
Article Not peer-reviewed version

Enhancing Log‐Likelihood Ratios with

Mutual Information on Three‐Reader

One‐Track Detection in Staggered

BPMR Systems

Natthakan Rueangnetr , Santi Koonkarnkhai , Piya Kovintavewat , Simon John Greaves , Chanon Warisarn *

Posted Date: 3 February 2025

doi: 10.20944/preprints202501.2382.v1

Keywords: bit‐patterned magnetic recording (BPMR); log‐likelihood ratio (LLR); multilayer perceptron (MLP);

multitrack multi‐head; mutual information

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4206877
https://sciprofiles.com/profile/4207088
https://sciprofiles.com/profile/2608551


 

 

Article 
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Abstract: Because so much information is currently being shared online, there has been a sharp rise 

in the need for data storage devices over the past ten years. The main storage option is the hard disk 

drive  (HDD), which  is  less expensive  than some other  types of data storage. Physical constraints, 

such  as  the  superparamagnetic  limit,  are  difficult  to  overcome  using  existing HDD  technology. 

Consequently,  bit‐patterned  magnetic  recording  (BPMR)  has  emerged  as  a  potential  solution, 

offering higher areal densities whilst maintaining thermal stability. Nevertheless, BPMR poses new 

challenges, such as inter‐symbol interference and inter‐track interference. Consequently, a number 

of approaches,  such as  staggered  island  layouts and array‐reader magnetic  recording, have been 

proposed to overcome these issues. However, this article proposes a three‐reader one‐track detection 

method to enhance data retrieval in a staggered BPMR system. Leveraging three‐track reading for 

one‐track detection, we obtain three readback signals that function as mutual data sequences. This 

substantially  enhances  the  detection  process  in  one‐dimensional  partial  response  maximum 

likelihood channels. Next, using these mutual data sequences, four novel techniques are presented 

to  enhance  bit‐error  rate  (BER)  performance  and  detection  accuracy:  hard‐information  flipping, 

maximum soft‐information finding, bit‐summation detection, and multilayer perceptron (MLP). This 

study shows  that  these proposed  techniques can provide better BER performance compared with 

conventional  methods  and  that  the MLP  is  the  most  effective  technique  in  enhancing  system 

performance. 

Keywords:  bit‐patterned  magnetic  recording  (BPMR);  log‐likelihood  ratio  (LLR);  multilayer 

perceptron (MLP); multitrack multi‐head; mutual information 

 

1. Introduction 

With  the ongoing, rapid  increase  in  the amount of  information generated by consumers,  the 

capacity of data storage devices must also  increase to meet the ever‐growing demand for storage. 

Hard disk drives (HDDs) are currently the main devices used to meet this need. The HDD technology 

used  today,  known  as  perpendicular magnetic  recording  (PMR),  is  having  trouble  overcoming 

several  technical  and  physical  limitations.  The  growing  areal  density  (AD)  of  PMR  is  restricted 

because of the superparamagnetic  limit  [1], where thermal energy can cause the magnetization of 

media  grains  to  become  unstable  and  randomly  change  direction  [2].  Hence,  other  magnetic 

recording methods are needed to extend the AD of HDDs above 1 Tera‐bit per square inch (Tb/in2). 

As a result, some researchers have suggested using different magnetic recording methods to increase 

the AD of HDDs. Bit‐patterned magnetic  recording  (BPMR)  [3],  [4]  is one of  the most  intriguing 

suggested recording methods, since it has the potential to reach an AD of up to 4.0 Tb/in2 [1].   
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In contrast to PMR, BPMR can reduce transition noise in granular media by storing each data bit 

on a separate magnetic island segregated by non‐magnetic material [5]. To increase AD in BPMR, it is 

necessary to decrease the separation between magnetic islands. Typically, a reader is used to detect the 

magnetization of the magnetic islands. In the reading data process, the reader covers multiple islands 

in both the down‐track and cross‐track directions as it is usually wider than the track width [6]. 

In  this  scenario,  the  readback  signal  processing  is  challenging  because  of  inter‐symbol 

interference (ISI) and inter‐track interference (ITI), also known as two‐dimensional (2D) interference 

[7–9]. The severity of the 2D interference is dependent upon the operating AD, i.e., the higher the AD, 

the more severe the 2D interference. Another factor that may affect the BPMR system performance is 

media noise arising  from  imperfections  in  fabricating  the recording medium, and  this can have a 

major impact on the system performance [8], [9]. In general, the primary sources of media noise stem 

from variations  in  the size and position of  the magnetic  islands. As a result,  introducing a signal 

processing system that can handle 2D interference and media noise is crucial to realizing higher ADs. 

