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Abstract: Semi-supervised clustering incorporates prior knowledge such as class labels or pairwise constraints

into classical clustering methods to obtain better quality clustering result. While many literature publications

made great effort to develop novel and efficient semi-supervised clustering variants, the impact of imbalanced

constraint set and noisy constraint set has not been fully explored. In this article, we simulate the realistic settings

where the input is noisy, that means, the constraint sets are skewed or contain noisy constraints. We analyze the

robustness and accuracy of six state-of-the-art semi-supervised clustering algorithms, and highlight the scenarios

in which each approach is more suitable for. The experimental results on prominent UCI benchmark datasets

demonstrate that most semi-supervised clustering approaches benefit more from must-link constraints than from

cannot-link constraints. Moreover, pure cannot-link constraint set sometimes leads to a decrease in performance.

We also find that semi-supervised clustering approaches do not have good robustness properties against noisy

constraints, especially noisy must-link constraints.

Keywords: machine learning; data mining and knowledge discovery; semi-supervised clustering; imbalanced

constraints; experimental study; noisy input; robustness analysis

1. Introduction

Clustering methods aim at grouping data into homogeneous groups such that instances in the
same group are more similar to each other than to those in other groups [1,2]. As unsupervised
learning approaches, clustering is often used to analyze datasets that lack any supervisory information
[3]. However, in practice, some prior knowledge may be available about the underlying data space
clustering properties, such as a few numbers of instance labels or a set of constraints, for instance. In
order to take advantage of the available supervisory information and extract relevant information
for the user, recent research work focused on semi-supervised clustering, also called constrained
clustering, which uses prior knowledge to guide the clustering process [4,5].

Different types of prior knowledge and semi-supervised clustering approaches are considered in
the literature. The most widely used type of constraint is the instance-level must-link and cannot-link
constraints [6]. A must-link constraint implies that two instances should be assigned to the same group.
On the other hand, a cannot-link constraint enforces that two instances cannot be placed in the same
group. Many semi-supervised clustering approaches have been developed based on must-link and
cannot-link constraints. Most of them extend classical clustering algorithms, such as the K-means
algorithm, to a constrained version [6–11]. Some other methods focus on using the must-link and
cannot-link constraints to infer new data grouping metrics [12–15] or model the problem using a
declarative framework [16–19]. There are also methods that integrate constraints into a collaborative
process [20] or an ensemble process [21–24] that involves several clustering algorithms. Recently, some
studies have proposed making use of constraints in the deep clustering method [25,26].

Although many authors in the literature have made great efforts to develop novel and efficient
semi-supervised clustering variants, the impact of noisy input on semi-supervised clustering algo-
rithms has not been fully explored. Most research work assumes that the input, for example, the
number k of clusters and constraint sets, is accurate. The input set of constraints is usually generated
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based on the ground-truth labeling of instances and is always balanced in terms of cannot-link and
must-link constraints. The situation where noisy constraints exist and the distribution of constraints is
extremely biased, which is more realistic for operational applications, is barely considered. Among the
few articles dealing with this topic, [9] analyzes the complexity of their semi-supervised clustering
approach in the case that the constraint set is skewed. [27] points out the impact of the constraint
set on performance, proving that some constraint sets can actually decrease algorithm accuracy, and
leads to further work that focuses on how to select the informative and/or "easy" constraint sets [28].
Few publications discuss the impact of noisy constraints, among which we can cite [29–31], and the
impact of an incorrect number k of clusters [31]. In addition, [32] and [33] report the behavior of
semi-supervised clustering algorithms in the presence of erroneous constraints.

In this paper, we simulate practical settings where the input is noisy, which means that the
constraint sets are skewed or contain noisy constraints. We analyze the robustness and accuracy of
semi-supervised clustering algorithms and highlight the scenarios in which each approach is more
suitable. The remainder of the paper is organized as follows. Section 2 introduces state-of-the-art semi-
supervised clustering approaches that are utilized in the article. In Section 3, we present the datasets,
noisy constraint generation strategy, and experiment design. Section 4 reports the experimental results
and their analysis. Section 5 concludes the article with the essential findings of the study.

