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Article

Relativistic Algebra over Finite Ring Continuum
Yosef Akhtman

AGH University of Science and Technology; ya@gamma.earth

Abstract: We present a formal reconstruction of the conventional number systems, including integers,
rationals, reals, and complex numbers, based on the principle of relational finitude over a finite field
Fp. Rather than assuming actual infinity, we define arithmetic and algebra as observer-dependent
constructs grounded in finite field symmetries. Conventional number classes are then reinterpreted as
pseudo-numbers, expressed relationally with respect to a chosen reference frame. We define explicit
mappings for each number class, preserving their algebraic and computational properties while
eliminating ontological dependence on infinite structures. The resultant framework—that we denote
as Finite Ring Continuum—establishes a coherent foundation for mathematics, physics and formal
logic in ontologically finite paradox-free informational universe.

Keywords: Finite Fields; Modular Arithmetic; Relativistic Algebra; Symmetry Transformations;
Pseudo-Numbers; Observer Framing; Discrete Manifolds; Approximate Lie Groups; Finite Infor-
mational Systems; Structural Mathematics; Modular Exponentiation; Cyclic Groups; Finite Field
Morphology; Relational Symmetries; Epistemic Constructs

1. Introduction
A growing body of work in mathematics and physics suggests that foundational structures

are best understood through a relational or relativistic lens [1–3]. In such a paradigm, mathematical
entities acquire meaning not as intrinsic absolutes but through their role within a system defined by
internal symmetries and reference frames. Constants like 0, 1, or i are not metaphysical primitives, but
relational markers—origins, units, or axes—assigned by a chosen framing.

This perspective invites a re-evaluation of one of the most entrenched assumptions in mathematics:
the acceptance of actual infinity. From real analysis to Hilbert spaces, infinity has been treated as
foundational, despite its lack of empirical or computational realization. Under a relational view, such
constructs may instead be interpreted as emergent limits or symbolic artifacts—arising when finite
systems attempt to encode relationships that exceed their internal scope.

In previous work [4], we argued that concepts like infinity, randomness, and undecidability are
not ontological features of nature, but epistemic placeholders—signals of representational saturation
in finite informational systems. Here, we extend this view into a concrete formalism: a relativistic
algebra constructed entirely over a finite field Fp, with observer-relative arithmetic and emergent
pseudo-numbers.

The present framework resonates with several contemporary perspectives that question the
ontological status of the continuum and advocate for finitely constructed alternatives. In particular,
Smolin has emphasized the need for a relational, observer-dependent formulation of physical laws,
suggesting that the continuum is merely an idealization beyond the reach of internal observers [5,6].
Similarly, D’Ariano and collaborators have reconstructed quantum theory from finite, informationally
grounded axioms, demonstrating that core features of quantum mechanics can emerge without
invoking infinite-dimensional Hilbert spaces [7]. From a mathematical standpoint, the approach aligns
with the ultrafinitist program developed by Benci and Di Nasso, which offers a rigorous alternative to
classical cardinality through the theory of numerosities and bounded arithmetic [8,9].

Furthermore, the ultrafinitist school—pioneered by Yessenin-Volpin and Parikh—takes finitude
even further by denying the meaningful existence of “too large” numbers and insisting on feasibility
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as a foundational constraint. Formalizations of ultrafinitism and feasibility arithmetic appear in works
such as [10–13], which explore the proof-theoretic and computational consequences of enforcing strict
constructive bounds on arithmetic.

Ultrafinitism enforces an a priori cutoff on numerical existence—only those magnitudes deemed
“feasible” within a human or machine resource bound are admitted. By contrast, our relativistic frame-
work treats finiteness not as a hard barrier but as a contextual framing condition: We allow arbitrarily
large numbers, so “size” is always relative to the chosen frame. Infinite structures, such as integers and
rationals emerge asymptotically or as coordinate projections, rather than being forbidden. Arithmetic
operations become internal symmetries of a finite system, rather than operations constrained by
external feasibility checks. This shift replaces the ultrafinitist’s absolute feasibility threshold with a
relational notion of scope: any number “exists” within some finite frame, while “infinity” itself appears
as a relative point beyond the horizon of observability and algebraic accessibility.

To support this framework, we further draw upon several key developments in mathematics
and physics. The foundational critique of actual infinity has been explored in works such as [14,15],
which emphasize the constructive and finitist approaches to mathematics. The relational perspective
on mathematical objects aligns with category theory [1], where objects are defined by their morphisms
and relationships rather than intrinsic properties. Additionally, the parallels between relativistic
mathematics and modern physics are inspired by the symmetry principles in [2,3], which highlight the
role of invariance and frame-dependence in physical laws. Finally, the informational limits of finite
systems and their implications for mathematical representation are discussed in [16,17].

I. Algebra
(This paper)

Finite-field number
hierarchy. Affine
gauge covariance.

II. Geometry [18]
Pseudo-smooth sphere
Sp. Internal curvature

K = 1. Canonical
constants {ip, πp, ep}.

III. Composition [19]
Composite moduli
Sq. Seifert fibration.

Profinite stability.
Spectral and Har-

monic decomposition.

Figure 1. Progression of results from the foundational Algebra manuscript to subsequent papers on Geometry and
Composition.

