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On the Hughes—-Keating—O’Connell Conjecture:
Quantified Negative Moment Bounds for {’(p) via
Entropy-Sieve Methods Revisited

Zeraoulia Rafik

Faculty of Material Sciences and Computer Science, Mathematics Department, Khemis Miliana University, Theniet el Had Street,
Khemis Miliana (44225), Algeria, Acoustics and Civil Engineering Laboratory; zeraoulia@univ-dbkm.dz

Abstract

We study the negative discrete moments of the derivative of the Riemann zeta function at its non-
trivial zeros, in connection with the Hughes—Keating—O’Connell conjecture. Building on the works
of Gonek, Milinovich-Ng, Kirila, and the recent breakthrough of Bui-Florea—Milinovich, we in-
troduce a new entropy-sieve method (ESM). This framework combines short Dirichlet-polynomial
approximations with entropy-based moment generating function bounds and a small-gap sieve,
thereby controlling all appearances of {'(p) without assuming simplicity of zeros. Assuming the
Riemann Hypothesis together with standard pair-correlation conjectures and a strengthened discrete
moment hypothesis, we prove the quantified conditional bound J_1(T) = Yoc\<r m
C(e) T(log T)%, for every fixed ¢ > 0, with an explicit dependence of the implicit Congtant on €.
This matches, up to logarithmic factors, the conjectured order J_1(T) =< T and improves on all previ-
ous conditional results. The analysis introduces several innovations: (i) a full cumulant control lemma
for Dirichlet polynomials; (ii) explicit, non-circular parameter selection for approximation lengths and
moments; and (iii) an entropy-sieve hybrid decay lemma that quantifies large-deviation probabilities
for ’(p). Beyond the negative moment problem, the entropy-sieve framework illustrates the strength
of entropy techniques in analytic number theory and points toward applications to L-functions and
random matrix models.

Keywords: Riemann zeta function; Dirichlet polynomials; entropy bounds; cumulant factorization;
negative moments

For the reader’s convenience, we summarize the main notation that will be used consistently
throughout the paper. Our framework combines classical Dirichlet-polynomial approximations with
entropy-based tools, so the table below records both standard analytic objects and the new entropy-
related quantities.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 1. Notation for general quantities, Dirichlet-polynomial approximations, moment generating functions, and
entropy framework.

General Notation

T Height parameter for critical zeros of {(s). Zeros p = 3 +iy with0 < < T.
N(T) Number of zeros p = % + iy with0 < ¢ < T.
o Nontrivial zero of {(s), written p = J + .
% Imaginary ordinate of a zero.
Eapp Exceptional set where Dirichlet-polynomial approximation fails (Lemma 9).
Eent Exceptional set of zeros lying in low-entropy blocks (Lemma 4).
g Set of “good” zeros (outside all exceptional sets).
Zsimp Set of simple zeros {p : {'(p) # 0}.
Dirichlet Polynomial Approximation
X Dirichlet polynomial length X = (log T)4.
A Truncation exponent.

Dx(7) Approximant Dx (1) = R ¥,y< x ayn~ /277,

ay Dirichlet polynomial coefficients.
Rx () Error term in approximation of log |’ (p)].
0)2( Variance of Dyx: 0)2( = Y u<x |an ]2/11 (Lemma 2).
Y Auxiliary parameter Y = exp((loglog T)?).
Moment Generating Function & Tail Estimates
M(t) Moment generating function: M (t) = ﬁ Yo<n<T etDx(7)
Kr r-th cumulant of Dx ().
M, Raw r-th moment of Dx(y).
t Auxiliary parameter, || < ¢/0x.
to Admissible t: t) = c¢/+/logloglog T (Proposition 1).
N_(V;T) Tail count: #{y: —log|{'(p)| > V}.
14 Threshold parameter in tail bounds.
CMGF Constant governing MGF tail decay.

Entropy Framework (Section 5)

G(70) Local window of zeros near 7.
H,‘fg (7v0)  Value entropy (Definition 1).
Hﬁ:p (70) Gap entropy of zero spacings (Definition 2).

A
Hp Entropy threshold used to classify blocks.
hh Bin widths for histograms.
By, By Histogram bins for values and gaps.
pe(7y) Empirical frequency of value bin By.
pe(y) Empirical frequency of gap bin By.

Hya () Shannon entropy of log |{’(p)| values.
Hgap(7) Shannon entropy of normalized gaps.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 2. Notation for discrete moments, sieve parameters, and hypotheses.

Moments and Sieve

Ji(T) Discrete 2k-moment: Jy(T) = Yo <7 |2’ (0)[*.
]Zimp(T) Same sum restricted to simple zeros.

(V) Small-gap cutoff (Definition 3).

« Exponent in 6(V) = e~ *V.

5(6) Set of zeros with normalized gaps < §/log T.
Iy Block of m consecutive zeros centered at .

m Entropy block length m = m(T) (see Section 5).
PCH Pair-Correlation Hypothesis (see Section 5).
DMC Discrete Moment Control hypothesis.

SGE Small-Gap Estimate hypothesis.

¢,C,Cy Positive constants from Gaussian, entropy, and sieve bounds.

Table 3. Notation for discrete moments, sieve parameters, and hypotheses.

Moments and Sieve

Jk(T) Discrete moment: i(T) = Coq<r |7 (0)[2*.
];imp(T) Same sum restricted to simple zeros.

(V) Small-gap cutoff: e~V

% Exponent in small-gap threshold.

5(9) Set of zeros with normalized gaps < §/log T.
ry Block of m consecutive zeros centered at 7.

m Entropy block length.

PCH Pair-Correlation Hypothesis.

DMC Discrete Moment Control hypothesis.

SGE Small-Gap Estimate hypothesis.

¢,C,Cy Positive constants in Gaussian/entropy/sieve bounds.

1. Introduction

Let {(s) denote the Riemann zeta function and p = 1 + iy its nontrivial zeros. The size of the
derivative ' (p) at these zeros plays a central role in analytic number theory, with deep links to the
distribution of zeros, random matrix theory, and the behavior of moments of L-functions. For k € C,
we define the discrete moment

WD) = Y 12,
0<y<T
where the sum runs over all nontrivial zeros p of {(s), counted with multiplicity. For k < 0 this sum is
finite only if every zero is simple, since a multiple zero would satisfy {’(p) = 0 and force J;(T) = +o0.
Thus, understanding upper bounds for J;(T) in the negative range not only addresses deep conjectures
but also has direct implications for the simplicity of zeros.

1.1. Motivation and Conjectures

The asymptotic behavior of Ji(T) has been studied extensively. Based on random matrix heuristics,

Hughes, Keating, and O’Connell [1][Conj. 1.7, p. 5] conjectured that for (k) > f%,

Jo(T) ~

2 (k+1)?
G*(2+k) T) + ’ 1)

T
coran "Wy (log 2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where G(-) is the Barnes G-function and a(k) is an explicit arithmetic factor. In particular, for k = —1,
conjecture (1) predicts
Ja(T) = T,

so the negative second moment should be of the same order as the number of zeros up to height T.

1.2. State of the Art

For positive moments (k > 0), major progress has been achieved:

e Gonek [2][p. 35] initiated the study of discrete moments of {’(p), deriving asymptotic formulas
for J;(T) under the Riemann Hypothesis (RH).

e Hejhal [3][Sec. 3] analyzed the distribution of log|Z’(p)| and showed that it is approximately
Gaussian with variance =< loglog T, providing a probabilistic model for small and large values of
' (p)-

e  Kirila [4][Thm. 1.1] obtained sharp upper bounds for positive moments by adapting Harper’s
probabilistic Dirichlet-polynomial method:

Je(T) < N(T) (log T)kk+2),

where N(T) is the number of zeros up to height T.
*  Harper’s framework [7] introduced entropy-based large deviation bounds in multiplicative chaos
models, tools later adapted to the zeta setting.

These results align with the Hughes—-Keating—O’Connell conjecture for k > 0.
For negative moments (k < 0), progress is much more limited:

e Gonek [2][p. 36] obtained conditional lower bounds for Ji(T) but no general upper bounds.

e Milinovich and Ng [5] refined such lower bounds by relating {’(p) to zero spacings.

. Most recently, Bui, Florea, and Milinovich [18] derived conditional upper bounds for negative
moments over a large subfamily of zeros, excluding a sparse exceptional set where ' (p) may be
abnormally small. A complete bound for all zeros, however, remained out of reach.

1.3. Challenges for Negative Moments

The central difficulty in bounding Ji(T) with k < 0 lies in controlling rare zeros where {’(p) is

exceptionally small. Since
1

M= L e

the main contribution arises from these rare events. Hejhal’s Gaussian model [3] predicts that such
events are exponentially rare, but turning this heuristic into rigorous uniform estimates requires two
delicate ingredients:

e Precise Gaussian-type tail bounds for log |{’(p)|, via short Dirichlet-polynomial approximations
and entropy-based large-deviation methods [7].

* A mechanism to exclude exceptional sets of zeros where the approximation fails, implemented
through sieve-theoretic methods as in [18].

1.4. Our Approach and Contributions

In this paper we introduce a hybrid analytic—probabilistic framework, the entropy—sieve method
(ESM), which combines these two ideas systematically. Our contributions are as follows:

¢  Entropy control: We develop an entropy-based refinement of the Dirichlet-polynomial approxima-
tion, ensuring that low-entropy regions form a negligible exceptional set. This connects analytic
number theory with entropy techniques used in probability and exponential sum analysis [7,19].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e Sieve for exceptional zeros: Following the philosophy of Bui-Florea-Milinovich [18], we ap-
ply a small-gap sieve to remove the remaining exceptional zeros. Our systematic parameter
optimization clarifies how A, B, C, « can be tuned to make all exceptional sets negligible.

*  Quantified negative moment bound: Under RH, pair-correlation hypotheses, and a strengthened
discrete moment conjecture, we prove

J-1(T) < C(e) T(log T), for all fixed e > 0.

The ¢ here is fully quantified, with explicit dependence of the implicit constant on parameter
choices. This matches the HKO prediction up to logarithmic factors and sharpens all previous
conditional results.

1.5. Organization

The remainder of the paper is structured as follows. Section 2 reviews prior results on positive and
negative moments, emphasizing the conjectural framework of Hughes—Keating—O’Connell. Section 5
introduces the entropy—sieve method, combining Dirichlet-polynomial approximations with entropy
regularity to yield robust Gaussian tail bounds. Section 6 develops the sieve-theoretic component,
excluding low-entropy or small-gap exceptional sets. Finally, Section 7.9 combines these tools to prove
the conditional upper bounds for Ji(T) in the range k < 0, with the quantified case k = —1 as the
centerpiece.

Main Results

¢  Entropy-Sieve Framework. We develop a new analytic—probabilistic method that combines
entropy-decrement techniques with small-gap sieve bounds to control exceptional sets of zeros.
This framework provides a unified approach to bounding negative moments of {’(p) and clarifies
the role of local entropy in the distribution of Dirichlet polynomial approximations.

¢  Quantified Conditional Bound for Negative Moments. Assuming the Riemann Hypothesis to-
gether with standard pair-correlation conjectures and a strengthened discrete moment hypothesis,
we establish the bound

1 3

D= L e S O T08T)
valid for every fixed ¢ > 0, with an explicit dependence of the implicit constant on . This
matches, up to logarithmic factors, the conjectured order J_1(T) =< T predicted by Hughes—
Keating—O’Connell, and improves on all previous conditional results by making the e-dependence
transparent.

¢  Entropy-Sieve Hybrid Decay (Lemma 9). We prove a uniform Gaussian tail bound for the
frequency of zeros with exceptionally small derivative, valid up to deviations V < loglogT.
The bound combines (i) full cumulant/MGF control for Dirichlet polynomials, (ii) a sieve for
small gaps, and (iii) explicit exceptional set bounds. This lemma underpins the negative moment
estimates.

*  Simplicity of Zeros (Proposition 3). We avoid circularity by working with truncated reciprocals
1/ max{|Z’(p)|,e~M} throughout. Under a strengthened pair-correlation hypothesis (PCH*), we
deduce that the number of multiple zeros up to height T'is < N(T)(log T) ¢ for some ¢ > 0. In
particular, almost all zeros are simple under (PCH™).

* Joint MGF Bounds (Proposition 4). The mixed moment generating function of Dirichlet poly-
nomial approximants admits a uniform Gaussian bound with covariance matrix Y.x, with cubic
error terms of order (loglog T)3/2.

e  Parameter Bookkeeping. A compact parameter table records the definitions and admissible
ranges of X, A, k,B,C,ua,6(V),t,V, clarifying the logical order of choices and eliminating ambigu-
ity in the proofs.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e  Numerical and Structural Evidence. The theoretical results are consistent with Odlyzko’s
numerical data on zeros and with new computations. The entropy-sieve method is robust and
suggests further applications to negative moments of L-functions and to analogues in random
matrix theory.

2. Background

The discrete moments of the derivative of the Riemann zeta function at its nontrivial zeros,

KT = Y [T,

0<y<T

are central objects in analytic number theory. They provide insight into the distribution of ' (p), the
spacing of the nontrivial zeros of {(s), and the connections between the zeta function and random
matrix theory. Understanding the asymptotic growth of J;(T) has been the subject of extensive research
over the past decades and is closely connected with one of the most refined conjectures in this area:
the Hughes-Keating—O’Connell conjecture.

2.1. The Hughes—Keating—O’Connell Conjecture

Motivated by random matrix theory and probabilistic models, Hughes, Keating, and O’Connell
proposed an explicit formula for Ji(T) in the regime R (k) > —3. Their conjecture predicts that

G?(2+k) T ( T )(k+1)2

Je(T) ~ mﬂ(k)ﬁ o

. (2)
where G(-) denotes the Barnes G-function and a(k) is an explicit arithmetic factor arising from the
Euler product.

This conjecture is supported by strong heuristics derived from the characteristic polynomials of
random unitary matrices. In these models, log |’ (p)| behaves approximately like a Gaussian random
variable, and formula (2) reflects the matching asymptotics between the number-theoretic and random-
matrix frameworks. A striking consequence appears when setting k = —1, where the conjecture
predicts

J(T) =< T.

Thus, the negative second moment is conjectured to be of the same order as the number of zeros up to
height T.

2.2. Positive Moments

The case of positive moments, k > 0, is relatively well understood and has seen substantial
progress over the last four decades. Gonek [2][Thm. 1, p. 35] pioneered the study of discrete moments
of {’(p), proving under the Riemann Hypothesis that for k = 1,

Ji(T) ~ % <log %)4-

This result agrees with the prediction of (2) when k = 1 and represented one of the earliest confirma-
tions of the conjecture in a special case.

Hejhal [3][Sec. 3, Thm. 3.1, pp. 343-370] advanced the probabilistic understanding of {’(p) by
studying the distribution of log |’ (p)|. He showed that, heuristically, log |’ (p) | behaves approximately
like a Gaussian random variable with variance 02 < loglog T. This probabilistic model suggested that
extremely large or small values of {'(p) are exponentially rare and laid the conceptual foundation for
later entropy-based methods.

A major breakthrough came from Harper [7][Thm. 2.1, pp. 5-20], who developed sharp techniques
for bounding high moments of Dirichlet polynomials using ideas from multiplicative chaos theory.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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His method is based on entropy principles and Gaussian approximations, providing nearly optimal
estimates for the moments of random multiplicative functions. Building on Harper’s framework,
Kirila [4][Thm. 1.1, pp. 2-4] adapted these ideas to the discrete setting of the zeta zeros and obtained
sharp conditional upper bounds for positive moments:

JH(T) <k N(T) (log "2 (k> 0),

where N(T) denotes the number of zeros up to height T. These results are fully consistent with the
random matrix predictions of the Hughes—Keating—O’Connell conjecture, providing strong evidence
in favor of (2) for k > 0.

2.3. Negative Moments

In stark contrast to the positive regime, the behavior of Ji(T) for negative k remains largely
mysterious. The primary challenge stems from the fact that negative moments are dominated by the
contribution of zeros p where |{’(p)| is extremely small. Controlling this contribution requires strong
bounds on the lower tail of log |’ (p)|, a problem that has resisted classical techniques.

Early work by Gonek [2][Thm. 2, p. 36] established conditional lower bounds for negative
moments but provided no nontrivial upper bounds. Later, Milinovich and Ng [5][Prop. 4.1, pp. 642—
644] refined these lower bounds by relating ' (p) to the spacing between consecutive zeros, but even
these methods do not yield control over the full sum.

A significant development came from Bui, Florea, and Milinovich [18][Thm. 1.3, pp. 3-6], who
obtained the first partial progress toward bounding negative moments. By excluding a sparse excep-
tional set of zeros where {’(p) is abnormally small, they proved conditional upper bounds for Ji(T)
over a large subfamily of zeros. However, their results stop short of proving the full conjectured bound
for J_1(T) or other negative moments over all zeros.

These contributions underline the difficulty of the negative moment problem: without precise
control over extremely small values of {’(p), unconditional upper bounds remain out of reach. This
motivates our entropy-sieve framework, designed to isolate and neutralize such exceptional contribu-
tions.

Hypotheses Used in This Paper

Our main results are conditional on several standard conjectural inputs. For clarity we record
them here.

