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Article

About Some Unsolved Problems in the Stability
Theory of Stochastic Differential and
Difference Equations

Leonid Shaikhet

Department of Mathematics, Ariel University, Ariel 40700, Israel; leonid.shaikhet@usa.net

Abstract: This paper continues a series of papers devoted to unsolved problems in the theory of stability and

optimal control for stochastic systems. A delay differential equation with stochastic perturbations of the white

noise and Poisson’s jumps types is considered. In contrast to the known stability condition, in which it is assumed

that stochastic perturbations fade on the infinity quickly enough, a new situation is studied, in which stochastic

perturbations can fade on the infinity either slowly or not fade at all. Some unsolved problem in this connection is

proposed to readers attention. Besides some unsolved problems of stabilization for one stochastic delay differential

equation and one stochastic difference equation are also proposed.

Keywords: the Wiener process; Poisson’s measure; general method of Lyapunov functionals construction;

asymptotic mean square stability; stability in probability; numerical simulation

1. Introduction

The unsolved problems proposed here continue a series of unsolved problems in stability and
optimal control theory for stochastic differential and stochastic difference equations, that have been
presented during the recent years at some international conferences and papers (see [1–10]). All these
problems still need to be solved.

Let {Ω,F, P} be a complete probability space, {Ft}t≥0 be a nondecreasing family of sub-σ-algebras
of F, i.e., Fs ⊂ Ft for s < t, E be the expectation with respect to the measure P, H2 be the space of
F0-adapted stochastic processes φ(s), s ≤ 0, ∥φ∥2 = sup

s≤0
E|φ(s)|2.

Following Gikhman and Skorokhod [11,12], let us consider the stochastic delay differential
equation

dx(t) =

(
Ax(t) +

k

∑
i=1

Bix(t − hi)

)
dt +

m

∑
i=1

Ci(t)x(t)dwi(t)

+
∫

G(t, u)x(t)ν̃(dt, du), t ≥ 0,

x(s) = ϕ(s) ∈ H2, s ∈ [−h, 0], h = max
i=1,...,k

hi,

(1)

where x(t) ∈ Rn, A, Bi, Ci(t), G(t, u) are n × n-matrices, hi > 0, w1(t), ..., wm(t) are mutually indepen-
dent standard Wiener processes, which are also independent of the Poisson measure ν(t, A),

Eν(t, A) = tΠ(A), ν̃(t, A) = ν(t, A)− tΠ(A).

1.1. Auxiliary Definitions and Statements

Let x(t) be a solution of the Equation (1) in the time moment t, xt = x(t + s), s < 0, be a trajectory
of the Equation (1) solution until the time moment t. Consider a functional V(t, φ) : [0, ∞)× H2 → R+

that can be presented in the form V(t, φ) = V(t, φ(0), φ(s)), s < 0, and for φ = xt put

Vφ(t, x) = V(t, φ) = V(t, xt) = V(t, x, x(t + s)),

x = φ(0) = x(t), s < 0.
(2)
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Let D be a set of functionals V(t, φ), for which the function Vφ(t, x) defined in (2) has a continuous
derivative with respect to t and two continuous derivatives with respect to x. Let ′ be the sign of
transpose, ∇Vφ(t, x) and ∇2Vφ(t, x) be respectively the first and the second derivatives of the function
Vφ(t, x) with respect to x. For the functionals from D the generator L of the Equation (1) has the form
[11–13]

LV(t, xt) =
∂

∂t
Vφ(t, x(t)) +∇V′

φ(t, x(t))

(
Ax(t) +

k

∑
i=1

Bix(t − hi)

)

+
1
2

m

∑
i=1

x′(t)C′
i(t)∇2Vφ(t, x(t))Ci(t)x(t)

+
∫
[Vφ(t, x(t) + G(t, u)x(t))− Vφ(t, x(t))

−∇V′
φ(t, x(t))G(t, u)x(t)]Π(du).

(3)

Definition 1. [13] The zero solution of the Equation (1) is called:
- mean square stable if for each ε > 0 there exists a δ > 0 such that E|x(t)|2 < ε, t ≥ 0, provided that ∥ϕ∥2 < δ;
- asymptotically mean square stable if it is mean square stable and for each initial function ϕ(s) the solution x(t)
of the Equation (1) satisfies the condition lim

t→∞
E|x(t)|2 = 0.

