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Featured Application: A technique for developing a potential automated system for classifying
skin lesions.

Abstract: Automated skin lesion classification using machine learning techniques is crucial for early
and accurate skin cancer detection. This study proposes a hybrid method combining the Hermite,
Radial Fourier-Mellin, and Hilbert transform to extract comprehensive features from skin lesion
images. By separating the images into red, green, and blue (RGB) channels and grayscale, unique
textural and structural information specific to each channel is analyzed. The Hermite transform
captures localized spatial features, while the Radial Fourier-Mellin and Hilbert transforms ensure
global invariance to scale, translation, and rotation. Texture information for each channel is also
obtained based on the Local Binary Pattern (LBP) technique. We applied our hybrid transform-based
feature extraction approach to multiple lesion classes using the International Skin Imaging
Collaboration (ISIC) 2019 dataset, preprocessed with data augmentation. Experimental results
demonstrate that the proposed method improves classification accuracy and robustness, highlighting
its potential as a non-invasive Al-based tool for dermatological diagnosis.

Keywords: skin lesion classification; Hermite transform; radial Fourier-Mellin transform

1. Introduction

Early detection of skin cancer is crucial for improving patient outcomes, as it remains a common
and potentially deadly disease worldwide. To support dermatologists in diagnosis, automated
classification of skin lesions has gained significant attention through the integration of machine
learning (ML) and advanced digital image processing. By leveraging mathematical transformations
and feature extraction techniques, ML models have shown strong potential in identifying diagnostic
patterns from digital image data, making them practical tools for classifying skin lesions [1-3].

Integral transforms, such as Fourier, Mellin, and Hilbert, have proven particularly useful in
generating feature sets that are invariant to changes in rotation, scale, and translation—properties
that are essential for analyzing skin lesions, which exhibit considerable variability in shape, size, and
orientation [4-6]. Frequency-based patterns, essential for differentiating various lesion textures and
structures, have been analyzed using the Fourier transform, which is widely used in image
processing [7,8]. The Mellin transform has also been applied to address the issue of varying lesion
sizes in images, introducing scale invariance to the extracted features and enhancing their robustness
[9-11]. Hilbert transform complements these by ensuring rotational invariance, thus producing
unique and repeatable signatures, as demonstrated in skin lesion classification studies [12].

In our previous work, we successfully implemented the Radial Fourier-Mellin and Hilbert
transform to classify skin lesions accurately. This approach created stable image signatures across
eight lesion types, producing vital classification metrics [12]. These results underscore the potential
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of combining transform-based feature extraction with ML for robust lesion classification, especially
when global invariance properties are required.

This study extends the previous approach by introducing the Hermite transform, which is
applied independently to the image's red, green, and blue channels and grayscale. The Hermite
transform is well-suited for capturing localized spatial features and intricate textures, essential for
skin lesion analysis, as different color channels often contain unique structural information relevant
to pigmentation, boundary definition, and textural detail [13-15]. Although the Hermite transform
has primarily been used in areas such as biometric recognition, where fine-grained spatial analysis is
essential, recent research suggests that the Hermite transform can be effectively applied to medical
imaging for detailed feature extraction [16].

This study aims to enhance the classification of skin lesions by integrating the Hermite transform
with the Radial Fourier—-Mellin and Hilbert transform across separated RGB channels. We
hypothesize that this hybrid approach will increase the robustness and accuracy of lesion
classification, thereby advancing Al-driven, non-invasive diagnostic tools in dermatology. The
following sections outline our methodology, experimental setup, results, and the impact of the
Hermite transform on the overall classification performance.

The development of automated skin lesion classification systems has been an area of extensive
research in medical image analysis, driven by the critical need for early skin cancer detection.
Artificial intelligence (AI) and machine learning (ML) have significantly contributed to dermatology
by improving the classification of lesion types using digital images. These approaches enhance
diagnostic precision by employing feature extraction methods, multi-channel image analysis, and a
range of mathematical transformations.