Numerous solutions have been proposed in the literature to tackle 2D interference and media noise 

during  signal  processing  in  BPMR  systems.  Changing  the  medium  configuration  is  one  such 

technique. 

Notably,  research  in  [10–12]  suggested  that  utilizing  staggered  island  arrays,  instead  of 

rectangular  island  arrays,  can  enhance  the  bit‐error  rate  (BER)  performance  at  the  same  AD. 

Staggered Island arrays have been proven to be effective in mitigating the impact of ITI caused by 

the presence of adjacent tracks. Moreover, an array‐reader magnetic recording (ARMR) is a signal 

processing  technique  that has  been  implemented  in BPMR  systems  [13–15]. ARMR  involves  the 

simultaneous  processing  of  signals  from multiple  readers, which  allows  for  robust  information 

recovery  in ultrahigh AD BPMR  systems when  compared with  a  single‐reader  system  [16]. The 

multiple readers yield multiple readback signals that correlate with the interference, thus improving 

the  detection  process.  Furthermore,  dual‐reader ARMR  has  been  utilized  to  evaluate  the  skew‐

induced variation in cross‐track separation for increasing the recording performance [17]. 

The  one‐dimensional  (1D)  partial‐response  maximum‐likelihood  (PRML)  technique  is  an 

essential  and  comprehensive  approach  that  characterizes  the  signal’s partial  response,  adapts  to 

changing signal conditions through adaptive equalization, utilizes the soft‐output Viterbi algorithm 

(SOVA) for efficient detection, and can incorporate error correction coding to enhance data reliability. 

It is an essential technique that plays a vital role in ensuring accurate and reliable data retrieval in 

magnetic  recording.  In  addition,  improving  the  soft  information  or  log‐likelihood  ratio  (LLR) 

generated from the SOVA detector is also proposed to enhance the overall system performance. For 

instance,  the  encoding  criteria of  a modulation  encoder  are utilized  to  improve  the LLRs before 

sending them to the decoders [18,19]. Specifically, the encoding condition is used as the criterion for 

flipping the obtained LLRs: as a result, the LLRs can be significantly enhanced, improving system 

performance. 

Moreover,  recent  advances  in  deep  neural  networks  (DNNs)  have  also  revolutionized  the 

approach to signal processing in magnetic recording. The proposed DNN‐based detectors in [20–22] 

can accurately produce soft‐output information, which significantly simplifies turbo decoding. The 

combination of  the DNN‐based predictor with conventional detection reveals  that  it can  improve 

detection accuracy, as  suggested  in  [23,24]. Furthermore,  in  [25], DNNs,  such  as  long‐short‐term 

memory (LSTM) networks, and supervised learning were also utilized to improve LLR reliability, 

resulting in better BER performance. Hence, the use of DNNs significantly improves LLR reliability 

and is a suitable solution for signal processing in ultra‐high‐density BPMR systems. 

In this study, since the reliabilities of the soft information generated by the 1D SOVA detectors 

were  affected  by defects  in  the  readback  signals,  these  reliabilities must  be  carefully  addressed. 

Generally, these defects are primarily caused by 2D interference and media noise. To improve the 

detection process, we propose enhancing  the soft  information output produced by  the 1D SOVA 

detector before making a  final decision. This can be achieved  through  four proposed  techniques, 

namely, hard‐information flipping (HIF), maximum soft‐information (MSI) finding, bit‐summation 
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detection (BSD), and multilayer perceptron (MLP). These proposed techniques can operate together 

with  the  staggered  bit  island  arrangement  using  an  array  reader.  The  study  shows  that  these 

proposed methods outperform the conventional methods in terms of BER and frame‐error rate (FER) 

performances. Additionally,  our  findings  also  show  that  the proposed  techniques were  effective 

against media noise, which consisted of position and size variations. Furthermore, an MLP  is  the 

most effective approach to enhance system performance. 

The remainder of this paper  is organized as follows. Section 2 describes the staggered BPMR 

channel model.  Section  3  explains  the  proposed  techniques.  Section  4  reports  the  performance 

evaluation, and Section 5 concludes this work. 

2. BPMR Channel Model 

This article presents a staggered island BPMR medium using a three‐reader one‐track detection 

scheme, as illustrated in Figure 1. The readback signal from the desired track experiences ITI from 

both upper and lower adjacent tracks, while these adjacent tracks similarly experience ITI from the 

desired track. Thus, we expect that some information from the desired track is embedded within the 

readback signals of the adjacent tracks, creating a form of mutual information. A key contribution is 

to utilize this mutual information to improve the quality of the estimated user bits, thereby enhancing 

overall system performance. 

