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Abstract 

Water is one of a fundamental natural resource and strategic compound. However, with socio-
economic development, the water environment is being confronted with a series of problems such as 
aggravated pollution. Accurate monitoring of the water quality is the prerequisite and foundation 
for water environment supervision and governance. With the development of remote sensing and 
computer technologies, the retrieval of water quality parameters has attracted increasing attention 
from researchers and practitioners. This paper aims to present progress of remote sensing technique 
in water quality parameter retrieval methods and applications. The following aspects were 
investigated in this review: (a) water quality parameters retrieval data source; (b) water quality 
parameters retrieval models and evaluation metrics; (c) water quality parameters remote sensing 
retrieval applications; (d) some challenges and potential directions for water quality parameters 
retrieval. This review provides some support for researchers, as well as management departments, 
in theoretical research and application for remote sensing water quality parameters retrieval. 

Keywords: water quality; remote sensing techniques; retrieval models; satellite data 
 

1. Introduction 

Water resources play a crucial role in the sustainability of human and ecological systems [1–3]. 
Rapid urbanization and socio-economic development have caused a series of environmental issues, 
such as water shortages and water pollution. Effective water quality monitoring is essential for 
addressing the threats of water environment deterioration, as well as effective supervision and 
governance of the water environment [4,5]. 

Traditionally, water quality monitoring is based on measurements at certain sampling points, 
which is time-consuming, expensive, and limited to small scales. Due to the advantages of large 
spatial and temporal coverages, remote sensing technology makes large-scale water quality 
parameters retrieval possible [6–8]. Continuous, stable, and high-quality remote sensing image data 
are a prerequisite for remote sensing water quality parameter retrieval. Since the first civilian Earth 
observation satellite (Landsat) was launched in 1972, many countries have launched satellite systems, 
which provide various and stable remote sensing images and water environment monitoring services 
[9–13]. In recent years, aerial remote sensing data, as well as ground data, have also provided rich 
data sources for water quality parameters retrieval [14–16]. 
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Based on rich remote sensing data sources, scholars have explored various water quality 
parameter retrieval models and algorithms in the past few decades. Bibliometric analysis shows that 
the number of research publications has increased each year [17–19]. The water quality parameter 
retrieval models mainly include bio-optical, empirical, semi-empirical and artificial intelligence 
models (AI) [20–23]. The bio-optical models take into account the retrieval mechanism of water 
quality parameters with a higher accuracy. Empirical models establish mathematical relationships 
between water quality parameters and reflectance to obtain water quality parameters. Semi-empirical 
models consider the mechanism and spectral characteristics of water quality parameters. Compared 
with traditional empirical and semi-empirical models, AI models have unique advantages in 
explaining these complex relationships, as well as in achieving a higher accuracy. 

The key to water quality parameters retrieval by remote sensing technique is to establish 
relationships between water quality parameters and the reflection of water bodies. Due to the distinct 
spectral characteristics, most research and applications have focused on three major components, 
namely, chlorophyll-a (Chl-a), total suspended solids (TSS), and colored dissolved organic matter 
(CDOM)[24,25] in early water quality remote sensing research. With the improvement of the spectral 
resolutions of sensors, some water quality parameters without obvious spectral response 
characteristics, such as the total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH3N), 
dissolved oxygen (DO), and chemical oxygen demand (COD), are increasingly being retrieved [26–
29]. 

In the past few decades, remote sensing technology has achieved great success in water quality 
parameter retrieval, with a series of high-precision and stable models aiding in water quality 
parameters retrieval. To demonstrate the advancements in the use of remote sensing for water quality 
parameters retrieval, this paper reviews the latest progress in quantitative water quality estimation 
in terms of the research trends, data sources, retrieval models, and several water quality parameters 
retrieval applications. Furthermore, the current challenges and possible solutions are discussed. 

2. Bibliometric Analysis 

The Web of Science (WOS) and CiteSpace were chosen as the analysis tools for the bibliometric 
analysis. According to the statement of “TI=(("water quality parameter" OR "water quality" OR 
"water parameter")NOT("land*")NOT("vegeta*") NOT("drink*")NOT("sea")) ” and TS=("RS" OR 
"remote sens*" OR "remotely sens*" OR "spectr*"), the irrelevant literature was removed, and 1311 
papers were obtained for subsequent analysis. 

The trend of the number of water quality papers published during the period 2000–2024 is 
shown in Figure 1. The bar chart suggests that the publication volume of water quality papers has 
been increasing since 2000. To reflect the changes in the proportion of water quality literature to 
remote sensing literature, the proportion of water quality to remote sensing is also presented. The 
results indicate that water quality has attracted increasing attention in remote sensing research. 
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Figure 1. Number of published articles on water quality and its proportion to remote sensing literature. 

