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Review
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Abstract: We present a review of recent developments in cosmological models based on Finsler
geometry, as well as geometric extensions of general relativity formulated within this framework.
Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not
only on position but also on an additional internal degree of freedom, typically represented by a
vector field at each point of the space-time manifold. We examine in detail the possibility that Finsler-
type geometries can describe the physical properties of the gravitational interaction, as well as the
cosmological dynamics. In particular we will present and review the implications of a particular
implementation of Finsler geometry, based on the Barthel connection, and of the (α, β) geometries,
where α is a Riemannian metric, and β is an one-form. For a specific construction of the deviation
part β, in these classes of geometries, the Barthel connection coincides with the Levi-Civita connection
of the associated Riemann metric. We review the properties of the gravitational field, and of the
cosmological evolution in three types of geometries: the Barthel-Randers geometry, in which the
Finsler metric function F is given by F = α + β, in the Barthel-Kropina geometry, with F = α2/β, and
in the conformally transformed Barthel-Kropina geometry, respectively. After a brief presentation of the
mathematical foundations of the Finslerian type modified gravity theories, the generalized Friedmann
equations in these geometries are written down by considering that the background Riemannian
metric in the Randers and Kropina line elements is of Friedmann-Lemaitre-Robertson-Walker type.
The matter energy balance equations are also presented, and they are interpreted from the point of view
of the thermodynamics of irreversible processes in the presence of particle creation. We investigate the
cosmological properties of the Barthel-Randers and Barthel-Kropina cosmological models in detail. In
these scenarios, the additional geometric terms arising from the Finslerian structure can be interpreted
as an effective geometric dark energy component, capable of generating an effective cosmological
constant. Several cosmological solutions—both analytical and numerical—are obtained and compared
against observational data sets, including Cosmic Chronometers, Type Ia Supernovae, and Baryon
Acoustic Oscillations, using a Markov Chain Monte Carlo (MCMC) analysis. A direct comparison with
the standard ΛCDM model is also carried out. The results indicate that Finslerian cosmological models
provide a satisfactory fit to the observational data, suggesting they represent a viable alternative to the
standard cosmological model based on general relativity.

Keywords: Barthel connection; (α, β) metrics; Finslerian Cosmology; Posterior Inference; MCMC
statistical analysis
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1. Introduction-Early History and Modern Developments
In 1918, the same year in which Herman Weyl proposed his important extension of Riemannian

geometry [1,2], by introducing in mathematics and physics the concept of nonmetricity, another equally
interesting generalization of the Riemannian framework was proposed by Paul Finsler [3]. The work
of Weyl was clearly influenced by the progresses in the physics of his time, and especially by the
development by Einstein [4,5] and Hilbert [6] of general relativity, and has been extensively used in
physics, especially recently [7]. On the other hand, Finsler geometry, which represents, at least from a
physicist’s perspective, a much more drastic extension of Riemannian geometry, was not considered
from the point of view of the applications in fundamental physics for at least 40 years.

Actually, Finslerian geometry was already anticipated by Riemann [8], who has already as-
sumed the existence of metric structures in a general space based on the distance element ds =

F
(

x1, x2, . . . , xn; dx1, dx2, . . . , dxn) = F
(

x1, x2, . . . , xn; , y1, y2, . . . , yn), or simply F(x, y), where the con-
dition that for y = 0, F is a positive definite function defined on the tangent bundle TM must also be
imposed. In order to assure the independence of the length of curves on their parameterization, it is
further required that F is a function which is homogeneous of degree one in y. Riemann geometry is
just a special case of the general distance element ds, obtained under the assumption F2 = gI J(x)dxIdx J .
Thus, Finsler geometry is not a proper generalization of Riemann’s geometry, but it "...is just Rieman-
nian geometry without the quadratic restriction" [9]. However, it is an established practice especially
in the physics literature to describe Finsler geometry as a generalization of Riemann’s geometry, and
in the present work we will also adopt this view, mostly for the simplicity of the presentation.

In a simple description Finsler geometry can be considered as a geometry in which the metric
tensor gij is a function of both the coordinates x, defined on the base manifold M, and of the tangent
vectors y, so that gI J = gI J(x, y). In a physically intuitive sense Finsler geometry can be considered as
a geometry in which the metric tensor, determining the distance between two neighboring points, is
an arbitrary function of both coordinates and velocities. For presentations of Finsler geometry from a
mathematical perspective see [10–14].

The remarkable success of general relativity in the description of gravitational phenomena, and
its many observational confirmations have significantly strengthened the position of the Rieman-
nian geometry as the "true" geometry of nature. General relativity, in its Riemannian formulation,
successfully passes all the Solar System tests, inside which it can explain with a high precision the
gravitational phenomenology. Important confirmations of the validity of general relativity include
such diverse phenomena as the perihelion precession of Mercury, light bending by the Sun, frame
dragging, the Nordtvedt effect in lunar motion, and the Shapiro time delay, respectively [15]. The
experimental detection of gravitational waves represents a brilliant confirmation of the predictions
of general relativity [16], which opened a new window on the Universe, and led to new perspectives
on the black hole properties, their dynamical evolution, and the mass distribution of neutron stars
[17]. Inspired by the immense success of general relativity, the Riemannian geometric framework was
also extended, leading to important developments in mathematics like the introduction of the concept
of torsion [18,19], or of the concept of absolute parallelism [20]. These new geometries have found
important applications in physics, and they have been used to model the gravitational interaction from
new perspectives.

From a mathematical point of view, Ehlers Pirani and Schild aimed to develop a constructive
axiomatization of gravity. In their seminal 1972 paper, they built up the kinematical structure of
general relativity, purely based on axioms, which have a somewhat empirical content [21]. Although
the axiomatization is quite dense and technical, recent pedagogical reviews are present in the literature
[22–24]. We briefly outline the four steps of the axiomatization in the following [25]:

1. In the first step, the basic physical/empirical entities are postulated, such as the timelike world-
lines for freely falling massive particles, the lightlike wordlines of light rays, and radar echoes
between massive particle wordlines. These empirical elements provide enough structure to
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define a system of coordinates and allow for the construction of a differentiable structure on the
spacetime set M, turning it into a smooth manifold.

2. The conformal structure is established by requiring that, at each point in spacetime, the set of
all possible directions (i.e. tangent vectors) splits into two components when the directions
corresponding to massless (lightlike) trajectories are removed. This splitting reflects the causal
distinction between future and past. Additionally, in a sufficiently small neighborhood V around
the worldline of a massive particle, for any point p ∈ V not lying on the particle’s path, the
function that maps p to the product of the radar emission time te and reception time ta, i.e.
p 7→ tetr, must be at least twice differentiable.

3. Imposing that through each point in spacetime, and for each timelike direction, there exists one
unique timelike (massive) trajectory passing through that point, results in a projective structure.
Each of these trajectories must admit a parametrization such that, in local coordinates near the
point, the motion satisfies ẍ = 0. This expresses the fact that particles move along straight lines
in free fall.

4. In the final step the compatibility between the conformal and projective structures is demanded.
In particular, light rays must be special cases of particle geodesics in the limit of zero mass. This
determines the metric up to a conformal factor, which leads to a Weyl structure. Through some
technical steps (see .), eliminating the second clock effect leads to a Lorentzian structure, i.e. a
pseudo-Riemannian manifold.

It turns out that if one weakens the twice differentiability assumption on the map p 7→ tetr, there are
Finsler functions, which satisfy all the other EPS axioms. A well known example is given by

F(x, y) = e2σ(x,y)
√∣∣aI J(x)yIyJ

∣∣, (1)

where σ(x, y) is a non-singular 0-homogeneous function in y satisfying

∂Kσ − yMΓN
MK(x)

∂σ(x, y)
∂yN = 0 (2)

with ΓN
MK being the Christoffel symbols associated to the Riemannian metric aI J(x). This geometry is

of Berwald type, i.e. it is the closest to a Riemannian geometry, but it is not trivial.
Despite the systematic, rigorous and physically appealing nature of Finsler geometry, the applica-

tions in physics of this geometry appeared relatively late. A first step in this direction was taken in the
work of Randers [26], who tried to formulate a unified theory of electromagnetism and gravity. Initially,
the theory was formulated in a higher dimensional Riemannian geometry. The Finslerian nature of
the Randers geometry was recognized by Ingarden [27]. Essentially, Randers geometry is a specific
example of a Finsler geometry, with the fundamental function F(x, y) =

(
aI J(x)dxIdx J)1/2

+ bK(x)yK,
where bK(x) is an arbitrary vector field. Presently, Randers spaces are considered as Finsler spaces
Fn = (M, α + β), equipped with the Cartan nonlinear connection N, i.e. they are denoted with
RFn = (M, α + β, N) [28]. A comprehensive overview of several Finsler metrics and of some of their
physical applications is given in Table 1.
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Table 1. Examples of Finsler metrics with their defining functions and characteristic properties.

Name Finsler Function F(x, y) Properties

Semi-Riemannian F(x, y) =
√
|aI J(x)yIyJ |

Quadratic in y, reversible, i.e. F(x, y) =
F(x,−y).

Randers F(x, y) =
√

aI J(x)yIyJ + bI(x)yi
Non-reversible, i.e. F(x, y) ̸= F(x,−y); ap-
pears in EM analogs and Lorentz-violating
physics.

Kropina F(x, y) = aI J yI yJ

bI yI , bIyI ̸= 0 Singular on hypersurfaces; non-reversible.

Matsumoto F(x, y) =
√

aI J yI yJ
√

aI J yI yJ−bKyK

Non-reversible; used in irreversible me-
chanics; singular on hypersurfaces.

Bogoslovsky F(x, y) =
(
−ηI JyIyJ) 1−b

2
(
nKyK)b Breaks full Lorentz invariance; 0 < b < 1;

used in very special relativity.

Funk F(x, y) =
√

δI J yI yJ−δI J xI yJ

1−δI J xI x J

Defined on unit ball; forward complete;
non-reversible.

Locally
Minkowskian F(x, y) = F(y) General flat case; depends only on y, inde-

pendent of x.

α-β metrics F = ϕ(α, β), α =
√

aI JyIyJ , β = bKyK
Unifies and generalizes Randers, Kropina,
Matsumoto metrics via the scalar function
ϕ.

General
Lagrangian F(x, y) =

√
L(x, y), L 2-homogeneous in y

More general case; has some applications
in mechanics.

Optical / Media F(x, y) = n(x, y)∥y∥
Includes anisotropic effects in optics
through the direction-dependent refractive
index n(x, y).

Non-reversible
Finsler General F such that F(x, y) ̸= F(x,−y) Includes Funk, Randers, and non-

reversible geometries.

Finsler geometry has found applications in several areas of physics, including the geometric
formulation of quantum mechanics [29–32], kinetic theory of gases [33,34], dispersion relations [35]
and optics [36]. A more exotic application is related to an extension of the Standard Model of particle
physics, where a Finsler structure can be given for the nonminimal fermion sector [37]. It is also
interesting to note that Lorentz-violating scalar fields can also be described by Riemann-Finsler
geometry [38]. In the latter cases, the Finsler geometry considered is of Berwald type: the closest one
to the Riemannan geometry, which is still not trivial and compatible with the weakened Ehlers-Pirani-
Schild axioms.

The first attempts at formulating a Finslerian theory of gravitation, but still in the framework of
unified field theories, belonged to Horváth [39], and Horváth and Moór [40]. Early Finslerian type
gravitational theories were also formulated in [41,42], respectively, where a set of Finslerian type
gravitational field equations were proposed, representing a straightforward extension of the Einstein
field equations, and given by

Rµν −
1
2

gµνR + λgµν = χTµν, Kµν −
1
2

gµνK + λgµν = χTµν, (3)

and
Sµν −

1
2

gµνS − λ(i)gµν = −χ(i)Ti
µν, (4)

respectively. In Eqs. (3) and (4) χ denotes the gravitational constant, λ is the cosmological constant,
while λ(i) and χ(i) represent the internal cosmological and gravitational constants. The quantities
Rµν, R, Kµν, K and Sµν and S denoting the hh-, hv- and vv-Ricci curvature tensors, and the hh-,
hv- and vv-scalar curvatures of the Finsler space (M, F). Moreover, Tµν is the energy-momentum
tensor of the baryonic matter, and Ti

µν denotes the internal energy-momentum tensor. In [43] another
Finslerian type approach to gravity was introduced and developed. The main focus of this work was
the Finslerian description and interpretation of the particle motion in a gravitational field. For the
Finslerian extensions of general relativity along the line of [43] see [44]. Finslerian type generalized
Schwarzschild metrics have been investigated in [45,46].
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Miron [47] has proposed the vector bundle point of view to formulate a system of Einstein type
gravitational field equations. The starting point of this approach is to interpret the field y as a fibre at
the point x of the base manifold M. The total space of this vector bundle is obtained as a unification
of the fields x and y [48]. A nonlinear connection naturally induces an adapted basis in the fiber
T(x,y)TM of the double tangent bundle TTM and a corresponding dual basis in the fiber T∗

(x,y)TM of
the cotangent bundle T∗TM. These are given by

XA =

(
δ

δxλ
=

∂

∂xλ
− Ni

λ

∂

∂yi ,
∂

∂yi

)
, XA =

(
dxκ , δyi = dyi + Ni

λdxλ
)

, (5)

respectively.
In Eq. (5), the indices A, B run over (κ, i) ∈ {0, 1, 2, 3, ..., 7}, while the Greek indices λ, κ take

values in {0, 1, 2, 3}. The functions Ni
λ define the nonlinear connection. By construction, the basis (5) is

adapted to a Finsler-type metric on TM, given by

G = gλκ(x, y)dxκdxλ + gij(x, y)δyiδyj, (6)

where gλk(x, y) and gij(x, y) are the horizontal and vertical metric components, respectively.
On the total space of the vector bundle the Einstein field equations are assumed to have their stan-

dard general relativistic form, RAB − (1/2)RgAB = τAB, where τAB is the matter energy-momentum
tensor. The field equations can be decomposed, and can be written down as [47]

Rλν −
1
2
(R + S)gλν = τλν,

1
Piλ = τiλ,

2
Pλi = −τλi, (7)

Sij −
1
2
(R + S)gij = τij. (8)

An interesting Finslerian type gravitational theory was proposed in [49]. The basic idea of
this approach is the assumption that the Einstein vacuum field equations can be obtained from the
condition H = Hi

i = 0, where Hi
k, the Finslerian deviation tensor, is obtained from the first and second

derivatives of the quantity Gl = γl
jk ẋj ẋk/2 as

Hi
k = 2

∂Gi

∂xk − ∂2Gi

∂xj∂ẋk ẋj + 2
∂2Gi

∂ẋj∂ẋk Gj − ∂Gi

∂ẋj
∂Gj

∂ẋk . (9)

If the metric is Riemannian, we obtain the limiting case of the general relativistic gravitational
field equations. But Finslerian solutions of the gravitational field equations proposed in [49] can also
be obtained.

