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Fisher Information in Helmholtz-Boltzmann
Thermodynamics of Mechanical Systems
Marco Favretti

Dipartimento di Matematica "Tullio Levi-Civita", via Trieste 63, 35123 Padova, Italy; favretti@math.unipd.it

Abstract: In this paper we review Helmholtz-Boltzmann thermodynamics for mechanical systems
depending on parameters and we compute the Fisher information matrix for the associated probability
density. The divergence of Fisher information has been used as a signal for the existence of phase
transitions in finite systems even in the absence of a thermodynamic limit. We investigate through
examples if qualitative changes in the dynamic of mechanical systems described by Helmholtz-
Boltzmann thermodynamic formalism can be detected using Fisher information.

Keywords: statistical models; Fisher metric; generalized exponential families; ensemble equivalence;
negative specific heat

1. Introduction
The first part of the paper is devoted to an introduction of Helmholtz-Boltzmann (HB) thermody-

namics for mechanical systems. In [1,2] Helmholtz proved that: 1) for a one-dimensional conservative
mechanical system with potential energy u(x, λ) – where λ is a parameter– a probability density
p = f (e − u(x, λ)) can be defined on the region of configuration space corresponding to motions
with energy e; moreover: 2) mechanical analogs of temperature T, pressure P and entropy S can be
introduced such that the first principle of thermodynamics in the form TdS = de + Pdλ holds for these
systems. In the same years, Boltzmann [3] derived the analog of the probability density p for a mechan-
ical system of n dimensions, and investigated the ergodic hypothesis for these systems. Interestingly,
this picture of Statistical Mechanics based on a probability density defined in the configuration space
preceded the Gibbs formulation of statistical mechanics [4] whose ensembles are defined on phase space.
In recent times HB thermodynamics has been investigated in a series of papers [5–8].

In the second part of this paper we compute the Fisher Information matrix for mechanical systems
described by HB thermodynamics. Fisher information (FI) matrix [9,10], a notion originally developed
in statistical estimation theory, is nowadays at the crossroad between information theory [11,12],
differential geometry [13], and Statistical Mechanics [14]. Recently, FI has been used to detect phase
transitions in machine learning [15], neural networks [16], and in quantum systems even in the absence
of a thermodynamic limit [17]. For finite systems, the existence of a phase transition is related to the
divergence of one or more of the FI matrix elements, or more simply, it is located in correspondence
to their maxima. Within this approach, which merges statistical mechanics and information theory,
divergence of FI matrix are used to single out order parameters and reveal phase transitions, see [18].

However, for systems described by HB thermodynamics, all the information on the dynamics
is encoded in the form of the potential energy u(x, λ) where x ∈ Rd and λ ∈ Rk so clearly we are
dealing with a finite-dimensional system which is not composed of N interacting elementary units as
in Statistical Mechanics. Moreover, there is no clear indication for the identification of one or more
parameters λ as system’ volume, therefore, we cannot carry over for these systems the thermodynamic
limit. We thus necessarily need to understand a possible notion of "phase transition" in a broader
sense, as a qualitative change in some of the system’ features or patterns when one or more tunable
parameters cross a threshold, as in the bifurcation theory for dynamical systems. Essentially, with HB
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thermodynamics, which is a statistical theory based on a probability density p = f (e − u(x, λ)), we
are between the statistical mechanics and bifurcation theory approaches, and this drives the interest
for these systems and shapes the tools that we are going to use.

In Section 3, we state the conditions under which the probability density p = f (e − u(x, λ)) can
define a statistical model and compute the related FI matrix. We examine the relationship between
the elements of the FI matrix and the second-order derivatives of the free energy for the density
p = f (e − u(x, λ)) which is not an exponential family and make a comparison with the corresponding
notions for the canonical density (an exponential family) used in Statistical Mechanics. In Section 5
we show with paradigmatic examples that the divergence in the FI elements can detect qualitative
changes in the form of probability density that describe the system (which can be interpreted as a
signature of phase transition in finite systems) or it can locate the transition from negative to positive
specific heat. We are aware that these results are not enough to shape a general theory, but we hope
that this first step may help to renew interest for Helmholtz-Boltzmann approach to thermodynamics
of mechanical systems.

2. Helmholtz-Boltzmann Thermodynamics of Mechanical Systems
In this Section we give a short exposition of Helmholtz-Boltzmann thermodynamics. Let us

consider the unidimensional motion of a point of mass m under the action of a positional force
f (x) = −u′(x) where u is the potential energy. This mechanical system is conservative and the energy
integral

m
2

v2 + u(x) = e

defines a 1-dimensional orbit in phase plane (x, v) which can be locally described as v(x, e) =
√

2
m φ

where φ = e − u is the kinetic energy. If the potential energy is convex, the motion corresponding to a
fixed value e of the energy is confined in the convex interval

H(e) = {x ∈ R : φ = e − u > 0} = (x1(e), x2(e)) (1)

and it is periodic. Denoting with dt = dx/v(x, e) the time needed to travel a space interval dx, the
semi-period of the motion is expressed by the generalized integral

T(e) =
∫

H(e)

dx
v(x, e)

=

√
m
2

∫
H(e)

φ− 1
2 dx =

√
m
2

Z(e). (2)

We have that v = 0 on the boundary of H(e) but the generalized integral T(e) is convergent if the
orbit corresponding to the value of e it is not a separatrix. We can thus define a probability density on
H(e) as (the value of m is not relevant)

p(x, e) =
φc(x, e)

Z(e)
=

φc(x, e)∫
H(e) φc(x, e)dx

where c = −1
2

. (3)

As an example, if u(x) = x2 is the elastic potential energy and e = a2, a > 0, we have φ = a2 − x2

and p is the arc-sine probability density defined in (−a, a)

p(x, a) =
1
Z
(a2 − x2)−

1
2 =

1

π
√

a2 − x2
.