2. Semi-supervised Clustering Approaches

In this section, we present the six state-of-the-art semi-supervised clustering algorithms used in
the experiments. These include the COP-Kmeans [6], PC-Kmeans and MPC-Kmeans [8] variants of
K-means that integrate constraints in the classical K-means algorithm, and the RCA [34], MMC [12]
and ITML [14] metric learning methods that use constraints to learn distance functions.

2.1. Constrained K-Means

Constrained K-means clustering (COP-Kmeans) was proposed in [6] and is one of the most
famous constrained clustering algorithms. The idea is to ensure that none of the constraints is violated.
A data point, i.e., instance, i is assigned directly to a cluster if the cluster contains a data point that
has a must-link constraint with i. Otherwise, i will be assigned to the cluster with the closest centroid,
excluding those clusters containing a data point that has a cannot-link constraint with i. If a legal
cluster cannot be found, then an empty partition is returned.

COP-Kmeans is a simple and efficient approach. However, as COP-Kmeans enforces that every
single constraint must be satisfied, a noisy constraint will definitely lead to noisy output. COP-Kmeans
can also be sensitive to data point assignment order. Once a data point is assigned to a cluster, all the
other data points that have must-link with it will be assigned to the same cluster. Thus, a different
assignment order may end up in completely different clustering results for those data points. COP-
Kmeans may return an empty partition when a data point cannot be assigned to any cluster due to
having a cannot-link constraint with data points in each cluster, meaning that the instance is excluded.

2.2. Pairwise Constrained K-Means and Metric Pairwise Constrained K-Means

Based on the idea of using constraints in the K-means algorithm, [8] proposed Pairwise Con-
strained K-means (PC-Kmeans) and Metric Pairwise Constrained K-means (MPC-Kmeans). PC-
Kmeans utilizes constraints to seed initial clusters and directs the cluster assignments to respect these
constraints. The connected components, which consist of points connected by must-link constraints,
are taken as initial cluster centroids. The objective function is formulated as the sum of the total squared
distances between data points and their cluster centroids, and the penalty incurred by violating any
constraints. During the cluster assignment step, a data point will be assigned to the cluster centroid
that minimizes the objective function.

MPC-Kmeans involves both cluster initialization, cluster assignment, and metric learning in a
unified framework. The definition of the objective function and cluster initialization are the same as in
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PC-Kmeans. Moreover, the distance metric is adapted by re-estimating the weight matrices during
each iteration based on the current cluster assignments and constraint violations.

PC-Kmeans and MPC-Kmeans never return empty partitions as COP-Kmeans. But, as variants of
the K-means algorithm, they can be order sensitive as well. The complexity of MPC-Kmeans is critical
[33] as MPC-Kmeans updates the weight matrices during each iteration of the clustering process.

2.3. Relevant Components Analysis

Relevant Components Analysis (RCA) [34] is one of the earliest methods that integrates constraints
in metric learning. It makes use of "chunklet", which is essentially a connected component, to compute
a global linear transformation to assign large weights to relevant dimensions and low weights to
irrelevant dimensions [35]. This transformation is based on chunklet information only and does not
use any cannot-link constraints.

2.4. Mahalanobis Metric for Clustering

Mahalanobis Metric for Clustering (MMC) [12] aims to minimize the sum of Mahalanobis dis-
tances between data points linked by must-link constraints, and at the same time enforce the distances
between data points linked by cannot-link constraints to be greater than a constant (often set to 1).
This distance metric is trained using convex optimization, and thus the training process is free from
local optimization.

Although MMC is efficient, the computation of eigenvalues during the metric learning step can
sometimes be time-consuming. Another restriction is its idealistic assumption that all clusters follow
an unimodal distribution. In addition, MMC has been reported to have some uncertainty about the
optimality of the final solution. Indeed, the MMC gradient-based algorithm proposed needs the
adjustment of several parameters and is not guaranteed to find the optimum solution without such an
adjustment [13].