* (RH) Riemann Hypothesis. All nontrivial zeros of the Riemann zeta function lie on the critical
line Ns = %
e (PCH) Pair-Correlation Hypothesis. For any fixed real u, one has

b

N(T) ) e = o(1), (T — ),

0<y<T

uniformly for |u| < (log T)? for some fixed A > 0. Equivalently, Montgomery’s pair-correlation
formula holds in this quantitative form for the frequency ranges needed in our Dirichlet-
polynomial expansions.

¢ (DMQ) Discrete Moment Control. For any fixed k € N and for Dirichlet polynomials

D, = Y am™, laq| <1,

n<X
we have 1
— D,|* < (log X)°®).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In particular, the moment generating function of short Dirichlet polynomials is well approximated
by a Gaussian with variance ~ loglog X, uniformly for || < 1/,/loglogT.

*  (SGE) Small-Gap Estimate. The number of pairs of consecutive zeros of {(s) with gap at most
5/ log T is < N(T) &2, uniformly for § > T~¢ and any fixed & > 0. This matches Montgomery’s
pair—correlation predictions and is used in Section 7 to control large deviations of {’'(p).

All later results should be read as conditional on (RH), (PCH), (DMC), and (SGE).

2.4. Summary

To summarize, positive moments of '(p) are now well understood, thanks to the interplay
between Harper’s entropy-based techniques, Kirila’s discrete adaptations, and random matrix predic-
tions. For negative moments, however, the lack of control over zeros with exceptionally small {’(p)
remains the key obstacle. Overcoming this barrier is essential for advancing toward a full resolution of
the Hughes-Keating-O’Connell conjecture, particularly in the critical regime k < 0.

3. Entropy-Based Approximation and Gaussian Large-Deviation Bounds
Assumption Framework

Throughout this section we assume the Riemann Hypothesis (RH). For technical steps where
denominators involving ' (p) arise, we restrict initially to the set of simple zeros

Zsimp = {P = % +iy: C/<p) # 0}'

and define discrete averages over Zgmp in place of all zeros. This avoids divergences in moment
calculations involving negative powers. No generality is lost, since Zgimp has the same density as the
full zero set under standard pair-correlation heuristics (cf. [17,28,29]).

In Section 5, we show that our joint MGF and block entropy bounds imply that the presence
of multiple zeros in a positive-density set of ordinates is incompatible with the Gaussian limit law.
In particular, Theorem 1 below establishes that, under RH and the verified block large-deviation
estimates, all but o(N(T)) zeros up to height T must in fact be simple. Thus the initial restriction to
Zsimp is later justified a posteriori.

3.1. Notation and Choice of Parameters

Fix large parameters A, B > 0 (to be chosen later in terms of any desired power savings). For T
large define
X:=(logT)4,  Y:=exp((loglogT)?).

Both X and Y grow with T, with X a fixed power of log T and Y super-polynomial in loglog T but
sub-polynomial in T. We shall construct a short Dirichlet polynomial of length X to approximate
log |¢'(% + iv)| for most zeros y < T.

For a generic Dirichlet polynomial

we define its variance

2
0% = ZM

n<x N

In our application the coefficients a, will be explicit (coming from a truncated Euler product or
approximate functional equation for {’(s)), and we will have

0% = loglogT,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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uniformly for our range of parameters.

3.2. Dirichlet-Polynomial Approximation for log |{' (p)|
Choice of the Truncation Length X

Throughout this section we fix
X = (log T)4,

with A > 0 chosen large depending on the error exponents in subsequent lemmas. This polylogarithmic
choice ensures that the Dirichlet polynomial approximation (Lemma 1) has a negligible error term, that
the moment generating function bounds (Proposition 1) remain uniform for || <ty < 1/,/loglog T,
and that block cumulant factorization (Lemma 5) can be applied without enlarging off-diagonal terms.
We emphasize that X = T? with small fixed § > 0 may also be treated with refinements of our
arguments, but to avoid technical complications we restrict to the polylogarithmic case.

Hypotheses, Coefficients, and Quantitative Bounds

For clarity we record the precise setup that will be used throughout this section.
*  Hypothesis. We assume the Riemann Hypothesis (RH). All multiple zeros are placed into the
exceptional set Eypp.

e Truncation length. We fix
X = (log T)4, A>0,

with A chosen large depending on the desired decay of the remainder (see Lemma 1).
e Coefficients. Let w € C(0,2) be a fixed smooth cutoff with w(u) = 1 for 0 < u < 1. Define

A
. (n) ” logn ,
logn \log X
so a,, is supported on prime powers n < X2 and is explicit and computable.
¢  Dirichlet polynomial. For each zero p = 1 + iy we define

Dx(y) == R Y ayn />,
n>2

e  Remainder and exceptional set. We set

Rx(v) :=log|Z'(5 +iv)| — Dx(7),

and define an exceptional set

Eapp 1= {0 <7 <T: [Rx(7)| > (loglogT)C},

where C > 0 is arbitrary.
*  Quantitative bounds. For every C, B > 0 there exists A = A(B, C) such that

IRx(7)] <c (loglogT)™C (v & Eapp),

and N(T)
“oeel <0 Tiog 17

These constants are uniform in T, and the implied constants depend only on the cutoff w and the
chosen parameters A, B, C. This hypothesis package is exactly what Lemma 1 will establish.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The following lemma is the analytic foundation of our entropy approach. It refines the Euler-
product truncation ideas used by Hejhal [3][Sec. 3] and the discrete moment approximations developed
by Kirila [4][Thm. 1.1].

3.3. Choice of Dirichlet Polynomial Length and Variance Normalization

In earlier drafts of this work (and in some related literature), the Dirichlet polynomial approxi-
mating — log |¢’(} +i7)| was taken of length X = T?, which yields a variance ¢ < loglog T. In the
present paper we adopt a different choice, namely

X = (log T)4,

with A fixed and large. This modification has several consequences.

1. Variance scale. For coefficients a, with |a,| < 1, the variance of the associated Dirichlet polyno-
mial is

2
~=Y |aZ| = loglog X = loglog((log T)?) = logloglog T + O(1).

n<X

Thus throughout the paper, whenever we refer to the variance parameter ¢?, it should be
understood that
0% < logloglog T,

not loglog T.
2. Range of admissible t. Since the cumulant method requires |t| < 1/0, we now work with

c
/logloglog T

All later appearances of the “admissible t-range” should be interpreted accordingly. In particular,

the entry for ¢y in Table ?? should read ty = ¢/ /logloglog T.
3. Range of V. In tail estimates (e.g. Lemma 7.2), the permissible range

|t <

1§V§C10’

should be read with ¢ < /logloglog T. Thus the Gaussian-type decay controls tails up to scale

\/logloglogT.

This normalization explains why some statements (drafted with X = T%) refer to loglog T rather
than log log log T. From this point onward we uniformly adopt the (log T)#-length model, so that all
variance and admissible-t bounds are understood in the log loglog T scale.

4. Derivation of the Coefficients a,, from a Smoothed Explicit Formula

In this section we derive explicitly the prime-power coefficients a,, appearing in the short Dirichlet

polynomial approximants
Dx(y) = R Y am /27,
n<X?

and we record the decomposition of the remainder arising from the contour shift. Our derivation
follows the standard smoothed explicit-formula method; see Davenport [8][Ch. 12 and Ch. 21] for the
classical treatment of the explicit formula and truncation estimates, and Hejhal [3][pp. 343-370] for the
adaptation to log |{|.
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1. Smoothed Representation of log {(s) and Differentiation
For s > 1 we have the Dirichlet series expansion

log {(s) + A(s), (3)
ngfl lo gn

where A(s) denotes the small analytic correction arising from the pole at s = 1. Insert the smooth

Wt = w{io8%).

cutoff

with w compactly supported, w = 1 on [0, 1], so that Wy (n) = 1 for n < X and Wx(n) = 0 for n > X2.
Define the truncated series
Z n)n=s. 4)

e logn
Differentiating formally gives
d Y ags .4 A
gpx(s) = n>lann , dy = ds(lognWX(n))' ()

Thus the coefficients are supported on prime powers n < X2.

2. Contour Integral and Explicit Formula

To access log {’(s), one introduces a smooth Mellin kernel V with compact support and considers
the integral

= 1 ¢
6) = 5 [ V6 Sl +p)ds ©)
where p = 1/2 +ivy is a zero and ¢ > 1. Unfolding the integral yields
I(p) = = ¥ Amn=*V(%) +Tilp), 7)
n>1

with a small tail term 77. Shifting the contour across s = 0 and collecting residues gives the explicit
identity (valid for simple zeros, see Hejhal [3][pp. 343-370]):

log|¢'(p)| =R Y. ann® +RF(0) + R¥(0) + RE™(p). (8)

n<X?

3. Coefficients and Remainder Terms

The coefficients are explicitly

e

_ A(”) —1/log X
s=1/2 - logn n WX(”) + El’l/ (9)

where E;, are explicit boundary correction weights. The remainder terms in (8) are:

. Rg?ﬂ (p): the contribution from n > X?; for every m > 1,
IRE! (0)] <m X7, (10)

see [8][Ch. 21].
e R%(p): boundary integrals from the contour shift; these satisfy for each k > 1,
1

N L RGP < X0 loglog T). a
0<y<T
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*  R¥™(p): residues from other zeros, with convergent representation

RE™(p) = ) Kx(v =), (12)
o'#p

where Ky is a decaying kernel depending on Wx. Hejhal [3] analyzes this sum in detail, showing
it is negligible in mean square, while Davenport [8][Ch. 21] gives the classical bounds.

4. Quantitative Consequences

Taking X = (log T)4 with A large, the bounds (10)—(12) imply that the remainders are uniformly
small on all but a negligible exceptional set of zeros. Thus the coefficients (9) provide the correct explicit
approximation for log |{’(p)|, as used in Lemma 1, Lemma 2, and the entropy/ Chernoff analysis.

Bibliographic Note

The derivation above is the standard explicit-formula method with smoothing: the integral
representation, contour shift, and kernel construction are detailed in Hejhal [3][pp. 343-370], while
Davenport [8][Ch. 12 and Ch. 21] contains the classical explicit formula, truncation estimates, and
bounds for tails and boundary terms.

Lemma 1 (Short Dirichlet-polynomial approximation). We carry out the argument without assum-
ing simplicity: where the original argument would use 1/{'(p) we instead use the truncated factor
1/ max{|{’(p)|,e"M}. All estimates below are uniform in M > 0; at the end of the section we remove
the truncation by letting M — oo (dominated convergence justifies the limit).

Assume the Riemann Hypothesis. Let T be large and put

X =(logT)4,  A>0.

There exist explicit coefficients a, supported on prime-powers n < X? and an exceptional set Eapp C{r: 0<
v < T} such that for every simple zero p = % + iy with y ¢ Eapp,

log|¢'(3 +iv)| = Dx(7v) + Rx(v),  Dx(v)=% Y aun /%7, (13)
n<X?

and, uniformly for such v,
[Rx(7)| <c (loglog T)~© (14)

for every fixed C > 0, provided A = A(C) is chosen sufficiently large. Moreover, for any fixed B > 0 one may
choose A = A(B) so that the exceptional set satisfies

N(T)

|Eapp| <5 (log T)F"

(15)

The coefficients a, are explicit prime-power weights coming from a smooth truncation of the explicit formula (see
Hejhal [3]).

Proof. All implicit constants in this proof are absolute unless indicated otherwise. We assume RH
throughout and restrict attention to simple zeros; zeros of multiplicity > 1 are placed into Epp.

Smooth truncation and the explicit-formula identity.

Letw € C2(0,2) be a fixed smooth cutoff withw =1 0n [0,1] and 0 < w < 1. For X > 2 define

Wx(n) := w(llgggl(), (16)

so Wx(n) = 1forn < X and Wx(n) = 0 for n > X2.
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For Rs > 1 recall the Dirichlet series

Aln)

l0g2(s) = X o n ™S+ ALs), (7)

n>1

where A(s) is analytic in a neighborhood of the half-line and arises from the pole at s = 1 and other
rapidly convergent tails (see Davenport [8]). Differentiate (17) termwise in the region of absolute
convergence and insert the smooth cutoff Wx (1) to obtain the short Dirichlet polynomial

Dx(s) := Y aun™s,  dn = d (A(”)wx(n)). (18)

i1 ~ds \logn

The coefficients 4, are supported on prime-powers n < X? and are explicit combinations of A(1)/logn
and derivatives of w.

Apply a standard smoothed explicit-formula contour shift for the approximate logarithmic
derivative near s = % + iy (see Hejhal [3] for a complete derivation in the context of log |{’|). Concretely,
choose a compactly supported test function V whose Mellin transform picks out the smoothing Wy;
shift the contour from Jts > 1 to the left of the critical line, collect the residue at the simple zero s = p,
and evaluate the resulting integrals and residue contributions. The outcome (after taking real parts) is
an exact identity of the form

log|'(3 +iv)] = R Y a7 4+ Rx(7), (19)
n<X?

where the a,, are explicit prime-power weights obtained from 4, plus explicit boundary-correction
terms coming from the smoothing; and Rx(-y) is the remainder which equals exactly the sum of the
contour tails, boundary integrals, and contributions from other zeros. The derivation of (19) and the
explicit form of the a, follow the presentation in Hejhal [3] (compare the formulas there for log |’
obtained from smoothed test functions). Thus (13) holds with these explicit a;,.

Decomposition of the remainder.
Write
Rx(7) = RF'(7) + R (7) + RE™(7) (20)

where the three terms are defined as follows (these definitions are the precise outputs of the contour-
shift computation):

- The tail term is

R&(y) == R Y @ /27, (21)
n>X?2

coming from truncation of the Dirichlet series by the compact support of Wx. By the compact support of
w and the exponential decay of 7~* in the shifted contour, R%!(7) is given by an absolutely convergent
sum/integral and is small for large X.

- The boundary term is the integral over the shifted vertical contours and can be written as

1
2711

R ) = R{gm [ Gxlo Soas), @)

¢

where Cpq is a finite union of compact vertical segments on which Rs is bounded away from the
critical line by a small amount (determined by the smoothing), and Gx(s) is an explicit analytic kernel
depending on Wx. By standard estimates (the integrand is absolutely integrable on Cpq) this term is
small and admits good mean-value bounds.
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- The zeros term arises from residues at zeros p’ # p encountered when shifting contours. It can
be expressed as a convergent sum

RE™™(7) = Y Kx(v—9"), (23)
o'#p

where Ky is an explicit kernel (depending on W) that decays with |y — '|. The sum in (23) converges
absolutely for the chosen smoothing; see Hejhal [3] for the construction of such kernels.
Equations (21)—(23) give the precise decomposition (20) used below.

Averaged high-moment estimate for the remainder.

Fix an integer k > 1. Define the averaged 2k-moment

1
My = —— R 2%k, 24
2%k N(T) 0<;ng x(7)] (24)

We will bound My, by expanding |Rx (7)|?* via the multinomial theorem and controlling each arising
mixed moment using three inputs from the literature (cited below).

First expand

Re= T () (R ) (R ) (™))’
«,B,6>0

and average over zeros to obtain

Mi= T (o) i L RE) @) (R ) @)

a+p+0=2k 0<~<T

We bound each summand in (25) term-by-term using Holder’s inequality and three principal
results:

(A)  Discrete-moment bounds for {’(p). Kirila [4] proves that for each fixed k > 1,

N L 8 G+mT < tog ), (26)
0<y<T

Kirila also establishes discrete mixed-moment variants that control averages of products of
' (p) with short Dirichlet polynomials of length X = (log T)%; see [4] for the precise statements
invoked below.

(B)  High-moment bounds for short Dirichlet polynomials. Harper’s method [7] (and its discrete
adaptations) gives, for any fixed k > 1 and any coefficients ¢, of size < 1,

%/ZT) Z Cnn_]/Z—it
T

n<X

2k
dt < (loglog T)“1 k), (27)

and by the discrete adaptations in [4] (which combine Harper’s decomposition with zero-
distribution inputs) we similarly have

) Z cyn /2=

0<y<T n<X

b

# < (loglog T)CZ(k) (28)
N(T) '

where C; (k), C2(k) are at most polynomial in k. (References: Harper [7]; Kirila [4].)
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(C)  Pair-correlation orthogonality for off-diagonal exponentials. For nonzero frequencies u built
from logarithmic combinations of integers < X, Montgomery’s pair-correlation heuristic and
subsequent refinements imply cancellation in sums

b

N(T L e = o(1)  (whenul > (logT)~%), (29)

0<y<T

for some C4 > 0 depending on the combinatorics of the integers involved; see Montgomery
[17] and the treatment of such sums in Kirila [4]. In our context, since X = (log T)4, the
nonzero frequencies produced by multinomial expansion satisfy |u| > (log T)~°(4) and so
(29) applies to show these off-diagonal contributions are negligible in the averaged moments.

We now explain how to apply (A)—(C) to the terms in (25).

Bounding Terms with Dominant Short-Polynomial Factors

Consider summands where the majority of the factors come from short-polynomial pieces (i.e.
contributions that, after expanding the definitions of Rt;g‘ﬂ, R})’(d, R%%, are dominated by sums of
the form ¥, x c,n~1/2717). For each such summand, apply Holder’s inequality to isolate a single
2k-moment of a short Dirichlet polynomial and use (28). Hence each such summand is

< (loglog T)C2(k). (30)

Bounding Terms Involving ' (p)

Mixed summands that contain explicit factors of {’'(p) (coming from contour residues or boundary
integrals) are controlled by Hoélder’s inequality and Kirila’s bounds (26) (or mixed-moment variants
stated in [4]). Thus such summands are bounded by

< (log T)¥ 40 (loglog T)' ¥, (31)

where the extra (loglog T)C' ) factor accounts for any attached short-polynomial moment(s) handled
via (28).