Figure 2 shows a pie chart of the proportion of published papers in the top 10 countries. The top 
10 countries account for approximately 90% of the total publication of water quality remote sensing 
literature, forming the main pillars in this direction. More specifically, China has made significant 
contributions in this field, accounting for over 40% of all publications, followed by the United States 
(approximately 20%). 

According to the publications of water quality remote sensing articles, a statistical table of the 
number of articles in publications indexed by the WOS was created (Table 1). In terms of publications, 
Remote Sensing accounts for the largest proportion (approximately 18%), followed by The Science of 
the Total Environment and Water (16.1% and 11.4%, respectively). 

 
Figure 2. Proportion of articles published by top 10 countries. 

Table 1. Statistics on the number of publications indexed by the WOS. 

Ranking Publication Record Count 
1 REMOTE SENSING 102 
2 THE SCIENCE OF THE TOTAL ENVIRONMENT 89 
3 WATER 63 

4 
ENVIRONMENTAL MONITORING AND 

ASSESSMENT 50 
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5 
IEEE INTERNATIONAL SYMPOSIUM ON 

GEOSCIENCE AND REMOTE SENSING IGARSS 49 

6 PROCEEDINGS OF SPIE 45 

7 ENVIRONMENTAL SCIENCE AND POLLUTION 
RESEARCH 

41 

8 
ENVIRONMENTAL SCIENCE AND POLLUTION 

RESEARCH INTERNATIONAL 41 

9 SPECTROSCOPY AND SPECTRAL ANALYSIS 41 

10 
PROCEEDINGS OF THE SPIE THE 

INTERNATIONAL SOCIETY FOR OPTICAL 
ENGINEERING 

32 

Figure 3 shows the keywords appearing in the collected articles from 2000 to 2024. An annual 
analysis of the keywords in the bibliographic data was conducted, and a co-citation analysis of the 
keywords was performed using CiteSpace. The time scale was from 2000 to 2024, the time slice was 
set to 1, and the node type was set to keywords. Labels were assigned based on the frequency of 
occurrence. The visualization graph shows that Chl-a, DO, TP, and TN were the main water quality 
parameters studied; rivers, lakes, and coastal zones were the main research areas; and machine 
learning and deep learning were the research methods commonly used. 

 

Figure 3. Visualization of the keyword network for the period 2000–2024. 

3. Water Quality Parameters Retrieval Data Acquisition 

The radiation information about water surfaces at various wavelengths can be recorded by 
remote sensors, which include satellite, aviation, ground, airship data. This section mainly introduces 
satellite, aviation and ground data. 

3.1. Satellite Data 

With the development of remote sensing technology and the increasing demand for 
applications, the United States, Europe, China, Russia, Japan, Canada, India, and other countries and 
regions have operated several satellite systems to provide considerable remote sensing images and 
Earth observation services in the past few decades. According to the spatial resolution, satellite 
remote sensing images can be divided into coarse-, medium-, and high-spatial-resolution images, the 
parameters of which are presented in Table 2. 

The coarse-spatial-resolution satellites for water quality parameters retrieval mainly include the 
Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic and 
Atmospheric Administration (NOAA) satellites, Moderate Resolution Imaging Spectroradiometer 
(MODIS), Medium Resolution Imaging Spectrometer (MERIS), Geostationary Ocean Color Imager 
(GOCI), and Sentinel-3 Ocean and Land Color Instrument (OLCI)[30–33]. Due to the short revisit 
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period and high signal-to-noise ratio, the coarse-spatial-resolution satellite data have significant 
advantages in large-scale and even global-scale water environment research. 

Common medium-resolution remote sensing sensors mainly include the Landsat multi-spectral 
scanner (MSS)/thematic mapper (TM)/enhanced thematic mapper plus (ETM+)/operational land 
imager (OLI), SPOT 1–4, Hyperion, and Sentinel-2 Multi-spectral Instrument (MSI)[34–37]. Because 
of the good agreement of their temporal, spatial, and spectral resolutions, the medium-resolution 
optical images have large advantages in regional water quality parameters retrieval, while they have 
limitations in terms of instantaneous changes in retrieval results under cloudy and rainy weather. 

The high-spatial-resolution remote sensing used in water quality parameters retrieval mainly 
include IKONOS, QuickBird, WorldView, SPOT series. It is worth noting that China has launched a 
series of high-resolution remote sensing satellites, including the Gaofen (GF), Zhuhai, Ziyuan (ZY) 
and Beijing series satellites in recent years. These high-spatial-resolution satellites have effectively 
promoted the application of water environment monitoring, especially in urban areas[38–40]. 

