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Abstract: Numerous genes expression lead to inflammation in the individuals’ lungs that have chronic 

obstructive pulmonary disease (COPD) may be affected by epigenetic alteration. Important epigenetic 

processes include methylation of DNA and different histones post-translational changes, including 

ubiquitination, phosphorylation, methylation, SUMOylation and acetylation. Smoking can trigger the 

enzymes that control these epigenetic changes. According to the majority of publications, both 

environmental and genetic variables have a substantial role in the development of COPD. Although, 

the information about COPD epigenetic is not much but, a better perception of the disease 

pathophysiology and identifying new markers to create novel therapeutics for patients can be achieved 

via a better understanding of the epigenetic processes involved. 
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1. Introduction 

An increasing number of people throughout the world are suffering with COPD, and it 

is responsible for a disproportionate share of the healthcare dollar bill in both direct and 

indirect costs (1,2). From the fourth biggest cause of death worldwide in 2004 to the third 

major incidence of death in 2030, (COPD) is predicted by WHO (3-5). Progressive, 

irreversible airflow restriction is a hallmark of COPD, This is brought on by chronic 

inflammation in the bronchi and lungs due to exposure to harmful substances like cigarette 

smoke (6). Cigarettes contain around 4700 active ingredients and 1014 free radicals, the 

intake of which is largely responsible for the pathophysiology of COPD. Cell death, 

insufficient regeneration, the oxidant-antioxidant ratio, the concept of elastase-antielastase 

and chronic inflammation, these factors are all assumed to have a role in the progression of 

COPD (7). Many people believe that the inflammation brought on by smoking cigarettes is 

the primary cause of COPD.  Involvement of elevated expression of of several other 

cytokines, which are proinflammatory factors, is thought to be involved in the underlying 

mechanism (8-10). Recent years have seen significant advancements in our knowledge of the 

molecular biology underlying activation of inflammatory genes and the methods by which 

they may be turned off, both have potential use in the management of inflammatory lung 

disorders. (11). Epigenetic modifications have been linked to the onset of chronic 

inflammation by modulating gene expression of proinflammatory cytokines like oncogenes, 

tumor suppressors, tumor necrosis factor alpha (TNF-α) the transcription factor nuclear 

factor kappa B (NF-kB) activation and interleukins (12-15). Deficient deacetylation or 
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excessive acetylation, for instance, may cause the activator protein 1 (AP-1) and the nuclear 

factor kappa B (NF-kappa B) controlled gene transcription of proinflammatory genes, 

leading to an inflow of more proinflammatory cells and a perpetuation of the inflammatory 

cycle (8). In addition, newer research has revealed that the widely used corticosteroids in the 

treatment of COPD may operate in part through epigenetic mechanisms (16,17). By 

inhibiting these transcription factors and their potential to promote histone alterations and 

chromatin remodeling, the inflammatory genes are thought to be turned off by 

corticosteroids, which seems to reduce inflammation. (18). Heritable changes in gene 

expression that are not coded in the DNA sequence itself but rather by post-translational 

modifications in DNA and histone proteins are referred to as epigenetics. Epigenetics is the 

word used to describe these types of alterations (19,20). Methylation of DNA, that prevents 

genes from being copied, and alterations to the histone proteins, which DNA loops across, 

both work to silence transcription, are two of the most important epigenetic processes, 

respectively (12,21). Chromatin's fundamental unit is the nucleosome, and it consists of a 

little piece of DNA encased in a core histone tail that includes each of H4, H3, and H2A/B in 

two copies. (22-24). Chromatin may also take on a closed conformation, which is associated 

to repression of expression (25). Transcription can begin if the structure of chromatin has 

been broken down, a process that is accomplished by unfolding bare DNA. This is necessary 

for RNA polymerase to be able to transcribe mRNA from the DNA template. It begins with 

the binding of activated proinflammatory transcription factors like NF-B to a particular 

sequence of genes (11). The nucleosome histones are mostly spherical, with the exception of 

their disordered N-terminal "tails" (26). The covalent alteration of histones is a key epigenetic 

process for modulating expression of genes. Moreover, N-terminal tails are highly enriched 

for post-translational modifications such as methylation of lysines and arginines, acetylation, 

phosphorylation, ubiquitination, SUMOylation, and ADP-ribosylation (27–29). Altering the 

charge of the core histone can activate or silence gene transcription by shifting the chromatin 

structure from a closed to an open conformation (11). 

