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Abstract

Water is one of a fundamental natural resource and strategic compound. However, with socio-
economic development, the water environment is being confronted with a series of problems such as
aggravated pollution. Accurate monitoring of the water quality is the prerequisite and foundation
for water environment supervision and governance. With the development of remote sensing and
computer technologies, the retrieval of water quality parameters has attracted increasing attention
from researchers and practitioners. This paper aims to present progress of remote sensing technique
in water quality parameter retrieval methods and applications. The following aspects were
investigated in this review: (a) water quality parameters retrieval data source; (b) water quality
parameters retrieval models and evaluation metrics; (c) water quality parameters remote sensing
retrieval applications; (d) some challenges and potential directions for water quality parameters
retrieval. This review provides some support for researchers, as well as management departments,
in theoretical research and application for remote sensing water quality parameters retrieval.

Keywords: water quality; remote sensing techniques; retrieval models; satellite data

1. Introduction

Water resources play a crucial role in the sustainability of human and ecological systems [1-3].
Rapid urbanization and socio-economic development have caused a series of environmental issues,
such as water shortages and water pollution. Effective water quality monitoring is essential for
addressing the threats of water environment deterioration, as well as effective supervision and
governance of the water environment [4,5].

Traditionally, water quality monitoring is based on measurements at certain sampling points,
which is time-consuming, expensive, and limited to small scales. Due to the advantages of large
spatial and temporal coverages, remote sensing technology makes large-scale water quality
parameters retrieval possible [6-8]. Continuous, stable, and high-quality remote sensing image data
are a prerequisite for remote sensing water quality parameter retrieval. Since the first civilian Earth
observation satellite (Landsat) was launched in 1972, many countries have launched satellite systems,
which provide various and stable remote sensing images and water environment monitoring services
[9-13]. In recent years, aerial remote sensing data, as well as ground data, have also provided rich
data sources for water quality parameters retrieval [14-16].
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Based on rich remote sensing data sources, scholars have explored various water quality
parameter retrieval models and algorithms in the past few decades. Bibliometric analysis shows that
the number of research publications has increased each year [17-19]. The water quality parameter
retrieval models mainly include bio-optical, empirical, semi-empirical and artificial intelligence
models (AI) [20-23]. The bio-optical models take into account the retrieval mechanism of water
quality parameters with a higher accuracy. Empirical models establish mathematical relationships
between water quality parameters and reflectance to obtain water quality parameters. Semi-empirical
models consider the mechanism and spectral characteristics of water quality parameters. Compared
with traditional empirical and semi-empirical models, Al models have unique advantages in
explaining these complex relationships, as well as in achieving a higher accuracy.

The key to water quality parameters retrieval by remote sensing technique is to establish
relationships between water quality parameters and the reflection of water bodies. Due to the distinct
spectral characteristics, most research and applications have focused on three major components,
namely, chlorophyll-a (Chl-a), total suspended solids (TSS), and colored dissolved organic matter
(CDOM)[24,25] in early water quality remote sensing research. With the improvement of the spectral
resolutions of sensors, some water quality parameters without obvious spectral response
characteristics, such as the total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NHsN),
dissolved oxygen (DO), and chemical oxygen demand (COD), are increasingly being retrieved [26—
29].

In the past few decades, remote sensing technology has achieved great success in water quality
parameter retrieval, with a series of high-precision and stable models aiding in water quality
parameters retrieval. To demonstrate the advancements in the use of remote sensing for water quality
parameters retrieval, this paper reviews the latest progress in quantitative water quality estimation
in terms of the research trends, data sources, retrieval models, and several water quality parameters
retrieval applications. Furthermore, the current challenges and possible solutions are discussed.

2. Bibliometric Analysis

The Web of Science (WOS) and CiteSpace were chosen as the analysis tools for the bibliometric
analysis. According to the statement of “TI=(("water quality parameter” OR "water quality” OR
"water parameter")NOT("land*"')NOT("vegeta*') NOT("drink*')NOT("sea")) " and TS=("RS" OR
"remote sens*' OR "remotely sens*" OR "spectr*"), the irrelevant literature was removed, and 1311
papers were obtained for subsequent analysis.

