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About Some Unsolved Problems in the Stability
Theory of Stochastic Differential and
Difference Equations

Leonid Shaikhet

Department of Mathematics, Ariel University, Ariel 40700, Israel; leonid.shaikhet@usa.net

Abstract: This paper continues a series of papers devoted to unsolved problems in the theory of stability and
optimal control for stochastic systems. A delay differential equation with stochastic perturbations of the white
noise and Poisson’s jumps types is considered. In contrast to the known stability condition, in which it is assumed
that stochastic perturbations fade on the infinity quickly enough, a new situation is studied, in which stochastic
perturbations can fade on the infinity either slowly or not fade at all. Some unsolved problem in this connection is
proposed to readers attention. Besides some unsolved problems of stabilization for one stochastic delay differential
equation and one stochastic difference equation are also proposed.
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1. Introduction

The unsolved problems proposed here continue a series of unsolved problems in stability and
optimal control theory for stochastic differential and stochastic difference equations, that have been
presented during the recent years at some international conferences and papers (see [1-10]). All these
problems still need to be solved.

Let {Q), §, P} be a complete probability space, {F: }+>0 be a nondecreasing family of sub-c-algebras
of §, ie., § C 3t fors < t, E be the expectation with respect to the measure P, Hy be the space of
Jo-adapted stochastic processes ¢(s), s < 0, ||¢||*> = sup E|p(s)|?.

s<0

Following Gikhman and Skorokhod [11,12], let us consider the stochastic delay differential
equation

dx(t) = < —I—ZBx(t— )dt—l—ZC(t)x Ydw; (t)

+/Gtu v(dt, du), t>0, 1)
x(s) = ¢(s) € Hy, se€[—h0], h—maxhl,

i=1,...,

where x(t) € R", A, B;, Ci(t), G(t, u) are n x n-matrices, h; > 0, w1 (t), ..., wy(t) are mutually indepen-
dent standard Wiener processes, which are also independent of the Poisson measure v(t, A),

Ev(t, A) = HTI(A), #(tA) = v(t, A) — HTI(A).

1.1. Auxiliary Definitions and Statements

Let x(t) be a solution of the Equation (1) in the time moment ¢, x; = x(t +s), s < 0, be a trajectory
of the Equation (1) solution until the time moment . Consider a functional V (¢, ¢) : [0,00) x Hy — R4
that can be presented in the form V (¢, ¢) = V(t, ¢(0), ¢(s)), s < 0, and for ¢ = x; put

Vo(t,x) =V(t,9) =V(txs) = V(tx,x(t+5s)),

2)
x=¢(0)=x(t), s<O0.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Let D be a set of functionals V (¢, ¢), for which the function V; (¢, x) defined in (2) has a continuous
derivative with respect to t and two continuous derivatives with respect to x. Let’ be the sign of
transpose, V'V, (t, x) and V2V, (t, x) be respectively the first and the second derivatives of the function
Vi (t, x) with respect to x. For the functionals from D the generator L of the Equation (1) has the form
[11-13]

LV (£ x1) :%Vq,(t,x(t)) + V(L (1) (Ax(t) + i Bx(t — hz-))
i=1

+ % ix’ (H)V2Vy(t, x(£))Ci(£)x(t) 3)
+/ Vi, x(8) + Gt u)x(£)) — Vi (£, x(8))
— WVt x(t ))G(t ) (1)) TT(du).

Definition 1. [13] The zero solution of the Equation (1) is called:

- mean square stable if for each e > 0 there exists a 6 > 0 such that E|x(t)|> < e, t > 0, provided that ||¢||*> < &;
- asymptotically mean square stable if it is mean square stable and for each initial function ¢(s) the solution x(t)
of the Equation (1) satisfies the condition tli_)rrolo E|x(t)]*> = 0.

Theorem 1. [13] Let there exist a functional V (t, ¢) € D, positive constants c1, ca, c3, such that the following
conditions hold:
EV(tx) > ¢Elx(t)’,  EV(0,¢) < c2fl)?
ELV(t,x;) < —c3E|x(t)|%.