2.5. Information-Theoretic Metric Learning

Similar to MMC, the Information-Theoretic Metric Learning (ITML) approach [14] aims to learn
an optimal Mahalanobis distance subject to constraints. It bijects the Mahalanobis distance to an equal
mean multivariate Gaussian distribution. In this way, the problem is translated into minimizing the
differential relative entropy, also known as the Kullback-Leibler divergence, between two multivariate
Gaussian distributions under constraints on the distance function. The problem is then expressed as
a particular Bregman optimization problem by minimizing the LogDet divergence subject to linear
constraints.

Unlike some other metric learning methods, in ITML, no eigenvalue computation or semi-definite
programming is required. It can also handle a wide variety of constraints and can optionally incorporate
prior knowledge on the distance function. However, a simple bijection between the Mahalanobis
distance and the equal-mean multivariate Gaussian distribution oversimplifies the underlying metric
structure. In practice, there will frequently be no feasible solution to the general ITML problem,
particularly when the number of constraints is large, as reported in [36].

3. Experimental Setting

The prominent Iris, Wine and Seeds UCI benchmark datasets [37] and Cassini synthetic two-
dimensional benchmark dataset [38] are used in the experiments. The main characteristics of these
datasets are presented in Table 1. A central reason for selecting these datasets is that the distribution of
their classes is balanced. Indeed, the existence of a minority class can result in a mismatch between the
number of classes and the real number of clusters in the dataset, leading to confusion about the choice
of the number of clusters extracted, that is, parameter k, for semi-supervised clustering approaches.
This feature ensures that only the impact of the properties of the set of constraints is reflected in
the results.
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Table 1. Benchmark dataset properties. For each experimental datasets, the number of classes, the
number of attributes and the number of instances are shown.

Dataset Classes Attributes Number of instances

Iris 3 4 150
Wine 3 13 178
Seeds 3 7 210

Cassini 3 2 150

The six semi-supervised clustering approaches presented in Section 2 are used for the experiments.
Implementations of these semi-supervised clustering approaches are available in the active-semi-
supervised-clustering [39] and metric-learn [40] Python packages. These approaches require an input
number of clusters k as a parameter, for which the number of classes is given. The semi-supervised
clustering results are evaluated using the standard NMI index score [41].

4. Experimental Results

The experimental results regarding the impact of noisy input on the performance of semi-
supervised clustering approaches are reported in this section. Section 4.1 tackles the problem of
imbalanced constraint sets in terms of the number of cannot-link and must-link constraints. In Sec-
tion 4.2, we address the problem of noisy cannot-link and must-link constraints in the constraint sets.
Section 4.3 makes use of the Cassini benchmark dataset to visualize and analyze the impact of different
constraint sets on the results of semi-supervised clustering approaches.

4.1. Impact of Imbalanced Constraint Sets

During this experiment, we analyze the impact of extremely imbalanced constraint sets on semi-
supervised clustering approaches. The number of constraints ranges from 0 to 210. For each number
of constraints, 30 different sets of constraints were generated to obtain repeated trials. The generated
constraint set may contain 50% must-link constraints and 50% cannot-link constraints, only must-link
constraints, or only cannot-link constraints, to separately investigate their impact on performance.

The results of COP-Kmeans, PC-Kmeans, MPC-Kmeans, RCA, MMC and ITML are presented in
Figure 1 for the Iris dataset, in Figure 2 for the Wine dataset, and in Figure 3 for the Seeds dataset. The
horizontal axis shows the number of total pairwise constraints used during the run and the vertical axis
shows the average NMI index score of the output clustering solution over all trials for each approach.
The vertical axis is normalized to the [0.0,1.0] range for all figures. The blue curve corresponds to the
result of unsupervised clustering in which no constraint is used, with the input parameter k set to the
number of classes. The orange curve corresponds to the NMI index score of each approach in the case
where the number of must-link constraints is equal to the number of cannot-link constraints. The green
curve and red curve respectively represent the NMI evaluation of each approach in the situation where
the constraint set contains only must-link constraints or cannot-link constraints. The red curve is not
illustrated for the RCA approach because this approach does not use any cannot-link constraints.

