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Abstract. The goal of the paper is to clarify the observed irrationality of decision making in conflict 

situations considered as one-step games of two players. To solve such situations, we consider the 

asymmetry in the relation of the players to their own rewards and the rewards of the opponents. 

Formalization of the decision-making process is based on recently developed non-commutative 

operators of multivalued logic algebra. The suggested method is applied to solve the well-known 

Prisoners’ dilemma game and the other situations of conflict, where it results in the expected 

strategies. 

Keywords: multivalued logic; non-commutative algebra; decision-making; uncertainty; irrational 

decisions 

 

1. Introduction 

“An Investigation of the Laws of Thought” by Bool [1] defined the direction of rational reasoning 

and analysis such that the truthiness of statements is predicted by formal logic, and the chances of 

events are predicted by probability theory. 

However, with the development of quantum mechanics and further discussions on the nature 

of logic and probability, it was realized that logical implications and probabilistic reasoning are not 

universally valid. 

For example, Birkhoff and von Neumann [2] demonstrated that because of the influence of the 

observer the logic of quantum mechanics is not distributive, and Ramsey [3] (see also [4], Appendix 

I) considered the subjective probabilities, which are defined from the point of view of the subject 

involved into the objects’ activity and are not necessary equivalent to the objective probabilities. 

Later Kahneman and Tversky [5] confirmed an irrationality of the human decision making and 

demonstrated that usually the people’s reasoning does not result in maximal expected reward or to 

minimal expected payoff. Recently Ruggeri et al. [6] justified these results in the experiments with 

millions of participants from different countries. 

Descriptions of irrational reasoning and prediction of subjective decisions implement several 

methods. Some of them follow the utility theory [7] which considers the choices with respect to the 

utility function and relation of the decision maker to possible risks. The others implement the non-

Bayesian beliefs derived from game theoretical approach to the analyzed situation [8]. 

The methods that follow logical analysis are based on different versions of non-standard logic 

from the indicated above logic of quantum mechanics [2] to the probabilistic logic [9], fuzzy logic 

[10,11] and the possibility theory [12]. The origins of such extensions of Boolean logic can be tracked 

back to the Łukasiewicz three-valued logic [13] and its further extension – the Łukasiewicz-Tarski 

ℵ0-valued logic [14]. 

In parallel, Lambek [15] initiated the studies of non-commutative logics, which were applied for 

description of the structures of natural languages [16,17] and then were adopted for modeling 

preference relations [18,19]. These results allowed direct logical description of the statements, which’s 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 March 2024                   doi:10.20944/preprints202403.1273.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.



 2 

 

truthiness depends on the order of the terms, and modeling the decisions with preferences; for the 

problems and the state-of-the-art in the field of decision-making with preferences, see, e.g., [20,21]. 

In this paper, we apply recently developed non-communicative logical operators [22] to the well-

known decision-making problem – the Prisoners’ dilemma and demonstrate that considering the 

asymmetry in the prisoner’s judgements leads to the solution of the game. 

2. Problem Formulation 

The Prisoners’ dilemma is a game of two players, 𝑎1  and 𝑎2 , with the strategies 𝑠1  and 𝑠2 

such that each player chooses the strategy without any knowledge about the strategy chosen by the 

other player. 

The payoffs of the players in the game are defined as follows 

 𝑎2 
𝑠1 𝑠2 

𝑎1   

𝑠1 (𝑣, 𝑣) (𝑢, 𝑦) 
𝑠2 (𝑦, 𝑢) (𝑥, 𝑥) 

where 𝑢 < 𝑣 < 𝑥 < 𝑦. Following this table, 

− if both players choose the strategy 𝑠1, then each of them pays 𝑥; 

− if both players choose the strategy 𝑠2, then each of them pays 𝑣; 

− if the first player 𝑎1 chooses the strategy 𝑠1 and the second player 𝑎2 chooses the strategy 𝑠2, 

then player 𝑎1 pays 𝑢 and player 𝑎2 pays 𝑦; and  

− if the first player 𝑎1 chooses the strategy 𝑠2 and the second player 𝑎2 chooses the strategy 𝑠1, 

then player 𝑎1 pays 𝑦 and player 𝑎2 pays 𝑢. 

