

Review

The Function of Histone Modifications in Chronic Obstructive Pulmonary Disease

Amin Foroughi Nezhad*

* Corresponding Author: Faculty of Basic Sciences, Department of Biological Science, Semnan University, Semnan, Iran; Email: aminforoughy.77@gmail.com

Abstract: Numerous genes expression lead to inflammation in the individuals' lungs that have chronic obstructive pulmonary disease (COPD) may be affected by epigenetic alteration. Important epigenetic processes include methylation of DNA and different histones post-translational changes, including ubiquitination, phosphorylation, methylation, SUMOylation and acetylation. Smoking can trigger the enzymes that control these epigenetic changes. According to the majority of publications, both environmental and genetic variables have a substantial role in the development of COPD. Although, the information about COPD epigenetic is not much but, a better perception of the disease pathophysiology and identifying new markers to create novel therapeutics for patients can be achieved via a better understanding of the epigenetic processes involved.

Keywords: Post-translational modifications, Epigenetics, Histone Phosphorylation, Histone Ubiquitination, Histone methylation, inflammation, proinflammatory cytokines, DNA methylation, COPD

1. Introduction

An increasing number of people throughout the world are suffering with COPD, and it is responsible for a disproportionate share of the healthcare dollar bill in both direct and indirect costs (1,2). From the fourth biggest cause of death worldwide in 2004 to the third major incidence of death in 2030, (COPD) is predicted by WHO (3-5). Progressive, irreversible airflow restriction is a hallmark of COPD, This is brought on by chronic inflammation in the bronchi and lungs due to exposure to harmful substances like cigarette smoke (6). Cigarettes contain around 4700 active ingredients and 1014 free radicals, the intake of which is largely responsible for the pathophysiology of COPD. Cell death, insufficient regeneration, the oxidant-antioxidant ratio, the concept of elastase-antielastase and chronic inflammation, these factors are all assumed to have a role in the progression of COPD (7). Many people believe that the inflammation brought on by smoking cigarettes is the primary cause of COPD. Involvement of elevated expression of several other cytokines, which are proinflammatory factors, is thought to be involved in the underlying mechanism (8-10). Recent years have seen significant advancements in our knowledge of the molecular biology underlying activation of inflammatory genes and the methods by which they may be turned off, both have potential use in the management of inflammatory lung disorders. (11). Epigenetic modifications have been linked to the onset of chronic inflammation by modulating gene expression of proinflammatory cytokines like oncogenes, tumor suppressors, tumor necrosis factor alpha (TNF- α) the transcription factor nuclear factor kappa B (NF- κ B) activation and interleukins (12-15). Deficient deacetylation or

excessive acetylation, for instance, may cause the activator protein 1 (AP-1) and the nuclear factor kappa B (NF-kappa B) controlled gene transcription of proinflammatory genes, leading to an inflow of more proinflammatory cells and a perpetuation of the inflammatory cycle (8). In addition, newer research has revealed that the widely used corticosteroids in the treatment of COPD may operate in part through epigenetic mechanisms (16,17). By inhibiting these transcription factors and their potential to promote histone alterations and chromatin remodeling, the inflammatory genes are thought to be turned off by corticosteroids, which seems to reduce inflammation. (18). Heritable changes in gene expression that are not coded in the DNA sequence itself but rather by post-translational modifications in DNA and histone proteins are referred to as epigenetics. Epigenetics is the word used to describe these types of alterations (19,20). Methylation of DNA, that prevents genes from being copied, and alterations to the histone proteins, which DNA loops across, both work to silence transcription, are two of the most important epigenetic processes, respectively (12,21). Chromatin's fundamental unit is the nucleosome, and it consists of a little piece of DNA encased in a core histone tail that includes each of H4, H3, and H2A/B in two copies. (22-24). Chromatin may also take on a closed conformation, which is associated to repression of expression (25). Transcription can begin if the structure of chromatin has been broken down, a process that is accomplished by unfolding bare DNA. This is necessary for RNA polymerase to be able to transcribe mRNA from the DNA template. It begins with the binding of activated proinflammatory transcription factors like NF-B to a particular sequence of genes (11). The nucleosome histones are mostly spherical, with the exception of their disordered N-terminal "tails" (26). The covalent alteration of histones is a key epigenetic process for modulating expression of genes. Moreover, N-terminal tails are highly enriched for post-translational modifications such as methylation of lysines and arginines, acetylation, phosphorylation, ubiquitination, SUMOylation, and ADP-ribosylation (27-29). Altering the charge of the core histone can activate or silence gene transcription by shifting the chromatin structure from a closed to an open conformation (11).

The activation of inflammatory genes in COPD can be better understood if the molecular mechanism behind this process is known. Errors in methylation of DNA and alterations in deacetylation and acetylation of histones are, nevertheless, the most commonly detected epigenetic alterations. Possible contributions of a variety of post-translational alterations, including histone methylation, ubiquitination, phosphorylation, deacetylation, acetylation and methylation of DNA in the creation of cutting-edge drugs that can be utilized either alone or in combination with existing treatments for COPD, as well as the disease's development and progression, are reviewed in this report.

2. Chronic Obstructive Pulmonary Disease and Epigenetic alterations

2.1. Methylation of Histone

Over the course of the past four decades, the methylation of histones has been identified as a regulator of gene expression (30). Methylation on arginine and lysine amino acids of histones are among the most stable alterations; as a result, they are thought to be useful markers for transporting epigenetic information that survives cell divisions (31). Methylation of histones H3 and H4 has received the greatest attention. Some of the most common sites for methylation in lysine amino acids of histones are in the position of H4K20, H3K79, H3K36, H3K27, H3K9 and H3K4. Gene activation is connected with H3K4 and H3K36 methylation, while repression is linked to H3K9, H3K27, and H4K20 methylation

(26,94). On mammalian histones, the presence of arginine methylation has proven to be challenging to identify, in contrast to the methylation of lysine (32). Mono-methylated arginine exists, and di-methylated arginine can be symmetric (me2s) or asymmetric (me2a) (33). Recently, it has become clear that alteration of arginine amino acids by methylation plays a significant role in the management of DNA repairing, RNA biogenesis, cell-to-cell communication. This regulation can occur directly through the regulation of protein function or indirectly through the effect of metabolic byproducts of arginine methylation on nitric oxide (NO)-dependent processes (34,35). Protein arginine methyltransferases (PRMTs) attach one or two methyl groups from AdoMet (S-adenosylmethionine) to the guanidine-nitrogens of arginine, generating an epigenetic signature connected to expression of genes, which is essential in a wide range of biological functions and is suppressible by tiny effectors. (36,37). Six of the nine PRMTs that are encoded by the human genome (PRMT1, 2, 3, 6 and 8) are type I enzymes, according to classifications that may be made of them (33). Protein arginine methyltransferases (PRMTs) are able to precisely methylate arginine residues in proteins, resulting in either monomethylarginine (MMA), symmetric dimethylarginine (SDMA), or asymmetric dimethylarginine (ADMA) (38). Multiple research have looked at the connection between smoking and ADMA levels because of the strong link between the two and COPD. In comparison to nonsmokers, smokers have lower levels of ADMA according to certain research (39–41), while smokers have higher levels of ADMA according to other studies (42). Despite the fact that the results are debatable, it is possible that elevated levels of ADMA in smokers are connected with PRMT operations that are dysregulated. There is evidence that PRMT4, 5, 6, 9, and 10 are all overexpressed at higher levels in COPD lung tissue specimens (43). According to the research of Kohse et al. (44), PRMT2, 4, and 6 may participate in the regulation of Th17 cell development, which may in turn play a part in the inflammatory processes that contribute to COPD. Extremely strong hypoxic stimuli can trigger COPD. In the lungs of mice exposed to hypoxia, Both the PRMT2 and the levels of protein were discovered to be increased, according to Yildirim et al (45). Further evidence implicating oxidative stress in the development of COPD was found when PRMTs were found to be up-regulated in human endothelial cells (46). A recent study published by Andresen et al. (47) found a strong correlation between rising DEFB1 mRNA levels and the development of COPD. These findings prove the presence of PRMTs in COPD models and suggest a possible association between COPD and the methylation of arginine caused by PRMT functioning. Importantly, the exact mechanisms of methylation of histones potential involvement in the aetiology of COPD is unresolved. Methylation of histones in COPD is poorly understood; hence further *in vivo* and *in vitro* studies are required to elucidate the mechanisms involved.

2.2. Ubiquitination of Histone

The Ubiquitin-Proteasome System (UPS) has gained significant attention in the field of COPD in recent years. Patients with COPD frequently experience diaphragm and skeletal muscle dysfunction because of an unfavorable muscular protein production ratio to degradation of muscle protein (48–50) The ATP-based ubiquitin-protein degradation (UPS) is a crucial regulator of protein degradation (51). Numerous studies have demonstrated that the UPS is partially activated in COPD patients, which results in increased protein

breakdown and limb muscle atrophy (52,53). Degradation of contractile proteins in COPD has been linked to the UPS, which is vital for biological functions, such as the reaction to hypoxia (54,55). Skeletal muscle atrophy caused by smoking is linked to increased USP-19 expression through activation of p38 and ERK MAPKs (56). Patients with moderate to severe COPD have been shown to have higher local production of proinflammatory cytokines, which has been connected to the UPS and the lack of myosin in the diaphragm. (57-60). Furthermore, Zou et al (61,62) showed that -TrCP (E3-ubiquitin ligase) actively involved in the pulmonary inflammatory response via histone protein O-palmitoylation. Steroid resistance is related to decreased HDAC2 abundance, which has been shown in patients with COPD and is induced by CSE therapy in epithelial cells, macrophages, and mice lungs (63). The UPS is essential for cell survival and proliferation, and Kim et al. (64) discovered that CSE treatment could increase Akt protein breakdown. Collectively, these findings suggest that UPS aberrant activation is a key factor in the development of COPD. All eukaryotes have ubiquitin, a regulatory protein with 76 amino acids (65). vesicle trafficking, endocytosis, transcriptional regulation, signal transmission, immunological response, DNA repair, stress response, cell-cycle control and Protein degradation are only some of the physiological activities regulated by ubiquitination post-translational modification to target proteins (66,67). To guarantee the prompt and effective proteolysis of target substrates, the UPS employs a complex network of protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) that function in concert with one another (68,69). The maintenance of genomic stability and transcriptional regulation are two processes that are significantly regulated by the ubiquitination of histones (70). H2A (K119) and H2B (K20 in humans and K123 in yeast) are the most common alteration sites (26). The mono-ubiquitinated H2A (H2Aub) and H2B (H2Bub) histones, which have a single ubiquitin biomolecule attached to the highly conserved lysine amino acids, are the most common kinds of ubiquitinated histones (71). Reports have shown a connection between H2B mono-ubiquitylation and transcriptional activation (72,73). Transcriptional repression, which is achieved by the ubiquitylation of H2A, is critically important (74,75). In addition to their functions in gene expression and DNA repair, the two histone proteins also participate in a wide variety of other cellular activities (76,77). Several human disorders, including cancer, have been linked to abnormalities of histone ubiquitination or deubiquitination (78,79). On the other hand, further investigations are needed to determine if histone ubiquitination has a role in COPD.

