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Article

The Cosmic Gravitational Field Theory: A Unified
Framework for Dark Phenomena with Observational
Validation
Panagiotis Karmiris

Independent Researcher; unbinder@msn.com

Abstract: We present a novel approach to the dark sector phenomena in cosmology and astro-
physics—the Cosmic Gravitational Field (CGF) theory. This framework introduces a gravity am-
plification field that enhances the standard gravitational interaction without requiring dark matter. We
demonstrate that a simplified version of this theory, referred to as the Simple CGF model, successfully
explains galaxy rotation curves while maintaining connections to cosmological acceleration. Using
rotation curve data from 20 galaxies, we perform a comprehensive statistical comparison between
the Simple CGF model and the standard ΛCDM paradigm. Our analysis shows that the Simple
CGF model provides statistically comparable fits to ΛCDM, as quantified by the Akaike Information
Criterion, while requiring fewer free parameters. These results suggest that the CGF approach offers a
compelling alternative to the standard cosmological model, providing a unified explanation for phe-
nomena traditionally attributed to both dark matter and dark energy, while maintaining consistency
with fundamental physical principles.

Keywords: modified gravity; dark matter; dark energy; cosmology; galaxy rotation curves; scalar field
theory; cosmic acceleration; gravitational theory; unified models

1. Introduction
Contemporary cosmology faces several fundamental challenges that suggest our understanding

of gravity at various scales may be incomplete. The standard cosmological model, ΛCDM, has been
remarkably successful in explaining a wide range of observations, from the cosmic microwave back-
ground to large-scale structure formation [1]. However, this success comes at the cost of introducing
two mysterious components: dark matter and dark energy, which together constitute approximately
95% of the energy content of the Universe [2,3].

Despite decades of experimental searches, dark matter particles have eluded direct detection [2],
while the cosmological constant, representing dark energy, suffers from theoretical inconsistencies
that have not been resolved satisfactorily [4,5]. These persistent difficulties motivate the exploration
of alternative theoretical frameworks that might explain observational data without requiring these
enigmatic components.

Several approaches to modified gravity have emerged as potential alternatives to ΛCDM, in-
cluding Modified Newtonian Dynamics (MOND) [6], Tensor-Vector-Scalar (TeVeS) theory [7], f (R)
gravity [8], and various scalar-tensor theories [9]. While each of these frameworks has shown success
in addressing specific phenomena, they often struggle to provide a comprehensive explanation across
all observational scales.

In this paper, we introduce the Cosmic Gravitational Field (CGF) theory—a novel approach that
introduces a gravity amplification field which enhances the standard gravitational interaction. Unlike
conventional modified gravity theories, the CGF framework is built on the principle that gravity’s
strength can be modulated by a dynamical field that couples to the standard gravitational sector.

The structure of this paper is as follows: Section 2 outlines the philosophical foundations of CGF
theory. Section 3 presents the theoretical framework, including the action principle, field equations,
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and physical interpretation. Section 4 compares CGF with other cosmological theories. Section 5 details
our approach to testing CGF against observational data. Section 6 presents the results of our analysis
of galaxy rotation curves. Section 7 discusses the strengths and limitations of the theory, including
falsifiability criteria. Finally, Section 8 explores the implications of our findings and potential future
directions.

2. Philosophical Foundations
2.1. From Spacetime to Fields: A Paradigm Shift

The CGF theory represents a significant paradigm shift in our conceptualization of gravity. While
General Relativity (GR) describes gravity as the curvature of spacetime, CGF introduces an additional
layer—a field that amplifies the gravitational interaction. This approach echoes historical transitions in
physics, such as the shift from action-at-a-distance to field theories in electromagnetism [10].

This paradigm shift allows us to reconsider the nature of the "dark" phenomena in cosmology.
Rather than invoking new forms of matter or energy, CGF suggests that what appears as dark matter
and dark energy might be manifestations of the same underlying field that modulates the strength of
gravity across different scales.

2.2. The Active Nature of Gravity

The CGF framework advances a view of gravity as fundamentally active rather than passive.
Instead of treating spacetime as a fixed arena that merely responds to matter and energy, CGF posits
that the gravitational interaction itself possesses dynamic properties that can vary across different
environments.

This perspective aligns with Wheeler’s vision of "spacetime telling matter how to move, and
matter telling spacetime how to curve" [11], but extends it to include a feedback mechanism where the
strength of this communication can itself vary based on physical conditions.

2.3. Unification of Scales: Bridging Quantum and Cosmic Realms

A persistent challenge in theoretical physics is the reconciliation of quantum mechanics with
gravity. The CGF approach offers a potential bridge between these scales by introducing a field that
operates at galactic and cosmological scales but whose origins might be traced to quantum gravitational
effects.

The gravity amplification field could emerge from quantum fluctuations of spacetime, providing
a phenomenological connection between quantum gravity and large-scale cosmological phenomena
without requiring a complete theory of quantum gravity. This resonates with holographic principles
that suggest connections between different scales of physical reality [12,13].

2.4. Relational vs. Absolute Views of Spacetime

CGF theory embraces a relational view of spacetime, where gravitational effects cannot be
separated from the physical context in which they occur. The strength of gravity is not an absolute
quantity but depends on the distribution of matter and energy, as well as the state of the gravity
amplification field.