In its original form the prisoners’ dilemma is formulated as follows. Let the strategies be 𝑠1 – to 

keep silent and 𝑠2 – to testify, and the payoffs 𝑢 = 0, 𝑣 = 1, 𝑥 = 2 and 𝑦 = 3 be the years which 

the prisoner will serve in the prison. Then, each prisoner stands against a dilemma either to keep 

silent (𝑠1) or to testify (𝑠2). 

The payoff of each prisoner depends on the choice of the other prisoner. The dilemma of the 

prisoner 𝑎1 is 

− if 𝑎1 keeps silence and 𝑎2 keeps silence, then each of the prisoners serves 1 year in the prison, 

− if 𝑎1 testifies and 𝑎2 testifies, then each of them serves 2 years in the prison, 

− if 𝑎1 keeps silence but 𝑎2 testifies, then 𝑎1 serves 3 years in the prison and 𝑎2 goes free, and 

− if 𝑎1 testifies but 𝑎2 keeps silence, then 𝑎1 goes free and 𝑎2 serves 3 years in the prison. 

The dilemma of the prisoner 𝑎2 is the same. 

Certainly, the optimal strategy for both prisoners is mutual silence (𝑠1, 𝑠1). But since each of 

them is not aware about the choice of the other prisoner, the best response of each prisoner is to 

testify. Thus, the Nash equilibrium in the game is mutual testifying (𝑠2, 𝑠2), which is not optimal. 

The Prisoners’ dilemma demonstrates that even if the player is informed about optimal 

strategies, the chosen strategy can be irrational because of the influence of the unknown choice of the 

other player. 

Such irrationality gave a rise to innumerous studies in communication and conscience in conflict 

situations aimed to investigate the strategies which lead to optimal choice; probably the most 

remarkable books in the field are [23,24]. For repetitive version of the game, it was found that optimal 

strategy of each prisoner is the tit-for-tat strategy according to which each prisoner acts as the 

opponent and returns to cooperation after revenge. 

In the paper, we consider the problem from the opposite point of view and seek for a method 

which predicts rational or irrational choice of the prisoner with respect to the given payoffs of each 

prisoner. In other words, the problem is to define the method which demonstrates the rationality of 

irrational choice of the prisoner. 
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3. Suggested Solution 

The suggested solution considers the asymmetry in the relation of the player to the own payoff 

or reward and to the payoff or reward of the other player. We assume that the player considers the 

decision of the other player as a background or a context for the own decision and makes the decision 

using this context. 

3.1. Non-Commutative Multivalued Logic Operators 

The decision-making process uses the recently developed non-communicative uninorm and 

absorbing norm aggregators [22] which implement the operators of the non-commutative logic 

algebra [19]. 

Let ⊕𝜃: [0, 1] × [0, 1] → [0, 1] be the uninorm [25] with neutral or identity element 𝜃 ∈ [0, 1] 

and ⊗𝜗: [0, 1] × [0, 1] → [0, 1] be the absorbing norm [26] with absorbing element 𝜗 ∈ [0, 1]. With 

respect to the value 𝜃, the uninorm ⊕1 is the 𝑡-norm (or multivalued 𝑎𝑛𝑑 operator) and ⊕0 is the 

𝑡-conorm (or multivalued 𝑜𝑟 operator), and the absorbing norm ⊗𝜗 is a multivalued version of the 

Boolean 𝑛𝑜𝑡 𝑥𝑜𝑟 operator. 

The uninorm ⊕𝜃 and the absorbing norm ⊗𝜗 act on the interval [0, 1] and form an algebra 

[27,28] 

 𝒜𝜂 = 〈[0,1],⊕𝜃 ,⊗𝜗〉, (1) 

in which ⊕𝜃 plays a role of the summation with the zero 𝜃 such that 𝜃 ⊕𝜃 𝑥 = 𝑥 and ⊗𝜗 plays 

a role of multiplication with the unit 𝜗  such that 𝜗 ⊗𝜗 𝑥 = 𝜗 , 𝑥 ∈ [0, 1]. If 𝜃 = 𝜗  and 𝑢𝜃(𝑥) =

𝑣𝜗(𝑥) for any 𝑥 ∈ [0, 1], then the algebra 𝒜𝜂 is distributive. 