2.3. Histone Phosphorylation

There is strong evidence that histone phosphorylation is involved in recombination, replication, DNA repair, cell death and mitosis (80). Histones are phosphorylated at their N-terminal tails mostly but not solely on serines, threonines, and tyrosines (81). Histone H3 phosphorylation during mitosis is regulated by a delicate equilibrium between kinase and phosphatase activity (H3). Depending on the particular stimulus or stress, ribosomal S6 kinase (RSK)-2, mitogen- and stress-activated kinase (MSK)-1, and MAPKs mediate H3 phosphorylation, which stimulates immediate-early gene expression (82). Condensation of chromosomes and transcriptional activity during mitosis are both correlated with H3 phosphorylation at serine amino acid number 10 and 28 (83,84). Transcription of NF- κ B-regulated genes (26), which is crucial to the inflammatory response in COPD, has been shown to depend on H3S10 phosphorylation (85,86). The phospho-acetylation of histone H3 on pro-inflammatory gene promoters in response to cigarette smoke stimuli is shown to be

essential for the transcription of NF- κ B, as discovered by Chung et al (92). Additionally, Sundar et al. (87) show that MSK1 is a key downstream kinase involved in cigarette smoke-induced NF- κ B transcription and phospho-acetylation of H3, both of which are relevant to the COPD pathophysiology. Release of elastolytic enzymes, reactive oxygen species (ROS), chemokines and cytokines from alveolar macrophages is known to have a major role in the pathogenesis of COPD (88,89). Alveolar macrophages from COPD smokers were shown to have an elevation in the phosphorylated form of the p38 subgroup of MAPKs (90). Lung macrophages rely heavily on the p38 MAPK pathway to generate inflammatory cytokines (91,92). In addition, reactive oxygen species (ROS) may contribute to heightened inflammation by activating and phosphorylating MAPKs (93). This suggests that cigarette smoke may activate kinases, which in turn may phosphorylate histones, leading to transcription of inflammatory genes. The chronic inflammatory response triggered by cigarette smoke is linked to a number of diseases, including COPD, and these kinases may be therapeutic targets for treating these conditions.

2.4. Histone Acetylation and Deacetylation

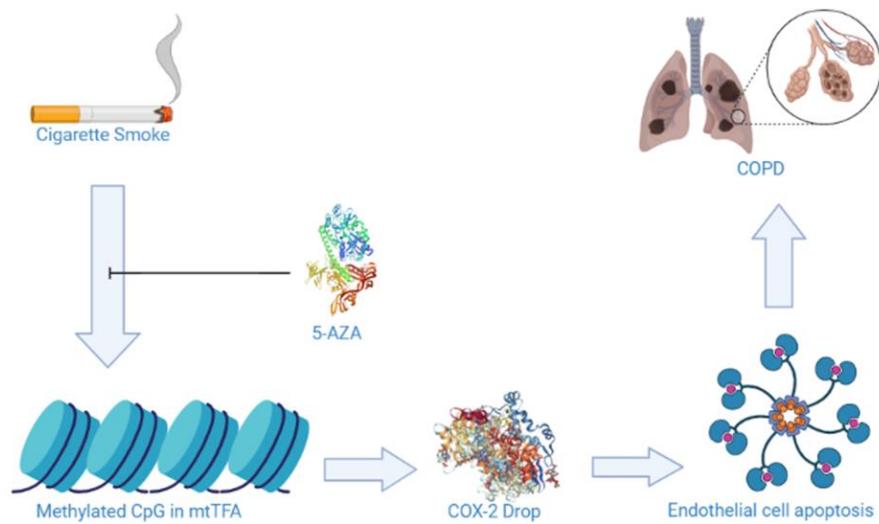
Cigarette smoke is a major risk factor in the evolving of COPD because it activates transcription of inflammatory genes (94,95). One of the most important mechanisms controlling the specificity and persistence of transcription is acetylation and deacetylation of histone (8). The acetylation of histones is critical for remodelling the chromatin and has been related to an extended inflammatory reaction in the lungs of individuals suffering from COPD (96,97), and is induced by cigarette in macrophages and in the lung of humans and rats. According to studies, cigarette smoke exposure increases H3 and H4 acetylation around the proinflammatory genes promoters in mouse lungs, resulting in a more robust inflammatory response (92). Enhancing the transcription of NF- κ B-dependent inflammatory genes (14,96) is a result of the histones acetylation by histone acetyltransferases (HATs), which allows TFs like NF- κ B to reach the promoter section. Histone deacetylation by HDACs, on the other hand, stops gene transcription by making DNA more twisted, which makes it harder for transcription factors to reach. As a result, the equilibrium between histone acetylation and deacetylation is crucial for controlling inflammatory gene expression. When the equilibrium is disrupted, proinflammatory genes regulated by AP-1 and NF- κ B may be continuously transcribed, resulting in an inflow of even more proinflammatory cells and a vicious cycle of chronic inflammation (97,98).

2.5. HATs

Multiple histone acetyltransferases (HATs) have been discovered and characterized, and it has been established that these enzymes acetylate distinct locations on histones and other proteins, including transcription regulators (99). By comparing their biological functions and the degree of conservation in the HAT domain, we may classify them into three distinct families (100). Between all of the HATs, CBP/p300 has received the most attention (101). It has a significant role in controlling the production of proinflammatory cytokines, namely via the mitogen-activated protein kinase (MAPK), NF- κ B, and signal transducers and activators of transcription (STAT) (102). Both hydrogen peroxide (H₂O₂) and tumour necrosis factor alpha (TNF-alpha) have been found to induce histone acetylation (HAT activity) in alveolar epithelial cells, suggesting a role for both stimuli in the cigarette smoke-mediated inflammatory response (103). The continuous proinflammatory response found in COPD is due to the increased NF- κ B, H3 and H4 acetylation by the means of CBP/p300, which

is mediated by cigarette (104). Numerous detrimental respiratory health effects, including COPD, have been linked to diesel exhaust particles (DEP). Important functions of the cyclooxygenase-2 (COX-2) gene are regulated by histone acetyltransferase (HAT) p300, which may be recruited to the gene's promoter by exposure to DEP (105,106).

2.6. HDACs


Humans have 18 histone deacetylases (HDACs), which may be further broken down into four groups defined by their unique structural characteristics and regulatory processes (107). HDAC1, 2, 3, 8 and 11 are members of class I and are transcribed in all of cells ubiquitously, suggesting that they might have a role in controlling the proliferation of the cells (108). HDAC4, 5, 6, 7, 9, and 10 are members of class II, and are produced with varying degrees of tissue selectivity and might have a role in differentiation of the cells (109). The seven members of Class III HDACs, often known as sirtuins, are designated as Sirt1-7 (110). HDAC11, the single class IV member, resembles HDACs from the class I and II (111). Histone deacetylases (HDACs) are key epigenetic regulators that govern the activation of nonhistone proteins (112), like NF-B, and, consequently, have the capacity to regulate NF-B-dependent proinflammatory gene transcription (113) by removing acetyl from the -N-acetyl lysine residues on histones. Cigarette smokers with COPD had dramatically decreased levels and activity of histone deacetylases, especially HDAC2 (114). It has been shown that the expression of HDAC2 (18) is drastically reduced (by 95%!) in individuals with very severe illness (GOLD stage 4). The Total function of HDAC is reportedly lowered in the tissues of bronchial-biopsy alveolar macrophages and peripheral lung tissue samples in individuals suffering from COPD, and this drop is connected with the intensity of the illness and inflammatory reaction, according to Ito et al (129). It has been demonstrated by Chen et al. (115) that HDAC activity is reduced in the PBMC of people with COPD compared to the PBMC of healthy controls. Additionally, after activating airway epithelial cell lines and alveolar macrophages with inflammatory boost, TSA, a nonselective inhibitor of HDAC, can result in an increase in the expression of inflammatory genes including AP-1 and NF- κ B (116,117). Therefore, cigarette smoke alters HDACs, leading to acetylation of histones, which amplifies the inflammatory response and accelerates the development of COPD. oxidative stress, as shown in the lungs of COPD patients, lowers HDAC2 activity and expression (118). Cigarette smoke condensate (CSC) was found to lower the levels of HDAC2 and HDAC function in A549 cells and to drastically enhance acetylation of histone H4 proteins. Protein alteration by aldehydes and nitric oxide products also contributed to the reduction in HDAC2 activity (119). The discovery that a number of proinflammatory mediators, including heat shock proteins, matrix metalloproteinases, monocyte chemoattractant protein-1, IL-1, TNF, IL-6, IL-8 and intercellular adhesion molecule-1 (ICAM-1) are elevated in the smokers BAL fluid and may also be promoted by inhibiting deacetylases in histones (11), supports ROS and CSC-mediated reduction of HDAC2. COPD is characterised by resistance to the effects of corticosteroids and heightened inflammation, both of which are caused by decreased HDAC activity (16,120). Corticosteroids' primary function is to inhibit the expression of proinflammatory TFs such as NF- κ B and AP1 (12), which control the expression of numerous inflammatory genes. These genes are responsible for producing cytokines, chemokines, adhesion molecules, inflammatory enzymes, and receptors. Since histone deacetylase 2 (HDAC2) inactivation is essential for transrepressive functionality of the glucocorticoid receptor (GR), that mediates anti-inflammatory impact of corticosteroids, it is a major contributor to the development of corticosteroid resistance (121). Therefore,