Several studies have highlighted the effectiveness of Fourier, Mellin, and Hilbert transforms for
extracting stable invariant features under changes in rotation, scale, and translation—crucial
properties for skin lesion analysis where lesions vary in appearance. The Fourier transform has been
extensively utilized in medical imaging to extract global features, capturing frequency-based patterns
in lesions for reliable classification [17]. The Mellin transform is often combined with the Fourier
transform to improve accuracy by addressing size variations in lesions, introducing scale invariance,
and enhancing the overall classification performance [18]. The Hilbert transform complements these
by introducing rotational invariance, thus producing unique and repeatable signatures suitable for
dermatological classification tasks, as shown in various studies on skin lesions [19].

Recent research has increasingly focused on hybrid approaches that combine multiple
transforms to exploit complementary feature extraction strengths. For instance, in dermatology,
hybrid techniques integrating texture descriptors, Fourier-based signatures, and ML classifiers have
achieved superior classification performance over single-transform approaches by incorporating
global and local features [12]. This integration has shown promise for skin lesions, where patterns
such as edges, textures, and color gradients contribute significantly to lesion differentiation.

Though less commonly applied in dermatology, the Hermite transform has demonstrated
potential in other fields, like facial recognition and fingerprint analysis, for its ability to capture fine-
grained spatial and textural details. This transform uses Hermite polynomials to decompose images,
effectively characterizing localized structures within complex image regions, such as lesion
boundaries [15]. While few studies have applied the Hermite transform to multi-channel RGB
images, evidence suggests that color channel-specific information enhances image analysis,
especially for skin lesions where pigmentation and textural details are critical [20-22].

This study builds upon these advancements by integrating the Hermite transform with the
Radial Fourier-Mellin and Hilbert transform across separated RGB channels to generate
comprehensive feature sets for skin lesion classification. We aim to achieve higher accuracy and
robust differentiation between lesion types by combining global invariant features and localized
structures.
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2. Materials and Methods

2.1. Image Dataset

Our dataset comprises digital images of various skin lesion types from the International Skin
Imaging Collaboration (ISIC) 2019 dataset. Initial preprocessing involved the removal of images with
significant noise (e.g., hair, artifacts) to enhance lesion visibility and ensure quality input for feature
extraction. Data augmentation was applied to create a robust and balanced dataset, including
rotations (at 45° increments) and scaling (100%, 95%, 90%, 85%, 80%). This preprocessing yielded a
dataset of skin lesion images with each lesion type represented equally, reducing class imbalance and
improving generalization for classification. Figure 1 illustrates some examples of skin lesion images
contained in the dataset.

Ll

BKL‘ DF a

Figure 1. Some digital skin lesion images from dataset used in this work.

2.2. RGB Channel and Grayscale Separation

Each preprocessed image was separated into its red, green, and blue color channels and
grayscale. This step allowed us to treat each channel independently, capitalizing on each channel's
unique textural and color information. For each color channel, we computed transform-based
features that emphasize distinct lesion characteristics across the RGB and grayscale spectrum.
Separating the channels enabled us to retain and enhance color-specific information, which is vital
for accurately distinguishing skin lesion types.

2.3. Hermite Transform

The Hermite transform is a specific type of polynomial transform and can be regarded as a model
for image representation. This transformation serves as a method for signal decomposition and
involves two main steps. Initially, the input signal L(x,y) is combined with a window function
through multiplication,

v(x—py—q), @)

at the positions p and q.
The goal is to achieve a comprehensive representation of the signal. This process is repeated at
multiple positions spaced evenly across the image, forming a sampling grid S. At each (x,y), the
pixel coordinates and the input signal are multiplied by the window function, while the original

signal is
1
L(x,y) = Wixy) Z L(x,y)v(x —p,y = q), @)
24 PgES
where,
Wx,y) = Z v(x—py—q) )
PgES

is a weighting function.
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The only requirement is that eq. (3) must be nonzero for all (x,y). Next, the signal within the
window is expressed as a weighted sum of Gy, - (x,y), with degrees m and n —m relative to x,y,
respectively. These polynomials are determined by the window function.

f f 22, ) G (60 ¥) X Gt (6, 1)dxAY = 8B (4)

—00 —00

Here, n,1 =10,1,2,...,00 and m, k =0,1,2,...,, while &,;, 6, represent the Kronecker delta
functions, and X denotes element-wise multiplication. The process of converting the input signal
into a weighted sum of polynomials, referred to as polynomial coefficients, is called the direct
polynomial transform. These polynomial coefficients, L, ,_.,(p,q), are obtained by convolving the
original image with the analysis filters.