Then the zero solution of the Equation (1) is asymptotically mean square stable.

Some particular cases of the Equation (1) are considered in [14,15], where it is proven that if the
stochastic perturbations fade on the infinity quickly enough then the asymptotically stable zero solution
of the corresponding deterministic system remains asymptotically mean square stable regardless of
the level of these stochastic perturbations.

In particular, in [15] the asymptotic mean square stability of the zero solution of the Equation
(1) with k = m = 1is proven by virtue of the general method of Lyapunov functionals construction
[13,16] and the method of Linear Matrix Inequalities (LMIs) [17-19]. By that it is supposed that for
some positive definite matrix P the following conditions hold

C'(HPC(t) < d?(H)P,  G'(t,u)PG(t,u) < v*(t,u)P,

o) =20+ [T, [ p(nit <o, @

and the Lyapunov functional V (¢, x;) is constructed in the form V (¢, x;) = Vi (t, x(t)) + Va(t, x¢), where

Vit x(t)) = e~ o PBsy/ (1 px(f), P >0,
t s+h (5)
Vz(t, xt) = /t—h e

POy ()Rx(s)ds, R > 0.
Remark 1. Note that in order for the constructed Lyapunov functional V (t, x;) (5) to satisfy the conditions
of Theorem 1 the integrability condition (4) of the function p(t) must be satisfied. This condition means that
stochastic perturbations fade on the infinity quickly enough. Below another situation is studied. It is supposed
that stochastic perturbations can fade on the infinity either slowly or not fade at all. By that some unsolved
problem is also proposed.

d0i:10.20944/preprints202505.0659.v1
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2. About One Problem of Stability
2.1. Equation Without Delays
Consider at first the Equation (1) without delays, i.e., by the condition
B; =0, i=1,.,k (6)

Let L be the generator of the Equation (1), (6). Then via (3) for the function V (x(t)) = |x(t)|*> we have

LV (x(t)) =2« )+ Zx (HCHHCi(E)x(t)
7
+ / HG (£, u)G(t, u)x(H)TT(du) @
(H[A+ A"+ Q(1)]x(t),
where .
Q(t) = Y. CUBC(t) +/G’(t,u)G(t,u)H(du).
i=1
Let p(t) = ||Q(t)|| be the norm of the matrix Q(t), i.e.,
X'Q(1)x < p(t)]xf ®)
Assume that the symmetric matrix A + A’ is a negative definite matrix, i.e.,
X'(A+ A)x < —alx|?, x>0, )
and, besides, suppose that
supp(t) <a  or / p(t)dt < oco. (10)
>0 0
Put also 1t
= f/ p(s)ds, u = limsup pu(t). (11)
tJo t—o00

Remark 2. Note that if the first or the second condition (10) holds then respectively y < a or p = 0 < a. But
the condition p < « can be hold even by the condition

/pr(t)dt ~ . (12)

For example, for the function p(t) =

20 7 "one of the conditions (10) are satisfied, but the both conditions
i =0 < aand (12) are obviously satisfied.

Theorem 2. Let « and y, defined in (9) and (11), satisfy the condition y < a. Then the zero solution of the
Equation (1), (6) is asymptotically mean square stable.

Proof. Using the generator (7) and the definitions (8), (9) for p(t) and a, we have

LV (x(t)) < (—a+ p(8)|x(t)[%.
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From this and Dynkin’s formula [11]
t
EV(x(t)) = EV(x(0)) + / ELV (x(s))ds
0

for the function V(x(t)) = |x(t)|? it follows that

%lilx(f)l2 = ELV(x(t)) < (—a+ p(t)E[x(t)

or

2
Em < (—a+p(t))dt.

Integrating this inequality and using (11), we obtain

E|x(£)? < Ex(0)|2exp{—at+/0tp(s)ds}
= E[x(0)]*exp{(—a + u(t))t}.