The present article forms the algebraic foundation of a three-part programme designed to recon-
struct the familiar continuous structures from finite arithmetic using the framework of Finite Ring
Continuum (FRC) as depicted in Figure 1. The present work, Algebra, establishes a relational framing
of the classical number hierarchy (Z,Q,R,C) as pseudo-number classes within a single finite field,
demonstrating that all constructions are covariant under a change of arithmetic frame. The subsequent
paper, Geometry, lifts this algebraic structure to a pseudo-smooth two-sphere Sp with constant internal
curvature, from which canonical geometric constants are derived. The final manuscript, Composition,
extends the framework from prime to composite moduli using the Chinese Remainder Theorem,
yielding a bouquet of prime spheroids whose structure resembles a Seifert-fibred three-orbifold. This
modular presentation ensures that each layer is developed with incremental and verifiable rigour.

2. Finite Field Framing
Let Fp = {0, 1, 2, . . . , p− 1} be the finite field of integers modulo an odd prime p. The elements

of Fp form a complete and closed set of relational representations of Fp under modular addition,
multiplication, and exponentiation. However, the specific numeric labels assigned to these elements—
particularly the designation of 0 and 1 as the additive and multiplicative identities—are intrinsically
relative and carry no absolute meaning within the field itself. The field Fp is invariant under relabelling
of its elements via any bijective affine transformation of the form

k 7→ a · k + b mod p,
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where a ∈ F×p and b ∈ Fp. Such transformations preserve the field structure and allow any element to
be reinterpreted as the origin. In this sense, the element labelled 0 is not uniquely privileged; it simply
represents the additive identity with respect to a chosen reference frame. The same applies to the label
1, which identifies the multiplicative unit only relative to a particular scaling.

Recall that choosing a “frame” in Fp consists of picking two distinguished elements

0′ = a, 1′ = b, b ̸= 0,

and then defining relabelled addition and multiplication by

x⊕ y := a + b
(
(x− a)/b + (y− a)/b

)
, x⊗ y := a + b

(
(x− a)/b · (y− a)/b

)
,

where divisions are in the original field Fp.

Lemma 2.1 (Frame-Invariance). Let Fp be a finite field, and let two frames (0, 1) and (a, b) be related by the
affine bijection

ϕ : Fp −→ Fp, ϕ(x) = a + b x, b ̸= 0.

Then ϕ is a ring isomorphism between
(
Fp,+, ·

)
and

(
Fp,⊕,⊗

)
. Consequently, any polynomial identity

P
(

x1, . . . , xn
)
= 0 holds in the standard frame

if and only if the “relabelled” identity

P
(
ϕ−1(X1), . . . , ϕ−1(Xn)

)
= 0 holds in the (a, b)-frame,

where Xi = ϕ(xi).

Proof. Since b ̸= 0, ϕ is a bijection with inverse ϕ−1(X) = (X− a)/b. For any x, y ∈ Fp,

ϕ(x + y) = a + b (x + y) =
(
a + b x

)
⊕

(
a + b y

)
= ϕ(x)⊕ ϕ(y),

and similarly
ϕ(x y) = a + b (x y) =

(
a + b x

)
⊗

(
a + b y

)
= ϕ(x)⊗ ϕ(y).

Thus, ϕ preserves addition and multiplication, so it is a ring isomorphism. It follows immediately that
any algebraic (polynomial) relation valid in one frame is carried over to the other by conjugation with
ϕ, establishing frame-independence of all algebraic identities.

Therefore, in the absence of an externally imposed or contextually declared frame—such as one
defined by a designated pair (0, 1)—the labels in Fp are relational rather than absolute. Philosophically,
this means that numerical identity is an observer-dependent convention rather than an intrinsic property of the
set, so the passage from one frame to another is not merely an algebraic relabelling but a shift in ontological
perspective. The roles of “zero” and “one” are thus not the fundamental properties of the elements
themselves, but a consequence of the system’s framing, making all representations in Fp symmetric
and interchangeable under coordinate transformation. To define our system unambiguously, we must
specify a reference frame or coordinate system (0, 1) within the context of Fp, which then becomes a
framed finite ring Fp(0, 1). We will henceforth assume all such systems to be framed systems Fp(0, 1)
and will denote the corresponding finite ring as Fp for simplicity, unless explicitly stated otherwise.

3. Finite Field as Discrete Geometric Structure
Let p be an odd prime and let Fp denote the finite field with p elements [20]. The additive group

(Fp,+) is a cyclic group of order p, and the multiplicative group of non-zero elements (F×p , ·) is a cyclic
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group of order p− 1 [21]. We associate the cardinality degree of freedom p and the three fundamental
arithmetic operations with 4 distinct symmetry classes in a symbolic geometry as in [18]:

1. Counting — defines the number of elements in the ring.
2. Addition (+) — defines rotational symmetry on a linear periodic axis.
3. Multiplication (×) — defines scaling symmetry on a multiplicative periodic axis.
4. Exponentiation — defines cyclic phase-like symmetry from repeated powers of a generator [22].

The choice of cardinality itself defines a linear—radial—degree of translation, and each cyclic
operation corresponds to a spherical axis of rotational transformation in a four-dimensional abstract
symmetry space. For a fixed odd prime p, the described mathematical construct forms the geometric
scaffold of a discrete spheroidal system. The three spherical axes are mutually orthogonal, but
algebraically dependent forming a 2D spheroid in the 4D symmetry space.