Dm,n—m(xt y) = Gm,n—m(x' y)vz(_x» _Y) (5)
that is, for everything, (p,q) € S,

Lnn-m(®,q) = f f L(x,y) X Dy (x — 0,y — @)dxdy (6)

—00 —00

where,

1 x y
Gnn-m(@,q) = N X Hp, (;) Hpm (;)' )
1 x2+y?

Vro

where v(x,y) is Gaussian window function, ¢ is the standard deviation of the Gaussian window

oy ®)

v(x,y) =

function and,
2 dn 2
H,(x) = (=1)"e* ﬁe_x , n=0,1,2,.. )

where H,(x) is the n-th Hermite polynomial.
Using the convolution form in eq. (6) it is defined as,

Lm,n—m(p' q) = L(x' y) * Dm,n—m(x' y) . (10)

2.4. The Signatures

We generated multiple signature vectors for the Hermite transform of order (1,1) for each RGB
channel and grayscale images using a dataset of 362,680 samples created through data augmentation.
The augmentation process included five scaling percentages (100%, 95%, 90%, 85%, and 80%) and
eight rotation angles (45°, 90°, 135°, 180°, 225°, 270°, 315° and 360°). These descriptors utilized
invariance properties to translation and scaling from the Fourier and Mellin transforms, respectively.
The Hilbert transform was applied for rotational invariance. Unique image signatures were
computed by summing pixel values within each ring produced by Hilbert masks used as filters. The
texture descriptors were then incorporated into the previously generated radial Fourier signatures.

This process resulted in a one-dimensional representation or signature of the skin lesion digital
image, as illustrated in Figures 2 and 3. The original image Im(x,y) consists of three RGB matrix
channels (red, green, and blue). These were separated into their respective primary color channels
for the application of the radial Fourier-Mellin method and uniform Local Binary Pattern (LBP)
feature extraction. Additionally, the grayscale skin lesion image was derived as a weighted sum of
RGB values using the formula 0.299R + 0.587G + 0.114B.
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Figure 2. (a) Binary disk. (b) Hr mask. (c) H; mask.

.

(a) Separate image into RGB channels and grayscale

4
“eee

(b) Hermite transform of order (1,1).
(c) Fourier-Mellin Transform module.
(d) Radial Hilbert Transform.

(e) Normalization to maximum value.

4 \ 4

(g) Vectors concatenation

\ 4

Final signature

(f) LBP feature extraction

Figure 3. Methodology proposed for image embeddings generation.

2.5. Radial Fourier-Mellin Signatures Through Hilbert Transform

To create the radial Fourier-Mellin signatures, the image was first separated into its RGB
channels and grayscale (Figure 3(a)). After that, the Hermite transform of order (1,1) is obtained
from each image component, RGB channels and grayscale (Figure 3(b)).

Next, the magnitude of the Fourier-Mellin (FM) transform for each skin lesion digital image,
denoted as Im(x,y), was computed using the following equation (Figure 3(c)).

|FM(SJ t)l =
| fo |FT [m(x, y)]1x D yEDaxdy )

= M{|FT[Im(x, ][},

here, |Fy(s,t)| represents the magnitude of the Mellin transform, which provides scale invariance
for objects in the image. This is essential because the skin lesion digital images were captured at
varying distances between the lesion and the camera. As a result, lesions appear smaller at greater
distances and larger when the distance is shorter. The coordinates (s,t) represent the 2D positions
of the transformed (x,y) pixel coordinates on Mellin's plane. These original (x,y) coordinates
correspond to the magnitude of the Fourier transform of the image, |FT[Im(x,y)]|, leveraging its
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translation invariance. Consequently, at this stage, the object (skin lesion) in the image becomes
invariant to both translation and scale.

By applying the Hilbert transform, rotational invariance of the skin lesion in the image is also
achieved. The Hilbert transform of the image is expressed as:

FiH [Im(x, )]} =
e FTIm(x,y)] = (12)
ePOF (u,v),
here, p represents the order of the radial Hilbert transform, and 8 is the angle in the frequency
domain corresponding to the pixel coordinates (x,y) after their transformation into Fourier plane
coordinates (u, v). This angle is calculated as 6 = aco s(u/ vu? + vz).
Using Euler’s formula, binary ring masks were generated for the RGB channels and the grayscale

skin lesion digital image. These masks utilized both the real Hy and imaginary H, components of
the radial Hilbert transform of the image (Figure 2).