Table 2. Technical specifications of common satellite remote sensors used in water quality parameters retrieval. 

Category Sensor 
Height 
on orbit 

(km) 

Orbital 
swath (km) 

Spatial 
resolution (m) 

Temporal 
resolution 

(day) 
Bands 

Spectral 
range (nm) 

Coarse  
resolution

AVHRR 833–870 2800 1100 0.5 5 550–12,500 
MODIS 705 2330 250–1000 0.5 36 400–14,400 
GOCI 35,837 2500 500 1/24 8 402–885 
MERIS 790 ± 10 1150 300 3 22 465–2135 

Sentinel-3 814.5 1270 300 2 21 400–1020 

Medium 
resolution

Landsat 1–3 907–915 185 78 18 4 500–1100 
Landsat-4/5 705 185 30–120 16 7 450–12,500 
Landsat-7 705 185 15–60 16 8 450–12,500 
Landsat-8 705 185 15–100 16 11 430–12,510 
Landsat-9 705 185 15–100 16 11 435–12,500 
SPOT 1–4 822 60 10–20 26 4–5 500–1750 
Hyperion 705 7.7 30 200 242 400–2500 
Sentinel-2 786 290 10–60 5 13 420–2300 

High  
resolution

IKONOS 681 11.3 0.82–4 1.5–3 5 445–900 
QuickBird 450–482 16.8–18 0.61–2.88 1–6 5 450–900 

WorldView 1–
4 

496 17.6 0.31–3.7 1.7–5.9 4–28 450–800 

SPOT 5 822 60 2.5–20 26 5 480–1750 
SPOT 6/7 694 60 1.5–6 26 5 500–890 

ZY-3 506 50 2.1–5.8 3–5 7 500–890 
GF-1/2/6 631–645 45–90 0.8–16 1–5 5–13 450–900 
Zhuhai-1 500 150 0.44–10 1–32 32 400–1000 

Beijing-3 500-700 12 0.3–0.5 
1.2–2 —— 4–6 400–900 

3.2. Aviation Data 

With the miniaturization of hardware equipment, multispectral and hyperspectral remote 
sensing data based on human-machine and unmanned aerial vehicle (UAV) platforms have begun to 
be applied in the field of water quality parameters retrieval [41–43]. Compared with satellite 
platform, the flight time, heights and route of the aircraft platform can be selected according to the 
actual demand. Image data obtained by aircraft platform with a higher spatial resolution, which can 
reflect the spectral and spatial information about water bodies better, thus improving the accuracy of 
water quality parameters retrieval [44–47]. 
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The commonly used manned airborne systems include HyMAP-C developed in Australia, the 
Prob series developed in the United States, CASI/SASI/TASI developed in Canada, AISA+ developed 
in Finland, and PHI developed in China. Current UAV platform-based hyperspectral equipment 
mainly includes OCI developed in the United States, SPECIM developed in Finland, HySpex 
developed in Norway, and small imaging hyperspectral systems developed by the Changchun 
Institute of Optics, Fine Mechanics and Physics, the Shanghai Institute of Technical Physics, and 
Aerospace Information Research Institute, Chinese Academy of Sciences. Table 3 lists the technical 
specifications of common airborne hyperspectral remote sensors. 

Table 3. Technical specifications of common airborne remote sensors used in water quality parameters retrieval. 

Sensors Spectral range 
(nm) 

Number of 
channels 

Spectral 
resolution 

(nm) 

Field of  
view (°)  

Imaging 
mode 

AVIRIS 380–2500 224 10 34 
Spectroscopic, 

scanning 

CASI-1500 380–1050 Adjustable, up 
to 288 

<3.5 40 Spectroscopic, 
push-broom 

PHI 400–850 244 <5 21 
Spectroscopic, 
push-broom 

OMIS-II 400–1100 64 10 >70 
Spectroscopic, 

scanning 

HyMap 400–2500 128 15–20 60 Spectroscopic, 
scanning 

AISA 430–900 288 3 38 Spectroscopic, 
scanning 

3.3. Ground Data 

Field spectrometers can flexibly and inexpensively obtain spectral data on ground objects, which 
is widely used for water spectral data acquisition[48–50]. Currently, the main manufacturers of field 
spectrometers include Ocean Optics (US), ASD (US), and Avantes (Netherlands). Ground 
spectrometers commonly used in water spectra data acquisition include the FieldSpec 4, USB4000, 
and Torus series miniature spectrometers. Although micro spectrometers cannot compare with large 
spectrometers in resolution and spectral range, they have the advantages of portability, intelligence, 
and integrations. The technical specifications of common ground field spectrometers are presented 
in Table 4. 