Figure 2 depicts the cross‐sectional view of the head‐medium geometry in the staggered BPMR 

system used in this study. The soft‐magnetic underlayer (SUL) thickness was 300 nanometers (nm), 

the non‐magnetic interlayer (IL) thickness was 15 nm, the recording layer (RL) thickness was 10 nm, 

and  the head‐medium spacing  (HMS) was 5 nm, which was  the distance between  the air‐bearing 

surface (ABS) of the read/write head and the top surface of the RL. 

 

Figure 1. Staggered bit‐patterned recording medium and three‐reader array at an AD of 3.0 Tb/in2. 

 

Figure 2. Staggered bit‐patterned recording medium and three‐reader array at an AD of 3.0 Tb/in2. 

To model the staggered BPMR medium, as shown in Figure 3, we arranged a series of circular 

magnetic  islands, each with a diameter of 10 nm,  in a staggered pattern on a non‐magnetic surface, 
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represented  by  the white  region.  The  gray  and  black  islands  indicate magnetization  directions  of 

“down” (−1) and “up” (+1), respectively. Figure 3 shows the center reader among three readers packed 

in an array reader, with its readhead sensitivity focused on reading data from the desired track. The 

readhead sensitivity extends to adjacent tracks, which causes the ITI effect. The AD was determined by 

the bit period (Tx) and track pitch (Tz). For example, the AD equals 3.0 Tb/in2 when Tx = Tz = 14.5 nm. 

 

Figure 3. Configuration of the staggered BPMR array at an AD of 3.0 Tb/in2, showing the extent of the read head 

sensitivity response. 

Additionally, bit island size and position fluctuations were incorporated as sources of media noise 

to provide a more realistic BPMR channel model. Specifically, the size fluctuation was defined as   

    size fluctuation = ,d
σ

d
  (1)

where d  is the  ideal diameter of the bit  island, and σd  is the variance of the bit  island diameter  (a 

Gaussian distribution). Moreover, the position fluctuation was defined as 

position fluctuation = ,xT

x

σ

T
(2)

where Tx is the bit period, and σTx is the variance of the distance between the centers of the bit islands 

(a Gaussian distribution). Note that the size and position fluctuations in this study were independent 

and identically distributed (i.i.d) random variables. This paper considers the staggered medium for 

three‐reader one‐track detection depicted in Figure 1, in conjunction with the channel model shown 

in Figure 4. A 4096‐bit user sequence uk,l {±1}, where the bits were defined as i.i.d random variables, 

commonly used in various studies of magnetic recording channels, was recorded onto the medium. 

A perfect writing process was assumed, in which the magnetization of the bit islands was always the 

same as the intended bit sequence. 

 

Figure 4. Block diagram of the three‐reader one‐track detection BPMR channel with the proposed improvement 

techniques. 
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During a reading process, an array of three read heads simultaneously detects these three data 

tracks (or uses a single read head to sequentially detect these tracks with the help of buffer memory), 

as illustrated in Figure 1. As for our read head arrangement, the middle reader (H2) was positioned 

at the center of track l, referred to as the desired track. The upper reader (H1) was placed between 

tracks (l−1) and l, while the lower reader (H3) was placed between tracks l and (l+1). To utilize the 

mutual information from the upper and lower tracks, H1 and H3 were moved toward the desired 

track by half the track pitch. This helped  increase the correlation of this mutual  information, thus 

enabling us to improve the BER performance of the desired track using our proposed methods. It is 
important to highlight that track misregistration is a concern during the reading process; however, 

prediction  and  correction  techniques  using  the  array  reader may  be  adopted  to  cope with  this 

unavoidable situation as proposed in [26–28]. 

To obtain the readback signal, s(x,y), as a function of x and y coordinates (in nanometers), the 

magnetization of  each bit  island  in  the  recording medium, m(x,y){±1}, was  convolved with  the 

reader sensitivity function, h(x,y), [29,30]. Therefore, the readback signal s(x,y) can be expressed as 

- -òò( , ) = ( , ) ( , ) .s x y m ξ η h x ξ y η dξdη (3)

Considering the reading process in the time domain, the continuous‐time readback signal, r(t), 

can be obtained by setting s(t) = s(t,i), where i is the center of the reader sensitivity function in the 

cross‐track direction. Thus, the continuous‐time readback signal, r(t), can be obtained by 

            r(t) = s(t)+n(t),  (4)

where n(t)  is additive white Gaussian noise, with  the power spectral density being flat across  the 

entire sampling bandwidth. Here, n(t) can be calculated from 

           n(t) = σ∙Z,  (5)

where 

= SNR /10  10σ A   (6)

and Z ∼ N(0,1) is a random variable that follows the standard normal distribution with zero mean 

and a standard deviation/variance of 1, A = 1 is the peak amplitude of the normalized readback signal 

for an isolated transition, and SNR is the signal‐to‐noise ratio in decibels (dBs). 