1, if sin(pf) >0

Hp = Re[H(u,v)] = { 0 otherwise (13)
1, if cos(pfB) >0
Hy = ImlH, (w,v)] = { 0 ! othe(fwzse ' (14)

The binary ring masks generated earlier were used to filter the skin lesion digital images that
had been processed with the magnitude of the Fourier-Mellin transform (Figure 3(c)). The process
involved summing the pixel values within each ring, resulting in two distinct signatures for each
grayscale skin lesion image Sgrayy, and Sgrayy,; and for its RGB channels: SRy, SRy,, SGy,, SGy,,
SBy,, and SBy, (Figure 3 (d)). Finally, each signature is normalized by its maximum value (Figure 3
(©))-

To incorporate texture descriptors, we applied the uniform Local Binary Pattern (LBP) technique
(Figure 3(f)), a widely used tool in computer vision and image processing for texture analysis.

LBP is a simple yet effective descriptor that captures textures, edges, corners, spots, and flat
regions. For each 3 x 3 pixel block, the intensity of the eight surrounding pixels is compared to the
intensity of the central pixel, which serves as the threshold. If the intensity of a neighboring pixel is
greater than or equal to the central pixel, its position is assigned a value of 1; otherwise, it is assigned
0. After comparing all pixels, a binary sequence is formed.

This binary sequence is then converted into a decimal value by multiplying each position by its
corresponding weight (decimal value) and summing the results. The final LBP value is used to label
the central pixel. Figure 4 illustrates the LBP calculation for a pixel with P = 8 neighboring pixels.

Threshold

l Binary mask
15| 6 101 222 20
6| 1|11
2 s s 3 o |—» o 1| —> 2 2°
12| -5 10| 0 2|28 27
63| o0
=1, stp=1o) LBP=32+8+2+1=43

Pattern:101011
Figure 4. Procedure to calculate LBP.

To compute the Local Binary Pattern (LBP) for a grayscale image, the following equation is used:
P-1

LBP(x,,y,) = Z sl —1)27 (15)
p=0
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where (x,y.) represents the central pixel’s coordinates, P is the number of neighboring pixels, Ip
is the intensity of the neighboring pixel, I, is the intensity of the central pixel, and s is a step function
defined as:

s(x) = {(1)' x=20 (16)

, another value °

The uniform LBP (LBP-U) is a variant of the standard LBP that reduces the dimensionality of the
characteristic vector and provides rotational invariance. An LBP pattern is considered uniform if it
has at most two transitions between 0 and 1 in the binary sequence. For example, patterns like
11111111 (O transitions), 11111000 (1 transition), and 11001111 (2 transitions) are uniform, whereas
11010110 (6 transitions) and 11001001 (4 transitions) are non-uniform.

In an eight-pixel neighborhood, 256 patterns can be generated, of which 58 are uniform. These
uniform patterns are assigned unique labels (1-58), while all non-uniform patterns are grouped under
a single label (59). This work utilizes the LBP-U technique.

After calculating the uniform LBP for each pixel, a histogram of LBP values is constructed to
represent the texture distribution for both RGB and grayscale images LBP;, LBP;, LBPg, and
LBPgyqy. These histograms are then concatenated to form 444 components, creating one-dimensional
object signatures (Figure 3(g)). Figure 5 exemplify this procedure applied to R chanel.

(a)j
(b) |

f LBP feature
( ) extraction

[ 4 &
(d). -(e> |
4 4

Concatenated signature for R-channel

0.8 Sk S LBP ‘
0.6
&) 0.4
0.2
0
0 20 40 60 80 100

Figure 5. (a) Processed R-channel image, (b) Hermite transform of order (1,1), (c) Fourier-Mellin transform
modulus, (d) HR part of the radial Hilbert transform, (e) HI part of the radial Hilbert transform, (f) LBP feature

extraction, (g) Concatenated signature for R-channel.