An important class of Finsler geometries is represented by the Berwald-Finsler spaces. A system
of gravitational field equations defined in a Berwald geometry was proposed and investigated in
[50]. The derivation of the field equations in the Berwald-Finsler geometry is essentially based on
the Bianchi identities satisfied by the Chern curvature tensor. In general the geometric part of the
gravitational field equation is not symmetric, and this indicates that the principle of the local Lorentz
invariance is not satisfied in this theory. The field equations as proposed in [50] are given by[

Ricµν −
1
2

gµνS
]
+

{
1
2

B α
α µν + B α

µ να

}
= 8πGTµν, (10)

where
Aλµν ≡ F

4
∂

∂yλ

∂

∂yµ

∂

∂yν
(F2), (11)

is the Cartan tensor, and Bµναβ = −AµνλR λ
θ αβyθ/F. The Cartan tensor measures the deviation of the

Finsler geometry from the Riemannian one on a given manifold.
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With the use of a variational principle, Finsler type gravitational field equations have been derived
from a Finsler-Lagrange function L in [51]. The action considered in [51] is given by

S[L] =
∫

Σ⊂TM
vol(Σ)R|Σ, (12)

where Σ = {(x, ẋ) ∈ TM|F(x, ẋ) = 1} denotes the unit tangent bundle, and vol(Σ), the volume form
on Σ, is defined by using the Finsler metric. The field equations obtained from the action (12) are given
by

2R − L
3

gLijR·i·j +
2L
3

gLij
[
(∇Pi)·j + Pi|j − PiPj

]
= 0, (13)

where P is the Landsberg tensor, and

gL
ij =

1
2

∂2L
∂ẋi∂ẋj =

1
2

L·i·j. (14)

Moreover, R.i.j is the geodesic deviation operator, and R denotes its trace.
When extended to gravitational systems much bigger than the Solar System, which involves

the presence of galactic and cosmological scales, Einstein’s theory of general relativity is facing a
number of very serious challenges, whose possible solutions could be obtained only if we introduce a
fundamental modification in our understanding of the gravitational force.

One of the most intriguing discoveries of the recent times is the observational proof that our
Universe is in fact in a phase of accelerating expansion [52–56]. The transition from deceleration to
acceleration occurred at a small redshift z, given by z ≈ 0.5. To explain this observation requires a
profound modification of the theoretical foundations of Einstein’s general relativity.

The simplest explanation for the recent, exponential de Sitter type expansion can be obtained by
reintroducing in the Einstein field equations the cosmological constant Λ, introduced by Einstein in
1917 [57], and later rejected by him as the biggest blunder of his life. Einstein’s main goal was to use Λ
to construct a static, general relativistic cosmological model of the Universe.

The cosmological constant has a complicated history [58], but presently it is adopted as one of the
basic physical (geometrical?) parameters to build up the standard cosmological paradigm, the ΛCDM
model, which is currently used for the interpretation of the observational data. The ΛCDM model also
includes in its theoretical structure another basic, equally mysterious, component, the dark matter [59].
Intensive searches for the dark matter particle have yielded no results, and thus the only evidence
for the existence of dark matter is gravitational. However, despite these theoretical shortcomings, the
ΛCDM model fits the observational data very well [60–63].

But on the theoretical level the ΛCDM model is confronted with the uncertainty of its foundations:
no (convincing) physical theory does exist which could provide it with a solid basis. The first major
problem is related to the geometrical or physical interpretation of the cosmological constant [58,64,65].
If we interpret the cosmological constant as the vacuum energy density ρvac at the Planck scale, we are
led to the “worst prediction in physics” [66]. The vacuum energy density can be computed as

ρvac ≈
h̄
c

∫ kPl

kdS

√
k2 +

(mc
h̄

)2
d3k ≈ ρPl =

c5

h̄G2 = 1093 g
cm3 , (15)

and this result differs by a factor of 10−120 from the observed value of the energy density associated to
Λ, ρΛ = Λc2/8πG ≈ 10−30 g/cm3 [67].

Presently, the ΛCDM standard paradigm is faced with several important problems. An important
challenge to the ΛCDM model is the "Hubble tension", which has its origins in the differences in the
estimations of the values of the Hubble constant H0 (representing the present day value of the Hubble
function H), obtained on one hand from the CMB measurements [68], and on the other hand from
the local observations of the Type Ia supernovae [69–71]. The value of H0 obtained by the SHOES
collaboration for H0 is H0 = 74.03 ± 1.42 km/s/Mpc [69]. The early Universe determinations, using
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the Planck satellite data, give for H0 the value H0 = 67.4 ± 0.5 km/s/Mpc [68], which differs by ∼ 5σ

from the SH0ES estimations.
Several other theoretical problems whose solution cannot be found in the framework of the

ΛCDM paradigm still exist. Some of these problems are represented by the question of the smallness
of Λ and its fine tuning. The question of why the transition from the decelerating to the accelerating
phases took place recently is still waiting for a response. And perhaps the most important question,
if the cosmological constant is really required to construct successful cosmological models, does not
have an answer yet.

Hence, considering alternative approaches for the description of the gravitational interaction
may allow us to solve the observational problems of cosmology the consideration of the cosmological
constant. There are three major possibilities that have been proposed for the extension of general
relativity, the dark components approach, the dark gravity approach, and the dark coupling approach
[72]. In the dark gravity approach it is assumed that the geometry of the Universe, as well as the
description of the gravitational interaction requires a significant departure from the formalism of the
Riemann geometry. Geometries that go beyond the Riemannian one, like, for example, Weyl geometry,
geometries with torsion, or teleparallel geometries have been investigated in [73–83]. For reviews of
dark gravity type theories, and of their applications, see [84–88].

As a dark gravity candidate, Finsler geometry has an important scientific potential yet to be
explored, despite the fact that it has already been considered in various contexts as an important
alternative to Riemann geometry, and the standard ΛCDM paradigm.

Randers geometry was extensively applied in the study of the gravitational phenomena in [89–
109]. In [93], generalized Friedmann equations in a Randers-Finsler geometry of the form

Ḣ + H2 +
3
4

HZt = −4πG
3

(ρ + 3p), (16)

Ḣ + 3H2 +
11
4

HZt = 4πG(ρ − p), (17)

have been obtained, where H, ρ, p are the Hubble function, and the baryonic matter energy density and
pressure, respectively. The quantity Zt = u̇0, with u0 denoting the time component of the four-velocity
uµ. The generalized Friedmann equations above give the relation 3H2 + 3HZt = 8πGρ. The term
HZt, induced by the Finsler-Randers geometry, leads to the existence of new phases in the cosmic
evolution of the Universe. The system of Friedmann equations (16) and (17) were used in [94] for the
investigation of particle creation processes in the Finsler type geometries.

A scalar-tensor theory that arises effectively from the Lorentz fiber bundle of a Finsler-type
geometry was proposed in [110], where its cosmological implications were also investigated. The
action in the presence of matter considered in this work is

S =
1

16πG

∫ √
|det G| LGdx(N) +

∫ √
|det G| LMdx(N), (18)

where dx(N) = d4x ∧ ϕ(1) ∧ ϕ(2). Several Lagrangian densities were adopted, given by

LG = R̃ − 1
ϕ

V(ϕ), (19)

where V(ϕ) is the potential for the scalar ϕ, and

R̃ = R − 2
ϕ
□ϕ +

1
2ϕ2 ∂µϕ∂µϕ, (20)
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where R̃ denotes the curvature for the particular situation of a holonomic basis [XM, XN ] = 0. In the
case of a non-holonomic basis the adopted Lagrangian density is given by LG = R̃. The generalized
Friedmann equations are given by

3H2 = 8πGρm − ϕ̇2

4ϕ2 +
1
ϕ

(
V(ϕ)

2
− 3Hϕ̇

)
, (21)

Ḣ = −4πG(ρm + Pm) +
ϕ̇2

4ϕ2 +
1

2ϕ
(Hϕ̇ − ϕ̈), (22)

ϕ̈ + 3Hϕ̇ = −16πGϕ⊂m − 6ϕ
(

Ḣ + 2H2
)
+ ϕV′(ϕ) +

ϕ̇2

2ϕ
, (23)

and

3H2 = 8πGρm − (1 + A)
ϕ̇2

4ϕ2 − 3H
ϕ̇

ϕ
, (24)

Ḣ =−4πG(ρm+Pm) + (1+A)
ϕ̇2

4ϕ2 +
1

2ϕ
(Hϕ̇−ϕ̈), (25)

(1 + A)(ϕ̈ + 3Hϕ̇) = −16πGϕ⊂m − 6ϕ
(

Ḣ + 2H2
)
+

ϕ̇2

2ϕ

(
1 + A + ϕA′)− ϕ̇Ȧ, (26)

respectively. Here A(ϕ) denotes a real function of ϕ. From the above equations one can reconstruct the
thermal history of the Universe, and obtain a sequence of matter and dark-energy dominated phases.
The effective dark energy equation of state has a parameter that can be either phantom or quintessence
type. A phantom-divide crossing during the cosmological evolution does also appear.

Berwald-Finsler geometries have been investigated as potential candidates for the description of
the gravitational fields [111,112]. Spatially homogeneous and isotropic Berwald spacetimes, obtained
from a Finsler Lagrangian constructed from a zero-homogeneous function defined on the tangent
bundle, and which includes the velocity dependence of the Finsler Lagrangian, were discussed in [112].
Cosmological Berwald geometries can also be used for the description of the dynamics of the Universe.

In a series of recent papers [113–116] a systematic investigation of the applications of Finsler
geometry in cosmology was considered. The basic geometric ingredients used for the construction of
gravitational theories were the (α, β) metrics, and the osculating Barthel connection. One of the basic
properties of the Finsler geometry is that to each point of the space-time manifold an arbitrary point
vector field y is associated, with the metric g becoming a function of both x, the coordinates defined on
the base manifold, and y, g = g(x, y). In the osculating approach one assumes the existence of a vector
field Y = Y(x), which allows the construction of a Riemannian metric g(x) = g(x, Y(x)). In the case
of the (α, β) metrics, the connection associated to these metrics, the Barthel connection, is nothing but
the Levi-Civita connection associated to g(x).

The introduction in the (α, β) spaces of the Finsler geometry of the osculating Barthel connection
leads to a significant simplification of the mathematical formalism, and opens the possibility of con-
structing unique and well defined physical models that could be successfully used for the description
of the gravitational interaction. In the present review we briefly introduce, from the perspective of the
cosmological applications, the Barthel-Randers, Barthel-Kropina, and the conformal Barthel-Kropina
models, respectively, and we also present their mathematical and theoretical foundations.

From the generalized Friedmann equations of the osculating Barthel–Randers-Kropina cos-
mological models, obtained by assuming that the background Riemannian metric is of the Fried-
mann–Lemaitre–Robertson–Walker (FLRW) type, an effective geometric dark energy component can
be always generated, which results from the presence of extra terms in the cosmological evolution
equations.

A central problem for the physical acceptability of the Finslerian type models is how successfully
could they describe the observational data. The cosmological tests, and comparisons with observational
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data of theis dark energy models considered in this work are investigated are considered in detail.
In the present review we perform a detailed analysis of the three cosmological models of Barthel-
Randers type, introduced in [113], we constrain the model parameters. In our investigation we use 15
Hubble data points (Cosmic Chronometers), the Pantheon Supernovae Type Ia data sample, and the
most recent Baryon Acoustic Oscillation (BAO) measurements from the Dark Energy Spectroscopic
Instrument (DESI) Data Release 2. The statistical analysis is performed by using Markov Chain Monte
Carlo (MCMC) simulations. The results of the statistical analysis of the Barthel-Randers cosmological
models are compared with the similar analysis of the Barthel-Kropina cosmological models, already
performed in [115], and with the standard ΛCDM model. The Akaike information criterion (AIC),
and the Bayesian information criterion (BIC) are used as the models selection tools. The statefinder
diagnostics, consisting in the study of the jerk and snap parameters, and the Om(z) diagnostics are also
considered for the comparative study of the Barthel-Randers, Barthel–Kropina and ΛCDM cosmologies.
Our statistical results indicate that the osculating Barthel type (α, β) Finslerian dark energy models
give a good description of the observational data, and thus they can be considered a viable alternative
of the ΛCDM model, even if not all of them would be favoured compared to ΛCDM.

The present paper is organized as follows. We review some basic concepts and definitions of
Finsler geometry in Section 2. In Section 3 we introduce the mathematical foundations of the Barthel-
Randers-Kropina gravitational theories, by reviewing the basic concepts of (α, β) metrics, osculating
spaces, and Barthel connections. The basic principles of constructing (α, β) cosmological models are
also presented. The generalized Friedmann equations of the three basic models considered in the
present work: Barthel-Randers, Barthel-Kropina and conformal Barthel-Kropina are also written down,
together with the corresponding energy balance equations. The thermodynamic interpretation of
the cosmological models with nonvanishing matter energy-momentum tensor is also presented, and
briefly discussed. The cosmological implications of the Barthel-Randers and Barthel-Kropina models
are discussed in Section 4, where constraints on the free parameters of these models are obtained
by using a combination of observational data sets, including Type Ia supernovae, Baryon Acoustic
Oscillations, and Hubble parameter measurements. A detailed comparison of the Barthel-Randers and
Barthel-Kropina cosmological models is performed in Section 5. A discussion of the main results and
of the relevance of the statistical analysis is presented in Section 6. Finally, we discuss and conclude
our results in Section 7.