It was proven [29] that there exist the functions 𝑢𝜃: (0, 1) → (−∞, ∞) and 𝑣𝜗: (0, 1) → (−∞, ∞) 

called generator functions such that for any 𝑥, 𝑦 ∈ (0, 1) 

 𝑥 ⊕𝜃 𝑦 = 𝑢𝜃
−1(𝑢𝜃(𝑥) + 𝑢𝜃(𝑦)), (2) 

 𝑥 ⊗𝜗 𝑦 = 𝑣𝜗
−1(𝑣𝜗(𝑥) × 𝑣𝜗(𝑦)). (3) 

For the boundary values 𝑥, 𝑦 ∈ {0, 1}, it is assumed that the norms ⊕𝜃 and ⊗𝜗 are Boolean 

operators: ⊕𝜃 is 𝑎𝑛𝑑 or or operator with respect to the value of 𝜃 and ⊗𝜗 is 𝑛𝑜𝑡 𝑥𝑜𝑟 operator 

for any 𝜗. 

Generator functions 𝑢𝜃 and 𝑣𝜗 are monotonously increasing functions which can be defined 

following different assumptions. It was demonstrated [27] that the inverse generator functions 𝑢𝜃
−1 

and 𝑣𝜗
−1 meet the requirements of cumulative probability distributions that relates multivalued logic 

algebra 𝒜𝜂 with probability theory and probabilistic logic [9]. 

The non-commutative multivalued logic algebra 𝒜𝑙|𝜂|𝑟  [22] extends algebra 𝒜𝜂  using 

representation (2) and (3) of generator functions and confirms to definition of non-commutative logic 

algebras [19]. 

The non-commutative uninorm ⊕𝜃𝑙|𝜃|𝜃𝑟
: [0, 1] × [0, 1] → [0, 1]  and absorbing norm 

⊗𝜗𝑙|𝜗|𝜗𝑟
: [0, 1] × [0, 1] → [0, 1] are defined as follows 

 𝑥 ⊕𝜃𝑙|𝜃|𝜃𝑟
𝑦 = 𝑢𝜃

−1 (𝑢𝜃𝑙
(𝑥) + 𝑢𝜃𝑟

(𝑦)),  (4) 

 𝑥 ⊗𝜗𝑙|𝜗|𝜗𝑟
𝑦 = 𝑣𝜗

−1 (𝑣𝜗𝑙
(𝑥) × 𝑣𝜗𝑟

(𝑦)),  (5) 

where for convenience we assume that 𝜃𝑙 ≤ 𝜃 ≤ 𝜃𝑟 and 𝜗𝑙 ≤ 𝜗 ≤ 𝜗𝑟. If 𝜃𝑙 ≠ 𝜃𝑟  and 𝜗𝑙 ≠ 𝜗𝑟 , then, 

respectively, the uninorm ⊕𝜃𝑙|𝜃|𝜃𝑟
 and absorbing norm ⊗𝜗𝑙|𝜗|𝜗𝑟

 are non-commutative, and if 𝜃 =

𝜃𝑙 = 𝜃𝑟 and 𝜗 = 𝜗𝑙 = 𝜗𝑟, then these operators are equivalent to the norms ⊕𝜃 and ⊗𝜗. 

The logic algebra 

 𝒜𝑙|𝜂|𝑟 = 〈[0,1],⊕𝜃𝑙|𝜃|𝜃𝑟
,⊗𝜗𝑙|𝜗|𝜗𝑟

〉  (6) 

with the operators defined by the uninorm ⊕𝜃𝑙|𝜃|𝜃𝑟
 and absorbing norm ⊗𝜗𝑙|𝜗|𝜗𝑟

 is the non-

commutative version of the algebra 𝒜𝜂. 