Table 4. Technical specifications of common ground field spectrometers used in water quality parameters 
retrieval. 

Manufacturer Spectrometer Spectral range (nm) Number of channels Spectral resolution (nm) 

Spectral Evolution PSR-3500 350–2500 1024 
3.5 (350–1000 nm)  
10 (1000–1500 nm)  
7 (1500–2100 nm)  

SVC SVC 1024 350–2500 1024 
3.5 (350–1000 nm)  
9.5 (1000–1900 nm)  

ASD FieldSpec 4 350–2500 2151 
3 (350–1000 nm)  

8 (1000–2500 nm) 
Ocean Optics USB-4000 200–1100 Configuration dependent 0.1–10 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 September 2025 doi:10.20944/preprints202509.1168.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1168.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 22 

 

4. Water Quality Parameters Retrieval Models and Evaluation 

4.1. Bio-Optical Model 

The bio-optical model is based on radiation transmission models. The upstream and 
downstream irradiance of the water body is calculated, and then, the relationship between the 
upstream and downstream irradiance, absorption coefficient, and backscattering coefficient of each 
component of the water body is established[51–53]. The principle of the bio-optical model is shown 
in the equation (1): 𝑅ሺ0, 𝜆ሻ = 𝑓 𝑏௕(𝜆)𝑎(𝜆) + 𝑏௕(𝜆) (1)

where 𝑅(0, 𝜆) is the ratio of the upward irradiance to downward irradiance on the surface of the 
water body at wavelength 𝜆, 𝑎(𝜆) is the absorption coefficient of the water body, 𝑏௕(𝜆) is the 
backscattering coefficient of the water body, and 𝑓 is a variable parameter. 𝑎(𝜆) and 𝑏௕(𝜆) are the 
linear sums of the contributions of each component of the water body.  

The bio-optical model has a clear theoretical basis and physical significance, and it depends less 
on the measured sample points, which makes it easy to analyze sources of error with higher 
universality[54,55]. However, the composition of the water body and radiation transmission 
procedure are rather complex, and many input parameters (such as inherent optical characteristics, 
surface tourism characteristics, and water quality variables) still need to be measured, which limits 
practical applications. Some examples of water quality parameters studied using bio-optical models 
are presented in Table 5. 

Table 5. Some studies of water quality parameter retrieval using optical models. 

Model Water parameters References 
2SeaColor Chl-a, TSS, CDOM [56] 

QAA Chl-a [57] 
LM CDOM [58] 

GSM Chl-a [59] 

4.2. Empirical Models 

Empirical models were developed in early applications for water quality parameter retrieval 
using multispectral remote sensing data. In these models, the correlations between the remote 
sensing reflectance and water quality parameter values are calculated, and then, the optimal band or 
band combination is selected. Finally, the water quality parameter values of unmeasured points are 
calculated through the statistical relationships established[60–64].  

The advantages of empirical models are that the relationships between the remote sensing 
reflectance and water quality parameters are easy to establish and that the model is simple and 
feasible. The disadvantage is that the explanation of the model mechanism is insufficient, resulting 
in poor applicability of the model. It is also easily limited by the research area and data. Empirical 
models mainly include the single band method, logarithmic method, spectral differentiation method, 
ratio method, and difference method[65,66]. The calculation equations are presented in Table 6. 

Table 6. Common empirical models for water quality parameter retrieval. 

Model Equation Reference 
Single band 𝐶௪௔௧௘௥ = 𝑎 × 𝑅λ + 𝑏 [67] 
Logarithmic 𝐶௪௔௧௘௥ = 𝑎 × log (𝑅λ) + 𝑏 [68] 

Spectral Differentiation 
𝐶௪௔௧௘௥ = 𝑎 × (𝑅λ೔)௡ + 𝑏, 𝑅λ೔ = (𝑅λ೔శ1)௡−(𝑅λ೔ష1)௡

λ௜ା1 − λ௜ି1
 

[69] 
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Ratio 𝐶௪௔௧௘௥ = 𝑎 × 𝑅λ1𝑅λ2
+ 𝑏 [70] 

Difference 𝐶௪௔௧௘௥ = 𝑎 × (𝑅λ1 − 𝑅λ2) + 𝑏 [71] 
Note: 𝑅஛ is the remote sensing reflectance of water at wavelength λ, and a and b are regression coefficients. 

4.3. Semi-Empirical Models 

Semi-empirical models were developed for the application of hyperspectral remote sensing in 
water quality parameters retrieval. Based on the empirical model, the semi-empirical model considers 
the spectral characteristics and other prior knowledge of water quality parameter retrieval[72–74]. 
Then, the optimal band or band combination is selected, and the relationships between remote 
sensing reflectance and water quality parameters are established using appropriate mathematical 
methods. 

