in the
security system in place [24,25]. Therefore, on one hand it is important to have strong security
mechanisms in the computing continuum domain, such as the zero trust concept [26], and on the
other hand to effectively design ML approaches that can create the appropriate intents in due time
for a variety of potential attacks.

2.3. Coexistence with 6G Networks

It is expected that the 6G concept will be based on a holistic integration of broadband networks
and lightweight IoT devices that can leverage various cutting-edge applications in the real world.
Hence, the underlying infrastructure of the computing continuum as well as meta-OSs should be able
to adapt to 6G network protocols, and in particular the ones that are related to proper resource
management and security. Typical advanced applications include among others autonomous
driving, where high precision sensors are mounted on vehicles, e-health applications with wearable
sensors and IoT devices as well as industrial robotic applications [27,28]. In the same context, another
promising novelty of 6G networks will be the subnetwork concept, where a network component in
the edge acts as a serving access point (AP) in case where connection with the main core network is
lost [29,30]. Therefore, in this case, efficient task offloading and reduced latency computations in the
edge/cloud domain are of utmost importance, to support critical applications. Moreover, as also
referred in the previous subsection, in the case of 6G networks an increased attack landscape should
now be dealt with. Hence, efficient network monitoring is required for threat prediction and
mitigation via the creation of appropriate intents.

Finally, in the framework of 6G networks, a promising architectural approach that has emerged
over the last years is the organic concept [31]. To this end, the long-term vision is to support the ability
of 6G networks to dynamically adapt their resources according to user needs and traffic demands,
within the available infrastructure resources. Hence, more flexible resource management can be
supported, by leveraging the well-known concept of service-based architecture (SBA) of 5G
networks. Hence, the meta-OS in the computing continuum should provide the appropriate
mechanisms for dynamic device onboarding and detachment from different segments of the network,
flexible data gathering, as well as ML model adjustment.

2.4. Data Management

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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An efficient data management solution should address the requirements of heterogeneous and
changing infrastructures by supporting dynamic and flexible data federation between devices,
enabling the integration of data from independent and volatile sources within a single application. It
will also enable the execution of parts of a service within the data platform to increase performance
and favour privacy and will facilitate the development of services to be deployed on the continuum
by abstracting data distribution, communication and management details across the different layers
of the infrastructure.

In [32] for example, a Message Queuing Telemetry Transport (MQTT) broker has been used for
the communication of devices in the IEC continuum. The key features of MQTT are minimal network
bandwidth usage, efficient message delivery, and support for a range of quality of service (QoS) levels
to ensure message reliability. As the authors point out, although MQTT helps in reducing system
vulnerabilities and facilitating compliance with data privacy requirements, there are still various
open issues to be addressed with. These include integration with emerging technologies, such as FL,
DevOps, and more adaptive security policies for dynamic IoT environments.

Another important issue that should also be considered in the design of an efficient data
management system is legislative measures governing data sharing and privacy [33]. Hence, data
protection laws should be considered in the new ecosystem via the integration of modules that enable
compliance with data protection regulations while transferring the data across the continuum.

A schematic overview of the most important key driving factors in the design of computing
continuum systems is also depicted in Figure 5, for illustration purposes.

Key Driving Factors
in the Computing
Continuum

Coexistence with

Machine Learning Security by design 6G Networks

Data management

&~ I=E
iz e [
| R g AT n &
| SO © - )
g

Figure 5. Key driving factors in the computing continuum.

