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Abstract: Chronic pancreatitis is a progressive fibroinflammatory disorder with no currently
satisfactory treatment. Emerging evidence suggests an association between gut microbial dysbiosis
and chronic pancreatitis. Although direct causative evidence is lacking, it is hypothesized that the
gut microbiota may play a pivotal role in modulating pancreatic function via the gut-pancreas axis.
Thus, modulating the gut microbiota through the administration of probiotics or prebiotics may
alleviate pancreatic disorders. In this review, we first propose the potential mechanisms by which
specific probiotics or prebiotics may ameliorate chronic pancreatitis, including the alleviation of
small intestinal bacterial overgrowth (SIBO), facilitation of short-chain fatty acids (SCFAs)
production, activation of the glucagon-like peptide 1 receptors (GLP-1Rs) in the pancreas. Since
there are currently no probiotics or prebiotics used for the treatment of chronic pancreatitis, we have
discussed research in other disease models that use probiotics or prebiotics to modulate pancreatic
endocrine and exocrine functions and prevent pancreatic fibrosis. This provides indirect evidence
for their potential application in the treatment of chronic pancreatitis. We anticipate that this
research will stimulate further investigation into the gut-pancreas axis and the potential therapeutic
value of probiotics and prebiotics in chronic pancreatitis.
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1. Introduction

Chronic pancreatitis (CP) is a progressive fibroinflammatory syndrome with an annual
incidence of 5 to 8 and a prevalence of 42-73 cases per 100,000 adults in the United States [1-3]. With
repetitive episodes of inflammation, the pancreas is irreversibly replaced by fibrotic tissues, resulting
in chronic abdominal pain, endocrine and exocrine insufficiency, reduced quality of life, and a shorter
life expectancy [4]. Current therapeutic approaches primarily focus on symptom alleviation and
supportive care, rather than targeting the underlying pathophysiological mechanisms [5].

In recent years, accumulating evidence has highlighted the crucial role of the pancreas in
regulating gut microbiota and the reciprocal influence of gut microbiota on pancreatic function,
which indicates the presence of a bidirectional relationship referred to as the "gut-pancreas axis". Gut
microbiota plays a pivotal role in this axis through its involvement in metabolism and nutrition,
protection against pathogens, and immune system regulation [6]. Bidirectional alteration of the gut-
pancreas axis has been observed in many pancreatic diseases, including CP (Figure 1) [7]. Regarding
its role in its role in the homeostasis of the gut-pancreas axis, microbiota-based treatments, such as
probiotics and prebiotics, may offer effective therapeutic options for CP.

Probiotics, defined as live microorganisms that confer health benefits to the host, and prebiotics,
non-digestible food components that selectively stimulate beneficial gut bacteria, have shown
potential in managing various gastrointestinal and systemic disorders [8]. In the context of CP,

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202408.0662.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2024 doi:10.20944/preprints202408.0662.v1

several mechanisms by which probiotics and prebiotics might exert therapeutic effects have been
proposed.

Although probiotics or prebiotics have been proposed as potential treatments for chronic
pancreatitis [6,7], their efficacy has not yet been validated in animal models or clinical trials.
Additionally, the possible mechanisms of their action have not been thoroughly explored. This
review aims to explore the potential of probiotics and prebiotics as therapeutic agents for CP by
examining their effects on the gut-pancreas axis. We will discuss possible mechanisms that ameliorate
CP, including endocrine and exocrine function improvement, inflammation reduction, and
pancreatic fibrosis alleviation. The effects of probiotics and prebiotics on these targets and their
feasibility as intervention methods are reviewed. We seek to provide deeper insights into the
potential of probiotics and prebiotics in the treatment of CP.
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Figure 1. Bidirectional gut-pancreas interactions in the context of CP. SCFA, short-chain fatty acid;
GLP-1, glucagon-like peptide 1; SIBO, small intestinal bacterial overgrowth; AMP, antimicrobial
peptide. This figure was created with BioRender.com.

2. Search Strategy

We conducted a comprehensive search in PubMed on July 2024. The search strategy involved
the following main queries: (1) "(probiotics OR prebiotics OR synbiotics) AND (pancreatitis)".
Literature and reference screening were conducted to select potentially relevant articles. This
approach provided a general overview of the current research landscape and potential therapeutic
mechanisms of probiotics and prebiotics in CP. After identifying the potential mechanisms of action,
the following search queries were involved: (2) (small intestine bacterial overgrowth) AND (chronic
pancreatitis); (3) (small intestine bacterial overgrowth) AND (probiotics OR prebiotics OR
synbiotics); (4) (short-chain fatty acid) AND (pancreas®); (5) (short-chain fatty acid) AND (probiotics
OR prebiotics OR synbiotics); (6) (GLP-1) AND (pancreas*); (7) (GLP-1) AND (probiotics OR
prebiotics OR synbiotics).