For the Wine and Seeds datasets, the MMC approach does not find the optimal final solution,
proving the statement in [13] that the MMC approach needs the adjustment of several parameters and
is not guaranteed to find the optimum without such adjustment. The ITML approach fails to find a
feasible solution for the Iris dataset when the number of constraints is large, as presented by the green
curve. This corresponds to the report in [36], arguing that there will often be no feasible solution to the
general ITML problem in practice, particularly when the number of constraints is large.
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Figure 1. Performance of semi-supervised clustering approaches with imbalanced constraint sets for
the Iris dataset. The horizontal axis shows the number of pairwise constraints used during the run, and
the vertical axis shows the NMI evaluation index value of the clustering solution generated.
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Figure 2. Performance of semi-supervised clustering approaches with imbalanced constraint sets for
the Wine dataset. The horizontal axis shows the number of pairwise constraints used during the run,
and the vertical axis shows the NMI evaluation index value of the clustering solution generated.
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Figure 3. Performance of semi-supervised clustering approaches with imbalanced constraint sets for
the Seeds dataset. The horizontal axis shows the number of pairwise constraints used during the run,
and the vertical axis shows the NMI evaluation index value of the clustering solution generated.
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Comparing the blue curve with the orange, green and red curves, we can clearly see the negative
effect issue. This issue relates to the use of pairwise constraints as supervised information in the
clustering process that sometimes leads to worse performance than using no constraint, which com-
monly occurs in semi-supervised clustering approaches, especially when the number of constraints is
small. Overall, the semi-supervised clustering approaches benefit more from must-link constraints
than cannot-link constraints. A pure cannot-link constraint set, as demonstrated by the red curve,
sometimes leads to a decrease in performance, especially for metric learning methods MPC-Kmeans,
MMC and ITML. In contrast, must-link constraints have a significant positive impact on performance.
Most approaches achieve their best performance with only a set of must-link constraints, as illustrated
by the green curve. The COP-KMeans, ITML and MMC approaches are shown to have the ability of
making use of cannot-link constraints, since their orange curve has better performance than the green
curve.

The metric learning methods RCA, MMC and ITML converge faster than the COP-Kmeans,
PC-Kmeans and MPC-Kmeans K-means variants, as the curves quickly reach peak performance when
the size of the constraint set is small. The performance then remains stable, even as the number of
constraints increases. However, K-means variants, especially MPC-Kmeans seem to have a higher
NMI index score when the number of constraints is large enough.

Among all metric learning methods, the RCA approach generally has the best performance, even
if only must-link constraints are used. MPC-Kmeans has the highest NMI index score compared to
other K-means variants.

4.2. Impact of Noisy Constraint Sets

In this experiment, the impact of noisy constraints on semi-supervised clustering approaches is
analyzed. The number of total pairwise constraints is fixed to 100, including 50 must-link constraints and
50 cannot-link constraints. This guarantees that the semi-supervised clustering approaches have sufficient
supervised information to generate an initial clustering solution. The number of noisy constraints ranges
from 0 to 20. For each number of noisy constraints, 30 different sets of constraints were generated to
obtain repeated trials. The generated noisy constraints may exist equally in must-link constraints and
cannot-link constraints, or only in must-link constraints, or only in cannot-link constraints.