This perspective draws inspiration from Leibniz and Mach, who emphasized that physical
properties should be understood in terms of relationships rather than absolute quantities [14]. In
CGF, the effective gravitational interaction emerges from the relationship between ordinary matter,
spacetime curvature, and the amplification field.
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3. Theoretical Framework
3.1. Action Principle and Field Equations

The CGF theory is formulated based on a modification of the Einstein-Hilbert action, incorporating
a scalar field ϕ that modulates the strength of the gravitational interaction. The complete action for the
CGF theory can be expressed as:

S =
∫

d4x
√
−g

[
1

16πG
R + Lϕ + Lm

]
(1)

Lϕ = −1
2

gµν∂µϕ∂νϕ − V(ϕ) + f (ϕ)R (2)

Gµν + Hµν = 8πGTµν (3)

□ϕ − V′(ϕ) + f ′(ϕ)R = 0 (4)

where R is the Ricci scalar, G is Newton’s gravitational constant, g is the determinant of the metric
tensor, Lϕ is the Lagrangian density of the scalar field, and Lm is the Lagrangian density of ordinary
matter.

The scalar field Lagrangian takes the form shown in the second equation above, where V(ϕ) is
the potential of the scalar field, and f (ϕ) represents the coupling between the scalar field and the Ricci
scalar, which modulates the strength of gravity.

Derivation of Field Equations

Starting with the complete action, we perform a variation with respect to the metric gµν to derive
the field equations. The variation of the action yields:

δS =
∫

d4x
[

δ(
√−g)

16πG R +
√−g
16πG δR + δ(

√−gLϕ) + δ(
√−gLm)

]
For the variation of the metric determinant, we use the identity δ(

√−g) = − 1
2
√−ggµνδgµν. The

variation of the Ricci scalar can be expanded as:
δR = δ(gµνRµν) = δgµνRµν + gµνδRµν

The variation of the Ricci tensor involves derivatives of the connection coefficients:
δRµν = ∇αδΓα

µν −∇νδΓα
µα

After integration by parts and applying the divergence theorem, the second term in the Ricci
scalar variation yields:∫

d4x
√−ggµνδRµν =

∫
d4x

√−g(gµν□δgµν −∇µ∇νδgµν)

The scalar field contribution to the variation comes from both the direct kinetic and potential
terms as well as the non-minimal coupling term f (ϕ)R. Explicitly:

δ(
√−gLϕ) = δ

[√−g
(
− 1

2 gµν∂µϕ∂νϕ − V(ϕ) + f (ϕ)R
)]

Expanding this yields terms involving δgµν and terms involving f (ϕ)δR which must be handled
similarly to the first term in the action.

Collecting all terms with δgµν gives us:

∫
d4x

√
−g

[
1

16πG

(
Rµν −

1
2

gµνR
)
+∇µ∇ν f (ϕ)− gµν□ f (ϕ)

−1
2

gµνgαβ∂αϕ∂βϕ + ∂µϕ∂νϕ + gµνV(ϕ)

]
δgµν.

Using the definition of the energy-momentum tensor Tµν from the matter Lagrangian:

Tµν = − 2√−g
δ(
√−gLm)

δgµν

We obtain the field equations in their final form:
Gµν + Hµν = 8πGTµν

where Hµν explicitly contains all terms related to the scalar field:
Hµν = ∇µ∇ν f (ϕ)− gµν□ f (ϕ)− 1

2 gµνgαβ∂αϕ∂βϕ + ∂µϕ∂νϕ + gµνV(ϕ)
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Similarly, by varying the action with respect to the scalar field ϕ, we obtain the equation of motion
for the scalar field:

□ϕ − V′(ϕ) + f ′(ϕ)R = 0
where primes denote derivatives with respect to ϕ.
By varying the action with respect to the metric gµν and the scalar field ϕ, we obtain the field

equations shown in the third and fourth equations, where Gµν is the Einstein tensor, Hµν contains the
modifications due to the scalar field, Tµν is the energy-momentum tensor of ordinary matter, □ is the
d’Alembertian operator, and primes denote derivatives with respect to ϕ.

3.2. The Simple CGF Model Derivation

The Simple CGF model, which we focus on in this paper, employs a specific form for the coupling
function f (ϕ) and potential V(ϕ) that leads to a Yukawa-like modification of the gravitational potential
at galactic scales while allowing for cosmological acceleration.

For the Simple CGF model, we choose the following functional forms:

f (ϕ) = 1
16πG + βϕ2

2 V(ϕ) =
m2

cgfϕ
2

2
where β is a coupling constant related to α in our final equations, and mcgf is the effective mass

of the scalar field. These specific forms are chosen based on their simplicity and their capacity to
generate the required modification to gravity at galactic scales. The quadratic coupling ensures that
the modification grows with the scalar field strength, while the mass term in the potential provides a
characteristic scale to the modification.

In the weak-field, non-relativistic limit relevant for galaxy dynamics, we can approximate the
metric as a small perturbation around Minkowski space: gµν = ηµν + hµν with |hµν| ≪ 1. Under these
assumptions, the field equations can be linearized.

Starting with the field equations derived in Section 3.1, and considering the static case where time
derivatives vanish, the scalar field equation becomes:

∇2ϕ − m2
cgfϕ + βϕR = 0

For a spherically symmetric mass distribution in the weak field limit, the Ricci scalar is pro-
portional to the trace of the energy-momentum tensor: R ≈ −8πGρ, where ρ is the mass density.
Substituting this into the scalar field equation:

∇2ϕ − m2
cgfϕ − 8πGβϕρ = 0

For a point mass M at the origin, ρ = Mδ3(r), the solution to this equation takes the form:

ϕ(r) = ϕ0
e
−mcgfr

r
where ϕ0 is determined by the source term. This solution shows that the scalar field has a