3.2. Application of the Non-Commutative Operators to the Prisoners’ Dilemma 

Let us consider the Prisoners’ dilemma in the form of bi-matrix game [30], where the matrices  

 𝑅1 = (𝑟𝑖𝑗
1 )

2×2
 and 𝑟2 = (𝑟𝑖𝑗

2)
2×2

  (7) 
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represent the payoffs of the first and the second player, respectively, as negative rewards. In the other 

words, if the players payoff is 𝑝, then the reward, which is received by this player is 𝑟 = −𝑝 and 

vice versa. 

In different versions of the game the values of the rewards can be defined arbitrarily. Then, at 

first, they are normalized as follows. Let 

 𝑟𝑚𝑎𝑥
1 = max{|𝑟𝑖𝑗

1 |, 𝑖, 𝑗 = 1, 2} and 𝑟𝑚𝑎𝑥
2 = max{|𝑟𝑖𝑗

2|, 𝑖, 𝑗 = 1, 2} (8) 

be maximal absolute rewards of the players. The maximal absolute reward in the game is 

 𝑟𝑚𝑎𝑥 = max{𝑟𝑚𝑎𝑥
1 , 𝑟𝑚𝑎𝑥

2 }. (9) 

Usually, in the Prisoners’ dilemma the payoffs and so – the rewards have the same values; hence 

the absolute maximal values are also equivalent: 𝑟𝑚𝑎𝑥 = 𝑟𝑚𝑎𝑥
1 = 𝑟𝑚𝑎𝑥

2 . 

Then, the matrices of the normalized rewards are 

 𝐴1 = (𝑎𝑖𝑗
1 )

2×2
 and 𝐴2 = (𝑎𝑖𝑗

2 )
2×2

,  (10) 

where (𝑖, 𝑗 = 1, 2) 

 𝑎𝑖𝑗
1 = 𝑟𝑖𝑗

1 𝑟𝑚𝑎𝑥⁄  and 𝑎𝑖𝑗
2 = 𝑟𝑖𝑗

2 𝑟𝑚𝑎𝑥⁄ .  (11) 

Note that the normalization preserves the signs of the rewards such that the negative rewards 

which are the payoffs remain negative and positive rewards remain positive. 

The conducted normalization does not change the structure of the game. Together with that the 

values 𝑟𝑚𝑎𝑥
1  and 𝑟𝑚𝑎𝑥

2  provide the best rewards or the worst payoffs from which usually start the 

judgements aimed on better decisions. 

The next normalization transforms the rewards 𝐴1 and 𝐴2 to nonnegative. For convenience, 

we apply the inverse generator functions such that the resulting matrices 

 𝐵1 = (𝑏𝑖𝑗
1 )

2×2
 and 𝐵2 = (𝑏𝑖𝑗

2 )
2×2

 (12) 

include the values (𝑖, 𝑗 = 1, 2) 

 𝑏𝑖𝑗
1 = 𝑢𝜃

−1(𝑎𝑖𝑗
1 ), 𝑏𝑖𝑗

2 = 𝑢𝜃
−1(𝑎𝑖𝑗

2 ) or 𝑏𝑖𝑗
1 = 𝑣𝜃

−1(𝑎𝑖𝑗
1 ), 𝑏𝑖𝑗

2 = 𝑣𝜃
−1(𝑎𝑖𝑗

2 ), (13) 

where 𝑢𝜃
−1  and 𝑣𝜃

−1  are inverse generator functions of the uninorm and absorbing norm, 

respectively. 

Following the probabilistic interpretation of the uninorm and absorbing norm [27], the values 

𝑏𝑖𝑗
1  and 𝑏𝑖𝑗

2 , 𝑖, 𝑗 = 1, 2, are the probabilities that the normalized rewards are at maximum 𝑎𝑖𝑗
1  and 

𝑎𝑖𝑗
2 , correspondingly. Hence, the normalized values 𝑏𝑖𝑗

1  and 𝑏𝑖𝑗
2 , 𝑖, 𝑗 = 1, 2, can be interpreted as 

subjective believes of the players in the equitable rewards. 

