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Abstract 

Introduction Breast density (BD) influences breast cancer risk and background parenchymal 
enhancement (BPE) in contrast-enhanced mammography (CEM), yet BPE assessment lacks 
standardization. This study establishes observational foundations for a unified classification system. 
Materials and Methods We analyzed 213 CEM cases (retrospective single-center cohort, 2022–2023). 
BD was categorized via ACR BI-RADS (A–D), and BPE via a novel 4-tier scale (BPE-CEM Standard 
Scale, BCSS: Minimal/Light/Moderate/Marked). Interobserver agreement (3 radiologists; 50 random 
cases) and BD-BPE correlations were assessed using Cohen’s kappa and regression analysis. 
ResultsHigher BD (BI-RADS C/D) significantly cor-related with elevated BPE (p < 0.05; R² = 0.144). 
BPE distribution: Minimal (57%), Light (31%), Moderate (10%), Marked (2%). The BCSS showed 
excellent reproducibility (κ = 0.85; 95% CI: 0.78–0.92). Conclusion BD is a key determinant of BPE in 
CEM. The BCSS provides a reproducible framework for standardized assessment, reducing 
interpretive variability. This observational groundwork enables computational automation in Parte 
2. 

Keywords: breast density; background parenchymal enhancement (BPE); contrast enhanced 
mammography (CEM); BI-RADS; BPE-CEM Standard Scale (BCSS); regression analysis 
 

1. Introduction 

Breast density is a well-recognized risk factor for breast cancer, correlating not only with 
increased malignancy risk but also with reduced sensitivity of conventional mammography [1,2]. 
Background parenchymal enhancement (BPE)—defined as the physiological uptake of contrast in 
non-pathological fibroglandular tissue—has emerged as a potential imaging biomarker in contrast-
enhanced breast imaging.  While extensively studied in breast MRI, the clinical significance of BPE 
remains controversial, with evidence pointing in divergent directions —some identifying it as a risk 
biomarker, others finding limited predictive value [3,4]. This underscores the importance of 
modality-specific classification systems that account for both technical constraints and interpretive 
requirements unique to CEM.  

Contrast-enhanced mammography (CEM) is an emerging hybrid modality that com-bines 
anatomical and functional imaging, offering advantages over MRI such as greater accessibility, lower 
cost, and faster acquisition [5,6]. BPE can be visualized on CEM, but its assessment is complicated by 
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the planar, two-dimensional nature of the modality, which lacks the volumetric and kinetic resolution 
available with MRI. Notably, pronounced BPE in CEM can mask lesions and reduce diagnostic 
accuracy [7,8]. Unlike breast density, which is systematically categorized via the ACR BI-RADS 
lexicon [9], there is currently no standardized lexicon or scoring system for BPE in CEM, resulting in 
interpretive variability and limited comparability across studies. 

The relationship between BPE and breast density remains controversial. Some evidence suggests 
a positive correlation [10,11], while other studies report no significant link [12,13]. These 
inconsistencies highlight the need for a dedicated classification system tailored specifically to the 
technical and interpretive characteristics of CEM. Importantly, existing BPE grading schemes 
developed for MRI—such as that by Sorin et al. [9]—are based on volumetric and temporal contrast 
dynamics not available in CEM, making direct transposition impractical. 

Unlike MRI-based frameworks, the Breast Contrast Standard Scale (BCSS) was developed 
specifically for CEM. It defines enhancement based on semi-quantitative thresh-olds of parenchymal 
involvement (e.g., <10% for Minimal), complemented by anatomical criteria such as masking of ducts 
and vessels. This modality-specific approach reflects the practical constraints of CEM interpretation 
and offers a novel step toward standardizing BPE assessment in clinical and research settings. 

Recent advances in this field have also led to ongoing investigations exploring artificial 
intelligence—particularly neural networks—to enhance standardization and reduce variability in the 
assessment of BPE and breast density. Preliminary results from a complementary study using AI 
have shown promising improvements in assisting radiologists with borderline BI-RADS C and D 
cases, where inter-reader variability is greatest. Methodological details and early findings from this 
AI-based approach are reported separately and will support the clinical integration of such tools. 

Study Objective 

This study evaluates the relationship between breast density and background parenchymal 
enhancement (BPE) in contrast-enhanced mammography (CEM) and introduces the Breast Contrast 
Standard Scale (BCSS)—a four-level classification system (Minimal, Light, Moderate, Marked) 
designed to standardize BPE reporting in CEM. 

