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Featured Application: A technique for developing a potential automated system for classifying 

skin lesions. 

Abstract: Automated skin lesion classification using machine learning techniques is crucial for early 

and accurate skin cancer detection. This study proposes a hybrid method combining the Hermite, 

Radial Fourier–Mellin,  and Hilbert  transform  to  extract  comprehensive  features  from  skin  lesion 

images. By separating the  images  into red, green, and blue (RGB) channels and grayscale, unique 

textural  and  structural  information  specific  to  each  channel  is  analyzed. The Hermite  transform 

captures  localized spatial features, while the Radial Fourier–Mellin and Hilbert transforms ensure 

global  invariance  to  scale,  translation, and  rotation. Texture  information  for  each  channel  is  also 

obtained based on the Local Binary Pattern (LBP) technique. We applied our hybrid transform‐based 

feature  extraction  approach  to  multiple  lesion  classes  using  the  International  Skin  Imaging 

Collaboration  (ISIC)  2019  dataset,  preprocessed  with  data  augmentation.  Experimental  results 

demonstrate that the proposed method improves classification accuracy and robustness, highlighting 

its potential as a non‐invasive AI‐based tool for dermatological diagnosis. 

Keywords: skin lesion classification; Hermite transform; radial Fourier‐Mellin transform 

 

1. Introduction 

Early detection of skin cancer is crucial for improving patient outcomes, as it remains a common 

and  potentially  deadly  disease worldwide.  To  support  dermatologists  in  diagnosis,  automated 

classification  of  skin  lesions  has  gained  significant  attention  through  the  integration  of machine 

learning (ML) and advanced digital image processing. By leveraging mathematical transformations 

and feature extraction techniques, ML models have shown strong potential in identifying diagnostic 

patterns from digital image data, making them practical tools for classifying skin lesions [1–3]. 

Integral  transforms,  such as Fourier, Mellin, and Hilbert, have proven particularly useful  in 

generating feature sets that are  invariant to changes  in rotation, scale, and translation—properties 

that are essential for analyzing skin lesions, which exhibit considerable variability in shape, size, and 

orientation [4–6]. Frequency‐based patterns, essential for differentiating various lesion textures and 

structures,  have  been  analyzed  using  the  Fourier  transform,  which  is  widely  used  in  image 

processing [7,8]. The Mellin transform has also been applied to address the issue of varying lesion 

sizes in images, introducing scale invariance to the extracted features and enhancing their robustness 

[9–11]. Hilbert  transform  complements  these  by  ensuring  rotational  invariance,  thus  producing 

unique and repeatable signatures, as demonstrated in skin lesion classification studies [12]. 

In  our  previous work, we  successfully  implemented  the Radial  Fourier–Mellin  and Hilbert 

transform to classify skin  lesions accurately. This approach created stable  image signatures across 

eight lesion types, producing vital classification metrics [12]. These results underscore the potential 
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of combining transform‐based feature extraction with ML for robust lesion classification, especially 

when global invariance properties are required. 

This  study  extends  the  previous  approach  by  introducing  the Hermite  transform, which  is 

applied  independently  to  the  imageʹs  red, green,  and blue  channels  and grayscale. The Hermite 

transform is well‐suited for capturing localized spatial features and intricate textures, essential for 

skin lesion analysis, as different color channels often contain unique structural information relevant 

to pigmentation, boundary definition, and textural detail [13–15]. Although the Hermite transform 

has primarily been used in areas such as biometric recognition, where fine‐grained spatial analysis is 

essential, recent research suggests that the Hermite transform can be effectively applied to medical 

imaging for detailed feature extraction [16]. 

This study aims to enhance the classification of skin lesions by integrating the Hermite transform 

with  the  Radial  Fourier–Mellin  and  Hilbert  transform  across  separated  RGB  channels.  We 

hypothesize  that  this  hybrid  approach  will  increase  the  robustness  and  accuracy  of  lesion 

classification,  thereby  advancing  AI‐driven,  non‐invasive  diagnostic  tools  in  dermatology.  The 

following  sections  outline  our methodology,  experimental  setup,  results,  and  the  impact  of  the 

Hermite transform on the overall classification performance. 

The development of automated skin lesion classification systems has been an area of extensive 

research  in medical  image  analysis,  driven  by  the  critical  need  for  early  skin  cancer  detection. 

Artificial intelligence (AI) and machine learning (ML) have significantly contributed to dermatology 

by  improving  the  classification  of  lesion  types  using  digital  images.  These  approaches  enhance 

diagnostic precision by employing feature extraction methods, multi‐channel image analysis, and a 

range of mathematical transformations. 