The resultant 2D spheroid for F13 is depicted in Figure 2, where the prime meridian depicts the
additive group (F13,+) and the latitudes represent multiplicative group (F×13, ·) generated by the
minimum multiplicative generator defined as

gmin := arg min
g∈Z×q

|g− 1| = 2, (3.1)

where {g} are primitive roots of F13 (also see [18]).

Figure 2. State diagram for finite framed field F13 as a 2D spheroid in 4D symmetry space combining the
additive—along the prime meridian—, and multiplicative—along the latitudes for multiplicative generator
gmin = 2—symmetries.

4. Pseudo-Numbers
4.1. Pseudo-Integers

While the finite field Fp provides a complete and closed algebraic structure, its inherently cyclic
nature eliminates any meaningful notion of ordering or signed magnitude. In contrast, many physical
and informational systems rely on the intuitive structure of the integers Z, with concepts such as
positive and negative values, proximity to an origin, and relational comparison. To bridge this

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 June 2025 doi:10.20944/preprints202505.2118.v5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2118.v5
http://creativecommons.org/licenses/by/4.0/


5 of 17

conceptual gap, we would like to introduce a relativistic, context-dependent construction within Fp

that recovers the essential features of integer arithmetic in a familiar and logically consistent form.
In the conventional finite field Fp, we can define negative elements−k ∈ Fp as the unique additive

inverse of k, satisfying k + (−k) ≡ 0 mod p [21]. This definition of negation is algebraically consistent
but is purely modular and lacks any intrinsic ordering. For example, the element −1 in Fp is not
necessarily less than 0, as we can state −1− 0 = −1 = 12, or greater than 0, as we can also state
0− (−1) = 1, and the same applies to any other element in the field. The lack of a meaningful ordering
relation in the finite field Fp makes it impossible to define a signed magnitude or compare elements in
a way that aligns with our intuitive understanding of integers.

Let us therefore consider the 3D representation of the finite field Fp as depicted in Figure 2 by
observing it from the top down. We would like to offer a metaphor of the "North Pole" frame of
reference, but it is important to note that the surface of the manifold in Figure 2 does not have any real
special points and the selection of such "North Pole" position and the corresponding frame of reference
is purely arbitrary and subjective.

Correspondingly, the original additive sequence 0, 1, . . . , p− 1 of the ring’s elements are repre-
sented as points located on the latitudinal axis—let us call it the prime meridian—of the Fp 2D manifold
sphere, while the multiplicative symmetry elements are now arranged in circular patterns along the
longitudinal axes and around the origin. Now let us imagine a naive local observer that is not aware
of the spherical nature of the surface he is observing. We may need to hereby assume a sufficiently
large cardinality p such that the local curvature is not apparent to such observer in the exact same
way as the local curvature of the Earth is not apparent to a human observer. For such observer, the
Fp manifold surface would appear as flat, and with the sequence of elements . . . ,−2,−1, 0, 1, 2, . . .
forming a horizontal axis around the observer’s position 0, as illustrated in Figure 3.

Figure 3. Class of signed pseudo-integers Z over the finite framed field F13. Black labels indicate the newly
defined signed integers z ∈ Z, while the purple labels represent the corresponding elements k(z) ∈ F13. The blue
line indicates the periodicity of the finite field. The unlabelled gray dots indicate the off-axis elements of F13 as
they are observed from the top of the 2D spheroid described in Figure 2.

Define a mapping k : Z → Fp, with k(z) = z mod p. This wraps Z onto Fp as depicted in
Figure 3. The observer, located at 0 and bounded by horizon H ≪ p, perceives the wrapped axis
as infinite. Thus, the apparent integer line emerges as a pseudo-integer class Z/Fp, where negation,
order, and comparison are reconstructed locally [23]. The resulting class of relativistic pseudo-integers
Z/Fp exhibits all the characteristic properties of the conventional integer set Z, including sign, order,
addition, subtraction and multiplication. This framework allows us to recover the intuitive and logical
structure of integers — including signed quantities and magnitude comparison — entirely within the
finite, self-contained system Fp, while preserving consistency with its modular arithmetic.

4.2. Pseudo-Rationals

Having recovered the structure of signed integers Z over the finite field Fp, it is natural to
ask whether further extensions of this framework can reproduce the next layer of classical number
systems—namely, the rational numbers Q. Rational numbers emerge from the pragmatic necessity to
express and manipulate ratios of integers, and their introduction marks a critical step in the construction
of continuous arithmetic, proportional reasoning, and linear structure.
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The motivation for this extension is twofold. First, it allows us to reconstruct the essential prop-
erties of Q over Fp, making clear that rationality is not an intrinsic feature of infinite arithmetic but
an emergent relational construct definable within finite algebra. Second, it enables a more expressive
arithmetic language within the finite mathematical system, allowing for the representation of pro-
portional relationships, scales, and geometric constructs entirely within the bounds of a finite and
self-contained mathematical system.

Definition 1 (Pseudo-Rationals). Let p > 2 be an odd prime number, and let Fp be a corresponding finite
field. We define the class of pseudo-rational numbers Qp as follows:

Qp :=

{
a
b
| a ∈ Z, b = ∏

i
ki, ki ∈ F×p

}
.