The activation of inflammatory genes in COPD can be better understood if the molecular 

mechanism behind this process is known. Errors in methylation of DNA and alterations in 

deacetylation and acetylation of histones are, nevertheless, the most commonly detected 

epigenetic alterations. Possible contributions of a variety of post-translational alterations, 

including histone methylation, ubiquitination, phosphorylation, deacetylation, acetylation 

and methylation of DNA in the creation of cutting-edge drugs that can be utilized either 

alone or in combination with existing treatments for COPD, as well as the disease's 

development and progression, are reviewed in this report. 

2. Chronic Obstructive Pulmonary Disease and Epigenetic alterations 

2.1. Methylation of Histone 

    Over the course of the past four decades, the methylation of histones has been identified 

as a regulator of gene expression (30). Methylations on arginine and lysine amino acids of 

histones are among the most stable alterations; as a result, they are thought to be useful 

markers for transporting epigenetic information that survives cell divisions (31). 

Methylation of histones H3 and H4 has received the greatest attention. Some of the most 

common sites for methylation in lysine amino acids of histones are in the position of H4K20, 

H3K79, H3K36, H3K27, H3K9 and H3K4. Gene activation is connected with H3K4 and 

H3K36 methylation, while repression is linked to H3K9, H3K27, and H4K20 methylation 
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(26,94). On mammalian histones, the presence of arginine methylation has proven to be 

challenging to identify, in contrast to the methylation of lysine (32). Mono-methylated 

arginine exists, and di-methylated arginine can be symmetric (me2s) or asymmetric (me2a) 

(33). Recently, it has become clear that alteration of arginine amino acids by methylation 

plays a significant role in the management of DNA repairing, RNA biogenesis, cell-to-cell 

communication. This regulation can occur directly through the regulation of protein 

function or indirectly through the effect of metabolic byproducts of arginine methylation on 

nitric oxide (NO)-dependent processes (34,35). Protein arginine methyltransferases (PRMTs) 

attach one or two methyl groups from AdoMet (S-adenosylmethionine) to the guanidine-

nitrogens of arginine, generating an epigenetic signature connected to expression of genes, 

which is essential in a wide range of biological functions and is suppressible by tiny 

effectors. (36,37). Six of the nine PRMTs that are encoded by the human genome (PRMT1, 2, 

3, 6 and 8) are type I enzymes, according to classifications that may be made of them (33). 

Protein arginine methyltransferases (PRMTs) are able to precisely methylate arginine 

residues in proteins, resulting in either monomethylarginine (MMA), symmetric 

dimethylarginine (SDMA), or asymmetric dimethylarginine (ADMA) (38). Multiple 

research have looked at the connection between smoking and ADMA levels because of the 

strong link between the two and COPD. In comparison to nonsmokers, smokers have lower 

levels of ADMA according to certain research (39–41), while smokers have higher levels of 

ADMA according to other studies (42). Despite the fact that the results are debatable, it is 

possible that elevated levels of ADMA in smokers are connected with PRMT operations that 

are dysregulated. There is evidence that PRMT4, 5, 6, 9, and 10 are all overexpressed at 

higher levels in COPD lung tissue specimens (43). According to the research of Kohse et al. 

(44), PRMT2, 4, and 6 may participate in the regulation of Th17 cell development, which may 

in turn play a part in the inflammatory processes that contribute to COPD. Extremely strong 

hypoxic stimuli can trigger COPD. In the lungs of mice exposed to hypoxia, Both the PRMT2 

and the levels of protein were discovered to be increased, according to Yildirim et al (45). 