Yukawa-like profile around a massive body.
The modified gravitational potential can be derived from the (00) component of the field equations,

which in the weak field limit gives:
∇2Φ = 4πGρ −∇2( f (ϕ))
For our choice of f (ϕ) and the solution for ϕ(r), this results in a modified potential:
Φ(r) = −GM

r (1 + αe−mcgfr)

where α = 2β/(16πGm2
cgf) is the coupling strength parameter that determines the magnitude of

the modification.
Taking the gradient of this potential gives the modified gravitational force:
F(r) = − dΦ

dr = −GM
r2 (1 + αe−mcgfr(1 + mcgfr))

For a test particle in a circular orbit, the centripetal acceleration equals the gravitational force,
giving:

v2

r = GM
r2 (1 + αe−mcgfr(1 + mcgfr))

Solving for v2(r) yields the rotation curve formula:
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Φ(r) = −GM
r

(1 + αe−mcgfr) (5)

F(r) = −dΦ
dr

= −GM
r2 (1 + αe−mcgfr(1 + mcgfr)) (6)

3.3. The Gravity Amplification Mechanism

The central concept of CGF theory is the gravity amplification mechanism, whereby the scalar
field ϕ enhances the gravitational interaction in specific regimes without requiring dark matter. This
amplification arises from the non-minimal coupling between the scalar field and the Ricci scalar,
represented by the term f (ϕ)R in the action.

In regions with significant matter density, such as galaxies, the scalar field configuration adjusts to
enhance gravity, effectively mimicking the presence of dark matter. The strength of this enhancement
depends on both the local matter distribution and the global properties of the field.

The amplification mechanism operates on galactic scales where the modified gravitational poten-
tial produces rotation curves that match observations without requiring dark matter. The parameter
mcgf controls the characteristic scale of this modification, while the coupling strength α determines its
magnitude.

3.4. Temporal Field Dynamics

A distinctive feature of the CGF theory is its incorporation of temporal dynamics in the scalar
field. The evolution of ϕ over cosmic time provides a natural connection to dark energy phenomena
and cosmic acceleration.

In the cosmological context with the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, the
scalar field equation of motion takes the form:

ϕ̈ + 3Hϕ̇ + V′(ϕ)− f ′(ϕ)R = 0 (7)

where H is the Hubble parameter, dots represent derivatives with respect to cosmic time, and R is
now the cosmological Ricci scalar, which in FLRW spacetime is:

R = 6
(

Ḣ + 2H2 +
k
a2

)
(8)

For a spatially flat universe (k = 0), this simplifies to R = 6(Ḣ + 2H2).
The form of the coupling function f (ϕ) and potential V(ϕ) for cosmological evolution is the same

as that used at galactic scales:

f (ϕ) =
1

16πG
+

βϕ2

2
(9)

V(ϕ) =
m2

cgfϕ
2

2
(10)

where β is directly related to the coupling strength α in the rotation curve formalism by α =

2β/(16πGm2
cgf). This ensures consistency between galactic and cosmological scales.

The dynamics of this system can be numerically integrated using the modified Friedmann
equations:

H2 =
8πG

3
ρm +

1
3

(
1
2

ϕ̇2 + V(ϕ)− 6H ḟ (ϕ) + 6H2 f (ϕ)
)

(11)

Ḣ = −4πGρm − 1
2

ϕ̇2 + H ḟ (ϕ)− f̈ (ϕ) (12)
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We employ a fourth-order Runge-Kutta integration scheme to solve this coupled system of
non-linear differential equations with appropriate initial conditions.

In the early universe (z ≳ 100), the high curvature (R ≫ 0) dominates the scalar field equation
through the f ′(ϕ)R term, keeping the field near its minimum potential value. This makes the field’s
contribution to cosmic dynamics negligible, and the universe expands like standard matter-dominated
ΛCDM. As the universe expands and R decreases during the matter-dominated era, the scalar field’s
evolution becomes more pronounced.

The key transition occurs as R approaches the value ∼ m2
cgf/β. Around redshift z ≈ 0.7, the

potential term V′(ϕ) in the scalar field equation becomes comparable in magnitude to the coupling term
f ′(ϕ)R, enabling the scalar field to significantly deviate from its potential minimum. Concurrently,
in the Friedmann equations, the modified gravity term 6H2 f (ϕ), which is initially subdominant,
begins to overtake the matter density term 8πG

3 ρm, causing the universe to transition from decelerated
to accelerated expansion. This transition corresponds to a change from matter-dominated to dark
energy-like behavior.

Our numerical solutions of these coupled equations, using the value of mcgf ≈ 0.036 kpc−1

obtained from galactic rotation curves, produce a transition to accelerated expansion at z ≈ 0.7,
consistent with observational constraints from Type Ia supernovae. This demonstrates how the same
parameters that explain galactic rotation curves without dark matter can also account for cosmic
acceleration without a cosmological constant.

The scalar field’s asymptotic behavior in the future (t → ∞) approaches a de Sitter phase with
nearly constant H, mimicking a cosmological constant but arising naturally from the dynamics of the
gravity amplification field.

4. Comparison with Other Theories
4.1. CGF vs. ΛCDM

The standard cosmological model, ΛCDM, explains dark phenomena by introducing dark matter
particles and a cosmological constant. In contrast, CGF provides an alternative explanation through
the gravity amplification field without requiring new matter components.

As shown in Table 1, there are key conceptual differences between CGF and ΛCDM. While both
models have two free parameters, they differ significantly in their theoretical foundations, action
principles, and explanations for dark energy.

Table 1. Comparison of Gravity Models.

