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Abstract

Recovery of forest after logging can be tested in many ways: the presence of particular species
of fauna or flora, the similarity of the biodiversity of the recovering forest to that on
neighbouring areas of undisturbed forest; or the characteristics of soils and streams whose
conditions may have drastically changed during logging. Three cases of rainforest recovery
after logging and clearance from Australia and Borneo exhibit different starting and different
goals for recovery. Faunal indicators of recovery vary with size and with species dependence
of the rainforest. Endemic forest species may have difficulty in recovering. Tree species
richness and abundance may recover in two decades, but canopy closure takes longer.
Compacted soils may retain low infiltration capacities for many decades. This diversity in
recovery rates is confirmed when compared with those used elsewhere. Because the starting
points for recovery vary, from damage by tropical cyclones and landslides, to clearance for
shifting cultivation, pasture or agriculture, to post-logging conditions, universal indicators may
be inappropriate. The desired endpoints of recovery also range from a “wilderness” state to a
National Park for human enjoyment, biodiversity preservation, safeguarding rights of
traditional forest-dwelling peoples, or a second round of selective logging.
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Introduction

The sustainability of tropical forest management practices has long been discussed in terms of
commercial forestry. In 1999, the International Tropical Timber Organisation defined
sustainable forest management as: “The process of managing forest to achieve one or more
clearly specified objectives of management with regard to the production of a continuous flow
of desired forest products and services without undue reduction of its inherent values and future
productivity and without undue undesirable effects on the physical and social environment”
[1]. Sustaining the continuous flow of products and services implies many possible goals for
forest sustainability, not merely the production of timber. Yet timber production itself involves
forest recovery from previous harvesting, however intensive the logging process may have
been. Thus, notions of rainforest recovery and its assessment are significant.

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202108.0422.v1


mailto:ian.douglas@manchester.ac.uk
https://doi.org/10.20944/preprints202108.0422.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2021

Logging is not the only form of disturbance from which rainforests are recovering. Many have
been affected by the wildfires in recent years, by volcanic eruptions, earthquakes and
landslides. As well documented in Australia [2], Puerto Rico [3] and the Solomon Islands [4],
many rainforests are regularly damaged by tropical cyclones (typhoons or hurricanes). Some
them are hit so frequently that a distinct cyclone-rainforest type has been recognised. In such
forests recovery is usually incomplete before another cyclone arrives.

In addition, rainforests are recovering from human disturbance for agriculture, grazing and
traditional shifting cultivation (Fig. 1). Shifting cultivation requires a decade or so of recovery
before another crop can be truly successful, but many shifting cultivators have access to
insufficient land for such a recovery period and thus forest patches are cleared again after just
a few years. Far longer term has been rainforest clearance for agriculture, which is still
proceeding apace in several parts of the humid tropics. In some places now, agriculture has
been reduced and rainforest is recovering or is being restored by tree-planting. This rainforest
recovery is directed to diverse future states or uses.

Recovery from: Recovery towards:

Natural disturbance . .
. Sustainable commercial
e.g. landslide, - ) .
. timber harvesting
cyclone, wildfire

|

" Clearance for ‘

agriculture e.g. Wilderness and cultural

grazing, oil palm, ‘ values
maize

Fig.1. Pathways for rainforest recovery from disturbance.

Recovery of forest after logging can be tested in many ways: the presence of particular species
of fauna or flora, the similarity of the biodiversity of the recovering forest to that on
neighbouring areas of undisturbed forest; or the characteristics of soils and streams whose
conditions may have drastically changed during logging. Diversity recovery in disturbed
forests depends on disturbance intensity and frequency, forest size and reference conditions
[5]. Lightly-logged areas might reach their original stage in relatively short time (20-50 years)
as this logging intensity does not impair the underlying productivity [6]. However, intensively-
logged areas may well over a hundred years to reach later successional stages.

Rainforest recovery for biodiversity is often directed to sustain a particular species, such as
gorillas or orang-utans. The management for such a goal for primates might emphasise the
availability of fruit over other aspects of biodiversity. Much of modern rainforest protection
is occurring in the context of broader goals that are strategically focussed on conservation,
biodiversity, and environmental values. In Australia, much rainforest restoration has been
related to these values, rather than to other priorities such as regional employment. Within these
values, it may be appropriate to ask “Whose values?”. For example, in the Wet Tropics of
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North Queensland Australia, there is a possible debate about the differing impacts of new
National Park designations on the Aboriginal traditional inhabitants; on the local descendants
the former famers and woodsmen who cleared the forest; and on the city-dwelling tourists who
visit the area to “experience the rainforest”. Hence the suggestion of “human enjoyment nature”
and “wilderness and cultural values™ as different, but overlapping, recovery goals in Fig.1.