Several studies have highlighted the effectiveness of Fourier, Mellin, and Hilbert transforms for 

extracting  stable  invariant  features  under  changes  in  rotation,  scale,  and  translation—crucial 

properties for skin lesion analysis where lesions vary in appearance. The Fourier transform has been 

extensively utilized in medical imaging to extract global features, capturing frequency‐based patterns 

in  lesions  for  reliable classification  [17]. The Mellin  transform  is often combined with  the Fourier 

transform to improve accuracy by addressing size variations in lesions, introducing scale invariance, 

and enhancing the overall classification performance [18]. The Hilbert transform complements these 

by introducing rotational invariance, thus producing unique and repeatable signatures suitable for 

dermatological classification tasks, as shown in various studies on skin lesions [19]. 

Recent  research  has  increasingly  focused  on  hybrid  approaches  that  combine  multiple 

transforms  to  exploit  complementary  feature  extraction  strengths.  For  instance,  in  dermatology, 

hybrid techniques integrating texture descriptors, Fourier‐based signatures, and ML classifiers have 

achieved  superior  classification  performance  over  single‐transform  approaches  by  incorporating 

global and local features [12]. This integration has shown promise for skin lesions, where patterns 

such as edges, textures, and color gradients contribute significantly to lesion differentiation. 

Though  less  commonly  applied  in  dermatology,  the Hermite  transform  has  demonstrated 

potential in other fields, like facial recognition and fingerprint analysis, for its ability to capture fine‐

grained spatial and textural details. This transform uses Hermite polynomials to decompose images, 

effectively  characterizing  localized  structures  within  complex  image  regions,  such  as  lesion 

boundaries  [15]. While  few  studies  have  applied  the Hermite  transform  to multi‐channel  RGB 

images,  evidence  suggests  that  color  channel‐specific  information  enhances  image  analysis, 

especially for skin lesions where pigmentation and textural details are critical [20–22]. 

This  study  builds upon  these  advancements  by  integrating  the Hermite  transform with  the 

Radial  Fourier–Mellin  and  Hilbert  transform  across  separated  RGB  channels  to  generate 

comprehensive  feature  sets  for  skin  lesion  classification. We aim  to achieve higher accuracy and 

robust differentiation between  lesion  types by  combining global  invariant  features  and  localized 

structures. 
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2. Materials and Methods 

2.1. Image Dataset 

Our dataset comprises digital images of various skin lesion types from the International Skin 

Imaging Collaboration (ISIC) 2019 dataset. Initial preprocessing involved the removal of images with 

significant noise (e.g., hair, artifacts) to enhance lesion visibility and ensure quality input for feature 

extraction.  Data  augmentation  was  applied  to  create  a  robust  and  balanced  dataset,  including 

rotations (at 45° increments) and scaling (100%, 95%, 90%, 85%, 80%). This preprocessing yielded a 

dataset of skin lesion images with each lesion type represented equally, reducing class imbalance and 

improving generalization for classification. Figure 1 illustrates some examples of skin lesion images 

contained in the dataset. 

 

Figure 1. Some digital skin lesion images from dataset used in this work. 

2.2. RGB Channel and Grayscale Separation 

Each  preprocessed  image  was  separated  into  its  red,  green,  and  blue  color  channels  and 

grayscale. This step allowed us to treat each channel independently, capitalizing on each channelʹs 

unique  textural  and  color  information.  For  each  color  channel,  we  computed  transform‐based 

features  that  emphasize  distinct  lesion  characteristics  across  the  RGB  and  grayscale  spectrum. 

Separating the channels enabled us to retain and enhance color‐specific information, which is vital 

for accurately distinguishing skin lesion types. 

2.3. Hermite Transform 

The Hermite transform is a specific type of polynomial transform and can be regarded as a model 

for  image  representation.  This  transformation  serves  as  a method  for  signal  decomposition  and 

involves  two main  steps.  Initially,  the  input  signal  𝐿ሺ𝑥,𝑦ሻ  is  combined with  a window  function 

through multiplication, 

𝑣ሺ𝑥 െ 𝑝,𝑦 െ 𝑞ሻ,  (1)

at the positions  𝑝  and  𝑞. 
The goal is to achieve a comprehensive representation of the signal. This process is repeated at 

multiple positions spaced evenly across the  image, forming a sampling grid  𝑆. At each  ሺ𝑥,𝑦ሻ, the 
pixel coordinates and  the  input  signal are multiplied by  the window  function, while  the original 

signal is 

𝐿ሺ𝑥,𝑦ሻ ൌ
1

𝑊ሺ𝑥,𝑦ሻ
෍ 𝐿ሺ𝑥,𝑦ሻ𝑣ሺ𝑥 െ 𝑝,𝑦 െ 𝑞ሻ
௣,௤ ∈ ௌ

,  (2)

where, 

𝑊ሺ𝑥,𝑦ሻ ൌ ෍ 𝑣ሺ𝑥 െ 𝑝,𝑦 െ 𝑞ሻ
௣,௤ ∈ ௌ

  (3)

is a weighting function. 
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The only requirement is that eq. (3) must be nonzero for all  ሺ𝑥,𝑦ሻ. Next, the signal within the 

window is expressed as a weighted sum of  𝐺௠,௡ି௠ሺ𝑥,𝑦ሻ, with degrees 𝑚  and  𝑛 െ𝑚  relative to  𝑥,𝑦, 
respectively. These polynomials are determined by the window function. 