Further evidence implicating oxidative stress in the development of COPD was found when 

PRMTs were found to be up-regulated in human endothelial cells (46). A recent study 

published by Andresen et al. (47) found a strong correlation between rising DEFB1 mRNA 

levels and the development of COPD. These findings prove the presence of PRMTs in COPD 

models and suggest a possible association between COPD and the methylation of arginine 

caused by PRMT functioning. Importantly, the exact mechanisms of methylation of histones 

potential involvement in the aetiology of COPD is unresolved. Methylation of histones in 

COPD is poorly understood; hence further in vivo and in vitro studies are required to 

elucidate the mechanisms involved. 

2.2. Ubiquitination of Histone 

The Ubiquitin-Proteasome System (UPS) has gained significant attention in the field of 

COPD in recent years. Patients with COPD frequently experience diaphragm and skeletal 

muscle dysfunction because of an unfavorable muscular protein production ratio to 

degradation of muscle protein (48-50) The ATP-based ubiquitin-protein degradation (UPS) 

is a crucial regulator of protein degradation (51). Numerous studies have demonstrated that 

the UPS is partially activated in COPD patients, which results in increased protein 
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breakdown and limb muscle atrophy (52,53). Degradation of contractile proteins in COPD 

has been linked to the UPS, which is vital for biological functions, such as the reaction to 

hypoxia (54,55). Skeletal muscle atrophy caused by smoking is linked to increased USP-19 

expression through activation of p38 and ERK MAPKs (56). Patients with moderate to severe 

COPD have been shown to have higher local production of proinflammatory cytokines, 

which has been connected to the UPS and the lack of myosin in the diaphragm. (57-60). 

Furthermore, Zou et al (61,62) showed that -TrCP (E3-ubiquitin ligase) actively involved in 

the pulmonary inflammatory response via histone protein O-palmitoylation. Steroid 

resistance is related to decreased HDAC2 abundance, which has been shown in patients with 

COPD and is induced by CSE therapy in epithelial cells, macrophages, and mice lungs (63). 

The UPS is essential for cell survival and proliferation, and Kim et al. (64) discovered that 

CSE treatment could increase Akt protein breakdown. Collectively, these findings suggest 

that UPS aberrant activation is a key factor in the development of COPD. All eukaryotes 

have ubiquitin, a regulatory protein with 76 amino acids (65). vesicle trafficking, 

endocytosis, transcriptional regulation, signal transmission, immunological response, DNA 

repair, stress response, cell-cycle control and Protein degradation are only some of the 

physiological activities regulated by ubiquitination post-translational modification to target 

proteins (66,67). To guarantee the prompt and effective proteolysis of target substrates, the 

UPS employs a complex network of protein components (ubiquitin-activating E1 enzymes, 

ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) 

that function in concert with one another (68,69). The maintenance of genomic stability and 

transcriptional regulation are two processes that are significantly regulated by the 

ubiquitination of histones (70). H2A (K119) and H2B (K20 in humans and K123 in yeast) are 

the most common alteration sites (26). The mono-ubiquitinated H2A (H2Aub) and H2B 

(H2Bub) histones, which have a single ubiquitin biomolecule attached to the highly 

conserved lysine amino acids, are the most common kinds of ubiquitinated histones (71). 

Reports have shown a connection between H2B mono-ubiquitylation and transcriptional 

activation (72,73). Transcriptional repression, which is achieved by the ubiquitylation of 

H2A, is critically important (74,75). In addition to their functions in gene expression and 

DNA repair, the two histone proteins also participate in a wide variety of other cellular 

activities (76,77). Several human disorders, including cancer, have been linked to 

abnormalities of histone ubiquitination or deubiquitination (78,79). On the other hand, 

further investigations are needed to determine if histone ubiquitination has a role in COPD. 