corticosteroids and lower HDAC2 activity inhibit inflammatory genes by recruitment of HDAC2 to activated inflammatory genes; expression is downregulated in several conditions where patients have a poor response, including chronic obstructive pulmonary disease (COPD) (12). In addition, Ito et al. (122) found that overexpressing HDAC2 in glucocorticoid-insensitive COPD alveolar macrophages restored glucocorticoid sensitivity. During oxidative stress, tyrosine residues in the active region of HDAC2 may be nitrated or phosphorylated, leading to a loss of function before HDAC2 is degraded by the proteasome, resulting in a decrease in HDAC2 activity and expression (123). The possibility of reversal of COPD's corticosteroid resistance, which was previously mentioned, has implications for the creation of innovative treatments for this condition that responds poorly to current treatments.

3. DNA methylation

Multiple studies, both of individual genes and of the entire genome, have linked DNA methylation alterations to cigarette smoking, suggesting that these alterations may contribute to the development of diseases like COPD. DNA methylation appears to have an important role in the development and progression of COPD (124). Comparing induced sputum from COPD patients to that of healthy participants, Guzmán et al. (125) discovered a higher proportion in methylation of promoter in CDKN2A and MGMT genes in individuals suffering from COPD. These methylations are substantially related to heavy smoking. Site-specific and dynamic methylation alterations in the reaction to cigarette might contribute to protracted hazards linked with cigarette, which remain after smoke quitting, as shown by Wan et al. (126). This may provide some insight into the steady decline in health despite quitting smoking. Methylation of DNA might have a function in pulmonary inflammation, as shown by the work of Monick et al. (127), who showed that smoking may alter methylation of DNA in macrophages of lung alveolar and lymphoblasts. Methylation of DNA is linked to both C-reactive protein (CRP) levels and smoking which is a biomarker of systemic inflammation, in Alpha-1 antitrypsin (AAT)-deficient people, as shown in other investigations as well (128). The systemic effects of COPD and smoking can also be better understood via profiling of methylation in DNAs with the source of white blood cell (124). Therefore, it is possible for us to draw the conclusion that smoking cigarettes can raise the degree of methylation of DNA that is implicated at both systemic and local inflammation that is associated with COPD. Some researchers have hypothesised that oxidative stress is involved in the process. The proinflammatory responses in respiratory disease have been shown to be influenced by oxidative stress through its effects on chromatin remodelling and signal transduction (129). Tobacco smoke contains a wide variety of chemical compounds and free radicals, such as semiquinones and reactive aldehydes, which are known to produce oxidative stress in the lungs (130,131). Increased levels of oxidative stress can cause DNA methyltransferase 1 (DNMT1) expression and activity, which can then influence DNA promoter methylation and, ultimately, gene expression (132-135). The specific function of oxidative stress in methylation of DNA in COPD will be determined in future research, which will lead to the discovery of novel pathophysiological processes and epigenetic targets of gene expression in this disease. A major epigenetic change that has a major impact on how genes are expressed is DNA methylation, which occurs in a variety of different ways and is studied extensively (136,137). About half of all genes that produce protein have GC-rich sections in the promoter named CpG islands (19,27). methylation of DNA is the covalent insertion of a methyl agent in the position 5 of a cytosine (138,139). Methylation of CpG

dinucleotides is a crucial epigenetic process for controlling the expression of genes in certain tissues and the differentiation of cells (140). Up to 80% of mammalian CpG dinucleotides are thought to have methylated (141). Unmethylated CpG residues are primarily found in the promoters of active genes (20). Methyl-binding proteins (MBPs) have a function in identifying and interpreting methylation patterns (142-146), while DNA methyltransferases (DNMTs) are in charge for enzymatically adding the methyl group to DNA in mammals. Mammalian DNMTs are divided into two classes: those that de novo methylate DNA and those that keep the methylation status constant. These four classes are designated DNMT 1, 2, 3A, and 3B (147). When it comes to mammalian species, DNMT1 is by far the most prevalent DNA methyltransferase (a maintenance methyltransferase) at the protein level (22). It has been shown that ablation of DNMT2 in the embryonic stem cells of mouse had no discernible result on methylation of DNA (20), suggesting that DNMT2 in mammals has very low or no DNMT activity. De novo methyltransferases 3A and 3B catalyse the creation of new methyl groups in DNA. In general, gene silencing occurs when CpG islands in promoters become hypermethylated (148,149), whereas active transcription occurs when CpG islands become hypomethylated (13,150). The inactivation of transcription that occurs as a result of changes to DNA methylation has been proposed to be explained by two different mechanisms. There are specific and nonspecific factor binding sequences in promoter regions that play a role in regulating gene activity. Interfering with the process by which transcription factors bind to specific sites might be thought of as one potential mechanism for this effect (151). The second approach relies on the discovery that MBPs have a methyl-CpG binding domain, which allows them to bind selectively to methylated DNA (152). Histone deacetylases 1 and 2 (HDAC1 and 2) are recruited when MBPs engage with the corepressor Sin3A, leading to transcriptional repression (153). An increasing number of human disorders are due to aberrant regulation of DNA methylation, highlighting the significance of this process (154). When it comes to apoptosis in COPD, DNA methylation is just as important as inflammation. Researchers have found that apoptosis plays a significant part in the progression of COPD (155,156). The lungs of the people suffering from COPD show a boost in apoptosis in the airway epithelial, alveolar, and endothelial cells (157-159). Smoking may promote pulmonary vascular endothelial apoptosis in COPD by reducing the cyclooxygenase (COX)-2 functionality and production in the pulmonary vascular endothelial cells, as shown in our prior studies (160). Additionally, this is linked to an alteration in methylation of a CpG island in the mitochondrial transcription factor (mtTFA) promoter region. Moreover, the demethylating drug 5-azacytidine (5-AZA) can inhibit COX-2 expression and activity (161,162) (Figure 1). Cell proliferation, differentiation, and survival are all controlled by the mitogen-activated protein kinase (MAPK) superfamily, of which extracellular signal-regulated kinase (ERK) is a subfamily (163,164). The expression of ERK was shown to be considerably higher in smokers in both in vivo and in vitro experiments (165,166). Ginkgo biloba extract protects human pulmonary artery endothelial cells (HPAECs) against cigarette smoke extract-induced apoptosis through ERK signalling, as shown by Hsu et al. (167). According to recent studies, the ERK pathway has been shown to have a role in the regulation of DNA methylation (168,169). Finally, DNA methylation regulation by smoking is a mechanism through which cigarette smoking might trigger cell death in chronic obstructive pulmonary disease. Thus, it is worthwhile to explore the underlying molecular process in depth, and it may become a possible treatment target for COPD.

Figure 1. The promoter methylation of the mtTFA gene can be triggered by cigarette smoking. Modifications in mtTFA gene methylation may mediate pulmonary vascular endothelial apoptosis in chronic obstructive pulmonary disease (COPD) via reducing COX-2 production and activity in PVE cells. 5-AZA is capable of reversing this methylation state.

4. Conclusions

The changes brought on by smoking in the enzymes and chemicals that alter histones and methylate DNA can influence many different physiological processes, including gene expression of inflammatory mediators, post-translational alterations of histones, apoptosis, cell cycle arrest, reactions of unfolded protein, senescence, antioxidants or stress reaction, DNA replication/recombination/repair, autophagy, tumour suppressor genes and growth factors (94). It is possible that smoking leads to epigenetic changes that may be passed down from generation to generation, and their relevance to COPD has become increasingly obvious in recent years. Analyzing alterations in methylation of DNA and histone modifications is essential for learning more about the bio-molecular basis of COPD. Nevertheless, the bio-molecular processes are not well known at this time. These epigenetic alterations are theoretically reversible, which may result in the development of new drugs for COPD patients or strategies for halting the advancement of this illness when it is diagnosed at an early stage.