න න 𝑣ଶሺ𝑥,𝑦ሻ𝐺௠,௡ି௠ሺ𝑥,𝑦ሻ ൈ 𝐺௟,௞ି௟ሺ𝑥,𝑦ሻ𝑑𝑥𝑑𝑦

ஶ

ିஶ

ஶ

ିஶ

ൌ 𝛿௡௟𝛿௠௞.  (4)

Here,  𝑛, 𝑙 ൌ 0, 1, 2, … ,∞  and 𝑚, 𝑘 ൌ 0, 1, 2, … ,∞, while  𝛿௡௟ , 𝛿௠௞  represent the Kronecker delta 
functions, and ൈ  denotes element‐wise multiplication. The process of converting  the  input signal 

into  a weighted  sum  of  polynomials,  referred  to  as  polynomial  coefficients,  is  called  the  direct 

polynomial transform. These polynomial coefficients,  𝐿௠,௡ି௠ሺ𝑝, 𝑞ሻ, are obtained by convolving the 
original image with the analysis filters. 

𝐷௠,௡ି௠ሺ𝑥,𝑦ሻ ൌ 𝐺௠,௡ି௠ሺ𝑥,𝑦ሻ𝑣ଶሺെ𝑥,െ𝑦ሻ  (5)

that is, for everything,  ሺ𝑝, 𝑞ሻ ∈ 𝑆, 

𝐿௠,௡ି௠ሺ𝑝, 𝑞ሻ ൌ න න 𝐿ሺ𝑥,𝑦ሻ ൈ

ஶ

ିஶ

ஶ

ିஶ

𝐷௠,௡ି௠ሺ𝑥 െ 𝑝,𝑦 െ 𝑞ሻ𝑑𝑥𝑑𝑦  (6)

where, 

𝐺௠,௡ି௠ሺ𝑝, 𝑞ሻ ൌ
1

ඥ2௡ሺ𝑛 െ 𝑚ሻ!𝑚!
ൈ 𝐻௠ ቀ

𝑥
𝜎
ቁ𝐻௡ି௠ ቀ

𝑦
𝜎
ቁ,  (7)

𝑣ሺ𝑥,𝑦ሻ ൌ
1

ඥ√𝜋𝜎
𝑒ି

௫మା௬మ

ଶఙమ ,  (8)

where  𝑣ሺ𝑥,𝑦ሻ  is Gaussian window function,  𝜎  is the standard deviation of the Gaussian window 

function and, 

𝐻௡ሺ𝑥ሻ ൌ ሺെ1ሻ௡𝑒௫
మ 𝑑௡

𝑑𝑥௡
𝑒ି௫

మ
,    𝑛 ൌ 0, 1, 2, …  (9)

where 𝐻௡ሺ𝑥ሻ  is the n‐th Hermite polynomial. 

Using the convolution form in eq. (6) it is defined as,   

𝐿௠,௡ି௠ሺ𝑝, 𝑞ሻ ൌ 𝐿ሺ𝑥,𝑦ሻ ∗ 𝐷௠,௡ି௠ሺ𝑥,𝑦ሻ .  (10)

2.4. The Signatures 

We generated multiple signature vectors for the Hermite transform of order (1,1) for each RGB 

channel and grayscale images using a dataset of 362,680 samples created through data augmentation. 

The augmentation process included five scaling percentages (100%, 95%, 90%, 85%, and 80%) and 

eight  rotation  angles  (45°,  90°,  135°,  180°,  225°,  270°,  315°,  and  360°).  These  descriptors  utilized 

invariance properties to translation and scaling from the Fourier and Mellin transforms, respectively. 

The  Hilbert  transform  was  applied  for  rotational  invariance.  Unique  image  signatures  were 

computed by summing pixel values within each ring produced by Hilbert masks used as filters. The 

texture descriptors were then incorporated into the previously generated radial Fourier signatures. 