The BCSS adapts MRI-derived grading concepts to the constraints of CEM by integrating 
enhancement thresholds and anatomical distribution criteria suitable for planar imaging. Specifically, 
the scale combines semi-quantitative estimates of parenchymal enhancement (e.g., <10% for Minimal) 
with anatomical markers such as the masking of ducts or vascular structures. 

The BCSS aims to: 

• Improve inter-reader agreement in BPE interpretation on CEM; 
• Enable reproducible comparisons across imaging studies and centers; 
• Facilitate the inclusion of BPE in structured breast cancer risk stratification frameworks. 

This classification system represents a clinically relevant step toward reducing subjectivity in 
CEM interpretation and may support both diagnostic accuracy and personalized screening strategies 
for women with dense breasts. 

2. Materials and Methods 

This retrospective single-center study was conducted at the Interventional Senology Unit of P.O. 
"A. Perrino" Hospital, Brindisi, Italy, from May 2022 to June 2023, fol-lowing Good Clinical Practice 
guidelines. Among 314 initially evaluated patients, 213 women aged 28–80 years met inclusion 
criteria. Eligible subjects presented with suspicious breast lesions classified as BI-RADS 4 or 5 on 
CEM and underwent complete di-agnostic workup including ultrasound (US), conventional 
mammography (MG), and contrast-enhanced mammography (CEM) prior to biopsy and histological 
confirmation of invasive breast cancer. Due to its retrospective nature, no additional consent beyond 
routine imaging authorization was required. 

Data Management 
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Clinical and imaging data were entered into three structured relational databases: demographics 
(patient ID, birth date), imaging parameters (breast density per ACR BI-RADS A-D, BPE categories 
Minimal/Light/Moderate/Marked, completion status of US, MG, and CEM), and morphometric 
glandular measurements in millimeters across four fields. 

Inclusion and Exclusion Criteria 

Inclusion: Women ≥18 years with suspicious findings (BI-RADS 4 or 5) on CEM. 
Exclusion: Contrast contraindications (pregnancy, allergy, renal insufficiency per ESUR 

guidelines), prior breast cancer, breast implants, ongoing neoadjuvant therapy, incomplete imaging, 
absent histologic confirmation, or biopsy/radiotherapy within 21 days before CEM. 

CEM Protocol 

Contrast Administration 

After screening for contraindications, Iohexol 350 mg I/ml (Omnipaque®) was injected 
intravenously at 1.5 ml/kg via 20-gauge catheter at 3 ml/s, followed by 20 ml sa-line flush. 

Image Acquisition 

CEM was performed using a full-field digital mammography system (Senographe Pristina with 
SenoBright® software). Bilateral craniocaudal (CC) and mediolateral oblique (MLO) views were 
acquired under compression. Each breast was imaged using low-energy (26–31 keV) and high-energy 
(45–49 keV) exposures, beginning 2 minutes post-injection, with acquisition lasting ~1.5 seconds per 
view. Total exam time was under 7 minutes. Images were recombined to produce subtraction images 
for BPE evaluation. 

Image Interpretation and BPE Assessment 

Breast density was assessed on low-energy images using ACR BI-RADS v5 criteria [9]. BPE was 
evaluated on recombined subtraction images using the newly proposed BPE-CEM Standard Scale 
(BCSS), which defines four BPE levels based on semi-quantitative and qualitative criteria: 

• Minimal (MIN): <10% of visible fibroglandular tissue enhanced, faint enhancement not 
obscuring ducts/vessels. 

• Light (LIE): 10–25% enhancement, mild masking but key anatomical landmarks visible. 
• Moderate (MOD): 25–50% enhancement, partial overlap/obscuration of ducts, vessels, and 

glandular architecture, potentially interfering with le-sion visibility. 
• Marked (MAR): >50% enhancement, strong masking/obscuration complicating lesion detection. 

Experienced breast radiologists visually estimated enhancement extent via standardized scoring 
sheets, cross-referencing low-energy images to define glandular boundaries. This combined 
quantitative and anatomical approach aims to enhance reproducibility tailored to CEM’s 2D nature. 

Statistical Analysis and Interobserver Agreement Assessment 

Data were managed using a relational database management system (DBMS) to minimize 
redundancy and ensure consistency. Descriptive statistics summarized patient age, BPE, and breast 
density distributions. Lesion size comparisons were per-formed using the Bland-Altman method. A 
multiple linear regression analysis was performed with BPE as the dependent variable and breast 
density and age as independent predictors, in order to assess their explanatory power. 