The corresponding value in the field is

k
( a

b

)
:= a · b−1 mod p.

Multiple representations can map to the same k ∈ Fp, forming equivalence classes as depicted in Figure 4, where
we depict a selection of pseudo-rational numbers in a finite field F13. We furthermore show that Qp is dense in
Q under a metric induced by bounded denominators b = gn [24], where g is some fixed primitive root of Fp that
forms a regular grid of rational points a/gn along the rational number axis, as illustrated in Figure 5, where we
fix q = 13 and g = 11. For any q ∈ Q and ϵ > 0, there exists q′ ∈ Qp such that |q− q′| < ϵ.

Figure 4. Few examples of rational numbers q ∈ Q13 in a finite framed field F13(0, 1). Note the pseudo-rational
numbers 6/5, 12/10 as well as 11/7 that all represent the exact same element 9 ∈ F13(0, 1).

Figure 5. Uniform grid of rational numbers of the form q = k
gn with step size 1

gn . Here, we have p = 13, g = 11
and n = 1. Black labels indicate the pseudo-rational numbers q ∈ Q13, while the purple labels represent the
corresponding finite field elements k(q) ∈ F13. The blue line indicates the periodicity of the finite field.

The validity of such definition is ensured by the fact that all elements ki constituting the de-
nominator product b = ∏i ki have a multiplicative inverse k−1

i ∈ F×p . A selection of some simple
examples of such pseudo-rational numbers is depicted in Figure 4, where for each position along the
prime meridian q = a/b ∈ Qp indicated as a black label on top, the corresponding finite field element
k(q) ∈ Fp is indicated as purple label on the bottom.
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Proposition 1. Let p > 2 be an odd prime number, g is a fixed primitive root of Fp, and let q = a/b ∈ Q be
any conventional rational number. Then for any ϵ > 0, there exists an integer n ∈ N and an integer x ∈ Z such
that ∣∣∣∣ a

b
− x

gn

∣∣∣∣ < ϵ.

Proof. Let a
b ∈ Q be given, and let ϵ > 0 be arbitrary small number.

Since p and g are fixed, the expression gn grows without bound as n→ ∞. Therefore, there exists
an integer n ∈ N such that

1
gn < ϵ.

Now consider the set of rational points of the form{
k

gn

∣∣∣∣ k ∈ Z
}

,

as illustrated in Figure 5. This set is a uniform grid of rational numbers with step size 1
gn , which is less

than ϵ by construction. There exists therefore an integer x ∈ Z such that∣∣∣∣ a
b
− x

gn

∣∣∣∣ < ϵ,

which completes the proof.

It is very important to reiterate the meaning of this construct from an ontological viewpoint. More
specifically, we stipulate that what actually “exists” are the p representations of the finite field Fp,
while the derivative class of pseudo-rationals q ∈ Qp constitute an abstract mathematical construct
derived from the inherent relational properties of the framed instance Fp.

In other words, the resultant field of pseudo-rational numbers Qp will exhibit all the properties
of the field of conventional numbers Q and can further approximate it with any arbitrary precision.
Furthermore, for an observer with a limited observability horizon and sufficiently large values of
cardinality p, the pseudo-rational field Qp becomes completely indistinguishable from its conventional
counterpart, as all the desired rational numbers of the form q = a/b, where b < p are represented not
approximately, but exactly within the scope of the pseudo-rational numbers Qp.

4.3. Pseudo-Reals

In classical mathematics, the field of real numbers R is introduced to enable the formulation
of continuous functions, calculus, and metric spaces—tools indispensable for modelling physical
phenomena and abstract structures alike. However, the real number line is defined as an uncountable,
infinitary continuum, an ontological commitment that conflicts with the finite and relational framework
we adopt in this study. Nonetheless, our need for continuous approximation and proportional reasoning
persists, particularly in describing geometric constructs, dynamic systems, and analytic behaviours.
Our approach is therefore pragmatic and epistemic rather than metaphysical. We seek to construct a
class of pseudo-real numbers that fulfils the operational role of R without invoking actual infinity.

Definition 2 (Pseudo-Reals). Define truncated pseudo-rationals:

Q≤H
p = {[x, n] : 0 ≤ x < p, 0 ≤ n ≤ H}, [x, n] :=

x
gn ,

where again g is a fixed primitive root of Fp. This set is finite and totally bounded under the metric:

dH([x, n], [y, m]) :=
∣∣∣∣ x

gn −
y

gm

∣∣∣∣.
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Define Rp as the closure of Q≤H
p . We show all computable real numbers can be approximated within 2−k by

some element [x, n] ∈ Q≤H
p , where H ≥ ⌈k log2 p⌉ [? ].

Proposition 2 (Finite Total Boundedness). For each fixed H, the metric space
(
Q≤H

p , dH
)

is finite and thus
totally bounded.

Proof. Since 0 ≤ x < p and 0 ≤ n ≤ H, there are (P)× (H + 1) elements in Q≤H
p . Any finite metric

space is trivially totally bounded.

Theorem 4.1 (Approximation of Computable Reals). Let r ∈ R be a computable real number. For any
integer k ≥ 1 there exist integers ak, bk with bk ̸= 0 such that∣∣∣ r− ak

bk

∣∣∣ < 2−k.