From this and ¢ < « it follows that E|x(t)|> < E|x(0)|? and tlim E|x(t)|?> = 0, i.e., the zero solution of
—» 00
the Equation (1), (6) is asymptotically mean square stable. The proof is completed. [J

Remark 3. Note that the condition (4) of integrability of the function p(t) is not a necessary condition for
asymptotic mean square stability of the zero solution of the stochastic differential Equation (1). For instance, for
a simple scalar equation of the type of (1) with constant coefficients

dx(f) = —ax(t)dt + ox(t)dw(t) + /'y(u)x(t)ﬁ(dt, du), (13)
where a > 0 and p(t) is the constant, i.e.,

p =02+ [ (),

the condition (12) holds, but the zero solution of the Equation (13) is asymptotically mean square stable if p < 2a.

Unsolved problem. The proof of asymptotic mean square stability of the zero solution of the stochastic
delay differential Equation (1) under the condition (12) is currently an unsolved problem, which is offered to the
attention of potential readers.

3. About the Problem of Stabilization by Noise

Note that the problem of stabilization has a long history, in particular, very popular problem of
stabilization of the inverted pendulum is considered in a lot of works: for example, the well known
work of Kapitsa [20] and many others [21-32]. Below the problem of stabilization by noise is discussed.

Consider the scalar linear Ito’s stochastic differential equation [11]

dx(t) = (ax(t) + bx(t — h))dt + ox(t)dw(t), 14)

x(s) = ¢(s), s €[=h0],
where 4, b and ¢ are constants and w(t) is the standard Wiener process.

Definition 2. [13,33] The zero solution of the Equation (14) is called stable in probability if for any e; > 0
and gy > 0 there exists & > 0 such that the solution x(t,¢) of the Equation (14) satisfies the condition

P{ sup;o [x(t, ¢)| > sl} < g for any initial function ¢(s), such that P{ SuPe(_p ) [9(5)] < 5} =1.
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3.1. Equation Without Delay
Consider now the Equation (14) by the condition b = 0, i.e., without delay:

dx(t) = ax(t)dt + ox(t)dw(t),

(15)
x(s) = ¢(s), se[—h0].

Khasminskii shows [33] that unstable by the conditions @ > 0 and ¢ = 0 the zero solution of
the Equation (15) becomes stable by the presence of a big enough level of noise. More exactly, by the
condition

0 < 2a < o> (16)

so-called "stabilization by noise" occurs and the zero solution of the Equation (15) becomes stable in
probability.
Really, let L be the generator [11-13,33] of the Equation (15). Then for the Lyapunov function

2a
v(x) = |x|¥, v=1- 2 €(0,1),

we have ) 20(x)
_do(x 1d°v(x) 5 »
Lo(x) = Ir ax+§ 20X

1
=v|x|" ax + EV(U —1)|x|"20%x?

(o8

2
<av|x"(1-(1-v)=—) =o0.
<av|x]| (1 (1 V)Za) 0

It is known [13,33] that if there exist a Lyapunov function v(x) with the condition Lv(x) < 0 then
the zero solution of the Equation (15) is stable in probability.

3.2. Purely Stochastic Equation

From the condition (16) it follows, in particular, that the zero solution of the "purely stochastic"
differential equation
dx(t) = ox(t)dw(t) (17)

is stable in probability for arbitrary o. Moreover, the larger |o|, the faster the trajectories of the solution
of the Equation (17) converge to zero.
Note that the solution of the Equation (17) has the form [11]

(1) = x(0) exp{ ~3% + ou(r) | (18)

In Fig.1 one can see 4 trajectories of the solution (18) of the Equation (17) for x(0) = 6 and different
values of 0
1)c=08, 2)c=09, 3)c=10, 4)c=11,

In Fig.2 one can see 50 trajectories of the solution (18) of the Equation (17) for x(0) = 6 and different
values of ¢
1)c=08, 2)c=09, .., 499)c=56, 50)0c=57.
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Figure 1. 4 trajectories of the solution x(t) of the Equation (17) with xp = 6 and 1) 0 = 0.8,2) ¢ = 0.9,
3)o0=10,4)0=11