2.6. Signatures Classification

We implemented a neural network model for classification using the Keras Sequential in Python.
The model was structured to process the 444-dimensional feature vectors generated by the radial
Fourier-Mellin signatures and LBP histogram from each RGB channel and grayscale. This neural
network was designed with multiple dense layers to capture complex relationships within the feature
space.
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2.7. Model Architecture

The neural network architecture consists of six dense layers. The first layer has 100 units with a
ReLU activation function and takes the 444-dimensional feature vector as input. Each four hidden
layer has 100 units with ReLU activation to introduce non-linearities and model complex patterns.
The final layer has eight units with a softmax activation function, corresponding to the classification
of the eight skin lesion types in the dataset.

2.8. Model Compilation

The model was compiled using the Adam optimizer, which is well-suited for this multi-layer
architecture due to its adaptive learning rate capabilities. The loss function was set to sparse
categorical cross-entropy, suitable for multi-class classification with integer-labeled target classes.
Model accuracy was tracked as a performance metric during training.

2.9. Training Procedure

The model was trained on the feature set using 400 epochs, with x_{train} as the feature input
and y_{train} as the target lesion labels. This training process allowed the model to learn
representations of the different lesion types based on the extracted features.

2.10. Model Performance

The neural network model's performance was evaluated using accuracy as the primary metric
on both the training and test sets. Additionally, to ensure robustness, we calculated and reported
recall, FP rate, specificity, precision, accuracy, and F1 score for each lesion class, providing a
comprehensive assessment of the model's classification capabilities across lesion types.

3. Results

We randomly selected images to classify. The classes in the dataset were balanced, with 1840
images used for each type of skin lesion to prevent classification bias. Then, the deep learning model
described in the “Classification” section was trained using a data split of 30% to test and 70% to train.

To assess the classification performance of the proposed methodology, a variety of standard
metrics were employed. Recall (Eq. 17) quantifies the proportion of actual positives correctly
identified by the model, emphasizing its ability to capture all instances of a given class. False Positive
Rate (Eq. 18) reflects the proportion of negative instances misclassified as positive, serving as a
complement to specificity. Specificity (Eq. 19) measures the model’s capability to correctly identify
negative instances, calculated as one minus the FP rate. Precision (Eq. 20) indicates the percentage of
correctly predicted positive instances, demonstrating the reliability of positive predictions. Accuracy
(Eq. 21) provides an overall evaluation of the model, representing the ratio of correctly classified
instances (both positive and negative) to the total number of instances. Lastly, the F1 score (Eq. 22)
offers a balanced measure of precision and recall, expressed as their harmonic mean, making it
particularly useful in scenarios with imbalanced datasets. Collectively, these metrics provide a
comprehensive view of the model's classification performance.

Recall(C;) = — . 17

ecall(C;) = TP, + FN, ’ (17)

FP rate(C) = — . 18

rate(C; _FPi+TNi' (18)

Specificity(C;) = 1 — FP rate(C;), (19)
. TP;

Precision(C;) = (20)

TP, + FP;’
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€)= TP, + TN, o1
accuracyii) = Tp Y TN, + FP, + FN,’ 1)
2 - Precision(C;) - Recall(C;
F1score(C;) = () () (22)

Precision(C;) + Recall(C;) ’
where:

TP;: true positives for class i.
TN;: true negatives for class i.
FP;: false positives for class i.
FN;: false negatives for class i.

The confusion matrix, Figure 6, reveals that the classification model performs well overall, with
diagonal solid dominance indicating accurate predictions for most classes. High accuracy is observed
for vascular lesions (VASC), dermatofibroma (DF), squamous cell carcinoma (SCC), and actinic
keratosis (AK), with minimal misclassifications. However, notable confusion exists between
melanocytic nevus (NV) and melanoma (MEL), as well as between MEL and basal cell carcinoma
(BCC), suggesting overlapping features among these lesion types. Additionally, benign keratosis
(BKL) is occasionally misclassified as NV.

Confusion Matrix

True Label
NV

DF VASC BKL BCC MEL

AK  SCC

'
NV MEL BCC BKL VASC DF ScC AK
Predicted Label

Figure 6. Confusion matrix obtained on test set.

