

Article

Not peer-reviewed version

About Some Unsolved Problems in the Stability Theory of Stochastic Differential and Difference Equations

[Leonid Shaikhet](#) *

Posted Date: 9 May 2025

doi: [10.20944/preprints202505.0659.v1](https://doi.org/10.20944/preprints202505.0659.v1)

Keywords: the Wiener process; Poisson's measure; general method of Lyapunov functionals construction; asymptotic mean square stability; stability in probability; numerical simulation

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

About Some Unsolved Problems in the Stability Theory of Stochastic Differential and Difference Equations

Leonid Shaikhet

Department of Mathematics, Ariel University, Ariel 40700, Israel; leonid.shaikhet@usa.net

Abstract: This paper continues a series of papers devoted to unsolved problems in the theory of stability and optimal control for stochastic systems. A delay differential equation with stochastic perturbations of the white noise and Poisson's jumps types is considered. In contrast to the known stability condition, in which it is assumed that stochastic perturbations fade on the infinity quickly enough, a new situation is studied, in which stochastic perturbations can fade on the infinity either slowly or not fade at all. Some unsolved problem in this connection is proposed to readers attention. Besides some unsolved problems of stabilization for one stochastic delay differential equation and one stochastic difference equation are also proposed.

Keywords: the Wiener process; Poisson's measure; general method of Lyapunov functionals construction; asymptotic mean square stability; stability in probability; numerical simulation

1. Introduction

The unsolved problems proposed here continue a series of unsolved problems in stability and optimal control theory for stochastic differential and stochastic difference equations, that have been presented during the recent years at some international conferences and papers (see [1–10]). All these problems still need to be solved.

Let $\{\Omega, \mathfrak{F}, \mathbf{P}\}$ be a complete probability space, $\{\mathfrak{F}_t\}_{t \geq 0}$ be a nondecreasing family of sub- σ -algebras of \mathfrak{F} , i.e., $\mathfrak{F}_s \subset \mathfrak{F}_t$ for $s < t$, \mathbf{E} be the expectation with respect to the measure \mathbf{P} , H_2 be the space of \mathfrak{F}_0 -adapted stochastic processes $\varphi(s)$, $s \leq 0$, $\|\varphi\|^2 = \sup_{s \leq 0} \mathbf{E}|\varphi(s)|^2$.

Following Gikhman and Skorokhod [11,12], let us consider the stochastic delay differential equation

$$\begin{aligned} dx(t) &= \left(Ax(t) + \sum_{i=1}^k B_i x(t - h_i) \right) dt + \sum_{i=1}^m C_i(t) x(t) dw_i(t) \\ &\quad + \int G(t, u) x(t) \tilde{v}(dt, du), \quad t \geq 0, \\ x(s) &= \phi(s) \in H_2, \quad s \in [-h, 0], \quad h = \max_{i=1, \dots, k} h_i, \end{aligned} \tag{1}$$

where $x(t) \in \mathbf{R}^n$, $A, B_i, C_i(t), G(t, u)$ are $n \times n$ -matrices, $h_i > 0$, $w_1(t), \dots, w_m(t)$ are mutually independent standard Wiener processes, which are also independent of the Poisson measure $\nu(t, A)$,

$$\mathbf{E}\nu(t, A) = t\Pi(A), \quad \tilde{\nu}(t, A) = \nu(t, A) - t\Pi(A).$$

1.1. Auxiliary Definitions and Statements

Let $x(t)$ be a solution of the Equation (1) in the time moment t , $x_t = x(t + s)$, $s < 0$, be a trajectory of the Equation (1) solution until the time moment t . Consider a functional $V(t, \varphi) : [0, \infty) \times H_2 \rightarrow \mathbf{R}_+$ that can be presented in the form $V(t, \varphi) = V(t, \varphi(0), \varphi(s))$, $s < 0$, and for $\varphi = x_t$ put

$$\begin{aligned} V_\varphi(t, x) &= V(t, \varphi) = V(t, x_t) = V(t, x, x(t + s)), \\ x &= \varphi(0) = x(t), \quad s < 0. \end{aligned} \tag{2}$$