3. Related Works

In this section, various recent works in the context of meta-OSs and the computing continuum
are discussed. In [34], and in the context of the EU-funded project FLUIDOS [35], an Al driven
approach is presented, to optimize resource allocation during application execution. To this end, a
user may ask for the execution of a specific workflow, that is passed by the Operator API to the
corresponding ML component. This component is trained using previous experience from similar
user requirements. Consequently, this workload is translated to an equivalent set of resources to be
committed during service execution. Performance evaluation took place with the help of two well-
known datasets and results were compared against the baseline approach (brute-force). In all cases,
resource allocation times were significantly reduced.
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In [36], the NebulOuS architectural vision is presented and described, for secure and optimal
application provisioning [37]. In this context, a model driven approach is presented, where a user
first describes an application and the required resources using a well-defined application model. In
the same context, admin users also advertise their resources using NebulOuS. Hence, the continuum
also acts as a gateway where different entities make use of heterogeneous resources. Al-driven threat
detection and mitigation is also supported. In [38], the work presented by the authors is based on the
EU-funded project NEMO [39]. To this end, the NEMO approach is based on the Artificial Intelligence
of Things (AloT) - an integration of Al with the physical world. AloT devices can potentially act as
semi-autonomous devices, thus reducing overall network burden as well as latency times. NEMO
introduces an open-source meta-OS, that tries to leverage a variety of novel cutting-edge
technologies, such as transfer learning (TL) and FL. The concept of AloT can be highly beneficial in
various time sensitive applications, such as in the immediate termination of wind turbines in cases of
high-speed winds, shutting down machines in latency demanding industrial 4.0 scenarios as well as
helping autonomous vehicles to avoid fatal collisions.

In [40], the concept of IoT Computing Continuum, or IoTinuum is introduced. To this end,
multiple computing servers are distributed across the IoT continuum to leverage latency critical
calculations. Hence, depending on the application, some sensors may forward data directly to the
cloud or others to use the processing nodes. In this context, the IoTinuum is composed of 6-stages:
The S1-thing, which includes all physical layer components, such as sensors and actuators, the S2-
Mist stage that includes all low power computing nodes in close proximity to the S1-devices, the S3-
Fog stage that includes high computing nodes that can be located far away from sensor nodes and
the S4-Cloudlet that is composed of a reduced set of servers running as a micro datacentre closer to
the cloud. Finally, the architectural approach also consists of the S5-Cloud and S6-App, where the
later one includes all smart applications. In this context, two use cases are analysed, and in particular
smart drone delivery as well as smart structural monitoring. In [41], the concept of 6G Computing
Continuum (6GCC) is introduced, where a realistic testbed has been used. To this end, a large-scale
cell free AP network is evaluated, for large scale highly demanding computations.

In [42], a domain-agnostic approach is presented, capable of supporting heterogeneous devices
in various network environments. The key advantages of this approach are among others a peer-to-
peer continuum instead of a hierarchical one, dynamic orchestration of resources, distributed and
decentralized learning instead of centralized approaches, as well as context-aware solutions. To this
end, various application scenarios are presented as well, such as smart charging stations for electric
vehicles, energy reduction towards carbon-neutral manufacturing processes, just-in-time arrival for
vessels, as well as green driving for reduced fuel consumption and decreased vehicle emission.

In [43], a novel DRL approach is discussed, for task offloading in cloud-edge continuum (CEC)
systems. Based on this framework, autonomous decisions can be made based on local conditions
while dynamically adapting to changing network environments. In this context, task latency and
drop rates are optimized, where DRL agents are employed at each edge server. Performance
evaluation indicates that significant improvements were achieved compared to baseline methods. As
the authors correctly point out, future directions include the extension of this framework to dynamic
environments, as well as the creation of a parallel framework to enable fast decision procedures in
the IoT devices. The work in [44] presents an optimization framework for smart homes energy
consumption based on FL. A key novelty of the presented approach is that FL aggregation is not
based on simple averaging of the produced models. Instead, newly created data contribute more on
the produced global model. The results demonstrate that the proposed method performs similarly or
better than other models in terms of prediction error. The last two cited works have been carried out
in the context of the EU-funded ICOS project [45].