Moreover, if the observer’s horizon H satisfies

H ≥
⌈
k log2 p

⌉
,

then one can construct [xk, nk] ∈ Q≤H
p with∣∣∣ r− [xk, nk]

∣∣∣ < 2−k−1.

In order to prove Theorem 4.1 we first show that every Cauchy sequence (xn) ⊆ Q≤H
p converges

in Rp. The key step is a uniform bound on the number of divisions in the Euclidean algorithm.

Lemma 4.2 (Euclidean-algorithm exponent bound). Let p be a prime and suppose a, b ∈ {1, 2, . . . , p− 1}.
If the Euclidean algorithm applied to (a, b) produces k non-zero remainders before terminating, then

k ≤
⌊
log2(p)

⌋
+ 1.

Proof. At each step of the Euclidean algorithm, if (ri) are the successive remainders with r0 = a, r1 =

b, ri+1 = ri−1 mod ri, then
ri−1 = qi ri + ri+1, 0 ≤ ri+1 < ri,

and qi ≥ 1. It is known (Lamé’s theorem) that the worst-case sequence of quotients (qi) all equal 1,
which yields the Fibonacci-type descent [? ]. Let

ri+1 ≤ ri−1 − ri,

so that
rk ≥ Fk+1,

where Fn is the n-th Fibonacci number. Since rk ≥ 1 and Fn ≥ 2(n−2) for n ≥ 2, termination after k
steps implies

2k−1 ≤ Fk+1 ≤ p− 1 =⇒ k− 1 ≤ log2(p− 1) < log2(p),

hence k ≤ ⌊log2(p)⌋+ 1.

Proof of Theorem 4.1 (Completeness of Rp). Let (xn) ⊆ Q≤H
p be a Cauchy sequence with respect to

the metric
dH

(
a/b, c/d

)
=

∣∣ ad− bc
∣∣/(bd

)
,
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where | · | is taken in the integer sense and we require a, b, c, d ≤ H. By the Cauchy property, for any
ϵ > 0 there exists N such that for all m, n ≥ N,

dH(xm, xn) < ϵ.

Write xn = an/bn in lowest terms. Apply the Euclidean algorithm to each pair (an, bn) to obtain the
continued-fraction expansion

an

bn
= qn,0 +

1

qn,1 +
1

. . . +
1

qn,kn

,

with kn ≤ ⌊log2(p)⌋ + 1 by Lemma 4.2. Truncating at the J-th convergent yields a rational pn,J
qn,J

satisfying the standard bound ∣∣∣ an

bn
−

pn,J

qn,J

∣∣∣ < 1
q2

n,J
.

Since qn,J ≤ bn ≤ H, for any chosen J > log2(H/ϵ) we get∣∣∣ xn −
pn,J

qn,J

∣∣∣ < 1
H2 < ϵ.

Thus, (xn) is a Cauchy sequence in the complete metric space R, hence converges to some real limit L.
By construction of Rp as the metric completion of Q≤H

p , this same limit L defines an element of Rp.
Therefore, every Cauchy sequence in Q≤H

p converges in Rp, proving completeness.

Recall that Rp is defined as the metric completion of the set

Q≤H
p =

{
a/b

∣∣ a, b ∈ {1, 2, . . . , H} ⊂ Fp, gcd(a, b) = 1
}

equipped with the metric

dH
(
a/b, c/d

)
=
|ad− bc|

b d
.

Proposition 3 (Compactness of Rp). Rp is a compact metric space.

Proof. We invoke the standard characterization of compactness in metric spaces [? ]:

Theorem. A metric space is compact if and only if it is complete and totally bounded.

1. By Theorem 4.1, Rp is complete: every Cauchy sequence in Q≤H
p converges to a point of Rp.

2. Proposition 2 establishes that Q≤H
p is totally bounded. Since Rp is the closure (completion) of

Q≤H
p , it too is totally bounded.

Therefore, Rp, being both complete and totally bounded, is compact.

The resulting pseudo-real field Rp is thus defined as the topological closure of Qp under modular
convergence. For any finite observer with bounded resolution and limited horizon of observability, Rp

is indistinguishable from the conventional real number continuum.
In conclusion, the field of pseudo-real numbers Rp is not a metaphysical continuum but a layered

epistemic utilitarian construct. It combines:

Pseudo-rationals that are finite rational numbers defined in Section 4.2,

Finite-algebraic numbers that satisfy algebraic equations within Fp, and
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Structural invariants are pseudo-real numbers identifiable by their respective structural roles in Fp,
and can be associated with, or derived from, the classical transcendental constants π and e. The
detailed treatment of these constants will be provided the companion paper [18].

This framework provides all the functional properties of the real numbers—continuity, density, and
completeness—without invoking actual infinity. It affirms that, in a finite and informationally com-
plete universe, continuum-like behavior is a pragmatic illusion emerging from local reasoning over a
fundamentally finite arithmetic substrate.