3. Alleviation of Small Intestinal Bacterial Overgrowth

In a healthy small intestine, several defective mechanisms maintain a relatively sterile
environment: gastric acid secretion, an intact ileocecal valve, intestinal motility, immunoglobulins in
intestinal secretions, and the bacteriostatic properties of pancreatic and biliary secretions [9,10]. When
these protective mechanisms are disrupted, small intestinal bacterial overgrowth syndrome (SIBO)
can occur. SIBO is characterized by an excessive number of bacteria in the small bowel, leading to
gastrointestinal symptoms such as bloating, abdominal distension, diarrhea, and nutrient deficiencies
[11,12]. A systematic review found that SIBO is present in 38% of patients with CP [13]. Current
evidence links SIBO in CP to diabetes mellitus, pancreatic exocrine insufficiency, and the severity of
CP, with treatment often resulting in symptomatic improvement [13-16].

The standard treatment for SIBO involves antibiotics aimed at eradicating bacteria in the small
intestine [17]. However, with a combined normalization rate of 51% for antibiotics, about half of the
patients may remain symptomatic despite treatment [18]. This necessitates refined treatment
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strategies. Probiotics and prebiotics are believed to benefit SIBO by preventing the growth of
pathogenic flora through direct competition and the production of bacteriocins [12]. Several
randomized controlled trials have shown that adding probiotics to antibiotic therapy results in higher
clinical remission rates [19-21]. In a randomized prospective pilot study of patients with SIBO and
chronic abdominal distension, the group receiving a combination of probiotics (Lactobacillus casei,
Lactobacillus plantarum, Streptococcus faecalis, Bifidobacterium brevis) showed significantly better clinical
improvement compared to the sole metronidazole group [22]. A systematic review concluded that
while probiotics are unavailable to prevent SIBO, they can effectively decontaminate SIBO and relieve
abdominal pain [23]. Probiotics also aid in repairing and reconstructing intestinal mucosa. In rats
treated with probiotic formulations containing coconut oil and traces of peppermint-lemon-patchouli
essential oil, researchers observed mitotic figures and regression of the inflammatory response in
villus epithelium and crypts previously damaged by SIBO-induced gut dysbiosis [24].

Probiotic supplementation to reduce SIBO has been attempted in various diseases, including
irritable bowel syndrome [25-29], hypothyroidism during pregnancy [30-32], systemic sclerosis [33],
liver diseases [34-36], and gastric and colorectal cancer [37]. However, there is a lack of research
evidence on the application of probiotics for SIBO in chronic pancreatitis. Further investigation is
needed to explore the potential benefits of probiotics in alleviating SIBO in CP.

4. Facilitation of Short-Chain Fatty Acids Production

Short-chain fatty acids (SCFAs), primarily acetate, propionate and butyrate, are produced via
fermentation of dietary fibers by gut microbiota. They have significant effects on various tissues,
including the pancreas. Sodium butyrate is capable of inhibiting histone deacetylases (HDACsS),
which are crucial in inflammation and fibrogenesis. Post-treatment with sodium butyrate
significantly reduces the expression of a-smooth muscle actin, interleukin-1p, inducible nitric oxide
synthase, and 3-nitrotyrosine, thereby alleviating L-arginine-induced pancreatic damage and fibrosis
in rats [38]. SCFAs modulate pancreatic fibrosis by inhibiting macrophage infiltration and M2
phenotype switching [39]. SCFAs have also been confirmed to play an immunoregulatory and anti-
inflammatory role. Cathelicidin-related antimicrobial peptide (CRAMP) is an immunoregulatory
antimicrobial peptide and can be produced by acinar cells. It modulates the phenotypic switch of
intrapancreatic macrophages and changes the production of transforming growth factor-, thereby
defending against inflammation. Research has revealed that the production of CRAMP is regulated
by SCFAs produced by gut microbiota [40]. Additionally, SCFAs, especially butyrate, exhibit anti-
inflammatory effects by inhibiting the activation of NF-kB and HDACs [41-44]. SCFAs also act
directly on acinar cells to stimulate secretion, similar to incretins, through increasing cellular calcium
concentration [45—48].