This process resulted in a one‐dimensional representation or signature of the skin lesion digital 

image, as  illustrated  in Figures 2 and 3. The original  image  𝐼𝑚ሺ𝑥,𝑦ሻ  consists of three RGB matrix 

channels (red, green, and blue). These were separated into their respective primary color channels 

for  the  application of  the  radial Fourier–Mellin method  and uniform Local Binary Pattern  (LBP) 

feature extraction. Additionally, the grayscale skin lesion image was derived as a weighted sum of 

RGB values using the formula 0.299R + 0.587G + 0.114B. 
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Figure 2. (a) Binary disk. (b) 𝐻ோ mask. (c) 𝐻ூ mask. 

 

Figure 3. Methodology proposed for image embeddings generation. 

2.5. Radial Fourier‐Mellin Signatures Through Hilbert Transform 

To  create  the  radial  Fourier–Mellin  signatures,  the  image was  first  separated  into  its  RGB 

channels and grayscale  (Figure 3(a)). After  that,  the Hermite  transform of order  ሺ1,1ሻ  is obtained 
from each image component, RGB channels and grayscale (Figure 3(b)). 

Next, the magnitude of the Fourier–Mellin (FM) transform for each skin lesion digital image, 

denoted as  𝐼𝑚ሺ𝑥,𝑦ሻ, was computed using the following equation (Figure 3(c)). 

|𝐹ெሺ𝑠, 𝑡ሻ| ൌ 

ඵ |𝐹𝑇ሾ𝐼𝑚ሺ𝑥,𝑦ሻሿ|𝑥ሺ௦ିଵሻ
ஶ

଴
𝑦ሺ௧ିଵሻdxdy 

ൌ 𝑀ሼ|𝐹𝑇ሾ𝐼𝑚ሺ𝑥,𝑦ሻሿ|ሽ, 

(11)

here,  |𝐹ெሺ𝑠, 𝑡ሻ|  represents the magnitude of the Mellin transform, which provides scale invariance 

for objects  in  the  image. This  is essential because  the  skin  lesion digital  images were captured at 

varying distances between the lesion and the camera. As a result, lesions appear smaller at greater 

distances and larger when the distance is shorter. The coordinates  ሺ𝑠, 𝑡ሻ  represent the 2D positions 
of  the  transformed  ሺ𝑥,𝑦ሻ   pixel  coordinates  on Mellinʹs  plane.  These  original  ሺ𝑥,𝑦ሻ   coordinates 
correspond  to  the magnitude of  the Fourier  transform of  the  image,  |𝐹𝑇ሾ𝐼𝑚ሺ𝑥,𝑦ሻሿ|,  leveraging  its 
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translation  invariance. Consequently,  at  this  stage,  the object  (skin  lesion)  in  the  image becomes 

invariant to both translation and scale. 

By applying the Hilbert transform, rotational invariance of the skin lesion in the image is also 

achieved. The Hilbert transform of the image is expressed as: 

ℱሼ𝐻௥ሾ𝐼𝑚ሺ𝑥,𝑦ሻሿሽ ൌ 

𝑒௜௣ఏ𝐹𝑇ሾ𝐼𝑚ሺ𝑥,𝑦ሻሿ ൌ 

𝑒௜௣ఏ𝐹ሺ𝑢, 𝑣ሻ, 

(12)

here,  𝑝  represents  the order of  the  radial Hilbert  transform, and  𝜃  is  the angle  in  the  frequency 
domain corresponding to the pixel coordinates  ሺ𝑥,𝑦ሻ  after their transformation into Fourier plane 

coordinates  ሺ𝑢,𝑣ሻ. This angle is calculated as  𝜃 ൌ aco s൫𝑢 √𝑢ଶ ൅ 𝑣ଶ⁄ ൯. 
Using Euler’s formula, binary ring masks were generated for the RGB channels and the grayscale 

skin lesion digital image. These masks utilized both the real 𝐻ோ  and imaginary 𝐻ூ  components of 

the radial Hilbert transform of the image (Figure 2). 

𝐻ோ ൌ 𝑅𝑒ሾ𝐻௥ሺ𝑢, 𝑣ሻሿ ൌ ൜
    1,    𝑖𝑓  𝑠𝑖𝑛ሺ𝑝𝜃ሻ ൐ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ,  (13)

𝐻ூ ൌ 𝐼𝑚ሾ𝐻௥ሺ𝑢, 𝑣ሻሿ ൌ ൜
    1,    𝑖𝑓  𝑐𝑜𝑠ሺ𝑝𝜃ሻ ൐ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  .  (14)

The binary ring masks generated earlier were used to filter the skin lesion digital images that 

had been processed with the magnitude of the Fourier–Mellin transform (Figure 3(c)). The process 

involved summing  the pixel values within each ring, resulting  in  two distinct signatures  for each 

grayscale skin lesion image  𝑆𝑔𝑟𝑎𝑦ுೃ  and 𝑆𝑔𝑟𝑎𝑦ு಺; and for its RGB channels:  𝑆𝑅ுೃ,  𝑆𝑅ு಺,  𝑆𝐺ுೃ,  𝑆𝐺ு಺, 
𝑆𝐵ுೃ, and 𝑆𝐵ு಺  (Figure 3 (d)). Finally, each signature is normalized by its maximum value (Figure 3 

(e)). 