2.3. Histone Phosphorylation 

     There is strong evidence that histone phosphorylation is involved in recombination, 

replication, DNA repair, cell death and mitosis (80). Histones are phosphorylated at their N-

terminal tails mostly but not solely on serines, threonines, and tyrosines (81). Histone H3 

phosphorylation during mitosis is regulated by a delicate equilibrium between kinase and 

phosphatase activity (H3). Depending on the particular stimulus or stress, ribosomal S6 

kinase (RSK)-2, mitogen- and stress-activated kinase (MSK)-1, and MAPKs mediate H3 

phosphorylation, which stimulates immediate-early gene expression (82). Condensation of 

chromosomes and transcriptional activity during mitosis are both correlated with H3 

phosphorylation at serine amino acid number 10 and 28 (83,84). Transcription of NF-κB-

regulated genes (26), which is crucial to the inflammatory response in COPD, has been 

shown to depend on H3S10 phosphorylation (85,86). The phospho-acetylation of histone H3 

on pro-inflammatory gene promoters in response to cigarette smoke stimuli is shown to be 
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essential for the transcription of NF-κB, as discovered by Chung et al (92). Additionally, 

Sundar et al. (87) show that MSK1 is a key downstream kinase involved in cigarette smoke-

induced NF-kappaB transcription and phospho-acetylation of H3, both of which are relevant 

to the COPD pathophysiology. Release of elastolytic enzymes, reactive oxygen species 

(ROS), chemokines and cytokines from alveolar macrophages is known to have a major role 

in the pathogenesis of COPD (88,89). Alveolar macrophages from COPD smokers were 

shown to have an elevation in the phosphorylated form of the p38 subgroup of MAPKs (90). 

Lung macrophages rely heavily on the p38 MAPK pathway to generate inflammatory 

cytokines (91,92). In addition, reactive oxygen species (ROS) may contribute to heightened 

inflammation by activating and phosphorylating MAPKs (93). This suggests that cigarette 

smoke may activate kinases, which in turn may phosphorylate histones, leading to 

transcription of inflammatory genes. The chronic inflammatory response triggered by 

cigarette smoke is linked to a number of diseases, including COPD, and these kinases may 

be therapeutic targets for treating these conditions. 

2.4. Histone Acetylation and Deacetylation 

     Cigarette smoke is a major risk factor in the evolving of COPD because it activates 

transcription of inflammatory genes (94,95). One of the most important mechanisms 

controlling the specificity and persistence of transcription is acetylation and deacetylation of 

histone (8). The acetylation of histones is critical for remodelling the chromatin and has been 

related to an extended inflammatory reaction in the lungs of individuals suffering from 

COPD (96,97), and is induced by cigarette in macrophages and in the lung of humans and 

rats. According to studies, cigarette smoke exposure increases H3 and H4 acetylation around 

the proinflammatory genes promoters in mouse lungs, resulting in a more robust 

inflammatory response (92). Enhancing the transcription of NF-κB-dependent inflammatory 

genes (14,96) is a result of the histones acetylation by histone acetyltransferases (HATs), 

which allows TFs like NF-κB to reach the promoter section. Histone deacetylation by 

HDACs, on the other hand, stops gene transcription by making DNA more twisted, which 

makes it harder for transcription factors81 to reach. As a result, the equilibrium between 

histone acetylation and deacetylation is crucial for controlling inflammatory gene 

expression. When the equilibrium is disrupted, proinflammatory genes regulated by AP-1 

and NF-kB may be continuously transcribed, resulting in an inflow of even more 

proinflammatory cells and a vicious cycle of chronic inflammation (97,98). 

2.5. HATs 

Multiple histone acetyltransferases (HATs) have been discovered and characterized, and 

it has been established that these enzymes acetylate distinct locations on histones and other 

proteins, including transcription regulators (99). By comparing their biological functions and 

the degree of conservation in the HAT domain, we may classify them into three distinct 

families (100). Between all of the HATs, CBP/p300 has received the most attention (101). It 

has a significant role in controlling the production of proinflammatory cytokines, namely 

via the mitogen-activated protein kinase (MAPK), NF-κB, and signal transducers and 

activators of transcription (STAT) (102). Both hydrogen peroxide (H2O2) and tumour 

necrosis factor alpha (TNF-alpha) have been found to induce histone acetylation (HAT 

activity) in alveolar epithelial cells, suggesting a role for both stimuli in the cigarette smoke-

mediated inflammatory response (103). The continuous proinflammatory response found in 

COPD is due to the increased NF-B, H3 and H4 acetylation by  the means of CBP/p300, which 
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is mediated by cigarette (104). Numerous detrimental respiratory health effects, including 

COPD, have been linked to diesel exhaust particles (DEP). Important functions of the 

cyclooxygenase-2 (COX-2) gene are regulated by histone acetyltransferase (HAT) p300, 

which may be recruited to the gene's promoter by exposure to DEP (105,106). 