Semi-empirical models partially make up for the defects of empirical models in water quality 
parameter retrieval, while they are limited to a special time and region because they depend on 
synchronization of the measured water quality data and remote sensing observation data[66,75]. 
Semi-empirical models commonly used for water quality parameter retrieval include the three-band 
method, four-band method, APPLE model, and Tassan model, whose calculation equations are 
presented in Table 7. 

Table 7. Common semi-empirical models for water quality parameter retrieval. 

Model Equation Water parameter Reference 
Three-band 𝐶௪௔௧௘௥ = 𝑎 × ((𝑅஛ଵ)ିଵ − (𝑅஛ଶ)ିଵ) × 𝑅஛ଷ + 𝑏 Chl-a [76] 

Four-band 𝐶௪௔௧௘௥ = 𝑎 × (𝑅஛ଵ)ିଵ − (𝑅஛ଶ)ିଵ(𝑅஛ଷ)ିଵ − (𝑅஛ସ)ିଵ + 𝑏 Chl-a [77] 

APPLE 
𝐶௪௔௧௘௥ = 𝑎 × 𝐹(𝐴𝑃𝑃𝐿𝐸) + 𝑏 𝐹(𝐴𝑃𝑃𝐿𝐸) = 𝑅ேூோ − [(𝑅஻௅௎ா − 𝑅ேூோ) × 𝑅ேூோ+ (𝑅ோா஽ − 𝑅ேூோ)] Chl-a [78] 

Tassan 𝐶௪௔௧௘௥ = 𝑎 × 𝑅஛ଵ + 𝑅஛ଶ𝑅஛ଷ/𝑅஛ସ + 𝑏 TSS [79] 

Note: 𝑅ఒଵ,𝑅ఒଶ,𝑅ఒଷ, and 𝑅ఒସ are the remote sensing reflectance of the water body at wavelengths λ1, λ2, λ3, and 
λ4, respectively; and a and b are the regression coefficients. 

4.4. Artificial Intelligence Model 

4.4.1. Machine Learning Model 

As a branch of computer science, machine learning models have been widely applied in water 
quality parameter retrieval due to its good computational performances and nonlinear mapping 
abilities[80,81]. Many researchers have analyzed the relationships between water quality parameters 
and the spectral reflectance based on measured data[82–84]. The influence mechanism of spectral 
characteristics of various elements in water bodies is unclear, while machine learning models has 
certain advantages in solving these complex problems because of its black box mode, as well as in 
effectively improving the accuracy of water quality parameter retrieval. 

The machine learning water quality parameters retrieval models commonly used mainly include 
support vector regression (SVR), random forest (RF), extreme gradient boosting (XGBoost), adaptive 
boosting (Adaboost), multilayer perceptron (MLP), backpropagation network (BP)[85–87]. Similar to 
empirical and semi-empirical models, the accuracy of machine learning models is also greatly 
affected by the study area and sample point distribution. Some studies on water quality parameter 
retrieval using machine learning models are listed in Table 8. 
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Table 8. Some studies on water quality parameter retrieval using machine learning models. 

Study area Data source Method Water parameter Reference 
Valle de 

Bravo 
reservoir 

MERIS LR, RF, SVR, GPR Turbidity [88] 

Nandu River Landsat 8 
SVR, RF, ANN, RT, 

GBM TN, TP, NH3N [89] 

Beigong 
Reservoir 

UAV hyperspectral 
image 

Adaboost, Gradient 
Boost, SVR, RF 

Chl-a, TSS [90] 

Zhanghe 
River 

UAV multispectral 
image 

BP, RF, XGBoost Chl-a, TP, TN, 
CODMn 

[91] 

Yuhe river 
Near-surface 

hyperspectral spectra 
LASSO, DTR, SVR, 

MLP COD, NH3N, DO [92] 

Yangtze 
River 

Sentinel-2, Landsat-

8, GF-1 
GA-RF TP, TN [93] 

4.4.2. Deep Learning Model 

With the development of computer technology and the improvement of the performance of 
computer hardware equipment, deep learning models have been shown to have great superiority in 
remote sensing image classification and spectral information reconstruction, which provide new 
technical methods for water quality parameters retrieval. Traditional regression methods have 
difficulty extracting deep spectral information from spectral data. There are multiple hidden layers 
between the input and output layers of deep learning models, which can effectively simulate complex 
nonlinear relationships between spectral and water quality parameters data so as to achieve a higher 
accuracy in water quality parameter retrieval and better revealing the spatiotemporal distribution 
patterns of water quality parameters [94–97]. However, deep learning models also have problems 
such as unclear mechanisms and low model universality. Some examples of the use of deep learning 
models to invert water quality parameters are presented in Table 9. 