The trend of the number of water quality papers published during the period 2000-2024 is
shown in Figure 1. The bar chart suggests that the publication volume of water quality papers has
been increasing since 2000. To reflect the changes in the proportion of water quality literature to
remote sensing literature, the proportion of water quality to remote sensing is also presented. The
results indicate that water quality has attracted increasing attention in remote sensing research.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1168.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 do0i:10.20944/preprints202509.1168.v1

3 of 22

250 0.08
== Number of articles in water quality
200 - —— Water quality proportion on remote sensing articles
3 - 0.06
= =
Nt
= 150 - _E
3 - 0.04 S
5 S
2 100 A £
E L 0.02
50 - '
0 - - 0
2000 2005 2010 2015 2020 2025

Year

Figure 1. Number of published articles on water quality and its proportion to remote sensing literature.

Figure 2 shows a pie chart of the proportion of published papers in the top 10 countries. The top
10 countries account for approximately 90% of the total publication of water quality remote sensing
literature, forming the main pillars in this direction. More specifically, China has made significant
contributions in this field, accounting for over 40% of all publications, followed by the United States
(approximately 20%).

According to the publications of water quality remote sensing articles, a statistical table of the
number of articles in publications indexed by the WOS was created (Table 1). In terms of publications,
Remote Sensing accounts for the largest proportion (approximately 18%), followed by The Science of
the Total Environment and Water (16.1% and 11.4%, respectively).
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21.1%

Figure 2. Proportion of articles published by top 10 countries.

Table 1. Statistics on the number of publications indexed by the WOS.

Ranking Publication Record Count
1 REMOTE SENSING 102
2 THE SCIENCE OF THE TOTAL ENVIRONMENT 89
3 WATER 63
4 ENVIRONMENTAL MONITORING AND 50
ASSESSMENT
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RESEARCH INTERNATIONAL
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10 INTERNATIONAL SOCIETY FOR OPTICAL 32
ENGINEERING

Figure 3 shows the keywords appearing in the collected articles from 2000 to 2024. An annual
analysis of the keywords in the bibliographic data was conducted, and a co-citation analysis of the
keywords was performed using CiteSpace. The time scale was from 2000 to 2024, the time slice was
set to 1, and the node type was set to keywords. Labels were assigned based on the frequency of
occurrence. The visualization graph shows that Chl-a, DO, TP, and TN were the main water quality
parameters studied; rivers, lakes, and coastal zones were the main research areas; and machine
learning and deep learning were the research methods commonly used.

#0 reflectance
ce
attor
A
e it gl niand waters
o g /}eutropmc?non =
water quality monitoring==" nitrogen SEbon
Rastéwater =" river R - phosphorus™ =
fr

3 arfprmance . it .
ihiaHAamote estimation . ! #1 nitrate

Bty Room #2 heavy metals

/ “heavy metals. sediments basiri
% pollution” drinking w gieaundwater achinWaterd uak

chlo¢d
alge
dissolved organic
water quality / lake
% bay
- mddel varifinegentical

remote sensing

#3 machine learning

feey 3
akesne lunbidily - #4 remote sensing

Figure 3. Visualization of the keyword network for the period 2000-2024.

3. Water Quality Parameters Retrieval Data Acquisition

The radiation information about water surfaces at various wavelengths can be recorded by
remote sensors, which include satellite, aviation, ground, airship data. This section mainly introduces
satellite, aviation and ground data.

3.1. Satellite Data

With the development of remote sensing technology and the increasing demand for
applications, the United States, Europe, China, Russia, Japan, Canada, India, and other countries and
regions have operated several satellite systems to provide considerable remote sensing images and
Earth observation services in the past few decades. According to the spatial resolution, satellite
remote sensing images can be divided into coarse-, medium-, and high-spatial-resolution images, the
parameters of which are presented in Table 2.

The coarse-spatial-resolution satellites for water quality parameters retrieval mainly include the
Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic and
Atmospheric Administration (NOAA) satellites, Moderate Resolution Imaging Spectroradiometer
(MODIS), Medium Resolution Imaging Spectrometer (MERIS), Geostationary Ocean Color Imager
(GOCI), and Sentinel-3 Ocean and Land Color Instrument (OLCI)[30-33]. Due to the short revisit
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period and high signal-to-noise ratio, the coarse-spatial-resolution satellite data have significant
advantages in large-scale and even global-scale water environment research.