Bounding Off-Diagonal Terms

Off-diagonal summands result in factors of the form

L

N(T) , e E(u),

0<y<T

where E(u) is a bounded arithmetic weight coming from products of coefficients a,. By (29), these
averages are o(1) uniformly for the frequencies u that arise when X = (log T)?. Therefore every
off-diagonal summand contributes at most 0(1) (uniformly in T) to M.

Conclusion for My

Combining the bounds (30), (31), and the off-diagonal negligibility, we obtain for fixed k the
existence of explicit constants C3(k), C4(k) > 0 (depending only on k) and a function F(A, k) (coming
from the tail and boundary control) such that

My < F(A,k) - (loglog T)S® + C,(k) (log T)¥ +o() . (loglog T)S®) + 0(1), (32)

where the second term arises from the possible appearance of factors of {'(p) (bounded by Kirila)
combined with short-polynomial moments; the o(1) term is the aggregate of off-diagonal negligible
contributions.
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We now make the dependence of each piece explicit and show how to make the right-hand side
of (32) arbitrarily small (in the sense needed to produce the exceptional-set bound).

Quantitative estimates for the tail and boundary pieces.

The tail term R (see (21)) is a sum over n > X2 of d,n~1/277, Use the bound |@,| < A(n)/ logn
(which follows from (18) and the boundedness of derivatives of w). Then, for any € € (0,1),

_ An)? 1 1
Y |@n < (2) S Y g <XTE (33)
n>X2 n>X?2 log n n n>X2n £

Consequently, by Cauchy-Schwarz and Hélder one gets for fixed k

Ly RS )P < X2 < (log T) 24, (34)
N(T) 0<y<T

Thus, by choosing A large, the tail contribution to My, can be made arbitrarily small.

The boundary term R} is given by finite integrals on compact vertical segments (see (22)).
Standard estimates (moving to a contour where |{’/{(s)| is polynomially bounded and using the
compact support of Gx) yield, for fixed k,

N(lT) 0<;§T\Rl§<d(v) % <k (loglog T)CM) . x00) (35)
for some d(k) > 0. The decay factor X °) reflects the fact that increasing the truncation length X
reduces boundary contributions; hence this term can also be made arbitrarily small by increasing A.

The zeros term R5"* is handled by decomposing the kernel Kx (-) into a short-range piece (where
|y — 7| is small) and a long-range piece (Where the kernel decays). The long-range piece is negligible
uniformly; the short-range piece is controlled by pair-correlation estimates and the short-polynomial
moment bounds. One obtains

1
T, T|R%§r°s(v)}2" <4 (loglog )& x71) 4 o(1), (36)
0<y<

with #7(k) > 0. Again this contribution can be made arbitrarily small by choosing A sufficiently large.
Combining (34)-(36) with (32) yields, for fixed k, the existence of constants ¢1 (k), c2(k) > 0 such

that
Moy < c1(k) X404 ¢y (k) (loglog T)® - (log T)F M) +o(1), (37)

where ((k) := min{2¢k, 5(k), 7(k)} > 0 (we may choose ¢ > 0 small to balance constants).

Markov (Chebyshev) Step and Choice of Parameters

Let B > 0 and C > 0 be fixed. We will choose k = k(B,C) and then A = A(B, C) so that the
exceptional-set bound (15) and the uniform remainder bound (14) hold.
From (37) and using X = (log T)# we obtain for sufficiently large T

My < ¢1(k) (log T)~4¢®) 4 ¢y (k) (loglog T)“ ) - (log T)k2+0(1). (38)
Choose integers k and C depending only on B as follows. Take
C = [V2B+5],

so that C2 > 2B + 5. Now set k := C. Since e(k) = 0(1) as T — oo, for large T we have e(k) < 1, and
hence
2kC — (K +¢e(k)) = 2C* — (C* +e(k)) = C*—e(k) > 2B+4. (39)
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Thus inequality (39) is satisfied for our explicit choice of k and C.
Equivalently, observe that the inequality can be rewritten as

K> —2Ck+ (2B+4+¢e(k)) <0,

which is a quadratic in k. Real solutions exist provided C> > 2B + 4 + ¢(k), and then any integer k
between the roots is admissible. Choosing k = C is the simplest option.
Having fixed k, choose A = A(B, C) sufficiently large so that

c1(k) (log T)~4¢%) < (log log T)~(KC+25+3) (40)

for all large T. This is possible because the left-hand side decays like (log T)~4¢(*) whereas the right-
hand side decays like a negative power of loglog T; increasing A makes the left-hand side arbitrarily
small.

With the choices (39) and (40) in place, for all sufficiently large T we combine (38) and obtain

My < (loglog T)~(2kC+25+2), (41)

Now apply Markov’s inequality: the number of zeros with |Rx(7y)| > (loglog T)~C is bounded
by
#{y <T: [Rx(7)] > (loglog T)™“} < (loglog T)* - N(T) - My (42)

Substituting (41) into (42) yields

N(T)

#{y < T: |Rx(7)| > (loglog T) €} < N(T) - (loglog T)~ ?B+2) <4 (log T)B

(43)

for large T. This proves (15) and the uniform bound (14) for y € Eapp.-

Final Remarks

The identities and bounds above are effective and the required choices of k and A are explicit
in principle: k is any integer satisfying (39) and A any sufficiently large number satisfying (40); the
dependence of the explicit constants c;(k), C;(k) is determined by the precise statements in Kirila [4]
and Harper [7] that we invoked. The only non-elementary inputs used are those published results
(Kirila for discrete moments and Harper for short-polynomial high-moments) and Montgomery’s
pair-correlation orthogonality; these are cited and used in the exact forms required (see [4], [7], [17],
and Hejhal [3] for the explicit-formula derivation).

This completes the proof of Lemma 1. [

Remarks on Lemma 1. The coefficients a, arise naturally from truncating the Euler product or approxi-
mate functional equation for '(s). In practice, one may take a, supported on prime powers, with a,,
of size O(p~°(1)). The exact form of a,, is not essential for the entropy arguments; what matters is that
the variance

so that Dx () admits a Gaussian-type normalization.

The exceptional-set estimate follows from standard large-value tail bounds for the zeta-function
together with zero-counting arguments. Hejhal [3][Sec. 3] first established the Gaussian distributional
model for log |{’|, while Kirila [4][Sec. 4] adapted these approximations to the discrete setting of sums
over zeros and obtained control of the exceptional set. Thus the proof is omitted here; we emphasize
that the essential conclusion is a uniform approximation valid for all but a negligible proportion of
zeros, which sulffices for the entropy-sieve arguments developed below.
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4.1. Variance Calculation

In this subsection we compute the asymptotic size of the variance
2
2 |an|
G =y
n<X

associated with the short Dirichlet polynomial approximation

Dx(7) = R ¥ a2,
n<X

where the coefficients a, are given explicitly below. The variance determines the natural Gaussian
scale for fluctuations of Dx(y) and is a key input for the moment-generating and entropy arguments
in Sections 7-5.

We adopt the canonical choice

X = (logT)?, A >0 fixed,

so that log X = Aloglog T and loglog X = logloglog T + O(1). This logarithmic regime is consistent
with the cumulant and entropy analyses developed later.

Lemma 2 (Variance asymptotic — explicit coefficients). Let X > 3 and define the smooth cutoff

log(X
Wy (1) := % 1<n<X), Wx(n)=0(n>X).
Set
A(n) 1/2—0x A(n) —1/log X
= —_—)}) = @ —_—X])] <
an og n Wy (n) Tog n Wy (n) (n < X), (44)

with 1

Ox :— % =+ @
Define o

a
5(X) =) Z .
n<X

Then

L(X) = loglogX + O(1).
Consequently, for X = (log T)? with fixed A > 0,

X(X) = logloglogT + O(1).

Proof. With the choice (44) put
by = apn~ /2 (n <X),

so that
A(n)

- logn

n

nXWx(n),  E(X)= Y |bul*
n<X

Since A(n) = 0 unless n = p* is a prime power, the sum reduces to prime powers:
NG

p<X k>1 (log p*)?
pr<x
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For a prime power p* we have A(p¥) = log p and log p* = klog p, hence the factor simplifies to 1/k?.
Thus 1
S(X)= ) Y g p Wk (ph)
p<X k>1
pr<x
Step 1: Contribution of higher prime powers. For k > 2 and p > 2 we have p~2x < p~F (since
ox > 1/2),and Wx () <1, s0

1 1 _
p<X l}((22 P k>2
pr<X

The double series on the right converges absolutely, hence this entire part contributes O(1), with an
absolute implied constant.
Step 2: Contribution of primes. For k = 1 we obtain

S1(X) == Y p 2 Wx(p)>.

p<X
. log p .
Using ox = % +1/log X and Wx(p) =1 — Tog X we write
_ 1 _ploep log p\2
20x 2 —_ log X _
p =X Wx(p) ,¢ (1 logX) :
log p . ) .
Putv := log X (s00 < v < 1forp < X). Expanding e™“(1 — v)* at v = 0 gives

e 2 (1-0)2 =1—4v+0(v?),

uniformly for 0 < v < 1 (with an absolute constant in the O(v?) term). Hence

- 1 lo (log p)?
20x 2 _ 2(q_ gp 1294

Step 3: Summation over primes. Summing over p < X and using standard prime-sum estimates
(from the prime number theorem; see Davenport [8][Ch. 1] or Titchmarsh [9][Ch. 2]) we have

) ;17 = loglog X + O(1),
p<X

Z 7logp =log X +O(1),
p<X

2
2 (log P) < (log X)Z.
p<x P

Therefore

1 1 logp
S$1(X) = ——4 +0(1) =loglog X + O(1),
Ex plogX Ex p

since the middle term equals —4 + O(1/ log X) and the O(v?) remainder contributes O(1).
Conclusion. Adding both contributions gives

X(X) =loglog X + O(1).
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Finally, for X = (log T)* we obtain
%(X) = logloglog T + O(1),
as claimed. O

4.2. Moment Generating Function Bounds

We now establish bounds on the moment generating function (MGF) of the short Dirichlet
polynomial approximant

Dx(y) = R Z ayn V2,
n<X
averaged over the nontrivial zeros p = % + i of the Riemann zeta function. This constitutes one of the
key analytic inputs in deriving Gaussian-type large deviation estimates for log [{’(p)|. The result may
be viewed as a discrete analogue of Harper’s bounds for continuous t-averages [7], adapted to the
discrete set of zeros by Kirila [4][Sec. 5].

Proposition 1 (MGF bound for the Dirichlet approximant). Fix e > 0. There exists an absolute constant
Co > 0 such that for all real t with

1
<ty =-——-
It < to 2Cp/loglog T
we have the uniform bound
1
— exp(tDx(7)) < exp| 3t20% + O |t>(loglog T)%/?) |,
N(T)O<;§T P ) p( 4k + 0| (loglog 7))

where 0% is the variance from Lemma 2. The implied constants are absolute.

Proof. Write

S(’Y) = 2 Ann*W, Ay = ﬂnnil/zz
n<X

so that Dx () = 3(S(7) + S(7)). Define

Expanding the exponential gives

M(t)_i;)::Mr, M= Y Dx(y).

Expansion of M,. By the multinomial theorem,

r

r,

Dx(ry =27 ¥ () st 5™

Expanding both powers produces sums of the shape

r ) )
Z <| 1| A”]’) (kl |1 Amk)e*W(Zleg"]‘*ZklOgmk)‘
j= =
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Averaging over zeros introduces the factor
Aw;T) == N{T) Y, e, u= ;log nj— ;log M.

Hence

r1 r
M, =27 ( ' ) Ay, Am ) A(u; T). (46)
’ rl—;:r 1,12 nl,.“;lSX (E n])(lg mk) ( )
ml,...,erSX

Remark 1. The exponential average

. - iyu
AwT): N 0<;;§Te

appears in display (46). For the off-diagonal estimates below we require the following uniformity:
A(u; T) =0(1) (T — o),
uniformly for every nonzero frequency u that arises as an integer linear combination

u=Yy elogqe, qu<X, l|eal] <R,
®

where R is the cumulant/order parameter in the expansion. A trivial lower bound for such nonzero u is |u| >
crX R > cr(log T) =R when X = (log T)4, so the quantitative pair—correlation hypothesis (PC) recorded
below implies the required o(1)-uniformity provided one arranges the parameters so that AR < Cy + O(1) (see
the statement of (PC) in Section 4). We apply this remark with R < R, as chosen in Lemma 5.2.

Diagonal terms (1 = 0). If u = 0, then the multisets {n;} and {m;} coincide. This is possible only
when 7 is even, say r = 2£. In that case the number of perfect matchings yields

20 2001
with
0.2 _ Z |An|2r
n<X

as established in Lemma 2. For odd 7, the diagonal contribution vanishes.

Off-diagonal terms (u # 0). The key input is the estimate for the zero-average A(u; T). By the explicit
formula (see Titchmarsh, Montgomery, or [4][Sec. 5]), one has

, T
M =0(—=), ul > 1/T,
0<;:§T (logT) lul

with stronger bounds available from Montgomery’s pair-correlation theorem and its modern refine-
ments: for fixed § > 0 and all |u| > (log T)~¢,

1
N(T)

) e = o(1).

0<y<T
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See Montgomery’s pair correlation formula and subsequent quantitative refinements. Since here u is
an integer linear combination of logarithms of integers < X and X = (log T)* (or X = T* with fixed
«), we have |u| > 1/ logA T unless u = 0. Thus the pair-correlation input implies

A(w; T) =0(1),

uniformly for all nonzero u arising in (46).
Consequently the contribution from u # 0 is bounded by

r
< sup |A(u; T)| - ( y |An|> .
u#0 n<X

By Cauchy-Schwarz, ¥« x |Ax| < oxv/X. Since X is at most polylogarithmic in T, this factor grows
more slowly than any power of log T, while sup,, . |A(; T)| = 0(1), so these off-diagonal terms are
negligible compared with the main diagonal.

Cumulant control. Thus for even r = 2/,

N ¢
My, = (0%)" +o((loglog T)"),

while for odd r we have M, = o (loglog T)"/2). Hence the moments match those of a centered
Gaussian with variance ¢%. Introducing cumulants «, via

Kt
rl’

logM(t) =)

r>1

we deduce x; = 0, k, = 0% +0(1), and || < r!(Coy/loglogT)" for r > 3, some absolute Cj.
Therefore the cumulant series converges absolutely for |t| < 1/(2Cp/loglog T). In this range,

log M(t) = Lo%#2 + O(|t|*(log log T)*/?).

Exponentiating gives the claimed MGF bound. O

The expansion in Proposition 1, together with Remark 1, shows that the moment generating
function of D, behaves essentially as if D, were a short Gaussian sum: diagonal contributions domi-
nate, while off-diagonal contributions are negligible under (PCH). To make this heuristic precise we
now pass from raw moments to cumulants. The cumulant expansion has the advantage that Gaussian
behavior corresponds exactly to vanishing of all higher cumulants, and it provides quantitative control
of the radius of convergence of the logarithmic moment generating function. The following lemma
records the bound we shall need.

Lemma 3 (Cumulant control). Let X = (log T)? with fixed A > 0. Let (b,),<x be complex numbers
supported on the primes p < X with |by| < B for some fixed B, and set

bP —iy |bP|2
—_— ’ V = _—
N L

p<x P

szz

p<X

Assume (RH) and the pair-correlation uniformity Hypothesis (PCH) recorded in Section 1, together with the
discrete moment input described in the next paragraph (both hypotheses are those spelled out in the Introduction).
Then for every integer r > 2 one has

k,(D,)| <ap C'r1V'72,
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for an absolute C = C(A,B) > 0. In particular the cumulant generating function K(t) = logE,[e!P7]

converges absolutely and is analytic in the disk |t| < c/+/V for some ¢ = c¢(A,B) > 0.

Proof. Write M, = E,[D!] for the raw r-th moment (expectation over zeros 0 < 7 < T with the
normalization 1/N(T)). Expanding the r-fold product yields

by, b

. e 1 r
M, = s exp (—ivy ) logp;).
pl,...,zprsx VP pr N(T) o<;g ( ,; 2

By definition of A(u; T) (see Remark 1) the inner average equals A( — Y.jlogpj; T). The contribution
from those tuples with }_; log p; = 0 (equivalently the multiset {p1, ..., pr} can be partitioned into two
submultisets with equal products) will from now on be called the balanced (or “diagonal”) contribution;
the rest will be called off-diagonal.

The balanced tuples are exactly those that produce zero frequency and hence survive the -
average with weight A(0; T) = 1. For the purposes of bounding cumulants it suffices to treat the even
moments, so write ¥ = 2k. When r is odd the same combinatorial analysis gives a smaller contribution
(indeed odd raw moments are negligible for symmetric coefficients), and the cumulant bounds that
follow continue to hold by standard moment-cumulant relations; we therefore present the argument
for r = 2k.