Assuming  perfect  synchronization,  the discrete‐time  readback  sequence  for  the  (l−1)‐th  and 

(l+1)‐th  tracks,  rk,l−1  and  rk,l+1, was  obtained  by  over‐sampling  rl−1(t)  and  rl+1(t)  at  time  t  =  0.5kTx. 

However, the data sequence of the l‐th track, rk,l, was obtained by sampling the readback signal rl(t) 

at time t = kTx. Therefore, three data sequences or three mutual data sequences were produced. Next, 

the three readback signal sequences {rk,l−1, rk,l, rk,l+1} were fed to the equalizers to output the equalized 

data sequences {zk,l−1, zk,l, zk,l+1} according to their target responses. The equalized data were then sent 

to the SOVA detectors to estimate the most likely recording bit sequences in the form of soft‐output 

information, or LLR, of each track {λk,l−1, λk,l, λk,l+1}. Then, to improve the reliability of LLR sequences 

produced  from  such detectors  before making  a  final decision,  four  proposed LLR  improvement 

techniques based on mutual data were employed, namely, HIF, MSI, BSD, and MLP. Finally,  the 

estimated user bits were compared with the actual user bits to calculate the BER. 

3. Proposed Methods 

This section explains four data detection techniques that rely on mutual data to improve the LLR 

during the detection process to enhance the system’s performance. Before doing so, we first examine 

the distributions of readback signals obtained from staggered BPMR media, as shown in Figure 5.   

Three  readback  signals  were  obtained  from  three  read‐heads  (H1,  H2,  and  H3),  and  the 

distribution  of  the  sample  amplitudes  of  each  readback  signal  is  depicted  in  Figure  5 without 

electronic noise. The dots denote the data obtained by sampling the readback signal. The red dots 

represent  the  samples obtained  from  the desired  l‐th  track, whereas  the black dots  represent  the 
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samples  from  the  (l‐1)‐th  and  (l+1)‐th  tracks.  As  a  result,  we  note  that  the  sample  amplitude 

distribution retrieved from the desired track using H2 was more explicit than that from H1 and H3. 

This implies that the signal carrying the desired data from H2 was significantly stronger than that 

from H1 and H3. 

 

Figure 5. Readback signal waveforms from a staggered medium at AD = 3.0 Tb/in2. 

It is assumed that the data samples produced from H1 and H3 at the k‐th bit can help enhance 

the quality and reliability of the k‐th bit obtained from H2, which is the desired readback signal. After 

SOVA  detection,  three  mutual  samples of  soft  information  representing  one  recorded  bit  are 

obtained. These data samples are referred to as mutual data information. To improve the LLR in the 

detection  process, we  propose  four  techniques  that  utilize mutual  data  information, which  are 

described as follows. 

3.1. Hard Information Flipping (HIF) 

We first examine three mutual data bits (hard information) produced by 1D SOVA detectors, 

represented as a 3×1 column vector, as shown in Figure 6(a). These bits were produced from the LLRs 

generated by SOVA detectors through a threshold detector. The first and third rows correspond to 

the data  from H1 and H3,  respectively, while  the second  row  is  from H2. Practically,  these  three 

estimated bits should have the same sign as the recorded bit being detected. 

Therefore, disagreement  among  the  signs  indicates  the presence of  errors,  and  to maximize 

accuracy, a simple scheme is to select the most common sign among the three. For instance, in the 

first and last columns of Figure 6(a), when all three bits are ‘+1s’ or ‘‐1s’, the estimated recorded bits 
will be ‘+1’ and ‘‐1’, respectively, as depicted in the first and last columns of Figure 6(b). Referring to 

the second column in Figure 6(a), there are two ‘+1s’ and one ‘‐1’. In this case, the most common sign, 

‘+1’, is selected as the estimated recorded bit. Similarly, in the fifth column, there are two ‘‐1s’ and 

one ‘+1’. Therefore, the estimated recorded bit for this column is ‘‐1’, as depicted in Figure 6(b). 