2.6. HDACs 

     Humans have 18 histone deacetylases (HDACs), which may be further broken down into 

four groups defined by their unique structural characteristics and regulatory processes (107). 

HDAC1, 2, 3, 8 and 11 are members of class I and are transcribed in all of cells ubiquitously, 

suggesting that they might have a role in controlling the proliferation of the cells (108). 

HDAC4, 5, 6, 7, 9, and 10 are members of class II, and are produced with varying degrees of 

tissue selectivity and might have a role in differentiation of the cells (109). The seven 

members of Class III HDACs, often known as sirtuins, are designated as Sirt1-7 (110). 

HDAC11, the single class IV member, resembles HDACs from the class I and II (111). Histone 

deacetylases (HDACs) are key epigenetic regulators that govern the activation of nonhistone 

proteins (112), like NF-B, and, consequently, have the capacity to regulate NF-B-dependent 

proinflammatory gene transcription (113) by removing acetyl from the -N-acetyl lysine 

residues on histones. Cigarette smokers with COPD had dramatically decreased levels and 

activity of histone deacetylases, especially HDAC2 (114). It has been shown that the 

expression of HDAC2 (18) is drastically reduced (by 95%!) in individuals with very severe 

illness (GLOD stage 4). The Total function of HDAC is reportedly lowered in the tissues of 

bronchial-biopsy alveolar macrophages and  peripheral lung tissue samples in individuals 

suffering from COPD, and this drop is connected with the intensity of the illness and 

inflammatory reaction, according to Ito et al (129). It has been demonstrated by Chen et al. 

(115) that HDAC activity is reduced in the PBMC of people with COPD compared to the 

PBMC of healthy controls. Additionally, after activating airway epithelial cell lines and 

alveolar macrophages with inflammatory boost, TSA, a nonselective inhibitor of HDAC, can 

result in an increase in the expression of inflammatory genes including AP-1 and NF-κB 

(116,117). Therefore, cigarette smoke alters HDACs, leading to acetylation of histones, which 

amplifies the inflammatory response and accelerates the development of COPD. oxidative 

stress, as shown in the lungs of COPD patients, lowers HDAC2 activity and expression (118). 

Cigarette smoke condensate (CSC) was found to lower the levels of HDAC2 and HDAC 

function in A549 cells and to drastically enhance acetylation of histone H4 proteins. Protein 

alteration by aldehydes and nitric oxide products also contributed to the reduction in 

HDAC2 activity (119). The discovery that a number of proinflammatory mediators, 

including heat shock proteins, matrix metalloproteinases, monocyte chemoattractant 

protein-1, IL-1, TNF, IL-6, IL-8 and intercellular adhesion molecule-1 (ICAM-1) are elevated 

in the smokers BAL fluid and may also be promoted by inhibiting deacetylases in histones 

(11), supports ROS and CSC-mediated reduction of HDAC2. COPD is characterised by 

resistance to the effects of corticosteroids and heightened inflammation, both of which are 

caused by decreased HDAC activity (16,120). Corticosteroids' primary function is to inhibit 

the expression of proinflammatory TFs such as NF-kB and AP1 (12), which control the 

expression of numerous inflammatory genes. These genes are responsible for producing 

cytokines, chemokines, adhesion molecules, inflammatory enzymes, and receptors. Since 

histone deacetylase 2 (HDAC2) inactivation is essential for transrepressive functionality of 

the glucocorticoid receptor (GR), that mediates anti-inflammatory impact of corticosteroids, 

it is a major contributor to the development of corticosteroid resistance (121). Therefore, 
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corticosteroids and lower HDAC2 activity inhibit inflammatory genes by recruitment of 

HDAC2 to activated inflammatory genes; expression is downregulated in several conditions 

where patients have a poor response, including chronic obstructive pulmonary disease 

(COPD) (12). In addition, Ito et al. (122) found that overexpressing HDAC2 in glucocorticoid-

insensitive COPD alveolar macrophages restored glucocorticoid sensitivity. During 

oxidative stress, tyrosine residues in the active region of HDAC2 may be nitrated or 

phosphorylated, leading to a loss of function before HDAC2 is degraded by the proteasome, 

resulting in a decrease in HDAC2 activity and expression (123). The possibility of reversal of 

COPD's corticosteroid resistance, which was previously mentioned, has implications for the 

creation of innovative treatments for this condition that responds poorly to current 

treatments. 