Common medium-resolution remote sensing sensors mainly include the Landsat multi-spectral
scanner (MSS)/thematic mapper (TM)/enhanced thematic mapper plus (ETM+)/operational land
imager (OLI), SPOT 1-4, Hyperion, and Sentinel-2 Multi-spectral Instrument (MSI)[34-37]. Because
of the good agreement of their temporal, spatial, and spectral resolutions, the medium-resolution
optical images have large advantages in regional water quality parameters retrieval, while they have
limitations in terms of instantaneous changes in retrieval results under cloudy and rainy weather.

The high-spatial-resolution remote sensing used in water quality parameters retrieval mainly
include IKONOS, QuickBird, WorldView, SPOT series. It is worth noting that China has launched a
series of high-resolution remote sensing satellites, including the Gaofen (GF), Zhuhai, Ziyuan (ZY)
and Beijing series satellites in recent years. These high-spatial-resolution satellites have effectively
promoted the application of water environment monitoring, especially in urban areas[38—40].

Table 2. Technical specifications of common satellite remote sensors used in water quality parameters retrieval.

Helgh.t Orbital Spatial Tempo.ral Spectral
Category  Sensor  on orbit . resolution  Bands
swath (km) resolution (m) range (nm)
(km) (day)
AVHRR  833-870 2800 1100 0.5 5 550-12,500
Coarse MODIS 705 2330 250-1000 0.5 36 400-14,400
resolution GOCI 35,837 2500 500 1/24 8 402-885
MERIS 790 + 10 1150 300 3 22 465-2135
Sentinel-3 8145 1270 300 2 21 400-1020
Landsat 1-3 907-915 185 78 18 4 500-1100
Landsat-4/5 705 185 30-120 16 7 450-12,500
Landsat-7 705 185 15-60 16 8 450-12,500
Medium Landsat-8 705 185 15-100 16 11 430-12,510
resolution Landsat-9 705 185 15-100 16 11 435-12,500
SPOT 14 822 60 10-20 26 4-5 500-1750
Hyperion 705 7.7 30 200 242 400-2500
Sentinel-2 786 290 10-60 5 13 420-2300
IKONOS 681 11.3 0.82—4 1.5-3 5 445-900
QuickBird 450482  16.8-18 0.61-2.88 1-6 5 450-900
Worldzlew = 406 17.6 03137  1.7-59 428 450-800
High SPOT 5 822 60 2.5-20 26 5 480-1750
. SPOT 6/7 694 60 1.5-6 26 5 500-890
resolution
7Y-3 506 50 2.1-5.8 3-5 7 500-890
GF-1/2/6  631-645  45-90 0.8-16 1-5 5-13 450-900
Zhuhai-1 500 150 0.44-10 1-32 32 400-1000
Beijing-3  500-700 12 0132_?25 — 4-6 400-900

3.2. Aviation Data

With the miniaturization of hardware equipment, multispectral and hyperspectral remote
sensing data based on human-machine and unmanned aerial vehicle (UAV) platforms have begun to
be applied in the field of water quality parameters retrieval [41-43]. Compared with satellite
platform, the flight time, heights and route of the aircraft platform can be selected according to the
actual demand. Image data obtained by aircraft platform with a higher spatial resolution, which can
reflect the spectral and spatial information about water bodies better, thus improving the accuracy of
water quality parameters retrieval [44—47].
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The commonly used manned airborne systems include HyMAP-C developed in Australia, the
Prob series developed in the United States, CASI/SASI/TASI developed in Canada, AISA+ developed
in Finland, and PHI developed in China. Current UAV platform-based hyperspectral equipment
mainly includes OCI developed in the United States, SPECIM developed in Finland, HySpex
developed in Norway, and small imaging hyperspectral systems developed by the Changchun
Institute of Optics, Fine Mechanics and Physics, the Shanghai Institute of Technical Physics, and
Aerospace Information Research Institute, Chinese Academy of Sciences. Table 3 lists the technical
specifications of common airborne hyperspectral remote sensors.

Table 3. Technical specifications of common airborne remote sensors used in water quality parameters retrieval.