Let D be a set of functionals $V(t, \varphi)$, for which the function $V_\varphi(t, x)$ defined in (2) has a continuous derivative with respect to t and two continuous derivatives with respect to x . Let ' be the sign of transpose, $\nabla V_\varphi(t, x)$ and $\nabla^2 V_\varphi(t, x)$ be respectively the first and the second derivatives of the function $V_\varphi(t, x)$ with respect to x . For the functionals from D the generator L of the Equation (1) has the form [11–13]

$$\begin{aligned} LV(t, x_t) = & \frac{\partial}{\partial t} V_\varphi(t, x(t)) + \nabla V'_\varphi(t, x(t)) \left(Ax(t) + \sum_{i=1}^k B_i x(t - h_i) \right) \\ & + \frac{1}{2} \sum_{i=1}^m x'(t) C'_i(t) \nabla^2 V_\varphi(t, x(t)) C_i(t) x(t) \\ & + \int [V_\varphi(t, x(t) + G(t, u)x(t)) - V_\varphi(t, x(t))] \\ & - \nabla V'_\varphi(t, x(t)) G(t, u)x(t) \Pi(du). \end{aligned} \quad (3)$$

Definition 1. [13] The zero solution of the Equation (1) is called:

- mean square stable if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $\mathbf{E}|x(t)|^2 < \varepsilon$, $t \geq 0$, provided that $\|\varphi\|^2 < \delta$;
- asymptotically mean square stable if it is mean square stable and for each initial function $\varphi(s)$ the solution $x(t)$ of the Equation (1) satisfies the condition $\lim_{t \rightarrow \infty} \mathbf{E}|x(t)|^2 = 0$.

Theorem 1. [13] Let there exist a functional $V(t, \varphi) \in D$, positive constants c_1, c_2, c_3 , such that the following conditions hold:

$$\begin{aligned} \mathbf{E}V(t, x_t) & \geq c_1 \mathbf{E}|x(t)|^2, \quad \mathbf{E}V(0, \varphi) \leq c_2 \|\varphi\|^2, \\ \mathbf{E}LV(t, x_t) & \leq -c_3 \mathbf{E}|x(t)|^2. \end{aligned}$$

Then the zero solution of the Equation (1) is asymptotically mean square stable.

Some particular cases of the Equation (1) are considered in [14,15], where it is proven that if the stochastic perturbations fade on the infinity quickly enough then the asymptotically stable zero solution of the corresponding deterministic system remains asymptotically mean square stable regardless of the level of these stochastic perturbations.

In particular, in [15] the asymptotic mean square stability of the zero solution of the Equation (1) with $k = m = 1$ is proven by virtue of the general method of Lyapunov functionals construction [13,16] and the method of Linear Matrix Inequalities (LMIs) [17–19]. By that it is supposed that for some positive definite matrix P the following conditions hold

$$\begin{aligned} C'(t)PC(t) & \leq \sigma^2(t)P, \quad G'(t, u)PG(t, u) \leq \gamma^2(t, u)P, \\ \rho(t) & = \sigma^2(t) + \int \gamma^2(t, u)\Pi(du), \quad \int_0^\infty \rho(t)dt < \infty, \end{aligned} \quad (4)$$

and the Lyapunov functional $V(t, x_t)$ is constructed in the form $V(t, x_t) = V_1(t, x(t)) + V_2(t, x_t)$, where

$$\begin{aligned} V_1(t, x(t)) & = e^{-\int_0^t \rho(s)ds} x'(t)Px(t), \quad P > 0, \\ V_2(t, x_t) & = \int_{t-h}^t e^{-\int_0^{s+h} \rho(\tau)d\tau} x'(s)Rx(s)ds, \quad R > 0. \end{aligned} \quad (5)$$

Remark 1. Note that in order for the constructed Lyapunov functional $V(t, x_t)$ (5) to satisfy the conditions of Theorem 1 the integrability condition (4) of the function $\rho(t)$ must be satisfied. This condition means that stochastic perturbations fade on the infinity quickly enough. Below another situation is studied. It is supposed that stochastic perturbations can fade on the infinity either slowly or not fade at all. By that some unsolved problem is also proposed.

2. About One Problem of Stability

2.1. Equation Without Delays

Consider at first the Equation (1) without delays, i.e., by the condition

$$B_i = 0, \quad i = 1, \dots, k. \quad (6)$$

Let L be the generator of the Equation (1), (6). Then via (3) for the function $V(x(t)) = |x(t)|^2$ we have

$$\begin{aligned} LV(x(t)) &= 2x'(t)Ax(t) + \sum_{i=1}^m x'(t)C'_i(t)C_i(t)x(t) \\ &\quad + \int x'(t)G'(t, u)G(t, u)x(t)\Pi(du) \\ &= x'(t)[A + A' + Q(t)]x(t), \end{aligned} \quad (7)$$

where

$$Q(t) = \sum_{i=1}^m C'_i(t)C_i(t) + \int G'(t, u)G(t, u)\Pi(du).$$

Let $\rho(t) = \|Q(t)\|$ be the norm of the matrix $Q(t)$, i.e.,

$$x'Q(t)x \leq \rho(t)|x|^2. \quad (8)$$

Assume that the symmetric matrix $A + A'$ is a negative definite matrix, i.e.,

$$x'(A + A')x \leq -\alpha|x|^2, \quad \alpha > 0, \quad (9)$$

and, besides, suppose that

$$\sup_{t \geq 0} \rho(t) < \alpha \quad \text{or} \quad \int_0^\infty \rho(t)dt < \infty. \quad (10)$$