The results of COP-Kmeans, PC-Kmeans, MPC-Kmeans, RCA, MMC and ITML are presented in
Figure 4 for the Iris dataset, in Figure 5 for the Wine dataset, and in Figure 6 for the Seeds dataset. The
horizontal axis shows the number of total noisy constraints used during the run, and the vertical axis
shows the average NMI index score of the output clustering solution over all trials for each approach.
The vertical axis is normalized to the [0.0,1.0] range for all plots. The blue curve corresponds to the
NMI index score of each approach in the case where the number of noisy must-link constraints is
equal to the number of noisy cannot-link constraints. The orange and green curves, respectively,
represent the NMI evaluation of each approach in the situation where noisy constraints exist only
within must-link constraints or only within cannot-link constraints.

According to the analysis in the previous experiment, semi-supervised clustering approaches
benefit more from must-link constraints. This finding is confirmed in this experiment, as we can
observe from the orange curve, since there is an important decrease in performance when noise exists
in must-link constraints.

The MMC approach and the ITML approach have better robustness against noise in cannot-link
constraints, as illustrated by the green curve. In addition, for all other approaches, we can conclude
by comparing the starting point and the end point of the curves that noisy constraints usually lead
to a significant drop in performance. This illustrates the weakness of these approaches in stability,
especially when noisy constraints exist among must-link constraints. The good robustness of the MMC
approach and the PC-Kmeans approach on the Wine and Seeds datasets actually comes from the fact
that the performance of the clustering solutions without noisy constraints is subpar. Therefore, noisy
constraints do not result in worse performance.
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Figure 4. Performance of semi-supervised clustering approaches with noisy constraint sets for the Iris
dataset. The horizontal axis shows the number of total noisy constraints used during the run and the vertical
axis shows the average NMI index score of the output clustering solution over all trials for each approach.
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Figure 5. Performance of semi-supervised clustering approaches with noisy constraint sets for the Wine
dataset. The horizontal axis shows the number of total noisy constraints used during the run and the vertical
axis shows the average NMI index score of the output clustering solution over all trials for each approach.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 December 2024 doi:10.20944/preprints202412.1495.v1

https://doi.org/10.20944/preprints202412.1495.v1


11 of 19

Figure 6. Performance of semi-supervised clustering approaches with noisy constraint sets for the Seeds
dataset. The horizontal axis shows the number of total noisy constraints used during the run and the vertical
axis shows the average NMI index score of the output clustering solution over all trials for each approach.
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4.3. Visualization and Explanation

This experiment makes use of the Cassini two-dimensional benchmark dataset. This popular
dataset consists of three groups of 50 instances: Two banana-shaped groups, that is, non-convex
clusters, bending around a circular cluster in the middle [42]. The presence of the two banana-shaped
groups makes it impossible to discover three clusters using the unsupervised K-means algorithm,
as it only generates convex clusters. We use the Cassini dataset to visualize and analyze the impact
of different must-link and cannot-link constraint sets for each of the COP-Kmeans, PC-Kmeans,
MPC-Kmeans, RCA, MMC and ITML semi-supervised clustering approaches.

We selected four different sets of constraints to evaluate their impact and compare the final
clustering result of each semi-supervised clustering approach. The first one is a randomly selected
small set of constraints, with three must-link constraints and three cannot-link constraints that were
randomly selected. The second is a representative small set of constraints, where three representative
must-link constraints and three cannot-link constraints were manually selected. The third is an
imbalanced randomly selected large set of constraints, with thirty cannot-link constraints and three
must-link constraints. The fourth is an imbalanced randomly selected large set of constraints, with
three cannot-link constraints and thirty must-link constraints.

To visualize and analyze the impact of the four constraint sets, the pairwise constraints used and
the output clustering solutions for the unsupervised K-means algorithm and the six semi-supervised
clustering approaches are plotted in two-dimensional graphical representations. These graphical
representations are shown in Figure 7 for the first set of constraints, in Figure 8 for the second set of
constraints, in Figure 9 for the third set of constraints, and in Figure 10 for the fourth set of constraints.
The cannot-link constraints used are represented by red lines and the must-link constraints used are
represented by green lines. The color of each point indicates which of the three clusters the instance is
assigned to in the output clustering solution.