In [46], a novel concept of self-distributing systems (SDSs) is presented and evaluated. To this
end, code mitigation of an application can take place in various resources of the computing
continuum. Performance is evaluated against other baseline approaches as well as with respect to
serverless computing. In this context, an agent which is located on top of the proposed four-layered
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architectural approach performs DRL to extract the optimum subset of resources for code mitigation.
As the authors indicate, scalability of this approach as well as evaluation in more complex scenarios
is a challenging research field for further research.

In [47], a novel symbiotic computing model is introduced, where all participating members in
the cloud continuum may share common resources for task improvement. To this end, two
approaches are considered, non-cooperative and cooperative resource pricing. In [48], a discussion
takes place on containerization and virtualization approaches, in the cloud computing continuum.
On one hand, containers can be deployed more easily in lightweight IoT devices, however they are
more vulnerable in security attacks. On the other hand, VMs can offer complete isolation during
application execution at the cost of increased hardware requirements. In [49], the problem of
optimum planning in multi-area, multi-service and multi-tier edge cloud computing environments
is investigated. To this end, an optimization problem is formulated and solved based on matrix
adaptation.

In [50], two novel reference architectures are presented: one for edge—cloud computing models
and the other for edge—cloud communication technologies. In the same context, indicative use cases
are presented as well. In [51], and in the context of the project NEMO, the open-source framework is
described. To this end, various key functionalities such as security, Al, service and data management,
meta-orchestration and resource management are provided as open-source components. In [52],
security in the continuum is leveraged with the help of physical unclonable functions (PUFs). These
kinds of functions are generated using the unique digital identifiers derived from the inherent
variability in the manufacturing process of integrated circuits, as a way to enhance security
mechanisms at minimal overhead cost [53]. Therefore, in this work a lightweight PUF generation
method is introduced, that can be applied even in cases where only one of the two involved parties
can support PUFs. In the same context, a security as a service (SaS) framework is introduced, based
on the Chef software [54].

In [55] the Ratiol meta-OS is presented. The key features include decentralized ML as well as
device authentication. As the authors point out, large-scale meta-OS deployments along with more
advanced privacy policies can trigger further research activities. In [56] an interconnection
framework is presented that can leverage seamless operation of large IoT deployments. This
framework uses the Sirius tool and Acceleo, where a smartphone-centric gateway application is used
as a mediator to connect devices and sensors within an IoT environment. Finally, in [57], the
COGNIFOG concept is presented [58], which is an open-source framework that tries to leverage
decentralized ML and decision making and distributed computing. To this end, container-based
virtualization is favoured, which is a lightweight and secure alternative that also supports the
microservice concept.

All the aforementioned works along with their key directions, limitations and open issues are
presented in Table 2 as well.

Table 2. Related works.

Paper Year Key Directions Limitations and Open Issues
Presentation of the FLUIDOS Project .
. . . Deployment in real-world
[34] 2024 Al optimization during application .
_ scenarios
execution

Perf luation i 1
[36] 2023 Presentation of the NebulOus project erformance evaluation in rea

world scenarios

Presentation of the NEMO Project
[38] 2024 Open-source components for various
features (e.g. Al security, service and data management)

Performance evaluation in large
scale scenarios

Integration of programmable
network stages
[41] 2022 6G Computing Continuum Integration of the computing

[40] 2024 Six proposed stages of the IoT Computing Continuum
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continuum with 6G architectural
approaches
[42] 2022 Presentation of the RAMOS concept Context aware machine learning

Task offloading in IoT Cloud Edge Extension in dynamic topologies

[43] 2024 D Additional performance metrics
scenarios via DRL . .
during optimization
Evaluation in additional real-world
[44] 2023 Federated learning in IoT scenarios vatuation i addl 1.ona real-wor
scenarios
Evaluation of the SDS h i
[46] 2023 Application resources dis‘tribution in the computing va u;(il(‘)enc(:)mpelex sc;r?a}zgsc n
continuum -
Scalability
[47] 2025 Resource priciflg in computing More diverse user behavior
continuum scenarios
Performance evaluation of bigger
hard hitect for Ed
[48] 2024 Virtualization vs. Containerization in the cloud continuum o orc are 1Cf0cu1(11res or Bdge ot
Security issues in both approaches
[49] 2025 Edge-Cloud Continuum Planning Integration of Al techniques
Edee cloud computing and Efficient communication
[50] 2024 & (prine technologies for the different parts
communication .
of the continuum
Perf luation in 1
[51] 2024 Open-source framework of NEMO project eriormance evatuation in farge
scale scenarios
[52] 2023 Physical Unclonable Functions Evaluation in realistic scenarios