2. Fundamentals of Finsler Geometry
The assumption that spacetime can be described mathematically as a four dimensional differen-

tiable manifold M, endowed with a pseudo-Riemannian tensor gI J , where I, J, K... = 0, 1, 2, 3, is one
of the fundamental assumptions of modern theoretical physics. The next fundamental concept, the
interval between two events located at the points xI and xI + dxI on the world line of a standard clock
is defined by the chronological hypothesis as ds =

(
gI JdxIdx J)1/2 [117,118]. A very important metrical

generalization of the Riemannian geometry is the geometry anticipated by Riemann [8], but which
was later on systematically developed by Finsler [3].

In a simple interpretation Finsler spaces are metric spaces with the interval ds between two
neighboring points x = (xI) and x + dx = (xI + dxI) given by

ds = F(x, dx), (27)

where F, the Finsler metric function, must be positively homogeneous of degree one in dx, and thus
satisfy the condition

F(x, λdx) = λF(x, dx) for λ > 0. (28)
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The Finsler metric function F can be written in terms of the canonical coordinates of the tangent
bundle (x, y) = (xI , yI), where y = yI(∂/∂xI), is any tangent vector y at x. Then we can introduce the
Finsler metric tensor gI J defined according to

gI J(x, y) =
1
2

∂2F2(x, y)
∂yI∂yJ . (29)

Hence Eq. (27) can be written as
ds2 = gI J(x, y)yIyJ . (30)

Riemann spaces are some particular cases of the Finsler spaces, and they correspond to gI J(x, y) =
gI J(x) and yI = dxI , respectively.

Given a Finsler function F, one can obtain the geodesic equations in the form [117,118]

d2xI

dλ2 + 2GI(x, y) = 0, (31)

where the functions Gi(x, y) denote the spray coefficients

GI(x, y) =
1
4

gI J
(

∂2F2

∂xK∂yJ yK − ∂F2

∂x J

)
. (32)

Equivalently, more reminiscent to Riemannian geometry, they can be rewritten as

d2xI

dλ2 + ΓI
JK(x, y)

dx J

dλ

dxK

dλ
= 0, (33)

where

ΓI
JK(x, y)yJyK = 2Gi(x, y) =

1
4

gI J
(

∂2F2

∂xK∂yJ yK − ∂F2

∂x J

)
. (34)

Here, the quantities ΓI
JK(x, y) are the local coefficients of the Finsler connection used. We point out that

the theory of Finsler connections is more complex than in the Riemannian case since only metrical,
torsion free connection is the Levi-Civita one, hence the existence of such connection implies that
the Finsler metric is in fact Riemannian. The obvious conditions imposed for the existence of Finsler
connections are then non-metricity and torsion free (this is the case of the Chern connection) or metrical
connection with surviving torsion (this is the case of the Cartan connection). The precise form of
the Finsler connections depends on the concrete form of the non-metricity and surviving torsion,
respectively, but these details are beyond the aim of the present paper (one can consult [13,14,127] or
other textbooks on Finsler geometry). The local coefficients of a Finsler connection D are defined as

D δ
δxK

δ

δx J = ΓI(x, y)JK
δ

δxI , D ∂
∂xK

∂

∂x J = V I(x, y)JK
∂

∂xI , (35)

where δ
δxI is the adapted basis induced by the Cartan nonlinear connection. We prefer to keep the

notation CI
JK = 1

2
∂3F2

∂yI ∂yJ ∂yK for the Cartan tensor of (M, F). For instance, the Cartan connection of a

Finsler space (M, F) is the only Finsler connection on TTM which is metrical and having h(hh) and
v(vv)-torsion vanishing (the rest of the torsion survives). The local coefficients of the Cartan connection
are given by

ΓI
JK(x, y) =

1
2

gIL(x, y)

[
δgLJ(x, y)

δxK +
δgLK(x, y)

δx J −
δgJK(x, y)

δxL

]

V I
JK(x, y) =

1
2

gIL(x, y)

[
∂gLJ(x, y)

∂yK +
∂gLK(x, y)

∂yJ −
∂gJK(x, y)

∂xL

]
,

(36)
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Likewise, the Chern connection is defined to be the only Finsler connection on TTM which is almost
compatible and torsion free. The local coefficients of the Cartan connection are given by (ΓI

JK(x, y), 0).
However, despite the quite complicated form of the connection coefficients ΓI

JK(x, y), due to the
homogeneity of the geometrical objects involved, the equation (33) gets the simple form

d2xI

dλ2 + γI
JK(x, y)

dx J

dλ

dxK

dλ
= 0, (37)

where

γI
JK(x, y) =

1
2

gIL(x, y)

[
∂gLJ(x, y)

∂xK +
∂gLK(x, y)

∂x J −
∂gJK(x, y)

∂xL

]
. (38)

are the formal Christoffel coefficients of the Finsler space (M, F).
Berwald spaces are a special class of Finsler geometry, and they can be obtained by assuming that

the Berwald connection coefficients are independent of the fiber coordinate y [10].
With the help of the spray coefficients GI , one can define the vector field S on TM \ 0 according to

S = yI ∂

∂xI − 2GI ∂

∂yI .

S is the spray induced by F. A curve γ defined on M is a geodesic of F if and only if its canonical
lift γ̂(t) = (γ(t), γ̇(t)) to TM is an integral curve of S.

The notion of Finsler metrics that we have recalled here belong to the class of classic Finsler metrics,
in other words, at each point x ∈ M, the function Fx : Tx M → R is a function defined on the tangent
space Tx M of a differentiable manifold M satisfying the following conditions

(i) Fx is C∞ on T̃x M = Tx M \ {0},
(ii) Fx is 1-positive homogeneous: Fx(λy) = λFx(y), for all λ > 0 and y ∈ Tx M,

(iii) for each x ∈ M, the Hessian matrix (29) is positive defined in T̃x M.

At each point x ∈ M, the indicatrix {y ∈ Tx M : Fx(y) = 1} is a closed, strictly convex, smooth
hypersurface around the origin of Tx M.

A more general notion is the notion of conic Finsler metrics, that is, Finsler norms defined only on
a conic domain of Tx M. Let us recall that Ax ⊂ Tx M is called a conic domain of Tx M if Ax is an open,
non-empty subset of Tx M such that if v ∈ Ax, then λv ∈ Ax, for all λ > 0. We remark that the origin
of Tx M does not belong to Ax except for the case Ax = Tx M.

We can now define a Finsler norm defined only on a conic domain Ax ⊂ Tx M with the properties
(i)-(iii) given above for all y ∈ Ax. At each point x ∈ M, the indicatrix Sx := {y ∈ Ax ⊂ Tx M : Fx(y) =
1} is a hypersurface embedded in Ax as a closed subset.

Let A ⊂ TM be an open subset of the tangent bundle π : TM → M such that π(A) = M, and A
is conic in TM, that is for each x ∈ M, the set Ax := A ∩ Tx M is a conic domain in Tx M. A function
F : A → R is a conic Finsler metric if its restriction Fx : Ax → R satisfies the conditions (i)-(iii) above,
for each x ∈ M. The local and global geometry of conic Finsler spaces can be now developed in a
similar way with the case of classical Finsler metrics (see [119], [120] and references therein).

3. Osculating (α, β) Type Cosmological Models
In the present Section we review the mathematical and theoretical foundations of the Barthel-

Randers-Kropina type cosmological models, which we will discuss in the framework of the general
(α, β) geometries. We also write down the generalized Friedmann equations obtained for the case of
the Friedmann-Lemaitre-Robertson-Walker Riemannian metric. The thermodynamic interpretation of
the models is also discussed.
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3.1. Mathematical Foundations of the (α, β) Finslerian Cosmologies

We begin our discussion of the cosmology of the Finslerian type geometries with a brief discussion
of the mathematical properties of the (α, β) metrics, of the Barthel connection, and of the osculating
geometries.

3.1.1. Kropina and (α, β) Geometries

As we have already mentioned, a special type of Finsler space is the Randers space [26], with the
metric function given by

F =
[

aI J(x)yIyJ
]1/2

+ bI(x)yI , (39)

where aI J is the metric tensor of a Riemannian space, and bI(x)yI is a linear 1-form defined on the
tangent bundle TM and we used the parametrization dxI = yI .

Another remarkable class of Finsler spaces are the Kropina spaces [121,122], which are Finsler
spaces with metrics of the form

F(x, y) =
aI J(x)yIyJ

bI(x)yI . (40)

By generalizing these results, Matsumoto [123,124] defined the notion of the (α, β) metrics in
the following way: being given a Finsler metric function F(x, y), it is called an (α, β) metric if F is a
positively homogeneous function F(α, β) of first degree in two variables α(x, y) =

[
aI J(x)yIyJ]1/2 and

β(x, y) = bI(x)yI , respectively.
In our analysis we suppose that α is a pseudo-Riemannian or Riemannian metric, with the

properties that it is non-degenerate (regular), or positive-definite, respectively. We point out that the
Kropina-type metrics are conic Finsler metrics defined only on some conic domain of the tangent
bundle. By extension, we can regard any (α, β) as conic Finsler metrics allowing the Riemannian part
to be pseudo-Riemannian metrc.

In the special cases of the Randers and Kropina metrics the Finsler metric functions are given by

F = α + β, and F =
α2

β
, respectively (see also Table 1). Therefore the Randers and Kropina metrics

belong to the general class of the (α, β) metrics.
We can define the general (α, β) metrics as metrics having the metric function given by

F(α, β) = αϕ(β/α) = αϕ(s), (41)

where s = β/α, and ϕ = ϕ(s) is a C∞ positive function on an open interval (−bo, bo).
Many examples of (α, β) metrics have been considered in the literature, the most studied one

being the Randers metric F = α + β (see [125] and references within). The Kropina metrics are also
classic examples of (α, β) metrics (see [126] for physical motivations of introducing this metric). More
recently, the local and global aspects of Kropina metrics have been extensively studied in [120,128–131].

3.1.2. The Barthel Connection

Let (Mn, F) be a Finsler space, defined on a base manifold Mn. We can also define on Mn a vector
field Y(x) ̸= 0. We introduce now a specific mathematical object (Mn, F(x, y), Y(x)), which represents
a Finsler space (Mn, F(x, y)) with a tangent vector field Y(x) also defined. If the vector Y does not
vanish in any point on M, then from the Finslerian metric ĝ(x, y) one obtains the Y-Riemann metric
ĝY(x) = ĝ(x, Y).

Obviously, one can evaluate any geometrical object in a Finsler space (M, F) in the specific
direction given by a fixed vector field Y. This remark leads to the natural idea of evaluating the Cartan
connection coefficients ΓI

JK(x, y) given in (36) at y = Y(x). This is the so-called Barthel connection
introduced by Barthel himself in [132,133] and developed later by Ingarden and Matsumoto [126].
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The Barthel connection is an affine connection on M, ĝY metrical with torsion

T I
JK(x) = V I

LJ(x, Y(x))YL
K − V I

LK(x, Y(x))YL
J , (42)

where YL
J (x) := ∂YL

∂x J − NL
J (x, Y(x)) and NL

J (x, y) is the Cartan nonlinear connection of the Finsler
space (M, F).

The local coefficients of the Barthel connection can be written as

bI
JK(x) = FI

JK(x, Y(x)) + V I
JL(x, Y(x))YL

J (x). (43)

The absolute differential of the vector Y is defined according to [134]

DY I = dY I + YKbI
KH(x, Y)dxH , (44)

where by bI
KH(x, Y) we have denoted the coefficients of the Barthel connection. By using the homo-

geneity of the geometrical objects involved, it results

DY I = dY I + YK
(

γ̂I
KH − γ̂R

KSYSĈI
RH

)
dxH , (45)

The Barthel connection has a number of interesting properties. It depends on the vector field on
which it acts, a property that does not exist in Riemann geometry. Therefore, the Barthel connection
has very different properties, and so it significantly differs from the connections in Riemann geometry.
Another important property is related to the direction and magnitude dependence of the Barthel
connection. For anisotropic metrics, like most of the Finsler metrics, all geometric properties depend
on the direction. For the Barthel connection, there is no dependence on the magnitude of the vector
field, but only on its direction. The Barthel connection, keeping the metric function unchanged by the
parallel transport, is the simplest connection with this property. For Finsler vector fields, depending on
both x and y, the Barthel connection allows the transition to the Cartan geometry of the Finsler spaces.
Moreover, the Barthel connection can be considered as the connection of a point Finsler space.

Finally, we would like to mention that unlike the Levi-Civita connection of the Riemannian
geometry, the Finsler connections (Cartan or Chern connections) are not defined on the base manifold
M, but they live on the total space of the tangent bundle [13,14]. On the other hand, even though
they are completely different, the Barthel and Levi-Civita connections are affine connections on the
base manifold M. This is a very important characteristic of the Barthel type geometries that leads to
significant differences between the geometrical theories of gravity as formulated on Riemann and
Finsler manifolds.

3.1.3. The Y-Osculating Riemann Geometry

In 1936 Nazim [135] introduced and developed the concept of osculating Riemann spaces of Finsler
geometries. This concept was later studied by Varga [136]. In the osculating approach one associates to
a complex geometric object, like a Finsler geometry and connection, a simpler mathematical structure,
like, for example, an affine or a linear connection, or a Riemann metric. Hence in this approach it
is assumed that the osculating geometry, approximates at a certain level the more complicated one.
Thus, with the use of the osculating formalism, one can derive mathematical results that significantly
simplifies the description of the properties of the mathematically complex geometries.

Let a nowhere vanishing local section Y of πM : TM → M be given. Geometric objects existing on
TM can be pulled back to M. Since gI J ◦ Y is a function defined on U, a new metric, defined according
to

ĝI J(x) := gI J(x, y)|y=Y(x), x ∈ U, (46)

can be introduced. The pair
(
U, ĝI J

)
represents a Riemannian manifold, while ĝI J(x) is the Y- osculat-

ing Riemannian metric, defined on (M, F).
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For the osculating Riemannian metric given by Eq. (46), we define the Christoffel symbols of the
first kind as

γ̂I JK(x) :=
1
2

{
∂

∂x J [gIK(x, Y(x))] +
∂

∂xK

[
gI J(x, Y(x))

]
− ∂

∂xI [gJK(x, Y(X))]

}
. (47)

With the use of the rule of the derivative of the composed functions, we explicitly find

γ̂I JK(x) = γI JK(x, y)
∣∣
y=Y(x) + 2

(
CI JL

∂YL

∂xK + CIKL
∂YL

∂x J − CJKL
∂YL

∂xI

)∣∣∣∣
y=Y(x)

, (48)

where CI JL denotes the Cartan tensor. Hence, if a global section Y of TM does exist, so that Y(x) ̸= 0,
∀x ∈ M, one can always define the osculating Riemannian manifold (M, ĝij).