Extensive studies have investigated SCFAs' effects on insulin secretion, acting as ligands to G-
protein-coupled receptors (GPCRs), specifically free fatty acid receptor-2 (FFA2, previously termed
GPR43) and FFA3 (previously termed GPR41). These receptors are found in various human tissues,
including gut enteroendocrine cells and pancreatic islets [49,50]. FFA2 and FFA3 receptors on
enteroendocrine cells trigger GLP-1 secretion [49], which has multiple positive effects and will be
discussed in the next part. Enhanced secretion of insulin after SCFA treatment has been reported in
a number of studies and is thought to be associated with FFA2 and FFA3 receptors on -cells, but
contradicting evidence also exists in several researches [50,51]. Therefore, no clear consensus has been
achieved on the effect of SCFAs on FFA2 and FFA3 receptors in pancreatic islets.

Patients with CP exhibit a reduced abundance of SCFA producers, such as Faecalibacterium and
Fusicatenibacter [52]. There is a noticeable reduction in Faecalibacterium prausnitzii from healthy
controls to CP non-diabetics to CP diabetics [53]. Depletion of SCFA-producing Gram-positive
bacteria worse CP independently of TLR4, but supplementing exogenous SCFAs ameliorates the
condition [39]. These studies implicated the role of SCFAs in protecting pancreatic function from
damage of CP. Therefore, supplementing probiotics or prebiotics that contribute to SCFA production
may offer a novel intervention for managing CP.
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Both in vivo and in vitro studies confirm that probiotics can increase SCFA levels. Probiotics
capable of producing SCFAs are summarized in Table 1. In an in vitro human gut model, an aqueous
probiotic suspension, containing L. plantarum, L. rhamnosus, L. acidophilus and Enterococcus faecium,
exerted anti-inflammatory effects through increased SCFA production, especially butyrate [54].

Table 1. Main probiotics producing short-chain fatty acids.

Probiotics Products References
Bifidobacterium spp. acetate, butyrate [55]
Lactobacillus rhamnosus GG propionate [56]
Lactobacillus gasseri PA 16/8
Bifidobacterium longum SP 07/3 acetate, propionate
Bifidobacterium bifidum MF 20/5
Lactobacillus salivarius spp salcinius JCM 1230 propionate, butyrate [57]
Lactobacillus agilis JCM 1048
Lactobacillus acidophilus CRL 1014 acetate, propionate, butyrate [58-61]

Prebiotics also show potential as clinical targets by promoting the growth and activity of
probiotics. Prebiotics, typically complex carbohydrates such as starch, pectin, xylan, and
arabinogalactan, serve as substrates for bacterial fermentation, resulting in the production of SCFAs
[62]. The metabolism of different polysaccharides is associated with the production of different
SCFAs. For example, pectin metabolism leads to a proportional increase in acetate concentration,
while starch fermentation significantly boosts butyrate production over other SCFAs [63,64]. Overall,
the microbial hydrolysis of insoluble substrates can promote the biosynthesis of high concentrations
of SCFAs, with about 60% present as acetate, while butyrate and propionate each account for
approximately 20% of gastrointestinal SCFAs [65]. Colonic SCFAs increase after consuming inulin or
arabinoxylan oligosaccharides-enriched food in healthy humans [66,67]. Inulin supplementation
elevates the abundance of butyrate-producing microbiota, including Bifidobacterium, Clostridium
cluster IV, and Akkermansia muciniphila [68]. When supplemented with oligofructose or inulin as the
sole energy source, cross-feeding interactions between bifidobacteria and butyrate-producing
bacteria like Faecalibacterium prausnitzii are observed. These interactions may enhance the colon
ecosystem and contribute to combined bifidogenic and butyrogenic effects [69,70].

In summary, the use of probiotics and prebiotics to produce SCFAs shows promise as a
management for CP. This approach could help modulate inflammation, fibrosis, and pancreatic
function, offering a potential therapeutic avenue worth further exploration.

5. Activation of Glucagon-like Peptide 1 Receptors in the Pancreas

Glucagon-like peptide 1 (GLP-1) is released from gut enteroendocrine cells at low levels during
fasting and increases significantly within minutes of food digestion. GLP-1 is a multifaceted hormone
with broad pharmacological potential, including incretin-like activity, stimulation of glucose-
dependent insulin secretion, and inhibition of glucagon secretion, food intake, and gastric emptying
[71,72]. These properties have led to the development of GLP-1 receptor (GLP-1R) agonists for
treating T2DM, and subsequently, obesity [73]. The multifunctional role of GLP-1 in the pancreas
suggests additional potential for clinical management.