Ratiol meta-OS Additional privacy policies

[53] 2025 Decentralized ML and device authentication Br?ader crossjc‘ham
interoperability

Only one smartphone was used for
performance evaluation

[56] 2023 Large scale interconnection of IoT devices Additional testing with diverse ToT
devices
Orchestration intelligence
[57] 2025 The COGNIFOG framework Decentralized, privacy-preserving

Al training at the edge

4. Discussion - Open Issues and Key Challenges

From the discussion of the previous section various open issues and key challenges can be
identified in the context of the computing continuum. A key outcome of the presented works is that
performance evaluation in realistic scenarios is still a challenging issue. All approaches so far are
based on publicly available datasets or on limited network topologies and testbeds. Another key
aspect that was also highlighted is to effectively interconnect a vast number of heterogeneous devices
and protocols via secure open access interfaces. The seamless support of highly demanding
applications necessitates proper resource management, which is made feasible only via efficient ML
approaches. However, the IEC continuum is a highly dynamic environment, where new elements are
constantly added/removed from the network; hence constant updates of the ML models are required.
To this end, and in order to avoid frequent retraining of the derived models, TL can be highly
beneficial [59]: The obtained knowledge from another task and dataset (even one not strongly related
to the source task or dataset) is transferred to the task under consideration to reduce learning costs.
In the same context, the increased number of devices and associated protocols poses new challenges
in the design and implementation of efficient security algorithms, since threat landscape is
significantly increased. Hence, ML model training is now a multi-dimensional task, since apart from
resource optimization the creation of intents for network recovery after attacks is also of utmost
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importance. However, a trained ML model that provides near optimum results for the first task (i.e.,
resource optimization) might not be the ideal one for threat mitigation and vice versa.

Therefore, based on the previous discussion, various key challenges can be identified as well,
which are summarized below:

e ML model deployment on lightweight IoT devices. In the IEC continuum, the goal is to
offline train an appropriate ML model either at the edge or in the cloud and then deploy it on the IoT
device. However, not all IoT devices have the processing capability to run hardware consuming ML
models. Hence, appropriate tiny ML models can be deployed that can effectively run in small IoT
devices [60]. In the same context, as previously mentioned, different models may provide near
optimum results for different tasks. In this case, ML repositories in edge and or cloud servers are
created and ML model deployment in lightweight IoT devices might occur for more than one trained
model, which unavoidably poses additional computational requirements.

e As also mentioned in the key challenges section, the integration of computing continuum
implementations with 6G architecture is a challenging research field, as it will allow the seamless
integration and coexistence of various cutting-edge technologies. However, as the landscape of
connected devices increases, security concerns may become a major issue, as previously mentioned.
Flexible network architectures allow the identification of multiple types of attacks [61]. To this end,
either predictive or mitigation actions can be supported both for well-known as well as for zero-day
attacks, with the help of additional emerging technologies, such as digital twins. In the same context,
distributed computing systems are expected to play a key role in this direction, as the deployment of
advanced ML algorithms as well as the support of highly demanding computational applications,
such as blockchain technology and encryption [62], cannot be fulfilled by lightweight IoT devices.

e  The implementation of the zero-trust context. To this end, constant authentication of all
involved devices takes place, which might significantly increase signaling burden in the network.