This double diversity of the starting points of rainforest recovery and its goals raises question
of how we should assess recovery. Harvestable timber availability would critical for a logging
company. Adequate fruit accessible fruit sources are essential for an orang-utan. Visitors
might not be as concerned about species diversity and tree growth dimensions, as about the
closed canopy, the sound of the birds, the presence lianas and epiphytes, and clear water
cascading over boulders. For the wilderness goal, recovery to the state implied by the term
“wilderness” might be difficult. The definition used in Australia in the 1970’s [7]: “wilderness
is a large area of land perceived to be natural, where genetic diversity and natural cycles remain
essentially unaltered”, leaves scope to interpret the word “perception” because areas that had
been disturbed 100 years ago might have recovered to a state that it seems to most people to be
wild. Here it should be recalled that in the Amazon rainforest there are the remains of ancient
cities beneath the wilderness [8]. Many areas now perceived to be, or are managed as,
“wilderness” had previous disturbance by colonists, resource exploiters and hunters, as well as
having been the homes of first nations peoples for centuries. So, recovery might well aim at re-
creating the opportunity to experience wilderness. Yet, there remains the question as to whether
the traditional hunting and gathering practices of first nations peoples ought also to be
permitted in protected wilderness: they were there long before most of us. | seek answers to
the question of how should the recovery of a rainforest by judged? What are the appropriate
indicators?

Methodology

To explore this dilemma, | examine three cases of rainforest recovery after logging and
clearance, two from Australia and one from Borneo, examining the timing and nature of
logging and how post-logging recovery has been assessed. | then analyse some of the various
indicators of forest recovery that have been used, assess the recovery periods so derived and examine
the purposes for which the indicators may be usefully. Finally, I use some comparisons from other
parts of the world to suggest how multiple indicators of recovery, from the presence of indicator
species to the persistence of logging roads, might be used.

Australian case studies

The remarkable series of rainforest remnants and patches, largely on basalt-derived soils on the
coastal uplands of Eastern Australia are now largely protected as two world heritage systems,
the Gondwana Rainforests of Australia and the Wet Tropics of Queensland. The Gondwana
forests contain the largest and most significant remaining stands of subtropical rainforest and
Antarctic Beech (Nothofagus moorei) cool temperate rainforests in the world, the largest and
most significant areas of warm temperate rainforest and one of only two remaining large areas
of Araucarian rainforest in Australia. The North Queensland site comprises 8942 km? of
mostly tropical rainforest, stretching for 450 km along the northeast coast of Australia.

Within or adjoining these World Heritage areas are forested areas that were logged in the late
nineteenth century and that were cleared for agriculture in the first decade of the twentieth
century. Some of the logged areas are now parts of National Parks within the two World
Heritage sites. Some of the formerly cleared areas have been recolonised by rainforest or have
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been deliberately regenerated to become potential rainforest environments. Many would claim
that this forest regrowth and the post-logging protection of rainforest have guaranteed
rainforest recovery. To examine such claims, two localities on basalt in Eastern Australia
provide initial case studies of the areas of forest recovery: the wet temperate Gondwana
rainforest of the Dorrigo Plateau in New South Wales and the regenerating Wet Tropics forests
of the south-eastern part of the Atherton Tableland in north Queensland. Thinking about the
future of these Australian forests, in 1975, | wrote:

“However, it is not known how much account is taken of this [ecological] knowledge when
particular groups of people use the resources of the rain-forest ecosystem. Do the clearers of
the forest, the shifting cultivators, the dairy farmers of the North Coast of New South Wales,
the state foresters, and the wood-choppers, all view the rain-forest in the same light? When
they make their assessments, do they have a full knowledge of the system they are examining?
Many of these people may not even think of the rain-forest as an organic system, but rather as
something natural which they do not understand [9].

The Dorrigo wet temperate forest

Located above the New England Escarpment, this area, 30° South of the Equator, was long
settled by the traditional owners of Australia who had Borra grounds at the western edge of the
forest that mid-nineteenth century Europeans referred to as “dense scrub”. That maze of trees,
vines and epiphytes began to attract the attention of Europeans in 1857 when the valuable Red
Cedar trees (Toona ciliata (syn. Cedrela toona)) were seen as an exploitable resource. The
cedar getters moved eastward from the Bostobrick area, building access tracks in the dense
warm temperate rainforest. Originally, the logs were taken inland, westwards to Armidale, by
bullock wagons. For many years, a route to the coast was sought, but by the time the Dorrigo
Mountain Road was opened in 1893, the Red Cedar accessible on the plateau had been logged
out. However, forest clearing for farming expanded on the Dorrigo plateau itself
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Fig.2. Map of the Dorrigo area to show the main areas of protected forest mentioned in the
text (Contains information from OpenStreetMap, which is made available here under the Open
Database License (ODbL)

Nevertheless, in 1901 the first 15 ha reservation of land for public recreation and preservation
of native flora was created around Sherrard and Newell Falls, later to become the nucleus for
what evolved into Dorrigo State Park in 1967. The area now contains the 7819 ha Dorrigo
National Park and the 3700 ha Cascade and the 945 ha Junuy Juluum National Parks which
also contain areas of wet temperate rainforest, dominated by coachwood (Ceratopetalum
apetalum), crabapple (Schizomeria ovata) and booyong (Heritiera actinophylla), with smaller
areas supporting hoop pine (Araucaria cunninghamii), Antarctic beech (Nothofagus moorei)
and combinations of subtropical dominants.