Put also

$$\mu(t) = \frac{1}{t} \int_0^t \rho(s)ds, \quad \mu = \limsup_{t \rightarrow \infty} \mu(t). \quad (11)$$

Remark 2. Note that if the first or the second condition (10) holds then respectively $\mu < \alpha$ or $\mu = 0 < \alpha$. But the condition $\mu < \alpha$ can be hold even by the condition

$$\int_0^\infty \rho(t)dt = \infty. \quad (12)$$

For example, for the function $\rho(t) = \frac{2\alpha}{t+1}$ none of the conditions (10) are satisfied, but the both conditions $\mu = 0 < \alpha$ and (12) are obviously satisfied.

Theorem 2. Let α and μ , defined in (9) and (11), satisfy the condition $\mu < \alpha$. Then the zero solution of the Equation (1), (6) is asymptotically mean square stable.

Proof. Using the generator (7) and the definitions (8), (9) for $\rho(t)$ and α , we have

$$LV(x(t)) \leq (-\alpha + \rho(t))|x(t)|^2.$$

From this and Dynkin's formula [11]

$$\mathbf{E}V(x(t)) = \mathbf{E}V(x(0)) + \int_0^t \mathbf{E}LV(x(s))ds$$

for the function $V(x(t)) = |x(t)|^2$ it follows that

$$\frac{d}{dt} \mathbf{E}|x(t)|^2 = \mathbf{E}LV(x(t)) \leq (-\alpha + \rho(t))\mathbf{E}|x(t)|^2$$

or

$$\frac{d\mathbf{E}|x(t)|^2}{\mathbf{E}|x(t)|^2} \leq (-\alpha + \rho(t))dt.$$

Integrating this inequality and using (11), we obtain

$$\begin{aligned} \mathbf{E}|x(t)|^2 &\leq \mathbf{E}|x(0)|^2 \exp\left\{-\alpha t + \int_0^t \rho(s)ds\right\} \\ &= \mathbf{E}|x(0)|^2 \exp\{(-\alpha + \mu(t))t\}. \end{aligned}$$

From this and $\mu < \alpha$ it follows that $\mathbf{E}|x(t)|^2 \leq \mathbf{E}|x(0)|^2$ and $\lim_{t \rightarrow \infty} \mathbf{E}|x(t)|^2 = 0$, i.e., the zero solution of the Equation (1), (6) is asymptotically mean square stable. The proof is completed. \square

Remark 3. Note that the condition (4) of integrability of the function $\rho(t)$ is not a necessary condition for asymptotic mean square stability of the zero solution of the stochastic differential Equation (1). For instance, for a simple scalar equation of the type of (1) with constant coefficients

$$dx(t) = -ax(t)dt + \sigma x(t)dw(t) + \int \gamma(u)x(t)\tilde{v}(dt, du), \quad (13)$$

where $a > 0$ and $\rho(t)$ is the constant, i.e.,

$$\rho = \sigma^2 + \int \gamma^2(u)\Pi(du),$$

the condition (12) holds, but the zero solution of the Equation (13) is asymptotically mean square stable if $\rho < 2a$.

Unsolved problem. The proof of asymptotic mean square stability of the zero solution of the stochastic delay differential Equation (1) under the condition (12) is currently an unsolved problem, which is offered to the attention of potential readers.

3. About the Problem of Stabilization by Noise

Note that the problem of stabilization has a long history, in particular, very popular problem of stabilization of the inverted pendulum is considered in a lot of works: for example, the well known work of Kapitsa [20] and many others [21–32]. Below the problem of stabilization by noise is discussed.

Consider the scalar linear Ito's stochastic differential equation [11]

$$\begin{aligned} dx(t) &= (ax(t) + bx(t-h))dt + \sigma x(t)dw(t), \\ x(s) &= \phi(s), \quad s \in [-h, 0], \end{aligned} \quad (14)$$

where a, b and σ are constants and $w(t)$ is the standard Wiener process.