The Case of the (α, β) Metrics

Let’s focus now on the case of the (α, β) metrics. The Hessian matrix of an (α, β)-metric F = F(α, β)

is given by

gI J(x, y) =
Lα

α
hI J +

∂Lαα

α2 yIyJ +
∂Lαβ

α

(
yIbJ + yJbi

)
+ LββbIbJ , (49)

and the Cartan tensor by

2CI JK =
Lαβ

α

(
hI J pK + hJK pI + hKI pJ

)
+ Lβββ pI pJ pK, (50)

where the notation L := F2

2 is customary. Here pI = bI − β
α yI and hI J = gI J −

yI yJ
F2 is the angular tensor

of (M, F).
We choose the vector field as Y = b, with bI = aI JbJ . Since the vector field Y is globally non-

vanishing on M, we obtain the result that β has no zero points on M. Hence, we can define for the
(α, β) metrics the b- osculating Riemannian manifold (M, ĝI J), with the Riemannian metric given by
ĝI J(x) := gI J(x, b), where bI = aI JbJ .

With respect to α, the length b̃ of b is obtained as b̃2 = bIbI = α2(x, b). Moreover, we have
YI(x, b) = bI , respectively.

The b-osculating Riemannian metric can be explicitly written as

ĝI J(x) =
Lα

b̃

∣∣∣∣
y=b(x)

gI J +

(
Lαα

b̃2
+ 2

Lαβ

b̃
+ Lββ −

Lα

b̃3

)∣∣∣∣
y=b(x)

bIbJ . (51)

Moreover, we obtain β(x, b) = b̃2, and pI(x, b) = 0. Hence, by using the expression of the Cartan
tensor for an (α, β) metric, we obtain the important result that CI JK(x, b) = 0. For Y = b, we find

γ̂I JK(x) = γI JK(x, y)
∣∣
y=b(x). (52)

Thus, we have obtained the fundamental result that in the case of an (α, β)-metric, the Barthel
connection, representing the linear b-connection, where bI =

(
aI JbJ

)
, is the Levi-Civita connection of

the b-Riemannian metric. Hence, after the evaluation of the fundamental Finsler tensor gij(x, y) of
(M, F) at the point (x, Y(x)), we obtain a Riemannian metric ĝY on M, with its Levi-Civita connection.

The Curvature Tensor

The Barthel connection with local coefficients
(
bA

BC(x)
)

is an affine connection. We define the
curvature tensor of an affine connection, having local coefficients

(
ΓA

BC(x)
)
, as

RA
BCD =

∂ΓA
BD

∂xC −
∂ΓA

BC
∂xD + ΓE

BDΓA
EC − ΓE

BCΓA
ED. (53)
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Thus, it follows that the curvature of the Barthel connection can be obtained from Eq. (53) by
taking

(
ΓA

BC(x)
)
=

(
bA

BC(x)
)
. For the Kropina metric with F = α2/β, the Barthel connection is equal

with the Levi-Civita connection of the osculating metric ĝAB(x) = gAB(x, b(x)), with bI(x) denoting
the components of the one-form β. Moreover, gAB is the fundamental tensor of F.

Since bA
BC = γ̂A

BC, where γ̂A
BC are the coefficients of the Levi-Civita connection, for the curvature

tensors of the Kropina metric the we find the expressions

R̂A
BCD =

∂γ̂A
BD

∂xC −
∂γ̂A

BC
∂xD + γ̂E

BDγ̂A
EC − γ̂E

BCγ̂A
ED, (54)

and

R̂BD = ∑
A

[
∂γ̂A

BD
∂xA −

∂γ̂A
BA

∂xD + ∑
E

(
γ̂E

BDγ̂A
EA − γ̂E

BAγ̂A
ED

)]
, (55)

respectively, where the indices A, B, C, D, E take the values {0, 1, 2, 3}, and we have defined R̂BD =

R̂A
BAD, and R̂B

D = ĝBCR̂CD, respectively [113–116]. The generalized Ricci scalar is defined according to
R̂ = R̂B

B.

3.2. Building Cosmological Models in (α, β) Geometries

We proceed now to the investigation of the possibility of using the Finslerian geometric framework,
and the general (α, β) metrics, to build specific cosmological models. Our basic quantities in this
respect are the Riemannian metric aI J , which determines α = aI JdxIdx J = aI JyIyJ , and the coefficient
bI of the one form β = bIdxI = bIY I . To construct a cosmological model in the (α, β) type Finsler
geometries we introduce several assumptions, detailed below.

The Universe Is Homogeneous and Isotropic

As a first approximation on the structure and matter distribution in the Universe we assume
the validity of the cosmological principle. The cosmological principle implies the homogeneity of
the Universe. The homogeneity of the Universe imposes the fundamental constraint that on large
cosmological scales all the physical and geometrical properties of the Universe depend globally on the
cosmological time only.

The Riemannian Metric aI J Is the FLRW Metric

In the following we will restrict our study to the case in which the metric a in the definition of
α = aI JdxIdxj is the flat, homogeneous and isotropic -Lemaitre-Robertson-Walker (FLRW) metric.
In a system of coordinates

(
x0 = ct, x1 = x, x2 = y, x3 = z

)
defined on the base manifold M, the

Riemannian FLRW metric is given by

ds2
R = gI Jdxidxj = c2dt2 − a2

(
x0
)(

dx2 + dy2 + dz2
)

, (56)

where t is the universal cosmological time, c is the speed of light, and a
(
x0) is the scale factor,

describing the expansionary properties of the Universe. From observational point of view the Hubble
function, defined as H =

(
1/a

(
x0))(da

(
x0)/dx0) plays an important role, since it allows the in depth

comparison of the astrophysical data with the theoretical predictions.

The Finsler Metric Depends on x0 only

The cosmological principle, together with the homogeneity postulates, requires that together
with aI J = aI J

(
x0), the components of the 1-form β are also functions of the cosmological time only,

bI = bI
(

x0).
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The 1-Form b Has Vanishing Space-like Components

The cosmological principle, requiring the homogeneity of the Universe, as well as the isotropy
condition that follows from the choice of the Riemann metric as the FLRW metric, having only diagonal
components, leads to a strong mathematical constraint on the components of the coefficients of the
1-form b. The isotropy of the metric imposes the condition that all the space-like components of A
identically vanish, so that b1 = b2 = b3 = 0. If this restriction is not satisfied, then after performing a
spatial rotation in the (x, y, z) three-dimensional space, we can construct a preferred direction, oriented,
for example, in the direction of the x coordinate. But the possibility of such a transformation, and
the existence of a preferred direction would contradict the isotropic condition implemented via the
FLRW metric, as well as the observed large scale spatial isotropy of the Universe. Hence, in the present
approach to Finslerian cosmology we assume that the vector b has only one independent component,
so that b0

(
x0). Therefore, in a homogeneous and isotropic cosmology the 1-form field b takes the

simple form

(bI) =
(

a
(

x0
)

η
(

x0
)

, 0, 0, 0
)
=

(
bI
)

, (57)

where we have introduced the auxiliary function η
(

x0) to obtain a representation of b0 in terms of the
scale factor of the Universe.

Matter Moves Along the Hubble Flow

We assume that similarly to the standard general relativistic cosmology, defined in the Riemannian
geometric setting, in Finslerian cosmology we can also introduce a comoving frame in which the
cosmological observers, as well as ordinary matter, move along with the Hubble flow, defined by
the metric aij(x). If we introduce the Riemannian four-velocities uI of the matter particles, defined
as uI = dxI/dsR, then the existence of a moving frame implies that the space-like components of
the matter four-velocity do vanish identically, and the four velocity has only a non-zero temporal
component uI = (1, 0, 0, 0), which can be normalized to one.

The Matter Content of the Universe is a Perfect Fluid

We postulate that cosmological matter in the Universe consists of a perfect fluid, whose thermo-
dynamic properties can be described by two basic thermodynamic quantities only, given by the energy
density ρc2, and the thermodynamic pressure p, respectively. We also assume that the thermodynamic
quantities can be defined in the usual way, by using the standard definitions of statistical physics and
thermodynamics. From assumptions c and d it follows that the matter energy-momentum tensor has
only two non-zero components, T̂0

0 = ρc2, and T̂ I
I = −p, i = 1, 2, 3, respectively, and thus it can be

represented in the form

T̂ J
I =


ρc2 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

, (58)

Geometric Quantities

Once the above conditions and assumption have been adopted, we obtain the expressions of the
Finsler metric, and of α and β in the FLRW cosmological background of the osculating Barthel-(α, β)

geometry as follows

(iii) (aI J) =


1 0 0 0
0 −a2(x0) 0 0
0 0 −a2(x0) 0
0 0 0 −a2(x0)

;

(iv) α|y=b(x) = a
(

x0)η
(

x0);
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(v) β|y=b(x) =
[
a
(

x0)η
(

x0)]2;

(vi) (hI J
∣∣
y=b(x)) =


0 0 0 0
0 −a2(x0) 0 0
0 0 −a2(x0) 0
0 0 0 −a2(x0)

;

where I, J ∈ {0, 1, 2, 3}, and hI J(x, y) := aI J − yI
α

yJ
α is the angular metric of (M, α). From the above

expressions, it turns out that the Finsler metric g is also diagonal. This result follows in a natural way
from the definition of the (α, β) metric. Thus, in this Finslerian modification of general relativity we
maintain one of the essential properties of the FLRW metric (56), namely, homogeneity and isotropy of
the Riemannian geometry.

Gravitational Field Equations

We postulate that the Einstein gravitational field equations, describing geometrically the proper-
ties of the gravitational interaction, can be formulated in a general (α, β) Finslerian geometry as

ĜI J = R̂I J −
1
2

ĝI J R̂ =
8πG

c4 T̂I J , (59)

where G is the gravitational constant. These equations are the natural extension of the Riemannian
Einstein equations in the Finslerian framework. They reduce to the standard general relativistic
Einstein equations in the limiting case of the Riemann geometry.

Flowchart of the Algorithmic Construction of Osculating Barthel Type Finslerian Gravitational
Theories

The steps necessary to construct a specific Barthel-Kropina type cosmological model, and the
underlying gravitational theory, are presented algorithmically in the form of a flowchart in Figure 1.

Although specific examples are restricted to the cases of Barthel-Randers and Barthel-Kropina
geometries, the formalism can be easily extended to any other choices of the Finslerian function
F = αϕ(s), and the implementation of the geometrical model into a gravitational theoretical framework
can be done easily. In all these cases some extensions of standard general relativity can be obtained,
leading to gravitational field equations that contain extra Finslerian terms, which in a cosmological
context can be interpreted as describing an effective geometric dark energy, generated by the nonlocal
geometric structure of the spacetime, with the metric tensor nonlocalized due to the presence of the
vector y, representing an internal degree of freedom.

There are a large number of (α, β) metrics, whose physical and gravitational properties is worth
investigating, and which could offer new and important insights into the gravitational and cosmologi-
cal phenomena. The flowchart of the algorithmic approach presented in Figure 1 may simplify and
clarify the necessary steps taken for the investigation of these classes of theories.
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Figure 1. Flowchart of the algorithmic approach for the construction of the (α, β) gravitational models with the
Barthel connection.
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3.3. Barthel-Randers Cosmology

For the case of the Randers geometry we have F = α + β. By using the above assumptions it turns
out that the generalized Friedmann equations in this geometry take the form [113]

3H2 = 8πGϕ2ρ − 3
4

ϕ̇2

ϕ2 − 3H
ϕ̇

ϕ
, (60)

and

2Ḣ + 3H2 = −8πG
c2 ϕ2 p − ϕ̈

ϕ
+

5
4

ϕ̇2

ϕ2 − H
ϕ̇

ϕ
, (61)

respectively, where we have denoted

ϕ
(

x0
)
= 1 + a

(
x0
)

η
(

x0
)

. (62)

Eqs. (60) and (61) give the dynamical evolution of H as

Ḣ = −4πGϕ2
(

ρ +
p
c2

)
− ϕ̈

2ϕ
+

ϕ̇2

ϕ2 + H
ϕ̇

ϕ
. (63)

Eq. (60) can be rewritten as

3
(

H +
ϕ̇

2ϕ

)2

= 8πGϕ2ρ. (64)

By introducing the new Hubble function defined as

H̃ = H +
ϕ̇

2ϕ
, (65)

we obtain the final form of the generalized Friedmann equations in the Barthel-Randers cosmology as

3H̃2 = 8πGϕ2ρ, (66)

and

2 ˙̃H + 3H̃2 = −8πG
c2 ϕ2 p +

ϕ̇2

ϕ2 + 2H
ϕ̇

ϕ
, (67)

respectively.

The Energy Conservation Equation

The energy conservation equation of the matter in the present model of the Barthel-Randers
cosmology can be obtained by assuming that similarly to the standard Riemannian general relativistic
case, the covariant divergence of the energy-momentum tensor vanishes, ∇̂µTµν = 0, with the
covariant derivative calculated with the help of the Barthel-Randers connection γ̂

µ
να. Hence, the

conservation equation in Barthel-Randers cosmology can be written as [113]

ρ̇ + 3
(

H +
ϕ̇

2ϕ

)(
ρ +

p
c2

)
= 0, (68)

or, in an alternative form, as

d
dt

(
ρa3

)
+

p
c2

d
dt

a3 +
3
2

a3
(

ρ +
p
c2

)
= 0. (69)
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The conservation equation is not independent, and can be also derived directly with the use of the
Friedman equations. By taking the time derivative of Eq. (60), and after substituting Ḣ from Eq. (61),
we find

8πGϕ2
(

ρ̇ +
3Hp

c2

)
− 3

8ϕ3 (ϕ̇
3 − 2Hϕϕ̇2 − 20H2ϕ2ϕ̇2)

+ 4πGϕϕ̇(3p + 4ρ) + 9H3 = 0. (70)

By substituting the expression of H2 from the Friedman equation (60), we recover Eq. (70).