The ROC curves in Figure 7 illustrate the performance of the multiclass classification model
across eight skin lesion classes, showing the relationship between the actual positive rate (sensitivity)
and the false positive rate. The area under the curve (AUC) values indicates high classification
performance for all classes. Actinic keratosis (AK) and dermatofibroma (DF) achieved perfect
classification with an AUC of 1.00, indicating the model's ability to distinguish these classes with no
errors. Similarly, vascular lesions (VASC) and squamous cell carcinoma (SCC) demonstrated near-
perfect separability with AUC values of 0.99. Benign keratosis (BKL) and basal cell carcinoma (BCC)
followed by AUC values of 0.94 and 0.95, respectively, reflecting strong performance despite minor
overlaps. Melanoma (MEL) and melanocytic nevus (NV) exhibited slightly lower AUC values of 0.92
and 0.91, suggesting some challenges in differentiation. The micro-average AUC of 0.97 confirms
robust overall performance across all classes, underscoring the model's ability to handle the
complexities of multiclass skin lesion classification effectively.
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Multiclass ROC Curve
1.0
0.8
. _<—— NV (AUC = 0.91)
& 27— MEL(AUC = 0.92)
S 04 s —— BCC (AUC = 0.95)
= ot —— BKL (AUC = 0.94)
s —— VASC (AUC = 0.99)
Jad DF (AUC = 1.00)
= g —— SCC (AUC = 0.99)
- —— AK (AUC = 1.00)
-~ ==+ Micro-average (AUC = 0.97)
%0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 7. Multiclass ROC curve.
Table 1. Performance metrics multiplied by 100.
Class Recall FPrate  Specificity Precision  Accuracy F1 Score
NV 55.85+2.33 4.50+033 9550+0.33 63.92+1.43 90.60+0.22 59.34+1.44
MEL 59.31+£211 525+044 94.75+044 62.07+1.57 90.34+0.32 60.39+1.26
BCC 7516118 293+0.29 97.07+0.29 7854+176 9435+029 76.73+1.16
BKL 71.68+1.71 394+031 96.06+0.31 72.61+1.32 92.99+0.28 72.01=+1.06
VASC 94.77+0.99 097+£0.10 99.03+0.10 93.37+0.60 98.50+0.12 94.03 +0.50
DF 97.54+0.72 1.17+£0.13 98.83+0.13 9229+0.79 98.66+0.17 94.83 +0.65
SCC 97.01+£0.83 1.59+0.17 98.41+0.17 89.71+1.00 98.23+0.22 93.20+0.82
AK 98.62+0.58 098+0.16 99.02+0.16 93.64+0.95 9897 +0.18 96.05+0.65
Overall Average 81.24+219 267+022 97.33+0.22 80.77+1.64 9533+0.45 80.82+1.90

The entire workflow was repeated 30 times to account for the inherent randomness in processes
such as balancing class samples, splitting the dataset into training and testing sets, and the stochastic
nature of neural network training. This repetition ensures that the results are not biased by any
random data partitioning or model initialization instance. By performing the process 30 times, the
average of the performance metrics (e.g., accuracy, recall, precision) could be calculated, along with
their error intervals at a 95% confidence level. This approach provides robust and statistically reliable
metrics, minimizing the impact of random fluctuations and offering a more accurate assessment of
the model's performance.

The resulting metrics, Table 1, demonstrate the model's performance. Recall values ranged from
55.85% =+ 2.33 for melanocytic nevus (NV) to 98.62% + 0.58 for actinic keratosis (AK), showing varying
sensitivity in correctly identifying different lesion types. Similarly, false positive (FP) rates were
lowest for AK (0.98% + 0.16) and vascular lesions (VASC) (0.97% =+ 0.10), reflecting high precision in
these classes.

Specificity remained consistently high across all classes, ranging from 94.75% + 0.44 for
melanoma (MEL) to 99.03% = 0.10 for VASC, indicating the model's strong ability to identify true
negatives. Precision followed a similar trend, with higher values for classes like AK (93.64% =+ 0.95)
and VASC (93.37% + 0.60) and slightly lower for NV (63.92% =+ 1.43) and MEL (62.07% =+ 1.57).