3.2. Maximum Soft Information (MSI) Finding 

For the MSI finding technique, we start by considering three mutual data in the form of three 

soft‐information values or LLRs produced by 1D SOVA detectors in a 3×1 column vector, i.e., [λk,−1, 

λk,0, λk,1]T, similar to HIF. Here, [∙]T is a transpose operator. To better understand the MSI process, we 

can refer to the flowchart displayed in Figure 7, which can be described as follows. 
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Step 1: Given a 3×1 vector λ = [λk,−1, λk,0, λk,1]T, we check if the signs are either [+, +, +]T or [−, −, −]T, the 

estimated user bit,  ,0
ˆ
k
u , will be determined based on that particular symbol. 

 

Figure 6. Example of HIF technique operation. 

 

Figure 7. A flowchart explaining the MSI technique. 

Step 2: If the signs of all elements in λ are not identical, we choose the element that has a maximum 

absolute value. Then, the sign of the chosen element will determine the estimated user bit. 

Figure 8 illustrates an example of how the MSI technique operates. The LLRs associated with 

the three tracks are produced from the 1D SOVA detectors at SNR = 8 dB as shown in Figure 8(a). For 

instance, all elements in the first and second columns have the same sign, and the estimated user bit 

is determined accordingly. However, the signs of the elements in the fourth column are not identical, 

with a maximum absolute value of ‐30.47. In this case, the estimated user bit of the fourth column 

will be ‘‐1’ as shown in Figure 8(b). Similarly, in the fifth column, the highest absolute value is 13.72, 

and the estimated user bit will be ‘+1.’ 
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Figure 8. Example of MSI technique operation. 

3.3. Bit‐Summation Detection (BSD) 

We begin with  the 3×1 LLR vector obtained  from  the 1D SOVA detectors  [λk,−1, λk,0, λk,1]T. As 

mentioned earlier, all three readback signals convey some information about the k‐th user bit on the 

desired track, uk,0. In the BSD technique, we propose to improve the LLR of uk,0 by using 

= SNR /10  10σ A   (7)

where the derivation of (7) is given in Appendix A. Then, the improved LLR,  ˆLLR , in eq. (7) is sent 

to the threshold detector to determine the estimated user bits, ,0
ˆ
k
u . 

An example of how  the BSD  technique operates  is demonstrated  in Figure 9. First,  the LLRs 

produced from the 1D SOVA detectors are arranged in a 3×1 column vector, i.e., [λk,−1, λk,0, λk,1]T, as in 

Figure 9(a). Then, the elements in each column are summed according to (7) to obtain the improved 

LLRs as shown in Figure 9(b). Finally, the estimated user bits are obtained by passing the improved 

LLRs through a threshold detector, giving the results shown in Figure 9(c). 

 

Figure 9. Example of BSD technique operation. 
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3.4. Multilayer Perceptron (MLP) 

The MLP is a popular choice for signal processing in a magnetic recording system because it has 

enough power to learn the characteristics of noise and interference within a reasonable amount of 

computational complexity. MLP is a type of feedforward neural network, where all nodes are fully 

connected, and a nonlinear activation function is used in every node. 

Figure 10 illustrates the proposed MLP architecture. The idea is to employ one single network 

to process all LLR mutual data  sequences obtained  from  the 1D SOVA detectors. As depicted  in 

Figure 10, the MLP takes the LLRs [λk,−1, λk,0, λk,1]T obtained from the 1D SOVA detectors as inputs to 

improve prediction robustness [20], and generates the corresponding user bit sequence as an output. 

This MLP consists of neurons arranged in stacked, fully connected layers. Each neuron calculates its 

output and passes the data to the next layer. Additionally, this MLP has seven layers, i.e., one input 

layer, five fully connected hidden layers, and one output layer. 

 

Figure 10. Structure of MLP‐based soft‐information flipper. 

We  used  a  sliding window  approach  on  the  LLR  sequences  obtained  from  the  1D  SOVA 

detectors. Specifically,  the data was processed  in blocks, and  the block window slid over  time  to 

observe successive data blocks, hence the term “sliding window.” By carefully selecting the block 

size and sliding step size, the MLP can be used effectively to provide good prediction. Before feeding 

a sequence  into  the MLP,  the sequences must be converted  into vectors  to satisfy  the  input  layer 

condition, which processes data in vector form only.   

Let λ = [λk,−1, λk,0, λk,1] be the input vector, which was fed to 5 fully connected hidden layers with 

100 neurons in each layer. For each neuron, a linear combination of all input entries was computed 

using a weight vector and a bias value specific to that neuron. Specifically, given an input vector, λ, 

the output vector,  û , obtained from the linear combination can be written as 

ˆ ,λu = W + b   (8) 

where W is an nz×nx weight matrix, b is an nz×1 bias vector, nz is the number of neurons, and nx is the 

number of elements in the input vector.   