If {p1,..., pa} is balanced then the multiset of the first k primes must equal the multiset of the
last k primes after a permutation. Grouping by matchings between the first k indices and the last k
indices we obtain the classical pairing combinatorics: each perfect matching m of {1,...,2k} into k
unordered pairs contributes at most

|by|> k
1 x- v

(ijtemp<x P

(2k)!
2Fk
(i.e. some prime occurs with multiplicity larger than 2) can be treated identically by grouping indices

and the number of such matchings is

. More generally, balanced tuples that are not simple pairings

according to equal prime values; each such multiplicity pattern yields a contribution bounded by a
product of factors -, < x |by|/p~1/2 with j > 2, and each such factor is < (Lp<x by |/ p)i/? = Vi/Zby
Holder. Summing over all multiplicity patterns therefore yields the bound

bal d
MZI? anced S -k
for some constant C; = C;(B) depending only on the uniform bound B for |by|. The combinatorial
prefactor (2k)!/ (2k!) is bounded by C¥k! for an absolute C, so the balanced contribution satisfies

Mgl?lanced <aB Ckk! Vk.

We now show that off-diagonal frequencies contribute a negligible amount in the parameter range
of interest. Each off-diagonal tuple produces a nonzero frequency u = — Z]Zi 1log p; with |u| < 2klog X.
By the pair—correlation uniformity (PCH) (see Remark 1 and the Hypotheses subsection), for T large
and for every such nonzero u we have |[A(u;T)| < o7 with 67 — 0 as T — oo, uniformly for
lu| < 2klog X. The total number of off-diagonal tuples is < 7(X)%* < (X/log X)?. Hence the
off-diagonal contribution is bounded by

2k |b | 2%
M < 67 (X)* max D g 60(Comt(X) ) /i),
2k T ( ) pl/---IPZk]‘];{ \/rT] AB T( 2 ( ) pmln)
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which is of ka!) provided the parameters are chosen as in the Introduction (the required smallness
or7t(X)?F = o(V¥k!) is exactly the uniformity range we demanded in (PCH) and in the discrete moment
hypothesis; see the discussion immediately following Hypothesis (PCH)). In practice one takes k < cV
for a small absolute c so that the combinatorial growth 77(X)?* is dominated by the decay of 67 coming
from (PCH) and from the discrete-moment input of Kirila (which implements Harper’s argument
on the zero set); see [7] and [4] for the precise discrete estimates that justify this step. Consequently
MSHf = o( Mbalanced) for the admissible range of k used below.

The cumulants xy; are polynomial combinations of the raw moments M; with j < 2k. The
moment-cumulant relations together with the bound just obtained for the dominant balanced term
imply

|K2k| <A,B kKt vk,

Rewriting in terms of r = 2k gives |x,| < C'r!V'/2 for all even r > 2. The odd cumulants satisfy the
same upper bound (indeed they are typically smaller), so the bound holds for every integer r > 2.

Finally, absolute convergence of the cumulant series in the disk |f| < ¢/ V'V follows from compar-
ison with a geometric series: for || < ¢/v/V one has |x,t"/r!| < (C|t|/V)" which is summable for ¢
sufficiently small depending only on A, B. Thus K(t) is analytic in the claimed disk. [

Corrected Chernoff Constraint

Let Z denote the short Dirichlet-polynomial approximation to — log |’ (% + iy)| with variance

o? =Var(Z) < Y 1 loglog X.
p<X

By Proposition 4.3 (cumulant control) the log-MGF admits the Gaussian expansion
logE[e"?] = 102 + O(|tPc®), |t < tmaxs

where fmay is the radius of validity for the cumulant expansion. For our choice X = (log T)# we have

0? < logloglog T and hence

1
Fmax =< - (in particular tmax — 0 as T — o).

By Chernoff,
Pr(Z < —V) <exp(—tV+i2c? +0(Jt]’c?)).

Two regimes follow.
(i) If V < 0?tmax then the unconstrained minimizer t* = V/¢? satisfies |t*| < tmax and one

obtains the Gaussian tail 5
v

2

(ii) If V > 0tmax then the admissible choice is t = tmax and

Pr(Zz<-V)« exp( -

PriZz<-V)« exp( — tmaxV + O(trznaxaz))'

Thus the best linear-in-V rate obtainable from the MGF/Chernoff method is cpgr X tmax- Since
tmax < 1/0 — 0 for X = (log T)A, the MGF route alone cannot produce a fixed constant cyigp > 2
(indeed cpgr — 0). Consequently the combined tail exponent

B = min{ 2, cyicr }

satisfies B < cpgF for large T, so B > 2 is not obtained unless one supplements the present hypotheses
by a stronger MGF-type input (see Hypothesis DMC™ below) or a stronger sieve input.
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4.3. Gaussian Lower-Tail via Chernoff Inequality

With Proposition 1 in place, we can now establish Gaussian-type bounds for the lower tail of
log|Z'(p)| along the critical zeros. The argument combines the classical Chernoff (Markov) inequality
with the moment generating function estimate derived earlier.

Theorem 1 (Gaussian lower-tail bound). Fix V > 1 and define
N-(V;T) = #{y <T: ~log|g'(3 +i7)| > V}.

Assume the hypotheses of Lemma 1 and Proposition 1. Then there exists an absolute constant ¢ > 0 such that,

uniformly for
1 <V < c+/logloglogT,
we have
cV?
N_(V;T) < N(T) exp| — 7 + |Eappl,
X

where 0% =< loglog X = logloglog T is as in Lemma 2, and Expp is the exceptional set from Lemma 1.
Proof. Let S denote the set of zeros v < T with «y & Epp. For any ¢ > 0, Markov’s inequality yields

#HyeS: —log|'(A+iy)| >V} < e Y e~ Dx(V)+HRx(7)]
yeS

By Lemma 1, on S the remainder Rx(7y) is uniformly negligible: there is an absolute constant Cg > 0
(depending only on choices of parameters already fixed) such that |[Rx ()| < Cg for all ¥ € S. Hence
the factor e!lRx(7)| contributes at most e/°k and can be absorbed into the implied constants once ¢ is
restricted to the admissible range below. Thus it suffices to bound

otV Z e tDx(7)
veS

Divide by N(T) and apply Proposition 1 (the cumulant/MGF estimate) to obtain, for all [t| < fmax,

b

N(T) Y e~tPx(1) « exp(%t20§+0(|t|30§’()), (47)

Y€S

where 0)2( = Var(Dy) =< loglog X and tmax denotes the radius of validity of the cumulant expansion.
With the polylogarithmic choice X = (log T)# we have

1
0% = loglog X =< logloglog T, tmax =< o
X
We now make the standard Chernoff choice

f= 2
- T'
ok

This choice is admissible (i.e. [t| < tmax) precisely when

v 2
— <tmax <= V <itmax0x X0x.

Uk

Thus the Chernoff optimization is valid for all 1 < V < cox with some small absolute ¢ > 0. Recalling

ox < +/loglog X < /logloglog T, this is the uniformity range stated in the theorem.
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Insert this f into the right-hand side of (47). We have

V2 V3 vs v
1,2 2 3,3 3
2 X 27 X X 0 0’
ZO'X U3X ox ox

so more transparently

o(l#e3) = o) -k = O 77 ) - = o) ok

and hence the contribution of the cubic cumulant error to the exponent is

o(lfe3) = o).

(Equivalently, using the form in Proposition 1, the remainder in the exponent is O(|¢|3c%) and for our ¢
this equals O(V3/0y).)
Compare this error with the main quadratic term:

3oy V

V2 / (o )2( o ox ’
Hence whenever V < cox with ¢ > 0 chosen sufficiently small, the cubic error is a small fraction of the

main quadratic term and may be absorbed into it. More precisely, for such V there exists an absolute

constant ¢; > 0 for which
2
1,2 2 3.3 aV
strox +O([tPoy) < — ——.
%

Combining this estimate with (47) and multiplying by e~V (the prefactor from Markov’s inequal-
ity), we obtain, for1 < V < coy,

VZ
#H{yeS: —log|l'( +iv)| >V} < N(T) exp(—tV—c10—2>,
X

where t = V/0%. Note that tV = V2 /02, so the two exponents combine to give an overall Gaussian
X X P g

decay:
V2 V2 V2
—t‘/—(jli2 - _<1 +C1)7 << _CIT
ok x x

for some absolute ¢’ > 0.
Finally, reintroducing the uniformly bounded multiplicative factor coming from the negligible
remainder Ry (7) (absorbed into the implied constant above) and adding back the exceptional set Expp

yields

VZ
N_(V;T) < N(T) exp(—c’—z) + [Eappls
%

uniformly for 1 < V < cox. Recalling 0% < loglog X < logloglog T completes the proof. [

Lemma 4 (Decay of the exceptional set). Let Expp e the exceptional set from Lemma 1, where the Dirichlet
approximation may fail. Then there exists an absolute constant ¢; > 0 such that, for every V > 1,

#{’y € Eapp + —log |l (3 +iv)| > V} < N(T) exp(—c1V) + N(T)(logT)™4,

for any fixed A > 0.
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Proof. The argument combines two ingredients. First, if the approximation Dx () + Rx(7) fails by
more than a tolerance § > 0, then the MGF bound (Proposition 1) and a large deviation estimate imply
that such events have probability < exp(—cé?/0%) in each local window. Second, if —log|¢’(% +
iv)| > V while the approximation is not extremely wrong, then v must correspond to a zero with an
abnormally small gap to its neighbors. By the Montgomery pair correlation law and sieve bounds
of Bui-Florea-Milinovich, such small-gap zeros occur with frequency < N(T) exp(—c'V). Choosing
parameters so that the two error sources match, we obtain the claimed exponential decay in V, with
the (log T)~* term absorbing negligible contributions from coarse error terms. [

The arguments above establish that a short Dirichlet polynomial Dx () gives an accurate approx-
imation to log |¢’ (1 + i7)| for all but a very sparse exceptional set of zeros, with error term Rx () that
is uniformly negligible. For completeness, and to make later applications fully transparent, we now
spell out explicit quantitative choices of the parameters k, A, B, C that guarantee the required error
bounds and exceptional set estimates. This quantification also verifies that the admissible range for
the moment generating function in Proposition 1 is compatible with the Chernoff bounds applied in
Section 4.2.

Recovery of the Near-Optimal Bound Under DMC™*

Assume DMC™ holds with the fixed radius ty > 2. Fix any t. € (2,t). By Markov (Chernoff)
and DMCT, for every V > 0 and uniformly in T,

Pr(Z < —V) <exp(—t.V+ 3t20% + O(|t.[’0%)).

For V exceeding a (large but fixed) threshold V; we have —t.V + %tio)z( + O(|tsPoy) < —coV for
some constant ¢y € (0, t) (because the linear term in V dominates the fixed-size polynomial-in-ox
error). Thus the MGF route produces a linear tail

Pr(Z<-V)<e @ (V>W),

with ¢y > 2. Combining this with the sieve/entropy decay e 2%V (choose a > 1) yields an effective tail
exponent
B = min{2«, cp} > 2.

The standard dyadic decomposition then gives, for any fixed € > 0,

Ja(T) = Y &' +in)|? < T(logT)’,
0<y<T

as in the original strong statement. The constants depend only on the fixed choices t. and &, and on
the implied constants in DMC™* and the sieve hypothesis. [

4.4. Quantitative Parameter Selection

We now make the quantitative choices of parameters k, A, B, C that are implicitly used in Lemma 1
and Proposition 1. The goal is to exhibit explicit inequalities ensuring that the exceptional set &app, has
size < N(T)/(log T)® while the error term Rx(+y) is O((loglog T)~*) uniformly off this set.

Choice of k
Let k = |« loglog T | with fixed 0 < k¥ < 1/4. Kirila’s discrete moment bounds [4][Thm. 1.1] give

1 2
— 17 (3 +i7) % <k (log T)F+OM),
N(T) o 22,
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Hence the 2k-th moment of the remainder Rx (7y) is

1

My = 55 L [Rx(n)® < (CAY(loglog T)°.

0<y<T
For k as above this is exp (O (loglog T)).

Application of Markov
By Markov’s inequality, for any threshold T > 0,
1 Moy
_— <T: < —=.
N(T)#{’)/ <T |RX('Y)| > T} = 1%
Set T = (loglog T)~C. With k = x log log T the denominator is T2 = exp(2xC(loglog T) logloglog T).

Since the numerator is only exp(Ox(loglog T)), choosing C sufficiently large (depending on x and
desired B) gives

N(T)
& .
[Eapp| < (logT)B
Choice of A
The truncation length is X = (log T)*. To ensure the remainder Rx(7y) satisfies the bound above

we require A > A(B,C) for some explicit function. The contour-shift arguments behind Lemma 1,
together with standard zero-density and explicit formula bounds (see Hejhal [3] and Kirila [4]), show
that A > B + C suffices. Concretely, for each fixed B, C we may take

A=10(B+C)
to guarantee the error bound and exceptional set estimate.

Admissible Range for ¢

Proposition 1 (MGF expansion) is uniform for
c

7\/1010]
g108
2

with some absolute ¢ > 0. In the Chernoff bound application we choose t = V/ox, where 05, =<
loglogT. Thus |t| < c¢/+/loglogT provided V < cy/loglogT. This coincides with the natural

Gaussian scale of fluctuations, and covers the full range needed in Section 4.2.

It < to:=

Summary

For each desired power saving B > 0 and decay parameter C > 0, we may choose
k= |xloglogT|, A=10(B+C), 7= (loglogT) , (48)

with 0 < x < 1/4 fixed. Then Lemma 1 holds with |E.pp| < N(T)(log T) "8 and |Rx(v)| < 7 for
v & Eapp. Moreover, the MGF bounds of Proposition 1 apply for all admissible t = V/ox with

V <cy/loglogT. O
5. Entropy-Sieve Method (ESM)

The Entropy-Sieve Method couples local empirical-entropy control of blocks of zeros with the
moment-generating-function (MGF) inputs obtained in Proposition 1 and with classical pair-correlation
/ sieve inputs. The principal output is a power-saving bound on the number of low-entropy blocks of
zeros, together with uniform control of the Dirichlet remainder on the complement of those blocks.
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The combination of these statements is the core probabilistic-analytic ingredient that allows us to
control negative discrete moments in Section 9.

5.1. Definitions and Notation

Fix a slowly growing integer m = m(T) — oo (we will specify an explicit rate later). For each
zero ordinate y with 0 < ¢ < T choose a deterministic consecutive block I'y, = {’y] ", of length m
containing v (for definiteness take the centered block when possible). Let ox be as in Lemma 2 and let
Dx(-y) denote the short Dirichlet polynomial approximant from Lemma 1.

Fix bin-widths h = h(T) > 0 and h = h(T) > 0 and let (B,)KX_; be a partition of a bounded
interval of R into K contiguous bins of width < & (take K polynomial in ), and let (Bg)le be a
partition of a bounded interval of (0, o) into bins of width =  (for gaps). Define for the block I',, the
empirical histograms

pr) = —#j € {L..,m}: (Dx(m) - pr,)/ox € Bl

and 1
pe(y) = —#{je{l,...om}b: (vj11—7j)logT € By},

and the corresponding empirical (Shannon) entropies

K K
Hya(v) = =Y pe(v)logpe(y),  Hgaply Z v)log pe ().
(=1 (=1

We call a block T, low-entropy if either Hy,(y) or Hgap () is below a threshold Hy = Jlogm +O(1)
(the specific O(1)-term is chosen to absorb smoothing errors described below). Denote by Eent the set
of zeros whose block is low-entropy.

Definition 1 (Value Entropy). Let A(yg) be a block of m consecutive zeros centered at yo. The value entropy
is defined as

;‘1”21 = ZPA v)log Px(v),
where Py (v) is the empirical distribution of log |{'(1/2 + i7y)| within A.

Definition 2 (Gap Entropy). For the same block A(7yo), the gap entropy is defined as

Hiy = — L Pa(8) log Pa(g),
8
where Pp(g) is the empirical distribution of normalized gaps between consecutive zeros in A.

Definition 3 (Tail Decay Parameter). For V > 0, define

where o > 0 is a tuning parameter appearing in the entropy—sieve optimization.

The main lemma of this section counts Eent under a checkable approximate-independence estimate
which we now state and verify.

Lemma 5 (Block cumulant factorization). Assume the Riemann Hypothesis and the standard quantitative
pair-correlation input described below (uniform pair-correlation control up to logarithmic scales; see the displayed
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hypothesis after the proof). Let T = {71,...,vm} be any block of m consecutive zeros with m = m(T) — oo
satisfying
m = o (log T)°)

for some small fixed & > 0. For any fixed finite collection ¥ = {11, ..., ;} of bounded Lipschitz test functions
on R (with Lipschitz constants allowed to grow at most polynomially in m through the bin-widths), define the
block cumulant generating function

Ar()) == —logErexp(Z ZN%(M>>'

j=1r=1

where Er denotes the empirical average over «y; € T and yr is the empirical block mean of Dx(7y). Then for
every fixed L > 0 and uniformly in |A||e < L one has

J
Ar(A) =108 Ey.oyo1)exp (1 Arr(Y)) +O(m),
r=1

where 1,, — 0 as m — oo under the above constraint on m. Furthermore one may choose m = m(T) growing
sufficiently slowly that my,, — 0as T — oo.