3. DNA methylation 

     Multiple studies, both of individual genes and of the entire genome, have linked DNA 

methylation alterations to cigarette smoking, suggesting that these alterations may 

contribute to the development of diseases like COPD. DNA methylation appears to have an 

important role in the development and progression of COPD (124). Comparing induced 

sputum from COPD patients to that of healthy participants, Guzmán et al. (125) discovered 

a higher proportion in methylation of promoter in CDKN2A and MGMT genes in 

individuals suffering from COPD. These methylations are substantially related to heavy 

smoking. Site-specific and dynamic methylation alterations in the reaction to cigarette might 

contribute to protracted hazards linked with cigarette, which remain after smoke quitting, 

as shown by Wan et al. (126). This may provide some insight into the steady decline in health 

despite quitting smoking. Methylation of DNA might have a function in pulmonary 

inflammation, as shown by the work of Monick et al. (127), who showed that smoking may 

alter methylation of DNA in macrophages of lung alveolar and lymphoblasts. Methylation 

of DNA is linked to both C-reactive protein (CRP) levels and smoking which is a biomarker 

of systemic inflammation, in Alpha-1 antitrypsin (AAT)-deficient people, as shown in other 

investigations as well (128). The systemic effects of COPD and smoking can also be better 

understood via profiling of methylation in DNAs with the source of white blood cell (124). 

Therefore, it is possible for us to draw the conclusion that smoking cigarettes can raise the 

degree of methylation of DNA that is implicated at both systemic and local inflammation 

that is associated with COPD. Some researchers have hypothesised that oxidative stress is 

involved in the process. The proinflammatory responses in respiratory disease have been 

shown to be influenced by oxidative stress through its effects on chromatin remodelling and 

signal transduction (129). Tobacco smoke contains a wide variety of chemical compounds 

and free radicals, such as semiquinones and reactive aldehydes, which are known to produce 

oxidative stress in the lungs (130,131). Increased levels of oxidative stress can cause DNA 

methyltransferase 1 (DNMT1) expression and activity, which can then influence DNA 

promoter methylation and, ultimately, gene expression (132-135). The specific function of 

oxidative stress in methylation of DNA in COPD will be determined in future research, 

which will lead to the discovery of novel pathophysiological processes and epigenetic targets 

of gene expression in this disease. A major epigenetic change that has a major impact on how 

genes are expressed is DNA methylation, which occurs in a variety of different ways and is 

studied extensively (136,137). About half of all genes that produce protein have GC-rich 

sections in the promoter named CpG islands (19,27). methylation of DNA is the covalent 

insertion of a methyl agent in the position 5 of a cytosine (138,139). Methylation of CpG 
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dinucleotides is a crucial epigenetic process for controlling the expression of genes in certain 

tissues and the differentiation of cells (140). Up to 80% of mammalian CpG dinucleotides are 

thought to have methylated (141). Unmethylated CpG residues are primarily found in the 

promoters of active genes (20). Methyl-binding proteins (MBPs) have a function in 

identifying and interpreting methylation patterns (142-146), while DNA methyltransferases 

(DNMTs) are in charge for enzymatically adding the methyl group to DNA in mammals. 