Table 9. Some studies on water quality parameter retrieval using deep learning models. 

Study area Data source Model Water quality Reference 
Maozhou River UAV hyperspectral image HF-DFM Chl-a, COD [98] 

Guanhe River Airborne hyperspectral 
image 

DNNR TP, TN, COD, 
NH3N 

[99] 

Simcoe Lake Landsat MDL Chl-a, TP, TN [100] 
Balik Lake Sentinel-2 CNN Chl-a [101] 

Liangzi lake Sentinel-2 DNN Chl-a，TSS [102] 

4.5. Model Evaluation Metrics 

Appropriate evaluation metrics can be used to assess the accuracy of model training, over-fitting 
or under-fitting correction, and model transferability. Based on the research status and progress, the 
following model evaluation metrics are summarized: the coefficient of determination (R2), root mean 
square error (RMSE), mean square error (MSE), mean absolute error (MAE), relative error (RE), and 
residual prediction deviation (RPD). The equations of these metrics are as equation (2) to (7): 𝑅ଶ = 1 − ∑ (𝑦௜ − 𝑦௜ᇱ)ଶ௡௜ୀଵ∑ (𝑦௜ᇱ − 𝑦)ଶ௡௜ୀଵ  (2)
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𝑅𝑀𝑆𝐸 = ඩ1𝑛෍(𝑦௜ − 𝑦௜ᇱ)ଶ௡
௜ୀଵ  (3)

𝑀𝑆𝐸 = 1𝑛෍(𝑦௜ − 𝑦௜ᇱ)ଶ௡
௜ୀଵ  (4)

𝑀𝐴𝐸 = 1𝑛෍|𝑦௜ − 𝑦௜ᇱ|௡
௜ୀଵ  (5)

𝑅𝐸 = 100 × 1𝑛෍ |𝑦௜ − 𝑦௜ᇱ|𝑦௜௡
௜ୀଵ  (6)

𝑅𝑃𝐷 = ඨ∑ (𝑦௜ − 𝑦)ଶ௡௜ୀଵ∑ (𝑦௜ − 𝑦௜ᇱ)ଶ௡௜ୀଵ  (7)

where 𝑦 is the average value, and 𝑦௜ and 𝑦௜ᇱ are the observed and predicted values of observation 
point i, respectively. Among these metrics, 𝑅ଶ is the most commonly used and accepted evaluation 
metric. Excessive pursuit of a higher 𝑅ଶ value may lead to over-fitting and poor transferability of 
the model. Therefore, 𝑅ଶ is usually used in combination with other evaluation metrics to balance the 
fitting accuracy, portability, and computational complexity of the model, as well as enabling a more 
objective and comprehensive evaluation of the model. 

5. Water Quality Parameter Retrieval Via Remote Sensing Techniques 

5.1. Chlorophyll-a 

Chl-a is the most basic indicator of the trophic state of water bodies, which can indicate the 
distribution of plankton biomass[103,104]. The spectral characteristics of chlorophyll include strong 
absorption between 450 and 475 nm and at 670 nm, and peaks at 550 nm and near 700 nm[105,106]. 
The reflection peak at 700 nm is a typical spectral feature of chlorophyll-a, which is of great 
significance for estimating chlorophyll in water bodies. The peak position of water spectra shifts from 
approximately 680 nm to 710 nm as the peak amplitude value increases due to an increase in the Chl-
a concentration. 

Table 10. Some studies on Chl-a retrieval. 

Study area Data source Model R2 Reference 
A lake in North 
Carolina, USA Sentinel-2 

XGBoost, random 
forest, 0.64 [107] 

Chaohu Lake, 
China GF-1 

Normalized 
difference 

chlorophyll index 
0.93 [108] 

Pearl River Estuary, 
China 

Landsat 5/7 Two-band global 
algorithm 

0.71 [109] 

Poyang Lake, China GF-1 APPEL model 
greater 
than 0.6 [110] 

Nanpaishui River，
Nanyun River 

UAV multispectral and 
hyperspectral imagery stepwise regression 0.77 [111] 

Hedi reservoir, 
Gaozhou reservoir 

Sentinel-2 GA–ANN 0.87 [112] 
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In addition to the optical properties of phytoplankton, the optical properties of inland and 
coastal water bodies are determined by a composite of dissolved organic matter, dead particles, 
organic matter, and inorganic particles from land-based sources[113–116]. Therefore, retrieval of the 
Chl-a concentration is much more complex and less accurate, and as a result, these components are 
not statistically correlated. Based on the absorption and reflection characteristics, a series of 
algorithms have been developed to retrieve the Chl-a concentration. Several models for retrieving the 
Chl-a concentration are listed in Table 10. 