To incorporate texture descriptors, we applied the uniform Local Binary Pattern (LBP) technique 

(Figure 3(f)), a widely used tool in computer vision and image processing for texture analysis. 

LBP  is a simple yet effective descriptor  that captures  textures, edges, corners, spots, and  flat 

regions. For each  3 ൈ 3  pixel block, the intensity of the eight surrounding pixels is compared to the 

intensity of the central pixel, which serves as the threshold. If the intensity of a neighboring pixel is 

greater than or equal to the central pixel, its position is assigned a value of 1; otherwise, it is assigned 

0. After comparing all pixels, a binary sequence is formed. 

This binary sequence is then converted into a decimal value by multiplying each position by its 

corresponding weight (decimal value) and summing the results. The final LBP value is used to label 

the central pixel. Figure 4 illustrates the LBP calculation for a pixel with  𝑃 ൌ 8  neighboring pixels. 

 

Figure 4. Procedure to calculate LBP. 

To compute the Local Binary Pattern (LBP) for a grayscale image, the following equation is used: 

𝐿𝐵𝑃ሺ𝑥௖ ,𝑦௖ሻ ൌ ෍𝑠ሺ𝐼௣ െ 𝐼௖ሻ2௣
௉ିଵ

௣ୀ଴

  ,  (15)
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where  ሺ𝑥௖ ,𝑦௖ሻ  represents the central pixel’s coordinates,  𝑃  is the number of neighboring pixels,  𝐼௉ 
is the intensity of the neighboring pixel,  𝐼௖  is the intensity of the central pixel, and  𝑠  is a step function 
defined as: 

𝑠ሺ𝑥ሻ ൌ ቄ
 1,                        𝑥 ൒ 0
 0,      𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑣𝑎𝑙𝑢𝑒   .  (16)

The uniform LBP (LBP‐U) is a variant of the standard LBP that reduces the dimensionality of the 

characteristic vector and provides rotational invariance. An LBP pattern is considered uniform if it 

has  at most  two  transitions  between  0  and  1  in  the binary  sequence.  For  example, patterns  like 

11111111 (0 transitions), 11111000 (1 transition), and 11001111 (2 transitions) are uniform, whereas 

11010110 (6 transitions) and 11001001 (4 transitions) are non‐uniform. 

In an eight‐pixel neighborhood, 256 patterns can be generated, of which 58 are uniform. These 

uniform patterns are assigned unique labels (1–58), while all non‐uniform patterns are grouped under 

a single label (59). This work utilizes the LBP‐U technique. 

After calculating the uniform LBP for each pixel, a histogram of LBP values  is constructed to 

represent  the  texture  distribution  for  both  RGB  and  grayscale  images  𝐿𝐵𝑃ோ ,  𝐿𝐵𝑃 ,  𝐿𝐵𝑃஻ ,  and 
𝐿𝐵𝑃 ௥௔௬. These histograms are then concatenated to form 444 components, creating one‐dimensional 

object signatures (Figure 3(g)). Figure 5 exemplify this procedure applied to R chanel. 

 

Figure  5.  (a) Processed R‐channel  image,  (b) Hermite  transform of order  (1,1),  (c) Fourier‐Mellin  transform 

modulus, (d) HR part of the radial Hilbert transform, (e) HI part of the radial Hilbert transform, (f) LBP feature 

extraction, (g) Concatenated signature for R‐channel. 

2.6. Signatures Classification 

We implemented a neural network model for classification using the Keras Sequential in Python. 

The model was structured  to process  the 444‐dimensional  feature vectors generated by  the radial 

Fourier‐Mellin  signatures and LBP histogram  from each RGB  channel and grayscale. This neural 

network was designed with multiple dense layers to capture complex relationships within the feature 

space. 
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2.7. Model Architecture 

The neural network architecture consists of six dense layers. The first layer has 100 units with a 

ReLU activation function and takes the 444‐dimensional feature vector as input. Each four hidden 

layer has 100 units with ReLU activation to introduce non‐linearities and model complex patterns. 

The final layer has eight units with a softmax activation function, corresponding to the classification 

of the eight skin lesion types in the dataset. 

2.8. Model Compilation 

The model was compiled using the Adam optimizer, which is well‐suited for this multi‐layer 

architecture  due  to  its  adaptive  learning  rate  capabilities.  The  loss  function  was  set  to  sparse 

categorical cross‐entropy, suitable  for multi‐class classification with  integer‐labeled  target classes. 

Model accuracy was tracked as a performance metric during training. 