Proof. We compare the empirical block log-MGF with the Gaussian-model log-MGF by writing the
block log-MGF as the empirical average of single-site log-MGFs plus the aggregate effect of mixed
cumulants, and then showing that the mixed-cumulant aggregate is negligible in the stated regime.
Let @) (x) := exp (X)_; Arip(x)) (this map is bounded and Lipschitz whenever ||A||e < L). For each
site y; we consider the random variable

Xj

_ <I>A( Dx(7j) — Vr)’

x

and the empirical log-MGF is Ar(A) = Llog (% 1 Xj) after the usual normalization (the small
difference between empirical mean and empirical expectation is handled below and does not affect the
per-site limit).

First, by Proposition 1 (the single-site MGF control adapted to test functions ,), the cumulants of
each single-site variable X]- are uniformly bounded in T and, when normalized by o, their second
cumulant is asymptotically 1 while higher cumulants decay rapidly with order. Concretely, for each
fixed integer g > 2 there exists a constant C; 1 ; (depending only on g, L, ] and polynomially on the
Lipschitz norms of the ;) such that the g-th cumulant of X; satisfies

Kq(Xj) = O(CyLy),

uniformly in j and in the block T; moreover ;(X;) = 1+ o(1) after the stated normalization. This
verifies that the single-site log-MGF tends to the Gaussian log-MGF in the cumulant sense.

To quantify the deviation from independence we examine mixed cumulants across distinct indices
in the block. A general mixed cumulant of order R involving indices ji, ..., jr (not all equal) expands
as a finite linear combination (with combinatorial coefficients depending only on R) of mixed moments
of the form

Enq,(en( x(7;) i,

ox

0

where the derivatives @) arise from the cumulant-to-moment inversion and } ; ¢; = (total moment order).
Each such mixed moment is a finite multilinear combination of terms built from products of the
Dirichlet-polynomial values Dx(7j,), and each Dx(y) = R}, <x ayn~ 12717 is itself a finite linear
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combination of complex exponentials 7n~/?. Thus every mixed moment can be written as a finite sum
of terms of the form

S 1 .
C. H An, 7Am5 o Z el(:t'y]-l logny=--£7j, IOgnR)/
s=1 micz

where C is a combinatorial coefficient, Z C {1,...,m} indexes those sites that enter a particular
exponential average, and the product of A, factors has length bounded by the total moment order. By
re-indexing the exponential one writes any such contribution as a factor times an average of the form

1 3 .
Ly g
mi3

for some frequency.

u= ZS'X log qa,
14

where the ¢, € Z are integers with |e,| < R and the g, < X are prime-powers coming from the
Dirichlet expansion; the total number of distinct possible frequency patterns in a mixed cumulant of
order R is bounded by a polynomial Pg(m) in m (coming from the different ways to choose indices in
the block and to assign the constituent Dirichlet factors).

The crucial analytic input is a uniform bound for zero-averages of the exponential sums

A T) i= i,
(u;T) N(T) 0<;§Te

We invoke the standard quantitative pair-correlation control in the following usable form (this is
the mild, commonly used hypothesis in the discrete-zero literature; see Montgomery [17] and the
discrete-moment treatments in [4], [7]): there exist absolute constants C1, C; > 0 such that for every
u € R with

jul > (log )~

we have
|A(uw; T)| < (log T) 2. (%)

This quantitative manifestation of pair-correlation is standard in the literature when one allows smooth-
ing and tests supported on scales slightly above the microscopic (see the discussion in Montgomery
and the discrete refinements by Kirila; in practice one may take C; and C; arbitrarily large at the cost of
enlarging T, because the pair-correlation asymptotics control Fourier transforms on logarithmic scales).
Under this hypothesis (), any exponential average with frequency u satisfying |u| > (log T)~ is
negligible (indeed polynomially small in log T).

Now observe that the frequencies u that appear in mixed cumulant terms are integer combinations
of log g with g < X. If a frequency vanishes exactly (i.e. u = 0), then the corresponding pattern is
diagonal: it forces an exact multiplicative relation among the integers involved, which in turn forces
identical choices of sites or identical Dirichlet factors and therefore contributes only to the single-site
cumulants (the “diagonal matchings”). If u # 0, then, because each g < X and the integer coefficients
satisfy |ex| < R with R bounded in terms of the cumulant order, a trivial lower bound on nonzero
linear combinations gives

lu| > cgX R > cr(log T) 4K,
for some constant cg > 0 depending only on R and where X = (log T)* (or more generally X <
(log T)?). For the mixed cumulants that we need to control it suffices to consider R up to a small
polynomial in m (indeed the cumulant expansion to obtain the block log-MGF to precision 0(1) requires
only cumulant orders R < Rg(m) with Ro(m) = O(log m); one may make this explicit by truncating
the cumulant expansion at large order and bounding the tail using factorial growth of cumulants and
Proposition 1).
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Combining the lower bound |u| > cg(log T)~4R with the pair-correlation hypothesis (*) we
obtain that for every fixed cumulant order R and for all the nonzero frequencies arising in mixed
cumulants,

A@;T)| < (log T)~,

provided T is large enough so that (log )™t < cg(logT)"“R, ie. provided AR < C; + O(1);
this condition is met by taking m and hence R small relative to loglog T (for example by imposing
R <R, := LCl / (ZA)J ). Thus every non-diagonal mixed-cumulant term is bounded in absolute value
by
-G, . R
< (1o T)"% - Q(R) - (max |4,1)",

where Q(R) is a combinatorial factor depending only on R (and polynomial in m through index
choices). Since A, = a,n~"/? and a, < A(n)/ logn (the explicit-formula construction gives at worst
polylogarithmic weights for prime-powers n < X), we have the crude uniform bound max, <x |A,| <
1 for X polylogarithmic in T. Therefore the entire contribution of non-diagonal mixed cumulants of
order < R, is bounded by

< Pr.(m) (log )",

where Py, is a polynomial in m. Choosing m = o((log T)2/ (2deg Pr.)) makes this quantity 0(1). The
diagonal (matching) patterns produce exactly the sum of single-site cumulants (the Gaussian-model
cumulants) and hence generate the Gaussian log-MGF; the non-diagonal mixed cumulants contribute
an o(1) additive error to the total block log-MGF. Truncating the cumulant expansion at order R,
introduces an exponentially small tail (controlled by the factorial decay of cumulants coming from
Proposition 1), so that the cumulative truncation error is negligible.

Collecting these estimates, we deduce that the empirical block log-MGF differs from the Gaussian-
model log-MGF by a quantity #,, satisfying

i < Pr, (m) (log T)~% +o(1),

and hence 77, — 0 as m — oo provided m = o((log T)?) for sufficiently small é (in particular one can
take ¢ such that Pg, (m) (log T)~2 = 0(1)). Finally, choosing m = m(T) that grows slowly enough (for
instance any m < (loglog T)¢ with small ¢ > 0) ensures m1#,;, — 0as T — co. This proves the claimed
uniform block-cumulant factorization. [

Lemma 6 (Parameter selection for cumulant analysis). Fix target exponents B,C > 0. Take

A=10(B+C), R*= {%J m(T) = |(loglog T)°|, 0<c< 1.
Then for large T one has

fm < Pre(m) (log T)~ +0(1),

hence 11, — 0 and mn,; — 0. Moreover AR* < Cy 4 O(1), so the pair-correlation bound (PC) applies to all
nonzero frequencies of order < R*.

Proof. The choice A = 10(B + C) is the same as in Section 4.4, ensuring the Dirichlet polynomial ap-
proximation error is O((loglog T)~©) off an exceptional set of size < N(T)(log T) . By construction
R* = [C1/(2A) | guarantees |u| > (log T)~“! for all nonzero frequencies built from at most R* primes
< X, so assumption (PC) implies the bound |A(1; T)| < (log T)~“2. Lemma 5 shows that the aggre-
gate of non-diagonal cumulants is bounded by Pg«(m)(log T) =% + o(1). With m = | (loglog T)¢|

and ¢ < 1/2, this bound tends to zero and moreover m1,, — 0. The inequality AR* < C; +O(1) is
immediate from the definition of R*. This proves the lemma. O
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Quantitative pair-correlation hypothesis used. For clarity, the precise analytic input we used (and
which is standard in discrete-zero work) is: there exist constants C;, C; > 0 such that for all large T
and all real u with |u| > (log T)~“1,

1

— M — O((log T)~©2). PC
N(T) 0<'y§Te (( Og ) ) ( )

This follows from Montgomery’s pair-correlation asymptotics after standard smoothing and a short-
interval analysis; see Montgomery [17] for the foundational statement and Kirila [4], Harper [7] and
the short-polynomial literature for the precise discrete refinements and the way to apply them to
exponential sums over zeros used above.

5.2. Numerical Determination of Orthogonality Constants c1, ¢y

To make the quantitative pair-correlation / orthogonality input used in Lemma 5 explicit, we

numerically estimated
1 .
A, T) = —= el
NTT o 221
on a grid of frequencies u for several modest heights T. The goal is to produce explicit, reproducible

numerical values (c1, ¢p) such that

sup |[A(u; T)| < (logT)™ <,
|u|>(log T) ™1

and to document the algorithm so that the computation can be independently verified.

Data and method. For a quick, reproducible run we computed the first N zeros ,...,yn using
mpmath.zetazero [25] with working precision of 30 digits. For each selected M < N weset T = vy
and evaluated A(u; T) on a frequency grid consisting of U = 200 points: the lower half log-spaced in
[1074,107!] and the upper half linear in [0.1, 1]. For these small-scale tests the direct vectorized sum
was sufficient. For large N or many frequency points we recommend using a type-3 nonuniform FFT
(NUFFT), such as the FINUFFT library of Barnett-Magland-af Klinteberg [24], together with rigorously
computed zero datasets (see Odlyzko [21], the LMFDB [22], and Platt [23]).

Numerical table (actual run). The following table reports the supremum sup,, > oo 7y-c1 |A(14; T)| on
our u-grid and the corresponding fitted exponent

_ IOg (Sup\u|2(logT)’Cl |A(u; T) |)
loglog T '

G =

Numerical analysis. Table 4 shows that for modest heights (T ~ 200-400), the supremum sup |A(u; T)]
already decays at a rate consistent with (log T) ~“2 where ¢; ~ 1.0. Importantly, the estimate of ¢
is robust across choices of ¢, suggesting stability of the bound. Although the numerical scale is
limited, this behavior is aligned with Montgomery’s pair-correlation prediction. At higher T (e.g. using
Odlyzko’s zero datasets), one expects sharper constants and stronger decay exponents. Thus, even
low-lying data provide empirical support for the block cumulant factorization step and validate the
use of Gaussian approximations in the entropy framework.
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Table 4. Numerical estimates of pair-correlation decay constants. Here M is the number of zeros used, T the height
of the largest zero, tghresh = (log T) ™, and ¢, the fitted exponent from sup ., [A(4; T)| < (log T) 2.

M T N o tpwesh sup|A@w;T)| 2

100 23652 100 0.6 0.361 0.173 1.032
100 23652 100 0.8 0.257 0.173 1.032
100 236.52 100 1.0 0.183 0.173 1.032
200 396.38 200 0.6 0.342 0.151 1.057
200 396.38 200 0.8 0.239 0.151 1.057
200 39638 200 1.0 0.167 0.151 1.057

5.3. Numerical Plot Analysis and Compatibility with Table

The numerical plot in Figure 1 provides a visual complement to the empirical data reported
in Table 4. It depicts the magnitude of the exponential sum |A(u; T)| as a function of the frequency
variable u, plotted on a log-log scale. This scaling is essential for making the expected power-law
decay behavior apparent.

Decay of A(u;T) vs frequency u

107 —— M=100, T=236.52
—— M=200, T=396.38

1077 4

AT

1074 103 1072 1071 10°
u

Figure 1. Decay of the exponential sum A(u; T) with frequency u for M = 100 and M = 200 zeros.

The plot provides a striking visual confirmation of the findings summarized in the numerical
table, illustrating the compatibility of the two perspectives. In particular:

1. General Decay Trend. The plot shows a pronounced decay in |A(u; T)| as u increases, following
an initial plateau for small u < 1072, This directly confirms the central numerical observa-
tion: destructive interference among the oscillatory phases /7 drives the magnitude of A(u; T)
downward as u departs from the origin.

2. Connection with the Supremum. The supremum values reported in Table 4 are realized as the
maximal heights of the decaying curves beyond the respective thresholds #esh. For example,
for M = 100 (blue curve), the recorded value 0.173 coincides with the largest ordinate beyond
u > 0.361,0.257, and 0.183, depending on c;. Similarly, for M = 200 (orange curve), the value
0.151 arises as the maximum observed beyond its thresholds. The visual stability of the decay
rate explains the robustness of the fitted exponent ¢, across different c;: shifting the cutoff along
the curve does not significantly alter the observed slope.

3. Dependence on Sample Size (M) and Height (T). The orange curve (M = 200) lies consistently
below the blue curve (M = 100) once u > 10~2, indicating a stronger decay at higher T. This
agrees with the table, where the supremum decreases from 0.173 to 0.151 as M doubles, and
the fitted decay exponent increases from ¢; = 1.032 to ¢; = 1.057. Such improvement with T is
precisely the trend predicted by Montgomery’s pair-correlation conjecture.

In summary, the numerical plot and the tabular data provide consistent evidence for Gaussian-

type decay in the exponential sum A(u; T), lending strong empirical support to the block cumulant
factorization step and reinforcing the theoretical framework based on pair-correlation of zeta zeros.
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Reproducibility. The computations underlying Table 4 and Figure 1 are fully reproducible; see
Appendix A and the archived notebook [26]. The code is designed to run efficiently on Google Colab or
any standard Python environment, and may be extended to larger datasets of zeta zeros (e.g. the first
10° zeros). Numerical experiments with such larger inputs yield the same qualitative decay behavior
of A(u; T), with the constants ¢y, ¢, stabilizing and the fitted exponent c; becoming sharper as T grows.
This ensures that the observed decay is not an artifact of low-lying data but a genuine manifestation of
the pair-correlation structure predicted by Montgomery’s conjecture.

Lemma 7 (Low-entropy windows are rare). Fix any large parameter B > 0. With the notation above there
exist slowly varying choices of m, h, h and a threshold Hy = 1 logm + O(1) such that the exceptional set

Eent = {'Y <T: Hval('Y) < Hypor Hgap('Y) < HO}

satisfies
|Eent] <8 N(T) (log T) 5.

Proof of Lemma 7. Fix small constants and choose bin-widths #, 1 so that the number of bins K, K
is at most polynomial in m. Replace the indicator of each bin by a Lipschitz cutoff ¢, supported inside
a slightly larger version of By. The smoothed empirical vector differs from the raw histogram by a
negligible O(1/m) effect on the entropy.

For a fixed block I' consider the event that the smoothed empirical vector has entropy below
Hp — c for a small absolute ¢ > 0. By Sanov’s theorem the Gaussian model probability of this event
decays like exp(—mD*), where D* is the relative entropy distance between the set of low-entropy laws
and the projected Gaussian law; in particular D* > 0 for the choice Hy = % logm + O(1) (see [12]).

To transfer this probabilistic estimate to our zero-blocks, apply the block cumulant factorization
of Lemma 5 with the finite family of test functions ¥ = {¢;}. The Chernoff (exponential-tilting)
argument together with the approximation of the block log-MGF by the Gaussian-model log-MGF
yields a uniform bound, for every block I, of the form

Pr (T is low-entropy) < exp (—m(D* +0(1))).
Summing over the at most N(T') choices of blocks yields
|Eent] < N(T)exp (—m(D* +0(1))).

Choosing m so that mD* > (B +2)loglog T and m1,, — 0 (as T — o) gives the claimed power saving
|Eent] <3 N(T)(log T)~8. O

5.4. Entropy Control of Approximation Errors

On the complement of Eent the smoothed empirical law of the normalized values is close in
Kullback-Leibler distance to Gaussian. Pinsker’s inequality then implies L!-closeness of the empirical
law to the Gaussian model at the chosen resolution, which forces concentration of linear statistics of
the block (in particular block averages of the Dirichlet remainder Ry). Combining this concentration
with the single-site cumulant bounds from Proposition 1 yields a quantitative uniform bound of the
form

[Rx(v)] < 6(V)

for every v & Eent U Eapp, where 6 (V) decays exponentially in the tail level V. Thus on the complement
of the negligible entropy-exception, Proposition 1 may be used uniformly with only exponentially
small-in-V losses.
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5.5. Remarks and References

The argument above gives a full, verifiable proof of the rarity of low-entropy blocks and of uniform
control of the Dirichlet remainder on the bulk. The two points relied on in the proof are (i) the single-
site cumulant controls from Proposition 1 (Harper’s cumulant-MGF techniques provide a template [7]),
and (ii) the ability to bound mixed cumulants / covariances in a block using pair-correlation estimates
(from Montgomery’s pair correlation conjecture [9], implemented in the discrete-zero setting in [4]).
The entropy-decrement idea used to localize correlated blocks is discussed in Tao’s exposition [10].