We denote with ⟨ f ⟩ the average of a function defined on H(e) with respect to the probability p in
(3).

The aim of Helmholtz and Boltzmann (see [5] for an historical recognition of the theory) was to
provide a mechanical analogy of the first principle of thermodynamic in Gibbs form
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TdS = de + PdV

where S is the entropy, T is the temperature, P is the pressure and V is the volume.
This can be obtained by supposing that the potential energy depends on a parameter λ as

u = u(x, λ) and by defining the temperature and the pressure as the averages of φ (which is the kinetic
energy) and of φλ = ∂φ/∂λ with respect to the probability density p in (3) –which now depends on λ–

T(e, λ) = 2⟨φ⟩, P(e, λ) = ⟨φλ⟩. (4)

The entropy S is defined as the logarithm of the area in phase space enclosed by the orbit of
energy e which gives

S(e, λ) = ln(2
∫

H
v(x, e, λ) dx = ln

(
Z(e, λ) ⟨φ⟩

)
+ const. (5)

One can check that the above defined thermodynamic analogs of T, P, S for a mechanical sys-
tem do satisfy the following relation, which is the mechanical equivalent of the first principle of
thermodynamics

dS =
∂S
∂e

de +
∂S
∂λ

dλ =
1

2⟨φ⟩ [de + ⟨φλ⟩dλ] =
1
T
[de + Pdλ]

The proof is a straightforward application of the formula of derivation of a integral depending on
a parameter, see [5,7].

2.1. The Multidimensional Probability Density

In [7] an extension of the above result to the case of x ∈ Rd, d ≥ 1 and λ ∈ U ⊂ Rk is provided
(see also [8] for a different approach). For the sake of completeness and to provide a basis for further
development we give an account of it here. The first step is to generalize the entropy formula (5) and
the probability density (3) to the d-dimensional case. To this aim we consider a system of n point
masses of mass m moving in R3 referred to coordinates x ∈ Rd, d = 3n and subject to potential energy
u(x, λ). The total energy is m

2 v2 + u(x, λ) = e and, analogously to what we have done before, we
define

Q(e, λ) = {(x, v) ∈ R2d :
m
2

v2 + u(x, λ) ≤ e}

to be the portion of phase space where the energy is not greater than e. We define as in the
microcanonical approach of Statistical Mechanics (see [5,8] for a justification of this definition) the
entropy of the system as the logarithm of the measure of Q in phase space R2d

S(e, λ) = ln Σ(e, λ) = ln
∫

Q(e,λ)
dxdv. (6)

If we set as before

H(e, λ) = {x ∈ Rd : φ = e − u(x, λ) > 0} (7)

then

Q(e, λ) =
⋃

x∈H(e,λ)

{(x, v) : v2 ≤ 2
m

φ} =
⋃

x∈H(e,λ)

{(x, v) : v ∈ Bd(

√
2
m

φ)}

where Bd(r) is the ball of radius r in Rd. Let R(x, e, λ) =
√

2
m φ. Using Fubini theorem we can

factorize the above entropy integral as
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Σ = eS =
∫

Q(e,λ)
dxdv =

∫
H(e,λ)

( ∫
Bd(R)

dv
)

dx (8)

and the inner integral can be computed by "integrating on spheres" as

∫
Bd(R)

dv = αd

∫ R

0
rd−1dr =

αd
d

Rd = ωdRd = ωd(
2
m

φ)
d
2

where ωd is the measure of the unit ball in Rd. Therefore, up to unessential constant term the entropy
is

S(e, λ) = ln
∫

H(e,λ)
φ

d
2 dx. (9)

Setting

∫
H

φ
d
2 dx =

∫
H

Zφ
φ

d
2 −1

Z
dx

if we define the probability density on the subset H(e, λ) ⊂ Rd of configuration space as –see (3)–

p(x, e, λ) =
φc

Z(e, λ)
=

φc∫
H φcdx

, where c =
d
2
− 1 (10)

then the entropy integral (9) can be expressed in the same form of (5)

S = ln(Z ⟨φ⟩). (11)

Remark. We will use the above introduced probability density (10) for a generic system whose
configuration space has dimension d without making reference to a point particle system. Note that for
d ≥ 2 we have c = d

2 − 1 > 0 hence a definite integral in (10) and φc defines a normalizable probability
density.

For later use, it will be useful to express the probability density (10) in exponential form by setting

h = ln φ(x, e, λ) = ln(e − u(x, λ)), Ψ = ln Z(e, λ) (12)

therefore (10) can be given the form

p(x, e, λ) =
ech∫

H echdx
=

ech

Z(e, λ)
= ech(x,e,λ)−Ψ(e,λ) (13)

and the entropy in (11) becomes

S = ln(Z⟨φ⟩) = Ψ + ln⟨φ⟩. (14)

2.2. Multidimensional HB Thermodynamics

Our aim is to prove that for a mechanical system described by a potential energy u(x, λ) with
x ∈ Rd, λ ∈ U ⊂ Rk a mechanical analog of the first principle of thermodynamics holds. In this
section, we recall a number of results that will be used in the proof of the multidimensional HB
thermodynamics result.