Then, a nonlinear activation function was applied to the vector,  û , yielding the final output 

vector of the fully‐connected layer. In this paper, we used the rectified linear function (ReLU) as the 

nonlinear  activation  function  since  it  provided  computational  efficiency  and  could  alleviate  the 

vanishing gradient problem, where the ReLU output can be written as 

ˆRe LU( ),y = u   (9)

where yk = max(0,uk). For the output layer, this network solved the binary classification problem by 

assigning each input vector sample a class label of either –1 or +1, corresponding to the user bit. The 

softmax function was used for this binary classification task, whose output was given by 

input 1

input 2

input 3

output

h1 h2 h3 h4 h5

,k lλ

, 1k lλ +

, 1k lλ -

,ˆk lu
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where λ and y are the input and the output vectors of the softmax function, respectively. 

Because our MLP solved a binary classification problem, the network output was the probability 

of its respective class label. Hence, this probability can be converted into soft information, or LLR, 

according to 
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  (11)

where y2 and y1 are the probability of network prediction, labeled as class +1 and –1, respectively, and 

p(ak,l = +1) = 1– p(ak,l = –1). The LLR value obtained from this procedure was concatenated for each time 

step, resulting in the LLR sequence. 

  During the training process, we explored different training strategies for the proposed MLP. 

The MLP input consisted of three LLRs obtained from 1D SOVA detectors, whereas the MLP output 

represented the hard information corresponding to the user bit. In this study, the input dataset (λ) 
was a 3×3,000 matrix, and the output dataset ( û ) was a 1×3,000 matrix. To generate the input dataset, 

we ignored all media noise, and the SNR was randomly varied from 1 to 20 dB. A learning rate of 

0.001 was employed, and  the model was  trained over 50 epochs using  the Adam optimizer. This 

resulted in an optimized MLP model that was able to directly map three LLR sequences to one user 

data sequence, as shown in Figure. 10. 

4. Simulation Results 

In  this  study,  six  systems were  evaluated:  System  I  (1D  conventional  and  2D  conventional 

systems, without LLR enhancement), System II (HIF), System III (MSI), System IV (BSD), and System 

V (MLP). Our evaluation was based on an AD of 3.0 Tb/in2. Figure 11 illustrates the LLR distributions 

of the five systems under the same conditions with SNR = 12 dB and the media noise was neglected. 

In the Figureure, the blue dots represent correct LLRs, while the red cross symbols denote erroneous 

LLRs. The x‐axis represents the bit number, set at 50,000 bits, whereas the y‐axis displays the LLR 

values generated  from  the 1D SOVA detectors, except  for  the 2D conventional system  in the LLR 

values generated by the 2D SOVA detectors [31]. Subfigureures (a) to (f) correspond to Systems I to 

V, respectively. Upon observing Figure 11, it is evident that the conventional system exhibited higher 

erroneous  LLRs  than  the  other  systems.  Conversely,  System  V  demonstrated  superior  LLR 

performance, with only 94 erroneous bits, as shown in Figure 11(f). 

Next, we explored  the BER performance of  the proposed  systems without position and  size 

fluctuations as shown in Figure 12, where each BER point was computed using as many data sectors 

as  needed  to  collect  500  error  bits.  The  proposed  systems  exhibited  significant  performance 

improvements when  compared  to  the  1D  and  2D  conventional  systems.  In  this  process,  a  2D 

equalization  combined with  2D  detection,  utilizing  a  2D minimum mean  square  error  (MMSE) 

equalizer [7] and a 2D SOVA detector [31], is applied to process the retrieved readback signals. The 

size of the 2D MMSE equalizer coefficient is 3×11 taps and the size of the target coefficient of the 2D 
SOVA detector  is 3×3 taps, which means  the  side  track  information  is used  to  jointly design  the 

detection process.   

Three  retrieved  readback  signals  are  also  read  using  three  readers  as  similarly  used  in  1D 
processing.  Specifically,  Systems  II,  III,  IV,  and  V  achieved  gains  of  3.2,  4.0,  4.6,  and  5.1  dB, 

respectively, over the 1D conventional system at BER = 10‐5. Moreover, the proposed MLP technique 

can approximately gain 2.0 dB over the 2D conventional system. The 2D conventional system offers 
better BER performance compared to the 1D conventional system because it can deal with the effect 

of  ITI. Additionally, it also outperforms  the proposed  techniques—HIF, MSI, and BSD—at  lower 

SNRs. However,  at  higher  SNRs,  the  proposed  techniques  demonstrate  improved  performance, 
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indicating their effectiveness in managing the effects of ITI. Notably, the proposed MLP technique 

consistently achieves the best performance across all SNR levels. 