e  When FL is employed for faster ML training times as well as for privacy protection, a key
issue that may rise is non identical data distribution and severe heterogeneity of the produced
datasets (data heterogeneity). This is especially the case in large scale network orientations with
diverse elements. In this case, either subsets of training nodes are formulated, or TL is employed to
further improve ML training latency [63].

e Different policy configurations in various network segments: As stated in the
corresponding section, various network and cloud/edge providers may coexist in the computing
cloud continuum. In this case, different access and usage policies may pose significant difficulties in
proper resource management.

e As the concept of computing continuum spans across IEC environments, the choice among
containerization and virtualization is a challenging debate. To this end, each technology has certain
advantages/disadvantages which should be carefully examined, as previously mentioned. For
example, although virtualized environments provide isolation and security which are extremely
important in edge applications, they introduce significant overhead which can have an impact on the
performance of lightweight devices. On the other hand, containers, while more resource-efficient,
may pose challenges related to security and orchestration in diverse and distributed edge
environments.

Based on the above discussion, a high-level view of a proposed architectural approach is
depicted in Figure 6. To this end, various key players can be identified, such as the end user, the
network provider, the cloud provider, the edge computing platform provider, the IoT provider, the
application developer, and the application integrator. The different roles are analyzed in more detail
below:

e  Network Provider (NP): The NP is providing the network and connectivity resources that
allows the interconnection of cloud with near edge and far edge locations as well as the provisioning
of the required resources supporting gateways and remote devices connectivity. Within the cloud
continuum there can be multiple NPs depending on the footprint of the infrastructure and the
administrative domains.
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e  Cloud Provider (CP): The CP is provisioning the cloud resources responsible for hosting
the application components. Commonly, the CP operates on large cloud infrastructures (e.g., Hyper
scalars), providing points of presence (PoPs) of local interest for allowing fast connectivity, low
latency, load balancing and close to the devices resource availability.

e Edge Computing Platform Provider (ECPP): Similarly, the ECPP is providing cloud
resources at the edge (near or far) of the infrastructure, capable of hosting less resource demanding
application’s components coupled with specific hardware (HW) acceleration capabilities suitable for
AI/ML workloads. It is assumed that the ECPP infrastructure topology allows for reaching large
and/or dense IoT deployments.

e JoT Provider (IoTP): IoT provider is the actor providing the IoT infrastructure that is being
deployed across the continuum. This infrastructure may include devices that allow deployment of
continuum controllers or/and agents. Moreover, in the case that the capability to deploy the
continuum is restricted either due to processing resources limitations or because of access to the HW
device OS, appropriate APIs are exploited. The IoTP through the continuum is gaining the ability to
open the infrastructure to multiple vertical applications, since all operate on the common continuum
software.

e  The Application Developer (AppDev) and the Application Integrator (Applnt) can be seen
as distinguishing roles played by the same actor or different, depending on the complexity of the
ecosystem. The first one is developing application components, enhancing functionality and
operation. The latter one is integrating application components that may arrive even from different
developers, so that a full-blown application is created and modelled/described in a compatible to the
continuum model. In this context the Applnt is experienced with the presented data model,
descriptor, and operation specificities. Consequently, the AppDev depends on the Application
Integrator to formulate the application descriptors in a way that is comprehensible by the continuum
in order to be deployed over an instance.