Such interpretation follows the line of Ramsey interpretation of probabilities [3]. In terms of the 

Prisoners’ dilemma, since each of the prisoners is a criminal and knows about the crime, each of them 

completely believes that maximal payoff is justified, and less believes in the justification of the smaller 

payoffs. 

The game with the reward matrices 𝐵1  and 𝐵2  is equivalent to the game with the reward 

matrices 𝑅1 and 𝑅2, but in contrast to the values 𝑟𝑖𝑗
1  and 𝑟𝑖𝑗

2 , which are real rewards of the players, 

the values 𝑏𝑖𝑗
1  and 𝑏𝑖𝑗

2  are considered as subjective beliefs of the players to obtain the corresponding 

rewards 𝑟𝑖𝑗
1  and 𝑟𝑖𝑗

2 . 

To define the choice of the players’ strategies we assume that the relation of the player to the 

own belief to obtain certain reward differs from the relation to the belief of the opponent to obtain 

this reward. We consider the beliefs as the arguments of the operators ⊕𝜃𝑙|𝜃|𝜃𝑟
 and ⊗𝜗𝑙|𝜗|𝜗𝑟

 in the 

algebra 𝒜𝑙|𝜂|𝑟 . The resulting values are the trusts 𝑡𝑖𝑗
1  and 𝑡𝑖𝑗

2  of the players in their strategies based 

on the beliefs 𝑏𝑖𝑗
1  and 𝑏𝑖𝑗

2 , 𝑖, 𝑗 = 1, 2. 

The trust matrices are defined by the absorbing norm as follows 

 𝑇1 = (𝑡𝑖𝑗
1 )

2×2
 and 𝑇2 = (𝑡𝑖𝑗

2 )
2×2

 (14) 

where (𝑖, 𝑗 = 1, 2) 

 𝑡𝑖𝑗
1 = 𝑏𝑖𝑗

1 ⊗𝜗𝑙|𝜗|𝜗𝑟
𝑏𝑖𝑗

2  and 𝑡𝑖𝑗
2 = 𝑏𝑖𝑗

2 ⊗𝜗𝑙|𝜗|𝜗𝑟
𝑏𝑖𝑗

1 . (15) 

Such definition assumes that the players act as opponents and implements their tit-for-tat 

relations. Each player considers the own belief and the belief of the opponent and forms the 

aggregated trust with the stress on the own belief. 
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The choice of the strategy is conducted using the uninorm, which aggregates the trusts of the 

players in their strategies. The vectors of the aggregation results are 

 𝐷1 = (𝑑1
1, 𝑑2

1) and 𝐷2 = (𝑑1
2, 𝑑2

2) (16) 

where 

 𝑑1
1 = 𝑡11

1 ⊕𝜗𝑙|𝜗|𝜗𝑟
𝑡12

1  and 𝑑2
1 = 𝑡21

1 ⊕𝜗𝑙|𝜗|𝜗𝑟
𝑡22

1 , (17) 

 𝑑1
2 = 𝑡11

2 ⊕𝜗𝑙|𝜗|𝜗𝑟
𝑡21

2  and 𝑑2
2 = 𝑡12

2 ⊕𝜗𝑙|𝜗|𝜗𝑟
𝑡22

2 . (18) 

Note that in the last aggregations each player considers the own trusts and aggregates them for 

each strategy. 

Finally, the strategy chosen by each player is the strategy for which the aggregated trusts reach 

their maximum (ties are broken randomly) 

 𝑠1 = arg max(𝑑𝑖
1, 𝑖 = 1, 2) and 𝑠2 = arg max(𝑑𝑖

2, 𝑖 = 1, 2). (19) 

By the equation (19) the strategies are defined by the indices 𝑠1, 𝑠1 ∈ {1, 2}  such that the 

meaning of each strategy is specified by the game formulation that is to keep silence or to testify. 

3.3. Example of the Prisoners’ Dilemma 

To clarify the presented above solution let us consider the Prisoners’ dilemma with the payoffs 

𝑢 = 0, 𝑣 = 1, 𝑥 = 2 and 𝑦 = 3. The payoff matrix of this game is 

𝑃 = (
(1, 1) (3, 0)

(0, 3) (2, 2)
), 

and the reward matrices of the players are  

𝑅1 = (
−1 −3
0 −2

) and 𝑅2 = (
−1 0
−3 −2

). 