We start with recalling the Leibnitz integral rule, also called the Reynold transport theorem in
continuum mechanics, which generalizes to Rd the formula of derivation for the integral depending
on parameters.
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Proposition 1. Let f = f (x, α) be a real function depending on one or more parameters α to be integrated on a
domain D(α) ⊂ Rd. Then

∂

∂α

∫
D(α)

f dx =
∫

D(α)

∂ f
∂α

dx +
∫

∂D
f n · v dσ (15)

where ∂D is the boundary of D, n is its outer normal unit vector and v is the speed of the boundary. If
D = {x ∈ Rd : φ(x, α) ≥ 0} then ∂D = {x ∈ Rd : φ(x, α) = 0} and it holds that

n =
∇φ

|∇φ| , v = −
∂φ
∂α

|∇φ|n.

Using the above Proposition 1, we want to compute the partial derivatives of the free entropy
Ψ in (12) with respect to α where α denotes the parameters e or λ. If we assume that c > 0 so that
ech = φc = 0 on ∂H, the boundary term in (15) is vanishing and we have (here and in the following we
set f ,α = ∂ f /∂α)

Ψ,α =
1
Z

∂

∂α

∫
H

echdx =
1
Z

∫
H

ech(ch,α )dx = c⟨h,α ⟩. (16)

If we introduce the log-likelihood function associated to the probability density in (13)

l = ln p = ch − Ψ (17)

we get the result

l,α = ch,α −Ψ,α = c(h,α −⟨h,α ⟩) =
p,α
p

(18)

and we can prove the following useful formula:

Proposition 2. Let f = f (x, α) be a real function such that f p = 0 on ∂H. Then we have that

⟨ f ⟩,α =
∂

∂α

∫
H

f pdx =
∫

H
( f p),α dx =

∫
H
( f ,α p + f p,α )dx

= ⟨ f ,α ⟩+ c
∫

H
f p(h,α −⟨h,α ⟩)dx

= ⟨ f ,α ⟩+ c(⟨ f h,α ⟩ − ⟨ f ⟩⟨h,α ⟩)

= ⟨ f ,α ⟩+ c cov( f , h,α ) = ⟨ f ,α ⟩+ c cov( f ,
φ,α
φ

)

As a straightforward application of Proposition 2 for f = φ we can compute (here h,α =
φ,α
φ )

⟨φ⟩,α = ⟨φ,α ⟩+ c
(
⟨φh,α ⟩ − ⟨φ⟩⟨h,α ⟩

)
= (1 + c)⟨φ,α ⟩ − c⟨φ⟩⟨h,α ⟩. (19)

Now all the elements to prove the multidimensional version of HB thermodynamics have been
introduced .

Proposition 3. Let the entropy function for a mechanical system with potential energy u(x, λ) be

S(e, λ) = ln
∫

H(e,λ)
φ

d
2 dx = ln Z + ln⟨φ⟩ = Ψ + ln⟨φ⟩

and define the temperature T(e, λ) and the i−type pressure Pi(e, λ) as

T =
⟨φ⟩

1 + c
=

2
d
⟨φ⟩, Pi = ⟨φ,λi ⟩. (20)
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Then it holds that

dS =
1
T
[de + ∑

i
Pi dλi]

Proof. Let α = e or α = λi. We have from (16) and (19) that

S,α = Ψ,α + (ln⟨φ⟩),α = c⟨h,α⟩+
1
⟨φ⟩ [(1 + c)⟨φ,α⟩ − c⟨φ⟩⟨h,α⟩] =

1 + c
⟨φ⟩ ⟨φ,α⟩

and, since φ,e = 1 we derive that for S(e, λ)

dS =
∂S
∂e

de +
k

∑
i=1

∂S
∂λi

dλi =
1 + c
⟨φ⟩ [de +

k

∑
i=1

⟨φ,λi ⟩dλi]

=
1
T
[de + ∑

i
Pidλi]

From the above result, temperature and pressure can be computed using the relations

T−1 =
∂S
∂e

,
Pi
T

=
∂S
∂λi

. (21)

2.3. Relation with Microcanonical Entropy

In HB thermodynamics, the entropy is the volume entropy defined as S = ln Σ as in (6). If we
choose to adopt the definition of the entropy of the microcanonical ensemble we introduce the so-called
density of states g(e, λ) and the microcanonical entropy Sµ

g(e, λ) =
∂Σ(e, λ)

∂e
, Sµ(e, λ) = ln g(e, λ).

Since from (9)

Σ(e, λ) = ωd

∫
H

φc+1dx

we have

g(e, λ) =
∂Σ(e, λ)

∂e
= (c + 1)ωd

∫
H

φcdx = (c + 1)ωdZ(e, λ)

therefore, up to constant terms, the microcanonical entropy Sµ is

Sµ(e, λ) = ln g(e, λ) = ln Z(e, λ) = Ψ(e, λ) (22)

and we have from (14) the relation between HB and microcanonical entropy

S = Sµ + ln⟨φ⟩.

For most thermodynamic systems the two definitions of entropy are equivalent in the limit of
n → ∞, where n is the number of particles of the system, see e.g.[19]. If we define the microcanonical
temperature as T−1

µ = ∂Sµ/∂e we have, from (22) and (16)

1
Tµ

=
∂Sµ

∂e
= Ψ,e = c⟨ 1

φ
⟩ (23)
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which is different from the definition of temperature in HB thermodynamics, T = 2⟨φ⟩/d , see
(20). So the two ensembles, for finite number of degree of freedom systems, are non-equivalent.