Definition 2. [13,33] The zero solution of the Equation (14) is called stable in probability if for any $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ there exists $\delta > 0$ such that the solution $x(t, \phi)$ of the Equation (14) satisfies the condition

$$\mathbf{P}\left\{\sup_{t \geq 0} |x(t, \phi)| > \varepsilon_1\right\} < \varepsilon_2 \text{ for any initial function } \phi(s), \text{ such that } \mathbf{P}\left\{\sup_{s \in [-h, 0]} |\phi(s)| < \delta\right\} = 1.$$

3.1. Equation Without Delay

Consider now the Equation (14) by the condition $b = 0$, i.e., without delay:

$$\begin{aligned} dx(t) &= ax(t)dt + \sigma x(t)dw(t), \\ x(s) &= \phi(s), \quad s \in [-h, 0]. \end{aligned} \quad (15)$$

Khasminskii shows [33] that unstable by the conditions $a > 0$ and $\sigma = 0$ the zero solution of the Equation (15) becomes stable by the presence of a big enough level of noise. More exactly, by the condition

$$0 < 2a < \sigma^2 \quad (16)$$

so-called "stabilization by noise" occurs and the zero solution of the Equation (15) becomes stable in probability.

Really, let L be the generator [11–13,33] of the Equation (15). Then for the Lyapunov function

$$v(x) = |x|^\nu, \quad \nu = 1 - \frac{2a}{\sigma^2} \in (0, 1),$$

we have

$$\begin{aligned} Lv(x) &= \frac{dv(x)}{dx}ax + \frac{1}{2} \frac{d^2v(x)}{dx^2}\sigma^2x^2 \\ &= \nu|x|^{\nu-1}ax + \frac{1}{2}\nu(\nu-1)|x|^{\nu-2}\sigma^2x^2 \\ &\leq a\nu|x|^\nu \left(1 - (1-\nu)\frac{\sigma^2}{2a}\right) = 0. \end{aligned}$$

It is known [13,33] that if there exist a Lyapunov function $v(x)$ with the condition $Lv(x) \leq 0$ then the zero solution of the Equation (15) is stable in probability.

3.2. Purely Stochastic Equation

From the condition (16) it follows, in particular, that the zero solution of the "purely stochastic" differential equation

$$dx(t) = \sigma x(t)dw(t) \quad (17)$$

is stable in probability for arbitrary σ . Moreover, the larger $|\sigma|$, the faster the trajectories of the solution of the Equation (17) converge to zero.

Note that the solution of the Equation (17) has the form [11]

$$x(t) = x(0) \exp \left\{ -\frac{1}{2}\sigma^2 t + \sigma w(t) \right\}. \quad (18)$$

In Fig.1 one can see 4 trajectories of the solution (18) of the Equation (17) for $x(0) = 6$ and different values of σ :

- 1) $\sigma = 0.8$,
- 2) $\sigma = 0.9$,
- 3) $\sigma = 1.0$,
- 4) $\sigma = 1.1$,

In Fig.2 one can see 50 trajectories of the solution (18) of the Equation (17) for $x(0) = 6$ and different values of σ :

- 1) $\sigma = 0.8$,
- 2) $\sigma = 0.9$,
- ... ,
- 49) $\sigma = 5.6$,
- 50) $\sigma = 5.7$.

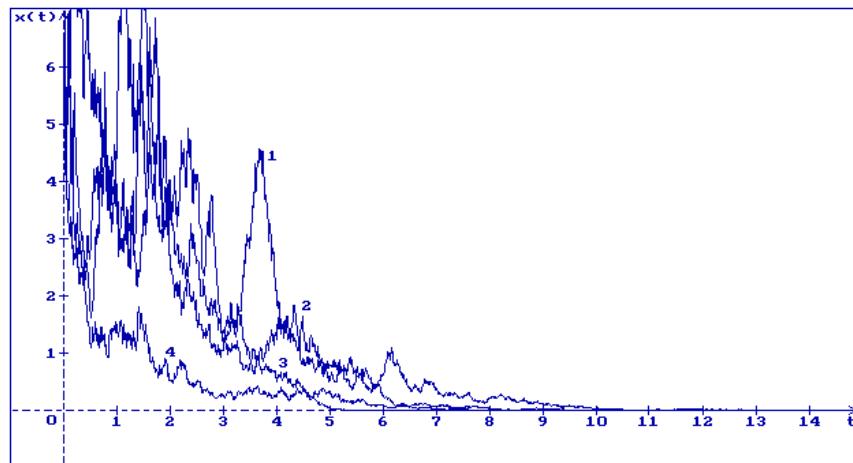


Figure 1. 4 trajectories of the solution $x(t)$ of the Equation (17) with $x_0 = 6$ and 1) $\sigma = 0.8$, 2) $\sigma = 0.9$, 3) $\sigma = 1.0$, 4) $\sigma = 1.1$