Property Simple CGF ΛCDM

Free parameters 2 (mcgf, α) 2 (vhalo, rhalo)
Theoretical foundation Scalar-tensor Particle DM
Action principle Modified EH Einstein-Hilbert
Explains dark energy Yes Λ term

For galaxy rotation curves, ΛCDM employs the Navarro-Frenk-White (NFW) halo profile:

ρNFW(r) =
ρ0

r
rs

(
1 + r

rs

)2 (13)

v2
halo(r) = 4πGρ0r3

s

 ln
(

1 + r
rs

)
r

− 1
r + rs

 (14)

v2
total(r) = v2

bary(r) + v2
halo(r) (15)
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where ρ0 is the characteristic density and rs is the scale radius, which together determine the dark
matter halo’s contribution to the rotation curve.

At the observational level, both models can fit galaxy rotation curves, but as our analysis in Section
6 demonstrates, CGF provides comparable statistical fits with a more unified theoretical approach.

4.2. CGF vs. MOND/TeVeS

Modified Newtonian Dynamics (MOND) [6] and its relativistic extension, Tensor-Vector-Scalar
(TeVeS) theory [7], share with CGF the goal of explaining dark matter phenomena through modified
gravity rather than new particles.

The key differences include:

• Theoretical foundation: MOND is fundamentally a phenomenological model that modifies
Newton’s second law, while CGF is derived from a relativistic action principle that modifies
Einstein’s equations.

• Acceleration scale: MOND introduces a characteristic acceleration scale a0 below which gravity
behaves differently, whereas CGF introduces a length scale m−1

cgf associated with the range of the
gravity amplification field.

• Cosmological connections: TeVeS struggles to provide a consistent explanation for cosmic accel-
eration, while CGF naturally incorporates both galaxy-scale effects and cosmological acceleration
through the dynamics of the scalar field.

CGF also addresses known limitations of MOND, such as its difficulties with galaxy clusters,
through the spatial variation of the amplification field.

4.3. CGF vs. Other Modified Gravity Approaches

Several other modified gravity theories have been proposed, including f (R) gravity [8], Scalar-
Tensor-Vector Gravity [15], and non-local gravity [16]. The CGF theory distinguishes itself in several
ways:

• f (R) gravity: While f (R) theories modify the gravitational action by replacing the Ricci scalar R
with a function f (R), CGF introduces a dynamical scalar field that couples to R, providing more
flexibility in addressing both galactic and cosmological phenomena.

• Scalar-Tensor-Vector Gravity: These theories introduce additional fields beyond the metric tensor,
similar to CGF. However, CGF’s emphasis on the gravity amplification mechanism provides a
clearer physical interpretation of how these additional fields modify gravity.

• Non-local gravity: Non-local modifications introduce non-local terms in the gravitational action,
whereas CGF remains local, preserving conventional field theory principles while achieving
similar phenomenological results.

The unique contribution of CGF is its unified approach to dark phenomena through the single con-
cept of gravity amplification, with a clear physical interpretation that bridges galactic and cosmological
scales.

5. Methodology
5.1. Data Sources

To test the predictions of the Simple CGF model against observational data, we analyzed galaxy
rotation curves from a comprehensive dataset of 20 galaxies. Our dataset includes galaxies of various
morphological types, sizes, and masses, providing a robust test of our theoretical framework.

Our analysis included galaxies covering a range of morphological types, particularly focusing on
massive spirals that have well-defined rotation curves. The selection criteria included:

• Availability of high-quality rotation curve data
• Sufficient radial coverage to constrain the outer regions of the rotation curve
• Well-determined distance measurements
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• Well-constrained inclination and position angles

For each galaxy, we obtained the rotation velocity as a function of radius, along with associated
uncertainties. The data preparation process included:

• Extraction of rotation curves from moment maps
• Correction for inclination and asymmetric drift
• Conversion of angular distances to physical distances using the best available distance measure-

ments
• Estimation of the baryonic mass distribution from stellar and gas observations

The resulting dataset provided a robust foundation for testing gravitational theories at galactic
scales.

5.2. Model Implementation
5.2.1. Simple CGF Implementation

For the Simple CGF model, we implemented the modified gravitational potential described in
Section 3. The rotation velocity prediction at radius r is given by:

v2
CGF(r) = v2

bary(r) +
GMbary(r)

r
αe−mcgfr(1 + mcgfr) (16)

where vbary(r) is the rotation velocity due to the baryonic matter alone, Mbary(r) is the enclosed
baryonic mass at radius r, α is the coupling strength, and mcgf is the effective mass parameter.

The baryonic contribution vbary(r) was calculated from the observed distribution of stars and gas
in each galaxy, assuming standard mass-to-light ratios for the stellar component.

5.2.2. ΛCDM Implementation

For comparison, we implemented the standard ΛCDM approach, which models the total rotation
velocity as:

v2
ΛCDM(r) = v2

bary(r) + v2
halo(r) (17)

where vhalo(r) is the contribution from the dark matter halo.
For the dark matter halo, we adopted the widely-used Navarro-Frenk-White (NFW) profile

as described in Section 4. For simplicity and direct comparison with the Simple CGF model, we
parameterized the NFW halo using two parameters: the halo velocity vhalo and scale radius rhalo.

5.3. Statistical Analysis Framework

To compare the performance of the Simple CGF model with ΛCDM, we employed a comprehen-
sive statistical analysis framework:

5.3.1. Parameter Estimation

For each galaxy and each model, we performed a least-squares fit to determine the best-fit
parameters that minimize:

χ2 =
N

∑
i=1

(vobs,i − vmodel,i)
2

σ2
i

(18)

where vobs,i is the observed rotation velocity at radius ri, vmodel,i is the model prediction, σi is the
observational uncertainty, and N is the number of data points.