1
Spectral range Number of Spectr-a Field of Imaging
Sensors resolution )
(nm) channels view (°) mode
(nm)
AVIRIS  380-2500 224 10 34 ~ Opectroscopic
scannlng
CASL1500  380-1050 ‘djustableup ;g 40 Spectroscopic,
to 288 push-broom
PHI 400-850 244 <5 21 Spectroscopic,
push-broom
OMIS-II  400-1100 64 10 s70  Opectroscopic,
Scarmlng
HyMap  400-2500 128 15-20 60 Spectroscopic,
scannlng
AISA 430-900 288 3 38 Spectroscopic,
scannlng

3.3. Ground Data

Field spectrometers can flexibly and inexpensively obtain spectral data on ground objects, which
is widely used for water spectral data acquisition[48-50]. Currently, the main manufacturers of field
spectrometers include Ocean Optics (US), ASD (US), and Avantes (Netherlands). Ground
spectrometers commonly used in water spectra data acquisition include the FieldSpec 4, USB4000,
and Torus series miniature spectrometers. Although micro spectrometers cannot compare with large
spectrometers in resolution and spectral range, they have the advantages of portability, intelligence,
and integrations. The technical specifications of common ground field spectrometers are presented
in Table 4.

Table 4. Technical specifications of common ground field spectrometers used in water quality parameters

retrieval.
Manufacturer Spectrometer Spectral range (nm) Number of channels Spectral resolution (nm)
3.5 (350-1000 nm)
Spectral Evolution PSR-3500 350-2500 1024 10 (1000-1500 nm)
7 (1500-2100 nm)
3.5 (350-1000 nm)
Vv VC 1024 -2 1024
Sve SVE10 350-2500 0 9.5 (1000-1900 nm)
. 3 (350-1000 nm)
ASD Fiel 4 - 151
S ieldSpec 350-2500 215 8 (1000-2500 nm)
Ocean Optics USB-4000 200-1100 Configuration dependent 0.1-10

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4. Water Quality Parameters Retrieval Models and Evaluation

4.1. Bio-Optical Model

The bio-optical model is based on radiation transmission models. The upstream and
downstream irradiance of the water body is calculated, and then, the relationship between the
upstream and downstream irradiance, absorption coefficient, and backscattering coefficient of each
component of the water body is established[51-53]. The principle of the bio-optical model is shown
in the equation (1):

by(D)

R(0,4) = fm 1)

where R(0,1) is the ratio of the upward irradiance to downward irradiance on the surface of the
water body at wavelength A, a(4) is the absorption coefficient of the water body, b,(1) is the
backscattering coefficient of the water body, and f is a variable parameter. a(1) and b,(4) are the
linear sums of the contributions of each component of the water body.

The bio-optical model has a clear theoretical basis and physical significance, and it depends less
on the measured sample points, which makes it easy to analyze sources of error with higher
universality[54,55]. However, the composition of the water body and radiation transmission
procedure are rather complex, and many input parameters (such as inherent optical characteristics,
surface tourism characteristics, and water quality variables) still need to be measured, which limits
practical applications. Some examples of water quality parameters studied using bio-optical models
are presented in Table 5.

Table 5. Some studies of water quality parameter retrieval using optical models.

Model Water parameters References
2SeaColor Chl-a, TSS, CDOM [56]
QAA Chl-a [57]
LM CDOM [58]
GSM Chl-a [59]

4.2. Empirical Models

Empirical models were developed in early applications for water quality parameter retrieval
using multispectral remote sensing data. In these models, the correlations between the remote
sensing reflectance and water quality parameter values are calculated, and then, the optimal band or
band combination is selected. Finally, the water quality parameter values of unmeasured points are
calculated through the statistical relationships established[60-64].

The advantages of empirical models are that the relationships between the remote sensing
reflectance and water quality parameters are easy to establish and that the model is simple and
feasible. The disadvantage is that the explanation of the model mechanism is insufficient, resulting
in poor applicability of the model. It is also easily limited by the research area and data. Empirical
models mainly include the single band method, logarithmic method, spectral differentiation method,
ratio method, and difference method[65,66]. The calculation equations are presented in Table 6.

Table 6. Common empirical models for water quality parameter retrieval.