Overall accuracy averaged 95.33% + 0.45, with AK, SCC, and DF achieving the highest individual
accuracies (above 98%). The F1 score, reflecting the harmonic mean of precision and recall, varied
from 59.34% =+ 1.44 for NV to 96.05% = 0.65 for AK. The overall F1 score was 80.82% =+ 1.90,
highlighting the model's balanced performance across all classes.
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4. Discussion

The results of this study confirm the effectiveness of the proposed hybrid approach for skin
lesion classification. By integrating the Hermite transform with the Radial Fourier-Mellin and Hilbert
transform, we achieved a balanced extraction of local and global features essential for robust
classification. The Hermite transform's capability to decompose images into localized polynomial
coefficients allowed us to analyze fine-grained spatial details within skin lesions, particularly in the
RGB channels. This analysis is critical for identifying pigmentation, texture variations, and boundary
definitions, which are vital in distinguishing benign lesions from malignant ones.

On the other hand, the Radial Fourier—Mellin transform ensured scale and translation
invariance, addressing challenges posed by varying lesion sizes and positions across images. The
Hilbert transform further complemented these by introducing rotational invariance, thus generating
repeatable and stable signatures. Combining these three transforms provided a rich and
comprehensive feature set, enhancing the discriminative power of the machine learning models
applied.

The multi-channel analysis (RGB and grayscale) proved particularly beneficial. Each channel
emphasized unique lesion characteristics, with the red channel highlighting pigmentation, the green
channel focusing on intermediate structures, and the blue channel enhancing fine textures. This
approach aligns with recent findings where multi-channel feature extraction outperformed single-
channel medical image analysis methods.

Table 2 presents a comparative analysis of various state-of-the-art models for skin lesion
classification using different datasets. Among the listed models, Inception-v2 achieved the highest
recall (0.9015) and F1 score (0.8876), indicating strong sensitivity and overall performance. VGG19
and ResNeXt101 also demonstrated competitive results across precision, accuracy, and F1 score.
However, it is important to highlight that our proposed method shows strength in terms of false
positive (FP) rate and specificity, with values of 0.0267 and 0.9733, respectively —metrics not reported
for the other methods. This low FP rate suggests a significantly reduced rate of incorrect positive
classifications, which is crucial in medical applications to avoid unnecessary patient anxiety or
treatment. Despite a slightly lower recall (0.8124), the method achieves the highest accuracy (0.9533)
among all models compared, indicating excellent overall classification reliability. These results
demonstrate that our approach provides a more balanced trade-off between minimizing false alarms
and maintaining high classification performance.

Table 2. Comparison with state of art.

Model Dataset Recall rle:lfe SpecificityPrecisionAccuracyF1 Score

2D superpixels + RCNN [23] HAM-10000  0.8450 - - 0.8349  0.8550 0.8530

ResNeXt101 [24] ISIC-2019 0.8810 - - 0.8740  0.8850 0.8830
MobileNetV2 [25] ISIC-2019 0.8633 - - 0.7890  0.8530 -

VGG19 [26] ISIC-2019, Derm-1S0.8666 - - 0.9070  0.8857 0.8765
ConvNet [27] ISIC-2019, Derm-1S0.8747 - - 0.8614  0.8690 -

Inception-v2 [28] ISIC-2019 0.9015 - - 0.8737  0.8904 0.8876

This work ISIC-2019 0.81240.0267 0.9733  0.8077  0.9533  0.8082

While the results are promising, some limitations exist. The computational complexity of the
Hermite transform, mainly when applied to multiple channels and high-resolution images, can be a
challenge for real-time deployment. Future studies could explore optimizing this process or applying
dimensionality reduction techniques to streamline computation. Testing the method on other
datasets or clinical settings will also validate its generalizability and real-world applicability.

This study presents a novel hybrid approach for automated skin lesion classification, combining
the Hermite transform, Radial Fourier-Mellin transform, and Hilbert transform. Integrating these
transforms across RGB and grayscale channels allows for comprehensive feature extraction,

d0i:10.20944/preprints202504.2404.v1
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capturing both global invariance properties and localized spatial details. Experimental results
demonstrate that this method enhances classification, accuracy and robustness, outperforming
traditional transform-based approaches.

The findings underscore the potential of hybrid feature extraction techniques for advancing Al-
driven dermatological diagnosis tools. Future work will focus on reducing computational costs and
expanding the model's validation to other datasets and clinical applications. By improving the
precision of automated skin lesion classification, this method contributes to non-invasive, early
detection strategies, ultimately benefiting patient care and clinical decision-making.
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