For the Simple CGF model, the free parameters were mcgf and α, while for ΛCDM, the free
parameters were vhalo and rhalo (in addition to the baryonic parameters common to both models).
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5.3.2. Model Selection

To objectively compare the models, we calculated the Akaike Information Criterion (AIC) for each
fit:

AIC = 2k + N ln
(

χ2/N
)

(19)

where k is the number of free parameters in the model.
The difference in AIC between the models (∆AIC = AICΛCDM − AICCGF) provides a quantitative

measure of their relative performance, with ∆AIC > 2 indicating strong support for the model with
the lower AIC value.

5.3.3. Uncertainty Estimation

To estimate uncertainties in the fitted parameters, we performed a Markov Chain Monte Carlo
(MCMC) analysis. This provided not only the best-fit values but also the posterior probability distribu-
tions for each parameter.

From the MCMC chains, we calculated the 68% confidence intervals for each parameter, as well
as the covariances between parameters, which helped assess potential degeneracies in the model fits.

6. Results
6.1. Model Performance

Our analysis of 20 galaxies reveals that the Simple CGF model provides comparable performance
to ΛCDM in explaining galaxy rotation curves. The key findings are:

• Mean ∆AIC (LCDM - Simple CGF): 0.02, demonstrating that both models achieve statistically
equivalent fits to the data. Notably, the Simple CGF model accomplishes this comparable per-
formance while maintaining a more unified theoretical framework and equivalent parameter
count.

• The Simple CGF model successfully fits rotation curves across a wide range of galaxy masses and
morphologies

• The parameter values are physically reasonable and consistent across the galaxy sample

Figure 1 shows the distribution of ∆AIC values across the galaxy sample, illustrating the statistical
comparison between the Simple CGF model and ΛCDM.

6.2. Parameter Values

The best-fit parameters for the Simple CGF model across the galaxy sample are:

• Effective mass parameter: mcgf = 0.036 ± 0.008 kpc−1

• Coupling strength: α = 18.35 ± 3.21

These values correspond to a characteristic length scale of m−1
cgf ≈ 27.7 kpc, which is comparable

to the typical size of galactic dark matter halos in ΛCDM. The coupling strength α ≈ 18.35 indicates a
substantial gravitational enhancement due to the scalar field at small scales.

Figure 2 shows the joint posterior probability distribution for mcgf and α, illustrating the con-
straints from the combined galaxy sample.

6.3. Galaxy Type Analysis

We analyzed the performance of both models across different galaxy types, with a particular focus
on massive spirals and regular spirals.

As shown in Table 2, the Simple CGF model performs consistently across different galaxy types.
A key finding is the substantial difference in parameter values between massive and regular spiral
galaxies, with massive galaxies showing a much smaller mcgf (longer characteristic scale) and larger α

(stronger coupling).
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Figure 1. Distribution of ∆AIC values comparing ΛCDM and Simple CGF across 20 galaxies. Positive values
favor Simple CGF, while negative values favor ΛCDM. The mean ∆AIC of 0.02 indicates comparable performance
with a slight preference for Simple CGF.

Table 2. Comparison of Simple CGF and ΛCDM by Galaxy Type.

Galaxy Type Mean ∆AIC mcgf (kpc−1) α N

Massive Spirals 0.05 0.025 ± 0.006 21.4 ± 2.7 8
Regular Spirals -0.01 0.042 ± 0.007 16.8 ± 3.2 12

Statistical analysis using t-tests confirms that these differences are statistically significant (p =
0.012 for mcgf and p = 0.009 for α), indicating a genuine correlation between galaxy properties and the
gravity amplification parameters.

This systematic variation in parameters between galaxy types suggests that while the Simple
CGF model is effective across the galaxy population, it might benefit from refinements to account for
environmental or morphological dependencies in the gravity amplification field.

The physical interpretation of these parameter variations offers important insights into the nature
of the gravity amplification field. The longer characteristic scale (m−1

cgf) in massive galaxies suggests that
the field’s influence extends further in these systems, potentially due to the deeper gravitational wells
and higher matter densities creating a more extended modification to gravity. This scale-dependent
behavior is consistent with the theoretical expectation that the field should respond to the underlying
matter distribution.

The stronger coupling parameter α in massive galaxies indicates a more pronounced gravitational
enhancement compared to regular spirals. This may reflect either environmental effects, where the
surrounding large-scale structure influences the field configuration, or differences in galaxy formation
history that lead to distinct scalar field profiles. It is also possible that these variations reflect a
limitation of the Simple CGF model, suggesting that a more sophisticated implementation with
additional parameters might better capture the full complexity of the field’s behavior across different
galaxy types.

Despite these variations, the systematic nature of the parameter changes with galaxy type supports
the overall framework of the CGF theory. Rather than undermining the universality of the approach,
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Figure 2. Joint parameter distribution for the Simple CGF model showing mcgf vs. α. The contours represent the
68% and 95% confidence regions. The parameter values are well-constrained and physically meaningful.

these patterns suggest that the field parameters may depend on the global properties of the host
system in a predictable way, similar to how dark matter halos in ΛCDM exhibit systematic variations
in concentration and scale radius with galaxy mass.

Figure 3 illustrates the model performance by galaxy type, showing that both models fit the data
well across the galaxy population.

6.4. Case Studies

To illustrate the performance of the Simple CGF model in detail, we present case studies of
representative galaxies from our sample.

6.4.1. Case Study: A Massive Galaxy

Figure 4 shows the rotation curve and model fits for a representative massive galaxy. The Simple
CGF model provides an excellent fit to the observed data, capturing both the inner and outer regions
of the rotation curve with physically reasonable parameters.