4.4. Scale-Periodicity of Qp

In the following section we reiterate the key concept of scale invariance as a remarkable property
of our finite relativistic algebra, where the selection of both the origin 0, and the scaling unit 1 are
observer-dependent. This property is manifested through the periodicity of pseudo-rationals under the
operation of zooming—a process that shifts the scale of observation by a fixed factor. This periodicity is
crucial for understanding how pseudo-rationals behave under repeated scaling transformations, and it
allows us to resolve any point on the pseudo-real axis to arbitrary precision using only a finite set of
data, making the pseudo-real axis into a true continuum.
Recall that every pseudo-rational number is represented in the framed field by a pair, as in Proposi-
tion 1:

[x, n] :=
x

g n , 0 ≤ x < p, n ∈ N,

where g ∈ F×p is a fixed generator of the multiplicative group. For each scale level n the set

Gn :=
{
[x, n] : 0 ≤ x < p

}
forms a uniform grid of step g−n on the pseudo-real axis, as depicted in Figure 6, where we depict a
complete cycle (−12, . . . ,−1, 0, 1, . . . , 12) of zoom scales for the prime p = 13 and generator g = 11.
The grid Gn is invariant under multiplication by g n, which corresponds to a zoom operation that shifts
the scale of observation by one unit.
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Figure 6. Scale-periodicity for p = 13 and generator g = 11. After p− 1 = 12 zoom steps the grid of pseudo-
rationals repeats exactly. The red arrows visualize the identification between corresponding points along pseudo-
real axis and across zoom steps. Black labels indicate the pseudo-rational points x ∈ Qp, while the purple labels
denote the corresponding finite field elements k(x) ∈ Fp. The grid is invariant under multiplication by gp−1,
demonstrating the periodicity of the zoom operation.

Lemma 4.3 (Scale-periodicity). Let p be an odd prime and let g be any generator of F×p . Then

G n+(p−1) = Gn for every n ≥ 0.

Equivalently, multiplication of the denominator by g p−1 leaves the pseudo-rational grid invariant. Hence, the
zoom operation

Z : [x, n] 7−→ [x, n + 1]

is (p− 1)-periodic.

Proof. Because g is a generator, Fermat’s little theorem gives g p−1 = 1 in F×p . Hence,

[x, n + (p− 1)] =
x

g n g p−1 =
x

g n = [x, n],

and the two grids coincide point-wise.

Corollary 1 (Infinite knowability of Rp). Every point of the pseudo-real axis Rp can be resolved to arbitrary
precision using only the finite data contained in a single period of scales {n, n+ 1, . . . , n+ p− 2}. Consequently,
Rp is a complete continuum despite arising from a finite field framework. We will henceforth refer to the
resultant mathematical construct as the Finite Ring Continuum (FRC).
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Remark 4.4 (Physical interpretation). Under the dictionary developed in Section 4.4, one step of the zoom
map Z functions as a discrete renormalization-group (RG) transformation. Lemma 4.3 therefore realizes a closed
RG flow: after p− 1 coarse-graining iterations all observables return to their original scale [? ? ].

4.5. Complex Plane over Finite Framed Field

Having established the construction of pseudo-integers, rationals and reals over the finite field Fp

as relativistic, frame-dependent analogs of their classical counterparts, we seek to further extend this
framework to encompass the algebraic closure of the pseudo-real field. In conventional mathematics,
the introduction of complex numbers C is necessitated by the absence of solutions to certain polynomial
equations, such as x2 + 1 = 0, within the real numbers. Analogously, in the finite framed context, we
are motivated to introduce complex-like elements in order to achieve closure under operations that are
otherwise impossible within the pseudo-rational or alone.

Moreover, the construction of a relativistic complex plane enables the representation of rotations,
oscillations, and other phenomena that are fundamental in both mathematics and physics, all within a
finite and self-contained system. This approach not only mirrors the classical extension from R to C,
but also demonstrates that the essential properties and utility of complex numbers can be realized as
emergent features of a finite, relational arithmetic—thereby reinforcing our framework’s central theme
of relativistic, context-dependent number systems.

As is commonly known, the field of real numbers R does not contain any solutions of certain
polynomial equations, such as the prominent equation x2 + 1 = 0. But that is not the case for many
finite fields Fp, where depending on the value and properties of their cardinality P, such solutions
can readily exist. For example, in the finite field F5, the equation x2 + 1 = 0 has two solutions: x = 2
and x = 3. More generally, it is evident that the equation x2 + 1 = 0 can be satisfied in a finite field
Fp if and only if P− 1 is divisable by 4, or in other words p ≡ 1 mod 4. This is due to the fact that
the multiplicative group of non-zero elements in such fields is cyclic and contains elements—and
the corresponding rotational symmetry—of order 4, which allows for the existence of square roots
of −1. In this case, we can define a special element i ∈ Fp that satisfies the equation i2 + 1 = 0. The
element i is not unique, instead we have a pair of pseudo-integer elements i and−i in Z/Fp that satisfy
the equation, in the same way as we have pairs x and −x of solutions for quadratic equations in the
conventional complex plane C.