 

Figure 11. LLR distributions of (a) System I: 1D conventional, (b), System I: 2D conventional, (c) System II: HIF, 

(d) System III (MSI), (e) System IV: BSD, and (f) System V: MLP, for SNR = 12 dB and AD = 3.0 Tb/in2. 

 

Figure 12. BER performance of the proposed systems without position and size fluctuation. 
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After  introducing  5%  media  noise  (position  and  size  fluctuations),  the  superiority  of  the 

proposed systems over the conventional system remained evident. Specifically, Systems II, III, IV, 

and V achieved gains of 2.7, 3.2, 4.1, and 5.3 dB, respectively, at BER = 10‐5 over the 1D conventional 

system,  as  depicted  in  Figure  13.  Additionally,  it  is  clear  that  2D  processing  can  offer  better 

performance  compared  to  the  1D  processing  technique, which means  that  the  ITI  effect  can  be 

effectively  managed  by  considering  the  information  from  its  side  tracks  through  2D  signal 

processing. However, the proposed MLP technique still provide better BER performance compared 

with the 2D conventional system. 

 

Figure 13. BER performance of the proposed systems with position and size fluctuations at 5%. 

Furthermore, we also evaluated the proposed systems under severe media noise conditions (i.e., 

10% media noise), as illustrated in Figure 14. The results reveal that the severity of media noise affects 

all  systems,  significantly  degrading  their  BER  performance.  However,  all  proposed  systems 

maintained superior BER performance compared to the 1D conventional system. Specifically, at BER 

= 10‐4, Systems II, III, IV, and V achieved gains of 2.4, 3.9, 4.5, and 5.0 dB, respectively, over the 1D 

conventional system. The 2D conventional  system gains around 2.5 dB over  the 1D conventional 

system at BER = 10‐4, which means that it is not only deal with ITI effect but also cope with the media 

noise  effectively. However,  proposed MLP  technique  provides  the  best  BER  performance.  This 

demonstrates the robustness of our proposed systems even under severe media noise conditions. 

We also analyzed the system performance using frame error rate (FER) versus SNR at an AD of 

3.0 Tb/in2 without media noise as shown in Figure 15. Each FER point was calculated using as many 

4096‐bit sectors as needed to collect 1000 error frames or sectors. The results show that our proposed 

systems  outperformed  the  1D  conventional  system.  In  particular,  at  FER  =  10‐3,  System  V  can 

approximately provide gains of 3.1, 2.0, and 1.2 dB over Systems II, III, and IV, respectively, while 

the 1D conventional system cannot achieve FER of 10‐3 with an SNR of 20 dB. Among all proposed 

systems, the MLP‐based approach demonstrated the highest performance  improvement. Based on 

these results, all the proposed systems outperformed the 1D conventional system. Notably, System 

V, utilizing  the MLP algorithm,  showed  superior performance and provide a better performance 

compared with the 2D conventional system. This might be because the MLP demonstrated an ability 

to understand the characteristics of the readback signals. System IV, closely followed, leveraging the 

LLR for maximum data reliability detection. In this technique, a high LLR signified a high reliability 

of the data bit, and the BSD technique, which sums LLR mutual data, further enhanced the reliability 
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of detected bits. It is important to note that, with the MLP’s capability, it could directly process the 

readback signals without needing to be cascaded after the SOVA detector. It may use the readback 

signals  for MLP  training  and  learning. However,  since  the  other  three  proposed  systems were 

specifically  designed  to  enhance  LLRs  obtained  from  the  SOVA  detectors,  comparing  their 

performance with  that of  the  cascaded MLP  approach provides valuable  insights  for  this  study. 

Additionally, System II aimed to maximize LLR mutual data, resulting in higher reliability of data 

detection. By  emphasizing  the  summation  of LLR,  the detection  of  incorrect  bits  became highly 

reliable. In contrast, System III prioritized the probability of flipping incorrect data bits to correct ones 

by considering the maximum probability of LLR mutual data. In summary, the MLP algorithm in 

System V,  the LLR‐based  techniques  in Systems  II  and  IV,  and  the probability  considerations  in 

System III collectively contributed to the enhanced performance of the proposed systems over the 

conventional system. 

 

Figure 14. BER performance of the proposed systems with position and size fluctuations at 10%. 