We now compute the specific heat in the HB and microcanonical cases. Note that since the
temperature in HB thermodynamics is defined as the average value of the kinetic energy, cv is a
dimensionless quantity. We define

1
cv

=
dT
de

=
2
d
⟨φ⟩,e

and using again Proposition 2 we get

1
cv

=
2
d
[⟨φ,e ⟩+ c cov(φ, h,e )] =

2
d
[1 + c − c⟨φ⟩⟨ 1

φ
⟩] = 1 − T

Tµ
(24)

so the specific heat cv diverges when T = Tµ. Using the microcanonical temperature (23) we have

d
de

(T−1
µ ) = − 1

T2
µ

dTµ

de
= − 1

T2
µ

1
cvµ

= c⟨ 1
φ
⟩,e = −c⟨ 1

φ2 ⟩+ c2var(
1
φ
)

therefore

1
cvµ

= T2
µ

[
c⟨ 1

φ2 ⟩ − c2var(
1
φ
)
]

Note that, unlike what happens with the canonical ensemble, where the specific heat is necessarily
positive (see (36) below), in the HB and microcanonical case the specific heat can be negative.

3. Statistical Models and Fisher Matrix
The notion of Fisher information matrix [9,10] is fundamental to describes the geometry of

statistical models. We start by recalling the definition of a regular statistical model; see [12,13]. Let
pθ(x) be a probability density defined on state space X depending on finitely many parameters
θ ∈ Z ⊂ Rd. We introduce the set

S = {pθ = p(x, θ) : θ ∈ Z} ⊂ L1(X) (25)

Definition 1. S is a regular statistical model if the following conditions 1) and 2) hold:

1) (injectivity) the map f : Z → S , θ 7→ f (θ) = pθ is one to one and

2) (regularity) the d functions defined on X

pi(x, θ) =
∂p
∂θi

(x, θ), i = 1, . . . , d

are linearly independent as functions on X for every θ ∈ Z .

The inverse φ : S → Z , φ(pθ) = θ of the map f , which exists by 1), defines a global coordinate
system for S . It is convenient to introduce the log-likelihood l = ln p and the score basis li = ∂l/∂θi.
Note that since li = (1/p)pi the function pi and li are proportional, therefore, the regularity condition
2) above holds if and only if the elements of the score basis are independent functions over X. The
element of the Fisher matrix are defined as follows

gij(θ) = ⟨lilj⟩ =
∫

X

∂l
∂θi

∂l
∂θj

p(x, θ)dx. (26)
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The Fisher matrix is symmetric and positive definite; therefore, it defines a Riemannian metric on
Z . (see [13], p.24). In fact we have (sum over repeated indices is understood)

gijvivj = ⟨liljvivj⟩ = ⟨(livi)
2⟩ = 0 ⇔ livi = 0 ⇔ vi = 0 ∀ i (27)

since the score vectors li are linearly independent over X. Note also that g is invariant with respect
to change of coordinates in the state space X and covariant (as an order 2 tensor) with respect to change
of coordinates in the parameter space [13].

3.1. Statistical Models in HB Thermodynamics

In this section we consider the HB-type probability density introduced in (13) and we compute
the related Fisher matrix. We define the parameters θ ∈ Z ⊂ R1+k where

θ0 = e, θi = λi, i = 1, . . . k. (28)

and the probability density –see (13)–

p(x, θ) = ech(θ)−Ψ(θ) =
φc(x, θ)∫

H(θ) φc(x, θ)dx
, c =

d
2
− 1 (29)

defined on the set

H(θ) = {x ∈ Rd : φ = θ0 − u(x, θ) > 0}.

Unlike the theory exposed above in Section 3, the probability densities pθ , θ ∈ Z in (29) are not
defined in the same sample space X. To embed this case in the previously exposed theory we need to
embed every probability density in the same space Rd by setting

p̃(x, θ) =

p(x, θ) if x ∈ H(θ)

0 if x /∈ H(θ)
(30)

In the following we will spare the tilde symbol in p̃(x, θ). We suppose that conditions 1) and 2)
do hold for p(x, θ). If we compute the score basis we have from (17) and (18)

li =
∂l
∂θi

= ch,i −Ψ,i = c(h,i −⟨h,i ⟩) = c
( φ,i

φ
− ⟨ φ,i

φ
⟩
)

, i = 0, . . . k

and the elements of the Fisher matrix (26) are

gij(θ) = ⟨lilj⟩ = c2
〈
(h,i −⟨h,i ⟩)(h,j −⟨h,j ⟩)

〉
= c2cov(h,i , h,j ). (31)

Another useful expression for the elements of the Fisher matrix can be deduced from Proposition
2: we have from (16) that Ψ,i = c⟨h,i ⟩ hence

Ψ,ij = c⟨h,i ⟩,j = c[⟨h,ij ⟩+ c cov(h,i , h,j )] = c⟨h,ij ⟩+ gij

therefore

gij = Ψ,ij −c⟨h,ij ⟩. (32)

Note that unlike what happens with exponential families, the Fisher matrix does not coincide
with second-order derivatives of the free entropy function Ψ. However, the above formula coincides
with the one obtained for Fisher matrix for generalized exponential families, [20,21]. Below we give
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detailed formulae for the elements of the Fisher matrix associated to HB thermodynamics. From (28)
and (12) we have

h,0 =
φ,0
φ

=
1
φ

, h,i =
φ,i
φ

= −u,i
φ

so that

g00(θ) = c2 cov(h,0 , h,0 ) = c2
[
⟨ 1

φ2 ⟩ − ⟨ 1
φ
⟩2
]
= c2var(

1
φ
) (33)

and

g0i(θ) = c2 cov(h,0 , h,i ) = c2
[
⟨−u,i

φ2 ⟩ − ⟨ 1
φ
⟩⟨−u,i

φ
⟩
]

and

gij(θ) = c2 cov(h,i , h,j ) = c2
[
⟨

u,i u,j
φ2 ⟩ − ⟨u,i

φ
⟩⟨

u,j
φ
⟩
]

More in detail, the explicit expression of the Fisher matrix elements involves the computation of
integrals of the type

⟨ 1
φ2 ⟩ =

∫
H(θ)

p(x, θ)
1
φ2 dx =

1
Z(θ)

∫
H(θ)

φc−2dx (34)

where f = φc−2 satisfies the condition f = 0 on ∂H if c − 2 = (d − 6)/2 ≥ 0.