Acknowledgments: Figures created with BioRender.com

Funding: N/A

References

- 1) Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. *Chest*. 2009 Jan;135(1):173-180. doi: 10.1378/chest.08-1419. PMID: 19136405.
- 2) Ornek T, Tor M, Altin R, Atalay F, Geredeli E, Soylu O, Erboy F. Clinical factors affecting the direct cost of patients hospitalized with acute exacerbation of chronic obstructive pulmonary disease. *Int J Med Sci*. 2012;9(4):285-90. doi: 10.7150/ijms.4039. Epub 2012 Jun 5. PMID: 22701335; PMCID: PMC3372934.
- 3) Acquaah-Mensah GK, Malhotra D, Vulimiri M, McDermott JE, Biswal S. Suppressed expression of T-box transcription factors is involved in senescence in chronic obstructive pulmonary disease. *PLoS Comput Biol*. 2012;8(7):e1002597. doi: 10.1371/journal.pcbi.1002597. Epub 2012 Jul 19. Erratum in: *PLoS Comput Biol*. 2017 Jan 27;13(1):e1005263. PMID: 22829758; PMCID: PMC3400575.
- 4) Sharma PK, Johri S, Mehra BL. Efficacy of Vasadi Syrup and Shwasaghna Dhuma in the patients of COPD (Shwasa Roga). *Ayu*. 2010 Jan;31(1):48-52. doi: 10.4103/0974-8520.68204. PMID: 22131684; PMCID: PMC3215321.
- 5) Yang JY, Jin J, Zhang Z, Zhang L, Shen C. Integration microarray and regulation datasets for Chronic Obstructive Pulmonary Disease. *Eur Rev Med Pharmacol Sci*. 2013 Jul;17(14):1923-31. PMID: 23877858.
- 6) Pandey R, Singh M, Singhal U, Gupta KB, Aggarwal SK. Oxidative/Nitrosative stress and the pathobiology of chronic obstructive pulmonary disease. *J Clin Diagn Res*. 2013 Mar;7(3):580-8. doi: 10.7860/JCDR/2013/4360.2832. Epub 2013 Mar 1. PMID: 23634430; PMCID: PMC3616590.
- 7) Shapiro SD, Ingenito EP. The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years. *Am J Respir Cell Mol Biol*. 2005 May;32(5):367-72. doi: 10.1165/rcmb.F296. PMID: 15837726.
- 8) Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings J, Butler K, Donaldson K, Macnee W, Rahman I. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. *Am J Respir Cell Mol Biol*. 2004 Dec;31(6):633-42. doi: 10.1165/rcmb.2004-0006OC. Epub 2004 Aug 27. PMID: 15333327.
- 9) McMillan DH, Baglole CJ, Thatcher TH, Maggirwar S, Sime PJ, Phipps RP. Lung-targeted overexpression of the NF- κ B member RelB inhibits cigarette smoke-induced inflammation. *Am J Pathol*. 2011 Jul;179(1):125-33. doi: 10.1016/j.ajpath.2011.03.030. Epub 2011 May 5. PMID: 21703398; PMCID: PMC3123857.
- 10) Shen N, Gong T, Wang JD, Meng FL, Qiao L, Yang RL, Xue B, Pan FY, Zhou XJ, Chen HQ, Ning W, Li CJ. Cigarette smoke-induced pulmonary inflammatory responses are mediated by EGR-1/GGPPS/MAPK signaling. *Am J Pathol*. 2011 Jan;178(1):110-8. doi: 10.1016/j.ajpath.2010.11.016. Epub 2010 Dec 23. PMID: 21224049; PMCID: PMC3069843.
- 11) Mroż RM, Noparlik J, Chyczewska E, Braszko JJ, Holownia A. Molecular basis of chronic inflammation in lung diseases: new therapeutic approach. *J Physiol Pharmacol*. 2007 Nov;58 Suppl 5(Pt 2):453-60. PMID: 18204158.
- 12) Barnes PJ. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. *Proc Am Thorac Soc*. 2009 Dec;6(8):693-6. doi: 10.1513/pats.200907-071DP. PMID: 20008877.
- 13) Yang IV, Schwartz DA. Epigenetic control of gene expression in the lung. *Am J Respir Crit Care Med*. 2011 May 15;183(10):1295-301. doi: 10.1164/rccm.201010-1579PP. PMID: 21596832; PMCID: PMC3114059.

14) Sakao S, Tatsumi K. The importance of epigenetics in the development of chronic obstructive pulmonary disease. *Respirology*. 2011 Oct;16(7):1056-63. doi: 10.1111/j.1440-1843.2011.02032.x. PMID: 21824218.

15) Shanmugam MK, Sethi G. Role of epigenetics in inflammation-associated diseases. *Subcell Biochem*. 2013;61:627-57. doi: 10.1007/978-94-007-4525-4_27. PMID: 23150270.

16) Barnes PJ. Reduced histone deacetylase in COPD: clinical implications. *Chest*. 2006 Jan;129(1):151-5. doi: 10.1378/chest.129.1.151. PMID: 16424426.

17) Adcock IM. Glucocorticoid-regulated transcription factors. *Pulm Pharmacol Ther*. 2001;14(3):211-9. doi: 10.1006/pupt.2001.0283. PMID: 11448148.

18) Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. *Eur Respir J*. 2005 Mar;25(3):552-63. doi: 10.1183/09031936.05.00117504. PMID: 15738302.

19) Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. *Curr Opin Immunol*. 2007 Dec;19(6):694-700. doi: 10.1016/j.coim.2007.07.016. Epub 2007 Aug 27. PMID: 17720468.

20) Adcock IM, Ford P, Ito K, Barnes PJ. Epigenetics and airways disease. *Respir Res*. 2006 Feb 6;7(1):21. doi: 10.1186/1465-9921-7-21. PMID: 16460559; PMCID: PMC1382219.

21) Lanzuolo C. Epigenetic alterations in muscular disorders. *Comp Funct Genomics*. 2012;2012:256892. doi: 10.1155/2012/256892. Epub 2012 Jun 18. PMID: 22761545; PMCID: PMC3385594.

22) Bayarsaihan D. Epigenetic mechanisms in inflammation. *J Dent Res*. 2011 Jan;90(1):9-17. doi: 10.1177/0022034510378683. PMID: 21178119; PMCID: PMC3144097.

23) Liao Y, Xu K. Epigenetic regulation of prostate cancer: the theories and the clinical implications. *Asian J Androl*. 2019 May-Jun;21(3):279-290. doi: 10.4103/aja.aja_53_18. PMID: 30084432; PMCID: PMC6498736.

24) Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. *Cardiovasc Res*. 2011 Jun 1;90(3):421-9. doi: 10.1093/cvr/cvr024. Epub 2011 Jan 25. PMID: 21266525; PMCID: PMC3096305.

25) Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. *Nat Rev Neurosci*. 2011 Oct 12;12(11):623-37. doi: 10.1038/nrn3111. PMID: 21989194; PMCID: PMC3272277.

26) Kouzarides T. Chromatin modifications and their function. *Cell*. 2007 Feb 23;128(4):693-705. doi: 10.1016/j.cell.2007.02.005. PMID: 17320507.

27) Alelú-Paz R, Ashour N, González-Corpas A, Ropero S. DNA methylation, histone modifications, and signal transduction pathways: a close relationship in malignant gliomas pathophysiology. *J Signal Transduct*. 2012;2012:956958. doi: 10.1155/2012/956958. Epub 2012 Jul 17. PMID: 22852080; PMCID: PMC3407642.

28) Mitchell MD, Ponnampalam AP, Rice GE. Epigenetic regulation of cytokine production in human amnion and villous placenta. *Mediators Inflamm*. 2012;2012:159709. doi: 10.1155/2012/159709. Epub 2012 May 14. PMID: 22665947; PMCID: PMC3361274.

29) Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. *Cell Res*. 2007 Mar;17(3):195-211. doi: 10.1038/sj.cr.7310149. PMID: 17325692.

30) MURRAY K. THE OCCURRENCE OF EPSILON-N-METHYL LYSINE IN HISTONES. *Biochemistry*. 1964 Jan;3:10-5. doi: 10.1021/bi00889a003. PMID: 14114491.

31) Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. *Cell*. 2007 May 18;129(4):823-37. doi: 10.1016/j.cell.2007.05.009. PMID: 17512414.

32) Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T. Methylation at arginine 17 of histone H3 is linked to gene activation. *EMBO Rep*. 2002 Jan;3(1):39-44. doi: 10.1093/embo-reports/kvf013. Epub 2001 Dec 19. PMID: 11751582; PMCID: PMC1083932.

33) Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Lüscher B, Amati B. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. *Nature*. 2007 Oct 18;449(7164):933-7. doi: 10.1038/nature06166. Epub 2007 Sep 26. PMID: 17898714.

34) Miranda TB, Webb KJ, Edberg DD, Reeves R, Clarke S. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a. *Biochem Biophys Res Commun*. 2005 Oct 28;336(3):831-5. doi: 10.1016/j.bbrc.2005.08.179. PMID: 16157300.

35) Zakrzewicz D, Zakrzewicz A, Preissner KT, Markart P, Wygrecka M. Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. *Int J Mol Sci*. 2012 Sep 27;13(10):12383-400. doi: 10.3390/ijms131012383. PMID: 23202904; PMCID: PMC3497278.

36) Fontán N, García-Domínguez P, Álvarez R, de Lera ÁR. Novel symmetrical ureas as modulators of protein arginine methyl transferases. *Bioorg Med Chem*. 2013 Apr 1;21(7):2056-67. doi: 10.1016/j.bmc.2013.01.017. Epub 2013 Jan 22. PMID: 23395110.

37) Fan Q, Miao J, Cui L, Cui L. Characterization of PRMT1 from *Plasmodium falciparum*. *Biochem J*. 2009 Jun 12;421(1):107-18. doi: 10.1042/BJ20090185. PMID: 19344311; PMCID: PMC8815339.

38) Zakrzewicz D, Eickelberg O. From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases. *BMC Pulm Med*. 2009 Jan 29;9:5. doi: 10.1186/1471-2466-9-5. PMID: 19178698; PMCID: PMC2637832.

39) Onat A, Hergenç G, Can G, Karabulut A. Serum asymmetric dimethylarginine levels among Turks: association with metabolic syndrome in women and tendency to decrease in smokers. *Turk Kardiyol Dern Ars*. 2008 Jan;36(1):7-13. PMID: 18453780.

40) Eid HM, Arnesen H, Hjerkinn EM, Lyberg T, Seljeflot I. Relationship between obesity, smoking, and the endogenous nitric oxide synthase inhibitor, asymmetric dimethylarginine. *Metabolism*. 2004 Dec;53(12):1574-9. doi: 10.1016/j.metabol.2004.06.026. PMID: 15562402.

41) Maas R, Schulze F, Baumert J, Löwel H, Hamraz K, Schwedhelm E, Koenig W, Böger RH. Asymmetric dimethylarginine, smoking, and risk of coronary heart disease in apparently healthy men: prospective analysis from the population-based Monitoring of Trends and Determinants in Cardiovascular Disease/Kooperative Gesundheitsforschung in der Region Augsburg study and experimental data. *Clin Chem*. 2007 Apr;53(4):693-701. doi: 10.1373/clinchem.2006.081893. Epub 2007 Feb 22. PMID: 17317881.