To further evaluate reproducibility, interobserver agreement was assessed by having three 
expert breast radiologists (each with over 10 years of experience in breast imaging) independently 
evaluate a randomized subset of 50 cases. Each radiologist as-signed BPE scores according to the 
newly proposed Breast Contrast Standard Scale (BCSS). Agreement among readers was quantified 
using Cohen’s kappa statistic and interpreted based on Landis and Koch criteria 

Table 1. Age group, record number, percentage, and density distribution by BPE. 

Age Group 
Number of Record 

(out of 268) Percentage 
BPE Notes on Density 
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25-40 11 5% MIN/LIE  
25-40 2 1% MOD/MAR No A and no D 
41-55 80 38% MIN/LIE  
41-55 13 6% MOD/MAR No A 

Over 55 97 46% MIN/LIE  

Over 55 9 4% 
MOD/MAR No A, one B and one 

D 
     

Table 2. Count of records by letter, with percentages and details on the S value. 

Letter Count Percentage (%) Null Values Details on S Value 

A 18 14% 13 3 records with S < -2, 2 
with S > 2 

B 47 36% 31 7 records with S < -2, 8 
with S > 2 

C 
40 31% 

25 
7 records with S < -2, 7 

with S > 2 

D 
25 19% 

14 
7 records with S < -2, 3 

with S > 2 
     

3. Results 

Patient Age Distribution 
The study population ranged from 28 to 79 years, with a peak incidence around age 60—

consistent with typical breast imaging cohorts. 
BPE Categorization 
Among the 211 patients included: 

• Minimal BPE: 57% 
• Light BPE: 31% 
• Moderate BPE: 10% 
• Marked BPE: 2% 

This distribution reflects a predominance of low-grade enhancement in the study population. 
Interobserver Agreement 
BPE classification using the BCSS showed near-perfect interobserver agreement, with a Cohen’s 

kappa of 0.85 (95% CI: 0.78–0.92). This supports the reproducibility and operational feasibility of the 
proposed scale. 

Breast Density and Imaging Modality 
A total of 313 imaging studies (pre- and post-contrast) were analyzed: 

• Non-contrast (based on low-energy images): 11% A, 29% B, 26% C, 17% D. 
• Contrast-enhanced (CEM): 1% A, 7% B, 4% C, 4% D. 

This contrast-induced shift in perceived density likely reflects enhanced visualization of 
fibroglandular tissue, a known phenomenon in contrast-based breast imaging. 

Age-Based Stratification of BPE 
BPE showed an inverse relationship with age: 

• Age 25–40: 5% Minimal/Light, 1% Moderate/Marked. 
• Age 41–55: 38% Minimal/Light, 6% Moderate/Marked. 
• Age >55: 46% Minimal/Light, 4% Moderate/Marked. 

These findings align with physiological estrogen decline and support previously described age-
dependent trends in background enhancement. 

S Metric Analysis 
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The S-value, a derived morphometric index, showed variability across breast density types, 
especially in intermediate categories: 
• Density A: 14% of cases; 3 with S < -2, 2 with S > 2. 
• Density B: 36%; 7 with S < -2, 8 with S > 2. 
• Density C: 31%; 7 each with S < -2 and S > 2. 
• Density D: 19%; 7 with S < -2, 3 with S > 2. 

These findings suggest intra-group heterogeneity, indicating that glandular morphology may 
add nuance to standard density classifications. 

Regression Analysis 
A multiple linear regression analysis was conducted to explore the relationship between breast 

density, BPE, and age: 

• Multiple R: 0.38 (moderate correlation) 
• R²: 0.144 (14.4% of variance explained) 
• Adjusted R²: 0.136 
• Standard error: 0.8639 
• BPE showed a statistically significant positive association with breast density (p < 0.05) 
• Age was not a significant predictor (p = 0.14) 

Although BPE shows a statistically significant correlation with breast density (p < 0.05), the 
relatively low R² value (0.144) indicates modest predictive power, suggesting that additional 
nonlinear or latent variables likely influence BPE. Notably, a complementary analysis conducted on 
the same dataset—reported separately in another manuscript—demonstrated that a neural network 
model achieved a Mean Absolute Error (MAE) of 0.691, outperforming the regression model's 
standard error of 0.8639. This finding supports the potential of deep learning approaches to capture 
nonlinear interactions more effectively and warrants further investigation. 