. ( . Network
@ etwor
HENE @ SN @ Onboard Provider
Customer @ Resources
Requirements for
I% service deployment Onboar 4 (lergtgjer
and operation Meta-0OS Resources
@ F Edge
o/ : 2 N Onboard Comp uting
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Deploy Resources
Appllcatlon Application — loT
Integrator Onboard Provider
Resources
Build Application
Component
—/ —/
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Figure 6. High-level schema of the proposed Meta-OS-enabled computing continuum framework.
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Hence, as it becomes apparent from the previous discussion, the computing continuum should
provide a unified access mechanism to all the aforementioned key players. In the same context, as
previously mentioned, a variety of ML models should be trained and updated, either for resource
optimization or for threat mitigation. In parallel, security by design should be also supported. Hence,
three main modules can be identified, and in particular the Data Management Module (DMM), the
Intelligence Module (IM) and the Security Module (SM). DMM is responsible for managing all data
required and exchanged in the continuum, as well as the efficient execution of data-based
applications and services used in the continuum. Its main functionalities include: a) Data distribution
across the continuum, taking advantage of the entire available infrastructure, b) Smart data
placement and dynamic adaptation to changes in the infrastructure during operation: devices joining
or leaving, reorganizations, etc., c) Seamless access to data in the continuum, regardless of the location
(device or cloud) or nature of resource (in motion or at-rest), by providing an integrated data platform
spanning the whole continuum and d) Minimization of data transfers to improve performance and
trust, by exploiting near-data processing in various types of devices.

The IM provides the functionalities to train, test, use, maintain and update analytics and ML
models in the continuum, with the goal of supporting and augmenting the operations and
performance of the security and privacy modules by considering specific policies in the use of data
and models, with special emphasis on trustworthiness including;:

e Intelligence Layer Coordination: Coordination enables optimization and predictive
analytics and ML models and its use across the continuum. This will include policies for the use,
share and update of models across the edge-cloud continuum, including FL strategies.

e Data Processing: Data processing and storage in formats and databases optimized for the
application of analytics tasks depending on the resources available of the hosting device in the
continuum.

e Al Analytics: A library of optimized ML algorithms for training and testing of predictive
and optimization models, including deep learning, adaptive machine learning and reinforcement
learning libraries optimized to operate in constrained devices.

e Al Models Marketplace: A collection of pre-trained analytics and ML models to be reused,
updated, refined (e.g., TL) and combined to foster the application of new Al techniques in the
different layers of the computing continuum meta-OS. To this end, a challenging task is to provide
the functionality to train and compress these models for operation in constrained devices (e.g.,
pruning unused branches in trees or simplifying NN architectures).

e  Trustworthy Al: Provide specific algorithms to analyze the datasets and develop models
conforming to policies for privacy and trustworthiness. Functionality for models to be trained in a FL
fashion to ensure data protection in datasets containing user-specific data will be provided as well as
explainable AI algorithms to provide reassurance of output of models to the different layers of the
continuum.

Finally, the SM provides several related functionalities, such as i) Federated Identity
Management; ii) Authentication, Authorization and Audit capabilities; iii) Detection of security
issues and mitigation mechanisms (e.g. self-healing); iv) Support for compliance frameworks; v)
Trust and privacy.

5. Potential Use Cases

In this subsection various potential use cases are presented, that could be leveraged from the
computing continuum and cloud operating systems. These include predictive maintenance in
industrial 4.0 applications, load forecasting, smart cities as well as critical infrastructure monitoring.
For each use case, a reference architecture is discussed along with signaling requirements.

5.1. Predictive Maintenance in Industrial 4.0 Scenarios

A challenging use case is the predictive maintenance in advanced industrial 4.0 scenarios as well
as the provision of immediate responses in latency critical applications. To this end, various IoT
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devices are placed in key components of the manufacturing process that constantly collect and
process data. These data are send to an edge server that is located in the premises of the industry, as
shown in Figure 1. To this end, the interconnection of a vast number of heterogeneous hardware
components on one hand and data analysis for effective ML training on the other hand can be made
feasible only via the computing continuum. In this case, data analysis targets two actions: a)
predictive maintenance of specific components and b) immediate termination of a process, in case
this is crucial. For example, in a wind park it is critical for this termination to happen in a predefined
time frame, especially in the case of severe wind flows that can damage the machine. In the same
context, these edge servers that collect local data can train ML models, as previously mentioned.
However, in the case of similar industrial premises, on site edge servers can locally train an ML
model, which can be aggregated in a FL fashion way after collecting all parameters from all premises.
Although FL ensures privacy by design since only model parameters are exchanged, communication
among the premises can be leveraged with the use of private networks [64].