42) Zhang WZ, Venardos K, Chin-Dusting J, Kaye DM. Adverse effects of cigarette smoke on NO bioavailability: role of arginine metabolism and oxidative stress. *Hypertension*. 2006 Aug;48(2):278-85. doi: 10.1161/01.HYP.0000231509.27406.42. Epub 2006 Jun 26. PMID: 16801489.

43) YILDIRIM AQ, KONIGSHOFF M, WANG Q, EICKELBERG O. Expression Profiling Of Protein Arginine Methyltransferase (Prmt) Isoforms In Chronic Obstructive Pulmonary Disease (COPD). *Am J Respir Crit Care Med* 2010;181:A4954. doi:10.1164/ajrccm-conference.2010.181.1

44) KOHSE K, WANG Q, STRITZKE S, KONIGSHOFF M, EICKELBERG O, YILDIRIM AO. Protein Arginine Methyltransferases (prmt) are involved In Th17 cell differentiation. *Am J Respir Crit Care Med* 2011; 183: A4399. doi:10.1164/ajrccmconference.2011.183.1

45) Yildirim AO, Bulau P, Zakrzewicz D, Kitowska KE, Weissmann N, Grimminger F, Morty RE, Eickelberg O. Increased protein arginine methylation in chronic hypoxia: role of protein arginine methyltransferases. *Am J Respir Cell Mol Biol*. 2006 Oct;35(4):436-43. doi: 10.1165/rcmb.2006-0097OC. Epub 2006 May 11. PMID: 16690984.

46) Böger RH, Sydow K, Borlak J, Thum T, Lenzen H, Schubert B, Tsikas D, Bode-Böger SM. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. *Circ Res*. 2000 Jul 21;87(2):99-105. doi: 10.1161/01.res.87.2.99. PMID: 10903992.

47) Andresen E, Günther G, Bullwinkel J, Lange C, Heine H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. *PLoS One*. 2011;6(7):e21898. doi: 10.1371/journal.pone.0021898. Epub 2011 Jul 19. PMID: 21818276; PMCID: PMC3139569.

48) Caron MA, Debigaré R, Dekhuijzen PN, Maltais F. L'atteinte du diaphragme et du quadriceps dans la BPCO: une manifestation systémique de cette maladie ? [Diaphragm and skeletal muscle dysfunction in COPD]. *Rev Mal Respir*. 2011 Dec;28(10):1250-64. French. doi: 10.1016/j.rmr.2011.04.015. Epub 2011 Nov 8. PMID: 22152934.

49) Ju CR, Chen RC. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease. *Respir Med*. 2012 Jan;106(1):102-8. doi: 10.1016/j.rmed.2011.07.016. Epub 2011 Aug 15. PMID: 21840694.

50) Doucet M, Dubé A, Joanisse DR, Debigaré R, Michaud A, Paré MÈ, Vaillancourt R, Fréchette E, Maltais F. Atrophy and hypertrophy signalling of the quadriceps and diaphragm in COPD. *Thorax*. 2010 Nov;65(11):963-70. doi: 10.1136/thx.2009.133827. PMID: 20965933.

51) Sakuma K, Yamaguchi A. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. *J Cachexia Sarcopenia Muscle*. 2012 Jun;3(2):77-94. doi: 10.1007/s13539-011-0052-4. Epub 2012 Jan 12. PMID: 22476916; PMCID: PMC3374017.

52) Hussain SN, Sandri M. Role of autophagy in COPD skeletal muscle dysfunction. *J Appl Physiol* (1985). 2013 May;114(9):1273-81. doi: 10.1152/japplphysiol.00893.2012. Epub 2012 Oct 18. PMID: 23085958.

53) Fermoselle C, Rabinovich R, Ausín P, Puig-Vilanova E, Coronell C, Sanchez F, Roca J, Gea J, Barreiro E. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? *Eur Respir J*. 2012 Oct;40(4):851-62. doi: 10.1183/09031936.00137211. Epub 2012 Mar 9. PMID: 22408199.

54) Debigaré R, Côté CH, Maltais F. Ubiquitination and proteolysis in limb and respiratory muscles of patients with chronic obstructive pulmonary disease. *Proc Am Thorac Soc*. 2010 Feb;7(1):84-90. doi: 10.1513/pats.200906-051JS. PMID: 20160153.

55) Wüst RC, Degens H. Factors contributing to muscle wasting and dysfunction in COPD patients. *Int J Chron Obstruct Pulmon Dis*. 2007;2(3):289-300. PMID: 18229567; PMCID: PMC2695204.

56) Liu Q, Xu WG, Luo Y, Han FF, Yao XH, Yang TY, Zhang Y, Pi WF, Guo XJ. Cigarette smoke-induced skeletal muscle atrophy is associated with up-regulation of USP-19 via p38 and ERK MAPKs. *J Cell Biochem*. 2011 Sep;112(9):2307-16. doi: 10.1002/jcb.23151. PMID: 21503966.

57) Ottenheijm CA, Heunks LM, Li YP, Jin B, Minnaard R, van Hees HW, Dekhuijzen PN. Activation of the ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*. 2006 Nov 1;174(9):997-1002. doi: 10.1164/rccm.200605-721OC. Epub 2006 Aug 17. PMID: 16917114; PMCID: PMC2648103.

58) Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, de Boo T, Dekhuijzen PN. Diaphragm dysfunction in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*. 2005 Jul 15;172(2):200-5. doi: 10.1164/rccm.200502-262OC. Epub 2005 Apr 22. PMID: 15849324; PMCID: PMC2718467.

59) Ottenheijm CA, Heunks LM, Dekhuijzen RP. Diaphragm adaptations in patients with COPD. *Respir Res*. 2008 Jan 24;9(1):12. doi: 10.1186/1465-9921-9-12. PMID: 18218129; PMCID: PMC2248576.

60) Testelmans D, Crul T, Maes K, Agten A, Crombach M, Decramer M, Gayan-Ramirez G. Atrophy and hypertrophy signalling in the diaphragm of patients with COPD. *Eur Respir J*. 2010 Mar;35(3):549-56. doi: 10.1183/09031936.00091108. Epub 2009 Aug 28. PMID: 19717478.

61) Zou C, Ellis BM, Smith RM, Chen BB, Zhao Y, Mallampalli RK. Acyl-CoA:lysophosphatidylcholine acyltransferase I (Lpcat1) catalyzes histone protein O-palmitoylation to regulate mRNA synthesis. *J Biol Chem*. 2011 Aug 12;286(32):28019-25. doi: 10.1074/jbc.M111.253385. Epub 2011 Jun 17. PMID: 21685381; PMCID: PMC3151047.

62) Zou C, Butler PL, Coon TA, Smith RM, Hammen G, Zhao Y, Chen BB, Mallampalli RK. LPS impairs phospholipid synthesis by triggering beta-transducin repeat-containing protein (beta-TrCP)-mediated polyubiquitination and degradation of the surfactant enzyme acyl-CoA:lysophosphatidylcholine acyltransferase I (LPCAT1). *J Biol Chem*. 2011 Jan 28;286(4):2719-27. doi: 10.1074/jbc.M110.192377. Epub 2010 Nov 10. PMID: 21068446; PMCID: PMC3024768.

63) Kim SY, Lee JH, Huh JW, Ro JY, Oh YM, Lee SD, An S, Lee YS. Cigarette smoke induces Akt protein degradation by the ubiquitin-proteasome system. *J Biol Chem.* 2011 Sep 16;286(37):31932-43. doi: 10.1074/jbc.M111.267633. Epub 2011 Jul 21. PMID: 21778238; PMCID: PMC3173210.

64) Liu TB, Xue C. The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi. *Mycobiology.* 2011 Dec;39(4):243-8. doi: 10.5941/MYCO.2011.39.4.243. Epub 2011 Dec 7. PMID: 22783111; PMCID: PMC3385136.

65) Kim JH, Park KC, Chung SS, Bang O, Chung CH. Deubiquitinating enzymes as cellular regulators. *J Biochem.* 2003 Jul;134(1):9-18. doi: 10.1093/jb/mvg107. PMID: 12944365.

66) D'Arcy P, Linder S. Proteasome deubiquitinases as novel targets for cancer therapy. *Int J Biochem Cell Biol.* 2012 Nov;44(11):1729-38. doi: 10.1016/j.biocel.2012.07.011. Epub 2012 Jul 20. PMID: 22819849.

67) Lau AW, Fukushima H, Wei W. The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. *Front Biosci (Landmark Ed).* 2012 Jun 1;17(6):2197-212. doi: 10.2741/4045. PMID: 22652772; PMCID: PMC3374336.

68) Singh RK, Gonzalez M, Kabbaj MH, Gunjan A. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast *Saccharomyces cerevisiae*. *PLoS One.* 2012;7(5):e36295. doi: 10.1371/journal.pone.0036295. Epub 2012 May 3. PMID: 22570702; PMCID: PMC3343073.

69) Gatti M, Pinato S, Maspero E, Soffientini P, Polo S, Penengo L. A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. *Cell Cycle.* 2012 Jul 1;11(13):2538-44. doi: 10.4161/cc.20919. Epub 2012 Jul 1. PMID: 22713238; PMCID: PMC3404880.

70) Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. *Front Oncol.* 2012 Mar 12;2:26. doi: 10.3389/fonc.2012.00026. PMID: 22649782; PMCID: PMC3355875.

71) Wright DE, Wang CY, Kao CF. Histone ubiquitylation and chromatin dynamics. *Front Biosci (Landmark Ed).* 2012 Jan 1;17(3):1051-78. doi: 10.2741/3973. PMID: 22201790.

72) Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. *Cell.* 2009 May 1;137(3):459-71. doi: 10.1016/j.cell.2009.02.027. PMID: 19410543; PMCID: PMC2678028.