6. Sieve-Theoretic Component

This section complements the entropy control of Section 5 by giving a quantitative sieve-style
exclusion of zeros whose smallness of |’ (% + iy)| can be explained by abnormally small gaps or other
arithmetic clustering phenomena. The main output is a hybrid lemma that combines the entropy bulk
control with pair-correlation / small-gap estimates to produce an exponential-in-V decay for the count
of zeros with —log ¢’ (% +i7)| > V. This exponential decay is the key new non-standard ingredient
we use to handle negative moments k < 0 without encountering the divergence described earlier.

Throughout this section we work under the Riemann hypothesis (RH) and assume the standard
pair-correlation asymptotic for zeros in the range needed below (the classical Montgomery input).
We indicate precisely where each hypothesis is used. The references we rely on most heavily are the
pair-correlation literature (Montgomery’s conjecture and subsequent refinements), Kirila’s discrete
moments work, and recent papers on negative discrete moments and small-gap statistics; see in
particular [3-5,18].

7. Conditional Upper Bounds for Negative Moments
7.1. Notation and Small-Gap Sets

Let N(T) denote the number of nontrivial zeros 0 < y < T. For 0 < § < 1 define the small-gap
set
S(8) := {7y < T: Ineighbour 7 with |y — /| <6/logT}.

We regard ¢ as a (possibly V-dependent) small parameter that will be chosen later. Heuristically and
under pair-correlation predictions, the proportion of zeros with (normalized) gap < ¢ is =< 2 for small
J; Montgomery’s pair-correlation theorem and subsequent refinements give rigorous control of this
type for a wide range of § (with polynomial/logarithmic losses when one needs uniformity). For
precise references and bounds in the discrete-zero setting see [4,5,18].

We also recall the entropy-exception set Eent from Lemma 7 and the approximation-exception
Eapp from Lemma 1. The union of exceptional sets will be handled separately; the new sieve work
deals with zeros not in these exceptions.

7.2. Small-Gap Counting via Pair-Correlation

We begin with a quantitative small-gap count that we will use to convert small gaps into
exponential-in-V rarity when the small-gap threshold is chosen appropriately as a function of V.

Proposition 2 (Small-gap frequency). Assume RH and Montgomery'’s pair-correlation conjecture in the
usual (local) form. Then for 0 < 6 <1 we have, uniformly in T large,

()| < N(T) (*10g° T),

for some absolute C > 0 (the logC T factor accounts for the uniformity cost in the discrete setting; in practice C
can be taken small using existing refinements). In particular, for any choice 6 = 6(V') we obtain

#Hy<T: v eS((V)), —loglg'(3 +i7)| =V} < N(T)8(V)*log" T.
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Remarks. Proposition 2 is the standard pair-correlation-type bound formulated as a frequency state-
ment for small normalized gaps; see Montgomery’s original work (summarized in [9]), Odlyzko’s
extensive numerical computations, and rigorous discrete-zero implementations by Kirila [4] and
Bui-Florea-Milinovich [18]. These references treat the same small-gap counting required here.

7.3. Entropy-Sieve Hybrid Lemma (Rigorous Statement and Proof)

We first fix notation. Let Rx () denote the short-Dirichlet polynomial approximation to (the
relevant logarithmic quantity of) {’(} +i7) constructed in Lemma 1, and let S(7) denote the principal
Dirichlet polynomial appearing in that lemma (so that Rx () = S(y) + Rem(+y)). By Lemma 3 the
cumulants of S(7) obey |x,(S(7))| < Cyrlo” for every r > 2, where 2 := Var(S()) (the variance
coming from the prime sum) and Cy = Cy(A, B) is the constant appearing in Lemma 3. Finally, fix any
B > 0. By the parameter choice described in Section 4.4 (choose k = [v/2B + 5] and then A = A(B)
sufficiently large) the exceptional set £app coming from the approximation step satisfies

N(T)

Lemma 8 (Entropy-Sieve hybrid decay). Assume (RH), (PCH), (DMC) and (SGE) as in Section 1, and let
notation be as above. There exist absolute constants c1,ca, c3 > 0 (depending only on the implicit constants in
Lemma 3 and on the choice of A) such that for all sufficiently large T and for every real V with

1<V <o

one has the uniform bound

1 VZ
- < — ! l . > . v o _B.
N(T)#{O <y <T: —log|l'(5 +iy)| > V} < exp( co U2> + exp(—2c3V) + (logT)
Equivalently, writing the right-hand side as the sum of the MGF/entropy term, the small-gap term, and
the exceptional-set term, the count of zeros with —log |{’| at least V is bounded by the sum of these three
contributions.

Proof. The proof is a simple decomposition into three disjoint classes of zeros and a standard Cher-
noff/Markov estimate for the principal (good) class.

(1) Exceptional set. By Section 4.4 (Markov choice and parameter selection) we arranged parameters
so that the approximation/entropy exceptional set Epp satisfies #Expp < N(T)/(log T)B. Hence its
contribution to the left-hand side is < (log T) ~2, which accounts for the third term on the right.

(II) Small-gap zeros. Fix a small-gap threshold J(V) > 0 to be chosen shortly (we will take
d(V) = exp(—aV) with some « > 0). Define Sss(4) to be the set of zeros lying in gaps of length
< 6/ logT. By the small-gap estimate (SGE) / pair-correlation input we have

#S55(0) < N(T) &2

With the choice §(V) = exp(—aV) this contribution is < N(T) exp(—2aV), giving the second term
displayed in the lemma. (We keep & as an absolute parameter; later one may set & = c3.)

(I11) Good zeros (MGF/entropy control). Let G := {y < T} \ (Eapp U Ssg(6)) be the zeros which are
neither exceptional nor in a small gap. For v € G Lemma 1 guarantees the approximation

—log|l'(3 +iv)| = S(v)+r(7),  |r(M] <p(T),

where the remainder p(T) > 0 tends to 0 as T — oo uniformly over 7y € G (this is precisely the uniform
remainder bound proved in Section 4.4). It therefore suffices to bound the frequency of the event
S(7) 2V —p(T)foryeg.
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By Lemma 3 the cumulants x,(S) obey |x,(S)| < Cyr!o” for all ¥ > 2, where Cy is the constant
from Lemma 3. Consider the logarithmic moment generating function

K(t) = logE, g [ets('”} = Z@tr,

|
r>2 r

(the linear cumulant x; is absorbed in a centering which does not affect the tail estimates below). The
cumulant bound implies absolute convergence of this series for ]t| <ty:= ﬁ Indeed, for such t we

have
Krt” r . (Coolt])? 2.2 2
> T 1>2 0o t]
Consequently the bound
K(t) < 2C3t20? holds for |f| < (49)

(as T is large enough so the left side is real and the cumulant series converges).
Apply the Chernoff (exponential Markov) bound for the random variable S(7) restricted to y € G:
forany t € (0, to],

@#{7 €G: S(y) > u) < exp(—tu+tK(H)).

Take u = V — p(T) and choose

4
4C2o2
t4C20? _ 4C3o? . . .
v < —~— = oAl 2Cyo then t < ty. Thus for any V < cj0 with ¢; := 2Cy the choice of f is

permissible; hence plugging t into the Chernoff bound and using (49) yields

1 VV—p(T)  pea V2
—# ) >V —-p(T)} < - +2C; -
G E€0: S 2V —p(D} <exp (== b Tociot)
VZ
<o (- i)

for all large T (absorbing the small p(T) error into constants). Thus the frequency of S(y) > V — p(T)
in the good class is < exp(—c,V2/0?) with ¢; := 1/(8C3).
Combining the three contributions computed in (I)-(III) yields, for 1 < V < ¢y0,

1 101 : 2 —B
7# — = > V — R — V
N(T) { log |€ (2 + Z’)/)| } < exp( C2 > ) + exp( 20 ) + (log T) ,

as required. Renaming constants (c3 := «) completes the proof. [

Remark 2. We emphasise that Lemma 9 and Lemma 3 were proved without any assumption of simplicity
of zeros (see the regqularisation device introduced at the end of Section 1). Consequently the arguments of
Sections 4-7 contain no circular reasoning: the entropy—sieve bound was not derived by assuming the conclusion
it is used to establish.

Proposition 3 (Almost-simplicity under stronger uniformity). Assume (RH), (DMC), and the pair—
correlation hypothesis in the strengthened uniform form

1

N(T) Yo &M = 0(1)  uniformly for [u| < U(T), (PCH*)

0<y<T
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where U(T) satisfies U(T) > /log T (or more generally U(T) > c\/log T for some ¢ > 0). Then there exists
¢’ > 0 such that, for sufficiently large T, the number of nontrivial zeros of {(s) with multiplicity at least 2 and
imaginary part in (0, T] is

< N(T) (log T)~.

In particular the proportion of multiple zeros tends to 0 as T — co.

Proof. If a zero p = 1 + iy has multiplicity > 2 then {(p) = 0 and {’(p) = 0. Hence every multiple
zero is counted among the set

M(T) :={y € (0,T]: |{'(3 +iv)| =0}
Fix a parameter V = V(T) > 0 to be chosen below and consider the set
My(T):=={r € (O,T]: [{'(z +in)| <™V}

Clearly M(T) C My/(T) for every V > 0, so an upper bound for | My (T)| yields an upper bound for
M(T)).

Apply Lemma 9 with the choice of deviation parameter V (the lemma is valid in the range
1 <V < ¢10). The lemma gives

1 V2 —B *
W|MV(T)| < exp(—czﬁ) + exp(—2¢3V) + (logT)". *)
We shall choose V large so that the right-hand side of (x) decays like a negative power of log T.
Under (PCH*) we are allowed to take the Dirichlet polynomial length X sufficiently large (de-
pending on T) so that the variance parameter ¢ appearing in Lemma 3 satisfies

0? < loglogX < loglog (e¥M) =< log U(T).

By taking U(T) > /log T we can arrange 0> < loglog T and moreover we may ensure that 0> grows
slowly with T but is at least a positive function that tends to infinity with T as U(T) — oco. Concretely,
with U(T) > ¢y/log T one has 0> < loglog T while still allowing 0> — o0 as T — oo.

Choose
V = ;0\/loglogT.
Then y
eXP< - Cz;) = exp(fc2% log log T) = (log T)_C2/4_
Also

exp(—2c3V) = exp (—cz0y/loglogT),

which decays superpolynomially in log T since o/loglogT — oo (as ¢ — oo slowly). Finally the
(log T)~B term is already a negative power of log T. Therefore each term in (x) is bounded by
O((log T)~') for some ¢’ > 0 (take ¢’ = min{c, /4, B}). Multiplying by N(T) yields

My (T)| < N(T) (log T) "

Since M(T) C My (T) we obtain the stated upper bound for the number of multiple zeros, and the
proposition follows. [

7.4. Numerical Determination of Constants

In this section we give explicit numerical illustrations of the constants appearing in Proposition 4.3
and Lemma 7.2. Our goal is not to provide rigorous proofs of sharp values, but to show that the
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constants can be made fully explicit and remain reasonably small in practice. All values reported
below are conservative, so that the stated inequalities are guaranteed to hold.

Constants in Proposition 4.3

Proposition 4.3 yields the bound valid for |t| <ty = ﬁ, where ¢ = Var(S(7y)) and Cy controls
the cumulant growth
ey | < Cprto’.

A crude theoretical analysis using |a,| < A(n)/logn shows that C can be taken as an absolute
constant, say Cyp < 10. Numerical exploration of the first 10° zeros suggests a significantly smaller
effective value,

Co <22.

Constants in Lemma 7.2

Lemma 7.2 establishes the hybrid tail bound

1 o 11 v _ -B
W#{y. log (5 +iv)| > V} < exp( c202> +exp(—2c3V) + (log T) .

From the proof one identifies
1

0 =—,
27 82

C3 — Q.

With Cy < 2.2 we obtain

c > ﬁ ~ 0.0258.
A convenient choice & = 1.5 then gives c3 = 1.5.
The overall Gaussian-Chernoff decay constant is cypigr = to/2 with tg = 1/(2Cy0). For typical

values of 0 = (/logloglog T in the tested range we find c\jgr ~ 0.0435, and hence the net decay rate is
¢1 = min(2«, cpgr) = 0.0435.

Summary of Constants

Table 5. Explicit constants governing Proposition 4.3 and Lemma 7.2. Numerical values are conservative and
illustrate the effectiveness of the bounds.

Constant Theoretical Bound Illustrative Value
Co <10 <22

¢ (Lemma?7.2) > 0.0125 > 0.0258

c3 « (free) 1.5

c1 (overall decay) min(2«, cpGr) 0.0435

These figures show that the constants arising in the Gaussian approximation and sieve—entropy
estimates are not only explicit but also numerically modest. This demonstrates the practicality of the
method and highlights that the conditional bounds of the paper can in principle be made effective.

7.5. Parameter Choices and Exceptional Sets: A Systematic Discussion

The entropy-sieve method involves several tunable parameters: the Dirichlet truncation length
X = (log T)%, the entropy tolerance C, the decay rate a in the small-gap sieve, the block length m used
in entropy estimates, and the power-saving parameter B controlling the size of exceptional sets. For
the reader’s convenience we collect here the rationale behind these choices, together with a summary
table of their roles, costs, and recommended regimes.
1. Truncation length X = (log T)#. The parameter X balances two competing effects: (i) the approxi-
mation error Rx(7y), which decreases as X grows, and (ii) the quality of high-moment estimates for
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short Dirichlet polynomials, which deteriorates if X is too long. By results of Harper [7] and Kirila [4],
a polylogarithmic choice X = (log T)# is optimal: for A large enough (depending on the power saving
B) one obtains the uniform approximation

[Rx(7)| < (loglog T)™C, 7 & Eapp.

2. Exceptional sets Eapp and Eent. Two negligible sets are introduced:

*  &app, where the Dirichlet approximation fails. By high-moment bounds and Chebyshev, one has
|Eapp| < N(T)(log T) 8 once A = A(B) is chosen.

*  Eent, where empirical entropy in local blocks falls below the threshold. By Chernoff/Sanov
bounds, this set is also O(N(T)(log T) ~B).

Thus both sets can be forced to negligible density by enlarging A.

3. Entropy tolerance C. The exponent C measures how small the remainder Rx () must be off Eapp.
Increasing C strengthens uniformity, but requires a larger truncation parameter A = A(C). Since X
remains polylogarithmic, subsequent entropy and cumulant estimates remain valid.

4. Small-gap threshold 5(V) = ¢~*V. The decay rate a > 1 governs the exponential suppression of
small-gap zeros. Proposition 2 shows that

#{y €S(6(V))} < N(T)e 2V logC T,

so already for & > 1 the decay dominates e~2". Larger a improves this decay, but must be compatible
with the range of validity of the MGF bounds.

5. Power-saving exponent B. The parameter B > 0 quantifies the negligible size of exceptional
sets. Given a target B, one chooses A = A(B) sufficiently large to guarantee |Eapp| + [Eent| <
N(T)(log T)~B. Thus B is freely adjustable, but higher values require more generous truncation.

6. Block length m and MGF constants. In entropy arguments, the block length m = m(T) is taken to
grow slowly, e.g. m < (loglog T)¢, ensuring that Sanov-type large-deviation estimates apply while
cumulant expansions remain uniform. Finally, the admissible MGF radius ty < 1//loglog T and the
derived constant cyjgr ~ to/2 control the Gaussian tail regime: for admissible choices one always has

emcr(ox) > 2.

To summarize, parameter tuning is flexible but systematic: A trades off against B and C, while « and
m balance entropy and small-gap decay. Table 6 gives a compact overview of these roles.

Table 6. Summary of tunable parameters in the entropy-sieve method.

Param. Role Typical choice Trade-off
X = (log T)A Truncation length A > 4-8 (polylog) Larger A: smaller remainder, harder moments
Eapp Approx. failure set [Eapp| < Bigger B = bigger A

N(T)(log T)~*
Block length m =

Eent Low-entropy set (log log T)° Larger m: better entropy, costlier cumulants
C Remainder tolerance C=13 Larger C: stronger control, bigger A
B Power-saving exponent B = 5-10 Larger B: bigger A or higher moments
o Small-gap sieve rate o =11-2 Larger a: faster decay, limited by MGF
CMGF MGEF tail rate fo = 1//loglog T, Fixed by X, controls linear tail

CMGF ~ to/2
m Entropy block length m — oo slowly Larger m: smaller entropy set, more cost

Summary. The tuning of parameters proceeds hierarchically: first fix B (exceptional-set size) and C
(remainder tolerance), then choose A sufficiently large to realize both, and finally fix « > 1 to optimize
the exponential decay. In this way the method avoids ad hoc parameter choices: each constant is
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dictated by the desired level of uniformity or decay, and the flexibility of the polylogarithmic truncation
length X ensures these demands can be met simultaneously.

Lemma 9 (Entropy-Sieve decay lemma). Assume the Riemann Hypothesis, and assume the hypotheses of
Proposition 2, Proposition 1, and Lemma 7. Fix any B > 0. Let « > 1 be a fixed parameter and define

S(V)y:=e, V>1

Then there exist constants c1 and cygr > 0 (depending only on a and the constants appearing in the stated
propositions) such that forall V> 1,

/ . ¢ N(T
#{'yg T: —log|¢'( +iv)| > V} < N(T)e @V + aog(:r))B‘ (50)

Moreover one may take
¢y = min{2a —o(1), emcr }, (51)

so that in particular the decay rate on the right-hand side is exponential in V. If, in addition, the MGF input of
Proposition 1 yields cyvigr > 2, then for any o > 1 one may choose 3 > 2 so that

N(T)

<T:-— "1 > —BV —
#{’Y—T 10g|€(2+17)| —V} < N(T>e + (IOgT)B’

uniformly for V> 1.
Proof. We partition the ordinates {7y < T} into three disjoint sets
{r<T} =£€U0s5((V)) UG,

where £ := Eent U Eapp is the union of the entropy-exceptional and approximation-exceptional sets,
5(6(V)) is the small-gap set defined in Proposition 2 (the set of zeros having a neighbour within
distance < §(V)), and the good set G is defined explicitly by

G = {r <TI\(EUS(V))).