5.2. Total Suspended Solids 

The TSS concentration is one of the key water quality parameters for water bodies. It is related 
to incoming sunlight, which affects photosynthesis for the growth of algae and plankton, as well as 
the primary productivity of the water body. The TSS have reflectance spectral characteristics at 580–
680 nm and 700–900 nm. Many studies have shown that when chosen appropriately, a single band or 
a combination of bands can achieve a high accuracy in TSS retrieval[117,118]. However, the 
reflectance of water is affected by the complex substances in the water body, so different spectral 
bands can be used for TSS retrieval. Some models for retrieving the TSS concentration are 
summarized in Table 11. 

Table 11. Some studies on TSS retrieval. 

Study area Data source Model R2 Reference 
Lake Chapala Landsat 5-8 Multiple linear regression 0.81 [119] 

A lake at South 
Brazil 

Landsat 8 Artificial Neural Network 0.6 [120] 

Poyang Lake Sentinel-2 Exponential model 0.93 [121] 
Yangtze River MODIS Ratio model 0.88 [122] 

Deep Bay, China MODIS 
Exponential retrieval 

model 0.62 [123] 

5.3. Total Phosphorus and Total Nitrogen 

The TP and TN in water bodies mainly come from the external environment and the release of 
the water itself[124,125]. Excessive nitrogen and phosphorus concentrations can lead to microbial 
proliferation, the rapid growth of plankton, and eutrophication of water bodies, resulting in further 
deterioration of the water quality. Scientific and accurate retrieval of nitrogen and phosphorus is the 
premise and foundation for controlling nitrogen and phosphorus source pollution. 

Currently, research on water quality parameters retrieval through remote sensing has mainly 
focused on the three major components, including the concentrations of chlorophyll, TSS and CDOM. 
Numerous scholars have conducted studies on TP and TN retrieval by remote sensing, while the TP 
and TN concentrations, as optically insensitive water quality parameters, are theoretically difficult to 
invert using physical models, which poses significant challenges[126–129]. The currently used 
methods for TP and TN retrieval can be mainly divided into direct and indirect methods. 

5.3.1. Direct Methods 

The direct methods establish a retrieval model for the TP and TN concentrations by calculating 
the relationships between the remote sensing reflectance (Rrs) and the measured water quality 
parameters. The direct methods estimate the TP and TN concentrations using statistical methods. 
However, the direct methods fail to consider the underlying mechanisms of TP and TN, and the 
retrieval results are largely dependent on the study and measured data, leading to limited 
applicability. Relevant studies on the retrieval of the TP and TN concentrations using direct methods 
are listed in Table 12. 
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Table 12. Some studies on TP and TN retrieval using direct models. 

Study area Data source Water quality Reference
s 

Balik Lake MODIS TP, TN [130] 
Burullus Lake Sentinel-2 TP, TN [131] 

Poyang Lake, Dongting Lake, Taihu 
Lake Landsat 8 TP, TN [132] 

Taihu Lake proximal 
hyperspectral imager 

TP, TN [133] 

Taihu Lake MODIS TP [134] 
Pearl River Estuary Landsat 8 TP, TN [135] 

Dongping Lake Landsat 8 TP, TN [136] 
Yellow River Delta Sentinel-2 TP, TN [137] 

5.3.2. Indirect Methods 

Chl-a, TSS, and CDOM have well-defined optical properties and spectral responses. Many 
studies have shown that there is a correlation between the chlorophyll, TP, and TN concentrations, 
which provides a theoretical basis for TP and TN retrieval using chlorophyll-sensitive 
wavelengths[138–142]. The TP and TN concentrations are related to the concentrations of optically 
active water quality parameters, which can be determined using the equation (8): (𝑇𝑃,𝑇𝑁) ∝ 𝑓(𝐶ℎ𝑙 − 𝑎,𝑇𝑆𝑆,𝐶𝐷𝑂𝑀) (8)

That is, the concentrations of TP and TN are positively correlated with the Chl-a, TSS, and 
CDOM concentrations and other water quality parameters, and the concentrations of these 
parameters can be obtained by remote sensing methods. 𝑓(𝐶ℎ𝑙 − 𝑎,𝑇𝑆𝑆,𝐶𝐷𝑂𝑀) ∝ 𝑅௥௦ (9)

Based on equations (8) and (9), the relationship between the TP and TN concentrations of the 
water and the remote sensing reflectance is as following equation (10): (𝑇𝑃,𝑇𝑁) ∝ 𝑅௥௦. (10)

The indirect methods establish the relationship between the TP and TN concentrations and 
optically active water quality parameters, and then, the TP and TN concentrations are calculated 
indirectly according to the retrieval results of the optically active water quality parameters[143]. 
Compared with the direct methods, the indirect methods consider the remote sensing retrieval 
mechanism of the TP and TN concentrations. The retrieval results of the optically active water quality 
parameters, as well as the correlation between the optically active water quality parameters, affect 
the accuracy of the retrieval results of TP and TN. 