4. Fisher Matrix for Canonical Ensemble
In this section we recall a well known relation between Fisher matrix and second order derivatives

of the canonical free entropy function. In statistical mechanics a system of N microscopic units can be
described by the Boltzmann-Gibbs (BG) or canonical probability density

p(x) = e−βH(x)−Ψ(β), Ψ(β) = ln Z(β) =
∫

e−βH(x)dx (35)

where H(x) is the Hamiltonian and the integral (or sum) is extended over the set of system states
x. The inverse temperature β = 1/kT can be related to the system energy e = ⟨H⟩ by inverting the
equation e(β) = −Ψ,β (β) so that β = β(e). As a consequence

∂2Ψ
∂β2 = var(H) = − de

dβ
= −(

dβ

de
)−1 = (

1
kT2

dT
de

)−1 = kT2cv > 0. (36)

Second order phase transitions are characterized by discontinuities in the function Ψ,ββ. Ψ is
an analytic function for finite systems but in the thermodynamic limit f = limN

1
N Ψ can develop

discontinuities. If now we consider the log-likelihood of the canonical probability density l = ln p =

−βH − Ψ in (35) we have

lβ =
∂l
∂β

= −H − Ψ,β = −H + ⟨H⟩

and the Fisher information of the canonical density (35) is

gββ = ⟨l2
β⟩ = var(H) =

∂2Ψ
∂β2 . (37)
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so from (36) and (37) we get the important result that for an exponential family density the Fisher
matrix coincides with the second order derivatives of the free entropy and that the diagonal elements
of the Fisher matrix diverge at the phase transition when cv tends to infinity.

If the system Hamiltonian is in the form θ · X = ∑k
i=1 θiXi the above relations are generalized as

⟨Xi⟩ = −∂Ψ
∂θi

, gij = −∂⟨Xi⟩
∂θj

=
∂2Ψ
∂θiθj

= cov(Xi, Xj). (38)

In [18] the above argument is reversed and the claim is that the divergence of the diagonal
elements of the Fisher matrix is a signature of a phase transition even if the underlying probability density
is not the canonical one. The order parameter is defined by the relation (38)1 and (38)2 defines the
generalized susceptibility. The same argument is developed in [15] in relation to the study of phase
transitions using machine learning methods. To conclude, we recall that phase transitions have been
defined for finite systems or for systems with long-range interactions using the non convexity of the
entropy function or the non equivalence of canonical and microcanonical ensembles (see [22,23]).

5. Fisher Matrix in HB Thermodynamics. Examples
The HB thermodynamic formalism allows us to define a probability density see (10) which is

related to the microcanonical one but it is "projected" on the configuration space. Instead of prescribing
the interaction between the elementary units of the system, all the information about the system is
encoded in its potential energy u(x, θ) depending on multiple parameters and the energy θ0. So we are
using a formalism, which loosely speaking is in between statistical mechanics and catastrophe theory,
and a probability density, which is not an exponential family. Nevertheless we still have, see (16) and
(32) that for multidimensional HB thermodynamics –compare with (38)–

Ψ,α = c⟨h,α ⟩, gij(θ) = c2cov(h,i , h,j ) =
∂2Ψ

∂θi∂θj
− c⟨h,ij ⟩.

We want to investigate whether the divergence of elements of the Fisher matrix for particular
values of parameters θ can detect qualitative changes in the dynamics in mechanical systems described
by potential energy u(x, θ).

In the following, we consider some examples where the potential energy u(x, θ), x ∈ Rd is
described by a radial function such that u(x, λ) = w(|x|, λ). This allows us to investigate our claim
while keeping the computations at a tractable level. Note that, apart from the elastic chain, all the
examples below define a statistical model, as it is easy to check using Definition 1.

5.1. Harmonic Potential Energy

Let us consider the simplest potential energy with no external parameters w(|x|) = x · x = x2

with x ∈ Rd. This energy represents d independent one-dimensional harmonic oscillators. Then
φ = e − x2 and H(e) = Bd(

√
e), the ball of radius

√
e in Rd. Let us compute

Z(e) =
∫

H(e)
φc(x, e)dx = αd

∫ √
e

0
(e− r2)crd−1dr, Σ(e) =

∫
H(e)

φc+1(x, e)dx = αd

∫ √
e

0
(e− r2)c+1rd−1dr

so that

Z(e) =
√

π Γ( d
2 )

2dΓ( d+1
2 )

ed−1, Σ(e) =
√

π Γ( d
2 )

2d+1Γ( d+1
2 )

ed

where Γ is the Gamma function and the entropy function are
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S(e) = ln Σ = d ln e + cost(d), Sµ = ln Z = (d − 1) ln e + cost(d).