3.4. Barthel-Kropina Cosmology

In the Kropina geometry the Finslerian metric function is given by F = α2/β. The generalized
Friedmann equations, can be obtained directly from the Einstein equations, and are given by [114]

3(η′)2

η2 =
8πG

c2
1

a2η2 ρ, (71)

and

2
η′′

η
+ 2Hη′

η
− 3

(η′)2

η2 =
8πG

c4
p

a2η2 , (72)

respectively, where by H we have denoted the generalized Hubble function of the Barthel-Kropina
cosmology, defined according to H =

(
1/a

(
x0))(da

(
x0)/dx0).

In the above equations, and in the following, a prime denotes the derivative with respect to x0, a
dot denotes the derivative with respect to the cosmological time t, and the standard Hubble function is
given by H = cH. After eliminating the term −3(η′)2 with the help of Eq. (71), Eq. (72) becomes [114]

aη
d

dx0

(
η′a

)
=

4πG
c4

(
ρc2 + p

)
. (73)

In the Barthel-Kropina geometry the full system of the generalized Friedmann equations is represented
by two ordinary differential equations with four unknowns (a, η, ρ, p). By considering an equation
of state for the baryonic matter, p = p(ρ), the number of unknowns in the system of generalized
Friedmann equations becomes three, and the system is still underdetermined. Therefore, to obtain
solvable cosmological models, and to close the system, we must impose a supplementary independent
relation on two of the model parameters.

Energy Balance Equation

One of the basic consequences of the standard Friedmann cosmology is the conservation of
the matter energy-momentum tensor. But as one can easily observe from the Friedmann equations
(71) and (72), this property does not hold anymore in the Barthel-Kropina cosmology. The matter
non-conservation equation matter as well as the energy density balance equation can be obtained after
the multiplication of Eq. (71) with a3, and applying the time derivation operator d/dx0 on the result. By
using in the obtained relation the second generalized Friedmann equation, the energy nonconservation
equation in the Barthel-Kropina cosmology is obtained as [114]

8πG
c4

[
d

dx0

(
ρc2a3

)
+ p

d
dx0 a3

]
= 6a5

[
H
(
η′)2

+
(
η′ +Hη

)
η′′ +H2ηη′

]
. (74)

Eq. (74) can be written in a form similar to the standard general relativistic conservation equation as

4πG
c4

[
d

dx0

(
ρc2a3

)
+ p

d
dx0 a3

]
= 3a5

[
8πG
2c4

(
5
3

ρc2 + p
)
H
a2 + η′η′′

]
. (75)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2025 doi:10.20944/preprints202505.0370.v1

https://doi.org/10.20944/preprints202505.0370.v1


21 of 45

The General Relativistic Limit

An interesting and important property of the generalized Friedmann equations of the Barthel-
Kropina cosmological model, given by Eqs. (71) and (72), respectively, is that they admit a general
relativistic limit, in which they take the form of the standard Friedmann equations of general relativity.
The general relativistic limit is given by [114]

η → ±1
a

, β → (1, 0, 0, 0). (76)

Then from Eqs. (71) and (72) we immediately reobtain the Friedmann equations of standard general
relativity

3(a′)2

a2 =
8πG

c2 ρ, 2
a′′

a
+

(a′)2

a2 = −8πG
c4 p. (77)

From Eqs. (77) it follows that the energy density ρ is conserved, with the conservation equation
given by ρ̇ + 3H

(
ρ + p/c2) = 0.

3.5. Conformal Barthel-Kropina Cosmology

Let’s consider that an (α, β)-metric with F = F(α, β) is given. The conformal transformation of
the metric is defined as [116]

F̃(x, y) := eσ(x)F(x, y) = F̃
(

α̃, β̃
)

. (78)

The metric (78) is again an
(

α̃, β̃
)

metric, with

α̃ = eσ(x)α, β̃ = eσ(x)β. (79)

The fundamental tensor of F̃ is calculated with the help of the Hessian [116]

g̃I J :=
1
2

∂2 F̃2

∂yI∂yJ . (80)

The conformal transformation of the Kropina metric is obtained as

F̃ := eσ(x) α2

β
=

α̃2

β̃
,

where α̃ = eσ(x)α, β̃ = eσ(x)β. The osculating Riemannian metric is obtained as

̂̃gI J(x) = e2σ(x) ĝI J(x), (81)

where ĝI J(x) is given by

ĝI J(x, b(x)) =
2α2

β2 aI J(x) +
3α4

β4 bIbJ −
4α2

β3 (bIbJ + bJbI) +
4
β2 bIbJ , (82)

where bI := aI JbJ = ã0I(x, b(x)) (see flowchart 1). For cosmological applications we choose the
conformal factor as σ(x) = ϕ

(
x0). Hence in the study of the dynamical evolution of the Universe we

will restrict our investigations to conformal transformations of the Kropina metric that depend only on
time.

The Generalized Friedmann Equations

In the conformal Barthel-Kropina geometry the generalized Friedmann equations take the form
[116]

3(η′)2

η2 =
8πG

c2
1

a2η2 ρ̃ + 3
(
ϕ′)2 − 6

η′

η
ϕ′, (83)
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and

2
η2 [−3(η′)2 + 2ηη′H+ 2ηη′′] =

16πG
c4

1
a2η2 p̃

−4
[

ϕ′′ +
1
2
(
ϕ′)2

]
+

(
η′

η
−H

)
ϕ′, (84)

respectively. We eliminate now the term −3(η′)2/η2 between Eqs. (83) and (84), and thus we find the
relation

2
1

aη

d
dx0

(
aη′) =

4πG
c4

1
a2η2

(
ρ̃c2 + p̃

)
−

(
ϕ′′ −

(
ϕ′)2

)
− 11

4
η′

η
ϕ′ − 1

4
ϕ′H. (85)

The general relativistic limit of the system (83)-(84) is obtained by taking η → 1/a, and
(bI(x)) = (1, 0, 0, 0), respectively. Consequently, β = y0. Thus, in this limit, the generalized Friedmann
cosmological evolution equations of the conformal Barthel-Kropina model become [116]

3H2 =
8πG

c4 ρ̃c2 + 3
(
ϕ′)2

+ 6Hϕ′, (86)

and

2H′ + 3H2 = −8πG
c4 p̃ + 2

[
ϕ′′ +

1
2
(
ϕ′)2

]
+Hϕ′, (87)

respectively. For ϕ = 0 we fully recover the standard Friedmann equations of general relativity.

3.6. Thermodynamic Interpretation of the (α, β) Cosmologies

It is a general property of several Finslerian type cosmological models that the matter energy-
momentum is not conserved. For example, Eq. (68) illustrate this situation for the case of the Barthel-
Randers cosmological models. Hence, contrary to the general relativistic case, in the Barthel-Randers
type cosmological model, as well as in the Barthel-Kropina and conformally transformed Barthel-
Kropina cosmologies, the baryonic matter content of the Universe is not conserved anymore. This
intriguing property of the models raises the problem of the physical interpretation of the nonconserva-
tion of the matter energy-momentum tensor, and the problem of the cosmological significance of this
effect.

A possible physical understanding of the energy-momentum nonconservation can be obtained by
interpreting this effect by using the thermodynamics of irreversible processes, and assuming that it
describes particle creation and annihilation in a cosmological environment. In the following we briefly
introduce first the foundations of the thermodynamic of irreversible processes, and then we illustrate
the general formalism by considering the specific case of the Barthel-Randers type cosmological model.
The nonconservation of the energy-momentum tensor is a specific feature of several modified gravity
theories, and specifically in approaches to gravity involving the presence of geometry-matter coupling
[137]. Example of such theories are the f (R, Lm) [138] and the f (R, T) [139] theories.

The non-conservation of the matter energy-momentum tensor, as shown, for example, for the
Barthel-Randers case by Eq. (68), can thus be interpreted as showing that due to the existence of
the Finslerian geometric effects, during the cosmological evolution matter creation processes may
take place during the cosmological evolution. This indicates the possibility of creating matter from
geometry. Quantum field theories in curved space-time also predict the same particle creation effect,
as initially proposed and investigated in [140–145]. In quantum field theory particle creation is due to
the time variation of the gravitational field. In an anisotropic Bianchi type I metric quantum particle
creation was considered in [142], and for a quantum scalar field with a non-zero mass the renormalized
expression of the energy-momentum tensor was determined. Hence, the osculating Finsler-Barthel
type gravity theories, in which the creation of matter is also allowed by the general formalism, could
also be interpreted as providing an effective, semiclassical description of the quantum effects in the
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gravitational field. It is important to note, however, that the nature of the particles is not necessarily
known, unless quantum theoretical effects are taken into account.

3.6.1. Irreversible Thermodynamics and Matter Creation

Eq. (68), obtained within the framework of the Barthel-Randers cosmology, shows that the
covariant divergence of the energy-momentum tensor, which is a function of the equilibrium quantities
of the thermodynamic system represented by the baryonic matter, is different from zero. Similar
effects do appear for the case of other thermodynamical quantities, like, for example, the particle and
entropy fluxes. Hence, in the presence of matter creation all the balance equilibrium equations must be
modified to account for this effect [146–148]. We will present first the general formalism of irreversible
thermodynamics in the presence of matter creation, by adopting a cosmological perspective. We will
consider all the results in the Riemann space, with metric aAB(x). Moreover, we interpret the Finslerian
effects as generating a set of specific physical events in the background Riemann geometry. Hence,
in the following all the physical and geometrical quantities will be expressed with the help of the
FLRW metric (56). Consequently, all considered physical and geometrical quantities are functions of
the cosmological time t only.

Particle Balance Equations

To describe particle dynamics we introduce the particle number density n, and the four-velocity uI

of matter. From these quantities we construct the particle flux N I ≡ nuI . All these physical parameters
are defined in Riemannian geometry. The particle balance equation in the presence of matter creation
is given by

∇I N I = ṅ + 3Hn = nΓ, (88)

where ∇I is the covariant derivative defined in the Riemann space with the help of the Levi-Civita
connection associated to the FLRW metric (56), while Γ denotes the matter creation rate. For Γ ≪ 3H,
the source term in the particle balance equation is negligible, and we reobtain the standard particle
conservation law of general relativity.

The Entropy Flux

We introduce now the entropy density s̃, and the entropy per particle σ = s̃/n. From these
quantities we construct the entropy flux vector defined as SI ≡ s̃uI = nσuI . The divergence of the
entropy flux gives the relation

∇ISI = nσ̇ + nσΓ ≥ 0, (89)

where the positivity condition is a direct consequence of the second law of thermodynamics. The case
σ = constant gives the relation

∇ISI = nσΓ = s̃Γ ≥ 0. (90)

Eq. (90) shows that if the entropy per particle can be taken as a constant, then the variation of the
entropy is only due to the matter generated via the transfer of the energy of the gravitational field to
matter. Since s̃ > 0, the particle production rate Γ must satisfy the basic thermodynamic condition
Γ ≥ 0. From a physical point of view this condition can be interpreted as permitting the creation of
matter from the gravitational field, but suppressing the opposit process.

The Creation Pressure

If particle creation takes place, the matter energy-momentum tensor must also be modified to
take into account the presence of the irreversible processes and the second law of thermodynamics.
Generally, in the thermodynamical description of open systems, the energy-momentum tensor can be
represented as [149]

T I J = T I J
eq + ∆T I J , (91)
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where T I J
eq is the equilibrium thermodynamic component [149], and ∆T I J describes the supplementary

terms induced by particle creation. For a homogeneous and isotropic space-time geometry, ∆T I J ,
giving the particle creation contribution to T I J , can be generally represented in the form

∆T0
0 = 0, ∆T J

I = −PcδJ
I , (92)

where Pc denotes the creation pressure, an effective thermodynamic quantity, which in a macro-
scopic physical system describes phenomenologically particle creation. Moreover, in a fully covariant
representation the tensor ∆T I J is given by [149]

∆T I J = −PchI J = −Pc

(
aI J − uIuJ

)
, (93)

where hI J = aI J − uIuJ is the projection operator defined in the FLRW geometry. Thus, we obtain
straightforwardly the relation uI∇J∆T I J = 3HPc.

In the presence of particle production by the gravitational field, from the scalar component of
the energy balance equation uI∇J T I J = 0, obtained from Eq. (91), we obtain the time variation of the
energy density ρ of the cosmological fluid as

ρ̇ + 3H
[

ρ +
1
c2 (p + Pc)

]
= 0. (94)

The thermodynamic quantities describing baryonic matter must also satisfy the Gibbs law [147]

nTd
(

s̃
n

)
= nTdσ = dρ − ρ + p/c2

n
dn, (95)

where by T is the temperature of the cosmological matter.

3.6.2. Application: Particle Creation in Barthel-Randers Cosmology

As an example of the application of the irreversible thermodynamic of open systems we consider
now the interpretation of the Barthel-Randers cosmology as a cosmological theory also describing
particle creation during the evolution of the Universe.

Creation Pressure in Barthel-Randers Cosmology

After some simple algebraic transformations, the particle energy balance equation (68) of the
Barthel-Randers cosmology can be rewritten as

ρ̇ + 3H
[(

ρ +
p
c2

)(
1 +

ϕ̇

2Hϕ

)]
= 0. (96)

By comparing Eqs. (94) and (96) we find the expression of the Barthel-Randers creation pressure
as

Pc =
ϕ̇

2Hϕ

(
ρc2 + p

)
=

c2ρϕ̇

2Hϕ
(1 + ω), (97)

where ω = p/ρc2. The energy density balance Eq. (68) can now be derived equivalently from the
divergence of the total energy momentum tensor T I J , given by

T I J =
(

ρc2 + p + Pc

)
uIuJ − (p + Pc)aI J , (98)

where all the mathematical operations must be performed in the Riemann space with the FLRW metric
(56).
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The Particle Creation Rate

By assuming adiabatic particle production, which requires that σ̇ = 0, the Gibbs relation (95) gives

ρ̇ =
(

ρ +
p
c2

) ṅ
n
=

(
ρ +

p
c2

)
(Γ − 3H). (99)

By combining this relation with the energy balance equation (96) we obtain the particle creation rate as
a function of the creation pressure, the Hubble function and the equilibrium thermodynamic quantities
as

Γ =
−3HPc

ρc2 + p
. (100)

By using Eq. (97) we find for the Barthel-Randers cosmological particle creation rate the expression

Γ = −3
2

ϕ̇

ϕ
= −3

2
d
dt

ln ϕ = −3
2

ȧη + aη̇

1 + aη
. (101)

If 1 + aη > 0, the condition Γ ≥ 0, which is equivalent with the existence of particle creation,
leads to the constraint

ϕ̇ = ȧη + aη̇ = a(η̇ + Hη) ≤ 0, (102)

on the scale factor a, and the temporal component of the one-form η. The condition does not depend
explicitly on the equation of state of the baryonic matter, but an indirect dependence via the Hubble
function does exist. The condition ϕ̇ < 0 implies the existence of a negative creation pressure, as it
follows from Eq. (97). Therefore particle production is thermodynamically allowed only if the creation
pressure is negative, Pc < 0.