Mammalian DNMTs are divided into two classes: those that de novo methylate DNA and 

those that keep the methylation status constant. These four classes are designated DNMT 1, 

2, 3A, and 3B (147). When it comes to mammalian species, DNMT1 is by far the most 

prevalent DNA methyltransferase (a maintenance methyltransferase) at the protein level 

(22). It has been shown that ablation of DNMT2 in the embryonic stem cells of mouse had 

no discernible result on methylation of DNA (20), suggesting that DNMT2 in mammals has 

very low or no DNMT activity. De novo methyltransferases 3A and 3B catalyse the creation 

of new methyl groups in DNA. In general, gene silencing occurs when CpG islands in 

promoters become hypermethylated (148,149), whereas active transcription occurs when 

CpG islands become hypomethylated (13,150). The inactivation of transcription that occurs 

as a result of changes to DNA methylation has been proposed to be explained by two 

different mechanisms. There are specific and nonspecific factor binding sequences in 

promoter regions that play a role in regulating gene activity. Interfering with the process by 

which transcription factors bind to specific sites might be thought of as one potential 

mechanism for this effect (151). The second approach relies on the discovery that MBPs have 

a methyl-CpG binding domain, which allows them to bind selectively to methylated DNA 

(152). Histone deacetylases 1 and 2 (HDAC1 and 2) are recruited when MBPs engage with 

the corepressor Sin3A, leading to transcriptional repression (153). An increasing number of 

human disorders are due to aberrant regulation of DNA methylation, highlighting the 

significance of this process (154).When it comes to apoptosis in COPD, DNA methylation is 

just as important as inflammation. Researchers have found that apoptosis plays a significant 

part in the progression of COPD (155,156). The lungs of the people suffering from COPD 

show a boost in apoptosis in the airway epithelial, alveolar, and endothelial cells (157-159). 

Smoking may promote pulmonary vascular endothelial apoptosis in COPD by reducing the 

cyclooxygenase (COX)-2 functionality and production in the pulmonary vascular 

endothelial cells, as shown in our prior studies (160). Additionally, this is linked to an 

alternation in methylation of a CpG island in the mitochondrial transcription factor (mtTFA) 

promoter region. Moreover, the demethylating drug 5-azacytidine (5-AZA) can inhibit COX-

2 expression and activity (161,162) (Figure 1). Cell proliferation, differentiation, and survival 

are all controlled by the mitogen-activated protein kinase (MAPK) superfamily, of which 

extracellular signal-regulated kinase (ERK) is a subfamily (163,164). The expression of ERK 

was shown to be considerably higher in smokers in both in vivo and in vitro experiments 

(165,166). Ginkgo biloba extract protects human pulmonary artery endothelial cells 

(HPAECs) against cigarette smoke extract-induced apoptosis through ERK signalling, as 

shown by Hsu et al. (167). According to recent studies, the ERK pathway has been shown to 

have a role in the regulation of DNA methylation (168,169). Finally, DNA methylation 

regulation by smoking is a mechanism through which cigarette smoking might trigger cell 

death in chronic obstructive pulmonary disease. Thus, it is worthwhile to explore the 

underlying molecular process in depth, and it may become a possible treatment target for 

COPD. 
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Figure 1. The promoter methylation of the mtTFA gene can be triggered by cigarette 

smoking. Modifications in mtTFA gene methylation may mediate pulmonary vascular 

endothelial apoptosis in chronic obstructive pulmonary disease (COPD) via reducing 

COX-2 production and activity in PVE cells. 5-AZA is capable of reversing this 

methylation state. 

 

4. Conclusions 

The changes brought on by smoking in the enzymes and chemicals that alter histones 

and methylate DNA can influence many different physiological processes, including gene 

expression of inflammatory mediators, post-translational alternations of histones, apoptosis, 

cell cycle arrest, reactions of unfolded protein, senescence, antioxidants or stress reaction, 

DNA replication/recombination/repair, autophagy, tumour suppressor genes and growth 

factors (94). It is possible that smoking leads to epigenetic changes that may be passed down 

from generation to generation, and their relevance to COPD has become increasingly 

obvious in recent years. Analyzing alternations in methylation of DNA and histone 

modifications is essential for learning more about the bio-molecular basis of COPD. 

Nevertheless, the bio-molecular processes are not well known at this time. These epigenetic 

alterations are theoretically reversible, which may result in the development of new drugs 

for COPD patients or strategies for halting the advancement of this illness when it is 

diagnosed at an early stage. 
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