Model Equation Reference
Single band Cyater =a X Ry+Db [67]
Logarithmic Cyater = a X log (R\) + b [68]

Cwater = a % (R/\i)n +b,

(Ra,, )" =Ry )"
R/\i =
Ay = A

Spectral Differentiation [69]
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. _ Ry
Ratio Cpater =aX—=—+Db [70]
A2
Difference Cwater = A X (Ryy —Ryp2) + b [71]

Note: R, is the remote sensing reflectance of water at wavelength A, and a and b are regression coefficients.

4.3. Semi-Empirical Models

Semi-empirical models were developed for the application of hyperspectral remote sensing in
water quality parameters retrieval. Based on the empirical model, the semi-empirical model considers
the spectral characteristics and other prior knowledge of water quality parameter retrieval[72-74].
Then, the optimal band or band combination is selected, and the relationships between remote
sensing reflectance and water quality parameters are established using appropriate mathematical
methods.

Semi-empirical models partially make up for the defects of empirical models in water quality
parameter retrieval, while they are limited to a special time and region because they depend on
synchronization of the measured water quality data and remote sensing observation data[66,75].
Semi-empirical models commonly used for water quality parameter retrieval include the three-band
method, four-band method, APPLE model, and Tassan model, whose calculation equations are
presented in Table 7.

Table 7. Common semi-empirical models for water quality parameter retrieval.

Model Equation Water parameter Reference
Three-band  Cpgier = a X (Ry1) 1 — (Ryz) ) X Rys + b Chl-a [76]
_ (Ra) ™' = (Ry) ™!
Four-band Coater = a X +b Chl-a [77]

(Raz)™t — (Raa)t
Cwater = a X F(APPLE) + b

APPLE " E(APPLE) = Ryg — [(Rsrue — Rwi) X Ruig Chl-a (78]
+ (Rrep — Ruir)]
_ Ry + Ry
Tassan Cuater =aX——+Db TSS [79]
Rys/Raa

Note: R;1,R)2, Ry3,and Ry, are the remote sensing reflectance of the water body at wavelengths A1, A2, A3, and

A4, respectively; and a and b are the regression coefficients.
4.4. Artificial Intelligence Model

4.4.1. Machine Learning Model

As a branch of computer science, machine learning models have been widely applied in water
quality parameter retrieval due to its good computational performances and nonlinear mapping
abilities[80,81]. Many researchers have analyzed the relationships between water quality parameters
and the spectral reflectance based on measured data[82-84]. The influence mechanism of spectral
characteristics of various elements in water bodies is unclear, while machine learning models has
certain advantages in solving these complex problems because of its black box mode, as well as in
effectively improving the accuracy of water quality parameter retrieval.

The machine learning water quality parameters retrieval models commonly used mainly include
support vector regression (SVR), random forest (RF), extreme gradient boosting (XGBoost), adaptive
boosting (Adaboost), multilayer perceptron (MLP), backpropagation network (BP)[85-87]. Similar to
empirical and semi-empirical models, the accuracy of machine learning models is also greatly
affected by the study area and sample point distribution. Some studies on water quality parameter
retrieval using machine learning models are listed in Table 8.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 8. Some studies on water quality parameter retrieval using machine learning models.
Study area Data source Method Water parameter Reference
Valle de
Bravo MERIS LR, RF, SVR, GPR Turbidity [88]
reservoir
Nandu River Landsat 8 SVR, RZQ\T N, RT, TN, TP, NHsN [89]
Beigong ~ UAV hyperspectral ~Adaboost, Gradient
Chl-a, TSS 90
Reservoir image Boost, SVR, RF a [50]
Zha?nghe UAV r.nultlspectral BP, RF, XGBoost Chl-a, TP, TN, [91]
River image CODwn
Yuhe river Near-surface LASSO, DTR, SVR, COD, NH:N, DO [92]
hyperspectral spectra MLP
Y Sentinel-2, Landsat-
angtze GA-RF TP, TN [93]

River 8, GF-1

4.4.2. Deep Learning Model

With the development of computer technology and the improvement of the performance of
computer hardware equipment, deep learning models have been shown to have great superiority in
remote sensing image classification and spectral information reconstruction, which provide new
technical methods for water quality parameters retrieval. Traditional regression methods have
difficulty extracting deep spectral information from spectral data. There are multiple hidden layers
between the input and output layers of deep learning models, which can effectively simulate complex
nonlinear relationships between spectral and water quality parameters data so as to achieve a higher
accuracy in water quality parameter retrieval and better revealing the spatiotemporal distribution
patterns of water quality parameters [94-97]. However, deep learning models also have problems
such as unclear mechanisms and low model universality. Some examples of the use of deep learning
models to invert water quality parameters are presented in Table 9.