The Barthel-Randers particle balance equation can thus be reformulated to take the form

ṅ + 3Hn = −3
2

n
ϕ̇

ϕ
= Γn, (103)

and it can be integrated to give for the particle number density the expression

n =
n0

ϕ3/2a3 , (104)

where n0 is a constant of integration.
For an Universe consisting of pressureless dust with p = 0, the creation pressure is given by

Pc =
ϕ̇

2Hϕ
ρc2 =

ρc2

2H
d
dt

ln ϕ, (105)

and it depends linearly on the baryonic matter density.
The divergence of the entropy flux vector SI takes the form

∇ISI =
−3nσHPc

ρc2 + p
= −3

2
nσ

ϕ̇

ϕ
= nσΓ. (106)

The Matter Temperature

The temperature T of the baryonic matter represents an important characteristic of physical
systems. To obtain the temperature evolution in the presence of particle creation, we consider the
general thermodynamic case in which the density and the pressure are functions of the particle number
density, and of the temperature. Hence ρ and p can be generally represented in parametric form
ρ = ρ(n, T) and p = p(n, T), respectively. Then we obtain

ρ̇ =

(
∂ρ

∂n

)
T

ṅ +

(
∂ρ

∂T

)
n

Ṫ. (107)
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By using the energy and particle balance equations we find first the relation

−3H
(

ρc2 + p + Pc

)
=

(
∂ρ

∂n

)
T

n(Γ − 3H) +

(
∂ρ

∂T

)
n

Ṫ. (108)

As a second step we use of the thermodynamic relation [149]

T
(

∂p
∂T

)
n
= ρc2 + p − n

(
∂ρ

∂n

)
T

, (109)

which together with Eq. (108) gives the temperature evolution of the matter in the Barthel-Randers
cosmology in the presence of particle production as

Ṫ
T

=
1
c2

(
∂p
∂ρ

)
n

ṅ
n
= ω

ṅ
n

. (110)

From the particle balance equation we obtain the ratio ṅ/n as

ṅ
n
= −3

(
ϕ̇

ϕ
+

ȧ
a

)
. (111)

By assuming that ϕ̇ < 0, we obtain for the temperature evolution of the particles in the Barthel-Randers
Universe the relation

T = T0
ϕ3ω/2

a3 . (112)

Generally, ω is an arbitrary scale factor dependent parameter ω = ω(a) [150]. In a thermodynam-
ically consistent cosmological model all geometrical and physical quantities must be well-defined and
regular for all ω(a).

3.6.3. Creation of Exotic Matter

In our discussion of the thermodynamic of open systems, as presented in the previous Section,
we have assumed that matter is created in the form of baryonic matter, satisfying the energy condition
ρc2 + p ≥ 0, and the restriction on the parameter of the matter equation of state ω ≥ 0. But we
cannot a priori exclude the possibility case in which an exotic fluid with ω < 0 is created during the
cosmological evolution of the Barthel-Randers Universe. The open system thermodynamic approach
to particle creation considered previously is also applicable if ω < 0. For this case the creation pressure
becomes negative for ϕ̇ > 0, with the particle creation rate Γ becoming positive. Therefore, matter
creation processes generating exotic particles can also be included in the Barthel-Randers cosmological
model.

A particular and important case is represented by an exotic fluid satisfying the equation of state
ρ(ex)c2 + p(ex) = 0, with ω = −1, which is equivalent to the presence of a cosmological constant. Then
from Eq. (94) we obtain

ρ̇(ex) = −3HPc. (113)

If the exotic particle creation process is adiabatic, with σ̇ = 0, from the Gibbs relation we find

ρ̇(ex) =
(

ρ(ex)c
2 + p(ex)

) ṅ(ex)

n(ex)
= 0. (114)

The above two equations give independently

ρ̇(ex) = Pc = 0, (115)
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which describe an Universe with constant exotic matter density, and vanishing creation pressure. On
the other hand if ω = −2, and ρ(ex) > 0, then Pc = −

(
c2ϕ̇/2Hϕ

)
ρ(ex), Γ = (3/2)ϕ̇/ϕ, and matter

production can take place if the conditions ϕ̇ > 0 and ϕ > 0 are satisfied.
Thus in a Barthel-Randers Universe the creation of exotic matter or possibly of scalar fields is

allowed in a way consistent with the laws of thermodynamics. The creation processes take place in the
Riemannian geometry characterized by the FLRW metric.

4. Cosmological Implications of Barthel Randers and Barthel-Kropina Models
In this Section, we investigate the cosmological implications of the Barthel-Randers and Barthel-

Kropina models by exploring three distinct variants of the Barthel-Randers framework alongside the
Barthel-Kropina cosmological model. To constrain the free parameters of these models, we employ a
combination of observational datasets, including Type Ia supernovae, baryon acoustic oscillations, and
Hubble parameter measurements. By extracting the posterior distributions of the model parameters
through Bayesian inference, we are able to assess the observational viability of the Barthel-Randers
and Barthel-Kropina models. This comparison with the standard ΛCDM cosmology enables us to
explore possible deviations from the conventional expansion history and to evaluate whether these
geometrically extended models offer a competitive or improved description of the Universe’s evolution.

4.1. Specific Cosmological Models

In this subsection, we present the normalized Hubble functions associated with both the Barthel-
Randers [113] and Barthel-Kropina [114] cosmological models. Our starting point is the family of
cosmological scenarios proposed in [113], where three distinct variants of the Barthel-Randers model
were introduced. Each of these variants is characterized by a specific choice of the function φ(z). The
normalized Hubble function for all three models can be expressed in a unified form as

h(z) =
2φ(z)

√
(1 + z)3

√
φ(z)Ωm0 + φ(z)2ΩΛ0 + (1 + z)4Ωr0

(1 + z) dφ(z)
dz − 2φ(z)

, (116)

where z is the redshift, Ωm0, ΩΛ0, and Ωr0 are the present-day matter, dark energy, and radiation
density parameters, respectively. The dark energy density parameter ΩΛ0 is obtained through the
constraint

ΩΛ0 =

(
1 − 1

2
φ′(0)

)2
− Ωm0 − Ωr0, (117)

where φ′(0) is the derivative of the function φ(z) evaluated at z = 0. The form of φ(z) determines
the behavior of each specific model and encodes the influence of the underlying Finslerian geometry.
In the following, we present the explicit forms of φ(z) corresponding to each of the three models
proposed in [113]:

• Linear model: φ(z) = 1 + βz,
• Logarithmic model: φ(z) = 1 + ln(1 + βz),
• Exponential model: φ(z) = e2βz.

We can obtain the corresponding normalized Hubble function by plugging the corresponding
form of φ(z) into Eq. (116).

In the case of the Barthel-Kropina geometry, we adopt the model proposed by [114]. The corre-
sponding normalized Hubble function is expressed as a system of differential equations in the redshift
representation as follows

d f (z)
dz

= − u(z)
(1 + z)h(z)

, (118)
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du(z)
dz

=
1 + f (z)

2(1 + z)h(z)

[
2h(z)

(
2

1 + f (z)
− 3ω(1 + f (z))

)
u(z)

+ 3
(

ω − 1
(1 + f (z))2

)
u(z)2 + 3ω f (z)(2 + f (z))h(z)2

]
,

(119)

dh(z)
dz

=
1

2(1 + z)h(z)

[
3h(z)2 − 4h(z)u(z)

1 + f (z)
+

3u(z)2

(1 + f (z))2 +
2(1 + z)h(z)

1 + f (z)
du(z)

dz

]
. (120)

The system of equations has to be solved with initial conditions f (0) = f0, u(0) = u0, and h(0) = 1.

4.2. Methodology and Datasets

In this subsection, we provide a detailed explanation of the methodology used to estimate the
posterior distributions of the model parameters, employing the Markov Chain Monte Carlo (MCMC)
approach. This approach allows us to constrain model parameters by analyzing various observational
datasets. The MCMC technique efficiently samples from the likelihood function while incorporating
prior information, leading to a robust estimation of the posterior probability distribution [151]. It is
important to note, that once the maximum posterior distribution is obtained, supposing the MCMC
converged, one also has the maximum likelihood, which is a prior independent quantity, even if the
posterior depends on the prior. Through this method, the model’s parameter space is thoroughly
explored.

The MCMC algorithm works by taking samples from the posterior distribution, which is deter-
mined using Bayes’ theorem as

P(θ|D) =
L(D|θ)P(θ)

P(D)
, (121)

where P(θ|D) represents the probability of the parameters θ given the observational data D. The term
L(D|θ) is the likelihood function, which measures how well the model fits the data. P(θ) is the prior
distribution, incorporating any existing knowledge about the parameters, while P(D) is the evidence,
acting as a normalization factor [152].

One of the key advantages of the MCMC method is that it not only finds the most likely values
for the parameters but also accounts for uncertainties in both the model and the observational data.
We define the likelihood function in such a way that it compares the theoretical predictions of the
Hubble parameter (H(z)), luminosity distance (µ(z)), transverse distance (DH(z)), comoving angular
diameter distance (DM(z)), and comoving volume distance (DV(z)) with observational data, taking
into account uncertainties through covariance matrices. The MCMC sampling is carried out using the
emcee library [153], which has built in it an affine invariant ensemble sampler. This sampler is used to
efficiently explore the parameter space. After running the MCMC chains with multiple walkers, we
discard the initial burn-in steps to remove biases from the starting positions.

To visualize and analyze the posterior distributions, we utilize the GetDist package [154], which
provides an extensive set of tools for generating 1D and 2D posterior distribution. In this work, we
use three different observational datasets: Cosmic Chronometers, Type Ia supernovae, and Baryon
Acoustic Oscillations.

Below, we provide a detailed description of each dataset and how the likelihood has been formed
based on them.

• Cosmic Chronometers : In this study, we utilize the Hubble measurements extracted based on
the differential age approach, as described in [155]. This technique leverages passively evolving
massive galaxies, which formed at redshifts around z ∼ 2 − 3, enabling a direct and model-
independent determination of the Hubble parameter using the relationship ∆z/∆t. This method
significantly reduces the reliance on astrophysical assumptions [156,157].
For our analysis, we use 15 Hubble measurements selected from the 31 Hubble measurements
used in [158], which cover a redshift range from 0.179 ≤ z ≤ 1.965. We define the likelihood
function for the CC dataset using the following expression: LCC = e

−1
2 (∆HT(z)C−1∆H(z)), with

∆H(z) = HModel(θ)− HObs. Here, HModel(θ) is the theoretical Hubble parameter, calculated at
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each redshift value zi using the model parameters θ, while Hobs represents the corresponding
observed value of the Hubble parameter at the ith redshift. Following [159], we use the full
covariance matrix C, which takes into account both statistical and systematic uncertainties in
the observations. The inverse of this covariance matrix, C−1, is employed to incorporate these
uncertainties into the likelihood function.

• Type Ia supernova : We also use the Pantheon+ dataset without the SHOES calibration, which
consists of light curves from 1701 Type Ia Supernovae (SNe Ia) covering a redshift range of
0 ≤ z ≤ 2.3 [160]. To analyze this data, we adopt the likelihood function described in [161],
which incorporates the total covariance matrix, Ctotal, that includes both statistical (Cstat) and

systematic (Csys) uncertainties [162]. The likelihood function is given by: LSNe Ia = e(−
1
2 rTC−1

totalr),
where r represents the residual vector, defined as the difference between the observed and
theoretical distance moduli: ri = µobs(zi)− µth(zi, θ), where θ Here, C−1

total is the inverse of the
total covariance matrix. The model-predicted distance modulus is calculated as: µmodel(zi) =

5 log10

(
dL(z)
Mpc

)
+M+ 25, where the luminosity distance dL(z) in a flat FLRW Universe is given

by: dL(z) = c(1 + z)
∫ z

0
dz′

H(z′) . Here, c is the speed of light, and H(z) is the Hubble parameter.
This formulation highlights the degeneracy between the nuisance parameter M and the Hubble
constant H0.

• Baryon Acoustic Oscillation : In our analysis, we also incorporate the most recent Baryon
Acoustic Oscillation (BAO) measurements from the Dark Energy Spectroscopic Instrument (DESI)
Data Release 2 (DR2) [163]. The BAO scale is determined by the sound horizon at the drag
epoch, zd ≈ 1060, given by: rd =

∫ ∞
zd

cs(z)
H(z) dz, where cs(z) is a function of the baryon to photon

densities ratio, and H(z) is the Hubble parameter. In a flat ΛCDM model, rd = 147.09 ± 0.26
Mpc [63]. However, in this study, we treat rd as a free parameter, allowing late-time obser-
vations to constrain the corresponding model parameters [164–168]. For our analysis, we
compute the following cosmological distance measures: the Hubble distance, DH(z), the co-
moving angular diameter distance, DM(z), and the volume-averaged distance, DV(z), given
by: DH(z) = c

H(z) , DM(z) = c
∫ z

0
dz′

H(z′) , DV(z) =
[
zD2

M(z)DH(z)
]1/3. Here, c denotes the

speed of light in vacuum. To constrain each model parameter, we analyze the following ra-
tios: DM(z)

rd
, DH(z)

rd
, DV(z)

rd
. We also use the ratio DM(z)/DH(z), which serves as an addi-

tional constraint independent of the sound horizon scale rd. The likelihood function for the
BAO data is given by: LBAO = exp

(
− 1

2 rT
Y · C−1

DY
· rY

)
, where the residuals are defined as:

rY = DY,Model − DY,Data with Y = DH
rd

, DM
rd

, DV
rd

, DM
DH

. In our case, the statistical covariance ma-
trix has been considered generally to be diagonal, with elements corresponding to the squared

observational uncertainties and defined as : CDY = diag(σ2
DY

), C−1
DY

=
(

diag(σ2
DY

)
)−1

. The
overall BAO likelihood function is then constructed as the product of the individual likelihoods:
LBAO = LDH/rd

×LDV /rd
×LDM/rd

×LDM/DH .