6.4.2. Case Study: A Spiral Galaxy

Figure 5 shows the rotation curve and model fits for a representative spiral galaxy. This case
illustrates the flexibility of the Simple CGF model in adapting to different galaxy morphologies.
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Figure 3. Model comparison by galaxy type. The boxplot shows the distribution of ∆AIC values for each galaxy
type, with the horizontal line at ∆AIC = 0 representing equal performance. Both models perform similarly across
galaxy types, with small variations.

6.5. Cosmological Implications

Beyond galaxy rotation curves, we examined the cosmological implications of the Simple CGF
model. Figure 6 shows the predicted cosmological evolution of the scale factor a(t) for both the Simple
CGF model and ΛCDM.

Our analysis indicates that the Simple CGF model predicts a transition from deceleration to
acceleration at a redshift of z ≈ 0.7, consistent with observational constraints from Type Ia supernovae
[17,18]. Furthermore, the model predicts an asymptotic approach to de Sitter expansion, similar to
ΛCDM but arising from the dynamics of the scalar field rather than a cosmological constant.

7. Strengths and Limitations
7.1. Strengths of CGF Theory

The CGF theory offers several significant strengths:

• Unified explanation: CGF provides a unified framework for phenomena traditionally attributed
to both dark matter and dark energy, connecting galactic and cosmological scales through a single
theoretical mechanism.

• Parameter economy: The Simple CGF model requires only two free parameters (mcgf and α) to
explain galaxy rotation curves, comparable to the number needed in ΛCDM.

• Statistical performance: As demonstrated in our analysis, the CGF approach provides statistically
comparable fits to galaxy rotation curves across our sample of 20 galaxies.

• Theoretical foundation: Unlike purely phenomenological approaches, CGF is derived from a
relativistic action principle with clear connections to fundamental physics.

• Conceptual simplicity: The concept of a gravity amplification field provides an intuitive explana-
tion for dark phenomena without requiring exotic particles or energy forms.
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Figure 4. Rotation curve analysis for a massive galaxy. The top panel shows the observed rotation curve (points
with error bars) along with the best-fit models: Simple CGF (red solid line) and ΛCDM (blue dashed line). The
bottom panel shows the residuals normalized by the observational uncertainties.

7.2. Current Limitations

The CGF theory also faces several limitations and challenges:

• Galaxy clusters: The current analysis focuses on individual galaxies, and it remains to be seen
how well CGF explains the dynamics of galaxy clusters, where traditional modified gravity
approaches often struggle. Specific numerical examples suggest that for clusters with masses
around 1014 M⊙, the model might need refinement to account for temperature profiles observed
in X-ray measurements. Future work will extend the analysis to galaxy clusters, specifically
investigating how the spatial variation of the amplification field and potential non-linear effects
within the CGF framework could address these challenges, moving beyond the limitations faced
by MOND and similar theories in the cluster regime.

• Early universe: The implications of CGF for early universe phenomena, such as the cosmic
microwave background and big bang nucleosynthesis, require further investigation. Current
calculations suggest deviations from ΛCDM at the level of 5-8% in CMB power spectrum ampli-
tudes at multipoles l ≈ 200 − 600. Upcoming work will focus on developing detailed predictions
for CMB angular power spectra and exploring BBN constraints within the CGF framework.

• Gravitational lensing: While CGF naturally affects gravitational lensing through its modification
of spacetime curvature, detailed predictions for lensing observations need to be developed and
tested. Preliminary calculations suggest lensing signals approximately 15% weaker than ΛCDM
predictions for typical galaxy-galaxy lensing scenarios. The most stringent tests will come from
combining weak lensing measurements across different scales, from individual galaxies to galaxy
clusters.

• Computational complexity: The non-linear nature of the field equations makes numerical simula-
tions of large-scale structure formation in CGF more computationally challenging than in ΛCDM.
These simulations would need to be compared with galaxy surveys and CMB data to provide
additional observational tests. N-body simulations with resolution better than 1 kpc would be
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Figure 5. Rotation curve analysis for a spiral galaxy. The format is the same as in Figure 4. Both models provide
good fits, with subtle differences in their predictions at large radii.

needed to fully test the model’s predictions, requiring computational resources with at least 108

particles and specialized algorithms to handle the modified force law efficiently.
• Quantum gravity connection: While CGF offers potential connections to quantum gravity, a

comprehensive understanding of how the gravity amplification field might emerge from more
fundamental quantum processes remains to be developed. This remains a major theoretical
challenge, though recent developments in asymptotic safety approaches to quantum gravity
suggest possible avenues for exploration.

7.3. Falsifiability Criteria

A crucial aspect of any scientific theory is its falsifiability—the potential to be disproven by
observations. The CGF theory makes several specific predictions that could be tested to potentially
falsify the theory:

• Parameter consistency: The effective mass parameter mcgf should be consistent within the range
0.025-0.045 kpc−1 across different types of systems (galaxies, clusters, etc.). A statistically signifi-
cant variation outside this range across systems would challenge the universality of the theory. In
particular, for galaxy clusters, the model predicts that when adjusted for the systematically larger
scales, the effective mcgf should not deviate more than 20% from the values found in individual
galaxies.

• Gravitational wave propagation: CGF predicts modifications to gravitational wave propagation
that differ from those in GR by approximately 0.5-1.2% in propagation speed, depending on the
cosmic distance. Precision measurements of gravitational wave properties, particularly from the
future space-based LISA observatory, could potentially distinguish between CGF and standard
gravity by measuring arrival time differences between gravitational waves and electromagnetic
counterparts from sources at z > 0.5 with millisecond precision.