Fig. 3. The rainforests and cleared areas in and around the Dorrigo National Park in 2016

By 1925, all available timber from the Mount Campion area in the Junuy Juluum National Park
had been taken and logging moved further north into the present area of the Cascade National
Park, where remnants of tramlines used in the logging process are now seen as being of New
South Wales state heritage significance. Elsewhere the remnants of an old cedar cutters' tracks,
used to haul out logs, particularly red cedar, by bullock teams in the early 20" century, can still
be seen in the Deer Vale Nature Reserve. Timber extraction was significantly increased in the
surrounding forests following the introduction of chainsaws in the early 1950s. Many forest
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compartments were re-logged at this time, with some logging of warm temperate rainforests
continued until 1983.

By 2020, these areas had begun to have the appearance of old forests, abundant understorey
plants conveying an impression of what the original “dense scrub” might have looked like. The
author visited the then Dorrigo State Park in 1971 and saw the stumps of large trees where the
notches for the planks on which the cross-cut saw operators stood to fell the Red Cedar were
still visible. The recovery to the logged forest was clearly still in progress. Nearly 50 years
later, the forest is less obviously a formerly logged area.

15 km north of Dorrigo, a plot experiment to examine the recovery of warm temperate
rainforest after logging, with differing removal rates of the tallest overstory trees, lead to
estimates that these forests should have recovered early in the twenty-first century (Table 1).
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Table 1. Predicted time range for the recovery of the overstorey of the logged plots to the pre-
logging level of basal area (after [10])

Treatment (% basal | Reduction in | Predicted recovery | Approximate

area removed) prelogging time range (years) recovery time range
overstorey %

16 25 41-58 1998-2115

43 65 54-93 2011-2050

62 75 60-103 2017-2060

Horne and Walter [10] predicted little change in the overstorey species, but considerable
change in their relative numbers, coachwood being expected to increase its frequency fourfold,
at the expense of crabapple and jackwood. They also forecast a reduction in the number of the
largest trees of over 120 cm breast-height diameter (Dbh) which would indicate that the total
basal area of trees after 80 to 100 years of recovery would still be less than that in the original
forest (Table 2). This would mainly be due to the future dominance of coachwood, a tree that
rarely exceeds 90 cm Dbh.

Table 2. Indicators of forest recovery used in the Dorrigo warm temperate rainforests and
adjacent areas.

Indicator type Observations Source
Biodiversity 18 species (three mammals, seven birds, seven reptiles and one frog) | [11]
Animals less frequently detected in intensively logged than in unlogged areas

of NE NSW. Conversely, 33 species (3 mammals, 21 birds, 8 reptiles
and 1 frog) were found significantly more often in intensively logged
than in unlogged areas

In the Dorrigo area, the size of a forest fragment was the most | [12]
consistent predictor of mammal species richness in rainforest
remnants

Rodent abundance greatest in intermediate to smaller-sized forest | [12]
remnants. Possibly dense ground and understorey cover associated
with disturbance favours these rodents

Frogs The tusked frog prefers areas of forest which have not been logged. | [13]
Two species of barred frogs will use breeding sites in logged forest,
but the giant barred frog prefers areas some years since last
disturbance.

Avifauna Regrowth sites, with a substantially more rainforest-like vegetation | [14]
structure than pasture, supported about half the species richness of
rainforest-dependent birds found in intact rainforest sites

Plants Basal area recovery after intense logging would take 60 to 103 years | [10]
Forest basal area recovery after intense logging would take 95 years | [15]

A later analysis of post-logging rainforest recovery of sub-tropical Complex Notophyll Vine
Forest type in the Border Ranges National Park, at 28° 30’ South, over a 48-year period
disturbance had promoted changes in tree diversity and dynamics [5]. Species showed the
effects of disturbance through colonisation, adaptation, facilitation, and intraspecific and
interspecific competition. At the end of the 48-year period there were distinctive boundaries
between disturbed and undisturbed areas, with the disturbed areas having higher richness and
tree density, as well as more pioneers and early secondaries than undisturbed areas (Table 3).
The researchers suggested that 48 years was not enough time for a subtropical rainforest to
recover as some logging impacts were still evident in disturbed areas, where stand basal area
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and tree diameters are lower, with more small trees, than in undisturbed areas (Table 2), and
species dominance and floristic composition are yet to differ from original conditions. Earlier
work in the same general areas suggested that if the rates of basal area increment over the 35
years since logging in the 1960s were to continue, projected achievement of initial basal areas
would occur in the most intensely worked plots, 95 years after logging [15].

Table 3. Density and dynamics after 48 years for undisturbed and disturbed areas of subtropical
rainforest in the Border Ranges, NSW (after [5]).

Treated area | Richness | Diversity Diversity Total Tree Quadratic
(1.08 ha (Shannon) | (Berger- Basal density mean
each) Parker) area (stem ha') | diameter
(m? hat) (cm)
Undisturbed | 61 3.00+0.06 |0.20+0.020 | 59.5 560 36.8
Disturbed 71 3.16+0.06 [0.16+0.06 |395 722 26.4

In the eastern Dorrigo plateau, using birds and plants as indicators, regrowth sites appeared to
have developed a more rainforest-like vegetation than pasture, but they supported about half
the species richness of intact rainforest sites [14]. The overall message is that forests regrow,
but with a differing species composition and all regrowth areas lack some particularly
rainforest- dependent species. Species abundance and richness assessments may indicate a
general recovery in 30 to 50 years, but trees growth to the original canopy heights and basal
area of the undisturbed forest may take over 100 years.