Table 9. Some studies on water quality parameter retrieval using deep learning models.

Study area Data source Model Water quality Reference
Maozhou River UAYV hyperspectral image HF-DFM Chl-a, COD [98]
Guanhe River Alrborne. hyperspectral DNNR TP, TN, COD, [99]
image NHsN
Simcoe Lake Landsat MDL Chl-a, TP, TN [100]
Balik Lake Sentinel-2 CNN Chl-a [101]
Liangzi lake Sentinel-2 DNN Chl-a, TSS [102]

4.5. Model Evaluation Metrics

Appropriate evaluation metrics can be used to assess the accuracy of model training, over-fitting
or under-fitting correction, and model transferability. Based on the research status and progress, the
following model evaluation metrics are summarized: the coefficient of determination (R?), root mean
square error (RMSE), mean square error (MSE), mean absolute error (MAE), relative error (RE), and
residual prediction deviation (RPD). The equations of these metrics are as equation (2) to (7):

Die1 (Vi — yi)?

R?=1-S 2 ——
=i — ¥

()
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RMSE = 3)
1 n
MSE == (= %))’ @)
i=1
1 n
MAE = = |y = ¥il ©)
i=1
n
1 Lyt
RE = 100 x —Zu (6)
=L
n a2
RPD — Z[:l(yl y) (7)

2im i —yi)?

where y is the average value, and y; and y; are the observed and predicted values of observation
point i, respectively. Among these metrics, R? is the most commonly used and accepted evaluation
metric. Excessive pursuit of a higher R? value may lead to over-fitting and poor transferability of
the model. Therefore, R? is usually used in combination with other evaluation metrics to balance the
fitting accuracy, portability, and computational complexity of the model, as well as enabling a more
objective and comprehensive evaluation of the model.

5. Water Quality Parameter Retrieval Via Remote Sensing Techniques

5.1. Chlorophyll-a

Chl-a is the most basic indicator of the trophic state of water bodies, which can indicate the
distribution of plankton biomass[103,104]. The spectral characteristics of chlorophyll include strong
absorption between 450 and 475 nm and at 670 nm, and peaks at 550 nm and near 700 nm[105,106].
The reflection peak at 700 nm is a typical spectral feature of chlorophyll-a, which is of great
significance for estimating chlorophyll in water bodies. The peak position of water spectra shifts from
approximately 680 nm to 710 nm as the peak amplitude value increases due to an increase in the Chl-
a concentration.

Table 10. Some studies on Chl-a retrieval.

Study area Data source Model R? Reference
A lake in North . XGBoost, random
Carolina, USA Sentinel-2 forest, 0.64 [107]
Normalized
haohu L
Chaohu Lake, GF-1 difference 093  [108]
China .
chlorophyll index
Pearl Rlve.r Estuary, Landsat 5/7 Two-ban'd global 071 [109]
China algorithm
. } greater
Poyang Lake, China GF-1 APPEL model than 0.6 [110]
Nanpaishui Rlver, UAV multlspe?tral and stepwise regression 0.7 [111]
Nanyun River ~ hyperspectral imagery
Hedi reservoir, Sentinel-2 GA-ANN 087  [112]

Gaozhou reservoir
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In addition to the optical properties of phytoplankton, the optical properties of inland and
coastal water bodies are determined by a composite of dissolved organic matter, dead particles,
organic matter, and inorganic particles from land-based sources[113-116]. Therefore, retrieval of the
Chl-a concentration is much more complex and less accurate, and as a result, these components are
not statistically correlated. Based on the absorption and reflection characteristics, a series of
algorithms have been developed to retrieve the Chl-a concentration. Several models for retrieving the
Chl-a concentration are listed in Table 10.