When comparing the results for the first and the second constraint sets, metric learning approaches
are highly affected if the constraint set does not express the cluster distribution effectively. The reason
is that the metric learning approaches aim to learn an adapted metric based on constraints. With the
representative small constraint set, the must-link constraints within the two banana-shaped clusters
help the metric learning approaches to "shrink" the horizontal distance, and the cannot-link constraints
allow for enlarging the vertical distance. Therefore, metric learning approaches achieve high clustering
quality. However, based on the randomly selected small constraint set, the metric learning approaches
adapt the metric to reduce the diagonal distance from the bottom left corner to the top right corner,
where the data structure is not well reflected, and result in poor performance. This also implies the
potential reason for the negative effect issue. As the metric learning approaches strongly rely on
the representative must-link constraints, non-representative constraints in the small constraint set
may cause these approaches to fall into a local optima and give worse performance than using no
constraints. On the other hand, the K-means variants integrate constraints to improve the clustering
process of K-means. Thus, the quality of constraint sets has less influence on their performance than
on metric learning approaches. They also have fewer negative effect issues.

As we can see from the result for the third constraint set, increasing the size of cannot-link
constraints does not help much in improving the performance. With the same randomly selected
must-link constraints as in the first constraint set, even when the number of cannot-link constraints is
increased to thirty, the semi-supervised clustering approaches still fail to give good performance. In
contrast, when the number of must-link constraints increases, the performance of all approaches is
significantly improved. This confirms the finding outlined in Section 4.1 that must-link constraints
have an effective positive impact on performance. A presumed reason for this is that, as the number of
must-link constraints increases, the probability that representative must-link constraints are included
in the constraint set also increases.
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Figure 7. Performance of semi-supervised clustering approaches for the Cassini dataset with randomly
selected constraints. The horizontal and vertical axes depict the two-dimensional data space. The three
colors of the points represent clusters in the output clustering solution. The three cannot-link and the
three must-link constraints are represented by red and green lines respectively.
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Figure 8. Performance of semi-supervised clustering approaches for the Cassini dataset with manually
selected representative constraints. The horizontal and vertical axes depict the two-dimensional data
space. The three colors of the points represent clusters in the output clustering solution. The three
cannot-link and the three must-link constraints are represented by red and green lines respectively.
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Figure 9. Performance of semi-supervised clustering approaches for the Cassini dataset with more cannot-
link constraints than must-link constraints. The horizontal and vertical axes depict the two-dimensional
data space. The three colors of the points represent clusters in the output clustering solution. The thirty
cannot-link and the three must-link constraints are represented by red and green lines respectively.
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Figure 10. Performance of semi-supervised clustering approaches for the Cassini dataset with more must-
link constraints than cannot-link constraints. The horizontal and vertical axes depict the two-dimensional
data space. The three colors of the points represent clusters in the output clustering solution. The three
cannot-link and the thirty must-link constraints are represented by red and green lines respectively.
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5. Conclusion

In this paper, we analyze the impact of imbalanced constraint sets and noisy constraint sets on
six state-of-the-art semi-supervised clustering approaches. The results of experiments conducted
on the prominent Iris, Seeds, and Wine UCI benchmark datasets and the visualizations based on
the representative Cassini benchmark dataset have led to the following principal conclusions. The
metric learning semi-supervised clustering approaches converge faster than K-means variants semi-
supervised clustering approaches. However, K-means variants can achieve better performance when
the number of constraints is large enough. Most semi-supervised clustering approaches benefit more
from must-link constraints than from cannot-link constraints. Therefore, the must-link constraints have
a significant positive impact on performance. In contrast, a pure cannot-link constraint set sometimes
leads to a decrease in performance. Most semi-supervised clustering approaches do not have good
robustness against noisy constraints, especially noisy must-link constraints. These findings clearly
demonstrate that the quality and distribution of cannot-link and must-link constraints in the constraint
set are essential for obtaining relevant results with semi-supervised clustering approaches.
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Abbreviations
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