73) Osley MA. Regulation of histone H2A and H2B ubiquitylation. *Brief Funct Genomic Proteomic*. 2006 Sep;5(3):179-89. doi: 10.1093/bfgp/ell022. Epub 2006 May 23. PMID: 16772277.

74) Gutiérrez L, Oktaba K, Scheuermann JC, Gambetta MC, Ly-Hartig N, Müller J. The role of the histone H2A ubiquitinase Sce in Polycomb repression. *Development*. 2012 Jan;139(1):117-27. doi: 10.1242/dev.074450. Epub 2011 Nov 17. PMID: 22096074; PMCID: PMC3253035.

75) Wu CY, Kang HY, Yang WL, Wu J, Jeong YS, Wang J, Chan CH, Lee SW, Zhang X, Lamothe B, Campos AD, Darnay BG, Lin HK. Critical role of monoubiquitination of histone H2AX protein in histone H2AX phosphorylation and DNA damage response. *J Biol Chem*. 2011 Sep 2;286(35):30806-30815. doi: 10.1074/jbc.M111.257469. Epub 2011 Jun 20. PMID: 21690091; PMCID: PMC3162441.

76) Faucher D, Wellinger RJ. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. *PLoS Genet*. 2010 Aug 26;6(8):e1001082. doi: 10.1371/journal.pgen.1001082. PMID: 20865123; PMCID: PMC2928815.

77) Urasaki Y, Heath L, Xu CW. Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors. *PLoS One*. 2012;7(5):e36775. doi: 10.1371/journal.pone.0036775. Epub 2012 May 16. PMID: 22615809; PMCID: PMC3353945.

78) Oki M, Aihara H, Ito T. Role of histone phosphorylation in chromatin dynamics and its implications in diseases. *Subcell Biochem*. 2007;41:319-36. PMID: 17484134.

79) Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. *Cell Res*. 2011 Mar;21(3):381-95. doi: 10.1038/cr.2011.22. Epub 2011 Feb 15. PMID: 21321607; PMCID: PMC3193420.

80) Sugiyama K, Sugiura K, Hara T, Sugimoto K, Shima H, Honda K, Furukawa K, Yamashita S, Urano T. Aurora-B associated protein phosphatases as negative regulators of kinase activation. *Oncogene*. 2002 May 9;21(20):3103-11. doi: 10.1038/sj.onc.1205432. PMID: 12082625.

81) Goto H, Yasui Y, Nigg EA, Inagaki M. Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. *Genes Cells*. 2002 Jan;7(1):11-7. doi: 10.1046/j.1356-9597.2001.00498.x. PMID: 11856369.

82) Liokatis S, Stützer A, Elsässer SJ, Theillet FX, Klingberg R, van Rossum B, Schwarzer D, Allis CD, Fischle W, Selenko P. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. *Nat Struct Mol Biol*. 2012 Aug;19(8):819-23. doi: 10.1038/nsmb.2310. Epub 2012 Jul 15. PMID: 22796964.

83) Kersul AL, Iglesias A, Ríos Á, Noguera A, Forteza A, Serra E, Agustí A, Cosío BG. Molecular mechanisms of inflammation during exacerbations of chronic obstructive pulmonary disease. *Arch Bronconeumol.* 2011 Apr;47(4):176-83. doi: 10.1016/j.arbres.2010.12.003. Epub 2011 Mar 31. PMID: 21454005.

84) Gagliardo R, Chanez P, Profita M, Bonanno A, Albano GD, Montalbano AM, Pompeo F, Gagliardo C, Merendino AM, Gjomarkaj M. IκB kinase-driven nuclear factor-κB activation in patients with asthma and chronic obstructive pulmonary disease. *J Allergy Clin Immunol.* 2011 Sep;128(3):635-45.e1-2. doi: 10.1016/j.jaci.2011.03.045. Epub 2011 May 14. PMID: 21571356.

85) Sundar IK, Chung S, Hwang JW, Lapek JD Jr, Bulger M, Friedman AE, Yao H, Davie JR, Rahman I. Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-κB-dependent genes. *PLoS One.* 2012;7(2):e31378. doi: 10.1371/journal.pone.0031378. Epub 2012 Feb 1. PMID: 22312446; PMCID: PMC3270039.

86) Barnes PJ. Alveolar macrophages in chronic obstructive pulmonary disease (COPD). *Cell Mol Biol (Noisy-le-grand).* 2004;50 Online Pub:OL627-37. PMID: 15579256.

87) Graff JW, Powers LS, Dickson AM, Kim J, Reisetter AC, Hassan IH, Kremens K, Gross TJ, Wilson ME, Monick MM. Cigarette smoking decreases global microRNA expression in human alveolar macrophages. *PLoS One.* 2012;7(8):e44066. doi: 10.1371/journal.pone.0044066. Epub 2012 Aug 29. PMID: 22952876; PMCID: PMC3430644.

88) Renda T, Baraldo S, Pelaia G, Bazzan E, Turato G, Papi A, Maestrelli P, Maselli R, Varella A, Fabbri LM, Zuin R, Marsico SA, Saetta M. Increased activation of p38 MAPK in COPD. *Eur Respir J.* 2008 Jan;31(1):62-9. doi: 10.1183/09031936.00036707. Epub 2007 Oct 24. PMID: 17959643.

89) Smith SJ, Fenwick PS, Nicholson AG, Kirschenbaum F, Finney-Hayward TK, Higgins LS, Giembycz MA, Barnes PJ, Donnelly LE. Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages. *Br J Pharmacol.* 2006 Oct;149(4):393-404. doi: 10.1038/sj.bjp.0706885. Epub 2006 Sep 4. PMID: 16953188; PMCID: PMC1978438.

90) Koch A, Giembycz M, Ito K, Lim S, Jazrawi E, Barnes PJ, Adcock I, Erdmann E, Chung KF. Mitogen-activated protein kinase modulation of nuclear factor-κB-induced granulocyte macrophage-colony-stimulating factor release from human alveolar macrophages. *Am J Respir Cell Mol Biol.* 2004 Mar;30(3):342-9. doi: 10.1165/rcmb.2003-0122OC. Epub 2003 Jul 18. PMID: 12871851.

91) Rahman I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. *Cell Biochem Biophys.* 2005;43(1):167-88. doi: 10.1385/CBB:43:1:167. PMID: 16043892.

92) Chung S, Sundar IK, Hwang JW, Yull FE, Blackwell TS, Kinnula VL, Bulger M, Yao H, Rahman I. NF-κB inducing kinase, NIK mediates cigarette smoke/TNFα-induced histone acetylation and inflammation through

differential activation of IKKs. *PLoS One*. 2011;6(8):e23488. doi: 10.1371/journal.pone.0023488. Epub 2011 Aug 24. PMID: 21887257; PMCID: PMC3160853.

93) Rajendrasozhan S, Chung S, Sundar IK, Yao H, Rahman I. Targeted disruption of NF- κ B1 (p50) augments cigarette smoke-induced lung inflammation and emphysema in mice: a critical role of p50 in chromatin remodeling. *Am J Physiol Lung Cell Mol Physiol*. 2010 Feb;298(2):L197-209. doi: 10.1152/ajplung.00265.2009. Epub 2009 Dec 4. PMID: 19965984; PMCID: PMC2822556.

94) Sundar IK, Mullapudi N, Yao H, Spivack SD, Rahman I. Lung cancer and its association with chronic obstructive pulmonary disease: update on nexus of epigenetics. *Curr Opin Pulm Med*. 2011 Jul;17(4):279-85. doi: 10.1097/MCP.0b013e3283477533. PMID: 21537190; PMCID: PMC3730439.

95) Yang SR, Valvo S, Yao H, Kode A, Rajendrasozhan S, Edirisinghe I, Caito S, Adenuga D, Henry R, Fromm G, Maggirwar S, Li JD, Bulger M, Rahman I. IKK alpha causes chromatin modification on pro-inflammatory genes by cigarette smoke in mouse lung. *Am J Respir Cell Mol Biol*. 2008 Jun;38(6):689-98. doi: 10.1165/rcmb.2007-0379OC. Epub 2008 Jan 31. PMID: 18239189; PMCID: PMC2396248.

96) Ghizzoni M, Haisma HJ, Maarsingh H, Dekker FJ. Histone acetyltransferases are crucial regulators in NF- κ B mediated inflammation. *Drug Discov Today*. 2011 Jun;16(11-12):504-11. doi: 10.1016/j.drudis.2011.03.009. Epub 2011 Apr 6. PMID: 21477662; PMCID: PMC5218544.

97) Sundar IK, Caito S, Yao H, Rahman I. Oxidative stress, thiol redox signaling methods in epigenetics. *Methods Enzymol*. 2010;474:213-44. doi: 10.1016/S0076-6879(10)74013-1. Epub 2010 Jun 20. PMID: 20609913.

98) Rahman I, Marwick J, Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF- κ B and pro-inflammatory gene expression. *Biochem Pharmacol*. 2004 Sep 15;68(6):1255-67. doi: 10.1016/j.bcp.2004.05.042. PMID: 15313424.

99) Wang YL, Faiola F, Martinez E. Purification of multiprotein histone acetyltransferase complexes. *Methods Mol Biol*. 2012;809:427-43. doi: 10.1007/978-1-61779-376-9_28. PMID: 22113292; PMCID: PMC4757495.

100) Rekowski Mv, Giannis A. Histone acetylation modulation by small molecules: a chemical approach. *Biochim Biophys Acta*. 2010 Oct-Dec;1799(10-12):760-7. doi: 10.1016/j.bbapm.2010.05.006. Epub 2010 May 21. PMID: 20493978.

101) Bedford DC, Brindle PK. Is histone acetylation the most important physiological function for CBP and p300? *Aging (Albany NY)*. 2012 Apr;4(4):247-55. doi: 10.18632/aging.100453. PMID: 22511639; PMCID: PMC3371760.

102) Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. *Free Radic Biol Med*. 2012 Mar 1;52(5):819-37. doi: 10.1016/j.freeradbiomed.2011.11.009. Epub 2011 Nov 16. PMID: 22178977.

103) Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. *J Biochem Mol Biol*. 2003 Jan 31;36(1):95-109. doi: 10.5483/bmbrep.2003.36.1.095. PMID: 12542980.

104) Rajendrasozhan S, Yao H, Rahman I. Current perspectives on role of chromatin modifications and deacetylases in lung inflammation in COPD. *COPD*. 2009 Aug;6(4):291-7. doi: 10.1080/15412550903049132. PMID: 19811389; PMCID: PMC2760053.

105) Cao D, Bromberg PA, Samet JM. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. *Am J Respir Cell Mol Biol*. 2007 Aug;37(2):232-9. doi: 10.1165/rcmb.2006-0449OC. Epub 2007 Mar 29. PMID: 17395887.

106) Peng H, Chen P, Cai Y, Chen Y, Wu QH, Li Y, Zhou R, Fang X. Endothelin-1 increases expression of cyclooxygenase-2 and production of interleukin-8 in human pulmonary epithelial cells. *Peptides*. 2008 Mar;29(3):419-24. doi: 10.1016/j.peptides.2007.11.015. Epub 2007 Nov 29. PMID: 18191873.

107) Clocchiatti A, Florean C, Brancolini C. Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. *J Cell Mol Med*. 2011 Sep;15(9):1833-46. doi: 10.1111/j.1582-4934.2011.01321.x. PMID: 21435179; PMCID: PMC3918040.

108) Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. *Immunol Cell Biol*. 2012 Jan;90(1):85-94. doi: 10.1038/icb.2011.100. Epub 2011 Nov 29. PMID: 22124371.

109) Segré CV, Chiocca S. Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. *J Biomed Biotechnol*. 2011;2011:690848. doi: 10.1155/2011/690848. Epub 2010 Dec 9. PMID: 21197454; PMCID: PMC3004424.

110) Stein S, Matter CM. Protective roles of SIRT1 in atherosclerosis. *Cell Cycle*. 2011 Feb 15;10(4):640-7. doi: 10.4161/cc.10.4.14863. Epub 2011 Feb 15. PMID: 21293192.

111) Bradley EW, McGee-Lawrence ME, Westendorf JJ. Hdac-mediated control of endochondral and intramembranous ossification. *Crit Rev Eukaryot Gene Expr*. 2011;21(2):101-13. doi: 10.1615/critreveukargeneexpr.v21.i2.10. PMID: 22077150; PMCID: PMC3218555.

112) Lee DY, Lee CI, Lin TE, Lim SH, Zhou J, Tseng YC, Chien S, Chiu JJ. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. *Proc Natl Acad Sci U S A*. 2012 Feb 7;109(6):1967-72. doi: 10.1073/pnas.1121214109. Epub 2012 Jan 23. PMID: 22308472; PMCID: PMC3277521.

113) Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. *Toxicol Appl Pharmacol*. 2011 Jul 15;254(2):72-85. doi: 10.1016/j.taap.2009.10.022. Epub 2011 Feb 4. PMID: 21296096; PMCID: PMC3107364.

114) Isajevs S, Taivans I, Svirina D, Strazda G, Kopeika U. Patterns of inflammatory responses in large and small airways in smokers with and without chronic obstructive pulmonary disease. *Respiration*. 2011;81(5):362-71. doi: 10.1159/000322560. Epub 2011 Jan 12. PMID: 21228544.

115) Chen Y, Huang P, Ai W, Li X, Guo W, Zhang J, Yang J. Histone deacetylase activity is decreased in peripheral blood monocytes in patients with COPD. *J Inflamm (Lond)*. 2012 Mar 23;9:10. doi: 10.1186/1476-9255-9-10. PMID: 22443498; PMCID: PMC3359164.

116) Ito K, Charron CE, Adcock IM. Impact of protein acetylation in inflammatory lung diseases. *Pharmacol Ther*. 2007 Nov;116(2):249-65. doi: 10.1016/j.pharmthera.2007.06.009. Epub 2007 Jul 24. PMID: 17720252.

117) Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. *Mol Cell Biochem*. 2002 May-Jun;234-235(1-2):239-48. PMID: 12162440.

118) Meja KK, Rajendrasozhan S, Adenuga D, Biswas SK, Sundar IK, Spooner G, Marwick JA, Chakravarty P, Fletcher D, Whittaker P, Megson IL, Kirkham PA, Rahman I. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. *Am J Respir Cell Mol Biol*. 2008 Sep;39(3):312-23. doi: 10.1165/rcmb.2008-0012OC. Epub 2008 Apr 17. PMID: 18421014; PMCID: PMC2542449.

119) Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, Kilty I, Rahman I. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF- κ B activation and proinflammatory cytokine release in alveolar epithelial cells. *FASEB J.* 2004 Dec;18(15):1897-9. doi: 10.1096/fj.04-1506fje. Epub 2004 Sep 28. PMID: 15456740.

120) Adcock IM, Ito K, Barnes PJ. Histone deacetylation: an important mechanism in inflammatory lung diseases. *COPD.* 2005 Dec;2(4):445-55. doi: 10.1080/15412550500346683. PMID: 17147010.

121) Malhotra D, Thimmulappa RK, Mercado N, Ito K, Kombairaju P, Kumar S, Ma J, Feller-Kopman D, Wise R, Barnes P, Biswal S. Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. *J Clin Invest.* 2011 Nov;121(11):4289-302. doi: 10.1172/JCI45144. Epub 2011 Oct 17. Retraction in: *J Clin Invest.* 2014 Dec;124(12):5521. PMID: 22005302; PMCID: PMC3204828.

122) Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF- κ B suppression. *J Exp Med.* 2006 Jan 23;203(1):7-13. doi: 10.1084/jem.20050466. Epub 2005 Dec 27. PMID: 16380507; PMCID: PMC2118081.

123) Adcock IM, Ito K. Glucocorticoid pathways in chronic obstructive pulmonary disease therapy. *Proc Am Thorac Soc.* 2005;2(4):313-9; discussion 340-1. doi: 10.1513/pats.200504-035SR. PMID: 16267355.

124) Qiu W, Baccarelli A, Carey VJ, Boutaoui N, Bacherman H, Klanderman B, Rennard S, Agusti A, Anderson W, Lomas DA, DeMeo DL. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. *Am J Respir Crit Care Med.* 2012 Feb 15;185(4):373-81. doi: 10.1164/rccm.201108-1382OC. Epub 2011 Dec 8. PMID: 22161163; PMCID: PMC3297093.

125) Guzmán L, Depix MS, Salinas AM, Roldán R, Aguayo F, Silva A, Vinet R. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers. *Diagn Pathol.* 2012 Jul 20;7:87. doi: 10.1186/1746-1596-7-87. PMID: 22818553; PMCID: PMC3424112.

126) Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, Agusti A, Anderson W, Lomas DA, Demeo DL. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. *Hum Mol Genet.* 2012 Jul 1;21(13):3073-82. doi: 10.1093/hmg/dds135. Epub 2012 Apr 6. PMID: 22492999; PMCID: PMC3373248.

127) Monick MM, Beach SR, Plume J, Sears R, Gerrard M, Brody GH, Philibert RA. Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. *Am J Med Genet B Neuropsychiatr Genet.* 2012 Mar;159B(2):141-51. doi: 10.1002/ajmg.b.32021. Epub 2012 Jan 9. PMID: 22232023; PMCID: PMC3318996.

128) Siedlinski M, Klanderman B, Sandhaus RA, Barker AF, Brantly ML, Eden E, McElvaney NG, Rennard SI, Stocks JM, Stoller JK, Strange C, Turino GM, Campbell EJ, Demeo DL. Association of cigarette smoking and CRP levels with DNA methylation in α -1 antitrypsin deficiency. *Epigenetics.* 2012 Jul;7(7):720-8. doi: 10.4161/epi.20319. Epub 2012 Jul 1. PMID: 22617718; PMCID: PMC3414392.

129) Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. *N Engl J Med.* 2005 May 12;352(19):1967-76. doi: 10.1056/NEJMoa041892. PMID: 15888697.

130) Adenuga D, Yao H, March TH, Seagrave J, Rahman I. Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. *Am J Respir Cell Mol Biol.* 2009 Apr;40(4):464-73. doi: 10.1165/rcmb.2008-0255OC. Epub 2008 Oct 16. PMID: 18927347; PMCID: PMC2660563.

131) Rajendrasozhan S, Yang SR, Edirisinghe I, Yao H, Adenuga D, Rahman I. Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD. *Antioxid Redox Signal.* 2008 Apr;10(4):799-811. doi: 10.1089/ars.2007.1938. PMID: 18220485; PMCID: PMC2758554.

132) Zhang R, Kang KA, Kim KC, Na SY, Chang WY, Kim GY, Kim HS, Hyun JW. Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. *Gene.* 2013 Jul 25;524(2):214-9. doi: 10.1016/j.gene.2013.04.024. Epub 2013 Apr 22. PMID: 23618814.

133) O'Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H, Casero RA, Sears CL, Baylin SB. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. *Cancer Cell.* 2011 Nov 15;20(5):606-19. doi: 10.1016/j.ccr.2011.09.012. PMID: 22094255; PMCID: PMC3220885.

134) Kang KA, Zhang R, Kim GY, Bae SC, Hyun JW. Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. *Tumour Biol.* 2012 Apr;33(2):403-12. doi: 10.1007/s13277-012-0322-6. Epub 2012 Jan 25. PMID: 22274925.

135) Patterson AJ, Xiao D, Xiong F, Dixon B, Zhang L. Hypoxia-derived oxidative stress mediates epigenetic repression of PKC ϵ gene in foetal rat hearts. *Cardiovasc Res.* 2012 Feb 1;93(2):302-10. doi: 10.1093/cvr/cvr322. Epub 2011 Dec 2. PMID: 22139554; PMCID: PMC3258654.