Theorem 1. [13] Let there exist a functional V(t, φ) ∈ D, positive constants c1, c2, c3, such that the following
conditions hold:

EV(t, xt) ≥ c1E|x(t)|2, EV(0, ϕ) ≤ c2∥ϕ∥2,

ELV(t, xt) ≤ −c3E|x(t)|2.

Then the zero solution of the Equation (1) is asymptotically mean square stable.

Some particular cases of the Equation (1) are considered in [14,15], where it is proven that if the
stochastic perturbations fade on the infinity quickly enough then the asymptotically stable zero solution
of the corresponding deterministic system remains asymptotically mean square stable regardless of
the level of these stochastic perturbations.

In particular, in [15] the asymptotic mean square stability of the zero solution of the Equation
(1) with k = m = 1 is proven by virtue of the general method of Lyapunov functionals construction
[13,16] and the method of Linear Matrix Inequalities (LMIs) [17–19]. By that it is supposed that for
some positive definite matrix P the following conditions hold

C′(t)PC(t) ≤ σ2(t)P, G′(t, u)PG(t, u) ≤ γ2(t, u)P,

ρ(t) = σ2(t) +
∫

γ2(t, u)Π(du),
∫ ∞

0
ρ(t)dt < ∞, (4)

and the Lyapunov functional V(t, xt) is constructed in the form V(t, xt) = V1(t, x(t)) +V2(t, xt), where

V1(t, x(t)) = e−
∫ t

0 ρ(s)dsx′(t)Px(t), P > 0,

V2(t, xt) =
∫ t

t−h
e−
∫ s+h

0 ρ(τ)dτx′(s)Rx(s)ds, R > 0.
(5)

Remark 1. Note that in order for the constructed Lyapunov functional V(t, xt) (5) to satisfy the conditions
of Theorem 1 the integrability condition (4) of the function ρ(t) must be satisfied. This condition means that
stochastic perturbations fade on the infinity quickly enough. Below another situation is studied. It is supposed
that stochastic perturbations can fade on the infinity either slowly or not fade at all. By that some unsolved
problem is also proposed.
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2. About One Problem of Stability

2.1. Equation Without Delays

Consider at first the Equation (1) without delays, i.e., by the condition

Bi = 0, i = 1, ..., k. (6)

Let L be the generator of the Equation (1), (6). Then via (3) for the function V(x(t)) = |x(t)|2 we have

LV(x(t)) = 2x′(t)Ax(t) +
m

∑
i=1

x′(t)C′
i(t)Ci(t)x(t)

+
∫

x′(t)G′(t, u)G(t, u)x(t)Π(du)

= x′(t)[A + A′ + Q(t)]x(t),

(7)

where

Q(t) =
m

∑
i=1

C′
i(t)Ci(t) +

∫
G′(t, u)G(t, u)Π(du).

Let ρ(t) = ∥Q(t)∥ be the norm of the matrix Q(t), i.e.,

x′Q(t)x ≤ ρ(t)|x|2. (8)

Assume that the symmetric matrix A + A′ is a negative definite matrix, i.e.,

x′(A + A′)x ≤ −α|x|2, α > 0, (9)

and, besides, suppose that

sup
t≥0

ρ(t) < α or
∫ ∞

0
ρ(t)dt < ∞. (10)

Put also

µ(t) =
1
t

∫ t

0
ρ(s)ds, µ = lim sup

t→∞
µ(t). (11)

Remark 2. Note that if the first or the second condition (10) holds then respectively µ < α or µ = 0 < α. But
the condition µ < α can be hold even by the condition∫ ∞

0
ρ(t)dt = ∞. (12)

For example, for the function ρ(t) =
2α

t + 1
none of the conditions (10) are satisfied, but the both conditions

µ = 0 < α and (12) are obviously satisfied.

Theorem 2. Let α and µ, defined in (9) and (11), satisfy the condition µ < α. Then the zero solution of the
Equation (1), (6) is asymptotically mean square stable.

Proof. Using the generator (7) and the definitions (8), (9) for ρ(t) and α, we have

LV(x(t)) ≤ (−α + ρ(t))|x(t)|2.
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From this and Dynkin’s formula [11]

EV(x(t)) = EV(x(0)) +
∫ t

0
ELV(x(s))ds

for the function V(x(t)) = |x(t)|2 it follows that

d
dt

E|x(t)|2 = ELV(x(t)) ≤ (−α + ρ(t))E|x(t)|2

or
dE|x(t)|2
E|x(t)|2 ≤ (−α + ρ(t))dt.