 
Figure 1. Bar plot of estimated coefficients from a multiple linear regression model with 95% confidence 
intervals. p-values are shown above each bar. 

Table 3. This table presents the results of the ANOVA (Analysis of Variance) for the regression model. The table 
shows the de-grees of freedom (df), sum of squares (SS), mean square (MS), F-statistic, and significance value 
for the regression and residual components, along with the total sum of squares. The very low significance F 
(7.86E-08) indicates that the model is statistically significant. 
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ANOVA ( 
Analysis of 
Variance) 

  
   

Source df SS MS F Significance F 
Regression 2 26.42365998 13.21182999 17.70217459 7.8594E-08 
Residual 210 156.7312696 0.746339379   

      
Total 212 183.1549296    

Table 4. The table reports the estimated coefficients, standard errors, t-statistics, p-values, and 95% confidence 
intervals for the model parameters. 

 Coefficients 
Standard 

Error 
t Stat p-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept 2.343692153 0.379884019 6.169493937 3.47353E-09 1.594817367 3.092566939 1.594817367 3.092566939 

BPEnum 0.426517913 0.077858245 5.478134158 1.22301E-07 0.273034024 0.580001803 0.273034024 0.580001803 

Age 0.008787179 0.005970236 1.471831024 0.14256352 0.020556454 0.002982096 0.020556454 0.002982096 

4. Discussion 

The interplay between background parenchymal enhancement (BPE) and breast density has 
been extensively investigated in the literature, yet remains controversial, with conflicting evidence 
regarding their correlation and individual roles in breast cancer risk stratification [22,23]. BPE, 
initially described in contrast-enhanced breast MRI, reflects physiologic contrast uptake in non-
pathologic fibroglandular tissue and is influenced by hormonal status, vascular perfusion, and 
parenchymal composition [24]. While several studies have proposed BPE as an independent imaging 
biomarker for breast cancer risk, findings have been inconsistent or inconclusive [25]. 

Breast density, by contrast, is a well-established and independent risk factor for breast cancer. 
Dense breast tissue not only correlates with increased malignancy rates but al-so reduces the 
sensitivity of standard mammography [26,27]. However, the relation-ship between BPE and 
density—particularly in the setting of contrast-enhanced mammography (CEM)—remains poorly 
defined. One major challenge is the absence of a standardized BPE classification system tailored 
specifically for CEM, unlike MRI which benefits from a well-established volumetric lexicon [28–30]. 

CEM is increasingly recognized as a clinically valuable alternative to breast MRI, combining 
anatomical and functional information with greater accessibility and shorter acquisition times. 
However, BPE as visualized in CEM differs from MRI due to the modality's planar, two-dimensional 
nature and its reliance on recombined subtraction imaging. These technical differences complicate 
BPE interpretation and reduce reproducibility across clinical settings. Additionally, whereas breast 
density is categorized systematically using the ACR BI-RADS lexicon, no universally accepted 
classification currently exists for BPE in CEM, contributing to interpretive variability and limiting 
research comparability. 

Our study addresses this gap by introducing the BPE-CEM Standard Scale (BCSS), a novel four-
level classification (Minimal, Light, Moderate, Marked) based on semi-quantitative enhancement 
thresholds and anatomical criteria. This modality-specific scale is designed to standardize BPE 
assessment within the constraints of CEM’s 2D imaging format. 

Preliminary data from a subsequent analysis on the same dataset suggest that artificial 
intelligence (AI), particularly neural networks, can reduce interobserver variability in cases with 
borderline BI-RADS classifications (C and D), where subjectivity is most pronounced. The lower 
MAE observed with neural networks indicates improved predictive precision over traditional linear 
regression models, aligning with the established utility of backpropagation and gradient-based 
optimization in modeling complex biomedical data. These findings resonate with the foundational 
work of Rosen-blatt (1958), Rumelhart et al. (1986), and Goodfellow et al. (2016), which collectively 
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underscore the power of iterative weight optimization via backpropagation in enhancing predictive 
accuracy.  

Taken together, these findings reinforce the importance of a standardized BPE lexicon tailored 
to CEM and open promising avenues for the integration of AI in breast imaging protocols. Further 
validation is needed, but this dual approach—structural standardization through BCSS and 
variability reduction via AI—may significantly improve diagnostic reproducibility in women with 
dense breasts. 