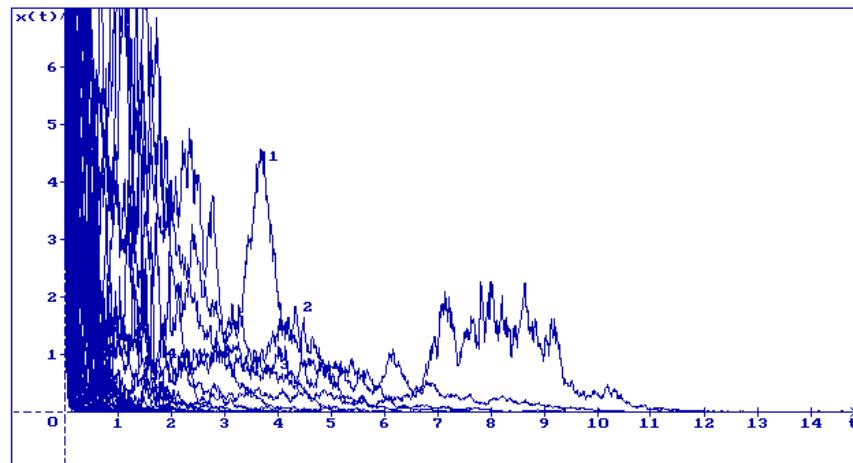


Figure 2. 50 trajectories of the solution $x(t)$ of the Equation (17) with $x_0 = 6$ and 1) $\sigma = 0.8$, 2) $\sigma = 0.9$, ..., 49) $\sigma = 5.6$, 50) $\sigma = 5.7$

A similar situation is demonstrated by 50 trajectories with negative σ : in Fig.3 for

1) $\sigma = -1.2$, 2) $\sigma = -1.3$, 3) $\sigma = -1.4$, 4) $\sigma = -1.5$,

and in Fig.4 for

5) $\sigma = -1.6$, 6) $\sigma = -1.7$, ..., 49) $\sigma = -6.0$, 50) $\sigma = -6.1$.

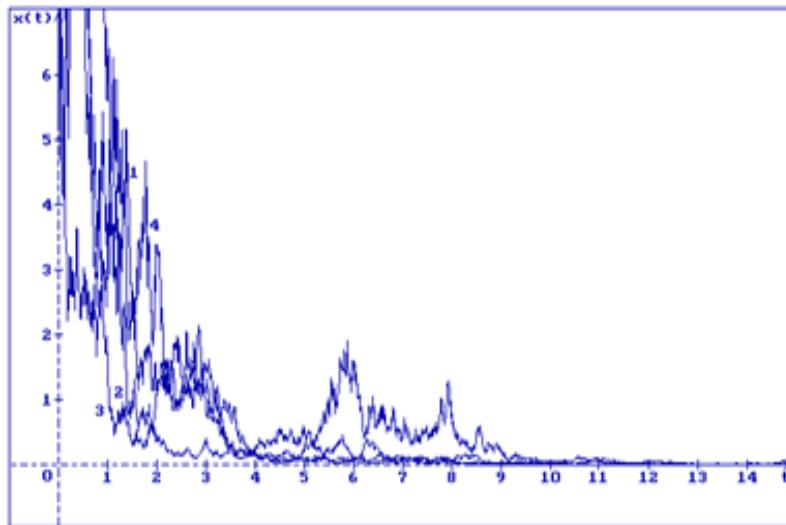


Figure 3. 4 trajectories of the solution $x(t)$ of the Equation (17) with $x_0 = 6$ and 1) $\sigma = -1.2$, 2) $\sigma = -1.3$, 3) $\sigma = -1.4$, 4) $\sigma = -1.5$