The physiological importance of GLP-1R on (3-cells has been well-established in animal studies.
GLP-1 normalizes glucose tolerance and enhances glucose-dependent insulin secretion via GLP-1R
on pancreatic 3-cells [74]. The mechanisms by which GLP-1 restores glucose sensitivity in (3-cells
involve crosstalk between membrane ion channels, cyclic AMP (cAMP)-dependent signaling, and
intracellular glucose metabolism. Additionally, GLP-1 inhibits glucagon secretion, although the
expression levels of GLP-1R on a-cells are debated. Some studies report GLP-1IR on a subset of a-
cells [75], suggesting direct inhibition of glucagon secretion, while others show very low or
undetectable levels [76-78]. Moreover, GLP-1 acts on GLP-1R on pancreatic d-cells, stimulating
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somatostatin secretion, which inhibits glucagon secretion from a-cells via the somatostatin-2 receptor
(SSTR2) [78,79].

Beyond regulating blood glucose through modulating levels of insulin and glucagon, GLP-1
inhibits [3-cell apoptosis, induces (3-cell proliferation, and increases -cell mass [80]. In diabetic mouse
models, GLP-1R activation alleviates ER stress in 3-cells via cAMP-dependent enhancement of ATF4
translation, promoting [3-cell survival [81]. Although GLP-1R agonists can increase 3-cell mass in
diabetic rodent models, this effect is modest and short-lived, with older rodents showing reduced
response [82-84]. Nevertheless, these drugs are believed to help prevent further loss of [3-cell mass
and function, especially if treatment begins early in disease progression. In baboons subjected to
partial pancreatectomy and treated with the GLP-1R agonist exenatide, immunofluorescent staining
revealed ductal cells co-expressing insulin, suggesting exenatide might promote the differentiation
of ductal cells into (3-like cells [85].

While most GLP-1 research focuses on ot and {3 cells in the endocrine pancreas, GLP-1 also affects
the exocrine pancreas. GLP-1R is expressed in a significant proportion of pancreatic acinar cells,
though at lower levels than in 3 cells [86-88]. In caerulein-induced experimental pancreatitis, GLP-
1R agonists increased pancreas weight and induced anti-inflammatory protein expression while
reducing proinflammatory markers [89]. Preclinical studies show that GLP-IR activation increases
acinar cell mass and protein content via S6 phosphorylation, independent of DNA content or cell
proliferation changes [90]. GLP-1 induces amylase secretion in pancreatic acini through stimulated
cAMP production and increased protein kinase A-mediated phosphorylation [86]. Moreover,
elevation of plasma enzyme levels in human subjects treated with GLP-1R agonists is dose-
independent and reversible [91].

The effects of GLP-1 and its analogs on the exocrine pancreas have raised concerns about the
risk of pancreatitis. Most of the evaluations were done in patients with type 2 diabetes mellitus
(T2DM). A population-based cohort study found that incretin users had a 1.5-fold increased risk of
any pancreatitis and a 2.0-fold increased risk of acute pancreatitis, although no increased risk was
found for chronic pancreatitis [92]. A review of liraglutide clinical trials reported a higher incidence
of pancreatitis, but conclusions were inconclusive due to confounding variables [93]. While the risk
of GLP-1 causing pancreatitis remains uncertain, further research is needed to understand its effects
in CP compared to T2DM, as the existing evidence is all based on the T2DM population.

Pancreatic stellate cells (PSCs) are activated in the CP microenvironment, contributing to
pancreatic fibrosis progression. With the activation of PSC, GLP-1R on it is markedly increased.
Studies suggest that GLP-1R agonist liraglutide does not induce inflammatory gene expression in
activated PSCs but does induce proliferation [94]. Other studies found chronic GLP-1R agonist
treatment can lead to PSC activation, causing the expression of fibrosis markers and chronic
inflammation [95]. In the context of CP, further research is needed to determine whether GLP-1R
agonists exacerbate pancreatic fibrosis and to understand the underlying mechanisms. It remains to
be explored whether there are ways to modify GLP-1R agonists to enhance their positive effects on
pancreatic endocrine and exocrine functions while minimizing their impact on PSCs.