5.2. Total Suspended Solids

The TSS concentration is one of the key water quality parameters for water bodies. It is related
to incoming sunlight, which affects photosynthesis for the growth of algae and plankton, as well as
the primary productivity of the water body. The TSS have reflectance spectral characteristics at 580—
680 nm and 700-900 nm. Many studies have shown that when chosen appropriately, a single band or
a combination of bands can achieve a high accuracy in TSS retrieval[117,118]. However, the
reflectance of water is affected by the complex substances in the water body, so different spectral
bands can be used for TSS retrieval. Some models for retrieving the TSS concentration are
summarized in Table 11.

Table 11. Some studies on TSS retrieval.

Study area Data source Model R? Reference
Lake Chapala Landsat5-8  Multiple linear regression  0.81 [119]
A lake at S outh Landsat 8 Artificial Neural Network 0.6 [120]
Brazil
Poyang Lake Sentinel-2 Exponential model 0.93 [121]
Yangtze River MODIS Ratio model 0.88 [122]

E ial retrieval
Deep Bay, China MODIS Xponentia’ retrieva 0.62 [123]

model

5.3. Total Phosphorus and Total Nitrogen

The TP and TN in water bodies mainly come from the external environment and the release of
the water itself[124,125]. Excessive nitrogen and phosphorus concentrations can lead to microbial
proliferation, the rapid growth of plankton, and eutrophication of water bodies, resulting in further
deterioration of the water quality. Scientific and accurate retrieval of nitrogen and phosphorus is the
premise and foundation for controlling nitrogen and phosphorus source pollution.

Currently, research on water quality parameters retrieval through remote sensing has mainly
focused on the three major components, including the concentrations of chlorophyll, TSS and CDOM.
Numerous scholars have conducted studies on TP and TN retrieval by remote sensing, while the TP
and TN concentrations, as optically insensitive water quality parameters, are theoretically difficult to
invert using physical models, which poses significant challenges[126-129]. The currently used
methods for TP and TN retrieval can be mainly divided into direct and indirect methods.

5.3.1. Direct Methods

The direct methods establish a retrieval model for the TP and TN concentrations by calculating
the relationships between the remote sensing reflectance (Rrs) and the measured water quality
parameters. The direct methods estimate the TP and TN concentrations using statistical methods.
However, the direct methods fail to consider the underlying mechanisms of TP and TN, and the
retrieval results are largely dependent on the study and measured data, leading to limited
applicability. Relevant studies on the retrieval of the TP and TN concentrations using direct methods
are listed in Table 12.
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Table 12. Some studies on TP and TN retrieval using direct models.
., Reference

Study area Data source Water quality
Balik Lake MODIS TP, TN [130]
Burullus Lake Sentinel-2 TP, TN [131]
Poyang Lake, Dongting Lake, Taihu Landsat 8 TP, TN [132]

Lake
Taihu Lake proximal TP, TN [133]
hyperspectral imager

Taihu Lake MODIS TP [134]
Pearl River Estuary Landsat 8 TP, TN [135]
Dongping Lake Landsat 8 TP, TN [136]
Yellow River Delta Sentinel-2 TP, TN [137]

5.3.2. Indirect Methods

Chl-a, TSS, and CDOM have well-defined optical properties and spectral responses. Many
studies have shown that there is a correlation between the chlorophyll, TP, and TN concentrations,
which provides a theoretical basis for TP and TN retrieval using chlorophyll-sensitive
wavelengths[138-142]. The TP and TN concentrations are related to the concentrations of optically
active water quality parameters, which can be determined using the equation (8):

(TP,TN) « f(Chl — a,TSS,CDOM) (8)

That is, the concentrations of TP and TN are positively correlated with the Chl-a, TSS, and
CDOM concentrations and other water quality parameters, and the concentrations of these
parameters can be obtained by remote sensing methods.

f(Chl — a,TSS,CDOM) Ry, )

Based on equations (8) and (9), the relationship between the TP and TN concentrations of the
water and the remote sensing reflectance is as following equation (10):

(TP,TN) « R, (10)

The indirect methods establish the relationship between the TP and TN concentrations and
optically active water quality parameters, and then, the TP and TN concentrations are calculated
indirectly according to the retrieval results of the optically active water quality parameters[143].
Compared with the direct methods, the indirect methods consider the remote sensing retrieval
mechanism of the TP and TN concentrations. The retrieval results of the optically active water quality
parameters, as well as the correlation between the optically active water quality parameters, affect
the accuracy of the retrieval results of TP and TN.