The posterior distribution of model parameters is obtained by maximizing the likelihood function. The
total likelihood function is given by

Ltot = LCC ×LSNe Ia ×LBAO. (122)

First, we discuss how to extract the posterior distribution of the model parameters in the Barthel-
Randers framework. To achieve these, we apply the standard approach outlined above. In these
models, we treat the parameters H0, Ωm0, β, M, and rd as free parameters with the following priors:
H0 (km s−1 Mpc−1) ∈ [50, 100], Ωmo ∈ [0, 1],M ∈ [−20,−18], rd (Mpc) ∈ [100, 200], and β as
Gaussian distribution, as the model is sensitive to this parameter. The Ωr0 is extracted using the
following relation: Ωr0 =

(
4.183699 × 10−5)h−2, where h = H0

100 . In the case of the Linear and

Logarithmic Models, ΩΛ0 is extracted using the relation ΩΛ0 = 1 − β + β2

4 − Ωm0 − Ωr0, while in the
case of the Exponential Model, ΩΛ0 is extracted using the relation: ΩΛ0 = 1 − 2β + β2 − Ωm0 − Ωr0.
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This makes the explicit variation of Ωr0 and ΩΛ0 redundant, as both are fully determined by the other
parameters.

To constrain the Barthel-Kropina model, we begin by numerically solving the system of differential
equations given in equations (118)–(120). These equations are integrated using the solve_ivp function
from SciPy, employing the Radau method a fifth order implicit Runge–Kutta scheme particularly
effective for handling the stiff differential equations. For numerical stability and accuracy over the
redshift range z ∈ [0, 3], we set the relative and absolute tolerances to 10−3 and 10−6, respectively.
After obtaining the numerical solutions, we use a MCMC approach to constrain the model parameters.
For more information on how to handle these kind of Hubble like functions that appear within
differential equations, please refer to [169]. In the case of the Barthel-Kropina model, we take the
H0 (km s−1 Mpc−1) ∈ [50, 100], uo ∈ [0.0, 3.0],M ∈ [−20,−18], rd (Mpc) ∈ [100, 200], and f0 as
Gaussian distribution. It is important to note that in both cases, we work with the normalized Hubble
function. The final Hubble parameter H(z) can be obtained by multiplying the normalized function
h(z) with the Hubble constant H0, i.e., H(z) = H0 · h(z).
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(b) Barthel-Randers (Logarithmic Case)
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(c) Barthel-Randers (Exponential Case)
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Figure 2. The constraints on the parameters of the Barthel-Randers and Barthel-Kropina cosmological models,
showing both 1σ and 2σ confidence intervals. The contours show the correlations between these parameters, with
marginalized probability distributions along the diagonal.
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Table 2. Summary of the mean values and 95% credible intervals (2σ) for the parameters of the ΛCDM, Barthel-
Randers, and Barthel-Kropina cosmological models.

Cosmological Models Parameter JOINT

ΛCDM Model

H0 68.1 ± 4.1
Ωm0 0.3040 ± 0.0064
M −19.42 ± 0.12
rd 148.8 ± 7.6

ΩΛ0 0.6960 ± 0.0064

BR (Linear Case)

H0 68.1 ± 3.9
Ωm0 0.3010 ± 0.0063

β 0.00211 ± 0.00061
M −19.42 ± 0.12
rd 148.8 ± 7.5

ΩΛ0 0.6968 ± 0.0063
Ωr0 (9.10 ± 1.20)× 10−5

BR (Logarithmic Case)

H0 68.1 ± 3.9
Ωm0 0.2978 ± 0.0063

β 0.00450 ± 0.00055
M −19.42 ± 0.13
rd 148.6 ± 7.4

ΩΛ0 0.6976 ± 0.0062
Ωr0 (9.08 ± 1.20)× 10−5

BR (Exponential Case)

H0 68.3 ± 4.0
Ωm0 0.2809 ± 0.0059

β 0.00819 ± 0.00016
M −19.42 ± 0.14
rd 148.8 ± 7.4

ΩΛ0 0.7108 ± 0.0059
Ωr0 (9.06 ± 1.20)× 10−5

Barthel-Kropina Model

H0 66.4 ± 4.0
f0 0.0420 ± 0.0015
u0 0.3630 ± 0.0050
ω 1.082 ± 0.033
M −19.45 ± 0.13
rd 149.0 ± 7.9

5. Comparing Barthel-Randers, Barthel-Kropina and ΛCDM Cosmological Models
After obtaining the mean parameter values from the MCMC simulations, we proceed to compare

the predictions of the Barthel-Randers and Barthel-Kropina cosmological models with standard ΛCDM
model. This comparison is essential to assess how well the Barthel-Randers and Barthel-Kropina
framework replicates the observed cosmic expansion history.

5.1. Evolution of the Hubble Parameter H(z) and Hubble Residual ∆H(z)

The Hubble parameter H(z) characterizes the rate of cosmic expansion as a function of redshift z.
Using the mean parameter values for each of the three Barthel-Randers models and Barthel-Kropina
model, we compute H(z) over a relevant redshift range and compare the results with those predicted
by the ΛCDM model. We adopt the following form of the ΛCDM model for this comparison

HΛCDM(z, H0, Ωm0, ΩΛ0) = H0

√
Ωm0(1 + z)3 + ΩΛ0,
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where Ωm0 = 0.304, ΩΛ0 = 0.695, and H0 = 68.1 km s−1 Mpc−1. To quantify the deviation between
the Barthel-Randers models and ΛCDM, we define the Hubble residual as

∆H(z) = HBarthel-Randers Models(z)− HΛCDM(z),

where HBarthel-Randers Models(z) denotes the Hubble parameter predicted by the respective Barthel-
Randers model. Similarly, for the Barthel-Kropina model, we define

∆H(z) = HBarthel-Kropina Model(z)− HΛCDM(z),

where HBarthel-Kropina Model(z) denotes the Hubble parameter predicted by the respective Barthel-
Kropina model. Plotting both H(z) and ∆H(z) for the Barthel-Randers models and Barthel-Kropina
model allows us to visualize the distinct behaviors introduced by each model and assess their con-
sistency with the standard cosmological framework. A small or nearly constant residual would
indicate close agreement with ΛCDM, while significant deviations may point to possible extensions or
alternatives to the standard model.
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Figure 3. Comparison of the Barthel-Randers (Linear, Logarithmic, Exponential), Barthel-Kropina, with ΛCDM
model. The left panel shows the evolution of the Hubble parameter H(z) using mean MCMC values. The right
panel shows the Hubble residuals ∆H(z), indicating deviations from the standard model.

5.2. Cosmographic Analysis of Barthel-Randers and Barthel-Kropina Models

Cosmography provides a model-independent framework to describe the kinematic behavior of
the Universe by expanding cosmological quantities in terms of redshift [170–173]. In this work, we
apply this approach to analyze the deceleration and jerk parameters within the Barthel-Randers and
Barthel-Kropina cosmological models, which modify standard cosmic dynamics through different
geometrical correction terms.

5.2.1. Deceleration Parameter q(z) and Jerk Parameter j(z)

The deceleration parameter q(z) describes the acceleration or deceleration of the cosmic expansion
and is defined as:

q(z) = − 1
H2(z)

dH(z)
dz

− 1,

A negative value of q(z) indicates that the Universe is undergoing accelerated expansion. Two
important phase derived from q(z) are the present-day deceleration parameter, q0 = q(z = 0), which
describes the current rate of acceleration, and the transition redshift, ztr, defined by the condition
q(ztr) = 0, marking the point at which the Universe transitioned from decelerated to accelerated
expansion. The jerk parameter j(z) is a third-order cosmographic quantity defined as [174]:

j(z) =
1

H3(z)
d2H(z)

dz2 .
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which characterizes the rate of change of the acceleration. Importantly, in the standard ΛCDM
model, the jerk parameter remains constant at j(z) = 1. Any deviation from this value can signal
dynamics beyond the standard cosmological model. For the three Barthel-Randers models and the
Barthel-Kropina model, we evaluate both the deceleration parameter q(z) and the jerk parameter j(z)
numerically and assess their behavior across the redshift range.
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Figure 4. Evolution of the deceleration parameter q(z) and jerk parameter j(z) for the Barthel-Randers (Linear,
Logarithmic, Exponential), Barthel-Kropina, with ΛCDM model. The left panel shows the evolution of q(z) as a
function of redshift, while the right panel presents j(z), showing deviations from the ΛCDM value j = 1.

5.3. Statistical Assessment of Barthel-Randers and Barthel-Kropina Models

In this subsection, we apply a set of model selection criteria to evaluate the goodness-of-fit and
model complexity of three variants of the Barthel-Randers cosmological models (Linear, Logarithmic,
and Exponential) and Barthel-Kropina model. It is crucial to assess how well each models aligns with
the data when compared to the ΛCDM model.

5.4. Goodness of Fit: χ2 and χ2
red

The primary measure of model fit is the chi-squared statistic, χ2, which quantifies the discrepancy
between theoretical predictions and observational data. For a more normalized comparison, especially
when models have different numbers of parameters, we compute the reduced chi-squared:

χ2
red =

χ2
tot

DOF
, (123)

where χ2
tot is the total chi-squared value and DOF denotes the degrees of freedom, calculated as the

number of data points minus the number of fitted parameters. A value of χ2
red ≈ 1 indicates a good

statistical fit [175]. Lower values can suggest overfitting, while significantly higher values may reflect
poor model performance.

5.4.1. Model Comparison Using AIC and BIC

In addition to chi-squared statistics, we apply information-theoretic criteria that account for both
fit quality and model complexity. These include the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC), defined respectively as [176–180]:

AIC = −2 logLtot,max + 2P , (124)

BIC = −2 logLtot,max + P ln(N ), (125)

where P is the number of free parameters, N is the total number of data points used in the analysis
and Ltot,max is the total maximum likelihood. In our analysis, the total number of data points used
is the sum of three different observational datasets: N = 1749. For the model comparison, we note
that the ΛCDM model has 4 free parameters, whereas the Barthel-Randers cosmological model has 5
free parameters, and the Barthel-Kropina model has 6 free parameters. These criteria penalize overly
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complex models to prevent overfitting. BIC generally applies a stricter penalty than AIC, especially in
large datasets.

5.4.2. Relative Comparison: ∆AIC and ∆BIC

To directly compare the Barthel-Randers models with the ΛCDM model, we compute

∆AIC = AICBarthel-Randers Models − AICΛCDM Model, (126)

∆BIC = BICBarthel-Randers Models − BICΛCDM Model. (127)

Similarly, for the comparison between the Barthel-Kropina model and the ΛCDM model, we compute

∆AIC = AICBarthel-Kropina Model − AICΛCDM Model, (128)

∆BIC = BICBarthel-Kropina Model − BICΛCDM Model. (129)

According to the calibrated Jeffreys’ scales [181], these differences offer insight into model prefer-
ence:

• |∆AIC| ≤ 2: Comparable support.
• 4 ≤ |∆AIC| < 10: Considerably less support.
• |∆AIC| ≥ 10: Strongly disfavored.
• |∆BIC| ≤ 2: Weak evidence against the model.
• 2 < |∆BIC| ≤ 6: Moderate evidence against the model.
• |∆BIC| > 6: Strong evidence against the model.

A negative value of ∆AIC or ∆BIC indicates that the Barthel-Randers and Barthel-Kropina models
are preferred over ΛCDM, whereas positive values suggest that the Barthel-Randers and Barthel-
Kropina models are less favored.

5.4.3. p-Value Statistics

In our analysis, we also computed the p-value to assess the statistical significance of the fit for the
Barthel-Randers cosmological models, calculated as follows:

p = 1 −Fχ2
min

(χ | ν),

where Fχ2
min

(χ | ν) is the cumulative distribution function (CDF) of the chi-squared distribution with ν

degrees of freedom, and ν represents the number of data points minus the number of free parameters
[182].

The p-value quantifies the likelihood of observing results as extreme as those seen in the data,
assuming the null hypothesis holds true. A p-value smaller than 0.05 (p < 0.05) indicates statistical
significance, providing strong evidence against the null hypothesis and suggesting that the model
is a good fit for the data. These corresponding statistical metrics (χ2

min, χ2
red, AIC, BIC, ∆AIC, ∆BIC,

and p-value) are computed and compared against the ΛCDM model. These statistical metrics ensure
that both the goodness of fit and the complexity of each model are thoroughly evaluated, enabling a
comprehensive statistical assessment of the Barthel-Randers model and Barthel-Kropina models in the
context of cosmology.
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Table 3. Summary of χ2
tot,min, χ2

red, AIC, ∆AIC, BIC, ∆BIC, and p-value for the ΛCDM model and Barthel-Randers
models (Linear, Logarithmic, Exponential), as well as the Barthel-Kropina model.

Model χ2
tot χ2

red AIC ∆AIC BIC ∆BIC p-
value

ΛCDM Model 1802.34 1.032 1810.34 0.00 1832.20 0.00 0.165
BR (Linear Case) 1802.54 1.033 1812.54 2.20 1839.87 7.76 0.160

BR (Logarithmic Case) 1802.89 1.033 1812.89 2.55 1840.22 8.01 0.159
BR (Exponential Case) 1805.15 1.035 1815.15 4.81 1842.48 10.27 0.150
Barthel-Kropina Model 1782.19 1.022 1794.19 −16.14 1826.99 −5.21 0.251

6. Synthesis of the Results, and Their Discussion
In the present Section we will discuss the main results obtained from the comparison of the

present cosmological models with observations, and with the standard ΛCDM paradigm.

6.1. MCMC Results

Figure 2 presents the corner plot comparing the Barthel-Randers and Barthel-Kropina cosmo-
logical models. Figure 2a–c shows the corner plots for the Linear, Logarithmic, and Exponential
cases of the Barthel-Randers model, respectively. Figure 2d shows the corner plot for the Osculating
Barthel-Kropina dark energy model. The diagonal panels illustrate the one-dimensional marginalized
posterior distributions for each parameter, highlighting their most probable values. The off-diagonal
panels depict the two-dimensional marginalized contour plots, showing the 68% and 95% confidence
intervals.