Maximal absolute reward in both matrices is 𝑟𝑚𝑎𝑥 = 𝑟𝑚𝑎𝑥
1 = 𝑟𝑚𝑎𝑥

2 = 3; hence, the normalized 

rewards are 

𝐴1 = (
− 1 3⁄ −1

0 − 2 3⁄
) and 𝐴2 = (

− 1 3⁄ 0
−1 − 2 3⁄

). 

To define the players’ beliefs, assume that the uninorm and absorbing norm are defined by the 

same generator function 𝑤𝜂 = 𝑢𝜂 = 𝑣𝜂 

 𝑤𝜂(𝑥) = − ln(𝑥−1 𝜂⁄ − 1), 𝑥 ∈ (0,1), (20) 

with the parameter 𝜂 = 𝜃 = 𝜗. Consequently, the inverse function is 

 𝑤𝜂
−1(𝜉) = 1 (1 + exp(−𝜉))𝜂⁄ , 𝜉 ∈ (−∞, ∞). (21) 

The left-side and right-side values of the parameters are defined by the linear transform 

 𝜃𝑙 = 𝜂𝑙 = 𝜂 2⁄  and 𝜂𝑟 = (𝜂 + 1) 2⁄ . (22) 

Let 𝜂 = 0.5; then 𝜂𝑙 = 0.25 and 𝜂𝑟 = 0.75 which satisfy the values of the subjective false and 

subjective truth [31]. Then, the beliefs matrices defined by the equations (12) and (13) are 

𝐵1 = (
0.42 0.27
0.5 0.34

) and 𝐵2 = (
0.42 0.5
0.27 0.34

). 

Analysis of these matrices together with the payoff matrices 𝑃1 and 𝑃2 shows that subjectively 

each player is nearly sure that the payoff will be 3 years served in prison, less sure that the payoff 

will be 2 years, nearly unsure that the payoff will be 1 year and unsure that the payoff will be 0. 

Note that both the payoffs and the beliefs are defined separately for each player. 

Now let us calculate the trusts of each player, which depend both on the own belief and the 

belief of the other player. Applying the absorbing norm with the generator function (20) and its 

inverse function (21) with the parameters 𝜂 = 0.5, 𝜂𝑙 = 0.25 and 𝜂𝑟 = 0.75, we obtain 

𝑇1 = (
0.22 0.06
0.41 0.24

) and 𝑇2 = (
0.22 0.41
0.06 0.24

). 

The trusts aggregated by the uninorm with the same generator function and the parameters are 

𝐷1 = (0.02, 0.18) and 𝐷2 = (0.02, 0.18). 

As a result, each player chooses the second strategy – to testify 

𝑠1 = 2 and 𝑠2 = 2, 

which coincides with the indicated above the Nash equilibrium that is not optimal. 

4. Two Other Examples 
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Let us consider the other examples of the bi-matrix games. Below, we define the matrix of the 

game and further calculations without additional comments. 

The battle of sexes [4]. In the game, the players choose which concert to attend – Stravinsky 

(strategy 1) or Bach (strategy 2). The first player prefers the concert of Bach (strategy 2), and the 

second – the concert of Stravinsky (strategy 1), and both prefer to attend any concert together. 

The reward matrices of the players are 

𝑅1 = (
2 0
0 3

) and 𝑅2 = (
3 0
0 2

), 

which result in the beliefs matrices 

𝐵1 = (
0.66 0.5
0.5 0.73

) and 𝐵2 = (
0.73 0.5
0.5 0.66

), 

and the trust matrices 

𝑇1 = (
0.38 0.23
0.23 0.56

) and 𝑇2 = (
0.56 0.23
0.23 0.38

). 

Then, the aggregated trusts are 

𝐷1 = (0.15, 0.27) and 𝐷2 = (0.27, 0.15), 

and resulting strategies are 

𝑠1 = 2 and 𝑠2 = 1, 

as it was declared. 