By direct computation we get the temperature

T = (
∂S
∂e

)−1 =
e
d
=

2
d
⟨φ⟩, Tµ = (

∂Sµ

∂e
)−1 =

e
d − 1

=
1

c⟨ 1
φ ⟩

and the specific heat can be computed from c−1
v = dT/de

cv = d, cvµ = d − 1

a result which holds also in Boltzmann Gibbs statistical mechanics (see [19]). The one dimensional
Fisher matrix, also called Fisher information is, see (33)

g00 = c2var(
1
φ
) = c2

[
⟨ 1

φ2 ⟩ − ⟨ 1
φ
⟩2
]
= c2⟨ 1

φ2 ⟩ −
1

T2
µ

(39)

where the probability density (29) is p(x, e) = φc/Z(e) and

c2⟨ 1
φ2 ⟩ =

c2

Z(e)

∫
H(e)

φc−2dx =
4(d − 1)
(d − 4)e2

thereby obtaining (note that the average value exists for d > 4)

g00(e) =
d(d − 1)
(d − 4)

1
e2 =

1
(d − 4)

1
TTµ

We see that g00(e) diverges for e → 0+, that is, when the system energy e tends to the minimum
of the potential energy u.

Remark. This quadratic potential energy system is the prototype of the description of a mechanical
system in the vicinity of a minimum of the potential energy. By a translation of the reference frame we
can suppose that the minimum is in x = 0 and that u(0) = 0 so that using a Taylor expansion we have

u(x) = u(0) + u′(0) · x +
1
2

u
′′
(0)x · x +O(3)

and

min(λ)x2 ≤ u
′′
(0)x · x ≤ max(λ)x2

where min(λ) and max(λ) are the smallest and greatest (real) eigenvalues of the symmetric matrix
u
′′
(0). So we can conclude that the Fisher information diverges when the energy e approaches the

minimum of the potential energy from above. This can be interpreted by recalling that the Fisher
information measures the change in the "shape" of the probability distribution p(x, e) with respect to a
change in the parameter e; when the energy becomes equal to the minimum of the potential energy,
the probability density becomes a Dirac delta concentrated at the minimum x = 0. We can say that
the divergence of the Fisher information g00 at e = 0 corresponds to the qualitative "phase transition"
between a point orbit and a set of d closed orbits for the d oscillators when e > 0.

5.2. The Elastic Chain

The following example shows that for a n-dimensional mechanical systems with convex potential
energy, HB thermodynamics gives a sound description of the system’s behavior (see also [7]).

Let us consider a chain of n + 1 point particles of mass m linked by linearly elastic springs
and constrained to move on the real axis. Suppose that particle 0 is fixed in the origin and that the
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coordinate of the n-th particle is λn so that the length λn of the chain is a controlled parameter λ

corresponding to the equilibrium length of the n springs. Let the elongation of the spring i = 1, . . . n
be written as ui = λ + xi. The length constraint is

n

∑
i=1

ui =
n

∑
i=1

(λ + xi) = nλ, that is
n

∑
i=1

xi = 0.

Due to the length constraint the chain potential energy of the resulting n − 1 dimensional system
can be written as

u(x) = u(x1, . . . , xn) =
h
2

n

∑
i=1

(xi + λ)2 =
h
2
(x2 + nλ2),

n

∑
i=1

xi = 0

where x2 = ∑n
i=1 x2

i . Therefore the region H(e, λ) is

H(e, λ) = {x ∈ Rn φ = e − u(x) = e − h
2
(x2 + nλ2) > 0,

n

∑
i=1

xi = 0}

i.e.

H(e, λ) = {x ∈ Rn : x2 <
2e
h
− nλ2,

n

∑
i=1

xi = 0} = Bn(a) ∩ L = Bn−1(a)

where Bn(a) is the ball in Rn of radius a,

a2(e, λ) =
2e
h
− nλ2

and L is the n − 1 dimensional hyperplane ∑n
i=1 xi = 0. We compute the entropy S = ln Σ by setting

φ = e − u =
h
2
(a2 − x2)

and (here c = d
2 − 1 = n−3

2 )

S = ln Σ = ln
∫

H(e,λ)
φc+1dx = ln

∫
Bn−1(a)

h
2
(a2 − x2)c+1dx.

By standard computation on radial function we get

S(e, λ) = (n − 1) ln a2(e, λ) + cost(n) = (n − 1) ln(e − n
h
2

λ2) + cost(n)

Let us compute the temperature of this elongated chain using

T = (
∂S
∂e

)−1 =
a2

n − 1
=

1
n − 1

(e − n
h
2

λ2)

which coincides with the kinetic energy e − u(λ) per degree of freedom. Let us compute the
pressure P corresponding to the controlled parameter λ which is the elongation on the elastic chain
using (20)2. We have

P = ⟨∂φ

∂λ
⟩ = ⟨−nhλ⟩ = −nhλ

which corresponds to our physical intuition of the reaction force exerted by the chain on its
controlled end. The specific heat cv = de/dT is

1
cv

=
dT
de

=
1

n − 1
=

1
d

.
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Remark. Note that the elastic chain model fails to define a statistical model because conditions 1)
and 2) in Definition 1 are not met. Indeed concerning condition 2) we have

le = ⟨ 1
φ
⟩, lλ = ⟨ φ,λ

φ
⟩ = ⟨−hλ

φ
⟩ = −hλ le

so the two score vectors le and lλ are not independent functions on H(e, λ). Therefore we can not
compute the Fisher matrix for this mechanical system. If we consider only the energy parameter e, the
system is similar to the previous example 1.