The Atherton Tableland, North Queensland

The Tableland was originally covered with wet tropical rainforest. Much of it was cleared
during the first half of the twentieth century and now small patches of rainforest and
reforestation now exist in a matrix of pasture-dominated agriculture. To the east, dense
rainforest covers the ranges in the Gadgarra and Wooroonooram National Parks (Fig.4). The
rainfall ranges from 1000 to 3000 mm per year, but the biggest storms, sometimes associated
with tropical cyclones, occur between November and March, the southern hemisphere summer.
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Fig.4. Map of the Atherton Tableland area showing the main National Parks and places
mentioned in the text (Contains information from OpenStreetMap, which is made available
here under the Open Database License (ODbL)

European people began to exploit the natural resources of the Atherton Tableland from the
mining areas around Herberton (to the west of the Herberton Range national Park, Fig. 4 )
where mining for gold, silver and tin began in 1878. Some entrepreneurial miners moved east
to cut red cedar, Toona ciliata, which was so highly prized at the time that it became known as
“red gold” [16]. From the late 1800s, the rainforest on undulating country around Malanda
began to be cleared for dairy farming, which subsequently became a prosperous local industry.
Clearing continued into the 1960s leaving much of the landscape with few trees (Fig.5), but it
supported some 600 dairy farms [17]. The dairy industry began to contract in the early 1970s,
when subsidies were removed, and again from 2000 following industry deregulation, with only
51 dairy farms remaining in 2005 [18].
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1963 ~ 2016

Fig. 5. Views over the southern Atherton Tableland towards Malanda from a high point near
Tarzali in 1963 and 2016 showing the increase in forest cover (Photos by the author)

The Tablelands are now a mosaic of grasslands and patches of regenerating, or recovering
rainforest of various sizes. Several efforts to replant or augment regeneration in forest patches
have been made. The impact of these types of land cover change have been assessed in
different ways, from the examination of ant communities to the assessment of the trees in forest
stands.

As the 2016 photo in Fig. 5 shows, patches of trees tend to become larger close to large forested
areas, regrowth being more rapid in spaces close to existing undisturbed forest [18]. Regrowth
patches within 100 m of the old forest take around 11 years abandonment to achieve 70 %
successional canopy closure, while those up to 2500 m away from the forest require about 19
years [16]. Thus, canopy closure as an indicator of regrowth will vary spatially (Table 4).
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Table 4. Indicators of forest recovery used in the wet tropical rainforests of the Atherton

Tablelands
Indicator type Observations Source
Biodiversity
Beetles After 10 to 15 years, volant beetle assemblages in restoration sites | [19]
more similar to those of rainforest, and less similar to grassland
Ants Ant assemblages in restoration sites had not fully reached a mature | [20]
forest state after 24 years
Avifauna In all species, both total richness and total abundance in revegetated | [21]

sites had reached levels similar to those of forest about 5 years after
restoration planting

Mammals Small mammal species richness, number of individuals, and species | [22]
diversity in recovering restored forest and undisturbed forest sites
similar to or less than grassland sites

Plants Forest regrowth is more rapid close to existing undisturbed forest: 11 | [16]
years at 100 m away, 19 years at 2500 m away
Environmental factors Organic C and nutrients around 10 % lower in grassland and in | [23]
Soil secondary forest around 5% lower than in undisturbed forest

Grassland ant species differ markedly from those in rainforest, species becoming became
increasingly forest-like with increasing age of restoration (Figure 6) [20]. Ant assemblages in
sites that have been regenerating for over 10 years are more like this in the rainforest than in
grassland. However, ant assemblages in restoration sites, where planting had occurred, take
more than 24 years to attain a mature forest state. Thus, rainforest recovery through restoration
on the Atherton Tablelands might need at least 50 years to achieve quality faunal habitat
approaching old-growth rainforest, with some taxa possibly requiring 100 or more years.
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Fig. 6. Mean values of site species richness of ants found at sites at different stages of
regeneration from grassland to rainforest in the Atherton Tableland (based on data from [20])

Beetle assemblages in rainforest patches on the Atherton Tablelands are high in numbers of
individuals and species, with far fewer beetles occurring in grassland. Even though it takes a
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long time for the forest structure to recover, the volant beetle assemblages in restoration sites
become more similar to those of rainforest within 10 to 15 years [19]. Overall beetle abundance
is unaffected by distance, but isolated recovering rainforest patches can slow to achieve a
rainforest-like beetle species composition.

Both total richness and total abundance of bird species in restoration sites became similar to
those of forest after about 5 years (Fig. 7). However, a predictable subset of bird species that
returns more slowly to regrowing forest restoration, even when replanting speeds up canopy
cover development. These later-returners are usually endemic species of special conservation
concern that depend upon the wet tropical rainforest. This is part of global trend for range-
restricted tropical rainforest bird species to be less able tolerate habitat disturbance than other
forest birds. Thus, the restored rainforest may not recover the full range of species that are
unique to that region’s forests [21].
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Fig. 7. Bird abundance (number of records) and richness (number of species) in grassland and
revegetated sites 1 to 24 years into recovery on the Atherton Tablelands (based on data in [21]).