6. Challenges and Future Development 

1. Water Quality Parameters Retrieval of Small-scale River and Lakes 

Currently, most satellite data are mainly suitable for large-scale water quality parameters 
retrieval. There are several challenges in water quality parameters retrieval of small lakes and narrow 
rivers in urban areas because of the limitations in fine spectral, spatial, and temporal resolutions of 
remote sensing data. Therefore, future research could focus on integrate satellite, aviation, and 
ground data to meet the needs of long-term and fine-scale regional studies. Meanwhile, regional 
high-spatiotemporal-resolution data can be obtained through autonomously operate and control 
satellites along any trajectory, or through data fusion methods. 

2. Interpretable Deep Learning Water Quality Parameter Retrieval Models 
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Although machine learning models have the significant advantage of the occurrence of 
nonlinear relationships between the water reflectance and water quality parameters, there are still 
some challenges. First, a single machine learning model has some shortcomings such as over-fitting, 
high dimensionality, and slow convergence. Second, data-driven methods, represented by empirical 
and machine learning methods, have difficulty explaining physical mechanisms, which limits the 
accuracies and generalization abilities of these models. The attainment of a large amount of measured 
data and the use of integrated machine learning are notable research directions. In addition, model 
optimization and improvement should be combined with inherent optical properties to enrich the 
physical significance of data-driven methods. 

3. Water Quality Parameter Retrieval Models Integrating Multiple Environmental Factors 

Most previous studies focused on three major components of the ocean color, namely the Chl-a, 
CDOM, and TSS concentrations, while additional parameters (including TP, TN, NH3-N, DO 
concentrations, and COD) are not well investigated because of the weak optical characteristics. Given 
the complexity of the water environment, revised water quality models are generally established for 
certain regional water bodies, to retrieval water quality parameters more accurately. In future 
research, the influences of various environmental factors should be considered to retrieval multiple 
water quality parameters. 

7. Conclusions 

Good water quality is crucial for human survival and health, ecological balance, and sustainable 
socio-economic development. Over the past few decades, numerous scholars have developed a series 
of algorithms for remote sensing water quality parameter retrieval based on multi-platform remote 
sensing data. This review provides a comprehensive introduction to remote sensing water quality 
parameter retrieval, including literature analysis, remote sensing data sources, retrieval models, 
several water quality parameter retrieval application, current challenges, and future development 
directions. 

From 2000 to 2024, the number of published papers on water quality remote sensing increased 
each year. The research hotspots mainly included remote sensing, Chl-a, DO, TP, and TN. A series of 
satellite, aviation, and ground data were used for remote sensing water quality parameter retrieval. 
In terms of the spatial resolution, remote sensing data can be divided into high-, medium-, and low-
resolution data. Water quality parameter retrieval models include bio-optical, empirical, semi-
empirical, and AI models. Several water quality parameters (such as Chl-a, TSS, TP, and TN) have 
been extensively studied. Among them, Chl-a and TSS have distinct spectral characteristics, thus can 
be retrieved by empirical or semi-empirical models. However, the optical characteristics of TP and 
TN are unclear, usually retrieved using both direct and indirect methods. Future research could 
establish interpretable deep learning models considering multiple environmental factors to retrieval 
water quality parameters more accurately. At the same time, water quality parameters retrieval of 
small-scale river and lakes should also be paid more attention. 
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Abbreviations 
Adaboost adaptive boosting 
BP backpropagation network 
CDOM colored dissolved organic matter 
Chl-a chlorophyll-a 
COD chemical oxygen demand 
DO dissolved oxygen 
MAE mean absolute error 
ML machine learning 
MLP multilayer perceptron 
MSE mean square error 
R2 coefficient of determination 
RE relative error 
RF random forest 
RMSE root mean square error 
RPD residual prediction deviation 
Rrs remote sensing reflectance 
SVR support vector regression 
TN total nitrogen 
TP total phosphorus 
TSS total suspended solids 
UAV unmanned aerial vehicle 
WOS Web of Science 
XGBoost extreme gradient boosting 
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