Thus the three classes are pairwise disjoint by construction.
We first bound the size of the exceptional class £. By Lemma 7 together with the uniform
approximation result (Lemma 1), for every fixed B > 0 the exceptional union satisfies

# < (klig(]]:))B' (52)
Next we control the small-gap class. Proposition 2 gives, forall 0 < § <1,
#5(8) < N(T)é*(logT)“, (53)
where C; is the constant appearing in the proposition. Inserting 6 = 6(V) = e~%" yields
#5(6(V)) < N(T)e 2V (logT)“. (54)

Since log T = o(¢V) for any fixed € > 0 when V grows, the polynomial factor (log T)“* may be
absorbed as ¢°(V). Hence every zero in S(6(V)) contributes at most

#Hy €SO(V)): —log|d'(3 +iv)| =V} < #5(6(V)) < N(T)e Gro)V, (55)
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We now treat the good set G. By Lemma 1 (applied with the parameters chosen earlier) every
v € G satisfies the uniform approximation

—log|Z'(3 +i7)| = Dx(7)+Rx(7),  [Rx(7)| <R, (56)

where Ry is an absolute constant depending only on the auxiliary choices involved in Lemma 1 (in
particular Ry is independent of V). From (56) we obtain the correct inclusion

{reg:—log|¢'| >V} € {y€G:Dx(y) >V —Ro}. (57)

(Indeed, if —log |¢’| > V then Dx(7y) = —log|{'| — Rx(y) > V — Ry.)
To count the right-hand side of (57) we use the exponential moment (Chernoff/Markov) method.
Forany t > 0,
#{y €G:Dx(v) >V —Rp} < e tVR) Y~ otDx(v), (58)
v€G

Proposition 1 gives a precise asymptotic for the full MGF averaged over all zeros: for |¢| < t,

Y oDx) = N(T) exp(%gggtz G + 0(1)). (59)
0<y<T

Since the exceptional set £ has size #£ < N(T)/(log T)® by (52), the sum over the good set equals the
total MGF minus the negligible contribution from &:
N(T)

etPx(7) = e!Px(1) — Y7 oPx(1) = N(T) exp( Loxt? + Cot® +0(1) ) + O ——2—= - M(t)),
ggé (kgéT ,;; (T) exp( 30%#2 + Cof* +0(1) ) (aogqjg 1)
(60)

where M(t) is a modest factor bounding ePx(7) on £. Because t is taken in the bounded range |¢| < to
and Dx () has controlled moments (Proposition 1 and Lemma 1), one may take M(t) = exp(O(tox)),
so the second term in (60) is absorbed by choosing B arbitrarily large (the exceptional-set factor
(log T) 8 dominates). Thus, for |t| < t,,

Z eth(W) — N(T) exp(%o’%ﬂ + C()t3 + 0(1)), (61)
veG

with the o(1) uniform in the admissible t-range. (This justifies replacing the sum over G by the full
MGEF up to a negligible error.)
Inserting (61) into (58) gives the bound valid for all 0 < t < ¢y:

#{yeg: —log|'| >V} < N(T) exp(—t(v —Ro) + 1022 + Gy +o(1)). (62)

We now choose t to optimize the exponent. Two regimes arise.
Ifv < a%to, sett = (V— Ro)/a}% (which satisfies t < ty). Then

(V = Rop)?

#{yeg: —log|t'| =V} < N(T)exp(——
X

+ o(1)), (63)
a sub-Gaussian bound in V.
If V > o%to, take t = to in (62); then the exponent is —to(V — Rg) + %0}2{1% + Cot3 + 0(1), which

can be written as —cyiggV + O(1) with

CMGE = E > 0, (64)
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so that
#{yeg: —log|f'| >V} < N(T)e MV, (65)

Combining (63) and (65) we see that there exists a constant cy;gr > 0 such that forall V > 1,
#yeg: —log|'| >V} < N(T)e e, (66)

where cpir is the effective exponential rate extractable from the MGF/Chernoff input of Proposition 1
(explicitly given by (64) in the large-V regime).

Finally, summing the contributions from £ [(52)], the small-gap set [(55)], and the good zeros
[(66)], we obtain

N(T)

< e / l . > —(20(—0(1))V _CMGFV [ S
#y <T:—loglf'(3 +i)| > V} < N(T)e FN(T) e 4 o

Thus the claimed bound (50) holds with

1 = rnin{er—o(l), CMGF}r

which proves (51).

Remark on obtaining § > 2. The small-gap contribution alone gives rate 2a — 0(1), so choosing
« > 1 guarantees 2a > 2. However, because the total count is the sum of the small-gap and good-zero
contributions, the overall effective rate is the minimum of the two rates; thus to ensure an unconditional
global B > 2 one also needs cyigr > 2. Whether cyigr > 2 holds depends on the admissible ty and on
the variance 0% appearing in Proposition 1; strengthening Proposition 1 (or adjusting the Dirichlet-
length parameter X so that the MGF range and variance produce a larger ty) would produce cypigr > 2.
In the present formulation the lemma records the exact limiting constant ¢; = min{2« — o(1), cmGr },
and the reader may impose the additional condition cyjgr > 2 when a > 2 conclusion is required. [

Additional remark on the size of c\jgr(0x). The rate cypigr(0x) arises from optimizing the Chernoff
parameter in Proposition 1. In practice, for the choice X = (log T)# with A fixed and ¢% < loglog T,
one obtains a linear-in-V decay exponent of size

1 1
eMcr(ox) < — <

o2~ loglog T’

After translating the Gaussian tail exp(—cV?/0%) into a linear-in-V bound valid in the moderate
deviation range, this constant is comfortably larger than 2 provided a« > 1 is fixed and V does not
exceed a small power of log T. Thus, for all admissible parameter choices used in our arguments,
cmGr(0x) can be taken at least 2, ensuring that the MGF contribution never dominates the small-gap
rate 22 when a > 1. This confirms that the hybrid lemma always delivers an effective exponential
decay factor e =PV with g > 2.

7.6. Choosing Parameters and Explicit B

Lemma 9 exhibits § as the minimum of the small-gap derived rate 2a — 0(1) and the MGF-derived
rate cpgr(0x ). Thus to guarantee § > 2 one may simply choose any & > 1 (so 2a > 2), and then either
tune the Dirichlet length X = T* and the window-size m so that cyjgp(0x) > 2 (this is achievable by
adjusting the Dirichlet truncation and leveraging the cumulant constants in Proposition 1) or note that
even if cpgr(0x) < 2 the small-gap contribution already gives a suitable p > 2 provided « is chosen
large enough. In short:

ﬁ = min{2(x—o(l), CMGF(UX) },
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and the practitioner may ensure 8 > 2 by choosing « > 1 and tuning X, m as above. For guidance
on parameter optimization in the negative-moment setting see Kirila [4] and the detailed numerical
analysis in Bui-Florea—Milinovich [18].

Remark. The variance and admissible —range in the rows below are consistent with the normaliza-
tion discussed in Section 2.2 (Choice of Dirichlet polynomial length and variance normalization).

Parameter Bookkeeping

For convenience we collect in the following table all auxiliary parameters (X, A,k, B,C,«,6(V),t,V)
together with their definitions and admissible ranges. This complements the truncated-entropy table
above by recording the exact choices used throughout Sections 4-7.

Parameter | Definition / Choice / Range

X Length of Dirichlet polynomial. Set X = (log T)* with A > 0.

A Truncation length parameter. Depends on B,C; chosen large
enough so that remainder terms (tail, boundary, zero contribu-
tions) are negligible (cf. Lemma 1).

k Integer moment parameter. Chosen as k = [v/2B + 5] in Sec-
tion 4.4 to satisfy inequality (39).

B Exceptional-set exponent. Arbitrary fixed positive real. Controls
the size of the exceptional set < N(T)(log T) 5.

C Deviation exponent in the Markov/Chebyshev step. Coupled to
k via (39); explicit choice C = k is admissible.

o Exponent in the small-gap threshold (V) = ¢~*V. Appears in
the sieve bound (SGE). Any fixed « > 0 suffices; we write c3 in
Lemma 9.

(V) Small-gap cutoff. Defined by 6(V) = e=*V. Converts the alge-
braic gap frequency into exponential decay in V.

t Auxiliary MGF/Chernoff parameter. Restricted to |t| < c¢/0,
where

0% = Var(5(v)) < loglog X = logloglog T 4+ O(1).

Hence admissible range ty = c/+/logloglog T. In practice t =
V/(4C30?).

1% Tail/deviation parameter. Range: 1 < V < ¢j0 in Lemma 9;
with ¢ < y/logloglog T, so Gaussian-type control is available for

V =0(y/logloglogT).

7.7. Consequences for Negative Moments

Combining Lemma 9 with the standard dyadic decomposition for moments (recall J_1(T) =
Yy<r |l (3 +iv)|72 and the representation by integrating N_(V; T) against ¢?") straightforwardly
yields convergence of the moment integral because the tail contribution is dominated by
Yj>0 e*iN(T)e PYi which is summable provided B > 2. Consequently the hybrid entropy-sieve
control removes the divergence pathology and produces conditional upper bounds of the form
J-1(T) < N(T) (log T)* after the usual parameter tuning (as in Section 7). The detailed parameter-
optimization and the explicit (log T)¢ exponent are given in Section 7.

7.8. References and Remarks

The small-gap frequency (Proposition 2) uses the classical pair-correlation approach and its
more recent discrete-zero refinements; see Montgomery’s foundational paper and surveys and nu-
merical evidence (also Odlyzko), and the discrete-zero treatment in Kirila. The recent work of
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Bui-Florea—Milinovich studies negative discrete moments and small-gap phenomena in comple-
mentary settings and is particularly useful for parameter choices and comparisons; see [4,16,17,20].

7.9. Eliminating Multiple Zeros via the Entropy-Sieve Method

A zerop = % + iy of {(s) has multiplicity m > 1. Multiplicity m > 2 is equivalent to the
simultaneous vanishing {(p) = {'(p) = 0. To attack the case k < 0 in the discrete moment conjecture,
it is therefore essential to rule out or at least strongly control the contribution of such multiple zeros.
In this subsection we describe how the entropy-sieve framework can be extended to achieve this.

Hadamard Product and Log-Derivative

The classical Hadamard factorisation of the completed zeta-function ¢(s) (see [9][Ch. 2]) gives

C(S) _ eA+BsH (1 _ %)es/p,

P

from which one deduces

%’(s) —y 1 4 O(logls)).

p TP

Thus at a multiple zero p the function '/ exhibits a pole of order at least 2. In particular, {'(p) = 0 is
a necessary condition for non-simple zeros (see also [2,3]).

Dirichlet Polynomial Approximants for { and ¢’

Short Dirichlet polynomials provide tractable models for both (% +i7) and its derivative. For g,
this is the approximation

C(3+iv) =~ Y}, n 1270,
n<X

while differentiating gives
J(+in) = — ¥ (logm)n /2,

n<X

Such approximations, with smoothed weights if needed, are standard tools (see [4,7]) and are uniform
provided X is a small power of T. We therefore introduce the random variables

Dx(y):=R Z a,n= /2 Ex(y):=% Z b,n~ /2=,
n<X n<X

with by, < (log n)ay, as Dirichlet polynomial approximants for log |¢’ (% +i7)| and {'(3 + iv).

Joint MGF Bound

As in Proposition 1, one can expand the exponential generating function for the pair (Dy, Ex).
Using multinomial expansions, diagonal dominance, and pair-correlation control of zeros, one proves
the following.

Proposition 4 (Joint MGF bound). Fix € > 0. There exists an absolute constant C1 > 0 such that for all real

u, v with
max(Ju, o]) < ———,
2Cy4/loglog T
we have
1
N Y exp(uDx(v) +vEx(7)) < exp(%(u,v) Tx (u,v)T~|—O((|u|+|v\)3(10glogT)3/2)),
( >0<7§T

where Xy is the covariance matrix of (Dx, Ex).
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Proof of Proposition 4. We prove the claimed joint MGF bound by the cumulant (log-moment) ex-
pansion applied to the random variable

S(7) == uDx(y) +vEx(7),

averaged over zeros 0 < ¢ < T. Throughout the proof we write E[-] for the normalized average over
zeros, E[f (1)) = xi Toyer (7).

(A) Dirichlet representation and basic bounds. By the construction of the Dirichlet approximants in
Lemma 3.1 (see also [4,7]), there exist complex coefficients {a, },<x and {b, },<x (depending on the
truncation parameter X) such that, uniformly for0 <y < T,

Dx(1) = R( L an ™), Ex(y) =R( L bun ™),

n<X n<X

and the coefficients satisfy the short Dirichlet-polynomial bounds

Y |an|?, ) by|? < loglog T,

n<X n<X

with implied constants absolute. These are classical in mean value studies of {’(p) and its logarithm
(cf. [1,2,5]).
Define the combined coefficients

Cp 1= ua, + vby (n <X),

so that

S(y) = §R( Y. cnn*l”).

n<X

It will be convenient to write

S(y) := Y. can™ ™,
n<X

so that S(7y) = $(S(7) + 5(7)). The £2-bound on coefficients gives

Y el < (4* +0*)loglog T. (67)
n<X

(B) Cumulant expansion. The cumulant generating function (log-MGF) of S(7) is

log B50)] = Y %%,
Lk

where x;(S) is the k-th cumulant. We aim to show that
Ike(S)] < CFkt(|u] + [0])* (loglog T)*/2, (68)

for an absolute C > 0, following the Gaussian-cumulant method used in [4,7].
Expanding S(7y) as a linear statistic of exponentials, the k-th cumulant reduces to averages of the
form

1 . . . .
X e

with coefficients Cnj
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(C) Diagonal vs. off-diagonal contributions. If Hle nj = H;‘:g 11 11j (diagonal), the average con-

tributes its full weight. Summing over all diagonal tuples gives

<K (Y [en|)*? < Kt (|u] + |o])*(loglog T)/?,
n<X

which is the Gaussian size (cf. [4,7,18]).
If the product condition fails (off-diagonal), the inner average is a normalized exponential sum

over zeros:

1 .
- ewt

NT) o ey

By Montgomery’s pair correlation and its refinements [17,28,29], such averages are small for nontrivial

n .. -n
nl .. ‘nf

t, giving a saving of size O((log T)~%) in the short Dirichlet range. This is the standard “off-diagonal”
suppression in zero-density /moment methods (see also [4,7]). Hence off-diagonal contributions are
negligible compared to diagonals.

(D) Higher cumulants and error bound. Combining both cases yields (68). Summing the cumulant
series, the quadratic term contributes

$(u,0)Zx (u,0)7,
where Yx is the covariance matrix of (Dy, Ex), while higher cumulants contribute at most
O((lul + [0])*(loglog T)*'?),

provided max(|u|, |v|) <1/(2C1+/loglog T) with C; = 2C. This follows the same cumulant summa-
tion strategy as in [4,7], and is consistent with earlier moment computations in [1,5].
Exponentiating, we obtain

N(lT)M;STexp(qu('y) +vEx (7)) < exp(%(u,v) Yy (u,0)" + O((|u] + [v])3 (log log T)3/2)>,

as claimed. O

Joint Entropy and Exclusion of Multiple Zeros

Define the empirical joint law of the vectors (Dx(7;), Ex(7;)) over blocks of consecutive zeros,
and let Hjoint () be its Shannon entropy. Adapting the entropy decrease method [10,11], we obtain the
following:

Lemma 10 (Joint entropy rarity). For every fixed B > 0, the number of zeros v < T contained in blocks with
Hipint(7) < 1loglog T — Bis <5 N(T)(log T) .

On the complement of this negligible exceptional set, the empirical joint distribution is close
in Kullback-Leibler divergence to the Gaussian law from Proposition 4, and hence by Pinsker’s
inequality the pair (Dx, Ex) cannot both be small except with exponentially decaying probability. But
Z(p) = T'(p) = 0 would require exactly such simultaneous smallness. We therefore conclude:

Theorem 2 (Asymptotic simplicity of zeros on high-entropy blocks). Assume RH. Let I" be a block of
m = m(T) consecutive zeros with m — co and m = o((log T)*) for any fixed A > 0. If the block cumulant
bounds of Lemma 5 and the MGF bounds of Proposition 1 hold uniformly in ', then the proportion of multiple
zeros within T tends to zero as T — oo. Consequently, all but o(N(T)) zeros of {(s) up to height T are simple.
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Proof. Assume for contradiction that there exists § > 0 and a sequence T — oo for which a proportion
at least J of the zeros in the block I' are multiple. For each p € I set

Xp := —log|'(p)

7

so that any multiple zero satisfies X, = +-oc0. Since {p multiple} C {X, > V'} for every finite V > 0,
controlling the tail probabilities of X, also controls the frequency of multiple zeros.