Let us now observe the “North Pole” frame of reference of the spherical representation of the finite
field Fp illustrated in Figures 2 and 4 with its prime meridian of pseudo-reals Rp forming the horizontal
axis around the origin. The order-4 rotational symmetry of the finite field Fp can be represented as a
vertical axis of imaginary numbers c = z · i, where z ∈ Z, that are perpendicular to the prime meridian,
as illustrated in Figure 7. The imaginary numbers c are represented by their respective red labels, while
the corresponding elements k(c) are depicted in purple.
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Figure 7. Pseudo-complex numbers plane Cp in a finite framed field F13(0, 1). Horizontal axis represents the
pseudo-reals Rp on the prime meridian and the vertical axis represents the imaginary numbers c = z · i indicated
by their respective red labels. The corresponding elements k(c) are depicted in purple. The blue line indicates the
periodicity of the finite field.

Definition 3 (Pseudo-complex class Cp). Consider a finite field Zp of cardinality q = 1 (mod 4), fix
a symbol ip satisfying i2p = −1. We define the pseudo-complex class Cp as a quadratic extension of the
pseudo-real field Rp such that

Cp := Rp
[
ip
]
=

{
a + bip | a, b ∈ Rp

}
,

with the obvious component-wise addition and the usual complex-style multiplication (a + bip)(c + dip) =

(ac− bd) + (ad + bc)ip. The map

φ : Cp −→ Rp ×Rp, a + bip 7−→ (a, b)

is an isomorphism of Rp-modules, so Cp ∼= Rp ×Rp as additive groups.

Proposition 4. The extension Cp/Rp is a field exactly when −1 is a square in Fp, which is guaranteed by the
construction condition p ≡ 1 (mod 4), then ip ∈ Fp ⊂ Rp and Cp = Rp.

Proof. When p ≡ 1 (mod 4) Hilbert’s theorem 90—or directly the cyclic structure of F×p —provides an
element u ∈ Fp with u2 ≡ −1, so adjoining ip does not enlarge Rp.

Remark 4.5. We retain the prefix “pseudo” to stress that Cp merely re-labels elements of a finite field; no new
cardinalities are introduced. Algebraically, however, Cp behaves exactly like the classical complex field relative to
Rp, thereby justifying its use in subsequent applications.

Having completed the construction of the full pseudo-number hierarchy—framed integers, dense
pseudo-rationals, compact pseudo-reals, and the algebraically closed pseudo-complex plane—within
a single finite field Fp, we have in hand a self-contained algebra that faithfully mirrors the familiar
Z ⊂ Q ⊂ R ⊂ C tower up to any observer-chosen precision. What follows therefore shifts focus
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from how these objects are built to what they can do: we now explore how the same finite framework
supports structures that traditionally presuppose the continuum, including discretised Lie symmetries,
renormalisation-like scale flows, and finite analogues of the Langlands correspondence. In the next
sections the core algebra will serve as a background “coordinate chart” on which these applications
are drawn, so that each example can be read simultaneously as a proof-of-concept for the relational
programme and as an illustration of its practical reach. The following section is intended as a brief
preview of the practical utility and applications of the proposed Finite Ring Continuum framework,
and should not be regarded as a comprehensive treatment, which will be the subject of companion
papers [18] and [19], as well as our future works.

5. Unification and Ontological Perspective
We henceforth assert that only the p representations of Fp truly exist. All pseudo-number classes

are epistemic constructs derived from relational symmetries and observer framing. The observer’s
bounded horizon H ≪ ip =

√
p− 1 induces the illusion of infinite domains [25].

5.1. Infinity as the unknowable “far-far away”

Let us revisit the ontological concept of infinity as described in [4]. In the previous sections, we
have established the finite framed field Fp as an abstract pseudo-sphere Fp(0, 1) with a limited-horizon
observer at its origin 0. We would like now to consider the geometric point on our pseudo-sphere that
is the furthest away from the observer. This point is evidently the South Pole—the antipodal point on
the prime meridian—of the pseudo-sphere as depicted in Figure 2, which we will denote as sP for now.
We would like to emphasize the following important properties of sP.

1. sP is a unique point on the pseudo-sphere that is the farthest away from the observer at 0.
2. sP is invisible to the observer at 0, that is to say that is located beyond any conceivable definition

of the observer’s limited observability horizon.
3. Finally, sP is algebraically inaccessible to the observer at 0, in the sense that sP /∈ Fp,Qp, and cannot

be reached by any finite number of arithmetical steps along the surface of the pseudo-sphere.

We would like to provide a formal proof of the less evident Property 3 as follows.

Theorem 5.1 (No South Pole in Fp). Let p > 2 be an odd prime. Then the only solution sp ∈ Fp to

2s ≡ 0 (mod p)

is s ≡ 0. Equivalently, there is no nonzero pseudo-rational q ∈ Qp whose image in Zp has additive order 2.

Proof. 1. Since p is prime, the additive group (Fp,+) is cyclic of order p. An element s ∈ Fp has
order 2 precisely if

2 s ≡ 0 (mod P).

2. Because gcd(2, p) = 1, multiplication by 2 is invertible in Fp. Hence, from 2s ≡ 0 (mod p) it
follows immediately that s ≡ 0 (mod p). There is no nontrivial order-2 element.

3. By definition, each pseudo-rational q = a
b ∈ Qp is represented in the field by

k(q) = a b−1 mod p ∈ Fp,

so Qp ⊆ Fp under the embedding k. If some q ∈ Qp mapped to a non-zero order-2 element
s = k(q) ̸= 0, then 2s ≡ 0 would force s ≡ 0, a contradiction.
Therefore, no “South Pole” antipodal point exists in Qp or Zp, completing the proof.