Key Findings 

• BPE distribution: Minimal in 57% of patients, Light in 31%, Moderate in 10%, and Marked in 2%. 
• Density correlation: Higher breast density categories (BI-RADS C–D) were significantly 

associated with Moderate-to-Marked BPE, whereas lower densities (A–B) correlated with 
Minimal-to-Light BPE (p < 0.05). 

• Regression analysis: Demonstrated a statistically significant association between BPE and breast 
density (R² = 0.144), with a moderate multiple correlation coefficient (R = 0.38). Age was not a 
significant predictor (p = 0.14). 

• Interobserver agreement: The BCSS showed excellent reproducibility, with Co-hen’s κ = 0.85 
(95% CI: 0.78–0.92), supporting its feasibility and consistency in clinical practice. 
Although the regression model confirmed a statistically significant relationship be-tween BPE 

and breast density, the relatively low R² value indicates that BPE explains only a modest portion of 
the variance in breast density. This suggests that other, possibly nonlinear or latent factors—such as 
hormonal therapy, menopausal status, BMI, or genetic predisposition—may influence enhancement 
and should be incorporated into future predictive models. 

Moreover, the standard error (0.8639) and Mean Absolute Error (MAE) reflect residual variance, 
further highlighting the model’s limited predictive accuracy. While the mod-el was statistically 
significant overall (F-statistic: 17.70, p < 0.001), the predictive contribution of individual variables 
remains modest. 

Introducing the BCSS: Toward Standardization 

The proposed BCSS offers a practical solution for harmonizing BPE assessment in CEM. Unlike 
MRI-based systems that rely on volumetric and temporal enhancement criteria, the BCSS adapts 
semi-quantitative thresholds to the two-dimensional nature of CEM and incorporates anatomical 
indicators such as ductal and vascular masking. 

For instance, “Moderate” BPE in CEM refers to enhancement of 25–50% of fibroglandular tissue 
with partial obscuration of key structures, which—despite lacking volumetric context—may still 
compromise lesion visibility in planar imaging. This distinction is critical for aligning classification 
with diagnostic performance in CEM. 

The high interobserver agreement observed in our study confirms the reliability of the BCSS, 
suggesting that it may enhance both diagnostic consistency and research comparability across 
institutions. However, its clinical utility remains to be confirmed through multicenter, prospective 
validation studies encompassing diverse patient populations and imaging platforms. 

Limitations and Future Directions 

This study has several limitations. Its retrospective, single-center design may limit 
generalizability. Additionally, the lack of clinical data on hormonal status, BMI, menstrual cycle 
phase, and endocrine therapies restricted our ability to account for con-founding variables that may 
influence BPE. Moreover, the study population was drawn from a diagnostic rather than a screening 
cohort, potentially affecting the applicability of findings to broader populations. All imaging was also 
acquired using a single CEM device (GE Senographe Pristina) and a fixed contrast protocol, which 
may limit reproducibility across different vendors or acquisition settings.  

To strengthen the clinical impact of the BCSS and deepen understanding of BPE's biological and 
imaging correlates, future research should focus on: 

• Prospective, multicenter validation of the BCSS across different imaging plat-forms; 
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• Integration of AI-based tools for objective, automated quantification of BPE, reducing reader 
subjectivity; 

• Incorporation of hormonal, genetic, and physiological variables into risk prediction models; 
• Application of machine learning and deep learning methods to uncover complex, nonlinear 

associations and enhance predictive accuracy. 
In particular, neural networks may minimize prediction error (e.g., MAE), uncover la-tent 

patterns, and improve the integration of BPE into individualized risk models and screening 
pathways—especially in women with dense breasts, where conventional mammography is limited. 
This study represents an initial step toward future quantitative standardization of BPE assessment; 
however, it does not yet incorporate advanced predictive modeling, which will be addressed in 
separate analyses.  

5. Conclusions 

In the context of contrast-enhanced mammography (CEM), background parenchymal 
enhancement (BPE) remains a clinically significant but poorly standardized imaging feature. Our 
proposed BPE-CEM Standard Scale (BCSS) provides a structured, modality-specific framework 
aimed at enhancing the consistency and reproducibility of BPE assessment, particularly in women 
with dense breasts where diagnostic interpretation is most challenging. 