5.2. Load Forecasting in Smart Grid Environments

In load forecasting in the smart grid energy sector the goal is to collect data from various IoT
sensors spread across the grid topology and perform accurate load forecasting. These sensors can be
placed in production units, renewable energy sources, as well as in households. The aim is to
periodically send data to edge servers that collect them and perform accurate load forecasting. As in
the previous scenario of predictive maintenance, the goal is to securely interconnect a vast number
of interconnected devices that can be spread over large geographical areas. In advanced scenarios,
household energy consumption can be measured via IoT measurement devices where with the use
of appropriate applications a user can be informed on the actual amount of data under consumption
as well as on the predicted data in predefined time intervals. Depending on latency tolerance, ML
model training can take place either on local edge servers or in the cloud domain, especially in cases
of long-term production planning.

A typical use case for example is depicted in Figure 7, where concentrators collect data generated
from smart meters in households. In the operation center, proper loT data are collected from various
modules, such as the geographical information system (GIS) that matches consumed energy with
specific households, the data management system (DMS) for load forecasting, the consumer
information system (CIS) that provides billing information as well as the operational management
system (OMS) that informs the central management system for potential outages.

Wireline Concentrator

Central

Operation Center Distributed Operation Center
Figure 7. A dispersed communication structural design for Smart Grid based on IoT.

5.3. Smart Cities
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In the concept of smart cities, the goal is to place various IoT sensors and measure key
performance metrics, such as traffic, air quality, people density, etc [65]. Hence, data generated from
a variety of sensors should be properly collected to optimize various parameters directly related to
the well-being of citizens, such as the time of arrival of transportation, management of traffic in roads,
light density, etc. This concept is also applied in smart buildings, where various operations such as
central heating and cooling, air quality, etc. are managed by on site edge servers [66]. As it becomes
apparent from the above, a full deployment of the smart city concept presumes the integration of
multiple IoT heterogeneous sensors. Hence, data management, communication procedures as well
as data integration for efficient ML model training can be quite challenging tasks. To this end, a full
layered approach as the one presented in Figure 1 would be the best choice for this scenario. Such an
approach can also leverage the deployment of advanced services and applications in 6G scenarios
within smart cities, such as autonomous driving.

5.4. Infrastructure Monitoring

In this use case scenario, various loT sensors are deployed over large scale infrastructures to
collect data and leverage predictive maintenance. In railway lines for example, the massive
deployment of sensors along different parts of the infrastructure is essential for the optimization and
improvement of service and safety. The increasing number of sensors and its specific, and typically
siloed solutions, present an increasing complexity related to the management and operations of such
solutions.

Today, the railway monitoring process to improve the maintenance cycle is basic, and for most
railway operators it is done preventively (once every fixed period) through a special train with
sensors on its wheels which runs through the whole rail system. This special train can measure
several key parameters of the railway system, such as the height difference and width between two
lines, and thus identify where, potentially, corrections in the lines are needed. However, this
measurement is only taken every once or twice a year; in the remaining months, nobody knows what
happens (only physical inspections are available: very costly and uncommon), and moreover, there
is no established procedure to evaluate the cost-effectiveness of the actions taken to address the
identified rail line issues. In this context, digital technology, such as IoT, aims to minimize the
monitoring and maintenance costs by gaining knowledge of the status of key aspects of the railway
infrastructure in real-time: rail tracks levelling, tensions, and slope, surrounding areas settlements
and falling elements, catenaries maintenance, cyber processes monitoring, etc.

Hence, the main challenge to be addressed by this use case is related to the continuous
monitoring of critical infrastructure on rail tracks to ensure safety and improve maintenance
activities. In the same context, energy-efficient solutions for low-power IoT devices are required to
guarantee safety operation monitoring in real time while ensuring a very long lifetime of the
deployed technology in remote locations. The aforementioned concept can be applied in additional
large-scale infrastructures as well. Two typical examples include large hydroelectric stations, where
various sensors are deployed over the topology to measure key performance indicators, (e.g. water
flow, resistance of the barrier, water quality, etc) as well as in large bridge infrastructures. In the latter
case, cracks or malfunctionalities throughout the construction can be easily identified.