2.9. Training Procedure 

The model was trained on the feature set using 400 epochs, with x_{train} as the feature input 

and  y_{train}  as  the  target  lesion  labels.  This  training  process  allowed  the  model  to  learn 

representations of the different lesion types based on the extracted features. 

2.10. Model Performance 

The neural network modelʹs performance was evaluated using accuracy as the primary metric 

on both the training and  test sets. Additionally,  to ensure robustness, we calculated and reported 

recall,  FP  rate,  specificity,  precision,  accuracy,  and  F1  score  for  each  lesion  class,  providing  a 

comprehensive assessment of the modelʹs classification capabilities across lesion types. 

3. Results 

We randomly selected images to classify. The classes in the dataset were balanced, with 1840 

images used for each type of skin lesion to prevent classification bias. Then, the deep learning model 

described in the “Classification” section was trained using a data split of 30% to test and 70% to train. 

To assess  the classification performance of  the proposed methodology, a variety of standard 

metrics  were  employed.  Recall  (Eq.  17)  quantifies  the  proportion  of  actual  positives  correctly 

identified by the model, emphasizing its ability to capture all instances of a given class. False Positive 

Rate  (Eq.  18)  reflects  the proportion  of  negative  instances misclassified  as positive,  serving  as  a 

complement to specificity. Specificity (Eq. 19) measures the model’s capability to correctly identify 

negative instances, calculated as one minus the FP rate. Precision (Eq. 20) indicates the percentage of 

correctly predicted positive instances, demonstrating the reliability of positive predictions. Accuracy 

(Eq. 21) provides an overall evaluation of  the model,  representing  the  ratio of correctly classified 

instances (both positive and negative) to the total number of instances. Lastly, the F1 score (Eq. 22) 

offers  a  balanced measure  of precision  and  recall,  expressed  as  their  harmonic mean, making  it 

particularly  useful  in  scenarios with  imbalanced  datasets.  Collectively,  these metrics  provide  a 

comprehensive view of the modelʹs classification performance. 

𝑅𝑒𝑐𝑎𝑙𝑙ሺ𝐶௜ሻ ൌ
𝑇𝑃௜

𝑇𝑃௜ ൅ 𝐹𝑁௜ 
 ,  (17)

𝐹𝑃 𝑟𝑎𝑡𝑒ሺ𝐶௜ሻ ൌ
𝐹𝑃௜

𝐹𝑃௜ ൅ 𝑇𝑁௜ 
 ,  (18)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦ሺ𝐶௜ሻ ൌ 1 െ 𝐹𝑃 𝑟𝑎𝑡𝑒ሺ𝐶௜ሻ ,  (19)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝐶௜ሻ ൌ
𝑇𝑃௜

𝑇𝑃௜ ൅ 𝐹𝑃௜ 
 ,  (20)
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦ሺ𝐶௜ሻ ൌ
𝑇𝑃௜ ൅ 𝑇𝑁௜

𝑇𝑃௜ ൅ 𝑇𝑁௜ ൅ 𝐹𝑃௜ ൅ 𝐹𝑁௜
 ,  (21)

𝐹1 𝑠𝑐𝑜𝑟𝑒ሺ𝐶௜ሻ ൌ
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝐶௜ሻ ∙ 𝑅𝑒𝑐𝑎𝑙𝑙ሺ𝐶௜ሻ

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝐶௜ሻ ൅ 𝑅𝑒𝑐𝑎𝑙𝑙ሺ𝐶௜ሻ
 ,  (22)

where: 

𝑇𝑃௜: true positives for class  𝑖. 
𝑇𝑁௜: true negatives for class  𝑖. 
𝐹𝑃௜: false positives for class  𝑖. 
𝐹𝑁௜: false negatives for class  𝑖. 

The confusion matrix, Figure 6, reveals that the classification model performs well overall, with 

diagonal solid dominance indicating accurate predictions for most classes. High accuracy is observed 

for  vascular  lesions  (VASC),  dermatofibroma  (DF),  squamous  cell  carcinoma  (SCC),  and  actinic 

keratosis  (AK),  with  minimal  misclassifications.  However,  notable  confusion  exists  between 

melanocytic nevus (NV) and melanoma (MEL), as well as between MEL and basal cell carcinoma 

(BCC),  suggesting overlapping  features  among  these  lesion  types. Additionally, benign keratosis 

(BKL) is occasionally misclassified as NV. 

 

Figure 6. Confusion matrix obtained on test set. 