Integrating this inequality and using (11), we obtain

E|x(t)|2 ≤ E|x(0)|2 exp
{
−αt +

∫ t

0
ρ(s)ds

}
= E|x(0)|2 exp{(−α + µ(t))t}.

From this and µ < α it follows that E|x(t)|2 ≤ E|x(0)|2 and lim
t→∞

E|x(t)|2 = 0, i.e., the zero solution of

the Equation (1), (6) is asymptotically mean square stable. The proof is completed.

Remark 3. Note that the condition (4) of integrability of the function ρ(t) is not a necessary condition for
asymptotic mean square stability of the zero solution of the stochastic differential Equation (1). For instance, for
a simple scalar equation of the type of (1) with constant coefficients

dx(t) = −ax(t)dt + σx(t)dw(t) +
∫

γ(u)x(t)ν̃(dt, du), (13)

where a > 0 and ρ(t) is the constant, i.e.,

ρ = σ2 +
∫

γ2(u)Π(du),

the condition (12) holds, but the zero solution of the Equation (13) is asymptotically mean square stable if ρ < 2a.
Unsolved problem. The proof of asymptotic mean square stability of the zero solution of the stochastic

delay differential Equation (1) under the condition (12) is currently an unsolved problem, which is offered to the
attention of potential readers.

3. About the Problem of Stabilization by Noise

Note that the problem of stabilization has a long history, in particular, very popular problem of
stabilization of the inverted pendulum is considered in a lot of works: for example, the well known
work of Kapitsa [20] and many others [21–32]. Below the problem of stabilization by noise is discussed.

Consider the scalar linear Ito’s stochastic differential equation [11]

dx(t) = (ax(t) + bx(t − h))dt + σx(t)dw(t),

x(s) = ϕ(s), s ∈ [−h, 0],
(14)

where a, b and σ are constants and w(t) is the standard Wiener process.

Definition 2. [13,33] The zero solution of the Equation (14) is called stable in probability if for any ε1 > 0
and ε2 > 0 there exists δ > 0 such that the solution x(t, ϕ) of the Equation (14) satisfies the condition

P
{

supt≥0 |x(t, ϕ)| > ε1

}
< ε2 for any initial function ϕ(s), such that P

{
sups∈[−h,0] |ϕ(s)| < δ

}
= 1.
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3.1. Equation Without Delay

Consider now the Equation (14) by the condition b = 0, i.e., without delay:

dx(t) = ax(t)dt + σx(t)dw(t),

x(s) = ϕ(s), s ∈ [−h, 0].
(15)

Khasminskii shows [33] that unstable by the conditions a > 0 and σ = 0 the zero solution of
the Equation (15) becomes stable by the presence of a big enough level of noise. More exactly, by the
condition

0 < 2a < σ2 (16)

so-called "stabilization by noise" occurs and the zero solution of the Equation (15) becomes stable in
probability.

Really, let L be the generator [11–13,33] of the Equation (15). Then for the Lyapunov function

v(x) = |x|ν, ν = 1 − 2a
σ2 ∈ (0, 1),

we have

Lv(x) =
dv(x)

dx
ax +

1
2

d2v(x)
dx2 σ2x2

=ν|x|ν−1ax +
1
2

ν(ν − 1)|x|ν−2σ2x2

≤aν|x|ν
(

1 − (1 − ν)
σ2

2a

)
= 0.

It is known [13,33] that if there exist a Lyapunov function v(x) with the condition Lv(x) ≤ 0 then
the zero solution of the Equation (15) is stable in probability.

3.2. Purely Stochastic Equation

From the condition (16) it follows, in particular, that the zero solution of the "purely stochastic"
differential equation

dx(t) = σx(t)dw(t) (17)

is stable in probability for arbitrary σ. Moreover, the larger |σ|, the faster the trajectories of the solution
of the Equation (17) converge to zero.