12 13 14 ¢t

Figure 2. 50 trajectories of the solution x(t) of the Equation (17) with xp = 6 and 1) ¢ = 0.8,2) ¢ = 0.9,
vy 49) 0 =56,50)0 = 5.7

A similar situation is demonstrated by 50 trajectories with negative ¢ in Fig.3 for
1)o=-12, 2)c=-13, 3)oc=-14, 4)oc=-15
and in Fig.4 for

5 0=-16, 6)oc=—17 ., 49) 0c=-60, 50)0=—6l.
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HLED

Figure 3. 4 trajectories of the solution x(t) of the Equation (17) with xp = 6 and 1) ¢ = —1.2, 2)
c=-13,3)0=-14,4)0=-15

Figure 4. 46 trajectories of the solution x(t) of the Equation (17) with xg = 6 and 5) ¢ = —1.6, 6)
c=-17, .. 49)0=-60,50)0 = —6.1

Remark 4. From Figs.1-4 one can see that if |o| increases then the trajectories of the solution (18) converge to
the zero faster.

Remark 5. Note that by numerical simulation of the solution (18) for simulation of trajectories of the Wiener
process w(t) the special algorithm was used described in [13].

Unsolved problem. A generalization of Khasminskii’s statement (16) about stabilization by noise
for the delay differential Equation (14) is currently the unsolved problem.
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3.3. Stochastic Difference Equation

Consider now the scalar linear stochastic difference equation
Xip1 =a1x; +01x¢iy1, 1=0,1,.., (19)

where a; and o are constants and §;, i = 1,2, ..., is a sequence of mutually independent random values
with the conditions
EG =0, E&=1. (20)

It is known that by the condition
a2 +o? <1 (21)

the zero solution of the Equation (19) is asymptotic mean square stable [16].

Let us consider an analogue of the condition (16) for the linear stochastic difference Equation (19)
by the condition a; > 1. For this aim let us represent the difference analogue of the Equation (15) in
the form (19).

Putt; =iA, i =0,1,..,A > 0, x; = x(t;), w; = w(t;). Then the difference analogue of the
Equation (15) takes the form

Xip1 — X = ax;A + ox;j(wit — w;). (22)
Note that .
Giy1 = ﬁ(wi—l—l —w;) (23)

satisfies the conditions (20). Using (23) rewrite the Equation (22) as follows:
Xit1 = (1 + LZA)XZ‘ + U\/in€i+1,

i.e., in the form (19) with the coefficients

ap=1+4an, o =0VA. (24)
From (24) we have
4= ap—1 . sl
A 7 \/E/
and via (16) we obtain
ap—1 o
0<2 —-,
STTA S
i.e., the condition
0<2(ay—1) <o?. (25)

In Fig.5 50 trajectories of the Equation (19) are shown for a; = 1.05, 07 = 0.5 and different initial
conditions:
1) xp = 0.05, 2)xp=0.10, ..., 49) xo = 245, 50) xp = 2.50.

By that the condition (25) holds, all trajectories converge to the zero.
So, we obtain the following

Hypothesis 1. If the condition (25) holds then the zero solution of the Equation (19) is stable in probability.

Unsolved problem. Can the above reasoning be considered as a proof of the Hypothesis 1 or not?
And why?
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Figure 5. 50 trajectories of the solution x; of the Equation (19) with a; = 1.05, 0; = 0.5 and different
initial conditions: 1) xg = 0.05, 2) xo = 0.10, ... , 49) x¢ = 2.45, 50) xo = 2.50.

4. Conclusions

Some unsolved problems in the field of stability of differential and difference equations under
stochastic perturbations are proposed to attention of potential readers. There is a hope that the solution
of these problems will contribute to the emergence of new ideas and the further development and
improvement of the theory of stability of stochastic systems.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org
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