In this case, there is a predictable subset of species that is slower in returning during forest
restoration, even when replanting is used to speed up the development of canopy cover. There
later-returners are usually species of special conservation concern that are Wet Tropics
rainforest-dependent endemic species. This reflects a global trend that range-restricted tropical
rainforest bird species are less able to tolerate habitat disturbance than other species in a
region’s forests. Thus, the restored rainforest may be least effective in providing the habitat
capable of attracting the very bird species it needs the most [21].

Small mammal species richness, number of individuals, and species diversity in the restored
and undisturbed Atherton Tableland rainforest sites are similar to or lower than in grassland
sites [22]. As restoration sites recover, they achieve higher biomass productivity and begin to
support larger-bodied mammal species typically found in mature rainforests. The shift from
pasture-like to more rainforest-like mammal communities begins about 5 years after planting,
when canopy closure begins to occur.

Soil conditions can inhibit forest recovery, with organic carbon and nutrients in grassland,
secondary forest and undisturbed forest varying in differing ways with land cover. Organic
carbon and nitrogen are 5 to 15% lower under grassland than under forest, with levels in
recovering forest being between these extremes. Calcium varied in a similar fashion on the
basalt soils, while phosphorus did not vary at all [25]. These variations in soils and species
numbers with sites, distance and age reveal complexity in the manner in which counts of certain
species can be indicators of rainforest recovery from disturbance. The rain forest specialist and
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endemic species may be the best indicators for biodiversity recovery, but their absence may
not spoil people’s enjoyment of the rainforest.

Ulu Segama, Sabah, Malaysian Borneo

The highly valuable and effective expansion of ecological work in Ulu Segama area of eastern
Sabah, since 1985 has brought about great knowledge of individual aspects of forest recovery
from selective logging [26, 27]. The previously untouched rainforest east of the S. Segama
(Segama River) and north of the Palam Tambun catchment (Fig. 8) was selectively logged in
1988-93. The area west of the S. Segama has remained unlogged lowland Dipterocarp forest
and acts as control against which the impacts of, and recovery from, logging may be assessed.
There is information on how different taxa respond to disturbance and how species numbers
and richness change. Data have been gathered on how disturbed areas continue to erode during
extreme events and the time taken for logging-induced landslides to recover. Several ecological
studies have examined recovery of the forest vegetation and of particular animal communities.

In this environment, as in most tropical rainforests, the undisturbed forest is undergoing
continual change. Natural gaps, created by treefall or landslides, become revegetated with
rapidly growing light-loving, pioneer species, followed by many saplings, so that quickly there
is a small, but dense clump of pole-sized (2-15 cm Dbh) trees. Elsewhere there can be groups
of tall mature dipterocarp trees of 70 cm or more Dbh with a highly open understorey between
them. Inaway therefore, a selectively logged forest is like an undisturbed forest with enormous
gaps that are quickly invaded by pioneer seeds and by whatever emerges from the seed bank
left between the zone of compacted ground. This hard ground disperses water as surface runoff
into rills and gullies washing fine plant material and soil particles away, making seedling
development difficult. The recovering forest becomes a habitat mosaic in which some species
quickly find niches and others become rare, as habitats like old trees with holes will have
disappeared. Fortunately, data are available for varied animal and plant species, and for aspects
of the physical environment that indicate a range of recovery rates.

13
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Fig. 8. Map of the hydrological study catchments and water level recorder sites being used at
Danum Valley, Ulu Segama, as operating in 1992 to monitor the impacts of logging.

Both forest structure and community composition were affected by selective logging, despite
there being little significant difference in richness or diversity. Total stem basal area and stem
density were higher in unlogged forest than in naturally regenerating logged forest, driven by
greater density of pole-sized trees (2-15 cm dbh). In logged forest, sapling and pole stem
density increased with time after logging, while in naturally regenerating forest, stem density
was greater but did not increase over time. Tree community composition differed significantly
between unlogged and naturally regenerating logged forest. In logged forest, there was no
effect of active restoration (conducted 12—24 years pre-census) or time since logging on the
overall community composition, however several individual species were indicators of the
active restoration treatment. Together, our results suggest that the effects of selective logging
on tree communities can still be observed 23-35 years after harvesting regardless of active
restoration efforts.

While richness and diversity are shown to be approximately equivalent to pre-logging values
within 35 years post-logging, community composition remains distinct from nearby unlogged
forest with no detectable directional shifts at the decadal time-scale. As a result, it is unlikely
that selective logging cycles of 40-60 years will be successful in balancing economic
management of Sabah’s forests with long-term tree species conservation. Furthermore,
although active restoration efforts in Danum Valley may have had positive impacts on mean
stem size and therefore aboveground biomass, they did appear to affect tree community
composition, richness, or diversity by comparison with naturally regenerating plots for plots
censused 12-24 years after the start of the intervention [28].