Note that the solution of the Equation (17) has the form [11]

x(t) = x(0) exp
{
−1

2
σ2t + σw(t)

}
. (18)

In Fig.1 one can see 4 trajectories of the solution (18) of the Equation (17) for x(0) = 6 and different
values of σ:

1) σ = 0.8, 2) σ = 0.9, 3) σ = 1.0, 4) σ = 1.1,

In Fig.2 one can see 50 trajectories of the solution (18) of the Equation (17) for x(0) = 6 and different
values of σ:

1) σ = 0.8, 2) σ = 0.9, ... , 49) σ = 5.6, 50) σ = 5.7.
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Figure 1. 4 trajectories of the solution x(t) of the Equation (17) with x0 = 6 and 1) σ = 0.8, 2) σ = 0.9,
3) σ = 1.0, 4) σ = 1.1

Figure 2. 50 trajectories of the solution x(t) of the Equation (17) with x0 = 6 and 1) σ = 0.8, 2) σ = 0.9,
..., 49) σ = 5.6, 50) σ = 5.7

A similar situation is demonstrated by 50 trajectories with negative σ: in Fig.3 for

1) σ = −1.2, 2) σ = −1.3, 3) σ = −1.4, 4) σ = −1.5,

and in Fig.4 for

5) σ = −1.6, 6) σ = −1.7, ..., 49) σ = −6.0, 50) σ = −6.1.
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Figure 3. 4 trajectories of the solution x(t) of the Equation (17) with x0 = 6 and 1) σ = −1.2, 2)
σ = −1.3, 3) σ = −1.4, 4) σ = −1.5

Figure 4. 46 trajectories of the solution x(t) of the Equation (17) with x0 = 6 and 5) σ = −1.6, 6)
σ = −1.7, ... 49) σ = −6.0, 50) σ = −6.1

Remark 4. From Figs.1-4 one can see that if |σ| increases then the trajectories of the solution (18) converge to
the zero faster.

Remark 5. Note that by numerical simulation of the solution (18) for simulation of trajectories of the Wiener
process w(t) the special algorithm was used described in [13].

Unsolved problem. A generalization of Khasminskii’s statement (16) about stabilization by noise
for the delay differential Equation (14) is currently the unsolved problem.
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3.3. Stochastic Difference Equation

Consider now the scalar linear stochastic difference equation

xi+1 = a1xi + σ1xiξi+1, i = 0, 1, ..., (19)

where a1 and σ1 are constants and ξi, i = 1, 2, ..., is a sequence of mutually independent random values
with the conditions

Eξi = 0, Eξ2
i = 1. (20)

It is known that by the condition
a2

1 + σ2
1 < 1 (21)

the zero solution of the Equation (19) is asymptotic mean square stable [16].
Let us consider an analogue of the condition (16) for the linear stochastic difference Equation (19)

by the condition a1 > 1. For this aim let us represent the difference analogue of the Equation (15) in
the form (19).

Put ti = i∆, i = 0, 1, ... , ∆ > 0, xi = x(ti), wi = w(ti). Then the difference analogue of the
Equation (15) takes the form

xi+1 − xi = axi∆ + σxi(wi+1 − wi). (22)

Note that
ξi+1 =

1√
∆
(wi+1 − wi) (23)

satisfies the conditions (20). Using (23) rewrite the Equation (22) as follows:

xi+1 = (1 + a∆)xi + σ
√

∆xiξi+1,

i.e., in the form (19) with the coefficients

a1 = 1 + a∆, σ1 = σ
√

∆. (24)

From (24) we have

a =
a1 − 1

∆
, σ =

σ1√
∆

,

and via (16) we obtain

0 < 2
a1 − 1

∆
<

σ2
1

∆
,

i.e., the condition
0 < 2(a1 − 1) < σ2

1 . (25)

In Fig.5 50 trajectories of the Equation (19) are shown for a1 = 1.05, σ1 = 0.5 and different initial
conditions:

1) x0 = 0.05, 2) x0 = 0.10, ... , 49) x0 = 2.45, 50) x0 = 2.50.

By that the condition (25) holds, all trajectories converge to the zero.
So, we obtain the following

Hypothesis 1. If the condition (25) holds then the zero solution of the Equation (19) is stable in probability.

Unsolved problem. Can the above reasoning be considered as a proof of the Hypothesis 1 or not?
And why?
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Figure 5. 50 trajectories of the solution xi of the Equation (19) with a1 = 1.05, σ1 = 0.5 and different
initial conditions: 1) x0 = 0.05, 2) x0 = 0.10, ... , 49) x0 = 2.45, 50) x0 = 2.50.

4. Conclusions

Some unsolved problems in the field of stability of differential and difference equations under
stochastic perturbations are proposed to attention of potential readers. There is a hope that the solution
of these problems will contribute to the emergence of new ideas and the further development and
improvement of the theory of stability of stochastic systems.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org
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