The ROC curves  in Figure 7  illustrate  the performance of  the multiclass classification model 

across eight skin lesion classes, showing the relationship between the actual positive rate (sensitivity) 

and  the  false  positive  rate.  The  area  under  the  curve  (AUC)  values  indicates  high  classification 

performance  for  all  classes.  Actinic  keratosis  (AK)  and  dermatofibroma  (DF)  achieved  perfect 

classification with an AUC of 1.00, indicating the modelʹs ability to distinguish these classes with no 

errors. Similarly, vascular lesions (VASC) and squamous cell carcinoma (SCC) demonstrated near‐

perfect separability with AUC values of 0.99. Benign keratosis (BKL) and basal cell carcinoma (BCC) 

followed by AUC values of 0.94 and 0.95, respectively, reflecting strong performance despite minor 

overlaps. Melanoma (MEL) and melanocytic nevus (NV) exhibited slightly lower AUC values of 0.92 

and 0.91, suggesting some challenges  in differentiation. The micro‐average AUC of 0.97 confirms 

robust  overall  performance  across  all  classes,  underscoring  the  modelʹs  ability  to  handle  the 

complexities of multiclass skin lesion classification effectively. 
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Figure 7. Multiclass ROC curve. 

Table 1. Performance metrics multiplied by 100. 

Class  Recall  FP rate  Specificity  Precision  Accuracy  F1 Score 

NV  55.85 ± 2.33  4.50 ± 0.33  95.50 ± 0.33  63.92 ± 1.43  90.60 ± 0.22  59.34 ± 1.44 

MEL  59.31 ± 2.11  5.25 ± 0.44  94.75 ± 0.44  62.07 ± 1.57  90.34 ± 0.32  60.39 ± 1.26 

BCC  75.16 ± 1.18  2.93 ± 0.29  97.07 ± 0.29  78.54 ± 1.76  94.35 ± 0.29  76.73 ± 1.16 

BKL  71.68 ± 1.71  3.94 ± 0.31  96.06 ± 0.31  72.61 ± 1.32  92.99 ± 0.28  72.01 ± 1.06 

VASC  94.77 ± 0.99  0.97 ± 0.10  99.03 ± 0.10  93.37 ± 0.60  98.50 ± 0.12  94.03 ± 0.50 

DF  97.54 ± 0.72  1.17 ± 0.13  98.83 ± 0.13  92.29 ± 0.79  98.66 ± 0.17  94.83 ± 0.65 

SCC  97.01 ± 0.83  1.59 ± 0.17  98.41 ± 0.17  89.71 ± 1.00  98.23 ± 0.22  93.20 ± 0.82 

AK  98.62 ± 0.58  0.98 ± 0.16  99.02 ± 0.16  93.64 ± 0.95  98.97 ± 0.18  96.05 ± 0.65 

Overall Average  81.24 ± 2.19  2.67 ± 0.22  97.33 ± 0.22  80.77 ± 1.64  95.33 ± 0.45  80.82 ± 1.90 

The entire workflow was repeated 30 times to account for the inherent randomness in processes 

such as balancing class samples, splitting the dataset into training and testing sets, and the stochastic 

nature of neural network  training. This  repetition  ensures  that  the  results are not biased by  any 

random data partitioning or model initialization instance. By performing the process 30 times, the 

average of the performance metrics (e.g., accuracy, recall, precision) could be calculated, along with 

their error intervals at a 95% confidence level. This approach provides robust and statistically reliable 

metrics, minimizing the impact of random fluctuations and offering a more accurate assessment of 

the modelʹs performance. 

The resulting metrics, Table 1, demonstrate the modelʹs performance. Recall values ranged from 

55.85% ± 2.33 for melanocytic nevus (NV) to 98.62% ± 0.58 for actinic keratosis (AK), showing varying 

sensitivity  in  correctly  identifying different  lesion  types.  Similarly,  false positive  (FP)  rates were 

lowest for AK (0.98% ± 0.16) and vascular lesions (VASC) (0.97% ± 0.10), reflecting high precision in 

these classes. 

Specificity  remained  consistently  high  across  all  classes,  ranging  from  94.75%  ±  0.44  for 

melanoma (MEL) to 99.03% ± 0.10 for VASC,  indicating the modelʹs strong ability to  identify true 

negatives. Precision followed a similar trend, with higher values for classes like AK (93.64% ± 0.95) 

and VASC (93.37% ± 0.60) and slightly lower for NV (63.92% ± 1.43) and MEL (62.07% ± 1.57). 

Overall accuracy averaged 95.33% ± 0.45, with AK, SCC, and DF achieving the highest individual 

accuracies (above 98%). The F1 score, reflecting the harmonic mean of precision and recall, varied 

from  59.34%  ±  1.44  for NV  to  96.05%  ±  0.65  for  AK.  The  overall  F1  score was  80.82%  ±  1.90, 

highlighting the modelʹs balanced performance across all classes. 
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4. Discussion 

The  results of  this study confirm  the effectiveness of  the proposed hybrid approach  for skin 

lesion classification. By integrating the Hermite transform with the Radial Fourier–Mellin and Hilbert 

transform,  we  achieved  a  balanced  extraction  of  local  and  global  features  essential  for  robust 

classification. The Hermite  transformʹs capability  to decompose  images  into  localized polynomial 

coefficients allowed us to analyze fine‐grained spatial details within skin lesions, particularly in the 

RGB channels. This analysis is critical for identifying pigmentation, texture variations, and boundary 

definitions, which are vital in distinguishing benign lesions from malignant ones. 