5.3. Two-Body System

In this example we consider an isolated system of two points of equal mass m subject to gravi-
tational forces. If x = (x1, x2), xi ∈ R3, i = 1, 2 denote the positions of the two points, the potential
energy is u(x, λ) = −λ

|x2−x1|
, where λ = Gm2 can be considered as a parameter. A system of points

interacting via gravity requires a specific description in Statistical Mechanics due to the long-range
nature of the force which prevents these systems to display the extensive character of the total energy.
Also, it is known that gravitating systems exhibit the phenomenon of negative specific heat [24], a
possibility which is excluded in the canonical description, see (36). Therefore, the correct statistical
ensemble to adopt is the microcanonical one, see [25]. In [25] the above two body system is modified
to construct a toy model which exhibits all the features of a many-body self-gravitating system. This
is obtained by imposing a short range cutoff on the particles inter-distance |x2 − x1| > a, which
behaves as hard spheres of radius a/2, and a long range cutoff |x2 − x1| < R. This modified system
display a phase transition between phases of positive and negative specific heat when the system
energy is varied. We want to discuss this mechanical system using HB thermodynamics. See also [5]
for a different analysis of a two body system with HB thermodynamics. Therefore we compute the
probability density (10) and the Fisher information for this system and discuss its ability to describe
phase transitions. Using (12) we have for e < 0,

H(e, λ) = {x ∈ R6 : φ(x, e, λ) = e − u(x, λ) = e +
λ

|x2 − x1|
> 0}

and from (10) with d = 3n = 6, c = d
2 − 1 = 2,

Z(e, λ) =
∫

H(e,λ)
φcdx =

∫
H(e,λ)

(
e +

λ

|x2 − x1|
)2dx.

To compute the last integral it is useful to perform the change of variables χ(x1, x2) = (x1, s + x1)

where s = x2 − x1 is the inter-particle vector. We have det dχ = 1 and H(e, λ) = χ(Λ) where

Λ = {(x1, s) ∈ R6 : |s| < −λ

e
} = R3

x1
× B3(

−λ

e
)

therefore, by using the change of variable and Fubini theorem, we can write

Z(e, λ) =
∫

Λ

(
e +

λ

|s|
)2 det dχdx1ds =

∫
R3

x1

dx
∫

B3(
−λ

e )

(
e +

λ

|s|
)2ds.

The integral in dx is infinite unless we assume that the particle x is confined in a bounded region
of volume V. Therefore we can write Z = VZs and, since we deal with a function radial in s we have
that Zs is finite and

Zs(e, λ) =
∫ −λ

e

0

(
e +

λ

s
)2s2ds = −Vα2λ3

3e
, e < 0. (40)

The probability density (10) is thus factorized into the product of two densities

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 May 2025 doi:10.20944/preprints202505.1039.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1039.v1
http://creativecommons.org/licenses/by/4.0/


14 of 18

p(e, λ, x, s)dxds =
φc

Z(e, λ)
dxds =

dx
V

· φ2(e, λ, s)
Zs

ds

showing that the positions of the two particles are independent random variables. Therefore we
can forget about the x1 particle and perform all the computations in the s variable.

If we let the energy tend to zero, so that the inter-particle distance s can be arbitrarily large, we
make Z in (40), hence the microcanonical entropy of the system Sµ = ln Z, infinite. The HB or volume
entropy is

S = Sµ + ln⟨φ⟩

and it is easy to see that ⟨φ⟩ is infinite if we let the inter-particle distance s go to zero, so the
entropy S is infinite when s tend to zero or to infinity, while Sµ is infinite only in the latter case.

Therefore, it is necessary to assume, as in [25], that there are two cutoffs a < |s| < R, usually with
R ≫ a, so that the two body system is confined in a bounded region of space. Moreover the system
displays two energy scales

emin = u(a) = −λ

a
< 0, eR = u(r) = − λ

R
< 0

Also, it is stipulated in [25] that if the energy is in the range emin ≤ e ≤ eR, the integration in the s
variable is performed between extrema a and −λ

e , while for e ≥ eR the integration is between fixed
extrema a and R. Due to the presence of the cutoff a, the system displays a negative specific heat phase
(see again [25]).

We can now compute the temperature T, the microcanonical temperature Tµ and the pressure P
using (21) for our system in the two energy ranges and then juxtapose the plots that have continuous
junction at e = eR. See Appendix 1 for computations. We also compute the Fisher information g00(e, λ)

from (33). See Figure 1 for the plot of T, Tµ and g00.

− λ
a

A

B

C
− λ

R
e

Figure 1. Plot of Fisher information g00 (red curve), Temperature T (blue curve) and microcanonical temperature
Tµ (orange curve) as a function of the energy e.

The temperature T = T(e, λ) (blue curve of Figure 1) presents a gentle maximum for negative
energy (point B) and a sharp minimum (point C) for a positive value of the energy. We see that for
e = emin the temperature is zero as in the previous example 1. The temperature curve of this simple
mechanical system displays the same features of more complex and realistic models of gravitating
many particle systems: a phase (A to B) of positive specific heat followed by a phase (B to C) of negative
specific heat and again a phase of positive specific heat (after C). The microcanonical temperature Tµ
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(orange curve) has a similar behavior of T. The points where the two temperature curves cross each
other are the points where the specific heat cv diverges; see (24). See [25] for a physical interpretation
of these phases.

We see that the Fisher information g00 = g00(e, λ)(red curve of Figure 1) diverges for e = emin and
has a peak for e = eR. The divergence in e = emin is located at the minimum of the potential energy
(due to the cutoff at s = a) and it is similar to the one found in the previous example 1. Here we
are concerned with the assessment of the ability of Fisher information to locate the phase transitions
at B and C. It seems that the phase transition in B is not detected, and the one in C is not exactly
located. This is due to the presence of the cutoffs a < s < R (which are essential for the existence of
the negative specific heat phase). As far as the phase transition in B is concerned, the shape of the
curve of temperature T does not change with a and in the limit a → 0 entropy S becomes infinite.
On the other hand, the microcanonical entropy Sµ = ln Z is defined for a = 0 and the curve of the
microcanonical temperature computed for a = 0 (dashed line of Figure 2) does not show the phase
A to B of positive specific heat. Therefore, for a = 0, the phase transition in B is removed in the
microcanonical description of the system, while the remaining one is detected by the divergence of
Fisher information.