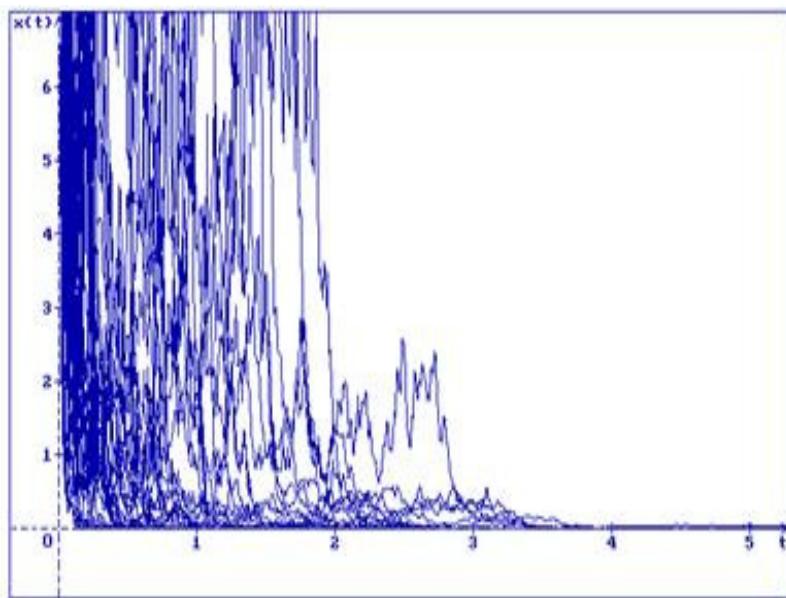


Figure 4. 46 trajectories of the solution $x(t)$ of the Equation (17) with $x_0 = 6$ and 5) $\sigma = -1.6$, 6) $\sigma = -1.7$, ... 49) $\sigma = -6.0$, 50) $\sigma = -6.1$

Remark 4. From Figs.1-4 one can see that if $|\sigma|$ increases then the trajectories of the solution (18) converge to the zero faster.

Remark 5. Note that by numerical simulation of the solution (18) for simulation of trajectories of the Wiener process $w(t)$ the special algorithm was used described in [13].

Unsolved problem. A generalization of Khasminskii's statement (16) about stabilization by noise for the delay differential Equation (14) is currently the unsolved problem.

3.3. Stochastic Difference Equation

Consider now the scalar linear stochastic difference equation

$$x_{i+1} = a_1 x_i + \sigma_1 x_i \xi_{i+1}, \quad i = 0, 1, \dots, \quad (19)$$

where a_1 and σ_1 are constants and $\xi_i, i = 1, 2, \dots$, is a sequence of mutually independent random values with the conditions

$$E\xi_i = 0, \quad E\xi_i^2 = 1. \quad (20)$$

It is known that by the condition

$$a_1^2 + \sigma_1^2 < 1 \quad (21)$$

the zero solution of the Equation (19) is asymptotic mean square stable [16].

Let us consider an analogue of the condition (16) for the linear stochastic difference Equation (19) by the condition $a_1 > 1$. For this aim let us represent the difference analogue of the Equation (15) in the form (19).

Put $t_i = i\Delta, i = 0, 1, \dots, \Delta > 0, x_i = x(t_i), w_i = w(t_i)$. Then the difference analogue of the Equation (15) takes the form

$$x_{i+1} - x_i = a x_i \Delta + \sigma x_i (w_{i+1} - w_i). \quad (22)$$

Note that

$$\xi_{i+1} = \frac{1}{\sqrt{\Delta}} (w_{i+1} - w_i) \quad (23)$$

satisfies the conditions (20). Using (23) rewrite the Equation (22) as follows:

$$x_{i+1} = (1 + a\Delta) x_i + \sigma \sqrt{\Delta} x_i \xi_{i+1},$$

i.e., in the form (19) with the coefficients

$$a_1 = 1 + a\Delta, \quad \sigma_1 = \sigma \sqrt{\Delta}. \quad (24)$$

From (24) we have

$$a = \frac{a_1 - 1}{\Delta}, \quad \sigma = \frac{\sigma_1}{\sqrt{\Delta}},$$

and via (16) we obtain

$$0 < 2 \frac{a_1 - 1}{\Delta} < \frac{\sigma_1^2}{\Delta},$$

i.e., the condition

$$0 < 2(a_1 - 1) < \sigma_1^2. \quad (25)$$

In Fig.5 50 trajectories of the Equation (19) are shown for $a_1 = 1.05, \sigma_1 = 0.5$ and different initial conditions:

$$1) x_0 = 0.05, \quad 2) x_0 = 0.10, \dots, 49) x_0 = 2.45, \quad 50) x_0 = 2.50.$$

By that the condition (25) holds, all trajectories converge to the zero.

So, we obtain the following

Hypothesis 1. *If the condition (25) holds then the zero solution of the Equation (19) is stable in probability.*

Unsolved problem. Can the above reasoning be considered as a proof of the Hypothesis 1 or not? And why?