On  the  other  hand,  the  Radial  Fourier–Mellin  transform  ensured  scale  and  translation 

invariance, addressing challenges posed by varying  lesion sizes and positions across  images. The 

Hilbert transform further complemented these by introducing rotational invariance, thus generating 

repeatable  and  stable  signatures.  Combining  these  three  transforms  provided  a  rich  and 

comprehensive  feature  set,  enhancing  the discriminative  power  of  the machine  learning models 

applied. 

The multi‐channel analysis  (RGB and grayscale) proved particularly beneficial. Each channel 

emphasized unique lesion characteristics, with the red channel highlighting pigmentation, the green 

channel  focusing  on  intermediate  structures,  and  the  blue  channel  enhancing  fine  textures. This 

approach aligns with recent findings where multi‐channel feature extraction outperformed single‐

channel medical image analysis methods. 

Table  2  presents  a  comparative  analysis  of  various  state‐of‐the‐art  models  for  skin  lesion 

classification using different datasets. Among the listed models, Inception‐v2 achieved the highest 

recall (0.9015) and F1 score (0.8876), indicating strong sensitivity and overall performance. VGG19 

and ResNeXt101  also demonstrated  competitive  results  across precision,  accuracy,  and  F1  score. 

However,  it  is  important  to highlight  that our proposed method shows strength  in  terms of  false 

positive (FP) rate and specificity, with values of 0.0267 and 0.9733, respectively—metrics not reported 

for  the other methods. This  low FP rate suggests a significantly reduced rate of  incorrect positive 

classifications, which  is  crucial  in medical  applications  to  avoid  unnecessary  patient  anxiety  or 

treatment. Despite a slightly lower recall (0.8124), the method achieves the highest accuracy (0.9533) 

among  all models  compared,  indicating  excellent  overall  classification  reliability.  These  results 

demonstrate that our approach provides a more balanced trade‐off between minimizing false alarms 

and maintaining high classification performance. 

Table 2. Comparison with state of art. 

Model  Dataset  Recall 
FP 

rate 
Specificity Precision Accuracy F1 Score

2D superpixels + RCNN [23] HAM‐10000  0.8450  ‐  ‐  0.8349  0.8550  0.8530 

ResNeXt101 [24]  ISIC‐2019  0.8810  ‐  ‐  0.8740  0.8850  0.8830 

MobileNetV2 [25]  ISIC‐2019  0.8633  ‐  ‐  0.7890  0.8530  ‐ 

VGG19 [26]  ISIC‐2019, Derm‐IS0.8666  ‐  ‐  0.9070  0.8857  0.8765 

ConvNet [27]  ISIC‐2019, Derm‐IS0.8747  ‐  ‐  0.8614  0.8690  ‐ 

Inception‐v2 [28]  ISIC‐2019  0.9015  ‐  ‐  0.8737  0.8904  0.8876 

This work  ISIC‐2019  0.8124 0.0267  0.9733  0.8077  0.9533  0.8082 

While  the results are promising, some  limitations exist. The computational complexity of the 

Hermite transform, mainly when applied to multiple channels and high‐resolution images, can be a 

challenge for real‐time deployment. Future studies could explore optimizing this process or applying 

dimensionality  reduction  techniques  to  streamline  computation.  Testing  the  method  on  other 

datasets or clinical settings will also validate its generalizability and real‐world applicability. 

This study presents a novel hybrid approach for automated skin lesion classification, combining 

the Hermite  transform, Radial Fourier–Mellin  transform, and Hilbert  transform.  Integrating  these 

transforms  across  RGB  and  grayscale  channels  allows  for  comprehensive  feature  extraction, 
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capturing  both  global  invariance  properties  and  localized  spatial  details.  Experimental  results 

demonstrate  that  this  method  enhances  classification,  accuracy  and  robustness,  outperforming 

traditional transform‐based approaches. 

The findings underscore the potential of hybrid feature extraction techniques for advancing AI‐

driven dermatological diagnosis tools. Future work will focus on reducing computational costs and 

expanding  the modelʹs  validation  to  other  datasets  and  clinical  applications.  By  improving  the 

precision  of  automated  skin  lesion  classification,  this method  contributes  to  non‐invasive,  early 

detection strategies, ultimately benefiting patient care and clinical decision‐making. 
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