While our results confirm a modest correlation between breast density and BPE, the limited 
explanatory power of linear models underscores the complexity of this relationship. This highlights 
the need for innovative methodologies capable of capturing the intricate interplay between tissue 
composition and enhancement patterns. 

Preliminary investigations utilizing artificial intelligence (AI), including neural networks, 
demonstrate promising potential to reduce interobserver variability and support radiologists in 
borderline cases. Although these computational approaches require further validation, they offer 
valuable tools to improve diagnostic consistency and enable personalized risk stratification. 

Future research should focus on integrating probabilistic AI models with multi-modal data—
encompassing hormonal, genetic, and physiological factors—within predictive frameworks. Such 
integration would enhance both the interpretability and clinical utility of BPE as an imaging 
biomarker. Crucially, these technological advancements should function as adjuncts, augmenting 
rather than replacing the expert judgment of experienced radiologists. 
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CEM Contrast-Enhanced Mammography 
BCSS BPE-CEM Standard Scale 
BI-RADS Breast Imaging Reporting and Data System 
MAE Mean Absolute Error 
DBMS Database Management System 
AI Artificial Intelligence 
  

References 

1. Bodewes FTH, van Asselt AA, Dorrius MD, Greuter MJW, de Bock GH. Mammographic breast density and 
the risk of breast cancer: A systematic review and meta-analysis. Breast. 2022 Dec;66:62-68. 

2. Michaels E, Worthington RO, Rusiecki J. Breast Cancer: Risk Assessment, Screening, and Primary 
Prevention. Med Clin North Am. 2023 Mar;107(2):271-284. 

3. Magni V, Cozzi A, Muscogiuri G, Benedek A, Rossini G, Fanizza M, Di Giulio G, Sardanelli F. Background 
parenchymal enhancement on contrast-enhanced mammography: associations with breast density and 
patient's characteristics. Radiol Med. 2024 Sep;129(9):1303-1312. 

4. Sorin V, Yagil Y, Shalmon A, Gotlieb M, Faermann R, Halshtok-Neiman O, Sklair-Levy M. Background 
Parenchymal En-hancement at Contrast-Enhanced Spectral Mammography (CESM) as a Breast Cancer 
Risk Factor. Acad Radiol. 2020 Sep;27(9):1234-1240. 

5. Moffa G, Galati F, Maroncelli R, Rizzo V, Cicciarelli F, Pasculli M, Pediconi F. Diagnostic Performance of 
Contrast-Enhanced Digital Mammography versus Conventional Imaging in Women with Dense Breasts. 
Diagnostics (Basel). 2023 Jul 28;13(15):2520. 

6. Taylor DB, Kessell MA, Parizel PM. Contrast-enhanced mammography improves patient access to 
functional breast imaging. J Med Imaging Radiat Oncol. 2024 Oct 31. 

7. Watt GP, Keshavamurthy KN, Nguyen TL, Lobbes MBI, Jochelson MS, Sung JS, Moskowitz CS, Patel P, 
Liang X, Woods M, Hopper JL, Pike MC, Bernstein JL. Association of breast cancer with quantitative 
mammographic density measures for women receiving contrast-enhanced mammography. JNCI Cancer 
Spectr. 2024 Apr 30;8(3):pkae026. 

8. Karimi Z, Phillips J, Slanetz P, Lotfi P, Dialani V, Karimova J, Mehta T. Factors Associated With Background 
Parenchymal Enhancement on Contrast-Enhanced Mammography. AJR Am J Roentgenol. 2021 
Feb;216(2):340-348. 

9. van Nijnatten TJA, Morscheid S, Baltzer PAT, Clauser P, Alcantara R, Kuhl CK, Wildberger JE. Contrast-
enhanced breast imaging: Current status and future challenges. Eur J Radiol. 2024 Feb;171:111312. 

10. Meucci R, Pistolese CA, Perretta T, Vanni G, Beninati E, DI Tosto F, Serio ML, Caliandro A, Materazzo M, 
Pellicciaro M, Buonomo OC. Background Parenchymal Enhancement in Contrast-enhanced Spectral 
Mammography: A Retrospective Analysis and a Pictorial Review of Clinical Cases. In Vivo. 2022 Mar-
Apr;36(2):853-858. 

11. Miller MM, Mayorov S, Ganti R, Nguyen JV, Rochman CM, Caley M, Jahjah J, Repich K, Patrie JT, Anderson 
RT, Harvey JA, Rooney TB. Patient Experience of Women With Dense Breasts Undergoing Screening 
Contrast-Enhanced Mammography. J Breast Imaging. 2024 May 27;6(3):277-287. 