These properties of the geometrical point sp are unmistakably consistent with the properties of
the concept of infinity in its conventional sense. This gives us the justification to identify the relativistic
antipodal point sp with the concept of infinity in the context of Fp, and thus denote it as ∞.
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To exemplify, let us now consider the concrete example of p = 13 and the corresponding finite
framed field F13. We can identify the following values for the constants i and gmin in F13:

p = 13, gmin = 2, ip = 5.

The corresponding visual representation of the finite field F13 is shown in Figure 8. The figure shows
the state space of the finite field F13 as a circle on a 2D plane, with the major structural elements
−1, 0, 1, gmin, i, as well as ∞ indicated. The antipodal point ∞ is located at the South Pole of the
pseudo-sphere, which is the farthest point from the observer at 0.

Figure 8. State space of a finite framed field F13, visualized as a circle on a 2D plane with the major structural
elements −1, 0, 1, gmin, ip, as well as ∞ indicated.

5.2. Finite Langlands Program

In the conventional Langlands philosophy one relates two vast worlds: on the one hand the
(infinite) Galois representations of a global field, and on the other the automorphic representations of
a reductive group over that field [26,27]. If one accepts that only finite rings Zq can exist, then every
“infinite” Galois group must be replaced by its finite quotient

Gal(F/F) −→ Gal(F/F)
/

N ∼= Gal(FN/F) ⊂ Perm(FN),

and every automorphic representation must likewise factor through a finite group of points

G
(
AF

)
−→ G

(
AF

)
/KN ∼= G

(
Zq

)
for some level KN . In this finite-Langlands perspective all objects—Galois data and automorphic
forms—are built from the same finite base ring Zq, and the conjectural correspondence becomes a
bijection between{

finite-quotient Galois representations into GLn(Zq)
}
←→

{
irreducible representations of G(Zq)

}
.

From the function-field side one already has a prototype: Drinfeld and Lafforgue proved a
global Langlands correspondence for GLn over Fq(T), where Fq is a finite field, and automorphic
forms live on GLn(Fq[T]) [28,29]. There, both Galois representations and automorphic sheaves are
intrinsically finite objects—perverse sheaves on moduli stacks over Fq and ℓ-adic representations of π1.
This suggests that a genuinely finite-universe version of the Langlands program would reorganise
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every classical component (Hecke operators, L-functions, trace formulas) into purely combinatorial
operations on Zq-modules and finite group characters.

In summary, if one accepts that Zq is the only ontologically primitive object, then the Lang-
lands correspondence reduces to an equivalence of categories between Zq-linear Galois modules and
Zq-linear automorphic modules. All “infinite” phenomena (analytic continuation, spectral decomposi-
tions) become emergent from the finiteness of Zq through limiting processes within finite-dimensional
Zq-vector spaces. Such a viewpoint collapses the traditional dichotomy and recasts Langlands duality
as a statement about different frames of reference on a single finite ring.

6. Conclusions
The primary objective of this work has been to devise an algebraic framework that (1) does not

contradict our conventional arithmetic and geometric intuitions, (2) enables all practical applications
of modern mathematics, and (3) completely disposes of the ontological need for actual infinity. We
have shown that by interpreting addition, multiplication and exponentiation as internal symmetries
of a finite framed field Fp(0, 1), one can reconstruct signed integers, pseudo-rationals, pseudo-reals
and pseudo-complex numbers in a way that matches classical behaviour up to any desired precision,
without ever invoking an infinite set. This construction preserves the familiar algebraic laws and
analytic operations that underpin standard number systems, ensuring full compatibility with intuition
and established mathematical practice.

Moreover, the resultant FRC framework supports the full spectrum of modern mathematical
techniques—solving polynomial equations, performing limit-like approximations via dense pseudo-
rationals, and modelling continuous symmetries through ε-Lie-group approximations—while entirely
replacing classical infinities with context-dependent finite representations. In doing so, it provides
exact algebraic analogues for roots, exponentials and trigonometric relationships, and offers a discrete
yet arbitrarily precise scaffold for differential-geometric and analytic constructions. By eliminating any
ontological reliance on actual infinity, this framework retains the power and flexibility of conventional
mathematics in a fully finitary setting, while also offering an avenue towards the resolution of classical
paradoxes of logic and set theory imposed by the infinitude conjecture. The resulting structure is not
merely a mathematical curiosity; it is a coherent and physically grounded alternative to standard
formalism, suitable for the description of discrete, informationally finite physical systems.

Looking forward, extending our framework to composite moduli, and exploring the implications
for the analysis of dynamic physical systems, will further strengthen and broaden its applicability. We
anticipate that this relational, finite approach will serve as both a conceptually coherent foundation and
a practical computational paradigm across mathematics, physics, formal logic and computer science.

Notation Glossary
Fp Finite field of prime cardinality p

Qp The class of pseudo-rational numbers over the finite field Fp (Definition 1)

Q≤H
p The class of truncated pseudo-rational numbers over the finite field Fp with a bounded scale H

(Definition 2)

Rp The class of pseudo-real numbers over the finite field Fp (Definition 2)

Cp The class of pseudo-complex numbers over the finite field Fq (Definition 3)
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