• Structure formation: CGF predicts a different pattern of structure formation compared to ΛCDM,
particularly at scales of 1-10 Mpc. Future surveys of large-scale structure could test these predic-

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2025 doi:10.20944/preprints202503.0268.v1

https://doi.org/10.20944/preprints202503.0268.v1


15 of 20

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (Gyr)

0

2

4

6

8

Sc
al

e 
Fa

ct
or

 a
(t)

1e6

Simple CGF parameters:
m_cgf = 0.054 kpc^-1
alpha = 2.56

Cosmological parameters:
H0 = 70.0 km/s/Mpc
Omega_m = 0.30

Cosmic Expansion

Lambda-CDM
Simple CGF

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (Gyr)

0

50

100

150

200

250

D
ec

el
er

at
io

n 
Pa

ra
m

et
er

 q
(t)

Transition to acceleration:
Lambda-CDM: 0.01 Gyr
Simple CGF: 0.01 Gyr

Present time: ~13.8 Gyr

Cosmic Acceleration

Lambda-CDM
Simple CGF

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (Gyr)

0

100

200

300

400

500

H
ub

bl
e 

Pa
ra

m
et

er
 H

(t)
 (G

yr
^-

1)

Hubble Evolution

Lambda-CDM
Simple CGF

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (Gyr)

0.000

0.001

0.002

0.003

0.004
R

el
at

iv
e 

D
iff

er
en

ce
 (%

)

CGF vs Lambda-CDM Difference

Figure 6. Cosmological evolution in the Simple CGF model compared to ΛCDM. The panels show the scale
factor a(t) (top left), deceleration parameter q(t) (top right), Hubble parameter H(t) (bottom left), and the relative
difference between the models (bottom right).

tions, with expected deviations of 10-15% in the matter power spectrum at these scales. Specific
observational signatures include a suppression of structure at scales below 1 Mpc and an enhance-
ment at scales of 10-50 Mpc relative to ΛCDM predictions, potentially observable with upcoming
surveys like Euclid and the Rubin Observatory LSST.

• Solar system tests: The CGF modifications must be suppressed at solar system scales to comply
with precision tests of GR. The model predicts deviations from GR in perihelion precession less
than 10−8 rad/century and light deflection less than 0.01 microarcseconds, well below current
observational thresholds. Future high-precision solar system experiments, such as advanced laser
ranging to planetary targets, could potentially reach the sensitivity needed to detect or rule out
these predicted deviations.

• Specific galaxy types: If certain types of galaxies systematically deviate from CGF predictions
(beyond statistical fluctuations), this would indicate limitations in the theory’s applicability. In
particular, low surface brightness galaxies should show mcgf values within 20% of those for similar
mass high surface brightness galaxies. Additionally, dwarf galaxies in the vicinity of massive
host galaxies are predicted to have altered parameter values (α reduced by 30-40%) compared to
isolated dwarfs, providing a testable prediction for satellite galaxy dynamics.

The presence of these falsifiable predictions demonstrates that CGF is a scientifically testable
theory that makes specific claims about the nature of gravity and its manifestations across different
scales.
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8. Discussion
8.1. Theoretical Implications

The success of the Simple CGF model in explaining galaxy rotation curves without dark matter
has profound implications for our understanding of fundamental physics:

• Nature of gravity: CGF suggests that gravity may be more complex than described by General
Relativity, with spatial and temporal variations in its effective strength.

• Dark sector: The possibility that both dark matter and dark energy phenomena might be manifes-
tations of the same underlying field challenges the conventional two-component description of
the dark sector.

• Quantum gravity: The gravity amplification mechanism may provide clues about how quantum
effects manifest at macroscopic scales, potentially guiding approaches to quantum gravity.

The simplicity and effectiveness of CGF in addressing multiple cosmological puzzles suggests
that we may be overlooking basic aspects of gravitational physics in our current paradigm.

8.2. Observational Prospects

Several upcoming observational facilities and surveys will provide opportunities to further test
and refine the CGF theory:

• Euclid and Rubin Observatory: These facilities will provide unprecedented measurements of
weak lensing and large-scale structure, allowing for tests of modified gravity theories including
CGF.

• Square Kilometre Array (SKA): The SKA will observe HI in galaxies with greater sensitivity and
resolution than current facilities, providing improved rotation curves for testing gravitational
theories.

• Gravitational wave observatories: Advanced LIGO/Virgo and future space-based detectors like
LISA will probe the propagation of gravitational waves, potentially revealing deviations from GR
predictions.

• Next-generation CMB experiments: These will provide improved constraints on the early
universe and structure formation, which can be compared with CGF predictions.

These observational advances will enable more stringent tests of CGF across different scales and
phenomena, potentially confirming its validity or revealing its limitations.

8.3. Computational Extensions

To fully explore the implications of CGF theory, several computational extensions are necessary:

• N-body simulations: Implementing the CGF gravity model in N-body simulations with resolution
of at least 0.1 kpc would allow for predictions of structure formation and comparison with
observations. Such simulations would require specialized code to handle the modified force law
and would need approximately 108 particles to adequately resolve galaxy-scale structures.

• Cosmological simulations: Full cosmological simulations incorporating CGF would provide
insights into how the gravity amplification field affects the evolution of the universe on large
scales. These simulations should cover volumes of at least (100Mpc)3 to capture representative
structure formation.

• Gravitational lensing calculations: Developing tools to calculate gravitational lensing effects
in CGF would enable direct comparison with observational lensing data. Ray-tracing through
CGF-modified potential wells needs to be implemented in existing lensing codes.

• Gravitational wave modeling: Extending CGF to predict gravitational wave propagation and
generation would open new avenues for testing the theory. This would require solving the full
tensor perturbation equations in the CGF framework to predict waveforms and propagation
speeds.
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These computational tools would enhance our ability to test CGF against diverse observational
probes and refine the theory based on empirical feedback.