These contour plots also reveal correlations or degeneracies between parameters. One can
observe that the predicted values of H0 in the case of ΛCDM and the Barthel-Randers models (Linear,
Logarithmic, and Exponential cases) are close to those predicted by the DESI results: HDESI DR1

0 =

(68.52 ± 0.62) km s−1 Mpc−1 and HDESI DR2
0 = (68.17 ± 0.28) km s−1 Mpc−1. On the other hand, the

predicted value of H0 in the case of the Osculating Barthel-Kropina dark energy model aligns more
closely with the Planck estimation: HPlanck

0 = (67.4 ± 0.5) km s−1 Mpc−1.
The predicted values of rd in all the models are consistent with the Planck estimation, rPlanck

d =

(147.09 ± 0.26) Mpc. Although the central value of our predicted H0 aligns well with the estimations
from Planck, DESI DR1, and DESI DR2, the associated uncertainty is noticeably larger. This increased
uncertainty primarily stems from the inclusion of the full SNe Ia dataset, which, while providing a
more comprehensive observational foundation, also introduces larger statistical and systematic errors.
A similar trend is observed in the inferred value of the sound horizon at the drag epoch, rd, where our
model yields a larger uncertainty compared to the Planck determination. Additionally, we adopt the
full covariance matrix for the CC analysis as provided by [159]. For comparison, the current constraints
on the fΛCDM model using the CC data from Moresco et al. yield: H0 = 66.2+3.8

−3.9 km s−1Mpc−1 when
systematics due to SPS models are not included, and H0 = 66.0+5.5

−5.6 km s−1Mpc−1 when the full set of
systematic uncertainties is taken into account.

The predicted value of the present-day matter density parameter in the case of the ΛCDM
model, as well as the Linear case of the Barthel-Randers model, is lower than the Planck estimation,
ΩPlanck

m0 = 0.315 ± 0.007, and is closer to the values predicted by DESI DR1 and DESI DR2, ΩDESI DR1
m0 =

0.295 ± 0.015 and ΩDESI DR2
m0 = 0.2975 ± 0.0086.

Similarly, the predicted value of Ωm0 in the Logarithmic case of the Barthel-Randers model is
also in good agreement with the DESI DR1 and DR2 estimations. In contrast, the Exponential case
of the Barthel-Randers model predicts a matter density parameter that is lower than the values re-
ported by both DESI DR1 and DR2. It is interesting to observe that the ΛCDM model, as well as
the Linear, Logarithmic, and Exponential cases of the Barthel-Randers model, predict a present-day
dark energy density parameter, ΩΛ0, that is greater than the value predicted by the Planck estimation:
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ΩPlanck
Λ0 = 0.685 ± 0.007.

6.2. Hubble parameter and Hubble residual results

Figure 3 shows the evolution of the Hubble function and the Hubble residuals for the Linear,
Logarithmic, and Exponential cases of the Barthel-Randers model, as well as the Barthel-Kropina
model. These are compared with the predictions from the ΛCDM model and CC measurements. The
left panel shows that at high redshift (z > 0.7), all the considered models deviate noticeably from the
ΛCDM model. However, these deviations are not significant. At low redshift (z < 0.7), each model
aligns closely with the ΛCDM predictions.

On the right plane we can also observe similar behavior in the Hubble residual plots, where each
model shows a slight deviation from the ΛCDM model at high redshift. However, at low redshift,
all models exhibit behavior that closely matches the ΛCDM predictions. All considered models
(Barthel-Randers variants and Barthel-Kropina) closely follow ΛCDM at low redshifts, indicating
consistency with current observations. Their mild deviations at higher redshifts (z > 0.7) suggest
a potentially different early Universe expansion history, offering alternative insights that may help
address cosmological tensions such as the Hubble tension.

6.3. Cosmographic Results

Figure 4 shows the evolution of the cosmography parameters for the Linear, Logarithmic, and
Exponential cases of the Barthel-Randers model, along with the Barthel-Kropina model, compared to
the ΛCDM model. The left panel shows the evolution of the deceleration parameter, q(z).

Notably, the Barthel-Kropina model exhibits a distinct evolution compared to both the standard
ΛCDM model and the Barthel-Randers variants. At present time (z = 0), all Barthel-Randers variants
and ΛCDM predict a deceleration parameter of approximately q0 ≈ −0.511, while the Barthel-Kropina
model predicts a less negative value of q0 ≈ −0.366. We also analyze an important cosmological
feature: the transition redshift ztr.

For the ΛCDM model, the transition from decelerated to accelerated expansion occurs at
zΛCDM

tr ≈ 0.623. The Barthel-Randers variants exhibit slightly later transitions: zBR Linear
tr ≈

0.610, zBR Logarithmic
tr ≈ 0.607, and zBR Exponential

tr ≈ 0.606.
In contrast, the Barthel-Kropina model shows a significantly earlier transition at zBarthel-Kropina

tr ≈
0.723. While at high redshift all models show deviations from the ΛCDM model in their evolution,
these deviations are not significant. The right panel shows the evolution of the jerk parameter for each
model. At the present time (z = 0), all variants of the Barthel-Randers models exhibit good agreement
with the ΛCDM model. Although each variant predicts a slightly different value for the jerk parameter,
these deviations are not significant. Moreover, the Barthel-Kropina model shows a substantial deviation
from the other models, predicting a present-day jerk value of jBarthel-Kropina

0 ≈ 0.448.
At high redshift, all variants of the Barthel-Randers models, as well as the Barthel-Kropina model,

deviate from the predictions of the ΛCDM model.

6.4. Statistical Results

Table 3 presents a comparative analysis of the Linear Case, Logarithmic Case, and Exponential
Case of the Barthel-Randers model, as well as the Barthel-Kropina model, against the ΛCDM model,
using several statistical metrics. The χ2

tot,min value, a measure of the goodness of fit, for the ΛCDM
model is 1802.34. The Barthel-Randers models (Linear, Logarithmic, and Exponential cases) show
similar total χ2

tot,min values ranging from 1802.54 to 1805.15, which are slightly higher than that of the
ΛCDM model. The Barthel Kropina model shows the lowest χ2

tot,min value of 1782.19. This indicates
that, in terms of overall goodness of fit, the Barthel Kropina model provides the best fit, while the
Barthel-Randers models perform slightly worse than the ΛCDM model.

The χ2
red value provides insight into the goodness of fit adjusted for the number of data points

and parameters in the model. The ΛCDM model has a χ2
red of 1.032, which is very close to the Barthel-
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Randers models, all of which have values slightly above 1.033. The lowest χ2
red value is from the

Barthel Kropina model (1.022), indicating that it is marginally the best in terms of adjusting for the
complexity of the model and fitting the data well.

The AIC is a measure of the relative quality of a model, accounting for both the goodness of fit
and the number of parameters. The ΛCDM model has an AIC of 1810.34. The Barthel-Randers models
(Linear, Logarithmic, and Exponential) have AIC values around 1812.54, 1812.89, and 1815.15, which
are higher by 2.20, 2.55, and 4.81, respectively, compared to the ΛCDM model, indicating a slightly
worse balance between fit and model complexity. The Barthel Kropina model has the lowest AIC
value of 1794.19, which is 16.14 lower than the ΛCDM model. According to the AIC criterion, the
Barthel Kropina model provides the best balance between fit and complexity, while the Barthel-Randers
models perform slightly worse than the ΛCDM model.

The BIC is another metric for model selection, similar to AIC but with a stronger penalty for
the number of parameters. The ΛCDM model has a BIC of 1832.20, which is lower than the Barthel-
Randers models but slightly higher than the Barthel Kropina model. The Barthel-Randers models show
BIC values between 1839.87 and 1842.48, with an increase of approximately 7.76 to 10.27 compared
to the ΛCDM model. The Barthel Kropina model has the lowest BIC of 1826.99, a decrease of 5.21
compared to the ΛCDM model. This suggests that the Barthel Kropina model is the best according to
the BIC criterion, while the Barthel-Randers models perform worse than the ΛCDM model.

The p-value indicates the statistical significance of the model in terms of explaining the data.
The ΛCDM model has a p-value of 0.165, indicating that the model is statistically significant at a
conventional level (i.e., it cannot be rejected at the 5% significance level). All the other models (Barthel-
Randers Linear, Logarithmic, Exponential, and Barthel Kropina) have p-values ranging from 0.160 to
0.251, which are slightly higher or comparable, suggesting that none of the models can be rejected at
the 5% significance level. The p-values imply that all models, including the base ΛCDM model, are
statistically significant in explaining the data.

The Barthel Kropina model outperforms the ΛCDM model in terms of goodness of fit, AIC, and
BIC, offering a better balance between fit and model complexity. The Barthel-Randers models (Linear,
Logarithmic, Exponential), however, perform slightly worse than the ΛCDM model in this updated
comparison.

Despite these improvements, all models, including the ΛCDM model, are statistically significant,
with p-values indicating that none of them should be rejected. In terms of simplicity, however, the
ΛCDM model remains the most straightforward and easiest to interpret. Therefore, while the Barthel
Kropina model appears to be the most favorable overall, the differences between the models are
relatively small, and all offer comparable statistical significance.

7. Discussions and Final Remarks
One of the fundamental assumptions, and results, of present day physics is that the gravitational

interaction can be successfully described only in geometric terms. However, which geometry can best
described gravity is still a matter of debate. The initial Riemannian framework of general relativity
was extended to include geometries with nonmetricity, torsion, or both. Teleparallel geometries have
also been considered as potential candidates for the description of gravity.

In the present work we have briefly reviewed some recent advances in the application of another
geometric framework that could provide some insight into the understanding of the gravitational
force, namely, Finsler geometry, and its various particular cases. In Finsler geometry, instead of the
point x of Riemann geometry, the metric depends also on an internal degree of freedom y, which
is often physically interpreted as velocity. Hence, the y dependence is the essential characteristic of
Finsler spaces, and the presence of this internal degrees of freedom opens some new perspective on
the physical interpretation of the Finsler geometric theories. Thus, Finsler geometries are generally
anisotropic and nonlocal, and these properties significantly enlarge the possibilities of the physical
applications.
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On the other hand, from a physical point of view it is natural to assume that in some specific
physical processes the internal vector y becomes a function of x. Such specific situations may occur if we
interpret y as describing space-time fluctuations, and we perform an averaging over it, according to the
rule ⟨ϕ(x)⟩ =

∫
ϕ(x, y) f (y)d4y, where f (y) is a specific distribution function of y [48]. Hence, Finsler

geometry with ĝ(x) = g(x, y)|y=Y(x) has a deep physical origin, which points towards interesting
physical consequences. The averaging, or the osculating process leads to a reduction of a Finsler
geometry F to a corresponding Riemann geometry. The interpretation of the vector y as related to
some quantum effects, like the vacuum fluctuation, is also supported by the fact that generally in
(α, β) type gravitational theories the matter energy-momentum tensor is not conserved. The most
natural physical interpretation of this result is related to the possibility of particle production from the
Finslerian vacuum in an expanding Universe, an effect that is also specific to quantum field theories in
curved spacetimes [140–144]. Hence, Finslerian type gravitational theories can offer a glimpse on the
structure and classical limit of quantum field theories in Riemann geometries.

In our presentation we have concentrated on a specific class of osculating geometries, the os-
culating (α, β) geometries, which have the remarkable property that their Barthel connection is the
Levi-Civita connection. This property allows a significant simplification of the mathematical formal-
ism, which becomes easily tractable by using the standard methods of Riemannian geometry. The
osculating (α, β) type theories can be interpreted as two metric theories. First, we have the Finsler
metric function F(α, β), which generates its own metric, while α is a Riemannian metric given a priori.
For cosmological applications the FLRW metric can be adopted as the Riemann metric α, and we
assume that this is the physical metric in which the real, observable gravitational processes take place.
However, the Finsler metric ĝ(x) = g(x, Y(x)) has also an important imprint on gravitation, since its
presence induces new terms in the gravitational field equations. We have investigated the effects of
these new terms from a cosmological perspective only, by interpreting them as describing an effective
dark energy that is responsible for the late acceleration of the Universe.

An important test of a cosmological model is represented by its consistency with the observations.
We have used three observational datasets (Cosmic Chronometers, Type Ia Supernovae, Baryon
Acoustic Oscillations) to perform a detailed analysis, and comparison of the Barthel-Randers, Barthel-
Kropina and λCDM models. Generally, one can appreciate that all the considered models give a
good description of the observational data, but important differences still do appear between the
various Finslerian approaches, and the ΛCDM model. The differences do appear, for example, in the
prediction of the critical redshift zcrit at which the transition from deceleration to acceleration occurs,
with the Barthel-Randers models predicting a value of zcrit of the order of zcrit ≈ 0.60, while in the
Barthel-Kropina cosmology zcrit ≈ 0.72. Significant differences do appear in the present values of the
deceleration parameter q(0), which in the Barthel-Kropina cosmology takes the value q(0) ≈ −0.37,
while in ΛCDM and Barthel-Randers models it has the value q(0) ≈ −0.50. Moreover, at redshifts
z > 3, the predictions of all considered models show significant differences with respect to each other.
Hence, cosmological observations at high redshift will give the possibility of discriminating between
the various cosmological models based on modified gravity theory constructed with the help of Finsler
(and other) geometries.

The main goal of the present review is to draw attention to the possibilities offered by Finsler
geometry in the explanation of the cosmological phenomena, and to give a brief introduction to the
existing results in a very specific, and simple class, of this very complex geometry. We have presented in
some detail the generalized Friedmann cosmological equations, and the general theoretical framework
in which cosmological models can be constructed. We would like to point out that from the point
of view of calculations, the derivation of the field equations and of the evolution equations in these
particular geometries are no more complicated than those in standard general relativity. This is
related especially to the important fact that the connection in osculating point Finsler geometries is,
for the (α, β) metrics, the Barthel connection, which has the same mathematical form as the Levi-
Civita connection. In our review we have presented some basic theoretical tools that can be used
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for the further exploration of the applications of Finsler geometry in the description of gravitational
phenomena.
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