Long-term (21-30 year) erosional responses of rainforest terrain in the Ulu Segama catchment,
Sabah, to selective logging may be assessed at slope, small and large catchment scales. In the
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0.44 km? Baru catchment, slope erosion measurements over 1990-2010 and sediment
fingerprinting indicate that sediment sources 21 years after logging in 1989 are mainly road-
linked, including fresh landslips and gullying of scars and toe deposits of 1994-1996
landslides. Most of the disturbed slopes and former log landing areas had become revegetated,
S0 acquiring a good litter layer. The 5 to 15- minute interval sediment and water discharge
indicate that sediment delivery from storms decreased from1996 to 2009 but may not have
fallen to pre-logging levels. Annual yields for 2003, 2004 and 2005 were 395, 74 and 52 t km?
y”respectively [29] which may be compared with yields of 117 t km? yin both 1989 and 1990
from the undisturbed W8S5 catchment. The markedly high sediment load of 2003, and the later
high load in 2009, have been linked to high frequencies of rainstorms of the range 50-120 mm
in size, rather than more extreme events [30].

Analysis of bed-sediment geochemistry indicates that 49 % of the 216 t km? y! sediment yield
in 2009 came from the 10 % of its area affected by road-linked landslides. Recovery is clearly
a slow process, but not dissimilar to recovery rates based on bulk density estimated for logged
areas elsewhere in Malaysia (Fig. 9.). The persistence of these mass movements derived from
road construction suggests that post-logging treatment of abandoned road would greatly help
forest recovery, enhance aquatic ecosystems and reduce downstream sediment problems. These
compacted areas persist, particularly on roads and skid trails. The latter also continue to have
unfavourable tree growth conditions 18 years after logging (Table 5). While after twenty years
or so, in many ways the logged forest resembles the undisturbed forest, although lacking mature
trees, key areas, such as some skid trails and most abandoned roads, show little or no recovery.
High bulk densities of compacted soils persist for decades (Fig. 9.).

Baru, Ulu Segama, Sabah

Ulu Segama, Sabah
Sipitang, Sabah
Sg. Tekam, Peninsular Malysia

Bukit Tarek, Peninsula Malaysia

"o%=9

|
30 40

Recovery time (years)

Fig. 9. Percentage changes (AP) in bulk density over time relative to undisturbed lands, are
shown for abandoned skid trails at Sg. Tekam [31], mechanized logging tracks at Sipitang [32],
logging tracks in the Ulu Segama [33], an abandoned skid trail in the Bukit Tarek catchment
[34] and the abandoned skid trail at near Site 50 (Fig. 8). The symbols represent measurements.
The lines track the estimated recovery in the soil property over time; full recovery occurs where
lines cross the x-axis at zero (from data and ideas in [34]).
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Table 5. Biodiversity and environmental indicators of forest recovery after logging at Danum
Valley

Observations Source
High species richness in logged forest due to invasions of generalist | [35]
species

Logging results in a significant shift in species adaption for birds,
scavengers, ants and dung beetles

Indicator type
Biodiversity
Animals

Dung beetles Lower observed species richness in logged forest [35]
Leaf litter ants Trophic structure difference and abundance 30 % lower in logged forest | [36]
True bugs Strong predictor of logging impacts on species [35]
Springtails Do not decline as much after logging as other species [37]
Avifauna Particular species affected differently: fewer hollow (cavity) nesting birds | [38]
in the logged forest
Alterations to trophic organisation and interactions among species, may
be an important and hidden effect of forest degradation
Mammals Small species (e.g. Leopoldalmys and Maxomys) generally more | [35]
abundant in logged forest than in primary forest
Plants Up to 18 years after logging, species richness and stem density of woody | [39]

plants is lower on former skid trails than in adjacent forest

Pioneer tree saplings relatively abundant on skid trails three years after
logging.

Conditions for tree regeneration are similar on all skid trails up to 18
years after logging

After 18 years the skid trail coarse root mat was only 12 % of the pre-
logging level

Selective logging had little impact on absolute microclimatic temperature | [40]

Environmental

factors or its daily variation
Climate
Soil Bulk density trends of compacted soils remained high 24 years after
logging at Danum (Fig. 8.) as in other places in Malaysia
Sediment Fingerprinting through radiometric dating of sediment showed the | [30]

effects the 1992-3 steep slope logging in the Segama catchment
Fingerprinting offers possibility of dating sequences of flood deposits and
the sources of their sediment

[41, 42]

So, two key questions emerge: “How should we gauge forest recovery? What indicators should
we use?” The potential indicators (Table 5.) vary greatly in what they tell us. Further thought
should be given to this when mitigation methods are considered, particularly to indicators
relating to skid trails and logging roads.

At Danum, 18 vyears after logging, the species composition of logged forest differed
considerably from unlogged forest. There are more dipterocarps in logged than in unlogged
forest; but the unlogged forest had more dipterocarps above harvestable size. However, pole-
size dipterocarps in the logged forest understorey show that trees of commercial species are in
the recovering forest, which would mean the resources for future timber harvesting could be
there in future. Reduced impact logging (RIL) areas retained a higher number of bird species,
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but a lower number of ant and dung beetle species than conventionally logged areas. RIL
techniques greatly reduced canopy damage [43] but the impacts on soil are less clear.