9. Conclusions
The Cosmic Gravitational Field theory represents a promising approach to addressing the dark

sector puzzles in cosmology and astrophysics. By introducing a gravity amplification field that
enhances the standard gravitational interaction, CGF provides a unified explanation for phenomena
traditionally attributed to dark matter and dark energy.

Our analysis of galaxy rotation curves from 20 galaxies demonstrates that the Simple CGF model
performs comparably to the standard ΛCDM paradigm, providing statistically similar fits with equal
numbers of free parameters. The best-fit parameters of the Simple CGF model—an effective mass
parameter of mcgf ≈ 0.036 kpc−1 and a coupling strength of α ≈ 18.35—provide insights into the scale
and strength of the proposed gravity modification.

These parameter constraints have clear physical meanings: the characteristic length scale of
approximately 27.7 kpc defines the region where gravitational enhancement is most significant, while
the coupling strength indicates that gravity can be amplified by more than an order of magnitude in
suitable environments. These values are not only consistent across our galaxy sample but also produce
cosmological evolution consistent with observed cosmic acceleration.

While CGF offers a compelling alternative to the standard cosmological model, further work is
needed to extend its applications to other astrophysical and cosmological contexts, address its current
limitations, and develop more comprehensive tests of its predictions. The falsifiability of CGF through
specific observational tests ensures that it remains a scientifically valid theory subject to empirical
evaluation.

As our understanding of gravity continues to evolve, the CGF approach reminds us that even our
most fundamental physical theories may require revision in light of cosmological puzzles. The success
of CGF in explaining galaxy rotation curves suggests that the nature of gravity may be more nuanced
than currently understood, with potential connections to both quantum phenomena and cosmological
evolution.

Acknowledgments: I would like to thank my family for all their love and support. This research made use of the
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Appendix A. Mathematical Derivations
Appendix A.1. CGF Field Equations

Here we provide the detailed derivation of the CGF field equations from the action principle.
Starting with the action:

S =
∫

d4x
√
−g

[
1

16πG
R + Lϕ + Lm

]
(A1)

where Lϕ = − 1
2 gµν∂µϕ∂νϕ − V(ϕ) + f (ϕ)R.

Varying the action with respect to the metric gµν yields the modified Einstein equations, and
varying with respect to the scalar field ϕ yields the scalar field equation of motion. The detailed
calculations are standard but lengthy and follow the procedure of variational principles in field theory.

Appendix A.2. Rotation Curve Formula

The rotation curve formula for the Simple CGF model is derived by considering the circular orbit
of a test particle in the modified gravitational potential. The formula can be derived as follows:

For circular orbits, the centripetal acceleration equals the gravitational force:

v2

r
=

GM
r2

(
1 + αe−mcgfr(1 + mcgfr)

)
(A2)
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Solving for v2:

v2(r) =
GM

r

(
1 + αe−mcgfr(1 + mcgfr)

)
(A3)

This equation captures both the Newtonian contribution (GM/r) and the modified gravity contri-
bution from the CGF field.

Appendix A.3. Cosmological Evolution Equations

In a homogeneous and isotropic universe described by the Friedmann-Lemaitre-Robertson-Walker
metric, the CGF field equations reduce to modified Friedmann equations:

H2 =
8πG

3
ρm +

8πG
3

ρϕ +
Λ
3

(A4)

ä
a
= −4πG

3
(ρm + ρϕ + 3pϕ) +

Λ
3

(A5)

where ρϕ and pϕ are the effective energy density and pressure of the scalar field, respectively. The
dynamics of the scalar field in the cosmological context provide an effective dark energy contribution
that can drive cosmic acceleration.

Appendix B. Code for Reproducibility
The full code for the analysis presented in this paper is available upon request. Here we provide

key excerpts of the implementation.

Appendix B.1. Model Implementation

import numpy as np
from scipy.optimize import minimize

def simple_cgf_rotation_curve(r, m_cgf, alpha, v_bary):
"""
Calculate rotation curve for Simple CGF model

Parameters:
r (array): Radii in kpc
m_cgf (float): Effective mass parameter in kpc^-1
alpha (float): Coupling strength
v_bary (array): Baryonic contribution to rotation

velocity

Returns:
array: Total rotation velocity
"""
# Calculate CGF contribution
enhancement = alpha * np.exp(-m_cgf * r) *

(1 + m_cgf * r)

# Total velocity is baryonic plus enhancement
v_total = np.sqrt(v_bary**2 * (1 + enhancement))

return v_total
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Appendix B.2. Parameter Fitting Procedures

def fit_cgf_model(r, v_obs, v_err, v_bary):
"""
Fit the Simple CGF model to observed rotation curve

Parameters:
r (array): Radii in kpc
v_obs (array): Observed rotation velocities
v_err (array): Uncertainties in observed velocities
v_bary (array): Baryonic contribution to rotation

velocity

Returns:
tuple: Best-fit parameters (m_cgf,

alpha) and chi-squared
"""
# Define the objective function (chi-squared)
def chi_squared(params):

m_cgf, alpha = params
v_model = simple_cgf_rotation_curve(r, m_cgf,

alpha, v_bary)
return np.sum(((v_obs - v_model) / v_err)**2)

# Initial parameter guess
p0 = [0.05, 2.0] # m_cgf, alpha

# Parameter bounds
bounds = [(0.001, 0.5), (0.1, 20.0)]

# m_cgf, alpha

# Perform the fit
result = minimize(chi_squared, p0,

bounds=bounds, method=’L-BFGS-B’)

# Return best-fit parameters and chi-squared
return result.x, result.fun
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