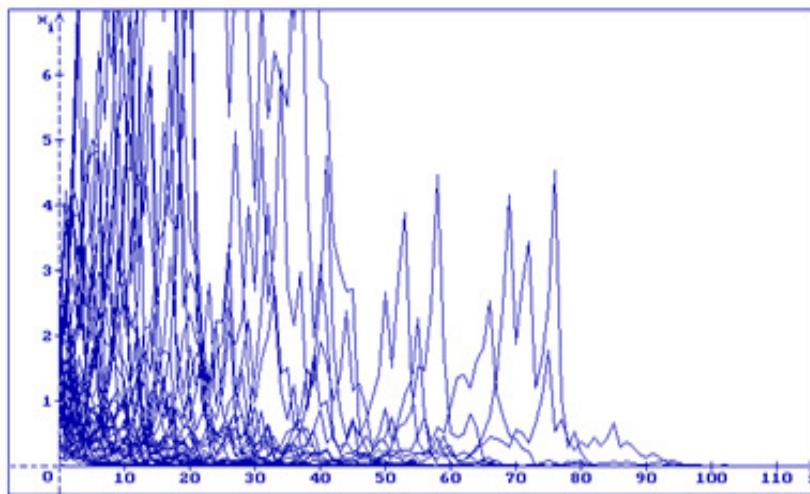


Figure 5. 50 trajectories of the solution x_i of the Equation (19) with $a_1 = 1.05$, $\sigma_1 = 0.5$ and different initial conditions: 1) $x_0 = 0.05$, 2) $x_0 = 0.10, \dots, 49) x_0 = 2.45, 50) x_0 = 2.50$.

4. Conclusions

Some unsolved problems in the field of stability of differential and difference equations under stochastic perturbations are proposed to attention of potential readers. There is a hope that the solution of these problems will contribute to the emergence of new ideas and the further development and improvement of the theory of stability of stochastic systems.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper posted on [Preprints.org](https://www.preprints.org)

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Shaikhet, L. About some unsolved problems of stability theory for stochastic hereditary systems. Leverhulme International Network: Numerical and analytical solution of stochastic delay differential equations. University of Chester, UK. *Abstracts*, **2010**, 6-7.
2. Shaikhet, L. Unsolved stability problem for stochastic differential equation with varying delay. Leverhulme International Network: Numerical and analytical solution of stochastic delay differential equations. University of Chester, UK. *Abstracts*, **2011**, 21.
3. Shaikhet, L. About an unsolved stability problem for a stochastic difference equation with continuous time, *Journal of Difference Equations and Applications*, **2011**, 17(3), 441-444. <https://doi.org/10.1080/10236190903489973>
4. Shaikhet, L. Two unsolved problems in the stability theory of stochastic differential equations with delay. *Applied Mathematics Letters*, **2012**, 25(3), 636-637. Available online: doi:10.1016/j.aml.2011.10.002.
5. Shaikhet, L. About an unsolved optimal control problem for stochastic partial differential equation. XVI International Conference "Dynamical System Modeling and Stability Investigations" (DSMSI-2013), Kiev, **2013**, 344.
6. Shaikhet, L. Some Unsolved Problems: Problem 1, Problem 2. In the book: Lyapunov functionals and stability of stochastic functional differential equations. Springer Science & Business Media, **2013**, 51-52.
7. Shaikhet, L. Some unsolved problems in stability and optimal control theory of stochastic systems. Special Issue "Models of Delay Differential Equations-II", *MDPI Mathematics*, **2022**, 10(3), 474, 1-10. Available online: <https://doi.org/10.3390/math10030474>
8. Shaikhet, L. About an unsolved problem of stabilization by noise for difference equations. *MDPI, Mathematics*, **2024**, 12(1), 110, 1-11. Available online: <https://www.mdpi.com/2227-7390/12/1/110>