In many animal models of other diseases, certain probiotics have been found to induce GLP-1
secretion (Table 2). In addition, using probiotics as oral vectors for recombinant GLP-1R agonists
delivery has been explored to replace costly chemical synthesis and inconvenient injections.
Probiotics can efficiently target the pancreas, offering high bioavailability. Lactobacillus paracasei L14
transformed with a plasmid encoding the exendin-4 gene has shown efficient secretion and facilitated
transport of exendin-4, enhancing insulin secretion and maintaining {3 cells [96]. Engineered probiotic
yeast Saccharomyces boulardii administered orally has also produced bioactive GLP-1R agonists [97].
Apart from delivering GLP-1R agonists, protease-resistant modified GLP-1 (mGLP-1) has been
constructed with added arginine to ensure the structural integrity of mGLP-1 released in vivo [98].
In addition to producing bioactive GLP-1R agonists, engineered probiotics as carriers also exert their
inherent function of regulating the microbiota. Engineered Clostridium butyricum significantly
improved gut microbiota dysbiosis in rats via downregulating the relative abundance of
Porphyromonadaceae at the family level and upregulating Lactobacillus at the genus level [99]. Similarly,
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engineered Escherichia coli Nissle 1917 expressing GLP-1 regulated intestinal flora and increased
probiotic diversity in mice [100].

An increase in GLP-1 secretion levels has also been observed following the addition of prebiotics,
including dietary resistant starch [101,102], resistant maltodextrin [103], fructooligosaccharides
[103,104], chondroitin sulfate [105], and Dendrobium officinale polysaccharide (DOP) [106]. The
stimulative effect of prebiotics on GLP-1 secretion may be through stimulating SCFA production
[101,102].

Table 2. Summary of probiotics that can promote GLP-1 expression in various disease models.

Genus Species Disease models References
Lactobacillus L. casei CCFM419 T2DM [107]
L. plantarum MTCC5690 [108]
L. fermentum MTCC5689 [108]
Lactobacillus CGMCC No. 21661 [109]
L. rhamnosus NCDC 17 [110]
L. paracasei Y062 Glycolipid metabolic disorders ~ [111]
L. reuteri Glucose metabolism disorder [112,113]
induced by acrylamide;
glucose-tolerant humans
L. paracasei subsp. paracasei L. casei W8 isolated pig intestine [114]
Lacticaseibacillus L. paracasei L-21 STC-1 cell line [115]
Bifidobacterium  selenium-enriched B. longum DD98 T2DM [116]
B. animalis subsp. lactis MN-Gup [117]
B. animalis subsp. lactis NJ241 Parkinson’s disease [118]
B. animalis subsp. lactis GCL2505 Metabolic syndrome [119]
B. longum subsp. longum B-53 STC-1 cell line [115]
Akkermansia Pasteurized A. muciniphila T2DM [120]
Bacteroides B. thetaiotaomicron alcoholic fatty liver disease [121]
Limosilactobacillus L. fermentum MG4295 T2DM [122]
Clostridium C. butyricum chronic unpredictable mild ~ [123,124]
stress; T2DM

In conclusion, the potential of engineered probiotics to express GLP-1 analogs offers a promising
avenue for treating CP. Unfortunately, there is currently a lack of experimental evidence regarding
the use of engineered probiotics in CP. However, considering their mechanisms of action and the
positive effects observed in other disease models, their application in the treatment of CP holds great
promise. This approach could improve pancreatic function and manage symptoms more effectively,
although further research is needed to fully understand the implications and optimize treatment
strategies.

6. Conclusion

Current treatments for CP lack innovation, underscoring the need for novel therapeutic
approaches. The gut microbiota can influence pancreatic function through its metabolic activities in
the gut, via the gut-pancreas axis. Probiotics and prebiotics may hold the potential for treating CP via
this axis.

The three possible intervention mechanisms discussed in this review —alleviating small intestine
bacterial overgrowth, facilitating SCFAs production, and activating GLP-1R in the pancreas—are
largely based on theoretical extrapolations from existing research, much of which is derived from
other pancreatic disease models. Although there is a scarcity of experimental evidence specifically
targeting CP, these mechanisms show strong potential for its treatment, including improvement of
pancreatic endocrine and exocrine functions, and maintaining cellular and structural integrity.


https://doi.org/10.20944/preprints202408.0662.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2024 doi:10.20944/preprints202408.0662.v1

Therefore, there is an urgent need for experimental validation in the field of chronic pancreatitis. This
exploration forms the core focus of this review, highlighting the promising potential of these
interventions to address the pressing need for improved chronic pancreatitis therapies.
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