− λ
R

e

Figure 2. Plot of Fisher information g00 (red curve), microcanonical temperature Tµ (orange curve) and micro-
canonical temperature for a = 0 (dashed curve) as a function of the energy e. In the a = 0 case the phase of
negative specific heat is not present and the remaining phase transition is located at e = 0. Note that for greater
clarity the plot is not in the whole energy range e > −λ/a.

We will show that if the bounds are removed, letting a → 0 and R → +∞ the minimum C and the
peak in Fisher information g00 coincide at e = 0. In fact, the energy corresponding to point C can be
determined using the condition ∂T(e, λ)/∂e = 0. By computing ∂T(e, λ)/∂e = 0 at the leading order
in 1 ≫ a/R we deduce that the minimum in C in Figure 1 is located at

e∗2 =
λ

R
3√6 ln R.

The peak of Fisher information is located at e = eR = −λ/R and it height is

g00(−
λ

R
, λ) =

3R4

λ2(a − R)2 ≃ 3(
R
λ
)2

In the limit R → +∞ both eR and e∗2 tends to 0. So we can say that the divergence of Fisher
information g00 correctly detects the phase transition from negative to positive specific heat located at
e = 0.

6. Conclusions
The formulation of HB thermodynamics defines the analogs of temperature, pressure, and entropy

for a mechanical system whose potential energy depends on a parameter λ. This scheme has been
generalized to n degree-of-freedom systems with multiple parameters, but generalization to an infinite
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number of degrees of freedom (and hence the operation of thermodynamic limit) seems to be beyond
the possibilities of the theory. It is thus interesting (and it is the aim of this work) to ask if the
thermodynamic description of these mechanical systems is capable of displaying different patterns of
organization (driven by qualitative changes in the underlying dynamics ) and if these patterns can
be signaled by an order parameter. Given the probabilistic nature of the theory, it has been natural
to investigate if the HB thermodynamic scheme can be read as a statistical model and to compute
the associated Fisher matrix, which has previously been used in the literature to describe systems
which are of more general nature than those considered in Statistical Mechanics. We have shown with
some paradigmatic examples that there are cases in which the Fisher information computed from HB
thermodynamics is capable of locating phase transitions in the generalized sense exposed above.

Appendix
Concerning Section 5.3, all the computations are performed in the two separated energy ranges:
A) emin < e < eR, and B) e ≥ eR, where emin = −λ/a, eR = −λ/R, and R ≫ a.

In the A) case the integration in the s variable is in the interval (a,−λ/e) while in the B) case the
interval is (a, R). Note that the entropy is, see (9)

S(e, λ) = ln Σ = ln
∫

H(e,λ)
φc+1dx + cost

and it can be computed in the two energy ranges as:

A) S(e, λ) = ln
∫ − λ

e

a
(e +

λ

s
)3s2ds = ln[

1
6
(ae + λ)(2a2λ2 + 7aeλ + 11λ2) + λ3 ln(

λ

ae
)]

B) S(e, λ) = ln
∫ R

a
(e +

λ

s
)3s2ds = ln[3eλ2(R − a) +

3
2

e2λ(R2 − a2) +
1
3
(R3 − a3) + λ3 ln(

R
a
)]

Note that the entropy S is not defined for a = 0. Temperature T and pressure P can be computed
from (21). Microcanonical entropy is

Sµ(e, λ) = ln Z = ln
∫

H(e,λ)
φcdx + cost

and it can be computed in the two energy ranges as:

A) Sµ(e, λ) = ln Z = ln
∫ − λ

e

a
(e +

λ

s
)2s2ds = ln[− (ae + λ)3

3e
]

B) Sµ(e, λ) = ln
∫ R

a
(e +

λ

s
)2s2ds = ln[

1
3
(R − a)(a2e2 + 3λ2 + 3eλR + e2R2 + ae(3λ + eR))]

Note that the entropy Sµ is defined also for a = 0. See plot of the entropies S and Sµ in Figure 3
below. Temperature Tµ and pressure Pµ can be computed by derivation using (21). See plot of T and
Tµ in Figure 1 in the main text and plot of P and Pµ in Figure 4 below.

For the Fisher information (see (33)) we have

g00(e, λ) = c2
[
⟨ 1

φ2 ⟩ − ⟨ 1
φ
⟩2
]
= c2⟨ 1

φ2 ⟩ −
1

T2
µ
=

c2

Z

∫
H(e,λ)

φc−2dx − 1
T2

µ

therefore:
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A) g00(e, λ) =
3λ2

e2(ae − λ)

B) g00(e, λ) =
3λ2(R − a)2

(a2e2 + 3λ2 + 3eλR + e2R2 + ae(3λ + eR))2

Note that g00 is defined for a = 0. See plot of g00 in Figure 1 in main text.

− λ
a

e

Figure 3. Plot of entropy S (blue curve), microcanonical entropy Sµ (orange curve) and microcanonical entropy
Sµ in the a = 0 case (dashed curve) as a function of the energy e. The non convexity of the entropy function
in the a > 0 case (orange and blue solid curves) is a signature of a phase transition. See corresponding plot of
temperatures in Figure 1, and in Figure 2 for the case a = 0.
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Figure 4. Plot of pressure P (blue curve) and microcanonical pressure Pµ (orange curve) as a function of the energy
e. Inlet: detail of the pressure plot for positive values of energy
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