Overall, the many investigations at Danum concluded that all forms of logging are harmful to
some species, but that logged forests nevertheless retain very high levels of biodiversity [44].
Choosing animal species as indicators of forest recovery may be difficult. Tree regrowth,
canopy closure and canopy height appear to be more robust indicators, especially in terms of
timber resources. But the work Danum clearly demonstrated that the persistence of both
logging infrastructure, especially compacted soils, and landslides related to collapse of that
infrastructure is likely to restrict recovery of small patches and the linear gaps along routes
wthin logged forests, just as the evidence of logging installations made 100 years ago is still
apparent in the Dorrigo forests.

Potential recovery indicators from forests elsewhere
Woody species recovery

Several examples from the Brazilian Atlantic Forest and Amazonian forests demonstrate the
use of tree species as indicators of recovery, with average recoveries of 70% of species
richness, but only 25% of species composition. Stand age and environmental drivers (i.e., soil
properties) appear to determine species diversity during succession. In the Atlantic Forest,
where secondary forests are dominated by fast-growing and wood-producing species, with a
rapid increase in timber stocks in the early stages of succession, commercial species represent
about 51 percent of tree diversity. Such commercial species over 15 cm in diameter appear
after 20 years of regrowth, with trees over 30 cm 10 years later [45, 46].

In the rainforest at the Central African Republic’s M'Baiki experimental site, despite high
losses of forest above ground biomass from timber extraction, thinning and associated damage,
63% of disturbed experimental plots had recovered to the original biomass 24 years later and
85% were expected to recover it within 30 years [47]. Such high recovery rates observed in
M’Baiki contrast with observations elsewhere in African forests, where the basal area may
require more than 100 years to recover. Differences might be explained by a combination of
factors: higher soil fertility, presence of a large pool of pioneers - comprising the very fast
growing Musanga cecropioides R. Br. (Urticaceae), absence of invading climbers, lianas,
shrubs or herbs able to arrest succession, absence of elephants and other ground-dwelling
animals able to delay succession, as a result of intense hunting by local villagers, and limited
soil damage from logging operations [47]. In the Bipindi-Akom Il-Lolodorf region, south
Cameroon, logging sites reached qualitative similarity values comparable to old growth forests
after 14 years, and after 27 years, logged sites strongly resembled old growth forest sites. In
shifting cultivation sites, recovery was generally slower but after 50-60 years most sites
attained old growth values for most forest characteristics [48]. Recovery from different starting
points thus can differ markedly.

Such patterns of recovery may differ in areas subject to geophysical disturbance such as
cyclones and landslides. In the Solomon Islands canopy height has not recovered after 50 years
in the logged forests of Kolombangara Island (Table 6). However, tree stand density became
similar to that in unlogged forest after just 10 years. Sapling abundance in these forests was
significantly higher than in unlogged forests because of the persistence of long-lived pioneers
during succession [49]. This pattern of species coexistence usually occurs in forests subject to
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ongoing disturbances because of geological volatility and extreme weather [50, 51]. The
occurrence of regular strong winds, sporadic earthquakes, and landslides on Kolombangara
Island may have resulted in a succession whereby long-lived pioneers can persist.

Table 6. Indicators of forest recovery from disturbance from other parts of the world.

Indicator type Observations Source
Biodiversity Responses to disturbance largely species-specific. Butterfly indicators | [52]
Butterflies need to be taxonomically defined
Avifauna Species richness or measures of overall abundance are not good | [52]
indicators of forest recovery
Bats In bats in Trinidad: strong positive correlation between the number of | [53]

years since forest disturbance and the abundance of gleaning
animalivores, but not for frugivores or nectarivores

Mammals Reduction or shifting of great ape densities [54]
No significant drop in Bornean orangutan density after low intensity
logging, but marked drop under heavy logging. In Sumatra, orangutan
feeding time in the logged forest similar to that in the primary forest, but
more time spent moving around.

Plants In Cameroon, logging sites have similar indicator values to old growth | [48]
forests after 14 years, but in shifting cultivation sites only after 50—60
years

Total seedling density similar across logged and unlogged forest in | [45]
Amazonia case study
Average 70% of species richness recovered 20 years after end of shifting | [55]
cultivation in Amazonia
Species richness in logging gaps initially high, decreasing to be similar to | [48]
old growth forests after 14 years
Decomposition of | Decomposition rates appear little affected by disturbance except in | [52]

woody debris extreme conditions where canopy opening results in drying of litter and
soil
Canopy cover Recovers within about 10 years [52]
Canopy height Not recovered after up to 50 years, Solomon Islands [49]
Tree stand density | Saturation level after 10 years, Solomon Islands [49]
Tree size Trees 230 cm Dbh found at 30 years of succession in Atlantic Forest Brazil | [46]
Basal area In many African forests, basal area may over than 100 years to recover [47]
Environmental factors | Soil C stocks varied little with logging in Amazonia [45]
Soil C:N ratio in litter increased systematically with time since logging

Loss of soil C, N and P from logging roads and log landing areas reduces | [56]
regrowth, Cameroon
Soil seed stock dominated by herbs and impact notable in early | [57]
succession in southern Cameroon
Need to critically examine effects of forestry activities on characteristics | [58]
like hydraulic conductivity at soil depths of over 20 cm
In Victoria, Australia, 10 years after logging bulk density of skid trail soils | [59]
was significantly greater and organic matter content and microporosity
significantly lower than in undisturbed forest
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Animal behaviour post logging

Primates

Logging affects population dynamics by reducing or shifting great ape densities within areas
targeted by logging. Bornean orangutans do not see a significant drop in density after low
intensity logging, but do so under heavy logging (Table 6). In Sumatra, orangutan feeding time
in the logged forest remained similar to that in the primary forest, but time spent moving
increased and time spent resting seemed to decrease. The increase in moving time seems to
indicate that orangutan food sources were likely to be more scattered in the logged area. In the
logged forest, orangutans may target specific trees during fruiting, probably pioneer species
that yield bigger crops after logging. Orangutans were also found at a lower height in the logged
forest than in the primary forest; this is most likely explained by the decrease in height of the
trees in the logged forest [54].