A schematic overview of data exchange for various applications in the meta-OS computing
continuum is shown in Figure 8. To this end, multiple IoT gateways gather related information from
the physical sources and forward it to the continuum instances. For ease of abstraction, the DMM,
AI/ML as well as the SM can be placed in an arbitrary module of the continuum, as introduced in
Figure 1. Once data is received by the DMM, both the SM as well as the IM can process this
information and either update the corresponding ML models or enforce threat detection and privacy
policies. In this context, the compliance enforcement module will enable the detection of compliance
problems and enforce infrastructural changes in order to enhance compliance based on the chosen
target compliance framework. Privacy module will provide a set of primitives that could be used for
data transformation, such as anonymisation, and encryption. The anomaly detection module either
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receives updated ML models from the IM for threat detection or forwards corresponding data in
\
( Security Module
v' Privacy
v" Anomaly detection
\_ v Compl"ance enforcement )
[ @ DataManagement 4 2o Al/MLModule )
"0 v" Al Analytics
%°

v" Al models marketplace
\_ v" Trustworthy Al )

cases of zero-day attacks.

Load forecastingin Smart Grids Predictive maintenance Smartcities

Figure 8. Use cases for interactions and data exchange in the meta-OS-enabled and Al-assisted computing

continuum.

6. Conclusions

In this article all recent technological developments in the area of meta — OSs in the computing
continuum were analyzed, with emphasis on the support of advanced services and applications. In
the same context, several open issues and limitations were identified as well. As it becomes apparent,
various key enabling technologies will support this context, such as advanced machine learning
algorithms that properly collect data and perform large scale distributed optimization, as well as
efficient and lightweight security mechanisms. However, as it became apparent from the discussion
in this article, all adopted solutions should be based on open access frameworks, to facilitate
interoperability of the connected devices and leverage scalability. In the same context, coexistence
with the 6G networks is also a challenging issue, as lIoT, edge and cloud devices should be in the
position to support advanced services and applications.

Hence, a cutting-edge research effort lies in the deployment of advanced ML approaches that
can rapidly adapt to varying network conditions, leverage green computing calculations and at the
same time minimize intent creation times for various threats. In this context, a high-level view of a
proposed architectural approach was discussed as well, that facilitates the entry and communication
of various entities of the continuum and at the same time leverages the creation and storage of
advanced ML algorithms to be adopted per case.
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Abbreviations

The following abbreviations are used in this manuscript:

5G Fifth Generation

6G Sixth Generation

6GCC 6G Computing Continuum (6GCC)
Al Artificial Intelligence

AloT Artificial Intelligence of Things (AloT)
AP Access Point

API Application Programming Interface

AppDev  Application Developer
Applnt Application Integrator

CEC Cloud Edge Continuum

CIS Customer Information System
CP Cloud Provider

DCs Distributed Computing System
DMM Data Management Module
DMS Data Management System
DRL Deep Reinforcement Learning
ECPP Edge Cloud Platform Provider
EU European Union

GIS Geographical Information System
FL Federated Learning

HW Hardware

M Intelligence Module

IoT Internet of Things

IoTinuum IoT Computing Continuum
IoTP IoT Provider

IEC IoT Edge Cloud

ML Machine Learning

MQTT  Message Queuing Telemetry Transport
NFV Network Function Virtualization
NN Neural Network

NP Network Provider

oS Operating System

RL Reinforcement Learning

PaaS Platform as a Service

PoP Point of Presence

PUF Physical Unclonable Function
QoS Quality of Service

SaS Security as a Service

SBA Service Based Architecture

SDN Software Defined Networking
SDS Self-Distribution Systems

TL Transfer Learning
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