9. Shaikhet, L. Unsolved problem about stability of stochastic difference equations with continuous time and distributed delay. *Modern Stochastics: Theory and Applications*, **2024**, 11(4), 395-402. Available online: <https://doi.org/10.15559/24-VMSTA253>
10. Shaikhet, L. About one unsolved problem in asymptotic p -stability of stochastic systems with delay. *AIMS Mathematics, Special Issue: "Problems of Stability and Optimal Control for Stochastic Systems"*, **2024**, 9(11), 32571-32577. Available online: <https://www.aimspress.com/article/doi/10.3934/math.20241560>
11. Gikhman, I.I., Skorokhod, A.V. *Stochastic Differential Equations*; Springer: Berlin/Heidelberg, Germany, 1972.
12. Gikhman, I.I.; Skorokhod, A.V. *The Theory of Stochastic Processes*, v.III; Springer: Berlin/Heidelberg, Germany, 1979.
13. Shaikhet, L. *Lyapunov Functionals and Stability of Stochastic Functional Differential Equations*; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. Available online: <https://link.springer.com/book/10.1007/978-3-319-00101-2> (accessed on 28 December 2024).
14. Shaikhet, L. About stability of delay differential equations with square integrable level of stochastic perturbations. *Applied Mathematics Letters*, **2019**, 90, 30-35. Available online: doi:10.1016/j.aml.2018.10.004
15. Shaikhet, L. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and Poisson's jumps. *Discrete and Continuous Dynamical Systems Series B*, **2020**, 25(9), 3651-3657. Available online: doi:10.3934/dcdsb.2020077
16. Shaikhet, L. *Lyapunov Functionals and Stability of Stochastic Difference Equations*; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. Available online: <https://link.springer.com/book/10.1007/978-0-85729-685-6> (accessed on 28 December 2024).
17. Gu, K. Discretized LMI set in the stability problem of linear time-delay systems. *International Journal of Control*, **1997**, 68, 923-934.
18. Fridman, E.; Shaikhet, L. Stabilization by using artificial delays: an LMI approach. *Automatica*, **2017**, 81, 429-437.
doi.org/10.1016/j.automatica.2017.04.015
19. Fridman, E.; Shaikhet, L. Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay. *Systems & Control Letters*, **2019**, 124, 83-91. <https://www.sciencedirect.com/science/article/abs/pii/S016769111830224X>
20. Kapitza, P.L. Dynamical stability of a pendulum when its point of suspension vibrates, and pendulum with a vibrating suspension. In Collected Papers of P.L. Kapitza; ter Haar, D., Ed.; Pergamon Press: London, UK, **1965**, Volume 2, pp.714-737.
21. Mitchell, R. Stability of the inverted pendulum subjected to almost periodic and stochastic base motion — an application of the method of averaging. *International Journal of Nonlinear Mechanics*, **1972**, Volume 7, 101-123.
22. Levi, M. Stability of the inverted pendulum — a topological explanation. *SIAM Review*, **1988**, 30(4), 639-644.
23. Blackburn, J.A.; Smith, H.J.T.; Gronbech-Jensen, N. Stability and Hopf bifurcations in an inverted pendulum. *American Journal of Physics*, **1992**, 60(10), 903-908. Available online: <https://doi.org/10.1119/1.17011>
24. Levi, M.; Weckesser, W. Stabilization of the inverted linearized pendulum by high frequency vibrations. *SIAM Review*, **1995**, 37(2), 219-223.
25. Lozano, R.; Fantoni, I.; Block, D.J. Stabilization of the inverted pendulum around its homoclinic orbit. *System Control Letters*, **2000**, 40, 197-204.
26. Borne, P.; Kolmanovskii, V.; Shaikhet, L. Stabilization of inverted pendulum by control with delay. *Dynamic Systems and Applications*, **2000**, 9(4), 501-514.
27. Imkeller, P.; Lederer, C. Some formulas for Lyapunov exponents and rotation numbers in two dimensions and the stability of the harmonic oscillator and the inverted pendulum. *Dynamical Systems*, **2001**, 16, 29-61.
28. Mata, G.J.; Pestana, E. Effective Hamiltonian and dynamic stability of the inverted pendulum. *European Journal of Physics*, **2004**, 25, 717-721.
29. Sharp, R.; Tsai, Y.-H.; Engquist, B. Multiple time scale numerical methods for the inverted pendulum problem. In *Multiscale Methods in Science and Engineering*; Lecture Notes Computing Science and Engineering; Springer: Berlin, Germany, 2005; Volume 44, pp. 241-261.
30. Ovseyevich, A.I. The stability of an inverted pendulum when there are rapid random oscillations of the suspension point. *Journal of Applied Mathematics and Mechanics*, **2006**, 70(5), 762-768.
Available online: <https://www.sciencedirect.com/science/article/abs/pii/S002189280600116X>
31. Sanz-Serna, J.M. Stabilizing with a hammer. *Stochastic and Dynamics*, **2008**, 8, 47-57.

32. Shaikhet, L. About Stabilization of the Controlled Inverted Pendulum under Stochastic Perturbations of the Type of Poisson's Jumps. MDPI, *Axioms*, Special Issue: "Advances in Mathematical Optimal Control and Applications", **2025**, 14(1), 29, 1-14.
Preprints ID: 141025, 27/11/24 Available online: <https://doi.org/10.3390/axioms14010029>
33. Khasminskii, R.Z. *Stochastic Stability of Differential Equations*; Springer: Berlin/Heidelberg, Germany, 2012. (in Russian, Moscow, Nauka, 1969).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.