The zero-sum game. In this abstract game we assume that the reward matrices of the players 

are 

𝑅1 = (
2 −1

−3 2
) and 𝑅2 = (

−2 1
3 −2

). 

Then, the beliefs matrices 

𝐵1 = (
0.66 0.42
0.27 0.66

) and 𝐵2 = (
0.34 0.58
0.73 0.34

). 

The trust matrices are 

𝑇1 = (
0.46 0.10
0.01 0.46

) and 𝑇2 = (
0.03 0.37
0.51 0.03

), 

and the aggregated trusts are 

𝐷1 = (0.09, 0.01) and 𝐷2 = (0.03, 0.02). 

Then, resulting strategies are 

𝑠1 = 1 and 𝑠2 = 1. 

The presented examples demonstrate that the suggested method correctly specifies the strategies 

of the players in the cases of the decisions, which sound irrational. In other words, it demonstrates 

the rationality of irrational choices of the players and can be used for explanation of the made 

decisions and for forecasting subjective decisions, which will be made in the future.  

5. Discussion 

The goal of the paper is to clarify the principles of decision making in situations where the 

choices of the agents do not follow usual principles of rationality. We suggest to use recently 

developed non-commutative operators of multi-valued logic algebra in the decision-making with 

irrational decisions. We apply these operators for specification of the strategies in the well-known 

two Prisoners’ dilemma game. 

The used uninorm and absorbing norm operators aggregate the subjective beliefs of the players 

to obtain certain rewards such that the arguments of the aggregators have different influence on the 

resulting value. In certain sense such aggregation of the beliefs follows a line of using the utility 

function [7]. However, in contrast, to the utility function, which is defined arbitrary, the suggested 

aggregators are the part of formally defined logic algebra and are related with the probability 

distributions that allows their consideration in wider and, at the same time, more formal framework. 

The presented procedure starts with specification of players’ beliefs, which are based on the 

normalized rewards. Here we use maximal absolute rewards (see equations (8) and (9)). The other 

possibility is to use the sums 𝑟𝑠𝑢𝑚
1 = ∑ |𝑟𝑖𝑗

1 |𝑖𝑗  and 𝑟𝑠𝑢𝑚
2 = ∑ |𝑟𝑖𝑗

1 |𝑖𝑗  of the absolute rewards and to define 

𝑟𝑚𝑎𝑥 = max{𝑟𝑠𝑢𝑚
1 , 𝑟𝑠𝑢𝑚

2 }, which is more natural from the probabilistic point of view, but is hardly 

interpreted in the considered framework. 
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Also, instead of defining beliefs using the inverse generator functions (see equation (13)), simple 

formulas 𝑏𝑖𝑗
1 = (𝑎𝑖𝑗

1 + 1) 2⁄  and 𝑏𝑖𝑗
2 = (𝑎𝑖𝑗

2 + 1) 2⁄ , 𝑖, 𝑗 = 1, 2, can be used. However, despite formal 

correctness, the use of such formulars can be hardly interpreted. Since inverse generator functions 

are probability density functions, they specify the probabilities of the appropriate events which are 

the levels of knowledge or beliefs of the players, while the indicated formulas have not such 

interpretation. 

Note that the same simple formulars are used in the definition of the left-side and right-side 

values of the parameters (see equation (22)), and since here the interpretation is not required, the use 

of such formulas is justified. 

The considered example of Prisoners’ dilemma and additional two games demonstrate that the 

suggested method results in the strategies which are chosen by the players. Such verification, 

certainly, does not provide complete justification or proof of the method, but explains the choices and 

confirms the asymmetry in the consideration of their own rewards and the rewards of the opponents. 

6. Conclusion 

In the paper, we suggest a method of decision-making under uncertainty which resolves an 

observed irrationality of the judgements. The method is applied to the one-step games of two players 

where it successfully predicts the players’ choices. 

The method utilizes asymmetry in the relation of the player to the own reward and the reward 

of the opponent that is formalized using the non-commutative operators of multivalued logic algebra. 

The obtained results explain the appearing irrationality in the players’ judgements and 

demonstrate the rationality of irrational choices. 
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