 

Figure 15. FER performance of the proposed systems without position and size fluctuations. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2025 doi:10.20944/preprints202501.2382.v1

https://doi.org/10.20944/preprints202501.2382.v1


  14  of  17 

 

5. Conclusion 

In ultra‐high‐density bit‐patterned magnetic recording (BPMR) systems, two‐dimensional (2D) 

interference  significantly  impacts  the  overall  system  performance.  To  mitigate  this  issue,  we 

proposed the use of an array‐reader magnetic recording (ARMR) in a staggered BPMR system for 

detecting a single data track. An ARMR generates multi‐readback signals to detect mutual data. We 

then leveraged this mutual data during the detection process by employing four different techniques 

to enhance the log‐likelihood ratio (LLR) mutual data and improve the system’s performance. Our 

simulation  results  demonstrate  that  each  of  the  proposed  techniques  outperformed  the  one‐

dimensional  (1D) conventional system. Some can provide better bit error  rate  (BER) performance 

over  the  2D  conventional  system where  the  2D  equalizer  and  2D  soft‐output Viterbi  algorithm 

(SOVA) detector are employed to process the obtained readback signals. Furthermore, our findings 

also indicate that the proposed techniques were robust to media noise. Of the four techniques studied 

including hard‐information flipping (HIF), maximum soft‐information (MSI) finding, bit‐summation 

detection  (BSD),  and  multilayer  perceptron  (MLP),  the  MLP  technique  achieved  the  best 

performance, at the expense of high complexity. 

Author Contributions: Conceptualization, N.R. and C.W.; methodology, N.R., S.K., and C.W.; software, N.R., 

S.J.G., and C.W.; validation, P.K., S.J.G., and C.W.; formal analysis, S.K., P.K., and C.W.; investigation, S.J.G., and 

C.W.; writing—original draft preparation, N.R., S.K., P.K., S.J.G., and C.W.; writing—review and editing, N.R. 

and C.W.; supervision, S.J.G. and C.W.; project administration, C.N.;  funding acquisition, N.R. and C.W. All 

authors have read and agreed to the published version of the manuscript. 

Funding:  This  paper  was  supported  by  King  Mongkut’s  Institute  of  Technology  Ladkrabang  Doctoral 

Scholarships  (KDS)  under  Grant  KDS2020/012  and  King  Mongkut’s  Institute  of  Technology  Ladkrabang 

Research Fund under Grant number: KREF046705. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data is contained within the article. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 

As mentioned  earlier,  the  readback  signals  from  the  desired  track  and  two  adjacent  tracks 

convey some information about the k‐th bit of the l‐th track (or the desired track). Therefore, the k‐th 

log‐likelihood ratio (LLR) sample produced from the�(l‐1)‐th track, {λk,l‐1}, and the (l+1)‐th track, {λk,l+1}, 
can be utilized to improve the quality and reliability of the k‐th LLR sample from the l‐th track, λk,l, 

according to eq. (7) for the bit‐summation detection (BSD) technique, which can be proven as follows. 

Consider the LLRs of a BPMR channel model in Figure 4. An improved version of the LLR of the 

k‐th bit from the l‐th track can be written as 

{ }
{ }

æ öé ù= ÷ç ê ú ÷ç ë û ÷= ç ÷ç ÷é ùç ÷= - ÷çè øê úë û

,new

,

,

Pr 1
log ,

Pr 1

k l

k l

k l

λ
λ

λ

λ

λ
  (12)

where log(x) is a natural logarithm of x and 
new

,
λ
k l

is the mutual information of {λk,l‐1}, {λk,l}, and {λk,l+1}. 

We have applied the conditional independence relationship in variable form according to [32] 

é ù é ù= = = Ç Çê ú ê úë û ë û
é ù= = ⋅ê úë û
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  (13) 
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where A = {±1}, E = x|B C D are random variables, and the events B, C, and D are mutually 

independent. Then, (12) can be expanded to 

{ } { } { }
{ } { } { }

- +

- +

æ öé ù é ù é ù= ⋅ = ⋅ = ÷ç ê ú ê ú ê ú ÷ç ë û ë û ë û ÷= ç ÷ç ÷é ù é ù é ùç ÷= - ⋅ = - ⋅ = - ÷çè øê ú ê ú ê úë û ë û ë û

, , 1 , , , , 1new

,

, , 1 , , , , 1

Pr 1 Pr 1 Pr 1
log ,

Pr 1 Pr 1 Pr 1

k l k l k l k l k l k l

k l

k l k l k l k l k l k l

u λ u λ u λ
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  (14)

where {l−1, l, l+1} are the upper track, desired track, and lower track, respectively. Therefore, it can 

be shown that 

{ } -
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and   
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By substituting (15) – (16) into (14), one obtains 
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which can be rewritten as   

( ) ( ) ( )
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Clearly, (18) is same as (7). 
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