12. Ferrara F, Santonocito A, Vogel W, Trombadori C, Zarcaro C, Weber M, Kapetas P, Helbich TH, Baltzer 
PAT, Clauser P. Background parenchymal enhancement in CEM and MRI: Is there always a high 
agreement? Eur J Radiol. 2024 Dec 25;183:111903. 

13. Nicosia L, Mariano L, Mallardi C, Sorce A, Frassoni S, Bagnardi V, Gialain C, Pesapane F, Sangalli C, 
Cassano E. Influence of Breast Density and Menopausal Status on Background Parenchymal Enhancement 
in Contrast-Enhanced Mammography: Insights from a Retrospective Analysis. Cancers (Basel). 2024 Dec 
24;17(1):11. 

14. Freer PE. Mammographic breast density: impact on breast cancer risk and implications for screening. 
Radiographics. 2015 Mar-Apr;35(2):302-15. 

15. Kataoka M. Mammographic Density for Personalized Breast Cancer Risk. Radiology. 2023 
Feb;306(2):e222129. 

16. Harrington J.L., Relational Database Design and Implementation, Morgan Kaufmann, 2016 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2025 doi:10.20944/preprints202507.0042.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0042.v1
http://creativecommons.org/licenses/by/4.0/


 10 of 10 

 

17. Date C.J., An Introduction to Database Systems, Addison-Wesley, 2004 
18. Taipalus T., Database management system performance comparisons: A systematic literature review, The 

Journal of Systems & Software, 2023 
19. Bland J.M., Altman D.G., Comparing methods of measurement: why plotting difference against standard 

method is mis-leading, The Lancet, 346(8982), 1085-1087, 1995 
20. Lantz B., Machine Learning con R. Conoscere le tecniche per costruire modelli predittivi, Apogeo editore, 

2020 
21. Draper N.R., Smith H., Applied Regression Analysis, Wiley-Interscience, 2014 
22. Altman D.G., Practical Statistics for Medical Research, Chapman & Hall, 1991 
23. Neter J., Wassermann W., Kutner M.H., Applied Linear Statistical Models, McGraw-Hill Education (ISE 

Editions), 1996 
24. Kim G., Mehta TS., Brook A., Du LH., Legare K., Phillips J., Enhancement Type at Contrast-enhanced 

Mammography and Association with Malignancy, Radiology, 2022 Nov;305(2):299-306 
25. Hafez MAF., Zeinhom A., Hamed DAA., Ghaly GRM., Tadros SFK., Contrast-enhanced mammography 

versus breast MRI in the assessment of multifocal and multicentric breast cancer: a retrospective study, 
Acta Radiol, 2023 Nov;64(11):2868-2880 

26. Monticciolo DL., Newell MS., Moy L., Lee CS., Destounis SV., Breast Cancer Screening for Women at 
Higher-Than-Average Risk: Updated Recommendations From the ACR, J Am Coll Radiol, 2023 
Sep;20(9):902-914 

27. Wessling D., Männlin S., Schwarz R., Hagen F., Brendlin A., Olthof SC., Hattermann V., Gassenmaier S., 
Herrmann J., Preibsch H., Background enhancement in contrast-enhanced spectral mammography 
(CESM): are there qualitative and quantitative differences between imaging systems?, Eur Radiol, 2023 
Apr;33(4):2945-2953 

28. Gennaro G., Hill ML., Bezzon E., Caumo F., Quantitative Breast Density in Contrast-Enhanced 
Mammography, J Clin Med, 2021 Jul 27;10(15):3309 

29. Lin ST., Li HJ., Li YZ., Chen QQ., Ye JY., Lin S., Cai SQ., Sun JG., Diagnostic performance of contrast-
enhanced mammog-raphy for suspicious findings in dense breasts: A systematic review and meta-analysis, 
Cancer Med, 2024 Apr;13(8):e7128 

30. Camps-Herrero J., Pijnappel R., Balleyguier C., MR-contrast enhanced mammography (CEM) for follow-
up of breast cancer patients: a "pros and cons" debate, Eur Radiol, 2024 Oct;34(10):6264-6270 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2025 doi:10.20944/preprints202507.0042.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0042.v1
http://creativecommons.org/licenses/by/4.0/