136) Bonvicini F, Manaresi E, Di Furio F, De Falco L, Gallinella G. Parvovirus b19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression. *PLoS One.* 2012;7(3):e33316. doi: 10.1371/journal.pone.0033316. Epub 2012 Mar 7. PMID: 22413013; PMCID: PMC3296687.

137) Li XQ, Guo YY, De W. DNA methylation and microRNAs in cancer. *World J Gastroenterol.* 2012 Mar 7;18(9):882-8. doi: 10.3748/wjg.v18.i9.882. PMID: 22408346; PMCID: PMC3297046.

138) Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, Söderhäll C, Scheynius A, Kere J. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. *PLoS One.* 2012;7(7):e41361. doi: 10.1371/journal.pone.0041361. Epub 2012 Jul 25. PMID: 22848472; PMCID: PMC3405143.

139) Rao JS, Kelesian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer's disease and bipolar disorder patients. *Transl Psychiatry.* 2012 Jul 3;2(7):e132. doi: 10.1038/tp.2012.55. PMID: 22760556; PMCID: PMC3410632.

140) Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG. Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. *PLoS One.* 2012;7(7):e41036. doi: 10.1371/journal.pone.0041036. Epub 2012 Jul 19. PMID: 22829908; PMCID: PMC3400598.

141) Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. *Mol Endocrinol.* 2005 Mar;19(3):563-73. doi: 10.1210/me.2004-0496. Epub 2005 Jan 27. PMID: 15677708.

142) Liu WR, Shi YH, Peng YF, Fan J. Epigenetics of hepatocellular carcinoma: a new horizon. *Chin Med (Engl).* 2012 Jul;125(13):2349-60. PMID: 22882861.

143) Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V, Walter J. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. *PLoS Genet.* 2012 Jun;8(6):e1002750. doi: 10.1371/journal.pgen.1002750. Epub 2012 Jun 28. PMID: 22761581; PMCID: PMC3386304.

144) Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. *J Neurosci*. 2011 Nov 16;31(46):16619-36. doi: 10.1523/JNEUROSCI.1639-11.2011. PMID: 22090490; PMCID: PMC3238138.

145) Bartels SJ, Spruijt CG, Brinkman AB, Jansen PW, Vermeulen M, Stunnenberg HG. A SILAC-based screen for Methyl-CpG binding proteins identifies RBP-J as a DNA methylation and sequence-specific binding protein. *PLoS One*. 2011;6(10):e25884. doi: 10.1371/journal.pone.0025884. Epub 2011 Oct 3. PMID: 21991380; PMCID: PMC3185043.

146) Parry L, Clarke AR. The Roles of the Methyl-CpG Binding Proteins in Cancer. *Genes Cancer*. 2011 Jun;2(6):618-30. doi: 10.1177/1947601911418499. PMID: 21941618; PMCID: PMC3174265.

147) Mandrekar P. Epigenetic regulation in alcoholic liver disease. *World J Gastroenterol*. 2011 May 28;17(20):2456-64. doi: 10.3748/wjg.v17.i20.2456. PMID: 21633650; PMCID: PMC3103803.

148) Uehara E, Takeuchi S, Yang Y, Fukumoto T, Matsuhashi Y, Tamura T, Matsushita M, Nagai M, Koeffler HP, Tasaka T. Aberrant methylation in promoter-associated CpG islands of multiple genes in chronic myelogenous leukemia blast crisis. *Oncol Lett*. 2012 Jan;3(1):190-192. doi: 10.3892/ol.2011.419. Epub 2011 Sep 13. PMID: 22740879; PMCID: PMC3362479.

149) Reamon-Buettner SM, Borlak J. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1. *PLoS One*. 2012;7(6):e38531. doi: 10.1371/journal.pone.0038531. Epub 2012 Jun 6. PMID: 22701659; PMCID: PMC3368868.

150) Wong TS, Gao W, Li ZH, Chan JY, Ho WK. Epigenetic dysregulation in laryngeal squamous cell carcinoma. *J Oncol*. 2012;2012:739461. doi: 10.1155/2012/739461. Epub 2012 May 7. PMID: 22645613; PMCID: PMC3356733.

151) Watt F, Molloy PL. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. *Genes Dev*. 1988 Sep;2(9):1136-43. doi: 10.1101/gad.2.9.1136. PMID: 3192075.

152) Zhu WG, Srinivasan K, Dai Z, Duan W, Druhan LJ, Ding H, Yee L, Villalona-Calero MA, Plass C, Otterson GA. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. *Mol Cell Biol*. 2003 Jun;23(12):4056-65. doi: 10.1128/MCB.23.12.4056-4065.2003. PMID: 12773551; PMCID: PMC156121.

153) Wan M, Zhao K, Lee SS, Francke U. MECP2 truncating mutations cause histone H4 hyperacetylation in Rett syndrome. *Hum Mol Genet*. 2001 May 1;10(10):1085-92. doi: 10.1093/hmg/10.10.1085. PMID: 11331619.

154) Robertson KD. DNA methylation and human disease. *Nat Rev Genet*. 2005 Aug;6(8):597-610. doi: 10.1038/nrg1655. PMID: 16136652.

155) Zeng H, Kong X, Peng H, Chen Y, Cai S, Luo H, Chen P. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. *Eur Rev Med Pharmacol Sci*. 2012 Jun;16(6):711-27. PMID: 22913201.

156) Aoshiba K. [Roles of apoptosis, cell senescence, and DNA damage in the pathogenetic mechanism of COPD]. *Nihon Rinsho*. 2011 Oct;69(10):1754-7. Japanese. PMID: 22073568.

157) Comer DM, Kidney JC, Ennis M, Elborn JS. Airway epithelial cell apoptosis and inflammation in COPD, smokers and nonsmokers. *Eur Respir J*. 2013 May;41(5):1058-67. doi: 10.1183/09031936.00063112. Epub 2012 Aug 9. PMID: 22878876.

158) Farkas L, Farkas D, Warburton D, Gauldie J, Shi W, Stampfli MR, Voelkel NF, Kolb M. Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice. *Am J Physiol Lung Cell Mol Physiol.* 2011 Oct;301(4):L391-401. doi: 10.1152/ajplung.00369.2010. Epub 2011 Jul 8. PMID: 21743024.

159) Nakanishi K, Takeda Y, Tetsumoto S, Iwasaki T, Tsujino K, Kuhara H, Jin Y, Nagatomo I, Kida H, Goya S, Kijima T, Maeda N, Funahashi T, Shimomura I, Tachibana I, Kawase I. Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy. *Am J Respir Crit Care Med.* 2011 May 1;183(9):1164-75. doi: 10.1164/rccm.201007-1091OC. Epub 2011 Jan 14. PMID: 21239691.

160) Yang M, Chen P, Peng H, Shen Q, Chen Y. [Cytochrome C oxidase expression and endothelial cell apoptosis in lungs of patients with chronic obstructive pulmonary disease]. Zhonghua Jie He He Hu Xi Za Zhi. 2010 Sep;33(9):665-9. Chinese. PMID: 21092633.

161) Zeng H, Kong X, Zhang H, Chen Y, Cai S, Luo H, Chen P. Inhibiting DNA methylation alleviates cigarette smoke extract-induced dysregulation of Bcl-2 and endothelial apoptosis. *Tob Induc Dis.* 2020 Jun 3;18:51. doi: 10.18332/tid/119163. PMID: 32547354; PMCID: PMC7291961.

162) Peng H, Yang M, Chen ZY, Chen P, Guan CX, Xiang XD, Cai S, Chen Y, Fang X. Expression and methylation of mitochondrial transcription factor a in chronic obstructive pulmonary disease patients with lung cancer. *PLoS One.* 2013 Dec 18;8(12):e82739. doi: 10.1371/journal.pone.0082739. PMID: 24367550; PMCID: PMC3867397.

163) Yap JL, Worlikar S, MacKerell AD Jr, Shapiro P, Fletcher S. Small-molecule inhibitors of the ERK signaling pathway: Towards novel anticancer therapeutics. *ChemMedChem.* 2011 Jan 3;6(1):38-48. doi: 10.1002/cmdc.201000354. PMID: 21110380; PMCID: PMC3477473.

164) Xiao J, Wang K, Feng YL, Chen XR, Xu D, Zhang MK. Role of extracellular signal-regulated kinase 1/2 in cigarette smoke-induced mucus hypersecretion in a rat model. *Chin Med J (Engl).* 2011 Oct;124(20):3327-33. PMID: 22088530.

165) Liu K, Liu XS, Yu MQ, Xu YJ. Change of extracellular signal-regulated kinase expression in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease. *Exp Lung Res.* 2013 May-Jun;39(4-5):162-72. doi: 10.3109/01902148.2013.788234. Epub 2013 Apr 24. PMID: 23614701.

166) Park JW, Yoon JY, Kim YJ, Kyung SY, Lee SP, Jeong SH, Moon C. Extracellular signal-regulated kinase (ERK) inhibition attenuates cigarette smoke extract (CSE) induced-death inducing signaling complex (DISC) formation in human lung fibroblasts (MRC-5) cells. *J Toxicol Sci.* 2010 Feb;35(1):33-9. doi: 10.2131/jts.35.33. PMID: 20118622.

167) Hsu CL, Wu YL, Tang GJ, Lee TS, Kou YR. Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: Role of heme oxygenase-1. *Pulm Pharmacol Ther.* 2009 Aug;22(4):286-96. doi: 10.1016/j.pupt.2009.02.003. Epub 2009 Feb 28. PMID: 19254777.

168) Oelke K, Richardson B. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression. *Int Rev Immunol.* 2004 May-Aug;23(3-4):315-31. doi: 10.1080/08830180490452567. PMID: 15204091.

169) Lu R, Wang X, Chen ZF, Sun DF, Tian XQ, Fang JY. Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells. *J Biol Chem.* 2007 Apr 20;282(16):12249-59. doi: 10.1074/jbc.M608525200. Epub 2007 Feb 16. PMID: 17307743.