6. Challenges and Future Development

1.  Water Quality Parameters Retrieval of Small-scale River and Lakes

Currently, most satellite data are mainly suitable for large-scale water quality parameters
retrieval. There are several challenges in water quality parameters retrieval of small lakes and narrow
rivers in urban areas because of the limitations in fine spectral, spatial, and temporal resolutions of
remote sensing data. Therefore, future research could focus on integrate satellite, aviation, and
ground data to meet the needs of long-term and fine-scale regional studies. Meanwhile, regional
high-spatiotemporal-resolution data can be obtained through autonomously operate and control
satellites along any trajectory, or through data fusion methods.

2. Interpretable Deep Learning Water Quality Parameter Retrieval Models
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Although machine learning models have the significant advantage of the occurrence of
nonlinear relationships between the water reflectance and water quality parameters, there are still
some challenges. First, a single machine learning model has some shortcomings such as over-fitting,
high dimensionality, and slow convergence. Second, data-driven methods, represented by empirical
and machine learning methods, have difficulty explaining physical mechanisms, which limits the
accuracies and generalization abilities of these models. The attainment of a large amount of measured
data and the use of integrated machine learning are notable research directions. In addition, model
optimization and improvement should be combined with inherent optical properties to enrich the
physical significance of data-driven methods.

3. Water Quality Parameter Retrieval Models Integrating Multiple Environmental Factors

Most previous studies focused on three major components of the ocean color, namely the Chl-a,
CDOM, and TSS concentrations, while additional parameters (including TP, TN, NHs-N, DO
concentrations, and COD) are not well investigated because of the weak optical characteristics. Given
the complexity of the water environment, revised water quality models are generally established for
certain regional water bodies, to retrieval water quality parameters more accurately. In future
research, the influences of various environmental factors should be considered to retrieval multiple
water quality parameters.

7. Conclusions

Good water quality is crucial for human survival and health, ecological balance, and sustainable
socio-economic development. Over the past few decades, numerous scholars have developed a series
of algorithms for remote sensing water quality parameter retrieval based on multi-platform remote
sensing data. This review provides a comprehensive introduction to remote sensing water quality
parameter retrieval, including literature analysis, remote sensing data sources, retrieval models,
several water quality parameter retrieval application, current challenges, and future development
directions.

From 2000 to 2024, the number of published papers on water quality remote sensing increased
each year. The research hotspots mainly included remote sensing, Chl-a, DO, TP, and TN. A series of
satellite, aviation, and ground data were used for remote sensing water quality parameter retrieval.
In terms of the spatial resolution, remote sensing data can be divided into high-, medium-, and low-
resolution data. Water quality parameter retrieval models include bio-optical, empirical, semi-
empirical, and Al models. Several water quality parameters (such as Chl-a, TSS, TP, and TN) have
been extensively studied. Among them, Chl-a and TSS have distinct spectral characteristics, thus can
be retrieved by empirical or semi-empirical models. However, the optical characteristics of TP and
TN are unclear, usually retrieved using both direct and indirect methods. Future research could
establish interpretable deep learning models considering multiple environmental factors to retrieval
water quality parameters more accurately. At the same time, water quality parameters retrieval of
small-scale river and lakes should also be paid more attention.
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Abbreviations

Adaboost adaptive boosting

BP backpropagation network
CDOM colored dissolved organic matter
Chl-a chlorophyll-a

COD chemical oxygen demand
DO dissolved oxygen

MAE mean absolute error

ML machine learning

MLP multilayer perceptron

MSE mean square error

R2 coefficient of determination
RE relative error

RF random forest

RMSE root mean square error
RPD residual prediction deviation
Rrs remote sensing reflectance
SVR support vector regression
N total nitrogen

TP total phosphorus

TSS total suspended solids
UAV unmanned aerial vehicle
WOS Web of Science

XGBoost  extreme gradient boosting
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