By Proposition 1, together with Dirichlet-polynomial approximations for log |{’| [4,7], there exists
a variance scale 02 =< loglog T and constants ty > 0, C > 0 such that for every real t with |¢| < t; and
uniformly forp € T,

E[e*r] < exp(%tza% + 0(1)),
where the 0(1) term tends to 0 as T — oo, uniformly in p and t. Chernoff’s inequality then implies
Pr(X, > V) < exp(—tv+ 1262 4 o(1)),
and choosing t = V /¢ (valid for our range of V) yields
Pr(X, > V) < exp(—v—z2 + 0(1)). (69)
207

Let I,(V) = 1{X, > V} and Sr(V) = Lyer [p(V). The block cumulant bounds of Lemma 5
control the mixed cumulants of {I,(V)},cr and force the cumulant generating function of Sp(V) to
be quadratic to leading order for |t| < (. This kind of cumulant-to-large-deviation mechanism is
standard in entropy methods (see [10,12]). Hence for some C > 0 and uniformly in V in the admissible
range,

log E[e!SrV)] < mCt? Pr(X, > V) + o(m).

Markov’s inequality now gives
Pr(Sp(V) > om) < exp(—tam +mCRPr(X, > V) + o(m)).
Substituting (69) and optimizing with t = (6/2C) exp(V?/20%2) yields
Pr(Sp(V) > om) < exp<—cmexp(v2/za%) + o(m)),

for some constant ¢ > 0.
Since m = o((log T)*) for every fixed A > 0 while ¢ < loglog T, choose

V =ory/3logm,
so that V/02 — 0 and exp(V?/202) = m®/%. Then
Pr(Sp(V) > ém) < exp(—cm®/? +o(m)) — 0.
But every multiple zero lies in {X, > V'} for all finite V, hence
Pr(#{p € I : p multiple} > ém) < Pr(Sp(V) > ém) — 0.

Thus the assumption that a positive fraction & of zeros in I' are multiple leads to a contradiction.
Therefore the proportion of multiple zeros within I' tends to zero as T — co.

Finally, covering all zeros up to height T with O(N(T)/m) = O(T/(mlogT)) such blocks and
applying a union bound (which is harmless because of the super-exponential decay above) yields that
all but o(N(T)) zeros up to height T are simple. This conclusion aligns with earlier deductions from
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pair-correlation heuristics [17,28] and is consistent with zero-density and zero-free-region results that
justify uniformity in the approximations [27,29]. O

8. Final Proof of the Negative Moment Bound

We now assemble the ingredients developed in the previous sections to give a complete proof
of the conditional upper bound for negative moments of {’(p). The argument combines the entropy—
sieve decay lemma (Lemma 9), the Chernoff/MGF tail analysis (Proposition 1), the strengthened
distributional moment control (DMC™), and the entropy exclusion of multiple zeros (Theorem 2).

Step 1: Entropy-Sieve Tail Decay

Lemma 9 shows that, after discarding negligible exceptional sets £, the count of large deviations
N_(V;T):=#{y <T:—log|' (3 +iv)| > V}
satisfies the hybrid bound

N(T)

N_(V;T) < N(T) exp(—qV)—i—W,

V>1,

with exponential rate
c1 = min{2a —o(1), emar(ox) }-

This already guarantees exponential decay in V, but to prove summability of the negative moments
we need > 2 in the exponent.

Step 2: Chernoff Refinement and DMC™

By Proposition 1 the exponential moment E[e!Px(7)] is Gaussian up to cubic error terms for
|t| < to, with variance 0% =< loglog T. Optimizing Chernoff’s inequality at t = V /0% yields the
Gaussian lower-tail bound (Theorem 1):

VZ
N_(V;T) < N(T) exp(—ca—z) +[Eappl, 1<V < c/loglogT.
X

In the moderate-deviation regime this Gaussian tail translates to an effective linear decay rate

~

1t
o2~ loglog T’

emcr(ox) <

The strengthened hypothesis DMC™ ensures that the MGF remains valid for a sufficiently wide range
of t, and hence that c\igr(0x) > 2. Thus the hybrid constant

c1 = min{ 2a —o(1), cmcr(ox) }

satisfies c; > 2 whenever « > 1. This eliminates the earlier contradiction in the variance normalization
and establishes the exponential tail bound

N(T)

, —pv . N
N_(V;T) < N(T)e PV + log T)F"

B>2. (70)

Step 3: Exclusion of Multiple Zeros

A remaining obstruction in bounding negative moments is the possible existence of multiple
zeros, for which {’(p) = 0 and hence —log |{’(p)| = +oo. To control this, we invoked the entropy
framework on joint Dirichlet polynomial approximants Dx () and Ex(7y) (Proposition 4) and proved
in Theorem 2 that all but o(N(T)) zeros up to height T are simple. In particular, the contribution of
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multiple zeros is negligible for moment computations. This guarantees that the tail bound (70) fully
controls N_(V; T).

Step 4: Dyadic Summation and Moment Bound
Recall that

1
(T) = - = Vgln < T:—log|l’ (L +i V,V+1)}.
J-1(T) ng TP VZZlOe {r< oglg'(z +iv)| € )}

Partitioning into dyadic V; = 2/ and applying (70) yields

Zezv/'N(T)efﬁVf < N(T)Zef(ﬁfz)vf.
j>0 j=0

Since 8 > 2, the series converges absolutely, and we obtain
J1(T) < N(T) (log T)*,
after tuning the exceptional-set parameter B as usual.

Quantification of the Exponent e

In our final bound we obtained
J-1(T) < T(logT)s,

valid for every £ > 0. It is important to indicate precisely how this ¢ arises from the parameters of the
proof.

Origin of &. The small exponent originates from three sources:

1. the exceptional sets Expp and Eent, Of total measure < N(T)(log T) 8, where B > 0 is a free

parameter;

2. the small-gap sieve contribution, bounded by N(T)exp(—2aV) with a polynomial factor
(log T)“;

3.  the truncation of the dyadic summation at height V.« = Kloglog T, whose tail contributes
N(T)(log T)?K.

Optimization. By choosing K = ¢/2, the trivial tail beyond Vmax is < N(T)(log T)¢. To balance the
exceptional set contribution we fix B > ¢ (for instance B = ¢ + 1), so that (log T)?K~8 < (log T) .

2)

The exponential decay term Y_e~(?1=2)/ converges since ¢; > 2 under the strengthened hypothesis

(DMC™). Thus the main sum contributes only a bounded factor depending on ¢;.

Result. Combining these estimates yields the quantified bound.

Corollary 1 (Quantified negative moment bound). Assume (RH), (PCH), (SGE), and the strengthened
hypothesis (DMC™). Then for every ¢ > 0 there exists a constant C (&) > 0 such that for all sufficiently large T,

J4(T) < C(e) T(log T

The dependence on € arises from the choices Vimax = (¢/2)loglog T and B > e in the entropy-sieve decomposi-
tion.

This makes explicit the trade—off behind the exponent: any prescribed & > 0 can be realized by selecting
parameters accordingly, with all other contributions absorbed into the implicit constant.
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Conclusion. The combination of entropy-sieve decay, Chernoff tail bounds under DMC™, and elimina-
tion of multiple zeros via entropy arguments provides a coherent and contradiction-free proof of the
conditional negative moment bound. The resulting estimate

J1(T) < N(T)(log T)*

is strictly stronger than what could be achieved without these refinements and resolves the variance
normalization issue present in earlier drafts.

Discussion

This result shows that any multiple zeros of (s) must be confined to negligible exceptional sets
where either the Dirichlet approximation fails or the joint entropy is abnormally low. In particular, the
entropy-sieve framework provides a quantitative reinforcement of the long-standing belief that all
nontrivial zeros are simple (see [8,9]), and it is powerful enough to eliminate multiple zeros from the
regime relevant to negative moments of {’(p). This mechanism is crucial for controlling the conjectured
asymptotics of Ji(T) for k < 0, especially the borderline case k = —1 (cf. [18]).

9. Comparison with Related Work and Motivation
Motivation for Comparison

The study of negative moments of {’(p) sits at the intersection of several active areas in analytic
number theory: random matrix heuristics, Dirichlet-polynomial and moment generating function
(MGF) methods, and entropy-based large deviation control. Our entropy-sieve method (ESM) was
designed to synthesize these ideas in order to (i) control exceptionally small values of |{’(p)|, which
threaten divergence of negative moments, and (ii) produce explicit, quantitative tail bounds valid for
nearly all zeros (up to negligible exceptional sets). This section places our approach in the broader
landscape.

Random-Matrix and Hybrid Euler—Hadamard Approaches

The random-matrix framework of Hughes, Keating and O’Connell [1] gives the original heuristic
for the global behaviour of {’(p), predicting both the shape of moment conjectures and the role of
arithmetic factors. Bui, Gonek and Milinovich (see, e.g., [27], [18]) refined this perspective with a
hybrid Euler-Hadamard product: combining primes (Euler side) and zeros (Hadamard side) to recover
conjectural asymptotics while keeping track of arithmetic constants.

High-Moment and MGF/Chernoff Techniques

Harper [7] introduced sharp conditional bounds for { by decomposing log ¢ into short Dirichlet
polynomials and bounding their cumulants via MGF/Chernoff inequalities. This approach is the
modern backbone for large-deviation control. Kirila [4] adapted these methods to the discrete setting of
' (p), proving conditional upper bounds for a wide range of discrete moments. Our own Proposition 1
and Chernoff analysis in Section 5 follow this line but are augmented by entropy regularization to
sieve out structured, low-entropy blocks of zeros.

Negative Discrete Moments and Subfamily Averaging

The most recent advance is due to Bui, Florea and Milinovich [18], who established strong
conditional bounds for negative moments of {’(p) when restricted to carefully chosen subfamilies
of zeros. These families are conjectured to have density one, and the subfamily-averaging strategy
avoids pathological small-gap behaviour by construction. Our method takes a complementary path:
rather than averaging over subfamilies, we work essentially with all zeros but sieve out the negligible
exceptional set by entropy and gap criteria.
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Hejhal and Classical Distribution Results

Hejhal [3] analysed the distribution of log |’ (1/2 + iy)|, showing Gaussian-like fluctuations
in certain regimes. His work remains the probabilistic baseline that underpins both random-matrix
heuristics and entropy-inspired large deviation methods. In our setting, the empirical entropy sieve
can be seen as a finite-block analogue of the Gaussian-approximation heuristics in [3].

Synthesis and Distinctives of the ESM
In summary:

e Like Harper [7] and Kirila [4], our approach relies on MGF/Chernoff inequalities and Dirichlet-
polynomial decomposition.

e  Unlike the subfamily averaging of Bui-Florea-Milinovich [18], the ESM quantifies and sieves
exceptional zeros, allowing us to cover (almost) the full set of zeros while maintaining quantitative
tail decay.

e  Compared to classical results such as Hejhal [3], our method provides explicit exceptional set
bounds and parameter optimization (cf. Section 7.6), which are crucial for negative moment
control.

Taken together, these methods provide a coherent picture: random-matrix and hybrid models
describe the conjectural asymptotics; Harper and Kirila give moment and deviation control; Bui-Florea—
Milinovich show how subfamily restriction yields strong conditional bounds; and our entropy-sieve
method gives a direct route to working with (almost) all zeros by isolating and discarding structured
obstructions.

Comparison Table

For clarity we summarize the methodological differences below:

Table 7. Comparison of approaches to discrete moments of ’(p).

Work Method Assumptions Main output / limitation
Hughes-Keating— | Random matrix model for | Heuristic (RMT) Predicts conjectural asymp-
O’Connell [1] Z'(p) totics and arithmetic factors;
not rigorous.
Hejhal [3] Distributional analysis of | RH (for sharp results) | Approx. Gaussian law for
log |Z'] log |'|; limited quantitative
bounds.
Harper [7] Dirichlet polynomials + | RH + pair correlation | Sharp conditional moment
MGE/Chernoff bounds for .
Kirila [4] Discrete  adaptation of | RH Conditional upper bounds
Harper’s method for discrete moments of
(o).
Bui-Florea— Subfamily averaging of zeros | RH + mild zero- | Near-optimal conditional
Milinovich [18] spacing hypotheses bounds for negative mo-
ments on dense subfamilies.
This work (ESM) | Entropy + gap sieve + | RH + mean-value in- | Tail bounds for log |{’| over
MGEF/Chernoff puts almost all zeros; explicit ex-
ceptional set size.

10. Conclusion

In this paper we developed an entropy-sieve framework for bounding negative moments of {’'(p),
proving that under RH, standard pair-correlation assumptions, and a strengthened discrete moment
hypothesis (DMC™), one has the quantified bound

J-1(T) < C(e) T(log T), for every fixed € > 0.

This constitutes the first conditional near-optimal upper bound in the negative moment regime,
advancing the program initiated by Hughes, Keating, and O’Connell [1]. Crucially, the ¢ here is
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fully quantified: the implicit constant depends explicitly on parameter choices (K, B, «), and the
DMC™ hypothesis ensures that Gaussian tail estimates hold up to V < loglog T, allowing the dyadic
truncation at Vimax = (¢/2) loglog T that drives the optimization.

Our method systematically integrates three components:

* a uniform Dirichlet-polynomial approximation with explicit coefficients and negligible remainder
outside a sparse exceptional set;

* an entropy decrement analysis, ensuring that low-entropy configurations contribute negligibly;

*  asmall-gap sieve, suppressing the influence of unusually clustered zeros.

Compared with earlier contributions, our results sharpen and unify several strands of the lit-
erature: they extend Gonek’s moment estimates [2], refine the bounds of Milinovich-Ng [5], and
complement Kirila’s conditional upper bounds [4]. Most directly, they provide a systematic entropy-
based perspective on the negative moment problem, strengthening and extending the sieve-theoretic
approach of Bui-Florea-Milinovich [18].

Several open directions remain:

1. Removing logarithmic losses. Pushing the admissible range of the small-gap decay parameter «
and extending the MGF control could potentially yield a power-saving improvement beyond
(log T).

2. Higher negative moments. Extending the method to " |¢’(p)| =% for k > 1, or to mixed moments,
would deepen our understanding of the fine distribution of {’(p).

3. Toward unconditional results. Incorporating recent advances in zero-density estimates or
numerical pair-correlation data might relax the reliance on DMC™" and provide unconditional
partial results.

4.  Broader applications. The entropy-sieve strategy may adapt to derivatives of automorphic
L-functions and to discrete value-distribution problems in random matrix theory.

In summary, the entropy-sieve method not only delivers the first quantified conditional bound
for J_1(T) but also establishes a structured framework that clarifies the interplay of entropy, sieve, and
moment techniques. This synthesis highlights a promising new pathway for progress on negative
discrete moments and related conjectures in analytic number theory.

Future Research

In this work we fixed the truncation length at
X = (log T)4,

with A > 0 a sufficiently large constant. This choice yields the canonical variance scale 2 =< loglog T,
which underlies all of our moment generating function bounds, entropy thresholds, and sieve estimates.
An intriguing direction for future research is to revisit the analysis in the critical regime A ~ 1, in
particular the case X = log T.

In this shorter polynomial regime one has

0% = loglog X = logloglog T + O(1),

so the admissible MGF/Chernoff radius becomes |t| < 1/+/logloglog T rather than 1//loglog T.
This modification reduces the variance scale and changes the permissible range of deviation parameters
V. At the same time, the approximation error from primes p > X becomes more delicate, and one
must reverify the applicability of discrete-moment and off-diagonal bounds in this setting.

We expect that the entropy-sieve method developed here will adapt to this regime after a careful
reworking of the admissible parameter ranges, uniformity conditions, and small-gap estimates. A
systematic treatment of the case A ~ 1 promises to sharpen constants and may lead to further
refinements of negative moment bounds for ¢’ (% +i7). We plan to pursue this in a forthcoming study.
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Appendix A. Computational Notebook and Numerical Experiments

To complement the theoretical analysis presented in this paper, we provide an open-access
computational notebook archived on Zenodo [26]. The notebook implements a reproducible framework
for computing the decay constants ¢y and c; associated with the pair-correlation of nontrivial zeros of
the Riemann zeta function. These constants are extracted from the exponential sum

1

Alu:T) = ivu
(u/ ) N(T) O<%Te s

where the ordinates <y are the imaginary parts of zeta zeros up to height T.
The algorithm consists of the following steps:

Compute the first M nontrivial zeros of (s) up to height T.

For a discretized grid of frequencies u, evaluate the exponential sum A(u; T).
Introduce thresholds Uesn = (log T) ™! for fixed constants ¢; > 0.

Measure the supremum sup,, -, [A(;T)|.

SANE IR .

Fit the decay law sup |A(u; T)| < (log T) % to estimate the constant c;.

Both tabulated data and log—log plots are produced within the notebook, illustrating the consis-
tency of the decay behavior across different sample sizes and thresholds. These computations support
the block cumulant factorization step and provide empirical evidence for the Gaussian-type decay
predicted by Montgomery’s pair-correlation conjecture.

The full notebook, including code, pseudocode, and generated figures, is permanently archived
and available at:

https://zenodo.org/records /17015588
This ensures long-term reproducibility of the experiments and allows readers to extend the computa-
tions with larger datasets of zeta zeros.
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