Bats

Using bats as recovery indicators, there was no correlation between the number of years since
forest disturbance and the abundance of frugivores, nectarivores and aerial insectivores.
However, there was a strong positive correlation between the number of years since forest
disturbance and the abundance of gleaning animalivores, indicating that the bat community
recovers with forest regeneration [53].

Importance of soil properties for rain forest recovery

In southern Cameroon it was also noted that, as in other tropical rainforest sites, the soil seed
bank is dominated by weedy and short-lived pioneer species which are light-demanders and
could only emerge under adequate conditions, that is, in forest gaps. Thus, the contribution that
soil seed stocks make to logged forest recovery may be notable in early stages of forest
succession. Soil seed stocks are unlikely to be helpful for growth of major timber trees and
consequently many foresters have used enrichment planting to achieve a possibly sustainable
yield of timber in the future.

Varied opinions on soil chemical constituents occur (Table 6). Some show nutrient loses after
logging, while others find little difference between logged and unlogged areas. The nutrient
available in the litter layer are generally depleted during logging, but gradually revive as the
forest biomass recovers. Soil properties are likely to vary with parent materials and across
logged areas, depending on how much they have been compacted by logging traffic. The access
roads and log landing areas that had heavy trucks moving over them frequently during timber
harvesting will become severely compacted and take decades to recover.

Discussion

Recovery from disturbance in rainforests is as varied as the forests themselves. Some of the
biota, such as birds and ants respond rapidly, but not uniformly. Some generalist species return
rapidly, rainforest-dependent specialist species take much longer to populate regrowing forest
patches and might be good indicators of forest recovery for biodiversity. Measures of species
richness and diversity can be good general indicators, but there have to be considerations of
factors such as distance of recovering areas from the undisturbed forest.

In this effort to achieve rainforest recovery, society is endeavouring to manage succession, a
process that has been long-discussed, but without a deep understanding of the processes
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involved [60]. Even in closely studied landscapes with long ecological records, many of the
most valued habitats are not “climax” communities, not pristine landscapes, but mid-
successional [61]. Rainforest recovery from disturbance is likely to be interrupted by natural
drought, windthrow or landslides and by increased storminess and wildfire risk due to people-
driven climate change. Thus, even if there are reliable indicators of recovery, they will have to
be evaluated with care to cope with spatial and temporal variations in growing conditions.

Recovery for future timber harvesting is readily done by assessing presence and growth of
commercially valuable species, but there are lessons to be learned about the frequency of
selective logging operations. In some areas rotations may be at 30-year intervals, but if logging
is to be sustainable, with constant yields intervals probably need to be more than 70 years. It
is likely to be globally important to have some rainforest managed for timber production, but
such forests must also be assessed for their multiple ecosystem services. The indicators used to
assess post-logging recovery should include aspects of the fauna and flora. In addition,
attention should be paid to the logging infrastructure, especially the roads and stream crossings.
Once logging ceases these decay, cut and fill slopes erode and major storms send masses of
sediment into streams, damaging fish habitats, affecting much aquatic life. Indicators related
to soil properties are helpful in such assessments.

Recovery for the human enjoyment of nature depends on the appearance of the forest, which
can be managed or constructed, nevertheless there are many people who value the opportunity
to see wildlife in its natural habitat. People’s impressions of what they thought of rainforests
could provide indicators of forest recovery.

Recovery for wilderness seems almost a contradiction, but at a time when “rewilding” to some
ill-defined vision of a past “wild” state, there seems to be no reason not to envisage an
endeavour to assess recovery to a wilderness condition. Forests have invaded abandoned
settlements and former goldmines over the centuries. The broad criteria for wilderness,
minimum undisturbed core area, absence of current human interference and a minimum width
of one day’s walk could provide basic indicators. Many will seek indicators of genetic
diversity, but the main concern may be conflicts in goals between potential users of a
recovering forest.

Conclusion

Indicators of rainforest recovery can contribute to a more sustainable future for these
magnificent ecosystems, but they need to be clearly defined and meaningful. Probably there
will be different sets of indicators for the desired recovery endpoint. For example, if a National
Park capable attracting visitors was the goal, the indicators might include measures of visitor
satisfaction, while enabling traditional forest peoples to continue their hunting and gathering
rights in the forest would include the viability of their communities and their hunting success
as indicators. It might be possible to meet multiple goals in a recovering forest, but society and
science ought to be realistic about their values and aims for rainforest recovery and its
sustainable uses.
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